NASA Astrophysics Data System (ADS)
Igarashi, Yaeko; Irino, Tomohisa; Sawada, Ken; Song, Lu; Furota, Satoshi
2018-04-01
We reconstructed fluctuations in the East Asian monsoon and vegetation in the Japan Sea region since the middle Pliocene based on pollen data obtained from sediments collected by the Integrated Ocean Drilling Program off the southwestern coast of northern Japan. Taxodiaceae conifers Metasequoia and Cryptomeria and Sciadopityacere conifer Sciadopitys are excellent indicators of a humid climate during the monsoon. The pollen temperature index (Tp) can be used as a proxy for relative air temperature. Based on changes in vegetation and reconstructed climate over a period of 4.3 Ma, we classified the sediment sequence into six pollen zones. From 4.3 to 3.8 Ma (Zone 1), the climate fluctuated between cool/moist and warm/moist climatic conditions. Vegetation changed between warm temperate mixed forest and cool temperate conifer forest. The Neogene type tree Carya recovered under a warm/moist climate. The period from 3.8 to 2.5 Ma (Zone 2) was characterized by increased Metasequoia pollen concentration. Warm temperate mixed forest vegetation developed under a cool/moist climate. The period from 2.5 to 2.2 Ma (Zone 3) was characterized by an abrupt increase in Metasequoia and/or Cryptomeria pollen and a decrease in warm broadleaf tree pollen, indicating a cool/humid climate. The Zone 4 period (2.2-1.7 Ma) was characterized by a decrease in Metasequoia and/or Cryptomeria pollen and an increase in cool temperate conifer Picea and Tsuga pollen, indicating a cool/moist climate. The period from 1.7 to 0.3 Ma (Zone 5) was characterized by orbital-scale climate fluctuations. Cycles of abrupt increases and decreases in Cryptomeria and Picea pollen and in Tp values indicated changes between warm/humid and cold/dry climates. The alpine fern Selaginella selaginoides appeared as of 1.6 Ma. Vegetation alternated among warm mixed, cool mixed, and cool temperate conifer forests. Zone 6 (0.3 Ma to present) was characterized by a decrease in Cryptomeria pollen. The warm temperate broadleaf forest and cool temperate conifer forest developed alternately under warm/moist and cold/dry climate. Zone 2 corresponded to a weak Tsushima Current breaking through the Tsushima Strait, and the beginning of orbital-scale climatic changes at 1.7 Ma during Zone 5 corresponded to the strong inflow of the Tsushima Current into the Japan Sea during interglacial periods (Gallagher et al., 2015).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spirn, A W; Santos, A N; Johnson, D A
1981-04-01
The potential of vegetation for cooling small, detached residential and commercial structures in temperate, humid climates is discussed. The results of the research are documented, a critical review of the literature is given, and a brief review of energy transfer processes is presented. A checklist of design objectives for passive cooling, a demonstration of design applications, and a palette of selected plant species suitable for passive cooling are included.
Sabri, Nurul Syazwani Ahmad; Zakaria, Zuriati; Mohamad, Shaza Eva; Jaafar, A Bakar; Hara, Hirofumi
2018-04-28
A soil cooling system that prepares soil for temperate soil temperatures for the growth of temperate crops under a tropical climate is described herein. Temperate agriculture has been threatened by the negative impact of temperature increases caused by climate change. Soil temperature closely correlates with the growth of temperate crops, and affects plant processes and soil microbial diversity. The present study focuses on the effects of soil temperatures on lettuce growth and soil microbial diversity that maintains the growth of lettuce at low soil temperatures. A model temperate crop, loose leaf lettuce, was grown on eutrophic soil under soil cooling and a number of parameters, such as fresh weight, height, the number of leaves, and root length, were evaluated upon harvest. Under soil cooling, significant differences were observed in the average fresh weight (P<0.05) and positive development of the roots, shoots, and leaves of lettuce. Janthinobacterium (8.142%), Rhodoplanes (1.991%), Arthrospira (1.138%), Flavobacterium (0.857%), Sphingomonas (0.790%), Mycoplana (0.726%), and Pseudomonas (0.688%) were the dominant bacterial genera present in cooled soil. Key soil fungal communities, including Pseudaleuria (18.307%), Phoma (9.968%), Eocronartium (3.527%), Trichosporon (1.791%), and Pyrenochaeta (0.171%), were also recovered from cooled soil. The present results demonstrate that the growth of temperate crops is dependent on soil temperature, which subsequently affects the abundance and diversity of soil microbial communities that maintain the growth of temperate crops at low soil temperatures.
NASA Astrophysics Data System (ADS)
Toda, M.; Knohl, A.; Herbst, M.; Keenan, T. F.; Yokozawa, M.
2016-12-01
The increase in extreme climate events associated with ongoing global warming may create severe damage to terrestrial ecosystems, changing plant structure and the eco-physiological functions that regulate ecosystem carbon exchange. However, most damage is usually due to moderate, rather than catastrophic, disturbances. The nature of plant functional responses to such disturbances, and the resulting effects on the terrestrial carbon cycle, remain poorly understood. To unravel the scientific question, tower-based eddy covariance data in the cool-temperate forests were used to constrain plant eco-physiological parameters in a persimoneous ecosystem model that may have affected carbon dynamics following extreme climate events using the statistic Bayesian inversion approach. In the present study, we raised two types of extreme events relevant for cool-temperate regions, i.e. a typhoon with mechanistic foliage destraction and a heat wave with severe drought. With appropriate evaluation of parameter and predictive uncertainties, the inversion analysis shows annual trajectory of activated photosynthetic responses following climate extremes compared the pre-disturbance state in each forest. We address that forests with moderate disturbance show substantial and rapid photosynthetic recovery, enhanced productivity, and, thus, ecosystem carbon exchange, although the effect of extreme climatic events varies depending on the stand successional phase and the type, intensity, timing and legacy of the disturbance.
The influence of climatic conditions on the heat balance of the human body
NASA Astrophysics Data System (ADS)
Blażejeczyk, Krzysztof; Krawczyk, Barbara
1991-06-01
The structure of heat exchange between the human body and its surroundings has been studied according to M.I. Budyko's model. Comparative measurements were carried out in the Polish Lakeland (maritime, temperate warm climate), in Central Mongolia (continental, temperate cool climate), and in the Kara Kum desert (dry subtropical climate). The results deal with the summer and early autumn seasons. The calculations indicate that the quantitative apportionment of various forms of heat exchange depend on specific weather conditions, which are typical for the distinguished climatic zones.
Gehrke, Berit
2018-01-01
Plant species tend to retain their ancestral ecology, responding to temporal, geographic and climatic changes by tracking suitable habitats rather than adapting to novel conditions. Nevertheless, transitions into different environments or biomes still seem to be common. Especially intriguing are the tropical alpine-like areas found on only the highest mountainous regions surrounded by tropical environments. Tropical mountains are hotspots of biodiversity, often with striking degrees of endemism at higher elevations. On these mountains, steep environmental gradients and high habitat heterogeneity within small spaces coincide with astounding species diversity of great conservation value. The analysis presented here shows that the importance of in situ speciation in tropical alpine-like areas has been underestimated. Additionally and contrary to widely held opinion, the impact of dispersal from other regions with alpine-like environments is relatively minor compared to that of immigration from other biomes with a temperate (but not alpine-like) climate. This suggests that establishment in tropical alpine-like regions is favoured by preadaptation to a temperate, especially aseasonal, freezing regime such as the cool temperate climate regions in the Tropics. Furthermore, emigration out of an alpine-like environment is generally rare, suggesting that alpine-like environments - at least tropical ones - are species sinks.
Gehrke, Berit
2018-01-01
Abstract Plant species tend to retain their ancestral ecology, responding to temporal, geographic and climatic changes by tracking suitable habitats rather than adapting to novel conditions. Nevertheless, transitions into different environments or biomes still seem to be common. Especially intriguing are the tropical alpine-like areas found on only the highest mountainous regions surrounded by tropical environments. Tropical mountains are hotspots of biodiversity, often with striking degrees of endemism at higher elevations. On these mountains, steep environmental gradients and high habitat heterogeneity within small spaces coincide with astounding species diversity of great conservation value. The analysis presented here shows that the importance of in situ speciation in tropical alpine-like areas has been underestimated. Additionally and contrary to widely held opinion, the impact of dispersal from other regions with alpine-like environments is relatively minor compared to that of immigration from other biomes with a temperate (but not alpine-like) climate. This suggests that establishment in tropical alpine-like regions is favoured by preadaptation to a temperate, especially aseasonal, freezing regime such as the cool temperate climate regions in the Tropics. Furthermore, emigration out of an alpine-like environment is generally rare, suggesting that alpine-like environments – at least tropical ones – are species sinks. PMID:29706788
James D. Wickham; Timothy G. Wade; Kurt H. Riitters
2013-01-01
Aim Because of the low albedo of forests and other biophysical factors, most scenario-based climate modelling studies indicate that removal of temperate forest will promote cooling, indicating that temperate forests are a source of heat relative to other classes of land cover. Our objective was to test the hypothesis that US temperate forests reduce...
Strong contributions of local background climate to the cooling effect of urban green vegetation.
Yu, Zhaowu; Xu, Shaobin; Zhang, Yuhan; Jørgensen, Gertrud; Vejre, Henrik
2018-05-01
Utilization of urban green vegetation (UGV) has been recognized as a promising option to mitigate urban heat island (UHI) effect. While we still lack understanding of the contributions of local background climate to the cooling effect of UGV. Here we proposed and employed a cooling effect framework and selected eight typical cities located in Temperate Monsoon Climate (TMC) and Mediterranean Climate (MC) demonstrate that local climate condition largely affects the cooling effect of UGV. Specifically, we found increasing (artificial) rainfall and irrigation contribute to improving the cooling intensity of grassland in both climates, particularly in the hot-dry environment. The cities with high relative humidity would restrict the cooling effect of UGV. Increasing wind speed would significantly enhance the tree-covered while weakening the grass-covered UGVs' cooling effect in MC cities. We also identified that, in order to achieve the most effective cooling with the smallest sized tree-covered UGV, the area of trees in both climate zones' cities should generally be planned around 0.5 ha. The method and results enhance understanding of the cooling effect of UGVs on larger (climate) scales and provide important insights for UGV planning and management.
Local cooling and warming effects of forests based on satellite observations.
Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng
2015-03-31
The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies.
Local cooling and warming effects of forests based on satellite observations
Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng
2015-01-01
The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies. PMID:25824529
Qi, Xin-Shuai; Chen, Chen; Comes, Hans Peter; Sakaguchi, Shota; Liu, Yi-Hui; Tanaka, Nobuyuki; Sakio, Hitoshi; Qiu, Ying-Xiong
2012-10-01
East Asia's temperate deciduous forests served as sanctuary for Tertiary relict trees, but their ages and response to past climate change remain largely unknown. To address this issue, we elucidated the evolutionary and population demographic history of Cercdiphyllum, comprising species in China/Japan (Cercdiphyllum japonicum) and central Japan (Cercdiphyllum magnificum). Fifty-three populations were genotyped using chloroplast and ribosomal DNA sequences and microsatellite loci to assess molecular structure and diversity in relation to past (Last Glacial Maximum) and present distributions based on ecological niche modelling. Late Tertiary climate cooling was reflected in a relatively recent speciation event, dated at the Mio-/Pliocene boundary. During glacials, the warm-temperate C. japonicum experienced massive habitat losses in some areas (north-central China/north Japan) but increases in others (southwest/-east China, East China Sea landbridge, south Japan). In China, the Sichuan Basin and/or the middle-Yangtze were source areas of postglacial northward recolonization; in Japan, this may have been facilitated through introgressive hybridization with the cool-temperate C. magnificum. Our findings challenge the notion of relative evolutionary and demographic stability of Tertiary relict trees, and may serve as a guideline for assessing the impact of Neogene climate change on the evolution and distribution of East Asian temperate plants. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
To cool, but not too cool: that is the question--immersion cooling for hyperthermia.
Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J
2008-11-01
Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.
Forests and climate change: forcings, feedbacks, and the climate benefits of forests.
Bonan, Gordon B
2008-06-13
The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
Paleosol stable isotope evidence for early hominid occupation of East Asian temperate environments
Wang, Hongfang; Ambrose, S.H.; Liu, Chen; Follmer, L.R.
1997-01-01
Hominids left Africa and occupied mainland Asia by 1.8 myr ago. About 1.15 myr ago Homo erectus and an associated Stegodon-Ailuropoda fauna migrated from subtropical China across the Qinling Mountains into the temperate Loess Plateau. This migration may be an evolutionary milestone in human adaptability because it may represent the first occupation of a nontropical environment. Loess-paleosol stable isotope ratios from the last interglacial-glacial cycle provide comparative data for reconstructing the hominid paleoenvironments. The climate during Gongwangling hominid occupation about 1.15 myr ago was influenced by both Siberian-Mongolian winter and Indian summer monsoon systems characterized as a cold/cool, dry winter and warm/mild, semihumid summer and fall. The Gongwangling hominids preyed mainly on warm-climate-adapted animals such as Stegodon-Ailuropoda fauna, suggesting a warm season occupation. The stable isotope ratios also indicate that the Chenjiawo hominids occupied an environment similar to that of the Gongwangling about 650,000 yr ago. The associated fauna, with a mixture of forest and steppe, warm-and cold/cool-climate-adapted animal assemblage's, suggests a permanent occupation by this time. Thus, the reliable earliest and permanent occupation of temperate environments may have occurred 150,000 yr earlier in eastern Asia rather than in Europe. ?? 1997 University of Washington.
NASA Astrophysics Data System (ADS)
Oliveira, Dulce; Sánchez Goñi, Maria Fernanda; Naughton, Filipa; Polanco-Martínez, J. M.; Jimenez-Espejo, Francisco J.; Grimalt, Joan O.; Martrat, Belen; Voelker, Antje H. L.; Trigo, Ricardo; Hodell, David; Abrantes, Fátima; Desprat, Stéphanie
2017-04-01
Marine Isotope Stage 31 (MIS 31) is an important analogue for ongoing and projected global warming, yet key questions remain about the regional signature of its extreme orbital forcing and intra-interglacial variability. Based on a new direct land-sea comparison in SW Iberian margin IODP Site U1385 we examine the climatic variability between 1100 and 1050 ka including the ;super interglacial; MIS 31, a period dominated by the 41-ky obliquity periodicity. Pollen and biomarker analyses at centennial-scale-resolution provide new insights into the regional vegetation, precipitation regime and atmospheric and oceanic temperature variability on orbital and suborbital timescales. Our study reveals that atmospheric and SST warmth during MIS 31 was not exceptional in this region highly sensitive to precession. Unexpectedly, this warm stage stands out as a prolonged interval of a temperate and humid climate regime with reduced seasonality, despite the high insolation (precession minima values) forcing. We find that the dominant forcing on the long-term temperate forest development was obliquity, which may have induced a decrease in summer dryness and associated reduction in seasonal precipitation contrast. Moreover, this study provides the first evidence for persistent atmospheric millennial-scale variability during this interval with multiple forest decline events reflecting repeated cooling and drying episodes in SW Iberia. Our direct land-sea comparison shows that the expression of the suborbital cooling events on SW Iberian ecosystems is modulated by the predominance of high or low-latitude forcing depending on the glacial/interglacial baseline climate states. Severe dryness and air-sea cooling is detected under the larger ice volume during glacial MIS 32 and MIS 30. The extreme episodes, which in their climatic imprint are similar to the Heinrich events, are likely related to northern latitude ice-sheet instability and a disruption of the Atlantic Meridional Overturning Circulation (AMOC). In contrast, forest declines during MIS 31 are associated to neither SST cooling nor high-latitude freshwater forcing. Time-series analysis reveals a dominant cyclicity of about 6 ky in the temperate forest record, which points to a potential link with the fourth harmonic of precession and thus low-latitude insolation forcing.
1983-05-01
worn in the heat affects thermal comfort and with an added solar heat load subsequently interferes with the ability to dissipate stored body heat...worn in the heat affects thermal comfort and with an added solar heat load subsequently interferes with the ability to dissipate stored body heat...ratio; thermal comfort ; evaporative cooling; permeability; physiological responses mA]X .................................... INTRODUCTION The Temperate
Molluscan evidence for early middle Miocene marine glaciation in southern Alaska
Marincovich, L.
1990-01-01
Profound cooling of Miocene marine climates in southern Alaska culminated in early middle Miocene coastal marine glaciation in the northeastern Gulf of Alaska. This climatic change resulted from interaction of the Yakutat terrane with southern Alaska beginning in late Oligocene time. The ensuing extreme uplift of the coastal Chugach and St. Elias Mountains resulted in progressive regional cooling that culminated in coastal marine glaciation beginning in the early middle Miocene (15-16 Ma) and continuing to the present. The counterclockwise flow of surface water from the frigid northeastern Gulf of Alaska resulted in a cold-temperate shallow-marine environment in the western Gulf of Alaska, as it does today. Ironically, dating of Gulf of Alaska marine glaciation as early middle Miocene is strongly reinforced by the presence of a few tropical and subtropical mollusks in western Gulf of Alaska faunas. Shallow-marine waters throughout the Gulf of Alaska were cold-temperate to cold in the early middle Miocene, when the world ocean was undergoing peak Neogene warming. -Author
NASA Astrophysics Data System (ADS)
Whitfield, Alan K.; James, Nicola C.; Lamberth, Stephen J.; Adams, Janine B.; Perissinotto, Renzo; Rajkaran, Anusha; Bornman, Thomas G.
2016-04-01
The South African coastline is just over 3000 km in length yet it covers three major biogeographic regions, namely subtropical, warm temperate and cool temperate. In this review we examine published information to assess the possible role of climate change in driving distributional changes of a wide variety of organisms around the subcontinent. In particular we focus on harmful algal blooms, seaweeds, eelgrass, mangroves, salt marsh plants, foraminiferans, stromatolites, corals, squid, zooplankton, zoobenthos, fish, birds, crocodiles and hippopotamus, but also refer to biota such as pathogens, coralline algae, jellyfish and otters. The role of pioneers or propagules as indicators of an incipient range expansion are discussed, with mangroves, zoobenthos, fishes and birds providing the best examples of actual and imminent distributional changes. The contraction of the warm temperate biogeographic region, arising from the intrusion of cool upwelled waters along the Western Cape shores, and increasingly warm Agulhas Current waters penetrating along the eastern parts of the subcontinent, are highlighted. The above features provide an ideal setting for the monitoring of biotic drivers and responses to global climate change over different spatial and temporal scales, and have direct relevance to similar studies being conducted elsewhere in the world. We conclude that, although this review focuses mainly on the impact of global climate change on South African coastal biodiversity, other anthropogenic drivers of change such as introduced alien invasive species may act synergistically with climate change, thereby compounding both short and long-term changes in the distribution and abundance of indigenous species.
Most scenario‐based climate modeling studies indicate that replacing temperate forest with cropland will promote cooling by reducing surface air temperatures. These results are inconsistent with fieldbased microclimate studies that have found that forests are cooler, wetter, and...
NASA Astrophysics Data System (ADS)
Heusser, Linda; Heusser, Cal; Mix, Alan; McManus, Jerry
2006-12-01
Joint pollen and oxygen isotope data from Ocean Drilling Program Site 1234 in the southeast Pacific provide the first, continuous record of temperate South American vegetation and climate from the last 140 ka. Located at ˜36°S, ˜65 km offshore of Concepcion, Chile, Site 1234 monitors the climatic transition zone between northern semi-arid, summer dry-winter wet climate and southern year-round, rainy, cool temperate climate. Dominance of onshore winds suggests that pollen preserved here reflects transport to the ocean via rivers that drain the region and integrate conditions from the coastal mountains to the Andean foothills. Down-hole changes in diagnostic pollen assemblages from xeric lowland deciduous forest (characterized by grasses, herbs, ferns, and trees such as deciduous beech, Nothofagus obliqua), mesic Valdivian Evergreen Forest (including conifers such as the endangered Prumnopitys andina), and Subantarctic Evergreen Rainforest (comprised primarily of southern beech, N. dombeyi) reveal large rapid shifts that likely reflect latitudinal movements in atmospheric circulation and storm tracks associated with the southern westerly winds. During glacial intervals (MIS 2-4, and 6), rainforests and parkland dominated by Nothofagus moved northward into the region. At the MIS 6/5e transition, coeval with the rapid shift to lower isotopic values, rainforest vegetation was rapidly replaced by xeric plant communities associated with Mediterranean-type climate. An increased prominence of halophytic vegetation suggests that MIS 5e was more arid and possibly warmer than MIS 1. Although rainforest pollen rises again at the end of MIS 5e, lowland deciduous forest pollen persists through MIS 5d and 5c, into MIS 5b. Substantial millennial-scale variations occur in both interglacial and glacial regimes, attesting to the sensitivity of the southern westerly belt to climate change. Comparison of the cool, mesic N. dombeyi rainforest assemblage from Site 1234 with δ18O in the Byrd Ice core shows that on time scales longer than ˜10 ka, cool-moist conditions in central Chile were coherent with and occurred in phase with Antarctic cooling. This is also likely at millennial scales, although rainforest pollen lags Antarctic cooling with exponential response times of about 1000 years, which plausibly reflects the ecological response time to regional climate change.
1989-11-01
Secretary of War for the Treasury Department for use as a Life Saving Service. This site was relocated in 1915 to land originally to be used for the...San Francisco Bay, PSF has a temperate, Mediterranean climate. 4 Generally, winter is rainy and mild, spring is sunny and mild, summer is foggy and cool ...associated with major Pacific storms and are of short duration. 4 The topography of the PSF shelters most of the north shore from the cool marine air
USDA-ARS?s Scientific Manuscript database
Rice (Oryza sativa L.) is often exposed to cool or cold temperatures during spring planting in a temperate climate. A better understanding of the genetic pathways regulating this chilling tolerance will enable breeders to develop varieties with improved tolerance during the germination and young see...
Liang, Yuting; Jiang, Yuji; Wang, Feng; Wen, Chongqing; Deng, Ye; Xue, Kai; Qin, Yujia; Yang, Yunfeng; Wu, Liyou; Zhou, Jizhong; Sun, Bo
2015-12-01
To understand soil microbial community stability and temporal turnover in response to climate change, a long-term soil transplant experiment was conducted in three agricultural experiment stations over large transects from a warm temperate zone (Fengqiu station in central China) to a subtropical zone (Yingtan station in southern China) and a cold temperate zone (Hailun station in northern China). Annual soil samples were collected from these three stations from 2005 to 2011, and microbial communities were analyzed by sequencing microbial 16S ribosomal RNA gene amplicons using Illumina MiSeq technology. Our results revealed a distinctly differential pattern of microbial communities in both northward and southward transplantations, along with an increase in microbial richness with climate cooling and a corresponding decrease with climate warming. The microbial succession rate was estimated by the slope (w value) of linear regression of a log-transformed microbial community similarity with time (time-decay relationship). Compared with the low turnover rate of microbial communities in situ (w=0.046, P<0.001), the succession rate at the community level was significantly higher in the northward transplant (w=0.058, P<0.001) and highest in the southward transplant (w=0.094, P<0.001). Climate warming lead to a faster succession rate of microbial communities as well as lower species richness and compositional changes compared with in situ and climate cooling, which may be related to the high metabolic rates and intense competition under higher temperature. This study provides new insights into the impacts of climate change on the fundamental temporal scaling of soil microbial communities and microbial phylogenetic biodiversity.
NASA Astrophysics Data System (ADS)
Ravazzi, Cesare; Pini, Roberta; Breda, Marzia
2009-12-01
We carried out a systematic investigation on the pollen content of sediment adhering to skeletal elements of large mammals which originate from the long lacustrine record of Leffe (Early Pleistocene of the Italian Alps). Three local faunas were discovered during mining activities along the intermediate part (spanning from 1.5 to 0.95 Ma) of the basin succession. The excellent pollen preservation allowed testing the reproducibility of the pollen signal from single skeletons. A clear palaeoenvironmental patterning, consistent with the ecological preferences of the considered mammal species, emerged from the canonical correspondence analysis of pollen types diagnostic for vegetation communities. Edaphic factors related to seasonal river activity changes and to the development of swamp forests in the riverbanks are significantly associated to the occurrences of Hippopotamus cf. antiquus, whereas finds of Mammuthus meridionalis belong to fully forested landscapes dominated by conifer or mixed forests of oceanic, warm to cool-temperate climate. Rhinoceros habitats include variable forest cover under different climate states. Distinct cool-temperate, partially open vegetation could be recognized for large deer included Cervalces cf carnutorum. A palynostratigraphic correlation between individual spectra and a reference palynostratigraphic record allowed assignment of many fossil remains to a precise stratigraphic position. This procedure also shown that the Leffe local faunas include specimens accumulated under different environmental and climate states, as a consequence of high-frequency climate changes characterizing the Late Villafranchian Early Pleistocene.
NASA Astrophysics Data System (ADS)
Wickham, J.; Wade, T. G.; Riitters, K. H.
2014-09-01
Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that forests tend to be warmer than grasslands and croplands because forest albedos tend to be lower than non-forest albedos. A lower forest albedo results in higher absorption of solar radiation and increased sensible warming that is not offset by the cooling effects of carbon uptake in extra-tropical regions. However, comparison of forest warming potential in the context of climate models is based on a coarse classification system of tropical, temperate, and boreal. There is considerable variation in climate within the broad latitudinal zonation of tropical, temperate, and boreal, and the relationship between biophysical (albedo) and biogeochemical (carbon uptake) mechanisms may not be constant within these broad zones. We compared wintertime forest and non-forest surface temperatures for the southeastern United States and found that forest surface temperatures shifted from being warmer than non-forest surface temperatures north of approximately 36°N to cooler south of 36°N. Our results suggest that the biophysical aspects of forests' influence on climate reinforce the biogeochemical aspects of forests' influence on climate south of 36°N. South of 36°N, both biophysical and biogeochemical properties of forests appear to support forestation as a climate mitigation policy. We also provide some quantitative evidence that evergreen forests tend to have cooler wintertime surface temperatures than deciduous forests that may be attributable to greater evapotranspiration rates.
The changing role of fire in conifer-dominated temperate rainforest through the last 14,000 years
NASA Astrophysics Data System (ADS)
Fletcher, M.-S.; Bowman, D. M. J. S.; Whitlock, C.; Mariani, M.; Stahle, L.
2018-02-01
Climate, fire and vegetation dynamics are often tightly coupled through time. Here, we use a 14 kyr sedimentary charcoal and pollen record from Lake Osborne, Tasmania, Australia, to explore how this relationship changes under varying climatic regimes within a temperate rainforest ecosystem. Superposed epoch analysis reveals a significant relationship between fire and vegetation change throughout the Holocene at our site. Our data indicates an initial resilience of the rainforest system to fire under a stable cool and humid climate regime between ca. 12-6 ka. In contrast, fires that occurred after 6 ka, under an increasingly variable climate regime wrought by the onset of the El Niño-Southern Oscillation (ENSO), resulted in a series of changes within the local rainforest vegetation that culminated in the replacement of rainforest by fire-promoted Eucalypt forest. We suggest that an increasingly variable ENSO-influenced climate regime inhibited rainforest recovery from fire because of slower growth, reduced fecundity and increased fire frequency, thus contributing to the eventual collapse of the rainforest system.
USDA-ARS?s Scientific Manuscript database
Tall fescue is a cool-season perennial grass that is widely utilized for grazing in a region covering the transition zone between the temperate northeast and the subtropical southeast Although tall fescue is well adapted to the climate and soils in the region, an endophytic fungus infects fescue pla...
Peixoto, Murilo de Melo; Lee, D. K.; Sage, Rowan F.
2015-01-01
Miscanthus × giganteus grown in cool temperate regions of North America and Europe can exhibit severe mortality in the year after planting, and poor frost tolerance of leaves. Spartina pectinata (prairie cordgrass), a productive C4 perennial grass native to North America, has been suggested as an alternative biofuel feedstock for colder regions; however, its cold tolerance relative to M. × giganteus is uncertain. Here, we compare the cold tolerance thresholds for winter-dormant rhizomes and spring/summer leaves of M. × giganteus and three accessions of S. pectinata. All genotypes were planted at a field site in Ontario, Canada. In November and February, the temperatures corresponding to 50% rhizome mortality (LT50) were near −24°C for S. pectinata and −4°C for M. × giganteus. In late April, the LT50 of rhizomes rose to −10°C for S. pectinata but remained near −4°C for M. × giganteus. Twenty percent of the M. × giganteus rhizomes collected in late April were dead while S. pectinata rhizomes showed no signs of winter injury. Photosynthesis and electrolyte leakage measurements in spring and summer demonstrate that S. pectinata leaves have greater frost tolerance in the field. For example, S. pectinata leaves remained viable above −9°C while the mortality threshold was near −5°C for M. × giganteus. These results indicate M. × giganteus will be unsuitable for production in continental interiors of cool-temperate climate zones unless freezing and frost tolerance are improved. By contrast, S. pectinata has the freezing and frost tolerance required for a higher-latitude bioenergy crop. PMID:25873680
NASA Astrophysics Data System (ADS)
Contreras, L.; Pross, J.; Bijl, P. K.; O'Hara, R. B.; Raine, J. I.; Sluijs, A.; Brinkhuis, H.
2014-01-01
Reconstructing the early Paleogene climate dynamics of terrestrial settings in the high southern latitudes is important to assess the role of high-latitude physical and biogeochemical processes in the global climate system. However, whereas a number of high-quality Paleogene climate records has become available for the marine realm of the high southern latitudes over the recent past, the long-term evolution of coeval terrestrial climates and ecosystems is yet poorly known. We here explore the climate and vegetation dynamics on Tasmania from the middle Paleocene to the early Eocene (60.7-54.2 Ma) based on a sporomorph record from Ocean Drilling Program (ODP) Site 1172 on the East Tasman Plateau. Our results show that three distinctly different vegetation types thrived on Tasmania under a high-precipitation regime during the middle Paleocene to early Eocene, with each type representing different temperature conditions: (i) warm-temperate forests dominated by gymnosperms that were dominant during the middle and late Paleocene; (ii) cool-temperate forests dominated by southern beech (Nothofagus) and araucarians across the middle/late Paleocene transition interval (~59.5 to ~59.0 Ma); and (iii) paratropical forests rich in ferns that were established during and in the wake of the Paleocene-Eocene Thermal Maximum (PETM). The transient establishment of cool-temperate forests lacking any frost-sensitive elements (i.e., palms and cycads) across the middle/late Paleocene transition interval indicates markedly cooler conditions, with the occurrence of frosts in winter, on Tasmania during that time. The integration of our sporomorph data with previously published TEX86-based sea-surface temperatures from ODP Site 1172 documents that the vegetation dynamics on Tasmania were closely linked with the temperature evolution in the Tasman sector of the Southwest Pacific region. Moreover, the comparison of our season-specific climate estimates for the sporomorph assemblages from ODP Site 1172 with the TEX86L- and TEX86H-based temperature data suggests a warm-season bias of both calibrations for the early Paleogene of the high southern latitudes.
NASA Astrophysics Data System (ADS)
Contreras, L.; Pross, J.; Bijl, P. K.; O'Hara, R. B.; Raine, J. I.; Sluijs, A.; Brinkhuis, H.
2014-07-01
Reconstructing the early Palaeogene climate dynamics of terrestrial settings in the high southern latitudes is important to assess the role of high-latitude physical and biogeochemical processes in the global climate system. However, whereas a number of high-quality Palaeogene climate records has become available for the marine realm of the high southern latitudes over the recent past, the long-term evolution of coeval terrestrial climates and ecosystems is yet poorly known. We here explore the climate and vegetation dynamics on Tasmania from the middle Palaeocene to the early Eocene (60.7-54.2 Ma) based on a sporomorph record from Ocean Drilling Program (ODP) Site 1172 on the East Tasman Plateau. Our results show that three distinctly different vegetation types thrived on Tasmania under a high-precipitation regime during the middle Palaeocene to early Eocene, with each type representing different temperature conditions: (i) warm-temperate forests dominated by gymnosperms that were dominant during the middle and late Palaeocene (excluding the middle/late Palaeocene transition); (ii) cool-temperate forests dominated by southern beech (Nothofagus) and araucarians that transiently prevailed across the middle/late Palaeocene transition interval (~ 59.5 to ~ 59.0 Ma); and (iii) paratropical forests rich in ferns that were established during and in the wake of the Palaeocene-Eocene Thermal Maximum (PETM). The transient establishment of cool-temperate forests lacking any frost-sensitive elements (i.e. palms and cycads) across the middle/late Palaeocene transition interval indicates markedly cooler conditions, with the occurrence of frosts in winter, on Tasmania during that time. The integration of our sporomorph data with previously published TEX86-based sea-surface temperatures from ODP Site 1172 documents that the vegetation dynamics on Tasmania were closely linked with the temperature evolution in the Tasman sector of the Southwest Pacific region. Moreover, the comparison of our season-specific climate estimates for the sporomorph assemblages from ODP Site 1172 with the TEX86L- and TEX86H-based temperature data suggests a warm bias of both calibrations for the early Palaeogene of the high southern latitudes.
NASA Astrophysics Data System (ADS)
Park, M.; Moon, M.; Park, J.; Cho, S.; Kim, H. S.
2016-12-01
Individual tree growth rates can be affected by various factors such as species, soil fertility, stand development stage, disturbance, and climate etc. To estimate the effect of changes in tree growth rate on the structure and functionality of forest ecosystem in the future, we analyzed the change of species-specific growth trends using the fifth Korea national forest inventory data, which was collected from 2006 to 2010. The ring samples of average tree were collected from nationwide inventory plots and the total number of individual tree ring series was 69,128 covering 185 tree species. Among those, fifty one species with more than 100 tree ring series were used for our analysis. For growth-trend analysis, standardized regional curves of individual species growth were generated from three forest zone in South Korea; subarctic, cool temperate, warm temperate forest zone. Then individual tree ring series was indexed by dividing the growth of the tree by expected growth from standardized regional curves. Then the ratio of all tree ring series were aligned by year and the Spearman's correlation coefficient of each species was calculated. The results show that most of species had increasing growth rates as forests developed after Korean war. For the last thirty years, 67.3% of species including Quercus spp. and Zelkova serrata had positive growth trends, on the other hand, 11.5% of species including Pinus spp. showed negative growth trends probably due to the changes in successional stages in Korean forests and climate change. These trends also vary with climate zone and species. For examples, Pinus densiflora, which showed negative growth trend overall, had steep negative growth trends in boreal and temperate zone, whereas it showed no specific trend in sub-tropical climate zone. Our trend analysis on 51 temperate tree species growth will be essential to predict the temperate forests species change for the this century.
Liang, Yuting; Jiang, Yuji; Wang, Feng; Wen, Chongqing; Deng, Ye; Xue, Kai; Qin, Yujia; Yang, Yunfeng; Wu, Liyou; Zhou, Jizhong; Sun, Bo
2015-01-01
To understand soil microbial community stability and temporal turnover in response to climate change, a long-term soil transplant experiment was conducted in three agricultural experiment stations over large transects from a warm temperate zone (Fengqiu station in central China) to a subtropical zone (Yingtan station in southern China) and a cold temperate zone (Hailun station in northern China). Annual soil samples were collected from these three stations from 2005 to 2011, and microbial communities were analyzed by sequencing microbial 16S ribosomal RNA gene amplicons using Illumina MiSeq technology. Our results revealed a distinctly differential pattern of microbial communities in both northward and southward transplantations, along with an increase in microbial richness with climate cooling and a corresponding decrease with climate warming. The microbial succession rate was estimated by the slope (w value) of linear regression of a log-transformed microbial community similarity with time (time–decay relationship). Compared with the low turnover rate of microbial communities in situ (w=0.046, P<0.001), the succession rate at the community level was significantly higher in the northward transplant (w=0.058, P<0.001) and highest in the southward transplant (w=0.094, P<0.001). Climate warming lead to a faster succession rate of microbial communities as well as lower species richness and compositional changes compared with in situ and climate cooling, which may be related to the high metabolic rates and intense competition under higher temperature. This study provides new insights into the impacts of climate change on the fundamental temporal scaling of soil microbial communities and microbial phylogenetic biodiversity. PMID:25989371
Evaporative cooling of speleothem drip water
Cuthbert, M. O.; Rau, G. C.; Andersen, M. S.; Roshan, H.; Rutlidge, H.; Marjo, C. E.; Markowska, M.; Jex, C. N.; Graham, P. W.; Mariethoz, G.; Acworth, R. I.; Baker, A.
2014-01-01
This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ18O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change. PMID:24895139
NASA Astrophysics Data System (ADS)
Foley, B. J.; Driscoll, P. E.
2015-12-01
Many factors have conspired to make Earth a home to complex life. Earth has abundant water due to a combination of factors, including orbital distance and the climate regulating feedbacks of the long-term carbon cycle. Earth has plate tectonics, which is crucial for maintaining long-term carbon cycling and may have been an important energy source for the origin of life in seafloor hydrothermal systems. Earth also has a strong magnetic field that shields the atmosphere from the solar wind and the surface from high-energy particles. Synthesizing recent work on these topics shows that water, a temperate climate, plate tectonics, and a strong magnetic field are linked together through a series of negative feedbacks that stabilize the system over geologic timescales. Although the physical mechanism behind plate tectonics on Earth is still poorly understood, climate is thought to be important. In particular, temperate surface temperatures are likely necessary for plate tectonics because they allow for liquid water that may be capable of significantly lowering lithospheric strength, increase convective stresses in the lithosphere, and enhance the effectiveness of "damage" processes such as grainsize reduction. Likewise, plate tectonics is probably crucial for maintaining a temperate climate on Earth through its role in facilitating the long-term carbon cycle, which regulates atmospheric CO2 levels. Therefore, the coupling between plate tectonics and climate is a feedback that is likely of first order importance for the evolution of rocky planets. Finally, plate tectonics is thought to be important for driving the geodynamo. Plate tectonics efficiently cools the mantle, leading to vigorous thermo-chemical convection in the outer core and dynamo action; without plate tectonics inefficient mantle cooling beneath a stagnant lid may prevent a long-lived magnetic field. As the magnetic field shields a planet's atmosphere from the solar wind, the magnetic field may be important for preserving hydrogen, and therefore water, on the surface. Thus whole planet coupling between the magnetic field, atmosphere, mantle, and core is possible. We lay out the basic physics governing whole planet coupling, and discuss the implications this coupling has for the evolution of rocky planets and their prospects for hosting life.
Mogi, M; Armbruster, P A; Tuno, N; Aranda, C; Yong, H S
2017-11-07
We compared climatic distribution ranges between Aedes albopictus (Skuse) (Diptera: Culicidae) and the five wild (nondomesticated) species of Albopictus Subgroup of Scutellaris Group of Aedes (Stegomyia) in southern Asia. Distribution sites of the wild species concentrate in seasonal forest and savannah climate zones in India, Indochina, and southern China. The distribution of Ae. albopictus is broader than the wild species under 1) tropical rain-forest climate, 2) steppe and temperate savannah climate, and 3) continental climate with large seasonal temperature variation (hot summer and cold winter) at temperate lowlands (northernmost sites 40°N in Ae. albopictus vs 32°N in the wild species). However, the distribution of Ae. albopictus is more limited at tropical and subtropical highlands where the climate is cool but less continental (small seasonal variation, mild summer, and winter). We discuss a possibility that the broader climate ranges of Ae. albopictus are ecological or eco-evolutionary consequences of adaptation to human habitats. We also propose a general scenario for the origin, dispersal, and adaptation of Ae. albopictus in Asia as a hypothesis for future research. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2017-11-01
Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (-10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems.
Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years
Marchant, R.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J. H.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.B.; Cleef, A.M.; Duivenvoorden, J.F.; Flenley, J.R.; De Oliveira, P.; Van Geel, B.; Graf, K.J.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.C.S.; Horn, S.P.; Islebe, G.A.; Kuhry, P.; Ledru, M.
2009-01-01
The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000±500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000±500 14C yr BP reconstruction are comparatively small. Patterns of change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America also show a change in biome assignment to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000±1000 14C yr BP 61 samples from 34 sites record vegetation that reflects a generally cool and dry environment. Cool grass/shrubland prevalent in southeast Brazil, Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central M??xico and lowland Colombia remain unchanged in their biome assignments, although the affinities that these sites have to different biomes do change between 18 000±1000 14C yr BP and present. The " unresponsive" nature of these sites results from their location and the impact of local edaphic influence.
NASA Astrophysics Data System (ADS)
Soták, Ján
2010-10-01
The sedimentary sequence of the Central-Carpathian Paleogene Basin provides proxy records of climatic changes related to cooling events at the Eocene/Oligocene boundary (TEE). In this basin, climatic deterioration is inferred from the demise of the carbonate platform and oligotrophic benthic biota in the SBZ19 and from the last species of warm-water planktonic foraminifers in the E14 Zone. Upper Eocene formations already indicate warm-temperate to cool-temperate productivity and nutrient-enriched conditions (Bryozoan Marls, Globigerina Marls). Rapid cooling during the earliest Oligocene (Oi-1 event) led to a temperature drop (~11 °C), humidity, fresh water influx and continental runoff, water mass stratification, bottom water anoxia, eutrofication, estuarine circulation and upwelling, carbonate depletion, sapropelitic and biosiliceous deposition, H2S intoxication and mass faunal mortality, and also other characteristics of Black Sea-type basins. Tectonoeustatic events with the interference of TA 4.4 sea-level fall and the Pyrenean phase caused basin isolation at the beginning of the Paratethys. The Early Oligocene stage of Paratethyan isolation is indicated by a stagnant regime, low tide influence, endemic fauna development, widespread anoxia and precipitation of manganese deposits. The episodic rise in the sea-level, less humid conditions and renewed circulation is marked by calcareous productivity, nannoplankton blooms and the appearance of planktic pteropods and re-oxygenation. Paleogeographic differentiation of the Carpatho-Pannonian Paleogene basins resulted from plate-tectonic reorganization during the Alpine orogenesis.
NASA Astrophysics Data System (ADS)
Theobalt, D.; Mandic, O.
2012-04-01
Badenian transgression is well exposed in the open coal pit Bogutovo Selo near Ugljevik in NE Bosnia and Herzegovina, located at the southern margin of the Pannonian Basin. Middle Miocene marine sediments superpose Late Oligocene lignite bearing lacustrine deposits. The studied succession is about 62 m thick and includes the uppermost part of the lake deposits, comprising clays, sands and coal seams, followed by marine sediments. These consist mainly of gray marls, which show some intercalations of thin, dark clay layers, volcanic ash layers and fossiliferous beds as well as carbonate bodies of different thicknesses. The presence of Orbulina suturalis allows a biostratigraphic correlation of the marine transgression horizon with the upper part of the Lower Badenian. 28 planktonic foraminiferal assemblages were investigated using quantitative analysis to evaluate the climate development during the initial marine flooding by the Paratethys Sea. Further on the samples were statistically treated to find out if there are significant differences in assemblages from the marine sediments deposited before and after the initial Serravallian cooling event coinciding with the onset of the Middle Badenian (Wielician) Salinity Crisis. 17 planktonic foraminiferal species were grouped by their palaeoclimatic significance into cool (Globigerina bulloides, G. praebulloides, G. diplostoma, G. concinna, G. tarchanensis, G. falconensis, Turborotalita quinqueloba), temperate (Globorotalia bykovae, G. transsylvanica, G. peripheroronda, Globoturborotalita woodi), warm-temperate (Globigerinella regularis, Tenuitellinata angustiumbilicata) and warm indicators (Globigerinoides trilobus, G. quadrilobatus, Orbulina suturalis, Globoquadrina cf. altispira). The counts were performed mainly on generic level. Upper Lower Badenian (Upper Lagenidae Zone) is represented in the marly succession in the lower part of the section, where the foraminiferal assemblages indicate warmer conditions with high percentages of warm water indicators. A distinct cooling is shown in the uppermost passage of the lower part, which is followed by a 13 m thick carbonate platform of Wielician age. This transition corresponds to the gradual shift from Greenhouse into Icehouse climate after the late Middle Miocene Climatic Optimum. The superposing marly deposits of the late Wielician age (Earliest Serravallian) contain planktonic foraminiferal assemblages that indicate cooler conditions. The general percentage of cool water indicators is much higher than in the lower Badenian sediments.
Combined climate and carbon-cycle effects of large-scale deforestation
Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T. J.; Lobell, D. B.; Delire, C.; Mirin, A.
2007-01-01
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate. PMID:17420463
Combined climate and carbon-cycle effects of large-scale deforestation.
Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A
2007-04-17
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO(2) to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.
Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, G; Caldeira, K; Wickett, M
2006-10-17
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has amore » net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.« less
NASA Astrophysics Data System (ADS)
Grundan, Ekaterina; Kürschner, Wolfram; Krijgsman, Wout
2017-04-01
A palynological study of Neogene sediments from the cape "Zhelezny Rog" (Taman peninsula, the Black Sea area) was carried out as part of integrated micropaleontological, lithological and paleomagnetic research. The Neogene section of the cape "Zhelezny Rog" (the Zhelezny Rog section) is one of the most representative Upper Miocene to Lower Pliocene succession of Eastern Paratethys. The section covers the Sarmatian, Maeotian, Pontian (upper Miocene) and Kimmerian (lower Pliocene) local stages. One hundred and eighteen samples were selected from the Zhelezny rog section for quantitative palynological analysis. Using PCA analysis and additional proxy such as "steppe index", art/chen and poa/ast ratios the regional climate history was reconstructed. The Early Maeotian is characterized by a warm, warm-temperate climate on the background of relatively high humidity. During the Late Maeotian it became colder and dryer. The coldest and driest conditions during the Maeotian correspond to the middle part of the Late Maeotian. There were a high number of steppe elements (as Artemisia) and low amount of thermophilous ones. Climate of the end of the Maeotian was characterized by warmer and wetter conditions. In the beginning of the Pontian there was a cooling trend, as evidenced by the decreasing thermophilous elements and the increasing high-latitude trees. Most significant changes were found within the Pontian-Kimmerian boundary beds. This level is characterized by decreasing of thermophilous elements, increasing of cool-temperate pollen and Sphagnum spores that are considered as an evidence of a temperature decrease in the background of high humidity conditions. The results will be discussed and correlated to Neogene global climate trends.
Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling
Baker, Allan J; Pereira, Sergio Luiz; Haddrath, Oliver P; Edge, Kerri-Anne
2005-01-01
Classic problems in historical biogeography are where did penguins originate, and why are such mobile birds restricted to the Southern Hemisphere? Competing hypotheses posit they arose in tropical–warm temperate waters, species-diverse cool temperate regions, or in Gondwanaland ∼100 mya when it was further north. To test these hypotheses we constructed a strongly supported phylogeny of extant penguins from 5851 bp of mitochondrial and nuclear DNA. Using Bayesian inference of ancestral areas we show that an Antarctic origin of extant taxa is highly likely, and that more derived taxa occur in lower latitudes. Molecular dating estimated penguins originated about 71 million years ago in Gondwanaland when it was further south and cooler. Moreover, extant taxa are inferred to have originated in the Eocene, coincident with the extinction of the larger-bodied fossil taxa as global climate cooled. We hypothesize that, as Antarctica became ice-encrusted, modern penguins expanded via the circumpolar current to oceanic islands within the Antarctic Convergence, and later to the southern continents. Thus, global cooling has had a major impact on penguin evolution, as it has on vertebrates generally. Penguins only reached cooler tropical waters in the Galapagos about 4 mya, and have not crossed the equatorial thermal barrier. PMID:16519228
Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution
NASA Astrophysics Data System (ADS)
Foley, Bradford J.; Driscoll, Peter E.
2016-05-01
Earth's climate, mantle, and core interact over geologic time scales. Climate influences whether plate tectonics can take place on a planet, with cool climates being favorable for plate tectonics because they enhance stresses in the lithosphere, suppress plate boundary annealing, and promote hydration and weakening of the lithosphere. Plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate. Plate tectonics provides long-term cooling of the core, which is vital for generating a magnetic field, and the magnetic field is capable of shielding atmospheric volatiles from the solar wind. Coupling between climate, mantle, and core can potentially explain the divergent evolution of Earth and Venus. As Venus lies too close to the sun for liquid water to exist, there is no long-term carbon cycle and thus an extremely hot climate. Therefore, plate tectonics cannot operate and a long-lived core dynamo cannot be sustained due to insufficient core cooling. On planets within the habitable zone where liquid water is possible, a wide range of evolutionary scenarios can take place depending on initial atmospheric composition, bulk volatile content, or the timing of when plate tectonics initiates, among other factors. Many of these evolutionary trajectories would render the planet uninhabitable. However, there is still significant uncertainty over the nature of the coupling between climate, mantle, and core. Future work is needed to constrain potential evolutionary scenarios and the likelihood of an Earth-like evolution.
NASA Astrophysics Data System (ADS)
Davis, B.
2013-12-01
Extensive evidence from high latitudes of the Northern Hemisphere indicates that temperatures were warmer than present during the early-mid Holocene, a period known as the Holocene thermal maximum (HTM). The existence of the HTM over lower mid-latitudes and the sub-tropics however is less clear, with pollen-based reconstructions in particular actually indicating a contrary cooling at this time in these regions. This apparent cooling is controversial because it is not shown in climate model simulations, which indicate that the HTM occurred across all extra-tropical latitudes of the Northern Hemisphere. This is also supported by alkenone based SST reconstructions, which also show a much more widespread HTM than indicated by the pollen data. Here this problem is investigated by reviewing the evidence both for, and against, the HTM in the Mediterranean region, which represents one of the most intensively studied regions of sub-tropical climate in the Northern Hemisphere. This evidence includes a large number of both marine and terrestrial records that can be directly compared due to their close proximity around the Mediterranean Sea. The results highlight the potential for bias in both marine and terrestrial climate proxies, but despite many criticisms of the pollen-based record, it is shown that the existence of more extensive temperate vegetation in the early-mid Holocene in the Mediterranean is difficult to explain by anything other than a cooler climate. For instance, vegetation models driven by climate model output show that the warmer climate suggested by the models produces a HTM vegetation even more arid than today. The results have important implications in the interpretation of proxy records, but perhaps most importantly, the potential for climate models to underestimate cooling processes in a warmer world needs further investigation.
Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago
Marchant, R.; Cleef, A.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.; Duivenvoorden, J.; Flenley, J.; De Oliveira, P.; Van Gee, B.; Graf, K.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.; Horn, S.; Kuhry, P.; Ledru, M.-P.; Mayle, F.; Leyden, B.; Lozano-Garcia, S.; Melief, A.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G.; Salgado-Labouriau, M.; Schabitz, F.; Schreve-Brinkman, E. J.; Wille, M.
2009-01-01
The biomisation method is used to reconstruct Latin American vegetation at 6000??500 and 18 000??1000 radiocarbon years before present ( 14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000??500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000??500 14C yr BP reconstruction are comparatively small; change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America show a change in biome assignment, but to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000??1000 14C yr BP 61 samples from 34 sites record vegetation reflecting a generally cool and dry environment. Cool grass/shrubland is prevalent in southeast Brazil whereas Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central Mexico and lowland Colombia remain unchanged in the biome assignments of warm mixed forest and tropical dry forest respectively, although the affinities that these sites have to different biomes do change between 18000??1000 14C yr BP and present. The "unresponsive" nature of these sites results from their location and the impact of local edaphic influence. ?? Author(s) 2009.
Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years
Marchant, R.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J. H.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.B.; Cleef, A.M.; Duivenvoorden, J.F.; Flenley, J.R.; De Oliveira, P.; Van Geel, B.; Graf, K.J.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.C.S.; Horn, S.P.; Islebe, G.A.; Kuhry, P.; Ledru, M.-P.; Mayle, F.E.; Leyden, B.W.; Lozano-Garcia, S.; Melief, A.B.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G. B.; Salgado-Labouriau, M. L.; Schasignbitz, F.; Schreve-Brinkman, E. J.; Wille, M.
2009-01-01
The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation.
At 6000±500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000±500 14C yr BP reconstruction are comparatively small. Patterns of change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America also show a change in biome assignment to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded.
At 18 000±1000 14C yr BP 61 samples from 34 sites record vegetation that reflects a generally cool and dry environment. Cool grass/shrubland prevalent in southeast Brazil, Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central M??xico and lowland Colombia remain unchanged in their biome assignments, although the affinities that these sites have to different biomes do change between 18 000±1000 14C yr BP and present. The " unresponsive" nature of these sites results from their location and the impact of local edaphic influence.
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2018-01-01
Currently, the temperate forest biome cools the earth’s climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (−10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems. PMID:29628526
Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling?
Shaw, A Jonathan; Devos, Nicolas; Cox, Cymon J; Boles, Sandra B; Shaw, Blanka; Buchanan, Alex M; Cave, Lynette; Seppelt, Rodney
2010-06-01
Global climate changes sometimes spark biological radiations that can feed back to effect significant ecological impacts. Northern Hemisphere peatlands dominated by living and dead peatmosses (Sphagnum) harbor almost 30% of the global soil carbon pool and have functioned as a net carbon sink throughout the Holocene, and probably since the late Tertiary. Before that time, northern latitudes were dominated by tropical and temperate plant groups and ecosystems. Phylogenetic analyses of mosses (phylum Bryophyta) based on nucleotide sequences from the plastid, mitochondrial, and nuclear genomes indicate that most species of Sphagnum are of recent origin (ca. <20 Ma). Sphagnum species are not only well-adapted to boreal peatlands, they create the conditions that promote development of peatlands. The recent radiation that gave rise to extant diversity of peatmosses is temporally associated with Miocene climatic cooling in the Northern Hemisphere. The evolution of Sphagnum has had profound influences on global biogeochemistry because of the unique biochemical, physiological, and morphological features of these plants, both while alive and after death. 2010 Elsevier Inc. All rights reserved.
Office-like Test Chambers to Measure Cool Roof Energy Savings in Four Indian Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Rathish; B, Sasank; T, Rajappa
Selecting a high albedo (solar reflectance) waterproofing layer on the top of a roof helps lower the roof’s surface temperature and reduce the air conditioning energy consumption in the top floor of a building. The annual energy savings depend on factors including weather, internal loads, and building operation schedule. To demonstrate the energy saving potential of high albedo roofs, an apparatus consisting of two nearly identical test chambers (A and B) has been built in four Indian climates: Chennai (hot & humid), Bangalore (temperate), Jhagadia (Hot & dry) and Delhi (composite). Each chamber has well-insulated walls to mimic the coremore » of an office building. Both chambers have the same construction, equipment, and operating schedule, differing only in roof surface. The reinforced cement concrete roof of Chamber A is surfaced with a low-albedo cement layer, while that of Chamber B is surfaced with a high-albedo water proof membrane (change in solar reflectance of 0.28). The experiment will be carried out for one year to explore seasonal variations in energy savings. Initial results in the month of July (post summer) shows that savings from high albedo roof ranges from 0.04 kWh/m2/day in temperate climates, to 0.08 kWh/m2/day in hot & dry climate.« less
Influence of tempering and contraction mismatch on crack development in ceramic surfaces.
Anusavice, K J; DeHoff, P H; Hojjatie, B; Gray, A
1989-07-01
Tempering of glass produces a state of compressive stress in surface regions which can enhance the resistance to crack initiation and growth. The objective of this study was to determine the influence of tempering on the sizes of surface cracks induced within the tempered surfaces of opaque porcelain-body porcelain discs, with contraction coefficient differences (alpha O-alpha B) of +3.2, +0.7, 0.0, -0.9, and -1.5 ppm/degrees C. We fired the discs to the maturing temperature (982 degrees C) of body porcelain and then subjected them to three cooling procedures: slow cooling in a furnace (SC), fast cooling in air (FC), and tempering (T) by blasting the body porcelain surface with compressed air for 90 s. We used body porcelain discs as the thermally compatible (delta alpha = 0) control specimens. We measured the diameters of cracks induced by a microhardness indenter at an applied load of 4.9 N at 80 points along diametral lines within the surface of body porcelain. The mean values of the crack diameters varied from 75.9 microns (delta alpha = -1.5 ppm/degrees C) to 103.3 microns (delta alpha = +3.2 ppm/degrees C). The results of ANOVA indicate that significant differences in crack dimensions were controlled by cooling rate, contraction mismatch, and their combined effect (p less than 0.0001). Multiple contrast analysis (Tukey's HSD Test) revealed significantly lower (p less than 0.05) crack sizes for tempered specimens compared with those of fast-cooled and slow-cooled specimens.(ABSTRACT TRUNCATED AT 250 WORDS)
Caldwell, Amanda J; While, Geoffrey M; Beeton, Nicholas J; Wapstra, Erik
2015-08-01
Climatic changes are predicted to be greater in higher latitude and mountainous regions but species specific impacts are difficult to predict. This is partly due to inter-specific variance in the physiological traits which mediate environmental temperature effects at the organismal level. We examined variation in the critical thermal minimum (CTmin), critical thermal maximum (CTmax) and evaporative water loss rates (EWL) of a widespread lowland (Niveoscincus ocellatus) and two range restricted highland (N. microlepidotus and N. greeni) members of a cool temperate Tasmanian lizard genus. The widespread lowland species had significantly higher CTmin and CTmax and significantly lower EWL than both highland species. Implications of inter-specific variation in thermal tolerance for activity were examined under contemporary and future climate change scenarios. Instances of air temperatures below CTmin were predicted to decline in frequency for the widespread lowland and both highland species. Air temperatures of high altitude sites were not predicted to exceed the CTmax of either highland species throughout the 21st century. In contrast, the widespread lowland species is predicted to experience air temperatures in excess of CTmax on 1 or 2 days by three of six global circulation models from 2068-2096. To estimate climate change effects on activity we reran the thermal tolerance models using minimum and maximum temperatures selected for activity. A net gain in available activity time was predicted under climate change for all three species; while air temperatures were predicted to exceed maximum temperatures selected for activity with increasing frequency, the change was not as great as the predicted decline in air temperatures below minimum temperatures selected for activity. We hypothesise that the major effect of rising air temperatures under climate change is an increase in available activity period for both the widespread lowland and highland species. The consequences of a greater available activity period will depend on the extent to which changes in climate alters other related factors, such as the nature and level of competition between the respective species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Drake, John E; Aspinwall, Michael J; Pfautsch, Sebastian; Rymer, Paul D; Reich, Peter B; Smith, Renee A; Crous, Kristine Y; Tissue, David T; Ghannoum, Oula; Tjoelker, Mark G
2015-01-01
As rapid climate warming creates a mismatch between forest trees and their home environment, the ability of trees to cope with warming depends on their capacity to physiologically adjust to higher temperatures. In widespread species, individual trees in cooler home climates are hypothesized to more successfully acclimate to warming than their counterparts in warmer climates that may approach thermal limits. We tested this prediction with a climate-shift experiment in widely distributed Eucalyptus tereticornis and E. grandis using provenances originating along a ~2500 km latitudinal transect (15.5-38.0°S) in eastern Australia. We grew 21 provenances in conditions approximating summer temperatures at seed origin and warmed temperatures (+3.5 °C) using a series of climate-controlled glasshouse bays. The effects of +3.5 °C warming strongly depended on home climate. Cool-origin provenances responded to warming through an increase in photosynthetic capacity and total leaf area, leading to enhanced growth of 20-60%. Warm-origin provenances, however, responded to warming through a reduction in photosynthetic capacity and total leaf area, leading to reduced growth of approximately 10%. These results suggest that there is predictable intraspecific variation in the capacity of trees to respond to warming; cool-origin taxa are likely to benefit from warming, while warm-origin taxa may be negatively affected. © 2014 John Wiley & Sons Ltd.
Qiu, Ying-Xiong; Fu, Cheng-Xing; Comes, Hans Peter
2011-04-01
The Sino-Japanese Floristic Region (SJFR) of East Asia harbors the most diverse of the world's temperate flora, and was the most important glacial refuge for its Tertiary representatives ('relics') throughout Quaternary ice-age cycles. A steadily increasing number of phylogeographic studies in the SJFR of mainland China and adjacent areas, including the Qinghai-Tibetan-Plateau (QTP) and Sino-Himalayan region, have documented the population histories of temperate plant species in these regions. Here we review this current literature that challenges the oft-stated view of the SJFR as a glacial sanctuary for temperate plants, instead revealing profound effects of Quaternary changes in climate, topography, and/or sea level on the current genetic structure of such organisms. There are three recurrent phylogeographic scenarios identified by different case studies that broadly agree with longstanding biogeographic or palaeo-ecological hypotheses: (i) postglacial re-colonization of the QTP from (south-)eastern glacial refugia; (ii) population isolation and endemic species formation in Southwest China due to tectonic shifts and river course dynamics; and (iii) long-term isolation and species survival in multiple localized refugia of (warm-)temperate deciduous forest habitats in subtropical (Central/East/South) China. However, in four additional instances, phylogeographic findings seem to conflict with a priori predictions raised by palaeo-data, suggesting instead: (iv) glacial in situ survival of some hardy alpine herbs and forest trees on the QTP platform itself; (v) long-term refugial isolation of (warm-)temperate evergreen taxa in subtropical China; (vi) 'cryptic' glacial survival of (cool-)temperate deciduous forest trees in North China; and (vii) unexpectedly deep (Late Tertiary/early-to-mid Pleistocene) allopatric-vicariant differentiation of disjunct lineages in the East China-Japan-Korea region due to past sea transgressions. We discuss these and other consequences of the main phylogeographic findings in light of palaeo-environmental evidence, emphasize notable gaps in our knowledge, and outline future research prospects for disentangling the evolution and biogeographic history of the region's extremely diverse temperate flora. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Foley, Bradford J.
2015-10-01
The long-term carbon cycle is vital for maintaining liquid water oceans on rocky planets due to the negative climate feedbacks involved in silicate weathering. Plate tectonics plays a crucial role in driving the long-term carbon cycle because it is responsible for CO2 degassing at ridges and arcs, the return of CO2 to the mantle through subduction, and supplying fresh, weatherable rock to the surface via uplift and orogeny. However, the presence of plate tectonics itself may depend on climate according to recent geodynamical studies showing that cool surface temperatures are important for maintaining vigorous plate tectonics. Using a simple carbon cycle model, I show that the negative climate feedbacks inherent in the long-term carbon cycle are uninhibited by climate's effect on plate tectonics. Furthermore, initial atmospheric CO2 conditions do not impact the final climate state reached when the carbon cycle comes to equilibrium, as long as liquid water is present and silicate weathering can occur. Thus an initially hot, CO2 rich atmosphere does not prevent the development of a temperate climate and plate tectonics on a planet. However, globally supply limited weathering does prevent the development of temperate climates on planets with small subaerial land areas and large total CO2 budgets because supply limited weathering lacks stabilizing climate feedbacks. Planets in the supply limited regime may become inhospitable for life and could experience significant water loss. Supply limited weathering is less likely on plate tectonic planets because plate tectonics promotes high erosion rates and thus a greater supply of bedrock to the surface.
Verde, Cinzia; Giordano, Daniela; di Prisco, Guido
2008-01-01
In the Antarctic, fishes of dominant suborder Notothenioidei have evolved in a unique thermal scenario. Phylogenetically related taxa of the suborder live in a wide range of latitudes, in Antarctic, sub-Antarctic and temperate oceans. Consequently, they offer a remarkable opportunity to study the physiological and biochemical characters gained and, conversely, lost during their evolutionary history. The evolutionary perspective has also been pursued by comparative studies of some features of the heme protein devoted to O(2) transport in fish living in the other polar region, the Arctic. The two polar regions differ by age and isolation. Fish living in each habitat have undergone regional constraints and fit into different evolutionary histories. The aim of this contribution is to survey the current knowledge of molecular structure, functional features, phylogeny and adaptations of the haemoglobins of fish thriving in the Antarctic, sub-Antarctic and Arctic regions (with some excursions in the temperate latitudes), in search of insights into the convergent processes evolved in response to cooling. Current climate change may disturb adaptation, calling for strategies aimed at neutralising threats to biodiversity.
Keith, Heather; Mackey, Brendan G; Lindenmayer, David B
2009-07-14
From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized.
Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests
Keith, Heather; Mackey, Brendan G.; Lindenmayer, David B.
2009-01-01
From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized. PMID:19553199
Liu, Shanshan; Wang, Feng; Xue, Kai; Sun, Bo; Zhang, Yuguang; He, Zhili; Van Nostrand, Joy D; Zhou, Jizhong; Yang, Yunfeng
2015-03-01
Soil transplant into warmer regions has been shown to alter soil microbiology. In contrast, little is known about the effects of soil transplant into colder regions, albeit that climate cooling has solicited attention in recent years. To address this question, we transplanted bare fallow soil over large transects from southern China (subtropical climate zone) to central (warm temperate climate zone) and northern China (cold temperate climate zone). After an adaptation period of 4 years, soil nitrogen components, microbial biomass and community structures were altered. However, the effects of soil transplant on microbial communities were dampened by maize cropping, unveiling a negative interaction between cropping and transplant. Further statistical analyses with Canonical correspondence analysis and Mantel tests unveiled annual average temperature, relative humidity, aboveground biomass, soil pH and NH4 (+) -N content as environmental attributes closely correlated with microbial functional structures. In addition, average abundances of amoA-AOA (ammonia-oxidizing archaea) and amoA-AOB (ammonia-oxidizing bacteria) genes were significantly (P < 0.05) correlated with soil nitrification capacity, hence both AOA and AOB contributed to the soil functional process of nitrification. These results suggested that the soil nitrogen cycle was intimately linked with microbial community structure, and both were subjected to disturbance by soil transplant to colder regions and plant cropping. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Rapid continental-scale vegetation response to the Younger Dryas Cool Episode
NASA Astrophysics Data System (ADS)
Peros, M.; Gajewski, K.; Viau, A.
2006-12-01
The Younger Dryas Cool Episode had rapid and widespread effects on flora and fauna throughout the Americas. Fossil pollen records document how plant communities responded to this event, although such data are generally only representative of changes at local- to regional-scales. We use a new approach to provide insight into vegetation responses to the Younger Dryas at a continental-scale, by focusing on data extracted for a single taxon (Populus poplar, cottonwood, aspen) from pollen diagrams throughout North America. We show that Populus underwent a rapid and continent-wide decline as the climate rapidly cooled and dried. At the termination of the Younger Dryas, Populus underwent another widespread decline, this time in response to competition from boreal and temperate taxa as the climate abruptly warmed. Late glacial-early Holocene pollen assemblages with high quantities of Populus pollen often lack modern analogues and thus confound quantitative paleoclimatic reconstructions; our results provide a context to interpret these assemblages. Furthermore, while Populus may continue to expand in the future in response to human disturbance and increasing temperatures, its sensitivity to competition may eventually put it at risk as global warming accelerates.
Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic
Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen
2016-01-01
The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800–1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048
Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.
Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen
2016-01-01
The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years.
NASA Astrophysics Data System (ADS)
Taylor, K. W.; Hollis, C. J.; Pancost, R. D.
2010-12-01
The Cretaceous-Paleogene (K/Pg) boundary marks a catastrophic global extinction event, believed to be caused by an asteroid impact in northern Yucatan. Whilst the extent of mass extinction is well documented, there is ongoing debate about the immediate and longer term climatic and environmental changes triggered by the event. The northern South Island of New Zealand has several records of the K/Pg boundary, representing a range of terrestrial and marine environments. Previous studies of terrestrial palynomorphs and siliceous microfossils from these sections suggested significant cooling and terrestrial vegetation reconfiguration in the earliest Paleocene. Extinctions or local disappearances of thermophilic taxa at the K/Pg boundary are consistent with the hypothesis of a short-lived “impact winter”. The Mid-Waipara K/Pg boundary section, north Canterbury, has been identified as suitable for organic geochemical study because sufficient organic carbon is present in the siliciclastic sediments and is thermally immature. Sediments were deposited in outer shelf to upper slope depths under a neritic watermass. New estimates of sea surface temperature variation based on TEX86 elucidate the relationship between biological and climatic changes that followed the K/Pg event. Within the 0.25 m-thick interval identified as the “fern spike” in basal Paleocene sediments in this section there is no indication of a significant change in temperature relative to the Cretaceous (22-25°C). Foraminiferal and radiolarian biostratigraphy indicates that this interval spans ~100 kyrs and includes a fern succession from colonising ground ferns to tree ferns, the latter suggesting a temperate, humid climate. The transition from ferns to a conifer-dominated pollen assemblage corresponds with a remarkable decrease in temperature recorded in the TEX86 record. These cool temperatures persist over 10 m. The dominant conifer pollen type over this interval is Phyllocladites mawsonii, indicative of cool-temperate conditions. Preliminary biostratigraphic correlation suggests that this interval is condensed, possibly truncated at the base, and may be correlated to a more expanded biogenic silica-rich interval in the pelagic K/Pg boundary sections in eastern Marlborough, northeastern South Island. These results support siliceous microfossil evidence for pronounced cooling in early Paleocene in New Zealand. Organic biomarker records provide further insight into terrestrial and marine ecological reconfiguration through the K/Pg boundary transition at Mid-Waipara River. Major reorganisations of the phytoplankton and archaeal communities are indicated by pronounced changes in sterol and tetraether distributions following the K/Pg boundary. Transient disruption of higher plants at the boundary is verified by suppression of n-alkane and triterpenoid biomarker concentrations, succeeded by a gradual recovery into the Early Paleocene. The scenario envisaged may be summarised as climate instability following the K/Pg boundary event, culminating in cool climatic conditions and a strengthened local upwelling regime leading to widespread deposition of diatom-rich siliceous sediments, lasting for around 1 Myr.
Zang, Christian; Hartl-Meier, Claudia; Dittmar, Christoph; Rothe, Andreas; Menzel, Annette
2014-12-01
The future performance of native tree species under climate change conditions is frequently discussed, since increasingly severe and more frequent drought events are expected to become a major risk for forest ecosystems. To improve our understanding of the drought tolerance of the three common European temperate forest tree species Norway spruce, silver fir and common beech, we tested the influence of climate and tree-specific traits on the inter and intrasite variability in drought responses of these species. Basal area increment data from a large tree-ring network in Southern Germany and Alpine Austria along a climatic cline from warm-dry to cool-wet conditions were used to calculate indices of tolerance to drought events and their variability at the level of individual trees and populations. General patterns of tolerance indicated a high vulnerability of Norway spruce in comparison to fir and beech and a strong influence of bioclimatic conditions on drought response for all species. On the level of individual trees, low-growth rates prior to drought events, high competitive status and low age favored resilience in growth response to drought. Consequently, drought events led to heterogeneous and variable response patterns in forests stands. These findings may support the idea of deliberately using spontaneous selection and adaption effects as a passive strategy of forest management under climate change conditions, especially a strong directional selection for more tolerant individuals when frequency and intensity of summer droughts will increase in the course of global climate change. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Salzmann, Ulrich; Strother, Stephanie; Sangiorgi, Francesca; Bijl, Peter; Pross, Joerg; Woodward, John; Escutia, Carlota; Brinkhuis, Henk
2016-04-01
The question whether Cenozoic climate was warm enough to support a substantial vegetation cover on the Antarctic continent is of great significance to the ongoing controversial debate on the dynamic behaviour of Antarctic land ice during the transition from a greenhouse to an icehouse world. Here we present palynological results from an Oligocene to Miocene sediment record provided by the Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin (East Antarctica). The Oligocene assemblages (33.9-23 Ma) are dominated by pollen and spores from temperate forest and sub-Antarctic shrub vegetation inhabiting different altitudinal zones. These include a lowland cold temperate forest with Dacrydium and Lagarostrobos (both common in southern forests of New Zealand and Tasmania today) and a high altitude tundra shrubland comprising Microcachrys, Nothofagus (southern beech) and Podocarpaceae conifers. A decline in pollen percentages of Dacrydium and Lagarostrobos and absence of Proteaceae indicate climate cooling during the late Oligocene (~25-23 Ma). However, the continuous presence of Lagarostrobos suggests that the full transition to a tundra environment had not yet occurred and climate on Wilkes Land during the late Oligocene was still warm enough to support forest vegetation in sheltered areas. Temperature reconstructions derived from the fossil pollen assemblages using the Coexistence Approach suggest mean annual temperatures (MATs) between 6.7-13.7°C during the early Oligocene and a drop of minimum MATs to 5.8°C in the late Oligocene. Pollen of "unambiguous" forest indicators, such as Lagarostrobos, are absent in the Miocene sediment record (16.2 -12.5 Ma) but temperatures were still high enough (minimum MATs > 5°C) to sustain a woody sub-Antarctic vegetation under partially ice-free conditions. Wilkes Land provides a unique record of Antarctic vegetation change from a subtropical, highly diverse Eocene rainforest to an Oligocene cold temperate forest and an impoverished Miocene sub-Antarctic shrubland. The pollen record suggests that temperatures were higher than in the Ross Sea region (i.e. Andrill, Cape Roberts) and the Wilkes Land margins were possibly one of the last refugia for temperate forest taxa on Antarctica during the Late Oligocene.
Optimal bus temperature for thermal comfort during a cool day.
Velt, K B; Daanen, H A M
2017-07-01
A challenge for electric buses is to minimize heating and cooling power to maximally extend the driving range, but still provide sufficient thermal comfort for the driver and passengers. Therefore, we investigated the thermal sensation (TS) and thermal comfort (TC) of passengers in buses during a cool day (temperature 13.4 ± 0.5 °C, relative humidity (RH) 60 ± 5.8%) typical for the Dutch temperate maritime climate. 28 Males and 72 females rated TS and TC and gave information on age, stature, body weight and worn garments. The temperature in the bus of 22.5 ± 1.1 °C and RH of 59.9 ± 5.8% corresponded to a slightly warm feeling (TS = 0.85 ± 1.06) and TC of 0.39 ± 0.65. TS related significantly to bus temperature, clothing insulation and age. Linear regression based on these parameters showed that the temperature in the bus corresponding to TC = 0 and TS = 0 would have been 20.9 ± 0.6 °C. In conclusion, a 1.6 °C lower bus temperature during the investigated cool day probably would have led to less thermal discomfort and energy savings of electrical busses. The methodology to relate climatic measurements to subjective assessments is currently employed in a wider climatic range and may prove to be useful to find a better balance between thermal comfort and energy savings of the bus. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of cool versus warm temperatures on gestation in the aspic viper (Vipera aspis).
Michel, Catherine Louise; Pastore, Jean-Henri; Bonnet, Xavier
2013-07-01
Previous experimental data suggested that digestion and growth rates are not impaired under cool constant temperature (23°C) in a viviparous snake (Vipera aspis). These results challenged the widespread notion that both elevated temperatures (e.g. 30°C) and temperature fluctuations are required for digestion and growth in temperate climate reptiles. Here, we investigated the impact of constant cool temperatures on another physiological performance that is crucial to population persistence: gestation. At the time when reproductive females were midway through vitellogenesis, we placed ten reproductive and two non-reproductive female aspic vipers at each of two contrasted constant temperature conditions: cool (23°C) versus warm (28°C). Sixty percent of the females placed at 28°C gave birth to healthy offspring, suggesting that constant warm body temperatures were compatible with normal offspring production. Conversely, none of the cool females gave birth to healthy offspring. A blister disease affected exclusively cool pregnant females. Apparently, the combination of cool temperatures plus gestation was too challenging for such females. Our results suggest that reproduction is more thermally sensitive than digestion or growth, indeed gestation faltered under moderately cool thermal constraints. This sensitivity could be a crucial factor determining the capacity of this species to colonize different habitats. Copyright © 2013 Elsevier Inc. All rights reserved.
Late Pliocene and Quaternary Eurasian locust infestations in the Canary Archipelago
Meco, J.; Muhs, D.R.; Fontugne, M.; Ramos, A.J.; Lomoschitz, A.; Patterson, D.
2011-01-01
The Canary Archipelago has long been a sensitive location to record climate changes of the past. Interbedded with its basalt lavas are marine deposits from the principal Pleistocene interglacials, as well as aeolian sands with intercalated palaeosols. The palaeosols contain African dust and innumerable relict egg pods of a temperate-region locust (cf. Dociostaurus maroccanusThunberg 1815). New ecological and stratigraphical information reveals the geological history of locust plagues (or infestations) and their palaeoclimatic significance. Here, we show that the first arrival of the plagues to the Canary Islands from Africa took place near the end of the Pliocene, ca. 3Ma, and reappeared with immense strength during the middle Late Pleistocene preceding MIS (marine isotope stage) 11 (ca. 420ka), MIS 5.5 (ca. 125ka) and probably during other warm interglacials of the late Middle Pleistocene and the Late Pleistocene. During the Early Holocene, locust plagues may have coincided with a brief cool period in the current interglacial. Climatically, locust plagues on the Canaries are a link in the chain of full-glacial arid-cold climate (calcareous dunes), early interglacial arid-sub-humid climate (African dust inputs and locust plagues), peak interglacial warm-humid climate (marine deposits with Senegalese fauna), transitional arid-temperate climate (pedogenic calcretes), and again full-glacial arid-cold climate (calcareous dunes) oscillations. During the principal interglacials of the Pleistocene, the Canary Islands recorded the migrations of warm Senegalese marine faunas to the north, crossing latitudes in the Euro-African Atlantic. However, this northward marine faunal migration was preceded in the terrestrial realm by interglacial infestations of locusts. ??? Locust plagues, Canary Islands, Late Pliocene, Pleistocene, Holocene, palaeoclimatology. ?? 2010 The Authors, Lethaia ?? 2010 The Lethaia Foundation.
Rohwer, V G; Bonier, F; Martin, P R
2015-10-22
Climatic selective pressures are thought to dominate biotic selective pressures at higher latitudes. However, few studies have experimentally tested how these selective pressures differentially act on traits across latitudes because traits can rarely be manipulated independently of the organism in nature. We overcame this challenge by using an extended phenotype-active bird nests-and conducted reciprocal transplant experiments between a subarctic and temperate site, separated by 14° of latitude. At the subarctic site, biotic selective pressures (nest predation) favoured smaller, non-local temperate nests, whereas climatic selective pressures (temperature) favoured larger local nests, particularly at colder temperatures. By contrast, at the temperate site, climatic and biotic selective pressures acted similarly on temperate and subarctic nests. Our results illustrate a functional trade-off in the subarctic between nest morphologies favoured by biotic versus climatic selective pressures, with climate favouring local nest morphologies. At our temperate site, however, allocative trade-offs in the time and effort devoted to nest construction favour smaller, local nests. Our findings illustrate a conflict between biotic and climatic selective pressures at the northern extremes of a species geographical range, and suggest that trade-offs between trait function and trait elaboration act differentially across latitude to create broad geographic variation in traits. © 2015 The Author(s).
Rohwer, V. G.; Bonier, F.; Martin, P. R.
2015-01-01
Climatic selective pressures are thought to dominate biotic selective pressures at higher latitudes. However, few studies have experimentally tested how these selective pressures differentially act on traits across latitudes because traits can rarely be manipulated independently of the organism in nature. We overcame this challenge by using an extended phenotype—active bird nests—and conducted reciprocal transplant experiments between a subarctic and temperate site, separated by 14° of latitude. At the subarctic site, biotic selective pressures (nest predation) favoured smaller, non-local temperate nests, whereas climatic selective pressures (temperature) favoured larger local nests, particularly at colder temperatures. By contrast, at the temperate site, climatic and biotic selective pressures acted similarly on temperate and subarctic nests. Our results illustrate a functional trade-off in the subarctic between nest morphologies favoured by biotic versus climatic selective pressures, with climate favouring local nest morphologies. At our temperate site, however, allocative trade-offs in the time and effort devoted to nest construction favour smaller, local nests. Our findings illustrate a conflict between biotic and climatic selective pressures at the northern extremes of a species geographical range, and suggest that trade-offs between trait function and trait elaboration act differentially across latitude to create broad geographic variation in traits. PMID:26490789
Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity
Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.
2016-01-01
Climate change is rapidly warming aquatic ecosystems including lakes and reservoirs. However, variability in lake characteristics can modulate how lakes respond to climate. Water clarity is especially important both because it influences the depth range over which heat is absorbed, and because it is changing in many lakes. Here, we show that simulated long-term water clarity trends influence how both surface and bottom water temperatures of lakes and reservoirs respond to climate change. Clarity changes can either amplify or suppress climate-induced warming, depending on lake depth and the direction of clarity change. Using a process-based model to simulate 1894 north temperate lakes from 1979 to 2012, we show that a scenario of decreasing clarity at a conservative yet widely observed rate of 0.92% yr−1 warmed surface waters and cooled bottom waters at rates comparable in magnitude to climate-induced warming. For lakes deeper than 6.5 m, decreasing clarity was sufficient to fully offset the effects of climate-induced warming on median whole-lake mean temperatures. Conversely, a scenario increasing clarity at the same rate cooled surface waters and warmed bottom waters relative to baseline warming rates. Furthermore, in 43% of lakes, increasing clarity more than doubled baseline bottom temperature warming rates. Long-term empirical observations of water temperature in lakes with and without clarity trends support these simulation results. Together, these results demonstrate that water clarity trends may be as important as rising air temperatures in determining how waterbodies respond to climate change.
Chen, Chao; Liu, Zhiguang; Pan, Qi; Chen, Xiao; Wang, Huihua; Guo, Haikun; Liu, Shidong; Lu, Hongfeng; Tian, Shilin; Li, Ruiqiang; Shi, Wei
2016-01-01
Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies. PMID:26823447
Patterns and mechanisms of early Pliocene warmth.
Fedorov, A V; Brierley, C M; Lawrence, K T; Liu, Z; Dekens, P S; Ravelo, A C
2013-04-04
About five to four million years ago, in the early Pliocene epoch, Earth had a warm, temperate climate. The gradual cooling that followed led to the establishment of modern temperature patterns, possibly in response to a decrease in atmospheric CO2 concentration, of the order of 100 parts per million, towards preindustrial values. Here we synthesize the available geochemical proxy records of sea surface temperature and show that, compared with that of today, the early Pliocene climate had substantially lower meridional and zonal temperature gradients but similar maximum ocean temperatures. Using an Earth system model, we show that none of the mechanisms currently proposed to explain Pliocene warmth can simultaneously reproduce all three crucial features. We suggest that a combination of several dynamical feedbacks underestimated in the models at present, such as those related to ocean mixing and cloud albedo, may have been responsible for these climate conditions.
Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement
NASA Astrophysics Data System (ADS)
Raoul, S.; Marini, B.; Pineau, A.
1998-11-01
In ferritic steels, brittle fracture usually occurs at low temperature by cleavage. However the segregation of impurities (P, As, Sn etc...) along prior γ grain boundaries can change the brittle fracture mode from transgranular to intergranular. In quenched and tempered steels, this segregation is associated with what is called the temper-embrittlement phenomenon. The main objective of the present study is to investigate the influence of the as-quenched microstructure (lower bainite or martensite) on the susceptibility of a low alloy steel (A533 cl.1) to temper-embrittlement. Dilatometric tests were performed to determine the continous-cooling-transformation (CCT) diagram of the material and to measure the critical cooling rate ( Vc) for a martensitic quench. Then subsized Charpy V-notched specimens were given various cooling rates from the austenitization temperature to obtain a wide range of as-quenched microstructures, including martensite and bainite. These specimens were subsequently given a heat treatment to develop temper embrittlement and tested to measure the V-notch fracture toughness at -50°C. The fracture surfaces were examined by SEM. It is shown that martensitic microstructures are more susceptible to intergranular embrittlement than bainitic microstructures. These observed microstructural influences are briefly discussed.
Case study for the assessment of the biogeophysical effects of a potential afforestation in Europe
2013-01-01
Background A regional-scale sensitivity study has been carried out to investigate the climatic effects of forest cover change in Europe. Applying REMO (regional climate model of the Max Planck Institute for Meteorology), the projected temperature and precipitation tendencies have been analysed for summer, based on the results of the A2 IPCC-SRES emission scenario simulation. For the end of the 21st century it has been studied, whether the assumed forest cover increase could reduce the effects of the greenhouse gas concentration change. Results Based on the simulation results, biogeophysical effects of the hypothetic potential afforestation may lead to cooler and moister conditions during summer in most parts of the temperate zone. The largest relative effects of forest cover increase can be expected in northern Germany, Poland and Ukraine, which is 15–20% of the climate change signal for temperature and more than 50% for precipitation. In northern Germany and France, potential afforestation may enhance the effects of emission change, resulting in more severe heavy precipitation events. The probability of dry days and warm temperature extremes would decrease. Conclusions Large contiguous forest blocks can have distinctive biogeophysical effect on the climate on regional and local scale. In certain regions of the temperate zone, climate change signal due to greenhouse gas emission can be reduced by afforestation due to the dominant evaporative cooling effect during summer. Results of this case study with a hypothetical land cover change can contribute to the assessment of the role of forests in adapting to climate change. Thus they can build an important basis of the future forest policy. PMID:23369380
NASA Astrophysics Data System (ADS)
Karthikeyan, T.; Thomas Paul, V.; Saroja, S.; Moitra, A.; Sasikala, G.; Vijayalakshmi, M.
2011-12-01
This paper presents the results of an experimental investigation where an enhancement in Charpy impact toughness and decrease in DBTT was obtained through grain refinement in 9Cr-1Mo steel. The steel in the normalized and tempered condition (1323 K/air cool + 1023 K/2 h/air cool) had an average prior-austenite grain size of 26 μm. By designing a two-stage normalizing (1323 K/2 h/water quench + 1223 K/2 h/air cool) and tempering treatment (1023 K/2 h/air cool), a homogeneous tempered martensite microstructure with a lesser prior-austenite grain size of 12 μm could be obtained. An improvement trend in impact properties of standard sized Charpy specimens was obtained in fine-grained steel: upper shelf energy increased from 175 J to 210 J, and DBTT reduced from 243 K to 228 K. This heat treatment is unique since an attempt to carry out a single-stage low temperature normalizing treatment (1223 K/2 h/air cool) did not give a complete martensite structure, due to the incomplete dissolution of carbides during austenitization.
NASA Astrophysics Data System (ADS)
Alchapar, Noelia Liliana; Pezzuto, Claudia Cotrim; Correa, Erica Norma; Chebel Labaki, Lucila
2017-10-01
This paper describes different ways of reducing urban air temperature and their results in two cities: Campinas, Brazil—a warm temperate climate with a dry winter and hot summer (Cwa), and Mendoza, Argentina—a desert climate with cold steppe (BWk). A high-resolution microclimate modeling system—ENVI-met 3.1—was used to evaluate the thermal performance of an urban canyon in each city. A total of 18 scenarios were simulated including changes in the surface albedo, vegetation percentage, and the H/W aspect ratio of the urban canyons. These results revealed the same trend in behavior for each of the combinations of strategies evaluated in both cities. Nevertheless, these strategies produce a greater temperature reduction in the warm temperate climate (Cwa). Increasing the vegetation percentage reduces air temperatures and mean radiant temperatures in all scenarios. In addition, there is a greater decrease of urban temperature with the vegetation increase when the H/W aspect ratio is lower. Also, applying low albedo on vertical surfaces and high albedo on horizontal surfaces is successful in reducing air temperatures without raising the mean radiant temperature. The best combination of strategies—60 % of vegetation, low albedos on walls and high albedos on pavements and roofs, and 1.5 H/W—could reduce air temperatures up to 6.4 °C in Campinas and 3.5 °C in Mendoza.
A multi-paradigm framework to assess the impacts of climate change on end-use energy demand.
Nateghi, Roshanak; Mukherjee, Sayanti
2017-01-01
Projecting the long-term trends in energy demand is an increasingly complex endeavor due to the uncertain emerging changes in factors such as climate and policy. The existing energy-economy paradigms used to characterize the long-term trends in the energy sector do not adequately account for climate variability and change. In this paper, we propose a multi-paradigm framework for estimating the climate sensitivity of end-use energy demand that can easily be integrated with the existing energy-economy models. To illustrate the applicability of our proposed framework, we used the energy demand and climate data in the state of Indiana to train a Bayesian predictive model. We then leveraged the end-use demand trends as well as downscaled future climate scenarios to generate probabilistic estimates of the future end-use demand for space cooling, space heating and water heating, at the individual household and building level, in the residential and commercial sectors. Our results indicated that the residential load is much more sensitive to climate variability and change than the commercial load. Moreover, since the largest fraction of the residential energy demand in Indiana is attributed to heating, future warming scenarios could lead to reduced end-use demand due to lower space heating and water heating needs. In the commercial sector, the overall energy demand is expected to increase under the future warming scenarios. This is because the increased cooling load during hotter summer months will likely outpace the reduced heating load during the more temperate winter months.
A multi-paradigm framework to assess the impacts of climate change on end-use energy demand
Nateghi, Roshanak
2017-01-01
Projecting the long-term trends in energy demand is an increasingly complex endeavor due to the uncertain emerging changes in factors such as climate and policy. The existing energy-economy paradigms used to characterize the long-term trends in the energy sector do not adequately account for climate variability and change. In this paper, we propose a multi-paradigm framework for estimating the climate sensitivity of end-use energy demand that can easily be integrated with the existing energy-economy models. To illustrate the applicability of our proposed framework, we used the energy demand and climate data in the state of Indiana to train a Bayesian predictive model. We then leveraged the end-use demand trends as well as downscaled future climate scenarios to generate probabilistic estimates of the future end-use demand for space cooling, space heating and water heating, at the individual household and building level, in the residential and commercial sectors. Our results indicated that the residential load is much more sensitive to climate variability and change than the commercial load. Moreover, since the largest fraction of the residential energy demand in Indiana is attributed to heating, future warming scenarios could lead to reduced end-use demand due to lower space heating and water heating needs. In the commercial sector, the overall energy demand is expected to increase under the future warming scenarios. This is because the increased cooling load during hotter summer months will likely outpace the reduced heating load during the more temperate winter months. PMID:29155862
Latitude, elevational climatic zonation and speciation in New World vertebrates
Cadena, Carlos Daniel; Kozak, Kenneth H.; Gómez, Juan Pablo; Parra, Juan Luis; McCain, Christy M.; Bowie, Rauri C. K.; Carnaval, Ana C.; Moritz, Craig; Rahbek, Carsten; Roberts, Trina E.; Sanders, Nathan J.; Schneider, Christopher J.; VanDerWal, Jeremy; Zamudio, Kelly R.; Graham, Catherine H.
2012-01-01
Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions. PMID:21632626
Chen, Chao; Liu, Zhiguang; Pan, Qi; Chen, Xiao; Wang, Huihua; Guo, Haikun; Liu, Shidong; Lu, Hongfeng; Tian, Shilin; Li, Ruiqiang; Shi, Wei
2016-05-01
Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Forest ecosystems of temperate climatic regions: from ancient use to climate change.
Gilliam, Frank S
2016-12-01
871 I. 871 II. 874 III. 875 IV. 878 V. 882 884 References 884 SUMMARY: Humans have long utilized resources from all forest biomes, but the most indelible anthropogenic signature has been the expanse of human populations in temperate forests. The purpose of this review is to bring into focus the diverse forests of the temperate region of the biosphere, including those of hardwood, conifer and mixed dominance, with a particular emphasis on crucial challenges for the future of these forested areas. Implicit in the term 'temperate' is that the predominant climate of these forest regions has distinct cyclic, seasonal changes involving periods of growth and dormancy. The specific temporal patterns of seasonal change, however, display an impressive variability among temperate forest regions. In addition to the more apparent current anthropogenic disturbances of temperate forests, such as forest management and conversion to agriculture, human alteration of temperate forests is actually an ancient phenomenon, going as far back as 7000 yr before present (bp). As deep-seated as these past legacies are for temperate forests, all current and future perturbations, including timber harvesting, excess nitrogen deposition, altered species' phenologies, and increasing frequency of drought and fire, must be viewed through the lens of climate change. © 2016 The Author. New Phytologist © 2016 New Phytologist Trust.
Truxton, Tyler T; Miller, Kevin C
2017-09-01
Clinical Scenario: Exertional heat stroke (EHS) is a medical emergency which, if left untreated, can result in death. The standard of care for EHS patients includes confirmation of hyperthermia via rectal temperature (T rec ) and then immediate cold-water immersion (CWI). While CWI is the fastest way to reduce T rec , it may be difficult to lower and maintain water bath temperature in the recommended ranges (1.7°C-15°C [35°F-59°F]) because of limited access to ice and/or the bath being exposed to high ambient temperatures for long periods of time. Determining if T rec cooling rates are acceptable (ie, >0.08°C/min) when significantly hyperthermic humans are immersed in temperate water (ie, ≥20°C [68°F]) has applications for how EHS patients are treated in the field. Are T rec cooling rates acceptable (≥0.08°C/min) when significantly hyperthermic humans are immersed in temperate water? T rec cooling rates of hyperthermic humans immersed in temperate water (≥20°C [68°F]) ranged from 0.06°C/min to 0.19°C/min. The average T rec cooling rate for all examined studies was 0.11±0.06°C/min. Clinical Bottom Line: Temperature water immersion (TWI) provides acceptable (ie, >0.08°C/min) T rec cooling rates for hyperthermic humans post-exercise. However, CWI cooling rates are higher and should be used if feasible (eg, access to ice, shaded treatment areas). Strength of Recommendation: The majority of evidence (eg, Level 2 studies with PEDro scores ≥5) suggests TWI provides acceptable, though not ideal, T rec cooling. If possible, CWI should be used instead of TWI in EHS scenarios.
Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto
2016-01-01
As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone.
Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto
2016-06-01
As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone. © 2015 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhiyang; Zhang, Xiong
A dynamic computer simulation is carried out in the climates of 35 cities distributed around the world. The variation of the annual air-conditioning energy loads due to changes in the longwave emissivity and the solar reflectance of the building envelopes is studied to find the most appropriate exterior building finishes in various climates (including a tropical climate, a subtropical climate, a mountain plateau climate, a frigid-temperate climate and a temperate climate). Both the longwave emissivity and the solar reflectance are set from 0.1 to 0.9 with an interval of 0.1 in the simulation. The annual air-conditioning energy loads trends ofmore » each city are listed in a chart. The results show that both the longwave emissivity and the solar reflectance of building envelopes play significant roles in energy-saving for buildings. In tropical climates, the optical parameters of the building exterior surface affect the building energy-saving most significantly. In the mountain plateau climates and the subarctic climates, the impacts on energy-saving in buildings due to changes in the longwave emissivity and the solar reflectance are still considerable, but in the temperate continental climates and the temperate maritime climates, only limited effects are seen. (author)« less
May common model biases reduce CMIP5's ability to simulate the recent Pacific La Niña-like cooling?
NASA Astrophysics Data System (ADS)
Luo, Jing-Jia; Wang, Gang; Dommenget, Dietmar
2018-02-01
Over the recent three decades sea surface temperate (SST) in the eastern equatorial Pacific has decreased, which helps reduce the rate of global warming. However, most CMIP5 model simulations with historical radiative forcing do not reproduce this Pacific La Niña-like cooling. Based on the assumption of "perfect" models, previous studies have suggested that errors in simulated internal climate variations and/or external radiative forcing may cause the discrepancy between the multi-model simulations and the observation. But the exact causes remain unclear. Recent studies have suggested that observed SST warming in the other two ocean basins in past decades and the thermostat mechanism in the Pacific in response to increased radiative forcing may also play an important role in driving this La Niña-like cooling. Here, we investigate an alternative hypothesis that common biases of current state-of-the-art climate models may deteriorate the models' ability and can also contribute to this multi-model simulations-observation discrepancy. Our results suggest that underestimated inter-basin warming contrast across the three tropical oceans, overestimated surface net heat flux and underestimated local SST-cloud negative feedback in the equatorial Pacific may favor an El Niño-like warming bias in the models. Effects of the three common model biases do not cancel one another and jointly explain 50% of the total variance of the discrepancies between the observation and individual models' ensemble mean simulations of the Pacific SST trend. Further efforts on reducing common model biases could help improve simulations of the externally forced climate trends and the multi-decadal climate fluctuations.
Data in support of energy performance of double-glazed windows.
Shakouri, Mahmoud; Banihashemi, Saeed
2016-06-01
This paper provides the data used in a research project to propose a new simplified windows rating system based on saved annual energy ("Developing an empirical predictive energy-rating model for windows by using Artificial Neural Network" (Shakouri Hassanabadi and Banihashemi Namini, 2012) [1], "Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates" (Banihashemi et al., 2015) [2]). A full factorial simulation study was conducted to evaluate the performance of 26 different types of windows in a four-story residential building. In order to generalize the results, the selected windows were tested in four climates of cold, tropical, temperate, and hot and arid; and four different main orientations of North, West, South and East. The accompanied datasets include the annual saved cooling and heating energy in different climates and orientations by using the selected windows. Moreover, a complete dataset is provided that includes the specifications of 26 windows, climate data, month, and orientation of the window. This dataset can be used to make predictive models for energy efficiency assessment of double glazed windows.
Implications of climate change (global warming) for the healthcare system.
Raffa, R B; Eltoukhy, N S; Raffa, K F
2012-10-01
Temperature-sensitive pathogenic species and their vectors and hosts are emerging in previously colder regions as a consequence of several factors, including global warming. As a result, an increasing number of people will be exposed to pathogens against which they have not previously needed defences. We illustrate this with a specific example of recent emergence of Cryptococcus gattii infections in more temperate climates. The outbreaks in more temperate climates of the highly virulent--but usually tropically restricted--C. gattii is illustrative of an anticipated growing challenge for the healthcare system. There is a need for preparedness by healthcare professionals in anticipation and for management of such outbreaks, including other infections whose recent increased prevalence in temperate climates can be at least partly associated with global warming. (Re)emergence of temperature-sensitive pathogenic species in more temperate climates will present new challenges for healthcare systems. Preparation for outbreaks should precede their occurrence. © 2012 Blackwell Publishing Ltd.
Beyond cool: adapting upland streams for climate change using riparian woodlands.
Thomas, Stephen M; Griffiths, Siân W; Ormerod, Steve J
2016-01-01
Managed adaptation could reduce the risks of climate change to the world's ecosystems, but there have been surprisingly few practical evaluations of the options available. For example, riparian woodland is advocated widely as shade to reduce warming in temperate streams, but few studies have considered collateral effects on species composition or ecosystem functions. Here, we use cross-sectional analyses at two scales (region and within streams) to investigate whether four types of riparian management, including those proposed to reduce potential climate change impacts, might also affect the composition, functional character, dynamics and energetic resourcing of macroinvertebrates in upland Welsh streams (UK). Riparian land use across the region had only small effects on invertebrate taxonomic composition, while stable isotope data showed how energetic resources assimilated by macroinvertebrates in all functional guilds were split roughly 50:50 between terrestrial and aquatic origins irrespective of riparian management. Nevertheless, streams draining the most extensive deciduous woodland had the greatest stocks of coarse particulate matter (CPOM) and greater numbers of 'shredding' detritivores. Stream-scale investigations showed that macroinvertebrate biomass in deciduous woodland streams was around twice that in moorland streams, and lowest of all in streams draining non-native conifers. The unexpected absence of contrasting terrestrial signals in the isotopic data implies that factors other than local land use affect the relative incorporation of allochthonous subsidies into riverine food webs. Nevertheless, our results reveal how planting deciduous riparian trees along temperate headwaters as an adaptation to climate change can modify macroinvertebrate function, increase biomass and potentially enhance resilience by increasing basal resources where cover is extensive (>60 m riparian width). We advocate greater urgency in efforts to understand the ecosystem consequences of climate change adaptation to guide future actions. © 2015 John Wiley & Sons Ltd.
Coleman, E; Doddakula, K; Meeke, R; Marshall, C; Jahangir, S; Hinchion, J
2010-03-01
Cases of accidental profound hypothermia occur most frequently in cold, northern climates. We describe an atypical case, occurring in a temperate climate, where a hypothermic cardiac-arrested patient was successfully resuscitated using extracorporeal circulation (ECC).
Penguin heat-retention structures evolved in a greenhouse Earth.
Thomas, Daniel B; Ksepka, Daniel T; Fordyce, R Ewan
2011-06-23
Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a 'Greenhouse Earth' interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets.
NASA Astrophysics Data System (ADS)
Panitz, Sina; Salzmann, Ulrich; Risebrobakken, Bjørg; De Schepper, Stijn; Pound, Matthew J.; Haywood, Alan M.; Dolan, Aisling M.; Lunt, Daniel J.
2018-02-01
During the Pliocene Epoch, a stronger-than-present overturning circulation has been invoked to explain the enhanced warming in the Nordic Seas region in comparison to low to mid-latitude regions. While marine records are indicative of changes in the northward heat transport via the North Atlantic Current (NAC) during the Pliocene, the long-term terrestrial climate evolution and its driving mechanisms are poorly understood. We present the first two-million-year-long Pliocene pollen record for the Nordic Seas region from Ocean Drilling Program (ODP) Hole 642B, reflecting vegetation and climate in Arctic Norway, to assess the influence of oceanographic and atmospheric controls on Pliocene climate evolution. The vegetation record reveals a long-term cooling trend in northern Norway, which might be linked to a general decline in atmospheric CO2 concentrations over the studied interval, and climate oscillations primarily controlled by precession (23 kyr), obliquity (54 kyr) and eccentricity (100 kyr) forcing. In addition, the record identifies four major shifts in Pliocene vegetation and climate mainly controlled by changes in northward heat transport via the NAC. Cool temperate (warmer than present) conditions prevailed between 5.03-4.30 Ma, 3.90-3.47 Ma and 3.29-3.16 Ma and boreal (similar to present) conditions predominated between 4.30-3.90 Ma, 3.47-3.29 and after 3.16 Ma. A distinct decline in sediment and pollen accumulation rates at c. 4.65 Ma is probably linked to changes in ocean currents, marine productivity and atmospheric circulation. Climate model simulations suggest that changes in the strength of the Atlantic Meridional Overturning Circulation during the Early Pliocene could have affected atmospheric circulation in the Nordic Seas region, which would have affected the direction of pollen transport from Scandinavia to ODP Hole 642B.
A review of the impacts of nature based recreation on birds.
Steven, Rochelle; Pickering, Catherine; Guy Castley, J
2011-10-01
Nature based recreation such as wildlife viewing, hiking, running, cycling, canoeing, horse riding and dog walking can have negative environmental effects. A review of the recreation ecology literature published in English language academic journals identified 69 papers from 1978 to 2010 that examined the effect of these activities on birds. Sixty-one of the papers (88%) found negative impacts, including changes in bird physiology (all 11 papers), immediate behaviour (37 out of 41 papers), as well as changes in abundance (28 out of 33 papers) and reproductive success (28 out of 33 papers). Previous studies are concentrated in a few countries (United States, England, Argentina and New Zealand), mostly in cool temperate or temperate climatic zones, often in shoreline or wetland habitats, and mostly on insectivore, carnivore and crustaceovore/molluscivore foraging guilds. There is limited research in some regions with both high bird diversity and nature based recreation such as mainland Australia, Central America, Asia, and Africa, and for popular activities such as mountain bike riding and horse riding. It is clear, however, that non-motorised nature based recreation has negative impacts on a diversity of birds from a range of habitats in different climatic zones and regions of the world. Copyright © 2011 Elsevier Ltd. All rights reserved.
Retention of ductility in high-strength steels
NASA Technical Reports Server (NTRS)
Parker, E. R.; Zackay, V. F.
1969-01-01
To produce high strength alloy steel with retention of ductility, include tempering, cooling and subsequent tempering. Five parameters for optimum results are pretempering temperature, amount of strain, strain rate, temperature during strain, and retempering temperature.
Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes
Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F.
2015-01-01
The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h–1 to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as –6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as –14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. PMID:25788733
NASA Astrophysics Data System (ADS)
Xiong, Xuesong; Yang, Feng; Zou, Xingrong; Suo, Jinping
2012-11-01
The effect of twice quenching and tempering on the mechanical properties and microstructures of SCRAM steel was investigated. The results from tensile tests showed that whether twice quenching and tempering processes(1253 K/0.5 h/W.C(water cool) + 1033 K/2 h/A.C(air cool) + 1233 K/0.5 h/W.C + 1033 K/2 h/A.C named after 2Q&2TI, and 1253 K/0.5 h/W.C + 1033 K/2 h/A.C + 1233 K/0.5 h/W.C + 1013 K/2 h/A.C named after 2Q&2TII)increased strength of steel or not depended largely on the second tempering temperature compared to quenching and tempering process(1253 K/0.5 h/W.C + 1033 K/2 h/A.C named after 1Q&1T). Charpy V-notch impact tests indicated that twice quenching and tempering processes reduced the ductile brittle transition temperature (DBTT). Microstructure inspection revealed that the prior austenitic grain size and martensite lath width were refined after twice quenching and tempering treatments. Precipitate growth was inhibited by a slight decrease of the second tempering temperature from 1033 to 1013 K. The finer average size of precipitates is considered to be the main possible reason for the higher strength and lower DBTT of 2Q&2TII compared with 2Q&2TI.
1949-01-13
Charpy specimens. These data are for one steel which has been given a single heat treatment. The effects of a reduction in cross-sectional area and of...air cooled. After this they were tempered at 650oC (1200*?) for 1 hour and water quenched. This treatment produced a structure of tempered bainite
Toughness of 2,25Cr-1Mo steel and weld metal
NASA Astrophysics Data System (ADS)
Acarer, Mustafa; Arici, Gökhan; Acar, Filiz Kumdali; Keskinkilic, Selcuk; Kabakci, Fikret
2017-09-01
2,25Cr-1Mo steel is extensively used at elevated temperature structural applications in fossil fire power plants for steam pipes, nozzle chambers and petrochemical industry for hydrocracking unit due to its excellent creep resistance and good redundant to oxidation. Also they should have acceptable weldability and toughness. The steels are supplied in quenched and tempered condition and their welded components are subjected to post-weld heat treatment (PWHT). Tempering process is carried out at 690-710°C to improve toughness properties. However they are sensitive to reheat cracking and temper embrittlement. To measure temper embrittlement of the steels and their weld metal, temper embrittlement factor and formula (J factor - Watanabe and X formula- Bruscato) are used. Step cooling heat treatment is also applied to determine temper embrittlement. In this study, toughness properties of Cr Mo (W) steels were reviewed. Also transition temperature curves of 2,25Cr-1Mo steel and its weld metal were constructed before and after step cool heat treatment as experimental study. While 2,25Cr-1Mo steel as base metal was supplied, all weld metal samples were produced in Gedik Welding Company. Hardness measurements and microstructure evaluation were also carried out.
Investigations on Heat Treatment of a High-Speed Steel Roll
NASA Astrophysics Data System (ADS)
Fu, Hanguang; Qu, Yinhu; Xing, Jiandong; Zhi, Xiaohui; Jiang, Zhiqiang; Li, Mingwei; Zhang, Yi
2008-08-01
High-carbon high-speed steels (HSS) are very abrasion-resistant materials primarily due to their high hardness MC-type carbide and high hardness martensitic matrix. The effects of quenching and tempering treatment on the microstructure, mechanical properties, and abrasion resistance of centrifugal casting high-carbon HSS roll were studied. Different microstructures and mechanical properties were obtained after the quenching and tempering temperatures of HSS roll were changed. With air-cooling and sodium silicate solution cooling, when the austenitizing temperature reaches 1273 K, the metallic matrix all transforms into the martensite. Afterwards, the eutectic carbides dissolve into the metallic matrix and their continuous network distribution changes into the broken network. The second hardening temperature of high-carbon HSS roll is around 793 K. No significant changes in tensile strength and elongation percentage are observed unless the tempering temperature is beyond 753 K. The tensile strength increases obviously and the elongation percentage decreases slightly beyond 753 K. However, the tensile strength decreases and the elongation percentage increases when the tempering temperature exceeds 813 K. When the tempering temperature excels 773 K, the impact toughness has a slight decrease. Tempering at 793-813 K, high-carbon HSS roll presents excellent abrasion resistance.
Lusk, Christopher H; Kelly, Jeff W G; Gleason, Sean M
2013-03-01
A trade-off between shade tolerance and growth in high light is thought to underlie the temporal dynamics of humid forests. On the other hand, it has been suggested that tree species sorting on temperature gradients involves a trade-off between growth rate and cold resistance. Little is known about how these two major trade-offs interact. Seedlings of Australian tropical and cool-temperate rainforest trees were grown in glasshouse environments to compare growth versus shade-tolerance trade-offs in these two assemblages. Biomass distribution, photosynthetic capacity and vessel diameters were measured in order to examine the functional correlates of species differences in light requirements and growth rate. Species light requirements were assessed by field estimation of the light compensation point for stem growth. Light-demanding and shade-tolerant tropical species differed markedly in relative growth rates (RGR), but this trend was less evident among temperate species. This pattern was paralleled by biomass distribution data: specific leaf area (SLA) and leaf area ratio (LAR) of tropical species were significantly positively correlated with compensation points, but not those of cool-temperate species. The relatively slow growth and small SLA and LAR of Tasmanian light-demanders were associated with narrow vessels and low potential sapwood conductivity. The conservative xylem traits, small LAR and modest RGR of Tasmanian light-demanders are consistent with selection for resistance to freeze-thaw embolism, at the expense of growth rate. Whereas competition for light favours rapid growth in light-demanding trees native to environments with warm, frost-free growing seasons, frost resistance may be an equally important determinant of the fitness of light-demanders in cool-temperate rainforest, as seedlings establishing in large openings are exposed to sub-zero temperatures that can occur throughout most of the year.
Mid-late Holocene climatic changes in the Southwestern Iberian shelf
NASA Astrophysics Data System (ADS)
Gomes, S.; Naughton, F.; Rodrigues, T.; Drago, T.; Sanchez-Goñi, M.; Freitas, C.
2012-04-01
Vegetation (pollen analysis) and alkenone-derived Sea Surface Temperature (SST) reconstructions from a south western Iberian shelf core (POPEI VC2B) (36°53'12,99'' N, 8°03'57,98'' W) show orbital and suborbital climate variability at extremely high resolution for the last 6000 years in this region. In particular, the mid-late Holocene is marked by a long-term cooling revealed by the gradual decrease of arboreal pollen (AP) percentages and SST which parallels the general decreasing trend of the δ18-O isotope composition recorded in Greenland ice records and the decrease of the mid-latitudes summer insolation. The short-term vegetation changes, reflecting millennial scale climatic variability, are clearly identified in the POPEI VC2B over the last 6000 years. In particular, the basement of this record is marked by the presence of semi-desert plants (Chenopodiaceae, Artemisia and Ephedra) reflecting dry conditions. These particular dry conditions have been detected elsewhere in the southern Iberian Peninsula and in North African records. Following the particularly dry period, there is a decline of semi-desert plants and an increase of Ericaceae and Pinus associated with establishment of an incipient forest of Quercus deciduous type reflecting temperate and humid conditions. This period was followed by a decrease of arboreal pollen percentages, suggesting a relative climate cooling. Finally, the last 2500/2000 years, are marked by the presence of anthropogenic associations (including Cerealia-type, Plantago lanceolata-coronopus type, and Olea) and are characterized by several vegetation and climate oscillations associated with the Roman Period (RP), the Dark Ages (DA), the Medieval Climatic Anomaly (MCA), and the Little Ice Age (LIA).
Richardson, Sarah J; Laughlin, Daniel C; Lawes, Michael J; Holdaway, Robert J; Wilmshurst, Janet M; Wright, Monique; Curran, Timothy J; Bellingham, Peter J; McGlone, Matt S
2015-10-01
In fire-prone ecosystems, variation in bark thickness among species and communities has been explained by fire frequency; thick bark is necessary to protect cambium from lethal temperatures. Elsewhere this investment is deemed unnecessary, and thin bark is thought to prevail. However, in rain forest ecosystems where fire is rare, bark thickness varies widely among species and communities, and the causes of this variation remain enigmatic. We tested for functional explanations of bark thickness variation in temperate rain forest species and communities. We measured bark thickness in 82 tree species throughout New Zealand temperate rain forests that historically have experienced little fire and applied two complementary analyses. First, we examined correlations between bark traits and leaf habit, and leaf and stem traits. Second, we calculated community-weighted mean (CWM) bark thickness for 272 plots distributed throughout New Zealand to identify the environments in which thicker-barked communities occur. Conifers had higher size-independent bark thickness than evergreen angiosperms. Species with thicker bark or higher bark allocation coefficients were not associated with "slow economic" plant traits. Across 272 forest plots, communities with thicker bark occurred on infertile soils, and communities with thicker bark and higher bark allocation coefficients occurred in cooler, drier climates. In non-fire-prone temperate rain forest ecosystems, investment in bark is driven by soil resources, cool minimum temperatures, and seasonal moisture stress. The role of these factors in fire-prone ecosystems warrants testing. © 2015 Botanical Society of America.
Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system
NASA Astrophysics Data System (ADS)
Szelepcsényi, Zoltán; Breuer, Hajnalka; Kis, Anna; Pongrácz, Rita; Sümegi, Pál
2018-01-01
In this paper, expected changes in the spatial and altitudinal distribution patterns of Holdridge life zone (HLZ) types are analysed to assess the possible ecological impacts of future climate change for the Carpathian Region, by using 11 bias-corrected regional climate model simulations of temperature and precipitation. The distribution patterns of HLZ types are characterized by the relative extent, the mean centre and the altitudinal range. According to the applied projections, the following conclusions can be drawn: (a) the altitudinal ranges are likely to expand in the future, (b) the lower and upper altitudinal limits as well as the altitudinal midpoints may move to higher altitudes, (c) a northward shift is expected for most HLZ types and (d) the magnitudes of these shifts can even be multiples of those observed in the last century. Related to the northward shifts, the HLZ types warm temperate thorn steppe and subtropical dry forest can also appear in the southern segment of the target area. However, a large uncertainty in the estimated changes of precipitation patterns was indicated by the following: (a) the expected change in the coverage of the HLZ type cool temperate steppe is extremely uncertain because there is no consensus among the projections even in terms of the sign of the change (high inter-model variability) and (b) a significant trend in the westward/eastward shift is simulated just for some HLZ types (high temporal variability). Finally, it is important to emphasize that the uncertainty of our results is further enhanced by the fact that some important aspects (e.g. seasonality of climate variables, direct CO2 effect, etc.) cannot be considered in the estimating process.
Frelich, Lee E; Peterson, Rolf O; Dovčiak, Martin; Reich, Peter B; Vucetich, John A; Eisenhauer, Nico
2012-11-05
As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems.
Effect of thermal tempering on strength and crack propagation behavior of feldspathic porcelains.
Anusavice, K J; Hojjatie, B
1991-06-01
The objective of this study was to test the hypothesis that tempering stress can retard the growth of surface cracks in layered porcelain discs with variable levels of contraction mismatch. Porcelain discs, 16 mm in diameter and 2 mm thick, were prepared with a 0.5-mm-thick layer of opaque porcelain (O) and a 1.5-mm-thick layer of body porcelain (B). The materials were selected to produce contraction coefficient differences, alpha O-alpha B, of +3.2, +0.7, -0.9, and -1.5 ppm/degrees C. Body porcelain discs with a thickness of 2 mm were used as the thermally compatible control specimens (delta alpha = 0). The discs were fired to the maturing temperature of body porcelain (982 degrees C) and were then subjected to three cooling procedures: slow cooling (SC) in a furnace, fast cooling (FC) in air, and tempering (T) by blasting the surface of the body porcelain with compressed and dried air for 90 s. The dimensions of cracks induced by a Vickers microhardness indenter under a load of 4.9 N were measured at baseline and six months after indentation at 80 points along diametral lines within the surface of body porcelain. In addition, biaxial flexure tests were performed to determine the influence of mismatch and tempering on flexure strength. The results of ANOVA indicate that crack dimensions were influenced significantly by the interaction of cooling rate and contraction mismatch (p less than 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
White, J. D.; Poulsen, C. J.; Montanez, I. P.; McElwain, J.; Wilson, J. P.; Hren, M. T.
2016-12-01
Variation in atmospheric CO2 concentration and presence or absence of polar ice sheets simulated for 310 mya using the GENESIS model show changes in terrestrial temperature, precipitation, and potential evapotranspiration at mid and lower latitudes. Classifying the data into Holdridge life zones for simulations with 280, 560, and 1120 ppm CO2, in the presence of a southern Gondwanan ice sheet resulted in progressive increase of cool temperate, humid-to-subhumid and tropical subhumid zones. Without the ice sheet, subtropical subhumid to semiarid zones expanded. Simulation results show that approximately 50% of the land area was classified as polar or tundra followed by 35 to 42%, depending on the scenario, classified as sub-tropical semiarid-to-subhumid. Only 5-8% were classified as temperate humid-to-subhumid or tropical humid-to-perhumid. Also, the absence of ice sheets reduced the moister sub-climates, such as within the tropical climate zone. Because different plant assemblages dominated each climate zone, for example cordaitaleans in the subtropical and medullosans and lycophytes in the tropics, physiological differences in these plants may have resulted in unequal CO2 exchange feedbacks to the atmosphere during climate shifts. Previous physiological modeling based on plant foliar traits indicates that late Paleozoic plant species differed in CO2 uptake capacity with highest sensitivity to water availability during periods with low atmospheric CO2 concentration. This implies that vegetation climate feedbacks during this period may have been non-uniform during climate change events. Inference of plant contribution to climate forcing must rely on understanding geographic distribution of affected vegetation, inherent vegetation physiological properties, and antecedent atmospheric CO2 concentrations. Our results indicate that seasonally dry climates prevailed in the low-latitude land area, and that slightly cooler temperatures than today must be considered. This study also shows that mechanistic modeling of paleoclimate should consider the spatial distribution of different plant species, the distribution of water availability for plants within climate zones, and the physiological attributes of species dominating paleolandscapes at specific geologic time periods.
Beyond arctic and alpine: the influence of winter climate on temperate ecosystems.
Ladwig, Laura M; Ratajczak, Zak R; Ocheltree, Troy W; Hafich, Katya A; Churchill, Amber C; Frey, Sarah J K; Fuss, Colin B; Kazanski, Clare E; Muñoz, Juan D; Petrie, Matthew D; Reinmann, Andrew B; Smith, Jane G
2016-02-01
Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.
Adamo, Shelley A; Baker, Jillian L; Lovett, Maggie M E; Wilson, Graham
2012-12-01
Climate change will result in warmer temperatures and an increase in the frequency and severity of extreme weather events. Given that higher temperatures increase the reproductive rate of temperate zone insects, insect population growth rates are predicted to increase in the temperate zone in response to climate. This consensus, however, rests on the assumption that food is freely available. However, under conditions of limited food, the reproductive output of the Texan cricket Gryllus texensis (Cade and Otte) was highest at its current normal average temperature and declined with increasing temperature. Moreover, low food availability decreased survival during a simulated heat wave. Therefore, the effects of climate change on this species, and possibly on many others, are likely to hinge on food availability. Extrapolation from our data suggests that G. texensis will show larger yearly fluctuations in population size as climate change continues, and this will also have ecological repercussions. Only those temperate zone insects with a ready supply of food (e.g., agricultural pests) are likely to experience the predicted increase in population growth in response to climate change; food-limited species are likely to experience a population decline.
NASA Astrophysics Data System (ADS)
Slee, Adrian; Shulmeister, James
2015-04-01
Much of the 'periglacial' literature is based on landforms and observations from either high mountains or continental environments dominated by strong winter cooling and/or permafrost conditions. Cryogenic conditions occur in many other settings and some of the most widespread are montane landscapes in mid- to low latitudes. In Australia observations of 'periglacial' landforms have traditionally been limited to higher elevation regions of the Australian Alps and central Tasmania. However, the distribution of relict cryogenic landforms is much wider and extends well into sub-tropical latitudes along the eastern highlands of Australia. Here we map the distribution of relict block deposits (block streams and block fields) of known cryogenic origin so as to delineate the limits of 'periglacial' climatic conditions during cold phases in the Late Quaternary. The mapping is based on image analyses supported by extensive and intensive ground truthing. Three distinct regimes are recognised - a high elevation winter wet regime (Mt Kosciuszko style); a temperate maritime westerly regime (Tasmania style) and, unexpectedly, an east coast (sub-tropical) regime (New England style). We utilise bio-climatic modelling to derive modern climate parameters from the distribution of the block deposits so as to map regions affected by cryogenic conditions in late Quaternary cold periods. We assumed that relative changes in mean cooling and precipitation would be shared by other mid-latitude climate locales worldwide and predicted the likely distribution of block deposits in these areas. A literature review confirms the presence of 'periglacial' style block deposits in the predicted regions, including part of the Iberian Peninsula, the Atlas and Drakensburg Mountains of Africa, the Mediterranean island of Sardinia, the higher volcanoes of Mexico and parts of China, all of which have mean annual precipitation similar to the New England area. However, we also note that many of these areas have winter wet (Mediterranean) climates and when seasonality of precipitation is included, winter dry New England becomes an anomaly. We conclude that in addition to significant cooling, winter moisture balance was more positive, in northern New South Wales during cooler climate periods.
Dynamic vegetation modeling of tropical biomes during Heinrich events
NASA Astrophysics Data System (ADS)
Handiani, Dian Noor; Paul, André; Dupont, Lydie M.
2010-05-01
Heinrich events are thought to be associated with a slowdown of the Atlantic Meridional Overturning Circulation (AMOC), which in turn would lead to a cooling of the North Atlantic Ocean and a warming of the South Atlantic Ocean (the "bipolar seesaw" hypothesis). The accompanying abrupt climate changes occurred not only in the ocean but also on the continents. Changes were strongest in the Northern Hemisphere but were registered in the tropics as well. Pollen data from Angola and Brazil showed that climate changes during Heinrich events affected vegetation patterns very differently in eastern South America and western Africa. To understand the differential response in the terrestrial tropics, we studied the vegetation changes during Heinrich events by using a dynamic global vegetation model (TRIFFID) as part of the University of Victoria (UVic) Earth System-Climate Model (ESCM). The model results show a bipolar seesaw pattern in temperature and precipitation during a near-collapse of the AMOC. The succession in plant-functional types (PFTs) showed changes from forest to shrubs to desert, including spreading desert in northwest Africa, retreating broadleaf trees in West Africa and northern South America, but advancing broadleaf trees in Brazil. The pattern is explained by a southward shift of the tropical rainbelt resulting in a strong decrease in precipitation over northwest and West Africa as well as in northern South America, but an increase in precipitation in eastern Brazil. To facilitate the comparison between modeled vegetation results with pollen data, we diagnosed the distribution of biomes from the PFT coverage and the simulated model climate. The biome distribution was computed for Heinrich event 1 and the Last Glacial Maximum as well as for pre-industrial conditions. We used a classification of biomes in terms of "mega-biomes", which were defined following a scheme originally proposed by BIOME 6000 (v 4.2). The biome distribution of the Sahel region changed from warm temperate forest during the last glacial maximum to the grassland and dry shrubland, suggesting a drier climate during Heinrich event 1. In south-western Africa savanna and dry woodland changed into boreal forest and boreal-temperate forest suggesting wetter conditions. The biomes diagnosed from the control-run, were compared to the modern vegetation reconstruction of BIOME 4 (http://www.bridge.bris.ac.uk/resources/Databases/BIOMES_data). Consistent biome patterns were simulated for the tropical forests of western and south-western Africa and the grasslands of northern Africa. On the other hand, in southern Europe, where the BIOME 4 vegetation reconstruction is dominated by warm temperate and temperate forest, our model shows a strong bias towards the grassland.
Koehler, Kari; Center, Alyson; Cavender-Bares, Jeannine
2012-02-01
• It has long been hypothesized that species are limited to the north by minimum temperature and to the south by competition, resulting in a trade-off between freezing tolerance and growth rate. We investigated the extent to which the climatic origins of populations from four live oak species (Quercus series Virentes) were associated with freezing tolerance and growth rate, and whether species fitted a model of locally adapted populations, each with narrow climatic tolerances, or of broadly adapted populations with wide climatic tolerances. • Acorns from populations of four species across a tropical-temperate gradient were grown under common tropical and temperate conditions. Growth rate, seed mass, and leaf and stem freezing traits were compared with source minimum temperatures. • Maximum growth rates under tropical conditions were negatively correlated with freezing tolerance under temperate conditions. The minimum source temperature predicted the freezing tolerance of populations under temperate conditions. The tropical species Q. oleoides was differentiated from the three temperate species, and variation among species was greater than among populations. • The trade-off between freezing tolerance and growth rate supports the range limit hypothesis. Limited variation within species indicates that the distributions of species may be driven more strongly by broad climatic factors than by highly local conditions. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes.
Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F
2015-07-01
The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h(-1) to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as -6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as -14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Biophysical effects on temperature and precipitation due to land cover change
NASA Astrophysics Data System (ADS)
Perugini, Lucia; Caporaso, Luca; Marconi, Sergio; Cescatti, Alessandro; Quesada, Benjamin; de Noblet-Ducoudré, Nathalie; House, Johanna I.; Arneth, Almut
2017-05-01
Anthropogenic land cover changes (LCC) affect regional and global climate through biophysical variations of the surface energy budget mediated by albedo, evapotranspiration, and roughness. This change in surface energy budget may exacerbate or counteract biogeochemical greenhouse gas effects of LCC, with a large body of emerging assessments being produced, sometimes apparently contradictory. We reviewed the existing scientific literature with the objective to provide an overview of the state-of-the-knowledge of the biophysical LCC climate effects, in support of the assessment of mitigation/adaptation land policies. Out of the published studies that were analyzed, 28 papers fulfilled the eligibility criteria, providing surface air temperature and/or precipitation change with respect to LCC regionally and/or globally. We provide a synthesis of the signal, magnitude and uncertainty of temperature and precipitation changes in response to LCC biophysical effects by climate region (boreal/temperate/tropical) and by key land cover transitions. Model results indicate that a modification of biophysical processes at the land surface has a strong regional climate effect, and non-negligible global impact on temperature. Simulations experiments of large-scale (i.e. complete) regional deforestation lead to a mean reduction in precipitation in all regions, while air surface temperature increases in the tropics and decreases in boreal regions. The net global climate effects of regional deforestation are less certain. There is an overall consensus in the model experiments that the average global biophysical climate response to complete global deforestation is atmospheric cooling and drying. Observed estimates of temperature change following deforestation indicate a smaller effect than model-based regional estimates in boreal regions, comparable results in the tropics, and contrasting results in temperate regions. Regional/local biophysical effects following LCC are important for local climate, water cycle, ecosystems, their productivity and biodiversity, and thus important to consider in the formulation of adaptation policy. However before considering the inclusion of biophysical climate effects of LCC under the UNFCCC, science has to provide robust tools and methods for estimation of both country and global level effects.
Climate-driven regime shift of a temperate marine ecosystem.
Wernberg, Thomas; Bennett, Scott; Babcock, Russell C; de Bettignies, Thibaut; Cure, Katherine; Depczynski, Martial; Dufois, Francois; Fromont, Jane; Fulton, Christopher J; Hovey, Renae K; Harvey, Euan S; Holmes, Thomas H; Kendrick, Gary A; Radford, Ben; Santana-Garcon, Julia; Saunders, Benjamin J; Smale, Dan A; Thomsen, Mads S; Tuckett, Chenae A; Tuya, Fernando; Vanderklift, Mathew A; Wilson, Shaun
2016-07-08
Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests. Copyright © 2016, American Association for the Advancement of Science.
Cool episodes in Early Tertiary Arctic climate: Evidence from Svalbard
NASA Astrophysics Data System (ADS)
Spielhagen, R. F.; Tripati, A.
2009-04-01
The Arctic is a climatically sensitive and important region. However, very little is known about the climatic and oceanographic evolution of the area, particularly prior to the Neogene. Until recently, the Arctic was assumed to be characterized by relatively warm conditions during the early Cenozoic. The Early Tertiary sedimentary sequence on Svalbard contains several layers with coal seams and broad-leaved plants which were commonly accepted as indicators of a generally temperate-warm climate. Here we report on the intermittent occurrence of certain temperature indicators in the succession, which may represent the first northern high-latitude record of near-freezing temperatures for the early Cenozoic. Besides the findings of probably ice-rafted erratic clasts in the Paleocene and Eocene sandstones and shales, we note especially the occurrence of glendonites which are pseudomorphs of calcite after ikaite (calcium carbonate hexahydrate). We measured the chemical composition of Svalbard glendonites which is almost identical to that of similar pseudomorphs from the Lower Cretaceaous of Northern Canada. Mass spectrometric analyses of the glendonite calcite gave very low carbon isotope values. These values suggest a provenance of the calcium carbonate from marine organic carbon and connect our glendonites to the precursor mineral ikaite which has similar low values. Since a variety of studies has demonstrated that ikaite is stable only at temperatures close to freezing point, we have to infer low temperatures also for the deepositional environment of which the sediments were deposited that now hold glendonites. These results imply the occurrence of cooling phases episodically during the warm background climate of the Paleocene and Eocene, suggesting that temperature variability was much greater than previously recognized.
Evidence From Svalbard for Cool Episodes in Early Tertiary Arctic Climate
NASA Astrophysics Data System (ADS)
Spielhagen, R. F.; Tripati, A.; Mac Niocaill, C.
2008-12-01
The Arctic is a climatically sensitive and important region. However, very little is known about the climatic and oceanographic evolution of the area, particularly prior to the Neogene. Until recently, the Arctic was assumed to be characterized by relatively warm conditions during the early Cenozoic. The Early Tertiary sedimentary sequence on Svalbard contains several layers with coal seams and broad-leaved plants which were commonly accepted as indicators of a generally temperate-warm climate. Here we report on the intermittent occurrence of certain temperature indicators in the succession, which may represent the first northern high- latitude record of near-freezing temperatures for the early Cenozoic. Besides the findings of probably ice- rafted erratic clasts in the Paleocene and Eocene sandstones and shales, we note especially the occurrence of glendonites which are pseudomorphs of calcite after ikaite (calcium carbonate hexahydrate). Stratigraphic control for the most important glendonite layers was improved by paleomagnetic investigations on the host sediment. We measured the chemical composition of Svalbard glendonites which is almost identical to that of similar pseudomorphs from the Lower Cretaceaous of Northern Canada. Mass spectrometric analyses of the glendonite calcite gave very low carbon isotope values. These values suggest a provenance of the calcium carbonate from marine organic carbon and connect our glendonites to the precursor mineral ikaite which has similar low values. Since a variety of studies has demonstrated that ikaite is stable only at temperatures close to freezing point, we have to infer low temperatures also for the deepositional environment of which the sediments were deposited that now hold glendonites. These results imply the occurrence of cooling phases episodically during the warm background climate of the Paleocene and Eocene, suggesting that temperature variability was much greater than previously recognized.
Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits
NASA Astrophysics Data System (ADS)
Smith, Abigail M.; Nelson, Campbell S.
2003-10-01
Cool-water shelf carbonates differ from tropical carbonates in their sources, modes, and rates of deposition, geochemistry, and diagenesis. Inorganic precipitation, marine cementation, and sediment accumulation rates are absent or slow in cool waters, so that temperate carbonates remain longer at or near the sea bed. Early sea-floor processes, occurring between biogenic calcification and ultimate deposition, thus take on an important role, and there is the potential for considerable taphonomic loss of skeletal information into the fossilised record of cool-water carbonate deposits. The physical breakdown processes of dissociation, breakage, and abrasion are mediated mainly by hydraulic regime, and are always destructive. Impact damage reduces the size of grains, removes structure and therefore information, and ultimately may transform skeletal material into anonymous particles. Abrasion is highly selective amongst and within taxa, their skeletal form and structure strongly influencing resistance to mechanical breakdown. Dissolution and precipitation are the end-members of a two-way chemical equilibrium operating in sea water. In cool waters, inorganic precipitation is rare. There is conflicting opinion about the importance of diagenetic dissolution of carbonate skeletons on the temperate sea floor, but test maceration and early loss of aragonite in particular are reported. Dissolution may relate to undersaturated acidic pore waters generated locally by a combination of microbial metabolisation of organic matter, strong bioturbation, and oxidation of solid phase sulphides immediately beneath the sea floor in otherwise very slowly accumulating skeletal deposits. Laboratory experiments demonstrate that surface-to-volume ratio and skeletal mineralogy are both important in determining skeletal resistance to dissolution. Biological processes on the sea floor include encrustation and bioerosion. Encrustation, a constructive process, may be periodic or seasonal, and can be reversed. It produces both information and material. Bioerosion, in contrast, is destructive and permanent. In temperate areas bioerosion may destroy even very large shells during their long residence at the sea floor, on the order of hundreds to thousands of years. Overall, processes on the temperate sea floor may combine to destroy more carbonate than they produce, and the preservation potential of temperate shelf carbonate into the rock record may be significantly affected. Where preservation does occur in such a destructive regime, the effects of early sea-floor processes will be key determinants of the deposit, resulting in a "taphofacies" characteristic of temperate shelf carbonate sediments.
Terrestrial biosphere changes over the last 120 kyr
NASA Astrophysics Data System (ADS)
Hoogakker, B. A. A.; Smith, R. S.; Singarayer, J. S.; Marchant, R.; Prentice, I. C.; Allen, J. R. M.; Anderson, R. S.; Bhagwat, S. A.; Behling, H.; Borisova, O.; Bush, M.; Correa-Metrio, A.; de Vernal, A.; Finch, J. M.; Fréchette, B.; Lozano-Garcia, S.; Gosling, W. D.; Granoszewski, W.; Grimm, E. C.; Grüger, E.; Hanselman, J.; Harrison, S. P.; Hill, T. R.; Huntley, B.; Jiménez-Moreno, G.; Kershaw, P.; Ledru, M.-P.; Magri, D.; McKenzie, M.; Müller, U.; Nakagawa, T.; Novenko, E.; Penny, D.; Sadori, L.; Scott, L.; Stevenson, J.; Valdes, P. J.; Vandergoes, M.; Velichko, A.; Whitlock, C.; Tzedakis, C.
2016-01-01
A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with simulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial-interglacial cycle. Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those inferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large-scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are reflected in BIOME4 simulations of global net primary productivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composition of seawater as terrestrial carbon is depleted in 13C.
Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.
2014-01-01
Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065
Penguin heat-retention structures evolved in a greenhouse Earth
Thomas, Daniel B.; Ksepka, Daniel T.; Fordyce, R. Ewan
2011-01-01
Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a ‘Greenhouse Earth’ interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets. PMID:21177693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, T.Y.; Ahmad, Z.
The hydrologic impact or sensitivities of three medium-sized catchments to global warming, one of tropical climate in Northern Thailand and two of temperate climate in the Sacramento and San Joaquin River basins of California, were investigated.
Modelling the Response of Energy, Water and CO2 Fluxes Over Forests to Climate Variability
NASA Astrophysics Data System (ADS)
Ju, W.; Chen, J.; Liu, J.; Chen, B.
2004-05-01
Understanding the response of energy, water and CO2 fluxes of terrestrial ecosystems to climate variability at various temporal scales is of interest to climate change research. To simulate carbon (C) and water dynamics and their interactions at the continental scale with high temporal and spatial resolutions, the remote sensing driven BEPS (Boreal Ecosystem Productivity Simulator) model was updated to couple with the soil model of CENTURY and a newly developed biophysical model. This coupled model separates the whole canopy into two layers. For the top layer, the leaf-level conductance is scaled up to canopy level using a sunlit and shaded leaf separation approach. Fluxes of water, and CO{2} are simulated as the sums of those from sunlit and shaded leaves separately. This new approach allows for close coupling in modeling these fluxes. The whole profile of soil under a seasonal snowpack is split into four layers for estimating soil moisture and temperature. Long-term means of the vegetation productivity and climate are employed to initialize the carbon pools for the computation of heterotrophic respiration. Validated against tower data at four forested sites, this model is able to describe these fluxes and their response to climate variability. The model captures over 55% of year-round half/one hourly variances of these fluxes. The highest agreement of model results with tower data was achieved for CO2 flux at Southern Old Aspen (SOA) (R2>0.85 and RMSE<2.37 μ mol C m-2 s-1, N=17520). However, the model slightly overestimates the diurnal amplitude of sensible heat flux in winter and sometimes underestimates that of CO2 flux in the growing season. Model simulations suggest that C uptakes of forests are controlled by climate variability and the response of C cycle to climate depends on forest type. For SOA, the annual NPP (Net Primary Productivity) is more sensitive to temperature than to precipitation. This forest usually has higher NPP in warm years than in cool years. Interannual variability of heterotrophic respiration, however, is strongly related to precipitation. The soil releases more CO2 in wet years than in dry years. Warm and relatively dry climate enhances the C uptake in this forest stand. Compared with SOA, a temperate deciduous forest in the southern part of the temperate deciduous forest biome in eastern United States responds to climate variability differently. High temperature and low precipitation in the growing season reduces NPP and consequently NEP (Net Ecosystem Productivity). In warm years, the Southern Old Jack Pine forest uptakes less C than in cool years. The modeled heterotrophic respiration and NEP are very sensitive to soil moisture and the empirical equation used to describe the effect of soil moisture on decomposition. This suggests that hydrological modelling is critical in C budget estimation. Next step, this model will be validated against more tower data and used for upscaling from site to region.
Radiation budget changes with dry forest clearing in temperate Argentina.
Houspanossian, Javier; Nosetto, Marcelo; Jobbágy, Esteban G
2013-04-01
Land cover changes may affect climate and the energy balance of the Earth through their influence on the greenhouse gas composition of the atmosphere (biogeochemical effects) but also through shifts in the physical properties of the land surface (biophysical effects). We explored how the radiation budget changes following the replacement of temperate dry forests by crops in central semiarid Argentina and quantified the biophysical radiative forcing of this transformation. For this purpose, we computed the albedo and surface temperature for a 7-year period (2003-2009) from MODIS imagery at 70 paired sites occupied by native forests and crops and calculated the radiation budget at the tropopause and surface levels using a columnar radiation model parameterized with satellite data. Mean annual black-sky albedo and diurnal surface temperature were 50% and 2.5 °C higher in croplands than in dry forests. These contrasts increased the outgoing shortwave energy flux at the top of the atmosphere in croplands by a quarter (58.4 vs. 45.9 W m(-2) ) which, together with a slight increase in the outgoing longwave flux, yielded a net cooling of -14 W m(-2) . This biophysical cooling effect would be equivalent to a reduction in atmospheric CO2 of 22 Mg C ha(-1) , which involves approximately a quarter to a half of the typical carbon emissions that accompany deforestation in these ecosystems. We showed that the replacement of dry forests by crops in central Argentina has strong biophysical effects on the energy budget which could counterbalance the biogeochemical effects of deforestation. Underestimating or ignoring these biophysical consequences of land-use changes on climate will certainly curtail the effectiveness of many warming mitigation actions, particularly in semiarid regions where high radiation load and smaller active carbon pools would increase the relative importance of biophysical forcing. © 2012 Blackwell Publishing Ltd.
Mark A Friedl; Josh M Gray; Eli K Melaas; Andrew D Richardson; Koen Hufkens; Trevor F Keenan; Amey Bailey; John O' Keefe
2014-01-01
By the end of this century, mean annual temperatures in the Northeastern United States are expected to warm by 3-5 °C, which will have significant impacts on the structure and function of temperate forests in this region. To improve understanding of these impacts, we exploited two recent climate anomalies to explore how the springtime phenology of Northeastern...
Guzman-Novoa, Ernesto; Md. Hamiduzzaman, Mollah; Espinosa-Montaño, Laura G.; Correa-Benítez, Adriana
2016-01-01
The prevalence and loads of deformed wing virus (DWV) between honey bee (Apis mellifera L.) colonies from a tropical and a temperate environment were compared. The interaction between these environments and the mite Varroa destructor in relation to DWV prevalence, levels, and overt infections, was also analyzed. V. destructor rates were determined, and samples of mites, adult bees, brood parasitized with varroa mites and brood not infested by mites were analyzed. DWV was detected in 100% of the mites and its prevalence and loads in honey bees were significantly higher in colonies from the temperate climate than in colonies from the tropical climate. Significant interactions were found between climate and type of sample, with the highest levels of DWV found in varroa-parasitized brood from temperate climate colonies. Additionally, overt infections were observed only in the temperate climate. Varroa parasitism and DWV loads in bees from colonies with overt infections were significantly higher than in bees from colonies with covert infections. These results suggest that interactions between climate, V. destructor, and possibly other factors, may play a significant role in the prevalence and levels of DWV in honey bee colonies, as well as in the development of overt infections. Several hypotheses are discussed to explain these results. PMID:27252482
Caldwell, Joanne N; van den Heuvel, Anne M J; Kerry, Pete; Clark, Mitchell J; Peoples, Gregory E; Taylor, Nigel A S
2018-04-01
What is the central question of this study? Does the cold-water immersion (14°C) of profoundly hyperthermic individuals induce reductions in cutaneous and limb blood flow of sufficient magnitude to impair heat loss relative to the size of the thermal gradient? What is the main finding and its importance? The temperate-water cooling (26°C) of profoundly hyperthermic individuals was found to be rapid and reproducible. A vascular mechanism accounted for that outcome, with temperature-dependent differences in cutaneous and limb blood flows observed during cooling. Decisions relating to cooling strategies must be based upon deep-body temperature measurements that have response dynamics consistent with the urgency for cooling. Physiologically trivial time differences for cooling the intrathoracic viscera of hyperthermic individuals have been reported between cold- and temperate-water immersion treatments. One explanation for that observation is reduced convective heat delivery to the skin during cold immersion, and this study was designed to test both the validity of that observation, and its underlying hypothesis. Eight healthy men participated in four head-out water immersions: two when normothermic, and two after exercise-induced, moderate-to-profound hyperthermia. Two water temperatures were used within each thermal state: temperate (26°C) and cold (14°C). Tissue temperatures were measured at three deep-body sites (oesophagus, auditory canal and rectum) and eight skin surfaces, with cutaneous vascular responses simultaneously evaluated from both forearms (laser-Doppler flowmetry and venous-occlusion plethysmography). During the cold immersion of normothermic individuals, oesophageal temperature decreased relative to baseline (-0.31°C over 20 min; P < 0.05), whilst rectal temperature increased (0.20°C; P < 0.05). When rendered hyperthermic, oesophageal (-0.75°C) and rectal temperatures decreased (-0.05°C) during the transition period (<8.5 min, mostly in air at 22°C), with the former dropping to 37.5°C only 54 s faster when immersed in cold rather than in temperate water (P < 0.05). Minimal cutaneous vasoconstriction occurred during either normothermic immersion, whereas pronounced constriction was evident during both immersions when subjects were hyperthermic, with the colder water eliciting a greater vascular response (P < 0.05). It was concluded that the rapid intrathoracic cooling of asymptomatic, hyperthermic individuals in temperate water was a reproducible phenomenon, with slower than expected cooling in cold water brought about by stronger cutaneous vasoconstriction that reduced convective heat delivery to the periphery. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.
Schwarzhans, Werner; Mörs, Thomas; Engelbrecht, Andrea; Reguero, Marcelo; Kriwet, Jürgen
2017-01-01
The first record of fossil teleostean otoliths from Antarctica is reported. The fossils were obtained from late Early Eocene shell beds of the La Meseta Formation, Seymour Island that represent the last temperate marine climate phase in Antarctica prior to the onset of cooling and subsequent glaciation during the late Eocene. A total of 17 otolith-based teleost taxa are recognized, with 10 being identifiable to species level containing nine new species and one new genus: Argentina antarctica sp. nov., Diaphus? marambionis sp. nov., Macruronus eastmani sp. nov., Coelorinchus balushkini sp. nov., Coelorinchus nordenskjoeldi sp. nov., Palimphemus seymourensis sp. nov., Hoplobrotula? antipoda sp. nov., Notoberyx cionei gen. et sp. nov. and Cepola anderssoni sp. nov. Macruronus eastmani sp. nov. is also known from the late Eocene of Southern Australia, and Tripterophycis immutatus Schwarzhans, widespread in the southern oceans during the Eocene, has been recorded from New Zealand, southern Australia, and now Antarctica. The otolith assemblage shows a typical composition of temperate fishes dominated by gadiforms, very similar at genus and family levels to associations known from middle Eocene strata of New Zealand and the late Eocene of southern Australia, but also to the temperate Northern Hemisphere associations from the Paleocene of Denmark. The Seymour Island fauna bridges a gap in the record of global temperate marine teleost faunas during the early Eocene climate maximum. The dominant gadiforms are interpreted as the main temperate faunal component, as in the Paleocene of Denmark. Here they are represented by the families Moridae, Merlucciidae (Macruroninae), Macrouridae and Gadidae. Nowadays Gadidae are a chiefly Northern Hemisphere temperate family. Moridae, Macruroninae and Macrouridae live today on the lower shelf to deep-water or mesopelagically with Macruroninae being restricted to the Southern Ocean. The extant endemic Antarctic gadiform family Muraenolepididae is missing, as are the dominant modern Antarctic fishes of the perciform suborder Notothenioidei. Recently, there has been much debate on isolated jaw bones of teleost fishes found in the La Meseta Formation and whether they would represent gadiforms (Merlucciidae in this case) or some early, primitive notothenioid. Otoliths are known to often complement rather than duplicate skeletal finds. With this in mind, we conclude that our otolith data support the presence of gadiforms in the early Eocene of Antarctica while it does not rule out the presence of notothenioids at the same time. http://zoobank.org/urn:lsid:zoobank.org:pub:A30E5364-0003-4467-B902-43A41AD456CC PMID:28077930
Schwarzhans, Werner; Mörs, Thomas; Engelbrecht, Andrea; Reguero, Marcelo; Kriwet, Jürgen
2017-01-01
The first record of fossil teleostean otoliths from Antarctica is reported. The fossils were obtained from late Early Eocene shell beds of the La Meseta Formation, Seymour Island that represent the last temperate marine climate phase in Antarctica prior to the onset of cooling and subsequent glaciation during the late Eocene. A total of 17 otolith-based teleost taxa are recognized, with 10 being identifiable to species level containing nine new species and one new genus: Argentina antarctica sp. nov., Diaphus? marambionis sp. nov., Macruronus eastmani sp. nov., Coelorinchus balushkini sp. nov., Coelorinchus nordenskjoeldi sp. nov., Palimphemus seymourensis sp. nov., Hoplobrotula? antipoda sp. nov., Notoberyx cionei gen. et sp. nov. and Cepola anderssoni sp. nov. Macruronus eastmani sp. nov. is also known from the late Eocene of Southern Australia, and Tripterophycis immutatus Schwarzhans, widespread in the southern oceans during the Eocene, has been recorded from New Zealand, southern Australia, and now Antarctica. The otolith assemblage shows a typical composition of temperate fishes dominated by gadiforms, very similar at genus and family levels to associations known from middle Eocene strata of New Zealand and the late Eocene of southern Australia, but also to the temperate Northern Hemisphere associations from the Paleocene of Denmark. The Seymour Island fauna bridges a gap in the record of global temperate marine teleost faunas during the early Eocene climate maximum. The dominant gadiforms are interpreted as the main temperate faunal component, as in the Paleocene of Denmark. Here they are represented by the families Moridae, Merlucciidae (Macruroninae), Macrouridae and Gadidae. Nowadays Gadidae are a chiefly Northern Hemisphere temperate family. Moridae, Macruroninae and Macrouridae live today on the lower shelf to deep-water or mesopelagically with Macruroninae being restricted to the Southern Ocean. The extant endemic Antarctic gadiform family Muraenolepididae is missing, as are the dominant modern Antarctic fishes of the perciform suborder Notothenioidei. Recently, there has been much debate on isolated jaw bones of teleost fishes found in the La Meseta Formation and whether they would represent gadiforms (Merlucciidae in this case) or some early, primitive notothenioid. Otoliths are known to often complement rather than duplicate skeletal finds. With this in mind, we conclude that our otolith data support the presence of gadiforms in the early Eocene of Antarctica while it does not rule out the presence of notothenioids at the same time. http://zoobank.org/urn:lsid:zoobank.org:pub:A30E5364-0003-4467-B902-43A41AD456CC.
Plasmodium vivax malaria: a re-emerging threat for temperate climate zones?
Petersen, Eskild; Severini, Carlo; Picot, Stephane
2013-01-01
Plasmodium vivax was endemic in temperate areas in historic times up to the middle of last century. Temperate climate P. vivax has a long incubation time of up to 8-10 months, which partly explain how it can be endemic in temperate areas with a could winter. P. vivax disappeared from Europe within the last 40-60 years, and this change was not related to climatic changes. The surge of P. vivax in Northern Europe after the second world war was related to displacement of refugees and large movement of military personnel exposed to malaria. Lately P. vivax has been seen along the demilitarized zone in South Korea replication a high endemicity in North Korea. The potential of transmission of P. vivax still exist in temperate zones, but reintroduction in a larger scale of P. vivax to areas without present transmission require large population movements of P. vivax infected people. The highest threat at present is refugees from P. vivax endemic North Korea entering China and South Korea in large numbers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Miller, Benjamin L; Arntzen, Evan V; Goldman, Amy E; Richmond, Marshall C
2017-10-01
The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.
NASA Astrophysics Data System (ADS)
Miller, Benjamin L.; Arntzen, Evan V.; Goldman, Amy E.; Richmond, Marshall C.
2017-10-01
The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Sihang; Zhang, Yuguang; Cong, Jing
Global warming has shifted climate zones poleward or upward. Furthermore, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate). Although plant species richness decreased with latitudes, the microbial taxonomic α-diversity increased with latitudes, concomitant with increases in soil total and available nitrogen and phosphorus contents. Phylogenetic NRImore » (Net Relatedness Index) values increased from 0.718 in temperate zone (WLM) to 1.042 in subtropical zone (SNJ), showing a shift from over dispersion to clustering likely caused by environmental filtering such as low pH and nutrients. Similarly, taxonomybased association networks of subtropical forest samples were larger and tighter, suggesting clustering. In contrast, functional α-diversity was similar among three forests, but functional gene networks of the FNM forest significantly (P < 0.050) differed from the others. A significant correlation (R = 0.616, P < 0.001) between taxonomic and functional β-diversity was observed only in the FNM forest, suggesting low functional redundancy at the border of climate zones. Using a strategy of space-fortime substitution, we predict that poleward climate range shift will lead to decreased microbial taxonomic α-diversities in broadleaved forest.« less
Carbon sequestration in managed temperate coniferous forests under climate change
NASA Astrophysics Data System (ADS)
Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.
2016-03-01
Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.
Yang, Sihang; Zhang, Yuguang; Cong, Jing; ...
2017-02-10
Global warming has shifted climate zones poleward or upward. Furthermore, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate). Although plant species richness decreased with latitudes, the microbial taxonomic α-diversity increased with latitudes, concomitant with increases in soil total and available nitrogen and phosphorus contents. Phylogenetic NRImore » (Net Relatedness Index) values increased from 0.718 in temperate zone (WLM) to 1.042 in subtropical zone (SNJ), showing a shift from over dispersion to clustering likely caused by environmental filtering such as low pH and nutrients. Similarly, taxonomybased association networks of subtropical forest samples were larger and tighter, suggesting clustering. In contrast, functional α-diversity was similar among three forests, but functional gene networks of the FNM forest significantly (P < 0.050) differed from the others. A significant correlation (R = 0.616, P < 0.001) between taxonomic and functional β-diversity was observed only in the FNM forest, suggesting low functional redundancy at the border of climate zones. Using a strategy of space-fortime substitution, we predict that poleward climate range shift will lead to decreased microbial taxonomic α-diversities in broadleaved forest.« less
Method for heating, forming and tempering a glass sheet
Boaz, Premakaran Tucker; Sitzman, Gary W.
1998-01-01
A method for heating, forming and tempering a glass sheet including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet.
Vergés, Adriana; Steinberg, Peter D; Hay, Mark E; Poore, Alistair G B; Campbell, Alexandra H; Ballesteros, Enric; Heck, Kenneth L; Booth, David J; Coleman, Melinda A; Feary, David A; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M; Mizerek, Toni; Mumby, Peter J; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K
2014-08-22
Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Russo, E.; Mauri, A.; Davis, B. A. S.; Cubasch, U.
2017-12-01
The evolution of the Mediterranean region's climate during the Holocene has been the subject of long-standing debate within the paleoclimate community. Conflicting hypotheses have emerged from the analysis of different climate reconstructions based on proxy records and climate models outputs.In particular, pollen-based reconstructions of cooler summer temperatures during the Holocene have been criticized based on a hypothesis that the Mediterranean vegetation is mainly limited by effective precipitation and not summer temperature. This criticism is important because climate models show warmer summer temperatures during the Holocene over the Mediterranean region, in direct contradiction of the pollen-based evidence. Here we investigate this problem using a high resolution model simulation of the climate of the Mediterranean region during the mid-to-late Holocene, which we compare against pollen-based reconstructions using two different approaches.In the first, we compare the simulated climate from the model directly with the climate derived from the pollen data. In the second, we compare the simulated vegetation from the model directly with the vegetation from the pollen data.Results show that the climate model is unable to simulate neither the climate nor the vegetation shown by the pollen-data. The pollen data indicates an expansion in cool temperate vegetation in the mid-Holocene while the model suggests an expansion in warm arid vegetation. This suggests that the data-model discrepancy is more likely the result of bias in climate models, and not bias in the pollen-climate calibration transfer-function.
NASA Astrophysics Data System (ADS)
Stoy, P. C.; Katul, G. G.; Juang, J.; Siqueira, M. B.; Novick, K. A.; Essery, R.; Dore, S.; Kolb, T. E.; Montes-Helu, M. C.; Scott, R. L.
2010-12-01
Vegetation is an important control on the surface energy balance and thereby surface temperature. Boreal forests and arctic shrubs are thought to warm the land surface by absorbing more radiation than the vegetation they replace. The surface temperatures of tropical forests tend to be cooler than deforested landscapes due to enhanced evapotranspiration. The effects of reforestation on surface temperature change in the temperate zone is less-certain, but recent modeling efforts suggest forests have a global warming effect. We quantified the mechanisms driving radiometric surface changes following landcover changes using paired ecosystem case studies from the Ameriflux database with energy balance models of varying complexity. Results confirm previous findings that deciduous and coniferous forests in the southeastern U.S. are ca. 1 °C cooler than an adjacent field on an annual basis because aerodynamic/ecophysiological cooling of 2-3 °C outweighs an albedo-related warming of <1 °C. A 50-70% reduction in the aerodynamic resistance to sensible and latent heat exchange in the forests dominated the cooling effect. A grassland ecosystem that succeeded a stand-replacing ponderosa pine fire was ca. 1 °C warmer than unburned stands because a 1.5 °C aerodynamic warming offset a slight surface cooling due to greater albedo and soil heat flux. An ecosystem dominated by mesquite shrub encroachment was nearly 2 °C warmer than a native grassland ecosystem as aerodynamic and albedo-related warming outweighed a small cooling effect due to changes in soil heat flux. The forested ecosystems in these case studies are documented to have higher carbon uptake than the non-forested systems. Results suggest that temperate forests tend to cool the land surface and suggest that previous model-based findings that forests warm the Earth’s surface globally should be reconsidered.Changes to radiometric surface temperature (K) following changes in vegetation using paired ecosystem case studies C4 grassland and shrub ecosystem surface temperatures were adjusted for differences in air temperature across sites.
Method for heating, forming and tempering a glass sheet
Boaz, P.T.; Sitzman, G.W.
1998-10-27
A method for heating, forming and tempering a glass sheet is disclosed including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet. 2 figs.
Fire season and intensity affect shrub recruitment in temperate sclerophyllous woodlands.
Knox, K J E; Clarke, P J
2006-10-01
The season in which a fire occurs may regulate plant seedling recruitment because of: (1) the interaction of season and intensity of fire and the temperature requirements for seed release, germination and growth; (2) post-fire rainfall and temperature patterns affecting germination; (3) the interaction of post-fire germination conditions and competition from surrounding vegetation; and (4) the interaction of post-fire germination conditions and seed predators and/or seedling herbivores. This study examined the effects of different fire intensities and fire seasons on the emergence and survival of shrubs representing a range of fire response syndromes from a summer rainfall cool climate region. Replicated experimental burns were conducted in two seasons (spring and autumn) in 2 consecutive years and fuel loads were increased to examine the effects of fire intensity (low intensity and moderate intensity). Post-fire watering treatments partitioned the effects of seasonal temperature from soil moisture. Higher intensity fires resulted in enhanced seedling emergence for hard-seeded species but rarely influenced survival. Spring fires enhanced seedling emergence across all functional groups. Reduced autumn recruitment was related to seasonal temperature inhibiting germination rather than a lack of soil moisture or competition. In Mediterranean-type climate regions, seedling emergence has been related to post-fire rainfall and exposure of seeds to seed predators. We think a similar model may operate in temperate summer rainfall regions where cold-induced dormancy over winter exposes seeds to predators for a longer time and subsequently results in recruitment failure. Our results support the theory that the effect of fire season is more predictable where there are strong seasonal patterns in climate. In this study seasonal temperature rather than rainfall appears to be more influential.
Climate signals derived from cell anatomy of Scots pine in NE Germany.
Liang, Wei; Heinrich, Ingo; Simard, Sonia; Helle, Gerhard; Liñán, Isabel Dorado; Heinken, Thilo
2013-08-01
Tree-ring chronologies of Pinus sylvestris L. from latitudinal and altitudinal limits of the species distribution have been widely used for climate reconstructions, but there are many sites within the temperate climate zone, as is the case in northeastern Germany, at which there is little evidence of a clear climate signal in the chronologies. In this study, we developed long chronologies of several cell structure variables (e.g., average lumen area and cell wall thickness) from P. sylvestris growing in northeastern Germany and investigated the influence of climate on ring widths and cell structure variables. We found significant correlations between cell structure variables and temperature, and between tree-ring width and relative humidity and vapor pressure, respectively, enabling the development of robust reconstructions from temperate sites that have not yet been realized. Moreover, it has been shown that it may not be necessary to detrend chronologies of cell structure variables and thus low-frequency climate signals may be retrieved from longer cell structure chronologies. The relatively extensive resource of archaeological material of P. sylvestris covering approximately the last millennium may now be useful for climate reconstructions in northeastern Germany and other sites in the temperate climate zone.
Anguiano-Baez, Ricardo; Guzman-Novoa, Ernesto; Md Hamiduzzaman, Mollah; Espinosa-Montaño, Laura G; Correa-Benítez, Adriana
2016-01-01
The prevalence and loads of deformed wing virus (DWV) between honey bee (Apis mellifera L.) colonies from a tropical and a temperate environment were compared. The interaction between these environments and the mite Varroa destructor in relation to DWV prevalence, levels, and overt infections, was also analyzed. V. destructor rates were determined, and samples of mites, adult bees, brood parasitized with varroa mites and brood not infested by mites were analyzed. DWV was detected in 100% of the mites and its prevalence and loads in honey bees were significantly higher in colonies from the temperate climate than in colonies from the tropical climate. Significant interactions were found between climate and type of sample, with the highest levels of DWV found in varroa-parasitized brood from temperate climate colonies. Additionally, overt infections were observed only in the temperate climate. Varroa parasitism and DWV loads in bees from colonies with overt infections were significantly higher than in bees from colonies with covert infections. These results suggest that interactions between climate, V. destructor, and possibly other factors, may play a significant role in the prevalence and levels of DWV in honey bee colonies, as well as in the development of overt infections. Several hypotheses are discussed to explain these results. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.
Short-term climate changes in the Holsteinian Interglacial - EGU2012-132
NASA Astrophysics Data System (ADS)
Nitychoruk, J.; Bińka, K.; Ruppert, H.; Tudryn, A.
2012-04-01
Oxygen and carbon stable isotopes from fossil lake sediments of the Holsteinian age (eastern Poland) give evidence for the abrupt climate shifts in this interglacial that coincide with the changes in vegetation inferred from palaeobotanical data. Especially changes of the stable isotope ratios as well as decrease in the carbonate content in the deposits and increase in silicate redeposited from the area around the lake are synchronous with the short-term climatic deteriorations within the interglacial pollen flora. Two distinct climate shifts are recorded in the Holsteinian. The first one is marked by the very characteristic pine-birch cold phase after the yew (Taxus) domination that is reported from numerous pollen diagrams from Central Europe. This distinct cooling resembles a phenomenon known as 8.2 ka event in the Holocene, when waters of the Agassiz Lake in North America drained into the Atlantic Ocean (Koutsodendris et al. 2010). Enormous volumes of freshwater from melting of the Laurentian ice-sheet caused disturbances in the Gulf Stream and as a result some decrease in regional temperatures. The second distinct cooling of a lower rank took place within the younger part of the climatic optimum of the Holsteinian. It is relatively less known, because most often pollen records lack sufficient temporal resolution needed to identify this event. A well documented cooling in the Holsteinian deposits from Dethlingen, northern Germany (Koutsodendris et al. 2010) and from the Ossówka, eastern Poland (Nitychoruk et al. 2005) are exceptional. In the sequence from Dethlingen, a distinct increase in the percentage of pioneer trees is accompanied by a lower content of temperate taxa. At Ossówka, the shift of climate is noted as the rise of ratio of oxygen and carbon isotopes. According to Nitychoruk (2000) the cold event is coincident with volcanic eruptions evidenced by volcanic ash found in the lake deposits at that time. Literature Koutsodendris, A., Müller, U.C., Pross, J., Brauer, A., Kotthoff, U., Lotter, A.F. 2010. Vegetation dynamics and climate variability during the Holsteinian interglacial based on a pollen record from Dethlingen (northern Germany). Quaternary Science Reviews, 29, 3298-3307. Nitychoruk, J. 2000. Climate reconstruction from stable-isotope composition of the Mazovian Interglacial (Holsteinian) lake sediments in eastern Poland. Acta Geologica Polonica, 50, 247-294. Nitychoruk, J., Bińka, K., Hoefs, J., Ruppert, H. & Schneider, J. 2005. Climate reconstruction for the Holsteinian Interglacial in Eastern Poland and its comparison with isotopic data from Marine Isotope Stage 11. Quaternary Science Reviews, 24, 631-644.
Wood, Sam W.; Prior, Lynda D.; Stephens, Helen C.; Bowman, David M. J. S.
2015-01-01
Tracking the response of forest ecosystems to climate change demands large (≥1 ha) monitoring plots that are repeatedly measured over long time frames and arranged across macro-ecological gradients. Continental scale networks of permanent forest plots have identified links between climate and carbon fluxes by monitoring trends in tree growth, mortality and recruitment. The relationship between tree growth and climate in Australia has been recently articulated through analysis of data from smaller forest plots, but conclusions were limited by (a) absence of data on recruitment and mortality, (b) exclusion of non-eucalypt species, and (c) lack of knowledge of stand age or disturbance histories. To remedy these gaps we established the Ausplots Forest Monitoring Network: a continental scale network of 48 1 ha permanent plots in highly productive tall eucalypt forests in the mature growth stage. These plots are distributed across cool temperate, Mediterranean, subtropical and tropical climates (mean annual precipitation 850 to 1900 mm per year; mean annual temperature 6 to 21°C). Aboveground carbon stocks (AGC) in these forests are dominated by eucalypts (90% of AGC) whilst non-eucalypts in the understorey dominated species diversity and tree abundance (84% of species; 60% of stems). Aboveground carbon stocks were negatively related to mean annual temperature, with forests at the warm end of the temperature range storing approximately half the amount of carbon as forests at the cool end of the temperature range. This may reflect thermal constraints on tree growth detected through other plot networks and physiological studies. Through common protocols and careful sampling design, the Ausplots Forest Monitoring Network will facilitate the integration of tall eucalypt forests into established global forest monitoring initiatives. In the context of projections of rapidly warming and drying climates in Australia, this plot network will enable detection of links between climate and growth, mortality and carbon dynamics of eucalypt forests. PMID:26368919
Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.; Yackulic, Charles B.; Duniway, Michael C.; Hall, Sonia A.; Jia, Gensuo; Jamiyansharav, Khishigbayar; Munson, Seth M.; Wilson, Scott D.; Tietjen, Britta
2017-01-01
The distribution of rainfed agriculture is expected to respond to climate change and human population growth. However, conditions that support rainfed agriculture are driven by interactions among climate, including climate extremes, and soil moisture availability that have not been well defined. In the temperate regions that support much of the world’s agriculture, these interactions are complicated by seasonal temperature fluctuations that can decouple climate and soil moisture. Here, we show that suitability to support rainfed agriculture can be effectively represented by the interactive effects of just two variables: suitability increases where warm conditions occur with wet soil, and suitability decreases with extreme high temperatures. 21st century projections based on ecohydrological modeling of downscaled climate forecasts imply geographic shifts and overall increases in the area suitable for rainfed agriculture in temperate regions, especially at high latitudes, and pronounced, albeit less widespread, declines in suitable areas in low latitude drylands, especially in Europe. These results quantify the integrative direct and indirect impact of rising temperatures on rainfed agriculture.
Response of the European Vegetation to the Global Climatic Changes during the Neogene
NASA Astrophysics Data System (ADS)
Popescu, S.; Jimenez-Moreno, G.; Suc, J.; Rabineau, M.
2009-12-01
The beginning of the Neogene coincides with a transient cooler climate event (Mi-1) as response to the intermittent expansion on the EAIS. The Miocene is characterized by warm and humid climate that implied the development of forest environments in Europe. The vegetation was composed mainly by tropical, subtropical and warm-temperate plants, which attempted the maximum of diversity during the Miocene Climate Optimum event (17-15 Ma). Reconstruction of climatic parameters, applied to our pollen records, indicates for the NE Spain, for the Early Miocene a MAT~19°C, a MTW~24.5°C, a MTC~7.5 °C, and MAP = 900 - 1700 mm. Several cooling events (Mi-1 to Mi-7) are responsible for a progressive impoverishment in tropical and subtropical plants, which will be replaced by warm-temperate ones. The most important, Monterey Cooling Event induce the decrease of MAT about 2-4°C implying the disappearance of the Avicennia mangrove from the NW Mediterranean coastline. Warm climate characterized the Serravallian and Tortonian. Paleoclimatic reconstruction for the Late Miocene indicates a MAT=15-24°C, with a strong seasonality correlated with high precipitation values (1100 -1550 mm) in N.Europe and respectively low seasonality and precipitation values (320-680 mm) in SW Europe and N Africa. The West Antarctic glaciations at 6 Ma, probably caused the disappearance of the Avicennia mangrove from S. Mediterranean coastlines. During the Early Pliocene, the climate was relatively warmer with MAT higher of about 1-5°C than today.Increase in humidity characterize the Central and Eastern Europe (MAP higher of about 400 -1000 mm than today), that promoted the development of forest vegetation in this area. The pollen floras from the European Early Pliocene allow a refined geographic specification of the different kinds of reconstructed vegetation. The Late Pliocene is still too much poorly-documented and needs more attention as it represents the key-moment of the progressive transition from the “greenhouse” climatic context to the “icehouse” one. Finally, this is also a crucial time-window because it includes the warming centred at around 3.1 Ma which is generally pointed out as the best past analogue of the present-day warming up. During this time-interval, contrast in vegetation between the North and South European regions exaggerated while the thermic latitudinal gradient increased up to approximately reach the present-day value (0.6°C/° in latitude). The Late Pliocene Optimum Climatic (3.1 Ma) is characterized by MAT higher of 3°C as today. The onset of the North Hemisphere Glaciations which marks the beginning of Pleistocene (2.558 Ma) is well- and completely documented by pollen data from the DSDP Site 380 which, in addition, provides a continuous record of all the glacial-interglacial cycles up to the Present. The transition from 41 to 100 kyr climatic cycles is here particularly well-documented. This long pollen sequence also specifies the chronologic succession of extinctions of thermophilous plants in the Northeastern Mediterranean region.
Adaptation to seasonality and the winter freeze
Preston, Jill C.; Sandve, Simen R.
2013-01-01
Flowering plants initially diversified during the Mesozoic era at least 140 million years ago in regions of the world where temperate seasonal environments were not encountered. Since then several cooling events resulted in the contraction of warm and wet environments and the establishment of novel temperate zones in both hemispheres. In response, less than half of modern angiosperm families have members that evolved specific adaptations to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy, and vernalization responsiveness. Despite compelling evidence for multiple independent origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is not well understood. However, the recent increase in molecular genetic studies examining the response of model and crop species to seasonal cold offers new insight into the evolutionary lability of these traits. This insight has major implications for our understanding of complex trait evolution, and the potential role of local adaptation in response to past and future climate change. In this review, we discuss the biochemical, morphological, and developmental basis of adaptations to seasonal cold, and synthesize recent literature on the genetic basis of these traits in a phylogenomic context. We find evidence for multiple genetic links between distinct physiological responses to cold, possibly reinforcing the coordinated expression of these traits. Furthermore, repeated recruitment of the same or similar ancestral pathways suggests that land plants might be somewhat pre-adapted to dealing with temperature stress, perhaps making inducible cold traits relatively easy to evolve. PMID:23761798
Whitlock, C.; Sarna-Wojcicki, A. M.; Bartlein, P.J.; Nickmann, R.J.
2000-01-01
Sediment cores from Carp Lake provide a pollen record of the last ca. 125,000 years that helps disclose vegetational and climatic conditions from the present day to the previous interglaciation (120-133 ka). The core also contained 15 tephra layers, which were characterised by electron-microprobe analysis of volcanic glass shards. Identified tephra include Mount St. Helens Ye, 3.69 ka; Mazama ash bed, 7.54 ka; Mount St. Helens layer C, 35-50 ka; an unnamed Mount St. Helens tephra, 75-150 ka; the tephra equivalent of layer E at Pringle Falls, Oregon, <218 ka; and an andesitic tephra layer similar to that at Tulelake, California, 174 ka. Ten calibrated radiocarbon ages and the ages of Mount St. Helens Ye, Mazama ash, and the unnamed Mount St. Helens tephra were used to develop an age-depth model. This model was refined by also incorporating the age of marine oxygen isotope stage (IS) boundary 4/5 (73.9 ka) and the age of IS-5e (125 ka). The justification for this age-model is based on an analysis of the pollen record and lithologic data. The pollen record is divided into 11 assemblage zones that describe alternations between periods of montane conifer forest, pine forest, and steppe. The previous interglacial period (IS-5e) supported temperate xerothermic forests of pine and oak and a northward and westward expansion of steppe and juniper woodland, compared to their present occurrence. The period from 83 to 117 ka contains intervals of pine forest and parkland alternating with pine-spruce forest, suggesting shifts from cold humid to cool temperate conditions. Between 73 and 83 ka, a forest of oak, hemlock, Douglas-fir, and fir was present that has no modem analogue. It suggests warm wet summers and cool wet winters. Cool humid conditions during the mid-Wisconsin interval supported mixed conifer forest with Douglas-fir and spruce. The glacial interval featured cold dry steppe, with an expansion of spruce in the late-glacial. Xerothermic communities prevailed in the early Holocene, when temperate steppe was widespread and the lake dried intermittently. The middle Holocene was characterised by ponderosa pine forest, and the modem vegetation was established in the last 3900 yr, when ponderosa pine, Douglas-fir, fir, and oak were part of the local vegetation.
Frelich, Lee E.; Peterson, Rolf O.; Dovčiak, Martin; Reich, Peter B.; Vucetich, John A.; Eisenhauer, Nico
2012-01-01
As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems. PMID:23007083
Kearney, Michael; Shine, Richard; Porter, Warren P
2009-03-10
Increasing concern about the impacts of global warming on biodiversity has stimulated extensive discussion, but methods to translate broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of increased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most "cold-blooded" terrestrial animals, the primary thermal challenge is not to attain high body temperatures (although this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). The impact of climate warming on thermoregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade as well as the animals' capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase maintenance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific assessments of climate change impacts.
Kearney, Michael; Shine, Richard; Porter, Warren P.
2009-01-01
Increasing concern about the impacts of global warming on biodiversity has stimulated extensive discussion, but methods to translate broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of increased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most “cold-blooded” terrestrial animals, the primary thermal challenge is not to attain high body temperatures (although this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). The impact of climate warming on thermoregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade as well as the animals' capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase maintenance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific assessments of climate change impacts. PMID:19234117
Nicoletto, Carlo; Vianello, Fabio; Sambo, Paolo
2018-01-01
The European Union (EU) market for sweet potato is small but is growing considerably and and has increased by 100% over the last 5 years. The cultivation of sweet potato in temperate climate conditions has not considered extensively and could be a new opportunity for the EU market. Healthy and qualitative traits of different sweet potato cultivars grown in temperate climate conditions were evaluated in accordance with four cooking methods. Traditional cultivars showed high hardness and adhesiveness values. The highest concentrations of sugars (especially maltose) and phenolic acids (caffeic and chlorogenic) were found in samples treated by boiling and steaming. High antioxidant activity was found in fried potatoes. Qualitative traits of sweet potatoes treated by microwaves did not report any significant variation compared to the control. Traditional and new sweet potato cultivars can be cultivated in temperate climate conditions and show interesting qualitative properties, especially as a result of the presence of antioxidant compounds. Concerning global quality, colored varieties expressed a better profile than traditional Italian ones and they are suitable for the European market, giving new opportunities for consumers and producers. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Gabriel Y Galán, Jose María; Murciano, Antonio; Sirvent, Laure; Sánchez, Abel; Watkins, James E
2018-01-01
Ferns are an important component of ecosystems around the world. Studies of the impacts that global changes may have on ferns are scarce, yet emerging studies indicate that some species may be particularly sensitive to climate change. The lack of research in this subject is much more aggravated in the case of epiphytes, and especially those that live under temperate climates. A mathematical model was developed for two temperate epiphytic ferns in order to predict potential impacts on spore germination kinetics, in response to different scenarios of global change, coming from increasing temperature and forest fragmentation. Our results show that an increasing temperature will have a negative impact over the populations of these temperate epiphytic ferns. Under unfragmented forests the germination percentage was comparatively less influenced than in fragmented patches. This study highlight that, in the long term, populations of the studied epiphytic temperate ferns may decline due to climate change. Overall, epiphytic fern communities will suffer changes in diversity, richness and dominance. Our study draws attention to the role of ferns in epiphytic communities of temperate forests, emphasizing the importance of considering these plants in any conservation strategy, specifically forest conservation. From a methodological point of view, the model we propose could be easily used to dynamically monitor the status of ecosystems, allowing the quick prediction of possible future scenarios, which is a crucial issue in biodiversity conservation decision-making.
Harlin-Cognato, April D; Markowitz, Tim; Würsig, Bernd; Honeycutt, Rodney L
2007-08-03
The dusky dolphin (Lagenorhynchus obscurus) is distributed along temperate, coastal regions of New Zealand, South Africa, Argentina, and Peru where it feeds on schooling anchovy, sardines, and other small fishes and squid tightly associated with temperate ocean sea surface temperatures. Previous studies have suggested that the dusky dolphin dispersed in the Southern Hemisphere eastward from Peru via a linear, temperate dispersal corridor provided by the circumpolar west-wind drift. With new mitochondrial and nuclear DNA sequence data, we propose an alternative phylogeographic history for the dusky dolphin that was structured by paleoceanographic conditions that repeatedly altered the distribution of its temperate prey species during the Plio-Pleistocene. In contrast to the west-wind drift hypothesis, phylogenetic analyses support a Pacific/Indian Ocean origin, with a relatively early and continued isolation of Peru from other regions. Dispersal of the dusky dolphin into the Atlantic is correlated with the history of anchovy populations, including multiple migrations from New Zealand to South Africa. Additionally, the cooling of the Eastern Equatorial Pacific led to the divergence of anchovy populations, which in turn explains the north-south equatorial transgression of L. obliquidens and the subsequent divergence of L. obscurus in the Southern Hemisphere. Overall, our study fails to support the west-wind drift hypothesis. Instead, our data indicate that changes in primary productivity and related abundance of prey played a key role in shaping the phylogeography of the dusky dolphin, with periods of ocean change coincident with important events in the history of this temperate dolphin species. Moderate, short-term changes in sea surface temperatures and current systems have a powerful effect on anchovy populations; thus, it is not infeasible that repeated fluctuations in anchovy populations continue to play an important role in the history of coastal dolphin populations.
Centennial-scale reductions in nitrogen availability in temperate forests of the United States
McLauchlan, Kendra K.; Gerhart, Laci M.; Battles, John J.; Craine, Joseph M.; Elmore, Andrew J.; Higuera, Phil E.; Mack, Michelle M; McNeil, Brendan E.; Nelson, David M.; Pederson, Neil; Perakis, Steven
2017-01-01
Forests cover 30% of the terrestrial Earth surface and are a major component of the global carbon (C) cycle. Humans have doubled the amount of global reactive nitrogen (N), increasing deposition of N onto forests worldwide. However, other global changes—especially climate change and elevated atmospheric carbon dioxide concentrations—are increasing demand for N, the element limiting primary productivity in temperate forests, which could be reducing N availability. To determine the long-term, integrated effects of global changes on forest N cycling, we measured stable N isotopes in wood, a proxy for N supply relative to demand, on large spatial and temporal scales across the continental U.S.A. Here, we show that forest N availability has generally declined across much of the U.S. since at least 1850 C.E. with cool, wet forests demonstrating the greatest declines. Across sites, recent trajectories of N availability were independent of recent atmospheric N deposition rates, implying a minor role for modern N deposition on the trajectory of N status of North American forests. Our results demonstrate that current trends of global changes are likely to be consistent with forest oligotrophication into the foreseeable future, further constraining forest C fixation and potentially storage.
NASA Astrophysics Data System (ADS)
Magyari, E. K.; Veres, D.; Wennrich, V.; Wagner, B.; Braun, M.; Jakab, G.; Karátson, D.; Pál, Z.; Ferenczy, Gy; St-Onge, G.; Rethemeyer, J.; Francois, J.-P.; von Reumont, F.; Schäbitz, F.
2014-12-01
The Carpathian Mountains were one of the main mountain reserves of the boreal and cool temperate flora during the Last Glacial Maximum (LGM) in East-Central Europe. Previous studies demonstrated Lateglacial vegetation dynamics in this area; however, our knowledge on the LGM vegetation composition is very limited due to the scarcity of suitable sedimentary archives. Here we present a new record of vegetation, fire and lacustrine sedimentation from the youngest volcanic crater of the Carpathians (Lake St Anne, Lacul Sfânta Ana, Szent-Anna-tó) to examine environmental change in this region during the LGM and the subsequent deglaciation. Our record indicates the persistence of boreal forest steppe vegetation (with Pinus, Betula, Salix, Populus and Picea) in the foreland and low mountain zone of the East Carpathians and Juniperus shrubland at higher elevation. We demonstrate attenuated response of the regional vegetation to maximum global cooling. Between ˜22,870 and 19,150 cal yr BP we find increased regional biomass burning that is antagonistic with the global trend. Increased regional fire activity suggests extreme continentality likely with relatively warm and dry summers. We also demonstrate xerophytic steppe expansion directly after the LGM, from ˜19,150 cal yr BP, and regional increase in boreal woodland cover with Pinus and Betula from 16,300 cal yr BP. Plant macrofossils indicate local (950 m a.s.l.) establishment of Betula nana and Betula pubescens at 15,150 cal yr BP, Pinus sylvestris at 14,700 cal yr BP and Larix decidua at 12,870 cal yr BP. Pollen data furthermore support population genetic inferences regarding the regional presence of some temperate deciduous trees during the LGM (Fagus sylvatica, Corylus avellana, Fraxinus excelsior). Our sedimentological data also demonstrate intensified aeolian dust accumulation between 26,000 and 20,000 cal yr BP.
Biogeographical Interpretation of Elevational Patterns of Genus Diversity of Seed Plants in Nepal
Li, Miao; Feng, Jianmeng
2015-01-01
This study tests if the biogeographical affinities of genera are relevant for explaining elevational plant diversity patterns in Nepal. We used simultaneous autoregressive (SAR) models to investigate the explanatory power of several predictors in explaining the diversity-elevation relationships shown in genera with different biogeographical affinities. Delta akaike information criterion (ΔAIC) was used for multi-model inferences and selections. Our results showed that both the total and tropical genus diversity peaked below the mid-point of the elevational gradient, whereas that of temperate genera had a nearly symmetrical, unimodal relationship with elevation. The proportion of temperate genera increased markedly with elevation, while that of tropical genera declined. Compared to tropical genera, temperate genera had wider elevational ranges and were observed at higher elevations. Water-related variables, rather than mid-domain effects (MDE), were the most significant predictors of elevational patterns of tropical genus diversity. The temperate genus diversity was influenced by energy availability, but only in quadratic terms of the models. Though climatic factors and mid-domain effects jointly explained most of the variation in the diversity of temperate genera with elevation, the former played stronger roles. Total genus diversity was most strongly influenced by climate and the floristic overlap of tropical and temperate floras, while the influences of mid-domain effects were relatively weak. The influences of water-related and energy-related variables may vary with biogeographical affinities. The elevational patterns may be most closely related to climatic factors, while MDE may somewhat modify the patterns. Caution is needed when investigating the causal factors underlying diversity patterns for large taxonomic groups composed of taxa of different biogeographical affinities. Right-skewed diversity-elevation patterns may be produced by the differential response of taxa with varying biogeographical affinities to climatic factors and MDE. PMID:26488164
Biogeographical Interpretation of Elevational Patterns of Genus Diversity of Seed Plants in Nepal.
Li, Miao; Feng, Jianmeng
2015-01-01
This study tests if the biogeographical affinities of genera are relevant for explaining elevational plant diversity patterns in Nepal. We used simultaneous autoregressive (SAR) models to investigate the explanatory power of several predictors in explaining the diversity-elevation relationships shown in genera with different biogeographical affinities. Delta akaike information criterion (ΔAIC) was used for multi-model inferences and selections. Our results showed that both the total and tropical genus diversity peaked below the mid-point of the elevational gradient, whereas that of temperate genera had a nearly symmetrical, unimodal relationship with elevation. The proportion of temperate genera increased markedly with elevation, while that of tropical genera declined. Compared to tropical genera, temperate genera had wider elevational ranges and were observed at higher elevations. Water-related variables, rather than mid-domain effects (MDE), were the most significant predictors of elevational patterns of tropical genus diversity. The temperate genus diversity was influenced by energy availability, but only in quadratic terms of the models. Though climatic factors and mid-domain effects jointly explained most of the variation in the diversity of temperate genera with elevation, the former played stronger roles. Total genus diversity was most strongly influenced by climate and the floristic overlap of tropical and temperate floras, while the influences of mid-domain effects were relatively weak. The influences of water-related and energy-related variables may vary with biogeographical affinities. The elevational patterns may be most closely related to climatic factors, while MDE may somewhat modify the patterns. Caution is needed when investigating the causal factors underlying diversity patterns for large taxonomic groups composed of taxa of different biogeographical affinities. Right-skewed diversity-elevation patterns may be produced by the differential response of taxa with varying biogeographical affinities to climatic factors and MDE.
NASA Astrophysics Data System (ADS)
Xu, Zhiwei; Yu, Guirui; Zhang, Xinyu; He, Nianpeng; Wang, Qiufeng; Wang, Shengzhong; Xu, Xiaofeng; Wang, Ruili; Zhao, Ning
2018-03-01
Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the north-south transect in eastern China (NSTEC). Both climate and forest type had significant effects on soil enzyme activities and microbial communities with considerable interactive effects. Except for soil acid phosphatase (AP), the other three enzyme activities were much higher in the warm temperate zone than in the temperate and the subtropical climate zones. The soil total PLFAs and bacteria were much higher in the temperate zone than in the warm temperate and the subtropical zones. The soil β-glucosidase (BG) and N-acetylglucosaminidase (NAG) activities were highest in the coniferous forest. Except for the soil fungi and fungi-bacteria (F/B), the different groups of microbial PLFAs were much higher in the conifer broad-leaved mixed forests than in the coniferous forests and the broad-leaved forests. In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. Different compositions of the tree species may cause variations in soil microbial communities and enzyme activities. Our results showed that the main controls on soil microbes and functions vary in different climatic zones and that the effects of soil moisture content, soil temperature, clay content, and the soil N / P ratio were considerable. This information will add value to the modeling of microbial processes and will contribute to carbon cycling in large-scale carbon models.
Day, John W.; Yáñez-Arancibia, Alejandro; Cowan, James H.; Day, Richard H.; Twilley, Robert R.; Rybczyk, John R.
2013-01-01
Global climate change is important in considerations of integrated coastal management in the Gulf of Mexico. This is true for a number of reasons. Climate in the Gulf spans the range from tropical to the lower part of the temperate zone. Thus, as climate warms, the tropical temperate interface, which is currently mostly offshore in the Gulf of Mexico, will increasingly move over the coastal zone of the northern and eastern parts of the Gulf. Currently, this interface is located in South Florida and around the US-Mexico border in the Texas-Tamaulipas region. Maintaining healthy coastal ecosystems is important because they will be more resistant to climate change.
Contrasting fire responses to climate and management: insights from two Australian ecosystems.
King, Karen J; Cary, Geoffrey J; Bradstock, Ross A; Marsden-Smedley, Jonathan B
2013-04-01
This study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south-west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount. For future climates, unplanned fire incidence and area burned increased in the mesic landscape, but decreased in the arid landscape in accordance with predictions based on these limiting factors. Area burned by large fires (greater than the 95th percentile of historical, unplanned fire size) increased with future climates in the mesic landscape. Simulated prescribed burning was more effective in reducing unplanned fire activity in the mesic landscape. However, the inhibitory effects of prescribed burning are predicted to be outweighed by climate change in the mesic landscape, whereas in the arid landscape prescribed burning reinforced a predicted decline in fire under climate change. The potentially contrasting direction of future changes to fire will have fundamentally different consequences for biodiversity in these contrasting ecosystems, and these will need to be accommodated through contrasting, innovative management solutions. © 2012 Blackwell Publishing Ltd.
The influence of tempering process for DP lateritic steel in hardness and microstructure behavior
NASA Astrophysics Data System (ADS)
Hasbi, Muhammad Yunan; Saefudin, Romijarso, Toni Bambang
2018-05-01
In this study, the influence of tempering temperature on dual phase (DP) steel lateritic has been examined. Lateritic is chosen because of its excellence as austenite stabilizer in the formation of martensite and also increase the weldability due to nickel content. The hardness and microstructure behavior of steels were the main focus of this research. One of the goals was to obtain the combination of high strength and ductile materials for automotive application. The specimens used in this study were low carbon steel made by the hot-rolled process and followed by the initial heating process with various temperature (760 °C, 800 °C, 840 °C) continued with rapid cooling. The specimens also conducted by secondary heating with tempering process at 450 °C in an hour with very slow cooling. The experimental results showed that correlation between temperatures with hardness properties of materials. The hardness of the specimens increases as temperature increases. It was because austenite phase has a sufficient time and temperature to form, therefore the amount of transformed austenite becomes martensite was greater. The highest hardness reached by T = 840 °C was 46.98 HRC, it was about 153% from as cast (18.54 HRC). Decreasing in hardness value when the specimen was tempering at 450 °C indicated that martensite phase has been transformed into tempered martensite.
Temporal and Spatial Variations in Soil CO2 Effluxes of Different Ecosystems
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Suto, H.; Fujinuma, Y.; Inoue, G.
2005-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. Reasons include the lack of automated measurement systems that are commercially available, and the need for frequent servicing to ensure accurate measurements. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux during snow-free seasons. We installed the chamber systems in boreal forest in Alaska, tundra in west Siberia, temperate and cool-temperate forests in Japan and Korea, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 efflux were measured to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 26 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. Soil CO2 efflux of forest ecosystems showed large spatial variation and was correlated with vegetation type and the chamber size.
NASA Astrophysics Data System (ADS)
Ma, Qingshen; Huang, Leqing; Di, Guobiao; Wang, Yanfeng; Yang, Yongda; Ma, Changwen
2017-09-01
The effects of microalloying elements Nb, V and Ti on microstructure and properties of quenched and tempered steel were studied. Results showed that the addition of microalloying elements led to the formation of bainite and increased strength, while the austenization and ferrite transformation temperature was barely affected, i.e. 10°C. Microalloying elements shortened the incubation time for bainite transformation by refinement of austenite grain, and decreased the hardenability by forming carbides and therefore reducing the carbon content of super-cooled austenite. Either of them promoted the bainite transformation. The better tempering stability was ascribed to the as hot-rolled bainite microstructure and secondary carbide precipitation during tempering.
An updated checklist of aquatic plants of Myanmar and Thailand
2014-01-01
Abstract The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa) were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras. PMID:24723783
Yang, Yuting; Guan, Huade; Shen, Miaogen; Liang, Wei; Jiang, Lei
2015-02-01
Vegetation phenology is a sensitive indicator of the dynamic response of terrestrial ecosystems to climate change. In this study, the spatiotemporal pattern of vegetation dormancy onset date (DOD) and its climate controls over temperate China were examined by analysing the satellite-derived normalized difference vegetation index and concurrent climate data from 1982 to 2010. Results show that preseason (May through October) air temperature is the primary climatic control of the DOD spatial pattern across temperate China, whereas preseason cumulative precipitation is dominantly associated with the DOD spatial pattern in relatively cold regions. Temporally, the average DOD over China's temperate ecosystems has delayed by 0.13 days per year during the past three decades. However, the delay trends are not continuous throughout the 29-year period. The DOD experienced the largest delay during the 1980s, but the delay trend slowed down or even reversed during the 1990s and 2000s. Our results also show that interannual variations in DOD are most significantly related with preseason mean temperature in most ecosystems, except for the desert ecosystem for which the variations in DOD are mainly regulated by preseason cumulative precipitation. Moreover, temperature also determines the spatial pattern of temperature sensitivity of DOD, which became significantly lower as temperature increased. On the other hand, the temperature sensitivity of DOD increases with increasing precipitation, especially in relatively dry areas (e.g. temperate grassland). This finding stresses the importance of hydrological control on the response of autumn phenology to changes in temperature, which must be accounted in current temperature-driven phenological models. © 2014 John Wiley & Sons Ltd.
Predicting Pleistocene climate from vegetation
NASA Astrophysics Data System (ADS)
Loehle, C.
2006-10-01
Climates at the Last Glacial Maximum have been inferred from fossil pollen assemblages, but these inferred climates are colder than those produced by climate simulations. Biogeographic evidence also argues against these inferred cold climates. The recolonization of glaciated zones in eastern North America following the last ice age produced distinct biogeographic patterns. It has been assumed that a wide zone south of the ice was tundra or boreal parkland (Boreal-Parkland Zone or BPZ), which would have been recolonized from southern refugia as the ice melted, but the patterns in this zone differ from those in the glaciated zone, which creates a major biogeographic anomaly. In the glacial zone, there are few endemics but in the BPZ there are many across multiple taxa. In the glacial zone, there are the expected gradients of genetic diversity with distance from the ice-free zone, but no evidence of this is found in the BPZ. Many races and related species exist in the BPZ which would have merged or hybridized if confined to the same refugia. Evidence for distinct southern refugia for most temperate species is lacking. Extinctions of temperate flora were rare. The interpretation of spruce as a boreal climate indicator may be mistaken over much of the region if the spruce was actually an extinct temperate species. All of these anomalies call into question the concept that climates in the zone south of the ice were very cold or that temperate species had to migrate far to the south. Similar anomalies exist in Europe and on tropical mountains. An alternate hypothesis is that low CO2 levels gave an advantage to pine and spruce, which are the dominant trees in the BPZ, and to herbaceous species over trees, which also fits the observed pattern. Most temperate species could have survived across their current ranges at lower abundance by retreating to moist microsites. These would be microrefugia not easily detected by pollen records, especially if most species became rare. These results mean that climate reconstruction based on terrestrial plant indicators will not be valid for periods with markedly different CO2 levels.
Ocean Cooling Pattern at the Last Glacial Maximum
Zhuang, Kelin; Giardino, John R.
2012-01-01
Ocean temperature and ocean heat content change are analyzed based on four PMIP3 model results at the Last Glacial Maximum relative to the prehistorical run. Ocean cooling mostly occurs in the upper 1000 m depth and varies spatially in the tropical and temperate zones. The Atlantic Ocean experiences greater cooling than the rest of the ocean basins. Ocean cooling is closely related to the weakening of meridional overturning circulation and enhanced intrusion of Antarctic Bottom Water into the North Atlantic.
Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels
NASA Astrophysics Data System (ADS)
Li, Meng-long; Wang, Fu-ming; Li, Chang-rong; Yang, Zhan-bing; Meng, Qing-yong; Tao, Su-fen
2015-06-01
The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al (Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s-1 and 0.43°C·s-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.
Research Spotlight: Corals expanding poleward due to warming climate
NASA Astrophysics Data System (ADS)
Tretkoff, Ernie
2011-04-01
Corals are important organisms for ecosystems and are sensitive indicators of the effects of climate warming. While corals are bleaching and dying in tropical areas due to climate warming, a new study shows that in temperate areas they are expanding their range poleward as water temperatures increase. Yamano et al. used 80 years of records to study the range of corals around Japan. Sea surface temperatures have risen in these temperate areas during that time. They found that four of the nine species of coral they studied expanded their range northward since the 1930s, while none had its range shrink southward. The corals expanded northward as quickly as 14 kilometers per year. The study suggests that rapid modifications of temperate coastal ecosystems could be taking place. (Geophysical Research Letters, doi:10.1029/2010GL046474, 2011)
Ruhí, Albert; Boix, Dani; Gascón, Stéphanie; Sala, Jordi; Batzer, Darold P
2013-01-01
In freshwater ecosystems, species compositions are known to be determined hierarchically by large to small‑scale environmental factors, based on the biological traits of the organisms. However, in ephemeral habitats this heuristic framework remains largely untested. Although temporary wetland faunas are constrained by a local filter (i.e., desiccation), we propose its magnitude may still depend on large-scale climate characteristics. If this is true, climate should be related to the degree of functional and taxonomic relatedness of invertebrate communities inhabiting seasonal wetlands. We tested this hypothesis in two ways. First, based on 52 biological traits for invertebrates, we conducted a case study to explore functional trends among temperate seasonal wetlands differing in the harshness (i.e., dryness) of their dry season. After finding evidence of trait filtering, we addressed whether it could be generalized across a broader climatic scale. To this end, a meta-analysis (225 seasonal wetlands spread across broad climatic categories: Arid, Temperate, and Cold) allowed us to identify whether an equivalent climate-dependent pattern of trait richness was consistent between the Nearctic and the Western Palearctic. Functional overlap of invertebrates increased from mild (i.e., Temperate) to harsher climates (i.e., Arid and Cold), and phylogenetic clustering (using taxonomy as a surrogate) was highest in Arid and lowest in Temperate wetlands. We show that, (i) as has been described in streams, higher relatedness than would be expected by chance is generally observed in seasonal wetland invertebrate communities; and (ii) this relatedness is not constant but climate-dependent, with the climate under which a given seasonal wetland is located determining the functional overlap and the phylogenetic clustering of the community. Finally, using a space-for-time substitution approach we suggest our results may anticipate how the invertebrate biodiversity embedded in these vulnerable and often overlooked ecosystems will be affected by long-term climate change.
Ruhí, Albert; Boix, Dani; Gascón, Stéphanie; Sala, Jordi; Batzer, Darold P.
2013-01-01
In freshwater ecosystems, species compositions are known to be determined hierarchically by large to small‑scale environmental factors, based on the biological traits of the organisms. However, in ephemeral habitats this heuristic framework remains largely untested. Although temporary wetland faunas are constrained by a local filter (i.e., desiccation), we propose its magnitude may still depend on large-scale climate characteristics. If this is true, climate should be related to the degree of functional and taxonomic relatedness of invertebrate communities inhabiting seasonal wetlands. We tested this hypothesis in two ways. First, based on 52 biological traits for invertebrates, we conducted a case study to explore functional trends among temperate seasonal wetlands differing in the harshness (i.e., dryness) of their dry season. After finding evidence of trait filtering, we addressed whether it could be generalized across a broader climatic scale. To this end, a meta-analysis (225 seasonal wetlands spread across broad climatic categories: Arid, Temperate, and Cold) allowed us to identify whether an equivalent climate-dependent pattern of trait richness was consistent between the Nearctic and the Western Palearctic. Functional overlap of invertebrates increased from mild (i.e., Temperate) to harsher climates (i.e., Arid and Cold), and phylogenetic clustering (using taxonomy as a surrogate) was highest in Arid and lowest in Temperate wetlands. We show that, (i) as has been described in streams, higher relatedness than would be expected by chance is generally observed in seasonal wetland invertebrate communities; and (ii) this relatedness is not constant but climate-dependent, with the climate under which a given seasonal wetland is located determining the functional overlap and the phylogenetic clustering of the community. Finally, using a space-for-time substitution approach we suggest our results may anticipate how the invertebrate biodiversity embedded in these vulnerable and often overlooked ecosystems will be affected by long-term climate change. PMID:24312347
Ruane, Sara; Torres-Carvajal, Omar; Burbrink, Frank T.
2015-01-01
The effects of Late Quaternary climate change have been examined for many temperate New World taxa, but the impact of Pleistocene glacial cycles on Neotropical taxa is less well understood, specifically with respect to changes in population demography. Here, we examine historical demographic trends for six species of milksnake with representatives in both the temperate and tropical Americas to determine if species share responses to climate change as a taxon or by area (i.e., temperate versus tropical environments). Using a multilocus dataset, we test for the demographic signature of population expansion and decline using non-genealogical summary statistics, as well as coalescent-based methods. In addition, we determine whether range sizes are correlated with effective population sizes for milksnakes. Results indicate that there are no identifiable trends with respect to demographic response based on location, and that species responded to changing climates independently, with tropical taxa showing greater instability. There is also no correlation between range size and effective population size, with the largest population size belonging to the species with the smallest geographic distribution. Our study highlights the importance of not generalizing the demographic histories of taxa by region and further illustrates that the New World tropics may not have been a stable refuge during the Pleistocene. PMID:26083467
Ruane, Sara; Torres-Carvajal, Omar; Burbrink, Frank T
2015-01-01
The effects of Late Quaternary climate change have been examined for many temperate New World taxa, but the impact of Pleistocene glacial cycles on Neotropical taxa is less well understood, specifically with respect to changes in population demography. Here, we examine historical demographic trends for six species of milksnake with representatives in both the temperate and tropical Americas to determine if species share responses to climate change as a taxon or by area (i.e., temperate versus tropical environments). Using a multilocus dataset, we test for the demographic signature of population expansion and decline using non-genealogical summary statistics, as well as coalescent-based methods. In addition, we determine whether range sizes are correlated with effective population sizes for milksnakes. Results indicate that there are no identifiable trends with respect to demographic response based on location, and that species responded to changing climates independently, with tropical taxa showing greater instability. There is also no correlation between range size and effective population size, with the largest population size belonging to the species with the smallest geographic distribution. Our study highlights the importance of not generalizing the demographic histories of taxa by region and further illustrates that the New World tropics may not have been a stable refuge during the Pleistocene.
Ashton, L A; Nakamura, A; Burwell, C J; Tang, Y; Cao, M; Whitaker, T; Sun, Z; Huang, H; Kitching, R L
2016-05-23
South-western China is widely acknowledged as a biodiversity 'hotspot': there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China's biodiversity and can be used to monitor future changes to herbivore assemblages in a 'hotspot' of biodiversity.
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-01-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity. PMID:27211989
NASA Astrophysics Data System (ADS)
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-05-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity.
Rockweit, Jeremy T.; Franklin, Alan B.; Bakken, George S.; Gutiérrez, R. J.
2012-01-01
Many bird species do not make their own nests; therefore, selection of existing sites that provide adequate microclimates is critical. This is particularly true for owls in north temperate climates that often nest early in the year when inclement weather is common. Spotted owls use three main types of nest structures, each of which are structurally distinct and may provide varying levels of protection to the eggs or young. We tested the hypothesis that spotted owl nest configuration influences nest microclimate using both experimental and observational data. We used a wind tunnel to estimate the convective heat transfer coefficient (hc) of eggs in 25 potential nest configurations that mimicked 2 nest types (top-cavity and platform nests), at 3 different wind speeds. We then used the estimates of hc in a biophysical heat transfer model to estimate how long it would take unattended eggs to cool from incubation temperature (∼36°C) to physiological zero temperature (PZT; ∼26°C) under natural environmental conditions. Our results indicated that the structural configuration of nests influences the cooling time of the eggs inside those nests, and hence, influences the nest microclimate. Estimates of time to PZT ranged from 10.6 minutes to 33.3 minutes. Nest configurations that were most similar to platform nests always had the fastest egg cooling times, suggesting that platform nests were the least protective of those nests we tested. Our field data coupled with our experimental results suggested that nest choice is important for the reproductive success of owls during years of inclement weather or in regions characterized by inclement weather during the nesting season. PMID:22859993
NASA Astrophysics Data System (ADS)
Zhang, Chi; Ren, Wei
2017-09-01
Central Asia covers a large land area of 5 × 106 km2 and has unique temperate dryland ecosystems, with over 80% of the world's temperate deserts, which has been experiencing dramatic warming and drought in the recent decades. How the temperate dryland responds to complex climate change, however, is still far from clear. This study quantitatively investigates terrestrial net primary productivity (NPP) in responses to temperature, precipitation, and atmospheric CO2 during 1980-2014, by using the Arid Ecosystem Model, which can realistically predict ecosystems' responses to changes in climate and atmospheric CO2 according to model evaluation against 28 field experiments/observations. The simulation results show that unlike other middle-/high-latitude regions, NPP in central Asia declined by 10% (0.12 × 1015 g C) since the 1980s in response to a warmer and drier climate. The dryland's response to warming was weak, while its cropland was sensitive to the CO2 fertilization effect (CFE). However, the CFE was inhibited by the long-term drought from 1998 to 2008 and the positive effect of warming on photosynthesis was largely offset by the enhanced water deficit. The complex interactive effects among climate drivers, unique responses from diverse ecosystem types, and intensive and heterogeneous climatic changes led to highly complex NPP changing patterns in central Asia, of which 69% was dominated by precipitation variation and 20% and 9% was dominated by CO2 and temperature, respectively. The Turgay Plateau in northern Kazakhstan and southern Xinjiang in China are hot spots of NPP degradation in response to climate change during the past three decades and in the future.
Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates
Tamerius, James D.; Shaman, Jeffrey; Alonso, Wladmir J.; Bloom-Feshbach, Kimberly; Uejio, Christopher K.; Comrie, Andrew; Viboud, Cécile
2013-01-01
Human influenza infections exhibit a strong seasonal cycle in temperate regions. Recent laboratory and epidemiological evidence suggests that low specific humidity conditions facilitate the airborne survival and transmission of the influenza virus in temperate regions, resulting in annual winter epidemics. However, this relationship is unlikely to account for the epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza epidemics: “cold-dry” and “humid-rainy”. For sites where monthly average specific humidity or temperature decreases below thresholds of approximately 11–12 g/kg and 18–21°C during the year, influenza activity peaks during the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when average precipitation totals are maximal and greater than 150 mm per month. These findings provide a simple climate-based model rooted in empirical data that accounts for the diversity of seasonal influenza patterns observed across temperate, subtropical and tropical climates. PMID:23505366
Zotin, A A; Ozerniuk, N D
2002-01-01
Comparison of respiration rate in pulmonate snails living in various climatic zones demonstrated higher constant a in representatives of Arion genus (A. subfucus and A. fasciatus) from Polar Area (Murmansk Region) as compared to inhabitants of temperate latitudes (Moscow Region). The snails of Deroceras genus (D. reticulatum) from these two climatic zones were indistinguishable by relative standard metabolism. Different effects of climatic thermal conditions on respiration rates in representatives of these two snail genera can be due to their specific biology. Representatives of Deroceras genus are short-cycle synanthropic species, while the snails of Arion genus are long-cycle species living mostly in the forest zone.
Global climate change and terrestrial net primary production
NASA Technical Reports Server (NTRS)
Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.
1993-01-01
A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.
Investigation of Thermo-Magnetic Processing in Application to Heavy Duty Truck Suspension Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makiewicz, Kurt; Yurek, Theodore; Farrell, Brian
2016-04-19
Thermomagnetic processing (TMP) was examined as a methodology for increasing transformation rate during heat treatment in steel tubes. Two potential benefits were investigated, reduced energy consumption and improved mechanical properties. It is possible to reduce energy consumption with TMP by allowing tempering at lower temperatures and shorter times. Improved mechanical properties are possible by allowing a more copious distribution of fine carbides during tempering of martensite. Improved mechanical properties are also possible by quenching under a magnetic field after austenitization by formation of martensitic twins. The experiments in this work allowed for the following conclusions: the samples could not bemore » quenched fast enough to transform the entire wall thickness to martensite; the knee of the Continuous Cooling Curve (CCT) curve was shifted to the left when quenching following austenitizing in a magnetic field. The magnetic field during tempering did enhance the kinetics and allowed fine carbides to form. Since the through wall thickness was not hardened, the bulk mechanical properties were unaffected by the magnetic field. Hardness measurements after hardening showed that hardening in a magnetic field >0.5T resulted in a significant reduction in hardness. Combined with the inadequate cooling rate it was not possible to properly harden the samples. Tempering at 600 C without a magnetic field resulted in no formation of carbides, but tempering at 600 C and 450 C with a 1-2T field resulted in carbide formation in all samples.« less
NASA Astrophysics Data System (ADS)
Grobner, P. J.; Blšs, V.
1984-07-01
Metallographic studies have been conducted on a 0.024 pct C-16 pct Cr-1.5 pct Mo-5 pct Ni stainless steel to study the phase reactions associated with heat treatments and investigate the strengthening mechanisms of the steel. In the normalized condition, air cooled from 1010 °C, the microstructure consists of 20 pct ferrite and 80 pct martensite. Tempering in a temperature range between 500 and 600 °C results in a gradual transformation of martensite to a fine mixture of ferrite and austenite. At higher tempering temperatures, between 600 and 800 °C, progressively larger quantities of austenite form and are converted during cooling to proportionally increasing amounts of fresh martensite. The amount of retained austenite in the microstructure is reduced to zero at 800 °C, and the microstructure contains 65 pct re-formed martensite and 35 pct total ferrite. Chromium rich M23C6 carbides precipitate in the single tempered microstructures. The principal strengthening is produced by the presence of martensite in the microstructure. Additional strengthening is provided by a second tempering treatment at 400 °C due to the precipitation of ultrafine (Cr, Mo) (C,N) particles in the ferrite.
Vulnerability of forest vegetation to anthropogenic climate change in China.
Wan, Ji-Zhong; Wang, Chun-Jing; Qu, Hong; Liu, Ran; Zhang, Zhi-Xiang
2018-04-15
China has large areas of forest vegetation that are critical to biodiversity and carbon storage. It is important to assess vulnerability of forest vegetation to anthropogenic climate change in China because it may change the distributions and species compositions of forest vegetation. Based on the equilibrium assumption of forest communities across different spatial and temporal scales, we used species distribution modelling coupled with endemics-area relationship to assess the vulnerability of 204 forest communities across 16 vegetation types under different climate change scenarios in China. By mapping the vulnerability of forest vegetation to climate change, we determined that 78.9% and 61.8% of forest vegetation should be relatively stable in the low and high concentration scenarios, respectively. There were large vulnerable areas of forest vegetation under anthropogenic climate change in northeastern and southwestern China. The vegetation of subtropical mixed broadleaf evergreen and deciduous forest, cold-temperate and temperate mountains needleleaf forest, and temperate mixed needleleaf and broadleaf deciduous forest types were the most vulnerable under climate change. Furthermore, the vulnerability of forest vegetation may increase due to high greenhouse gas concentrations. Given our estimates of forest vegetation vulnerability to anthropogenic climate change, it is critical that we ensure long-term monitoring of forest vegetation responses to future climate change to assess our projections against observations. We need to better integrate projected changes of temperature and precipitation into climate-adaptive conservation strategies for forest vegetation in China. Copyright © 2017 Elsevier B.V. All rights reserved.
Smith, Shannen M; Fox, Rebecca J; Booth, David J; Donelson, Jennifer M
2018-04-01
Range shifts of tropical marine species to temperate latitudes are predicted to increase as a consequence of climate change. To date, the research focus on climate-mediated range shifts has been predominately dealt with the physiological capacity of tropical species to cope with the thermal challenges imposed by temperate latitudes. Behavioural traits of individuals in the novel temperate environment have not previously been investigated, however, they are also likely to play a key role in determining the establishment success of individual species at the range-expansion forefront. The aim of this study was to investigate the effect of shoaling strategy on the performance of juvenile tropical reef fishes that recruit annually to temperate waters off the south east coast of Australia. Specifically, we compared body-size distributions and the seasonal decline in abundance through time of juvenile tropical fishes that shoaled with native temperate species ('mixed' shoals) to those that shoaled only with conspecifics (as would be the case in their tropical range). We found that shoaling with temperate native species benefitted juvenile tropical reef fishes, with individuals in 'mixed' shoals attaining larger body-sizes over the season than those in 'tropical-only' shoals. This benefit in terms of population body-size distributions was accompanied by greater social cohesion of 'mixed' shoals across the season. Our results highlight the impact that sociality and behavioural plasticity are likely to play in determining the impact on native fish communities of climate-induced range expansion of coral reef fishes. © 2018 John Wiley & Sons Ltd.
The effect of urban heat island on Izmir's city ecosystem and climate.
Corumluoglu, Ozsen; Asri, Ibrahim
2015-03-01
Depending on the researches done on urban landscapes, it is found that the heat island intensity caused by the activities in any city has some impact on the ecosystem of the region and on the regional climate. Urban areas located in arid and semiarid lands somehow represent heat increase when it is compared with the heat in the surrounding rural areas. Thus, cities located amid forested and temperate climate regions show moderate temperatures. The impervious surfaces let the rainfall leave the city lands faster than undeveloped areas. This effect reduces water's cooling effects on these lands. More significantly, if trees and other vegetations are rare in any region, it means less evapotranspiration-the process by which trees "exhale" water. Trees also contribute to the cooling of urban lands by their shade. Land cover and land use maps can easily be produced by processing of remote sensing satellites' images, like processing of Landsat's images. As a result of this process, urban regions can be distinguished from vegetation. Analyzed GIS data produced and supported by these images can be utilized to determine the impact of urban land on energy, water, and carbon balances at the Earth's surface. Here in this study, it is found that remote sensing technique with thermal images is a liable technique to asses where urban heat islands and hot spots are located in cities. As an application area, in Izmir, it was found that the whole city was in high level of surface temperature as it was over 28 °C during the summer times. Beside this, the highest temperature values which go up to 47 °C are obtained at industrial regions especially where the iron-steel factories and the related industrial activities are.
Krehbiel, B.; Ericsson, S. A.; Wilson, C.; Caetano, A. R.; Paiva, S. R.
2017-01-01
Ecoregional differences contribute to genetic environmental interactions and impact animal performance. These differences may become more important under climate change scenarios. Utilizing genetic diversity within a species to address such problems has not been fully explored. In this study Hereford cattle were genotyped with 50K Bead Chip or 770K Bovine Bead Chip to test the existence of genetic structure in five U.S. ecoregions characterized by precipitation, temperature and humidity and designated: cool arid (CA), cool humid (CH), transition zone (TZ), warm arid (WA), and warm humid (WH). SNP data were analyzed in three sequential analyses. Broad genetic structure was evaluated with STRUCTURE, and ADMIXTURE software using 14,312 SNPs after passing quality control variables. The second analysis was performed using principal coordinate analysis with 66 Tag SNPs associated in the literature with various aspects of environmental stressors (e.g., heat tolerance) or production (e.g., milk production). In the third analysis TreeSelect was used with the 66 SNPs to evaluate if ecoregional allelic frequencies deviated from a central frequency and by so doing are indicative of directional selection. The three analyses suggested subpopulation structures associated with ecoregions from where animals were derived. ADMIXTURE and PCA results illustrated the importance of temperature and humidity and confirm subpopulation assignments. Comparisons of allele frequencies with TreeSelect showed ecoregion differences, in particular the divergence between arid and humid regions. Patterns of genetic variability obtained by medium and high density SNP chips can be used to acclimatize a temperately derived breed to various ecoregions. As climate change becomes an important factor in cattle production, this study should be used as a proof of concept to review future breeding and conservation schemes aimed at adaptation to climatic events. PMID:28459870
Brouwers, Elisabeth M.
1994-01-01
Shallow-marine ostracode assemblages from upper Pliocene sediments of the upper part of the Sagavanirktok Formation and lower part of the Gubik Formation record the last warm period that occurred before the onset of significant cooling of the Arctic Ocean and the initiation of Northern Hemisphere continental glaciation. The informally named Colvillian and Bigbendian transgressions represent the oldest deposits of the Gubik Formation and are dated, based on various lines of evidence, between 2.48 and 3 Ma. Ostracode faunas from the lower part of the Gubik Formation indicate a cold-temperate to subfrigid marine climate with summer bottom temperatures 1-4 C warmer than today. Deposits of the upper part of the Sagavanirktok Formation at Manning Point and Barter Island are older than Colvillian sediments but are believed to be late Pliocene in age and contain an ostracode fauna that has many species in common with the lower part of the Gubik Formation. The Sagavanirktok ostracode faunas indicate a cold-temperature to subfrigid marine climate, similar to that inferred for the lower part of the Gubik Formation, with summer bottom temperatures 1-3 C warmer than today. The opening of Bering Strait at about 3 Ma altered Arctic Ocean assemblage composition as Pacific species migrated into the Arctic and North Atlantic oceans. The admixture of evolutionarily distinct faunas from the Atlantic and Pacific oceans identifies Colvillian (and younger) faunas and provides a convenient reference horizon in the Alaskan fossil record. The marine climatic deterioration that followed the Bigbendian appears to have been abrupt and is documented by biotic turnover, with large numbers of species extinctions and first appearances of new species. The change in species composition can be attributed to the cooling of the Arctic Ocean during the late Pliocene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul
2014-01-09
Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon,more » humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.« less
DOT National Transportation Integrated Search
1996-09-27
This research has shown that a Grade 70 construction steel of 1/2- to 1-inch plate thicknesses can be produced without a quench and temper or accelerated cooling from hot-rolling if the Cu content in the steel is sufficiently high. Coherent very fine...
Eze, Samuel; Palmer, Sheila M; Chapman, Pippa J
2018-06-12
Grasslands store about 34% of the global terrestrial carbon (C) and are vital for the provision of various ecosystem services such as forage and climate regulation. About 89% of this grassland C is stored in the soil and is affected by management activities but the effects of these management activities on C storage under different climate settings are not known. In this study, we synthesized the effects of fertilizer (nitrogen and phosphorus) application, liming and grazing regime on the stock of SOC in global grasslands, under different site specific climatic settings using a meta-analysis of 341 datasets. We found an overall significant reduction (-8.5%) in the stock of SOC in global managed grasslands, mainly attributable to grazing (-15.0%), and only partially attenuated by fertilizer addition (+6.7%) and liming (+5.8%), indicating that management to improve biomass production does not contribute sufficient organic matter to replace that lost by direct removal by animals. Management activities had the greatest effect in the tropics (-22.4%) due primarily to heavy grazing, and the least effect in the temperate zone (-4.5%). The negative management effect reduced significantly with increasing mean annual temperature and mean annual precipitation in the temperate zone, suggesting that temperate grassland soils are potential C sinks in the face of climate change. For a sustainable management of grasslands that will provide adequate forage for livestock and mitigate climate change through C sequestration, we recommend that future tropical grassland management policies should focus on reducing the intensity of grazing. Also, to verify our findings for temperate grasslands and to better inform land management policy, future research should focus on the impacts of the projected climate change on net greenhouse gas exchange and potential climate feedbacks. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Güner, Tuncay H.; Bouchal, Johannes M.; Köse, Nesibe; Denk, Thomas
2017-04-01
During the course of an ongoing palaeobotanical investigation of the lignite mines of the Yataǧan Basin, Muǧla province, Turkey, the fossil leaves of the Eskihisar lignite mine were analysed using the Climate Leaf Analysis Multivariate Program (CLAMP). The investigated fossil leaves derive from the marls and clayey limestones (Sekköy Member) overlying the exploited lignite seam (uppermost Turgut Member). The age of the studied sedimentary rocks is well constrained by vertebrate fossils occuring in the main lignite seam (MN6 → Gomphoterium angustidens Cuvier, 1817; Percrocuta miocenica Pavlov & Thenius, 1965) and at the Yenieskihisar Mammal locality (MN7/8, uppermost Sekköy Member). 719 specimens were measured and assigned to 65 leaf morphotypes. Using this data, CLAMP reconstructed the following climate parameters: mean annual temperature (MAT) 12.58 (+/-1.5)°C, warm month mean temperature (WMMT) 23.72 (+/-2.5)°C, cold month mean temperature (WMMT) 2.29 (+/-2)°C, length of growing season (LGS) 7.52 (+/-0.75) month, mean growing season precipitation (GSP) 130.1 (+/-40) cm, precipitation during the three wettest months (3-WET) 67 (+/-25) cm, precipitation during the three driest months (3-DRY) 20.4 (+/-7.5) cm. The reconstructed parameters are too cool for tropical climates (the 18˚ C winter isotherm being a threshold for tropical climates) and indicate temperate conditions; climates fitting these parameters (Cfb according to the Köppen-Geiger climate classification) can be found today in regions known as "Tertiary relict areas" (e.g. Black sea coast of Northeast Turkey, eastern China, Japan). Based on a substantial amount of rainfall during the three driest months, it is further possible to exclude markedly seasonal climates such as a summer-dry and winter-wet Mediterranean climate and a summer-wet and winter-dry monsoon climate as commonly found along the southern foothills of the Himalayas and in southwestern China. Instead, a fully humid Cf climate is proposed that has only a weak seasonality in precipitation (lower precipitation in winter). The findings of our study provide valuable information for inferring palaeoenvironments of middle Miocene rich ungulate faunas in western Turkey (e.g. Paşalar), for which seasonal tropical and subtropical forest communities have been proposed (Andrews, 1990). The fossil floras of the Tınaz and Salihpaşalar lignite mines, representing the Tınaz sub-basin and the main basin of the wider Yataǧan Basin, are investigated at the moment, and a synthesis paper combining and comparing evidence from the macro floral and palynological data is soon to be submitted. Andrews. (1990) Palaeoecology of the Miocene fauna from Paşalar, Turkey. Journal of Human evolution 19:569-582.
NASA Astrophysics Data System (ADS)
Wang, Audrey; Price, David T.
2007-03-01
A simple integrated algorithm was developed to relate global climatology to distributions of tree plant functional types (PFT). Multivariate cluster analysis was performed to analyze the statistical homogeneity of the climate space occupied by individual tree PFTs. Forested regions identified from the satellite-based GLC2000 classification were separated into tropical, temperate, and boreal sub-PFTs for use in the Canadian Terrestrial Ecosystem Model (CTEM). Global data sets of monthly minimum temperature, growing degree days, an index of climatic moisture, and estimated PFT cover fractions were then used as variables in the cluster analysis. The statistical results for individual PFT clusters were found consistent with other global-scale classifications of dominant vegetation. As an improvement of the quantification of the climatic limitations on PFT distributions, the results also demonstrated overlapping of PFT cluster boundaries that reflected vegetation transitions, for example, between tropical and temperate biomes. The resulting global database should provide a better basis for simulating the interaction of climate change and terrestrial ecosystem dynamics using global vegetation models.
Predicting Pleistocene climate from vegetation in North America
NASA Astrophysics Data System (ADS)
Loehle, C.
2007-02-01
Climates at the Last Glacial Maximum have been inferred from fossil pollen assemblages, but these inferred climates are colder for eastern North America than those produced by climate simulations. It has been suggested that low CO2 levels could account for this discrepancy. In this study biogeographic evidence is used to test the CO2 effect model. The recolonization of glaciated zones in eastern North America following the last ice age produced distinct biogeographic patterns. It has been assumed that a wide zone south of the ice was tundra or boreal parkland (Boreal-Parkland Zone or BPZ), which would have been recolonized from southern refugia as the ice melted, but the patterns in this zone differ from those in the glaciated zone, which creates a major biogeographic anomaly. In the glacial zone, there are few endemics but in the BPZ there are many across multiple taxa. In the glacial zone, there are the expected gradients of genetic diversity with distance from the ice-free zone, but no evidence of this is found in the BPZ. Many races and related species exist in the BPZ which would have merged or hybridized if confined to the same refugia. Evidence for distinct southern refugia for most temperate species is lacking. Extinctions of temperate flora were rare. The interpretation of spruce as a boreal climate indicator may be mistaken over much of the region if the spruce was actually an extinct temperate species. All of these anomalies call into question the concept that climates in the zone south of the ice were extremely cold or that temperate species had to migrate far to the south. An alternate hypothesis is that low CO2 levels gave an advantage to pine and spruce, which are the dominant trees in the BPZ, and to herbaceous species over trees, which also fits the observed pattern. Thus climate reconstruction from pollen data is probably biased and needs to incorporate CO2 effects. Most temperate species could have survived across their current ranges at lower abundance by retreating to moist microsites. These would be microrefugia not easily detected by pollen records, especially if most species became rare. These results mean that climate reconstructions based on terrestrial plant indicators will not be valid for periods with markedly different CO2 levels.
Microgeographic factors and patterns of aeroallergen sensitisation.
Kam, Andrew W; Tong, Winnie Wy; Christensen, Jenna M; Katelaris, Constance H; Rimmer, Janet; Harvey, Richard J
2016-10-03
To examine patterns of airborne allergen (aeroallergen) sensitisation in the Greater Sydney area (Sydney), and their relationships with climate, coastal proximity and environment (urban v regional). Retrospective cross-sectional study of patients who underwent aeroallergen skin prick testing at three Sydney allergy clinics, January 2001 - October 2014. Proportions of patients sensitised to specific aeroallergen types; relationships between sensitisation patterns and climate and geography. Of 1421 patients who met the selection criteria (mean age, 28.3 years [SD, 21.3]; 53.3% were female), 1092 (76.8%) were sensitised to at least one aeroallergen. Those living less than 15 km from the coast were less commonly sensitised to cockroach (< 15 km, 15.1%; 15-30 km, 40.0%; > 30 km, 39.7%; P < 0.001) and grass aeroallergens (< 15 km, 36.5%; 15-30 km, 52.2%; > 30 km, 58.1%; P < 0.001) than patients further inland; the same applied to mould, weed and tree aeroallergens. Subtropical grass sensitisation was more common in temperate/warm summer climates (about 50%) than in temperate/hot summer (27.1%) or subtropical climates (15%) (P < 0.001), and less common in urban (36.7%) than in regional areas (54%; P = 0.014). 72.4% of grass-sensitised patients were co-sensitised to both temperate and subtropical grasses. A selected ten-aeroallergen skin prick test panel identified 98.5% of atopic patients in this Sydney sample. Environmental and geographic factors are associated with different patterns of allergic sensitisation in Sydney. Extensive co-sensitisation to subtropical and temperate grasses has implications for immunotherapy in Australia, where most currently available therapies are based on formulations directed at temperate grasses only.
Lameris, Thomas K; Jochems, Femke; van der Graaf, Alexandra J; Andersson, Mattias; Limpens, Juul; Nolet, Bart A
2017-04-01
During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen-rich forage plants, following a "green wave" of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be larger at the Arctic breeding grounds than in temperate wintering grounds, potentially disrupting this green wave and causing waterfowl to mistime their arrival on the breeding grounds. We studied the potential effect of climate warming on timing of food peaks along the migratory flyway of the Russian population of barnacle geese using a warming experiment with open-top chambers. We measured the effect of 1.0-1.7°C experimental warming on forage plant biomass and nitrogen concentration at three sites along the migratory flyway (temperate wintering site, temperate spring stopover site, and Arctic breeding site) during 2 months for two consecutive years. We found that experimental warming increased biomass accumulation and sped up the decline in nitrogen concentration of forage plants at the Arctic breeding site but not at temperate wintering and stop-over sites. Increasing spring temperatures in the Arctic will thus shorten the food peak of nitrogen-rich forage at the breeding grounds. Our results further suggest an advance of the local food peak in the Arctic under 1-2°C climate warming, which will likely cause migrating geese to mistime their arrival at the breeding grounds, particularly considering the Arctic warms faster than the temperate regions. The combination of a shorter food peak and mistimed arrival is likely to decrease goose reproductive success under climate warming by reducing growth and survival of goslings after hatching.
Deriving Vegetation Dynamics of Natural Terrestrial Ecosystems from MODIS NDVI/EVI Data over Turkey.
Evrendilek, Fatih; Gulbeyaz, Onder
2008-09-01
The 16-day composite MODIS vegetation indices (VIs) at 500-m resolution for the period between 2000 to 2007 were seasonally averaged on the basis of the estimated distribution of 16 potential natural terrestrial ecosystems (NTEs) across Turkey. Graphical and statistical analyses of the time-series VIs for the NTEs spatially disaggregated in terms of biogeoclimate zones and land cover types included descriptive statistics, correlations, discrete Fourier transform (DFT), time-series decomposition, and simple linear regression (SLR) models. Our spatio-temporal analyses revealed that both MODIS VIs, on average, depicted similar seasonal variations for the NTEs, with the NDVI values having higher mean and SD values. The seasonal VIs were most correlated in decreasing order for: barren/sparsely vegetated land > grassland > shrubland/woodland > forest; (sub)nival > warm temperate > alpine > cool temperate > boreal = Mediterranean; and summer > spring > autumn > winter. Most pronounced differences between the MODIS VI responses over Turkey occurred in boreal and Mediterranean climate zones and forests, and in winter (the senescence phase of the growing season). Our results showed the potential of the time-series MODIS VI datasets in the estimation and monitoring of seasonal and interannual ecosystem dynamics over Turkey that needs to be further improved and refined through systematic and extensive field measurements and validations across various biomes.
NASA Astrophysics Data System (ADS)
Gonzalez, P.; Eigenbrod, F.; Early, R.; Wang, F.; Notaro, M.; Williams, J. W.
2016-12-01
U.S. national parks conserve globally unique biodiversity. Yet, historical impacts of climate change and future vulnerabilities threaten species and ecosystems across this system of protected areas. Spatial analyses of historical climate and downscaled future climate projections show climate trends across the system. Spatial analyses of vegetation and wildfire (using a dynamic global vegetation model), habitat fragmentation (using remote sensing-derived land cover), and invasive species introduction and establishment show patterns of future vulnerability across the 50 U.S. states and 412 U.S. national parks. Results reveal high historical and projected temperature increases and precipitation changes, projected increases of wildfire across western U.S. national parks, high vulnerability to biome shifts and habitat fragmentation of up to one-third of National Park System area, and high vulnerability to invasive species of one-ninth of National Park System area. Ecosystems in the Sierra Nevada, Cascade Range, desert Southwest, and Laurentian Great Lakes are highly vulnerable to upslope and poleward shifts of the North America sequence of biomes: temperate shrubland - temperate broadleaf forest - temperate mixed forest - temperate conifer forest - subalpine and boreal forest - alpine and tundra. These areas include Grand Canyon, Mount Rainier, and Yosemite National Parks. The southwestern U.S., including Grand Canyon and Sequoia National Parks, is vulnerable to increases in wildfire. The eastern and midwestern U.S., including Great Smokey Mountains and Voyageurs National Parks, are highly vulnerable to invasive species. These results identify vulnerable areas and potential refugia to help prioritize areas for future natural resource management actions and biodiversity conservation in U.S. national parks.
Short winters threaten temperate fish populations
Farmer, Troy M.; Marschall, Elizabeth A.; Dabrowski, Konrad; Ludsin, Stuart A.
2015-01-01
Although climate warming is expected to benefit temperate ectotherms by lengthening the summer growing season, declines in reproductive success following short, warm winters may counter such positive effects. Here we present long-term (1973–2010) field patterns for Lake Erie yellow perch, Perca flavescens, which show that failed annual recruitment events followed short, warm winters. Subsequent laboratory experimentation and field investigations revealed how reduced reproductive success following short, warm winters underlie these observed field patterns. Following short winters, females spawn at warmer temperatures and produce smaller eggs that both hatch at lower rates and produce smaller larvae than females exposed to long winters. Our research suggests that continued climate warming can lead to unanticipated, negative effects on temperate fish populations. PMID:26173734
Thermal dependence of locomotor performance in two cool-temperate lizards.
Gaby, Mya J; Besson, Anne A; Bezzina, Chalene N; Caldwell, Amanda J; Cosgrove, Sarai; Cree, Alison; Haresnape, Steff; Hare, Kelly M
2011-09-01
Temperate-zone ectotherms experience varying or very low ambient temperatures and may have difficulty in attaining preferred body temperatures. Thus, adaptations to reduce the thermal dependence of physiological processes may be present. We measured the optimal temperature range for sprint speed and compared it with the selected body temperatures (T (sel)) of two sympatric, cool-temperate lizards: the diurnal skink Oligosoma maccanni and the primarily nocturnal gecko Woodworthia (previously Hoplodactylus) "Otago/Southland". We also investigated whether time-of-day influenced sprint speed. Contrary to results for other reptiles, we found that time-of-day did not influence speed in either species. For each species, the optimal temperature range for sprinting and T (sel) overlapped, supporting the 'thermal coadaptation' hypothesis. However, the optimal range of temperatures for speed is not always attainable during activity by either species, which have limited opportunities to attain T (sel) in the field. The thermal sensitivity of sprint speed in these two species does not appear to have evolved to fully match their current thermal environment. More data on cold-adapted species are needed to fully understand physiological adaptation in ectotherms.
NASA Astrophysics Data System (ADS)
Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Giri, A.
2017-09-01
The effect of weld groove design and heat treatment on microstructure evolution and Charpy toughness of P91 pipe weldments was studied. The P91 pipe weldments were subjected to subcritical post weld heat treatment (760 °C-2 h) and normalizing/tempering conditions (normalized-1040 °C/40 min, air cooled; tempered 760 °C/2 h, air cooled) were employed. The influence of subsequent PWHT and N&T treatment on the microstructure of various zone of P91 pipe weldments were also investigated. The present investigation also described the effect of PWHT and N&T treatment on hardness, grain size, precipitate size, inter-particle spacing and fraction area of precipitates present in each zone of P91 pipe weldments. The result indicated great impact of heat treatment on the Charpy toughness and microstructure evolution of P91 weldments. The N&T treatment was found to be more effective heat treatment compared to subsequent PWHT. Charpy toughness value was found to be higher for narrow-groove design as compared to conventional V-groove design.
NASA Astrophysics Data System (ADS)
Wang, Meng; Liu, Zhenyu
2017-07-01
A novel process comprised of ultra-fast cooling after control rolling, intercritical quenching and tempering (UFC-LT) was applied to 3.5%Ni steel. In addition, quenching and tempering (QT) treatment was conducted in comparison. The present study focuses on the relationship between the microstructure and cryogenic toughness of 3.5%Ni steel. Results show that the microstructure of steel treated by UFC-LT consisted of tempered martensite, intercritical ferrite and two types of reversed austenite (RA) (needle shape and blocky). Compared to the QT sample, the UFC-LT sample's ultimate tensile strength decreased slightly, while its elongation increased from 32.3 to 35.7%, and its Charpy absorption energy at -135 °C increased from 112 to 237 J. The ductile-brittle transition temperature of UFC-LT sample was lower than that of the QT sample by 18 °C. The superior cryogenic toughness after UFC-LT compared to QT treatment can be attributed to the dissolution of cementite, approximately 3.0% increase in RA and the decrease in effective grain size.
Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Peng; Yin, Rongxin; Brown, Carrie
2009-06-01
The potential for using building thermal mass for load shifting and peak energy demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Previous Lawrence Berkeley National Laboratory research has demonstrated that the approach is very effective in cool and moderately warm climate conditions (California Climate Zones 2-4). However, this method had not been tested in hotter climate zones. This project studied the potential of pre-cooling the building early in the morning and increasing temperature setpoints during peak hours to reduce cooling-related demand in two typical office buildings in hotter California climates ? one in Visaliamore » (CEC Climate Zone 13) and the other in San Bernardino (CEC Climate Zone 10). The conclusion of the work to date is that pre-cooling in hotter climates has similar potential to that seen previously in cool and moderate climates. All other factors being equal, results to date indicate that pre-cooling increases the depth (kW) and duration (kWh) of the possible demand shed of a given building. The effectiveness of night pre-cooling in typical office building under hot weather conditions is very limited. However, night pre-cooling is helpful for office buildings with an undersized HVAC system. Further work is required to duplicate the tests in other typical buildings and in other hot climate zones and prove that pre-cooling is truly effective.« less
Gómez, Camila; Tenorio, Elkin A.; Montoya, Paola; Cadena, Carlos Daniel
2016-01-01
Differences in life-history traits between tropical and temperate lineages are often attributed to differences in their climatic niche dynamics. For example, the more frequent appearance of migratory behaviour in temperate-breeding species than in species originally breeding in the tropics is believed to have resulted partly from tropical climatic stability and niche conservatism constraining tropical species from shifting their ranges. However, little is known about the patterns and processes underlying climatic niche evolution in migrant and resident animals. We evaluated the evolution of overlap in climatic niches between seasons and its relationship to migratory behaviour in the Parulidae, a family of New World passerine birds. We used ordination methods to measure seasonal niche overlap and niche breadth of 54 resident and 49 migrant species and used phylogenetic comparative methods to assess patterns of climatic niche evolution. We found that despite travelling thousands of kilometres, migrants tracked climatic conditions across the year to a greater extent than tropical residents. Migrant species had wider niches than resident species, although residents as a group occupied a wider climatic space and niches of migrants and residents overlapped extensively. Neither breeding latitude nor migratory distance explained variation among species in climatic niche overlap between seasons. Our findings support the notion that tropical species have narrower niches than temperate-breeders, but does not necessarily constrain their ability to shift or expand their geographical ranges and become migratory. Overall, the tropics may have been historically less likely to experience the suite of components that generate strong selection pressures for the evolution of migratory behaviour. PMID:26865303
Legume-rhizobia signal exchange: promiscuity and environmental effects.
Lira, Mario A; Nascimento, Luciana R S; Fracetto, Giselle G M
2015-01-01
Although signal exchange between legumes and their rhizobia is among the best-known examples of this biological process, most of the more characterized data comes from just a few legume species and environmental stresses. Although a relative wealth of information is available for some model legumes and some of the major pulses such as soybean, little is known about tropical legumes. This relative disparity in current knowledge is also apparent in the research on the effects of environmental stress on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a relatively large body of research, whereas high-temperature stresses and drought are not nearly as well understood. Both tropical legumes and their environmental stress-induced effects are increasingly important due to global population growth (the demand for protein), climate change (increasing temperatures and more extreme climate behavior), and urbanization (and thus heavy metals). This knowledge gap for both legumes and their environmental stresses is compounded because whereas most temperate legume-rhizobia symbioses are relatively specific and cultivated under relatively stable environments, the converse is true for tropical legumes, which tend to be promiscuous, and grow in highly variable conditions. This review will clarify some of this missing information and highlight fields in which further research would benefit our current knowledge.
Heat stress in cows at pasture and benefit of shade in a temperate climate region
NASA Astrophysics Data System (ADS)
Veissier, Isabelle; Van laer, Eva; Palme, Rupert; Moons, Christel P. H.; Ampe, Bart; Sonck, Bart; Andanson, Stéphane; Tuyttens, Frank A. M.
2017-11-01
Under temperate climates, cattle are often at pasture in summer and are not necessarily provided with shade. We aimed at evaluating in a temperate region (Belgium) to what extent cattle may suffer from heat stress (measured through body temperature, respiration rate and panting score, cortisol or its metabolites in milk, and feces on hot days) and at assessing the potential benefits of shade. During the summer of 2012, 20 cows were kept on pasture without access to shade. During the summer of 2011, ten cows had access to shade (young trees with shade cloth hung between them), whereas ten cows had no access. Climatic conditions were quantified by the Heat Load Index (HLI). In animals without access to shade respiration rates, panting scores, rectal temperatures, and milk cortisol concentrations increased as HLI increased in both 2011 and 2012. Fecal cortisol metabolites varied with HLI in 2011 only. When cattle had access to shade, their use of shade increased as the HLI increased. This effect was more pronounced during the last part of the summer, possibly due to better acquaintance with the shade construction. In this case, shade use increased to 65% at the highest HLI (79). Shade tempered the effects on respiration, rectal temperature, and fecal cortisol metabolites. Milk cortisol was not influenced by HLI for cows using shade for > 10% of the day. Therefore, even in temperate areas, cattle may suffer from heat when they are at pasture in summer and providing shade can reduce such stress.
Ma, Lin-Na; Lü, Xiao-Tao; Liu, Yang; Guo, Ji-Xun; Zhang, Nan-Yi; Yang, Jian-Qin; Wang, Ren-Zhong
2011-01-01
Background Both climate warming and atmospheric nitrogen (N) deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood. Methodology/Principal Findings A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland. Conclusions/Significance Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem. PMID:22096609
Influence of climate change on the flowering of temperate fruit trees
NASA Astrophysics Data System (ADS)
Perez-Lopez, D.; Ruiz-Ramos, M.; Sánchez-Sánchez, E.; Centeno, A.; Prieto-Egido, I.; Lopez-de-la-Franca, N.
2012-04-01
It is well known that winter chilling is necessary for the flowering of temperate trees. The chilling requirement is a criterion for choosing a species or variety at a given location. Also chemistry products can be used for reducing the chilling-hours needs but make our production more expensive. This study first analysed the observed values of chilling hours for some representative agricultural locations in Spain for the last three decades and their projected changes under climate change scenarios. Usually the chilling is measured and calculated as chilling-hours, and different methods have been used to calculate them (e.g. Richarson et al., 1974 among others) according to the species considered. For our objective North Carolina method (Shaltout and Unrath, 1983) was applied for apples, Utah method (Richardson et al. 1974) for peach and grapevine and the approach used by De Melo-Abreu et al. (2004) for olive trees. The influence of climate change in temperate trees was studied by calculating projections of chilling-hours with climate data from Regional Climate Models (RCMs) at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/). These projections will allow for analysing the modelled variations of chill-hours between 2nd half of 20C and 1st half of 21C at the study locations.
Fouch, T.D.; Carter, L.D.; Kunk, Michael J.; Smith, C.A.S.; White, J.M.
1994-01-01
Cenozoic strata exposed along the Porcupine River between the Upper Ramparts and Canyon Village, Alaska, can be divided into five unconformity-bounded units (sequences) which are: lower and middle Miocene unit A, the white sandy fluvial sequence with peat beds; middle Miocene unit B, the basalt sequence-part B1 is basalt, and part B2 is organic-rich sedimentary beds; upper Miocene unit C, mudrock-dominated lake sequence; late Miocene or Pliocene to Pleistocene unit D, terrace gravels, detrital organic matter and associated sediments, and Holocene unit E, mixed sand and gravel-rich sediment and other sedimentary material including peat and eolian silt. The sequence (unit A) of lower and middle Miocene fluvial deposits formed in streams and on flood plains, just before the inception of local volanism. Fossil pollen from unit A suggests conifer-dominated regional forests and cool temperate climates. Peat beds and lake deposits from unit B contain pollen that indicates a warmer temperate climate coinciding with the middle Miocene thermal maximum. The lake deposits (unit C) downstream from the basalts accumulated in a small basin which resulted from a hydrologic system that was dammed in the late Miocene but breached soon thereafter. The lower part of the terrace gravels (unit D) expresses breaching of the dammed hydrologic system (of unit C). The Porcupine River became a major tributary of the Yukon River in late Pleistocene time when Laurentide ice blocked drainage from the Yukon interior basins causing meltwater to spill over the low divide separating it from the Porcupine River drainage initiating erosion and capture of the Yukon interior basins. ?? 1994.
Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia
NASA Astrophysics Data System (ADS)
Sun, Jimin; Ni, Xijun; Bi, Shundong; Wu, Wenyu; Ye, Jie; Meng, Jin; Windley, Brian F.
2014-12-01
The Eocene-Oligocene Boundary (~34 million years ago) marks one of the largest extinctions of marine invertebrates in the world oceans and of mammalian fauna in Europe and Asia in the Cenozoic era. A shift to a cooler climate across this boundary has been suggested as the cause of this extinction in the marine environment, but there is no manifold evidence for a synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in a single terrestrial site in Asia to support this hypothesis. Here we report new data of magnetostratigraphy, pollen and climatic proxies in the Asian interior across the Eocene-Oligocene Boundary; our results show that climate change forced a turnover of flora and fauna, suggesting there was a change from large-size perissodactyl-dominant fauna in forests under a warm-temperate climate to small rodent/lagomorph-dominant fauna in forest-steppe in a dry-temperate climate across the Eocene-Oligocene Boundary. These data provide a new terrestrial record for this significant Cenozoic environmental event.
Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia.
Sun, Jimin; Ni, Xijun; Bi, Shundong; Wu, Wenyu; Ye, Jie; Meng, Jin; Windley, Brian F
2014-12-12
The Eocene-Oligocene Boundary (~34 million years ago) marks one of the largest extinctions of marine invertebrates in the world oceans and of mammalian fauna in Europe and Asia in the Cenozoic era. A shift to a cooler climate across this boundary has been suggested as the cause of this extinction in the marine environment, but there is no manifold evidence for a synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in a single terrestrial site in Asia to support this hypothesis. Here we report new data of magnetostratigraphy, pollen and climatic proxies in the Asian interior across the Eocene-Oligocene Boundary; our results show that climate change forced a turnover of flora and fauna, suggesting there was a change from large-size perissodactyl-dominant fauna in forests under a warm-temperate climate to small rodent/lagomorph-dominant fauna in forest-steppe in a dry-temperate climate across the Eocene-Oligocene Boundary. These data provide a new terrestrial record for this significant Cenozoic environmental event.
Climate and Vegetation Effects on Temperate Mountain Forest Evapotranspiration
Current forest composition may be resilient to typical climatic variability; however, climate trends, combined with projected changes in species composition, may increase tree vulnerability to water stress. A shift in forest composition toward tree species with higher water use h...
The interaction between freezing tolerance and phenology in temperate deciduous trees
Vitasse, Yann; Lenz, Armando; Körner, Christian
2014-01-01
Temperate climates are defined by distinct temperature seasonality with large and often unpredictable weather during any of the four seasons. To thrive in such climates, trees have to withstand a cold winter and the stochastic occurrence of freeze events during any time of the year. The physiological mechanisms trees adopt to escape, avoid, and tolerate freezing temperatures include a cold acclimation in autumn, a dormancy period during winter (leafless in deciduous trees), and the maintenance of a certain freezing tolerance during dehardening in early spring. The change from one phase to the next is mediated by complex interactions between temperature and photoperiod. This review aims at providing an overview of the interplay between phenology of leaves and species-specific freezing resistance. First, we address the long-term evolutionary responses that enabled temperate trees to tolerate certain low temperature extremes. We provide evidence that short term acclimation of freezing resistance plays a crucial role both in dormant and active buds, including re-acclimation to cold conditions following warm spells. This ability declines to almost zero during leaf emergence. Second, we show that the risk that native temperate trees encounter freeze injuries is low and is confined to spring and underline that this risk might be altered by climate warming depending on species-specific phenological responses to environmental cues. PMID:25346748
USDA-ARS?s Scientific Manuscript database
Agroforestry systems offer many ecosystem benefits, but such systems have previously been marginalized in temperate environments due to overriding economic goals and perceived management complexity. In view of adaptation to a changing climate, agroforestry systems offer advantages that require quan...
NASA Astrophysics Data System (ADS)
Stock, Svenja; Köster, Moritz; Dippold, Michaela; Boy, Jens; Matus, Francisco; Merino, Carolina; Nájera, Francisco; Spielvogel, Sandra; Gorbushina, Anna; Kuzyakov, Yakov
2017-04-01
The Chilean ecosystems provide a unique study area to investigate biotic controls on soil organic matter (SOM) decomposition and mineral weathering depending on climate (from hyper arid to temperate humid). Microorganisms play a crucial role in the SOM decomposition, nutrient release and cycling. By means of extracellular enzymes microorganisms break down organic compounds and provide nutrients for plants. Soil moisture (abiotic factor) and root carbon (biotic factor providing easily available energy source for microorganisms), are important factors for microbial decomposition of SOM and show strong gradients along the investigated climatic gradient. A high input of root carbon increases microbial activity and enzyme production, and facilitates SOM breakdown and nutrient release The aim of this study was to determine the potential enzymatic SOM decomposition and nutrient release depending on root proximity and precipitation. C and N contents, δ13C and δ15N values, and kinetics (Vmax, Km) of six extracellular enzymes, responsible for C, N, and P cycles, were quantified in vertical (soil depth) and horizontal (from roots to bulk soil) gradients in two climatic regions: within a humid temperate forest and a semiarid open forest. The greater productivity of the temperate forest was reflected by higher C and N contents compared to the semiarid forest. Regression lines between δ13C and -[ln(%C)] showed a stronger isotopic fractionation from top- to subsoil at the semiarid open forest, indicating a faster SOM turnover compared to the humid temperate forest. This is the result of more favorable soil conditions (esp. temperature and smaller C/N ratios) in the semiarid forest. Depth trends of δ15N values indicated N limitation in both soils, though the limitation at the temperate site was stronger. The activity of enzymes degrading cellulose and hemicellulose increased with C content. Activity of enzymes involved in C, N and P cycles decreased from top- to subsoil and with distance to roots. Chitinase and acid phosphatase activities increased with increasing C contents and indicated a faster substrate turnover in soil under the temperate forest compared to the semiarid forest. In contrast, Tyrosin-aminopeptidase activities indicated a faster substrate turnover under semiarid forest than the temperate forest, and strongly increased with increasing N content. We conclude that the N availability and SOM turnover under semiarid open forest is higher than under humid temperate forest. The enzyme activities are depending on depth only indirectly and are driven mainly by soil C content, which is directly affected by root carbon input.
Crous, Kristine Y; Drake, John E; Aspinwall, Michael J; Sharwood, Robert E; Tjoelker, Mark G; Ghannoum, Oula
2018-05-27
Climate is an important factor limiting tree distributions and adaptation to different thermal environments may influence how tree populations respond to climate warming. Given the current rate of warming, it has been hypothesized that tree populations in warmer, more thermally stable climates may have limited capacity to respond physiologically to warming compared to populations from cooler, more seasonal climates. We determined in a controlled environment how several provenances of widely distributed Eucalyptus tereticornis and E. grandis adjusted their photosynthetic capacity to +3.5°C warming along their native distribution range (~16-38°S) and whether climate of seed origin of the provenances influenced their response to different growth temperatures. We also tested how temperature optima (T opt ) of photosynthesis and J max responded to higher growth temperatures. Our results showed increased photosynthesis rates at a standardized temperature with warming in temperate provenances, while rates in tropical provenances were reduced by about 40% compared to their temperate counterparts. Temperature optima of photosynthesis increased as provenances were exposed to warmer growth temperatures. Both species had ~30% reduced photosynthetic capacity in tropical and subtropical provenances related to reduced leaf nitrogen and leaf Rubisco content compared to temperate provenances. Tropical provenances operated closer to their thermal optimum and came within 3% of the T opt of J max during the daily temperature maxima. Hence, further warming may negatively affect C uptake and tree growth in warmer climates, whereas eucalypts in cooler climates may benefit from moderate warming. © 2018 John Wiley & Sons Ltd.
Mundim, Fabiane M; Bruna, Emilio M
2016-09-01
Climate change can drive major shifts in community composition and interactions between resident species. However, the magnitude of these changes depends on the type of interactions and the biome in which they take place. We review the existing conceptual framework for how climate change will influence tropical plant-herbivore interactions and formalize a similar framework for the temperate zone. We then conduct the first biome-specific tests of how plant-herbivore interactions change in response to climate-driven changes in temperature, precipitation, ambient CO2, and ozone. We used quantitative meta-analysis to compare predicted and observed changes in experimental studies. Empirical studies were heavily biased toward temperate systems, so testing predicted changes in tropical plant-herbivore interactions was virtually impossible. Furthermore, most studies investigated the effects of CO2 with limited plant and herbivore species. Irrespective of location, most studies manipulated only one climate change factor despite the fact that different factors can act in synergy to alter responses of plants and herbivores. Finally, studies of belowground plant-herbivore interactions were also rare; those conducted suggest that climate change could have major effects on belowground subsystems. Our results suggest that there is a disconnection between the growing literature proposing how climate change will influence plant-herbivore interactions and the studies testing these predictions. General conclusions will also be hampered without better integration of above- and belowground systems, assessing the effects of multiple climate change factors simultaneously, and using greater diversity of species in experiments.
Wang, Siyang; Xu, Xiaoting; Shrestha, Nawal; Zimmermann, Niklaus E.; Tang, Zhiyao; Wang, Zhiheng
2017-01-01
Analyzing how climate change affects vegetation distribution is one of the central issues of global change ecology as this has important implications for the carbon budget of terrestrial vegetation. Mapping vegetation distribution under historical climate scenarios is essential for understanding the response of vegetation distribution to future climatic changes. The reconstructions of palaeovegetation based on pollen data provide a useful method to understand the relationship between climate and vegetation distribution. However, this method is limited in time and space. Here, using species distribution model (SDM) approaches, we explored the climatic determinants of contemporary vegetation distribution and reconstructed the distribution of Chinese vegetation during the Last Glacial Maximum (LGM, 18,000 14C yr BP) and Middle-Holocene (MH, 6000 14C yr BP). The dynamics of vegetation distribution since the LGM reconstructed by SDMs were largely consistent with those based on pollen data, suggesting that the SDM approach is a useful tool for studying historical vegetation dynamics and its response to climate change across time and space. Comparison between the modeled contemporary potential natural vegetation distribution and the observed contemporary distribution suggests that temperate deciduous forests, subtropical evergreen broadleaf forests, temperate deciduous shrublands and temperate steppe have low range fillings and are strongly influenced by human activities. In general, the Tibetan Plateau, North and Northeast China, and the areas near the 30°N in Central and Southeast China appeared to have experienced the highest turnover in vegetation due to climate change from the LGM to the present. PMID:28426780
[Development of APSIM (agricultural production systems simulator) and its application].
Shen, Yuying; Nan, Zhibiao; Bellotti, Bill; Robertson, Michael; Chen, Wen; Shao, Xinqing
2002-08-01
Soil-crop simulator model is an effective tool for providing decision on agricultural management. APSIM (Agricultural Production Systems Simulator) was developed to simulate the biophysical process in farming system, and particularly in the economic and ecological features of the systems under climatic risk. The current literatures revealed that APSIM could be applied in wide zone, including temperate continental, temperate maritime, sub-tropic and arid climate, and Mediterranean climates, with the soil type of clay, duplex soil, vertisol, silt sandy, silt loam and silt clay loam. More than 20 crops have been simulated well. APSIM is powerful on describing crop structure, crop sequence, yield prediction, and quality control as well as erosion estimation under different planting pattern.
NASA Astrophysics Data System (ADS)
Nascimento, Micael; Ferreira, Marta S.; Pinto, João. L.
2017-08-01
In this work, an optical fiber sensing network has been developed to assess the impact of different environmental conditions on lithium batteries performance through the real time thermal monitoring. The battery is submitted to constant current charge and different discharge C-rates, under normal and abusive operating conditions. The results show that for the discharge C-rate of 5.77C, the LiB under cold and dry climates had 32.5% and 27.2% lower temperature variations, when compared with temperate climates, respectively. The higher temperature shift detected in the temperate climate was related to the battery better performance regarding discharge capacity and power capabilities.
Fauna and paleoecological setting of the La Meseta Formation (Eocene), Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldmann, R.M.; Wiedman, L.A.; Zinsmeister, W.J.
The La Meseta Formation, an Eocene sandstone from Seymour Island, Palmer Peninsula, Antarctica, has yielded a diverse fossil assemblage of body and trace fossils representative of a cool temperate, littoral to shallow sublittoral habitat. Over 61 taxa of macroinvertebrates, excluding gastropod body fossils, and more than 18 ichnogenera collected from the La Meseta represent the largest, most comprehensive and most diverse assemblage of Paleogene fossils from Antarctica. Included in the body fossil assemblage are species representative of at least 26 taxa of bivales, four taxa of echinoids, two of crinoids, two of ophiuroids, two of asteroids, one inarticulate and fourmore » articulate brachiopods, two barnacles, six decapod crustaceans, two cyclostome and two cheilostome bryozoans, a scaphopod and one coral. The traces include several burrow forms characteristic of the Skolithos ichnofacies of Seilacher (1967), several halo and rind burrows, gastropod predation borings, and abundant examples of teredid bivalve borings in lithified wood.Autecological analyses of the preserved organisms and environmental interpretations of the ichnogenera indicate a littoral to very shallow sublittoral environment of deposition, generally above wave base, for the la Meseta Sandstone. Modern congeneric descendants of the body fossils are known to inhabit both deep water and shallow water habitats. Of the 20 extant genera of bivalves reported from the La Meseta, 19 generally occur only in cool temperate habitats. Only one genus is known to occur south of 60/sup 0/. Most of the shallow water forms are known from cool temperate, austral regimes.« less
Warming and elevated CO2 lead to longer growing season in temperate grassland
USDA-ARS?s Scientific Manuscript database
Observational data over time suggest that as climate has warmed the growing season has lengthened, although experimental warming shortens early-growing species’ life cycles. Are other plant species living longer? We found that experimental warming in a temperate, semi-arid grassland led to earlier l...
Setting Goals for Urban Scale Climate Governance
NASA Astrophysics Data System (ADS)
Rosenthal, J. K.; Brunner, E.
2007-12-01
The impacts of climate change on temperate urban areas may include the increase in frequency and intensity of damaging extreme weather events, such as heat waves, hurricanes, heavy rainfall or drought, and coastal flooding and erosion, and potential adverse impacts on infrastructure, energy systems, and public health. Warmer average summertime temperatures are also associated with environmental and public health liabilities, such as decreased air quality and increased peak electrical demand. Simultaneously, a strong global trend towards urbanization of poverty exists, with increased challenges for local governments to protect and sustain the well-being of growing cities and populations currently stressed by poverty, health and economic inequities. In the context of these trends, research at the city scale has sought to understand the social and economic impacts of climate change and variability and to evaluate strategies in the built environment that might serve as adaptive and mitigative responses to climate change. We review the goals and outcomes of several municipal climate protection programs, generally categorized as approaches based on technological innovation (e.g., new materials); changes in behavior and public education (e.g., neighborhood watch programs and cooling centers); improvements in urban design (e.g., zoning for mixed land-use; the use of water, vegetation and plazas to reduce the urban heat island effect); and efforts to incentivize the use of non-fossil-fuel based energy sources. Urban initiatives in European and American cities are assessed within the context of the global collective efforts enacted by the Kyoto Protocol and United Nations Framework Convention on Climate Change. Our concern is to understand the active networked role of urban managers in climate policies and programs in relation to supranational objectives and non-state actors.
Development of a Modulated-Microstructure Heat Treatable Steel
1975-07-10
IV. Heat Treatment V. Results and Discussion V. 1 Properties of the Soft Layer Alloy, PS4 V. 2 Properties of High Speed Steel (REX 71) V. 3...the High Strength System. Fig. 6 Hardness of Tempered PS4 Alloy. Cast alloy hardened by austenitizing, at 2175^ quenched, and reheating three times...at 1000oF and then cooling in liquid nitrogen to form martensite. Fig. 7A Metallographic Section Through Impact Fracture of PS4 Tempered at 300oF
Local structure of high-coercivity Fe-Ni-Al alloys
NASA Astrophysics Data System (ADS)
Menushenkov, A. P.; Menushenkov, V. P.; Chernikov, R. V.; Sviridova, T. A.; Grishina, O. V.; Sidorov, V. V.
2011-04-01
Results of hard magnetic Fe-Ni-Al alloys after various thermal processing local structure researches by method of EXAFS-spectroscopy with use of synchrotron radiation at temperature 77 K are presented. It is established, that during cooling a firm solution with critical speed reorganization of a local environment of nickel relative to quickly tempered sample owing to stratification of a firm solution is observed. The subsequent aging at 780°C practically restores local structure, characteristic for quickly tempered sample, keeping thus rather high coercitive force.
Microbiomes of Ecologically Dominant Zooxanthellate Anthozoans: A Tropical-Temperate Comparison
NASA Astrophysics Data System (ADS)
Campbell, T. L.; Geller, J. B.; Schmeltzer, E.; Little, M.
2016-02-01
Marine bacteria are known to play an important role in cnidarian health, the cycling of organic matter and dimethylsulfionopropionate (DMSP) in reef ecosystems. The breadth of investigation surrounding this relationship in tropical reefs is vast; however, little work has been done in temperate non-reef building systems. Anthopleura elegantissima is a common zooxanthellate anthozoan on the Northeastern (NE) Pacific coast, also known to produce DMSP, yet relatively little is known about the bacterial community it harbors. In this study, we compare the bacterial communities of tropical Porites and Pocillopora species with the temperate Anthopleura elegantissima. We further compare bleached A. elegantissima polyps to polyps dark with zooxanthellae to investigate the complex relationship between host, symbiodinium, and bacteria. We sampled coral mucus from 45 individual coral colonies of Porites rus and Pocillopora damicornis, and Porites lutea in Moorea, French Polynesia and capitulum from 6 individual A. elegantissima polyps, which strikingly varied in color attributable to symbionts, from Moss Landing, California. All samples were processed according to the environmental microbiome project (EMP) protocols. The A. elegantissima samples also underwent microbial metagenome sequencing in an attempt to infer environmental function of these symbionts. In corals, major bacterial groups included Alteromonas, Rhodobacteraceae, and Vibrio. Vibrio, along with Rhodobacteraceae, are associated with DMSP metabolism. Pseudoalteromonadaceae varied greatly among samples, without correlation to species, similar to previous studies. Data analysis for anemones is in progress. DMSP and DMS have been studied for their role in forming cloud condensation nuclei, potentially leading to climate cooling. Anthopleura is thought to be the most abundant upper intertidal invertebrate in the NE Pacific, potentially making it an important player in coastal DMSP cycling.
Novel water-air circulation quenching process for AISI 4140 steel
NASA Astrophysics Data System (ADS)
Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai
2013-11-01
AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.
John R. Jones; Norbert V. DeByle
1985-01-01
The broad range of aspen in North America is evidence of its equally broad tolerance of wide variations in climate (Fowells 1965). Given open space for establishment and not too severe competition from other plants, aspen can survive from timberline on the tundra's edge to very warm temperate climates, and from the wet maritime climates of the coasts to very...
Heat stress in cows at pasture and benefit of shade in a temperate climate region.
Veissier, Isabelle; Van Laer, Eva; Palme, Rupert; Moons, Christel P H; Ampe, Bart; Sonck, Bart; Andanson, Stéphane; Tuyttens, Frank A M
2018-04-01
Under temperate climates, cattle are often at pasture in summer and are not necessarily provided with shade. We aimed at evaluating in a temperate region (Belgium) to what extent cattle may suffer from heat stress (measured through body temperature, respiration rate and panting score, cortisol or its metabolites in milk, and feces on hot days) and at assessing the potential benefits of shade. During the summer of 2012, 20 cows were kept on pasture without access to shade. During the summer of 2011, ten cows had access to shade (young trees with shade cloth hung between them), whereas ten cows had no access. Climatic conditions were quantified by the Heat Load Index (HLI). In animals without access to shade respiration rates, panting scores, rectal temperatures, and milk cortisol concentrations increased as HLI increased in both 2011 and 2012. Fecal cortisol metabolites varied with HLI in 2011 only. When cattle had access to shade, their use of shade increased as the HLI increased. This effect was more pronounced during the last part of the summer, possibly due to better acquaintance with the shade construction. In this case, shade use increased to 65% at the highest HLI (79). Shade tempered the effects on respiration, rectal temperature, and fecal cortisol metabolites. Milk cortisol was not influenced by HLI for cows using shade for > 10% of the day. Therefore, even in temperate areas, cattle may suffer from heat when they are at pasture in summer and providing shade can reduce such stress.
Ortiz-Gamino, Diana; Pérez-Rodríguez, Paulino
2016-01-01
The tropical earthworm Pontoscolex corethrurus (Rhinodrilidae, Oligochaeta) presents a broad distribution (e.g., 56 countries from four continents). It is generally assumed that temperature appears to limit the success of tropical exotic species in temperate climates. However, the distribution range of this species could advance towards higher elevations (with lower temperatures) where no tropical species currently occur. The aim of this study was to evaluate the soil and climatic variables that could be closely associated with the distribution of P. corethrurus in four sites along an altitudinal gradient in central Veracruz, Mexico. We predicted that the distribution of P. corethrurus would be more related to climate variables than edaphic parameters. Five sampling points (in the grassland) were established at each of four sites along an altitudinal gradient: Laguna Verde (LV), La Concepción (LC), Naolinco (NA) and Acatlán (AC) at 11–55, 992–1,025, 1,550–1,619 y 1,772–1,800 masl, respectively. The climate ranged from tropical to temperate along the altitudinal gradient. Ten earthworm species (5 Neotropical, 4 Palearctic and 1 Nearctic) were found along the gradient, belonging to three families (Rhinodrilidae, Megascolecide and Lumbricidae). Soil properties showed a significant association (positive for Ngrass, pH, permanent wilting point, organic matter and P; and negative for Total N, K and water-holding capacity) with the abundance of the earthworm community. Also there seems to be a relationship between climate and earthworm distribution along the altitudinal gradient. P. corethrurus was recorded at tropical (LV and LC) and temperate sites (NA) along the altitudinal gradient. Our results reveal that soil fertility determines the abundance of earthworms and site (climate) can act as a barrier to their migration. Further research is needed to determine the genetic structure and lineages of P. corethrurus along altitudinal gradients. PMID:27761348
Does climate undermine subjective well-being? A 58-nation study.
Fischer, Ronald; Van de Vliert, Evert
2011-08-01
The authors test predictions from climato-economic theories of culture that climate and wealth interact in their influence on psychological processes. Demanding climates (defined as colder than temperate and hotter than temperate climates) create potential threats for humans. If these demands can be met by available economic resources, individuals experience challenging opportunities for self-expression and personal growth and consequently will report lowest levels of ill-being. If threatening climatic demands cannot be met by resources, resulting levels of reported ill-being will be highest. These predictions are confirmed in nation-level means of health complaints, burnout, anxiety, and depression across 58 societies. Climate, wealth, and their interaction together account for 35% of the variation in overall subjective ill-being, even when controlling for known predictors of subjective well-being. Further investigations of the process suggest that cultural individualism does not mediate these effects, but subjective well-being may function as a mediator of the impact of ecological variables on ill-being.
Vahmani, P.; Sun, F.; Hall, A.; ...
2016-12-15
The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less
NASA Astrophysics Data System (ADS)
Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G.
2016-12-01
The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling. Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using ‘cool photovoltaics’.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vahmani, P.; Sun, F.; Hall, A.
The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less
NASA Astrophysics Data System (ADS)
Takahara, Hikaru; Igarashi, Yaeko; Hayashi, Ryoma; Kumon, Fujio; Liew, Ping-Mei; Yamamoto, Masanobu; Kawai, Sayuri; Oba, Tadamichi; Irino, Tomohisa
2010-10-01
High-resolution pollen records from Taiwan, Japan and Sakhalin document regional vegetation changes during Dansgaard-Oeschger (D-O) cycles during the last glacial. During the period from the cold phase (GS 18/19) to warm phase (D-O 19), the biome shift from temperate conifer forest to cold/cool conifer forest in Japan and from subtropical forest to temperate deciduous/conifer forest in Taiwan. The vegetation in D-O 17, cool mixed forest in central Japan, temperate deciduous broadleaf forest in western Japan and subtropical forest in Taiwan, indicates warm condition but not wet in all area. These vegetation changes lead to biome shift from MIS (Marine Isotope Stage) 4 to MIS 3. The abundance of Cryptomeria japonica and Fagus crenata in D-O 12 and D-O 8 indicates wet conditions brought by the strong summer monsoon through the Islands and high snowfall brought by the inflow of the Tsushima Warm Current into the Sea of Japan. The registration of other D-O warming events in MIS 3, although reflected by shifts in the abundance of key species, is not sufficient to produce changes in biomes. Development of cold deciduous forest in HS (Heinrich events) 1 in Sakhalin, Hokkaido and central Japan was conspicuous and was much larger than that in YD. Vegetation response in YD was small scale and within the same biome in the East Asian Islands. In D-O 1 at the termination of the last glacial, the same taxa that developed in the early Holocene, cold evergreen needleleaf trees in northern region, temperate deciduous broadleaf trees in central and western Japan, and warm-temperate evergreen trees in Taiwan, increased.
NASA Astrophysics Data System (ADS)
Karhu, Kristiina; Auffret, Marc; Dungait, Jennifer; Fraser, Fiona; Hopkins, David; Prosser, James; Singh, Brajesh; Subke, Jens-Arne; Wookey, Philip; Ågren, Göran; Hartley, Iain
2013-04-01
There are concerns that global warming may stimulate decomposition rates in soils, leading to a substantial release of CO2 to the atmosphere, and thus accelerating rates of 21st century climate change. However, there is growing recognition that adaptation of soil microbial communities to changes in their prevailing thermal regime may alter the potential rate of carbon release. Critically, recent studies have produced conflicting results in terms of whether adaptation of soil microbial communities to temperature reduces (thermal acclimation) or enhances (enhancement) the direct effects of temperature changes on decomposition rates. This lack of understanding adds considerably to uncertainty in predictions of the magnitude and direction of carbon-cycle feedbacks to climate change. Investigating the impacts of adaptation to temperature is currently only possible in controlled laboratory experiments, in which fluctuations in substrate availability can be minimised. We developed a approach which involves incubating soils at 3°C above mean annual temperature (MAT), until respiration rates stabilise, then cooling by 6°C (MAT -3 °C) and determining the potential for respiration rates to recover during extended exposure to lower temperatures. Our approach avoids the issues associated with substrate depletion in warming studies, but still tests whether adaptation enhances or reduces the direct impact of temperature on microbial activity. In contrast to many other studies, our initial research clearly demonstrated enhancement in Arctic soils. Here we present results from a new project which has extended the approach to soils sampled from contrasting Arctic, Boreal, temperate, Mediterranean and tropical ecosystems. This study represents one of the most extensive investigations undertaken into the potential for thermal acclimation, and/or enhancement, under contrasting environmental conditions. We also attempted to disentangle the mechanisms underlying the observed responses by quantifying changes in microbial biomass, microbial community structure , mass-specific activity, carbon-use efficiency, and the activities of enzymes involved in the break-down of labile versus more recalcitrant compounds. Our results from temperate, Mediterranean and tropical soils generally show little evidence of thermal acclimation, but responses were dependent on soil type and the temperature range investigated; at low temperatures and from organic soils, further evidence for enhancement was produced. The lack of evidence of acclimation suggests that there remains the potential for C losses from soils in temperate and tropical areas as the climate changes. Furthermore, results from incubations from Boreal and Arctic soils showed clear enhancement. This suggests that the long-term effect of warming on soil respiration rates in the Arctic could be larger than predicted based on short-term measurements of temperature sensitivity. Consequently, the substantial stores of carbon present in high-latitude soils may be even more vulnerable to climate warming than previously estimated. We also discuss the potential mechanisms underlying the observed patterns based on the extensive range of microbial assays carried out in this project.
Qian, H.; Song, J.-S.; Krestov, P.; Guo, Q.; Wu, Z.; Shen, X.; Guo, X.
2003-01-01
Aim: This paper aims at determining how different floristic elements (e.g. cosmopolitan, tropical, and temperate) change with latitude and major climate factors, and how latitude affects the floristic relationships between East Asia and the other parts of the world. Location: East Asia from the Arctic to tropical regions, an area crossing over 50?? of latitudes and covering the eastern part of China, Korea, Japan and the eastern part of Russia. Methods: East Asia is divided into forty-five geographical regions. Based on the similarity of their world-wide distributional patterns, a total of 2808 indigenous genera of seed plants found in East Asia were grouped into fourteen geographical elements, belonging to three major categories (cosmopolitan, tropical and temperate). The 50??-long latitudinal gradient of East Asia was divided into five latitudinal zones, each of c. 10??. Phytogeographical relationships of East Asia to latitude and climatic variables were examined based on the forty-five regional floras. Results: Among all geographical and climatic variables considered, latitude showed the strongest relationship to phytogeographical composition. Tropical genera (with pantropical, amphi-Pacific tropical, palaeotropical, tropical Asia-tropical Australia, tropical Asia-tropical Africa and tropical Asia geographical elements combined) accounted for c. 80% of the total genera at latitude 20??N and for c. 0% at latitude 55-60??N. In contrast, temperate genera (including holarctic, eastern Asia-North America, temperate Eurasia, temperate Asia, Mediterranean, western Asia to central Asia, central Asia and eastern Asia geographical elements) accounted for 15.5% in the southernmost latitude and for 80% at 55-60??N, from where northward the percentage tended to level off. The proportion of cosmopolitan genera increased gradually with latitude from 5% at the southernmost latitude to 21% at 55-60??N, where it levelled off northward. In general, the genera present in a more northerly flora are a subset of the genera present in a more southerly flora. Main conclusions: The large-scale patterns of phytogeography in East Asia are strongly related to latitude, which covaries with several climatic variables such as temperature. Evolutionary processes such as the adaptation of plants to cold climates and current and past land connections are likely responsible for the observed latitudinal patterns.
Sabater, Sergi; Elosegi, Arturo; Acuña, Vicenç; Basaguren, Ana; Muñoz, Isabel; Pozo, Jesús
2008-02-15
Climate affects many aspects of stream ecosystems, although the presence of riparian forests can buffer differences between streams in different climatic settings. In an attempt to measure the importance of climate, we compared the seasonal patterns of hydrology, input and storage of allochthonous organic matter, and the trophic structure (abundance of algae and macroinvertebrates) in two temperate forested streams, one Mediterranean, the other Atlantic. Hydrology played a leading role in shaping the trophic structure of both streams. Frequency and timing of floods and droughts determined benthic detritus storage. Inputs and retention of allochthonous organic matter were higher in the Atlantic stream, whereas chlorophyll concentration was lower because of stronger light limitation. Instead, light availability and scour of particulate organic matter during late winter favoured higher chlorophyll concentration in the Mediterranean stream. As a result, in the Mediterranean stream grazers were more prevalent and consumers showed a higher dependence on autotrophic materials. On the other hand, the Atlantic stream depended on allochthonous materials throughout the whole study period. The overall trophic structure showed much stronger seasonality in the Mediterranean than in the Atlantic stream, this being the most distinctive difference between these two types of temperate streams. The different patterns observed in the two streams are an indication that climatic differences should be incorporated in proper measurements of ecosystem health.
Urban spring phenology in the middle temperate zone of China: dynamics and influence factors.
Liang, Shouzhen; Shi, Ping; Li, Hongzhong
2016-04-01
Urbanization and its resultant urban heat island provide a means for evaluating the impact of climate warming on vegetation phenology. To predict the possible response of vegetation phenology to rise of temperature, it is necessary to investigate factors influencing vegetation phenology in different climate zones. The start of growing season (SOS) in seven cities located in the middle temperate humid, semi-humid, semi-arid, and arid climate zones in China was extracted based on satellite-derived normalized difference vegetation index (NDVI) data. The dynamics of urban SOS from 2000 to 2009 and the correlations between urban SOS and land surface temperatures (LST), precipitation, and sunshine duration, respectively, were analyzed. The results showed that there were no obvious change trends for urban SOS, and the heat island induced by urbanization can make SOS earlier in urban areas than that in adjacent rural areas. And the impact of altitude on SOS was also not negligible in regions with obvious altitude difference between urban and adjacent rural areas. Precipitation and temperature were two main natural factors influencing urban SOS in the middle temperate zone, but their impacts varied with climate zones. Only in Harbin city with lower sunshine duration in spring, sunshine duration had more significant impact than temperature and precipitation. Interference of human activities on urban vegetation was non-negligible, which can lower the dependence of urban SOS on natural climatic factors.
The analysis of critical cooling rate for high-rise building steel S460
NASA Astrophysics Data System (ADS)
Lu, Shiping; Chen, Xia; Li, Qun; Wang, Haibao; Gu, Linhao
2017-09-01
High-rise building steel S460 is an important structure steel.The product process of the steel is Quenching&Tempering. The critical cooling rate of steel is very important in heavy plate quenching process, and it is also the basis of the cooling process[1].The critical cooling rate of HSLA steel S460 is obtained from the Thermal simulation method,and the differences about the microstructure and properties of different cooling rate is also analyzed.In this article, the angle of the grain boundary and the average grain size are analyzed by EBSD under different cooling rate. The relationship between grain boundary angle and grain size with the cooling rate is obtained. According to the experiment,it provides the basis for the formulation of the quenching process of the industrial production.
The macroalgal carbonate factory at a cool-to-warm temperate marine transition, Southern Australia
NASA Astrophysics Data System (ADS)
James, Noel P.; Reid, Catherine M.; Bone, Yvonne; Levings, Andrew; Malcolm, Isabelle
2013-06-01
The shallow neritic seafloor to depths of ~ 30 m along the coast of southwestern Victoria Australia, is the site of rocky reefs on volcanic and aeolianite bathymetric highs. The region, located near the warm- to cool-temperate environmental transition, is a site of prolific macroalgae (kelp) growth. Kelps are most prolific and diverse in high-energy, open-ocean environments whereas broad-leafed seagrasses, at their cold-water eastern limit, are restricted to local protected embayments. The seagrasses are reduced to one species of Amphibolis whereas the kelps are diverse and include the large intertidal bull kelp (Durvillaea), not present in warmer waters. The macroalgal forest extends from the intertidal to ~ 30 mwd (metres water depth) as a series of distinct biomes; 1) the Peritidal, 2) the Phaeophyte Forest (0-17 mwd), 3) the Rhodophyte Thicket (17-15 mwd), and 4) the Invertebrate Coppice (> 25 mwd). The Phaeophyte Forest is partitioned into a Durvillaea zone (0-2 mwd), a Phyllospora zone (2-10 mwd) and an Ecklonia zone (10-17mwd). The two major habitats within each biome comprise 1) an upward facing illuminated surface that supports a macroalgal canopy over an understorey of coralline algae and herbivorous gastropods, and 2) a separate, cryptic, shaded habitat dominated by a diverse community of filter-feeding invertebrates. These communities produce two different sediments; 1) geniculate and encrusting corallines and diverse gastropods from the upper surface, and 2) bryozoans, molluscs, barnacles, chitons, serpulids, and benthic foraminifers from the shaded, cryptic habitats. These particles are blended together with the latter becoming proportionally more abundant with increasing depth. Results of this study, when integrated with recent investigations in warm-temperate (South Australia) and cool-temperate (New Zealand) environments now define carbonate sedimentology of the macroalgal reef depositional system in this part of the northern Southern Ocean.
Cryoprotection in dampwood termites (Termopsidae, Isoptera).
Lacey, Michael J; Lenz, Michael; Evans, Theodore A
2010-01-01
In contrast to the majority of the Order, the dampwood termites of the family Termopsidae found in colder regions can experience frost and snow, either in cool temperate areas at high latitudes (45 degrees ), or alpine areas at high elevations (>1000m). This suggests that dampwood termites are adapted to cold climates. We investigated this hypothesis in two dampwood termites, Porotermes adamsoni Froggatt and Stolotermes victoriensis Hill. We measured nest temperatures and atmospheric temperatures of their alpine habitat during winter, and measured survival and recovery at subzero temperatures. We also determined the minimum temperature at which these species remain active and the LT50 values. We used a novel gas chromatographic strategy to examine eight metabolites from individuals of both species collected in winter and summer to identify possible cryoprotectants. Both P. adamsoni and S. victoriensis had significantly higher levels of trehalose, a known cryoprotectant, in winter than in summer; in addition S. victoriensis also had higher levels of unsaturated fatty acid ligands in winter than in summer, consistent with patterns observed for cold adaptation in other organisms. These results are the first to reveal that dampwood termites are adapted to cold climates and use trehalose and unsaturated lipids as cryoprotectants.
G. Richard Strimbeck; Trygve D. Kjellsen; Paul G. Schaberg; Paula F. Murakami
2008-01-01
To provide baseline data for physiological studies of extreme low-temperature (LT) tolerance in boreal conifers, we profiled LT stress responses, liquid nitrogen (LN2)-quench tolerance, and sugar concentrations in foliage of boreal-temperate species pairs in the genera Abies, Picea and Pinus, growing in an...
USDA-ARS?s Scientific Manuscript database
Cyrtobagous salviniae is widely used in several countries, including the United States, South Africa and Australia, for the biological control of Salvinia molesta. Despite success in tropical and subtropical regions, C. salviniae establishment is inconsistent in temperate regions, and therefore popu...
L. Hao; Ge Sun; Yongqiang Liu; G. S. Zhou; J. H. Wan; L. B. Zhang; J. L. Niu; Y. H. Sang; J. J He
2015-01-01
Precipitation, evapotranspiration (ET), and soil moisture are the key controls for the productivity and functioning of temperate grassland ecosystems in Inner Mongolia, northern China. Quantifying the soil moisture dynamics and water balances in the grasslands is essential to sustainable grassland management under global climate change. We...
Gavin, Daniel G.; Starzomski, Brian M.
2016-01-01
While wildland fire is globally most common at the savannah-grassland ecotone, there is little evidence of fire in coastal temperate rainforests. We reconstructed fire activity with a ca 700-year fire history derived from fire scars and stand establishment from 30 sites in a very wet (up to 4000 mm annual precipitation) temperate rainforest in coastal British Columbia, Canada. Drought and warmer temperatures in the year prior were positively associated with fire events though there was little coherence of climate indices on the years of fires. At the decadal scale, fires were more likely to occur after positive El Niño-Southern Oscillation and Pacific Decadal Oscillation phases and exhibited 30-year periods of synchrony with the negative phase of the Arctic Oscillation. Fire frequency was significantly inversely correlated with the distance from former Indigenous habitation sites and fires ceased following cultural disorganization caused by disease and other European impacts in the late nineteenth century. Indigenous people were likely to have been the primary ignition source in this and many coastal temperate rainforest settings. These data are directly relevant to contemporary forest management and discredit the myth of coastal temperate rainforests as pristine landscapes. PMID:27853581
Projecting effects of climate change on marine systems: is the mean all that matters?
Boersma, Maarten; Grüner, Nico; Tasso Signorelli, Natália; Montoro González, Pedro E.; Wiltshire, Karen H.
2016-01-01
Studies dealing with the effects of changing global temperatures on living organisms typically concentrate on annual mean temperatures. This, however, might not be the best approach in temperate systems with large seasonality where the mean annual temperature is actually not experienced very frequently. The mean annual temperature across a 50-year, daily time series of measurements at Helgoland Roads (54.2° N, 7.9° E) is 10.1°C while seasonal data are characterized by a clear, bimodal distribution; temperatures are around 6°C in winter and 15°C in summer with rapid transitions in spring and autumn. Across those 50 years, the temperature at which growth is maximal for each single bloom event for 115 phytoplankton species (more than 6000 estimates of optimal temperature) mirrors the bimodal distribution of the in situ temperatures. Moreover, independent laboratory data on temperature optima for growth of North Sea organisms yielded similar results: a deviance from the normal distribution, with a gap close to the mean annual temperature, and more optima either above or below this temperature. We conclude that organisms, particularly those that are short-lived, are either adapted to the prevailing winter or summer temperatures in temperate areas and that few species exist with thermal optima within the periods characterized by rapid spring warming and autumn cooling. PMID:26791614
Projecting effects of climate change on marine systems: is the mean all that matters?
Boersma, Maarten; Grüner, Nico; Tasso Signorelli, Natália; Montoro González, Pedro E; Peck, Myron A; Wiltshire, Karen H
2016-01-27
Studies dealing with the effects of changing global temperatures on living organisms typically concentrate on annual mean temperatures. This, however, might not be the best approach in temperate systems with large seasonality where the mean annual temperature is actually not experienced very frequently. The mean annual temperature across a 50-year, daily time series of measurements at Helgoland Roads (54.2° N, 7.9° E) is 10.1°C while seasonal data are characterized by a clear, bimodal distribution; temperatures are around 6°C in winter and 15°C in summer with rapid transitions in spring and autumn. Across those 50 years, the temperature at which growth is maximal for each single bloom event for 115 phytoplankton species (more than 6000 estimates of optimal temperature) mirrors the bimodal distribution of the in situ temperatures. Moreover, independent laboratory data on temperature optima for growth of North Sea organisms yielded similar results: a deviance from the normal distribution, with a gap close to the mean annual temperature, and more optima either above or below this temperature. We conclude that organisms, particularly those that are short-lived, are either adapted to the prevailing winter or summer temperatures in temperate areas and that few species exist with thermal optima within the periods characterized by rapid spring warming and autumn cooling. © 2016 The Author(s).
Synchronous turnover of flora, fauna, and climate at the Eocene–Oligocene Boundary in Asia
Sun, Jimin; Ni, Xijun; Bi, Shundong; Wu, Wenyu; Ye, Jie; Meng, Jin; Windley, Brian F.
2014-01-01
The Eocene–Oligocene Boundary (~34 million years ago) marks one of the largest extinctions of marine invertebrates in the world oceans and of mammalian fauna in Europe and Asia in the Cenozoic era. A shift to a cooler climate across this boundary has been suggested as the cause of this extinction in the marine environment, but there is no manifold evidence for a synchronous turnover of flora, fauna and climate at the Eocene–Oligocene Boundary in a single terrestrial site in Asia to support this hypothesis. Here we report new data of magnetostratigraphy, pollen and climatic proxies in the Asian interior across the Eocene–Oligocene Boundary; our results show that climate change forced a turnover of flora and fauna, suggesting there was a change from large-size perissodactyl-dominant fauna in forests under a warm-temperate climate to small rodent/lagomorph-dominant fauna in forest-steppe in a dry-temperate climate across the Eocene–Oligocene Boundary. These data provide a new terrestrial record for this significant Cenozoic environmental event. PMID:25501388
Emerging Forms of Climate Protection Governance: Urban Initiatives in the European Union
NASA Astrophysics Data System (ADS)
Rosenthal, J. K.; Brunner, E.
2006-12-01
Changes in climate patterns are expected to pose increasing challenges for cities in the following decades, with adverse impacts on urban populations currently stressed by poverty, health and economic inequities. Simultaneously, a strong global trend towards urbanization of poverty exists, with increased challenges for local governments to protect and sustain the well-being of growing cities. In the context of these two overarching trends, interdisciplinary research at the city scale is prioritized for understanding the social impacts of climate change and variability and for the evaluation of strategies in the built environment that might serve as adaptive and mitigative responses to climate change. Urban managers, and transnational networks of municipalities and non-state actors, have taken an increasingly active role in climate protection, through research, policies, programs and agreements on adaptation and mitigation strategies. Concerns for urban impacts of climate change include the potential increase in frequency and intensity of damaging extreme weather events, such as heat waves, hurricanes, heavy rainfall or drought, and coastal flooding and erosion, and potentially adverse impacts on infrastructure, energy systems, and public health. Higher average summertime temperatures in temperate zone cities are also associated with environmental and public health liabilities such as decreased air quality and increased peak electrical demand. We review municipal climate protection programs, generally categorized as approaches based on technological innovation (e.g., new materials); changes in behavior and public education (e.g., use of cooling centers); and improvements in urban design (e.g., zoning for mixed land-use; the use of water, vegetation and plazas to reduce the urban heat island effect). Climate protection initiatives in three European cities are assessed within the context of the global collective efforts enacted by the Kyoto Protocol and United Nations Framework Convention on Climate Change. Initiatives in Stockholm, London and Milan provide evidence that local actions are inevitable and of central importance to mitigate and adapt to the adverse impacts of climate change, the urban heat island effect, and extreme weather events.
NASA Astrophysics Data System (ADS)
Bansal, Gaurav K.; Rajinikanth, V.; Ghosh, Chiradeep; Srivastava, V. C.; Kundu, S.; Ghosh Chowdhury, S.
2018-05-01
In the present investigation, an attempt has been made to stabilize austenite by carbon partitioning through quenching and nonisothermal partitioning (Q&P) technique. This will eliminate the need for additional heat-treatment facility to perform isothermal partitioning or tempering process. The presence of retained austenite in the microstructure helps in increasing the toughness, which in turn is expected to improve the abrasion resistance of steels. The carbon partitioning from different quench temperatures has been performed on two different alloys, with low-Si content (0.5 wt pct), in a salt bath furnace atmosphere, the cooling profile of which closely resembles the industrially produced hot-rolled coil cooling. The results show that the stabilization of retained austenite is possible and gives rise to increased work hardening, better impact toughness and abrasive wear loss comparable to that of a fully martensitic microstructure. In contrast, tempered martensite exhibits better wear properties at the expense of impact toughness.
Spring leaf phenology and the diurnal temperature range in a temperate maple forest.
Hanes, Jonathan M
2014-03-01
Spring leaf phenology in temperate climates is intricately related to numerous aspects of the lower atmosphere [e.g., surface energy balance, carbon flux, humidity, the diurnal temperature range (DTR)]. To further develop and improve the accuracy of ecosystem and climate models, additional investigations of the specific nature of the relationships between spring leaf phenology and various ecosystem and climate processes are required in different environments. This study used visual observations of maple leaf phenology, below-canopy light intensities, and micrometeorological data collected during the spring seasons of 2008, 2009, and 2010 to examine the potential influence of leaf phenology on a seasonal transition in the trend of the DTR. The timing of a reversal in the DTR trend occurred near the time when the leaves were unfolding and expanding. The results suggest that the spring decline in the DTR can be attributed primarily to the effect of canopy closure on daily maximum temperature. These findings improve our understanding of the relationship between leaf phenology and the diurnal temperature range in temperate maple forests during the spring. They also demonstrate the necessity of incorporating accurate phenological data into ecosystem and climate models and warrant a careful examination of the extent to which canopy phenology is currently incorporated into existing models.
A global climate niche for giant trees.
Scheffer, Marten; Xu, Chi; Hantson, Stijn; Holmgren, Milena; Los, Sietse O; van Nes, Egbert H
2018-04-15
Rainforests are among the most charismatic as well as the most endangered ecosystems of the world. However, although the effects of climate change on tropical forests resilience is a focus of intense research, the conditions for their equally impressive temperate counterparts remain poorly understood, and it remains unclear whether tropical and temperate rainforests have fundamental similarities or not. Here we use new global data from high precision laser altimetry equipment on satellites to reveal for the first time that across climate zones 'giant forests' are a distinct and universal phenomenon, reflected in a separate mode of canopy height (~40 m) worldwide. Occurrence of these giant forests (cutoff height > 25 m) is negatively correlated with variability in rainfall and temperature. We also demonstrate that their distribution is sharply limited to situations with a mean annual precipitation above a threshold of 1,500 mm that is surprisingly universal across tropical and temperate climates. The total area with such precipitation levels is projected to increase by ~4 million km 2 globally. Our results thus imply that strategic management could in principle facilitate the expansion of giant forests, securing critically endangered biodiversity as well as carbon storage in selected regions. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wang, F.; Gu, L.; Guha, A.; Han, J.; Warren, J.
2017-12-01
The current projections for global climate change forecast an increase in the intensity and frequency of extreme climatic events, such as droughts and short-term heat waves. Understanding the effects of short-term heat wave on photosynthesis process is of critical importance to predict global impacts of extreme weather event on vegetation. The diurnal and seasonal characteristics of SIF emitted from natural vegetation, e.g., forest and crop, have been studied at the ecosystem-scale, regional-scale and global-scale. However, the detailed response of SIF from different plant species under extremely weather event, especially short-term heat wave, have not been reported. The purpose of this study was to study the response of solar-induced chlorophyll fluorescence, gas exchange and continuous fluorescence at leaf scale for different temperate tree species. The short-term heatwave experiment was conducted using plant growth chamber (CMP6050, Conviron Inc., Canada). We developed an advanced spectral fitting method to obtain the plant SIF in the plant growth chamber. We compared SIF variation among different wavelength and chlorophyll difference among four temperate tree species. The diurnal variation of SIF signals at leaf-scales for temperate tree species are different under heat stress. The SIF response at leaf-scales and their difference for four temperate tree species are different during a cycle of short-term heatwave stress. We infer that SIF be used as a measure of heat tolerance for temperate tree species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Sallal, K.A.
1999-07-01
The study aims to explore the effect of different climates on window and skylight design in residential buildings. The study house is evaluated against climates that have design opportunities for passive systems, with emphasis on passive cooling. The study applies a variety of methods to evaluate the design. It has found that earth sheltering and night ventilation have the potential to provide 12--29% and 25--77% of the cooling requirements respectively for the study house in the selected climates. The reduction of the glazing area from 174 ft{sup 2} to 115 ft{sup 2} has different impacts on the cooling energy costmore » in the different climates. In climates such Fresno and Tucson, one should put the cooling energy savings as a priority for window design, particularly when determining the window size. In other climates such as Albuquerque, the priority of window design should be first given to heating savings requirements.« less
Wood phenology: from organ-scale processes to terrestrial ecosystem models
NASA Astrophysics Data System (ADS)
Delpierre, Nicolas; Guillemot, Joannès
2016-04-01
In temperate and boreal trees, a dormancy period prevents organ development during adverse climatic conditions. Whereas the phenology of leaves and flowers has received considerable attention, to date, little is known regarding the phenology of other tree organs such as wood, fine roots, fruits and reserve compounds. In this presentation, we review both the role of environmental drivers in determining the phenology of wood and the models used to predict its phenology in temperate and boreal forest trees. Temperature is a key driver of the resumption of wood activity in spring. There is no such clear dominant environmental cue involved in the cessation of wood formation in autumn, but temperature and water stress appear as prominent factors. We show that wood phenology is a key driver of the interannual variability of wood growth in temperate tree species. Incorporating representations of wood phenology in a terrestrial ecosystem model substantially improved the simulation of wood growth under current climate.
NASA Astrophysics Data System (ADS)
Melaas, Eli K.; Sulla-Menashe, Damien; Friedl, Mark A.
2018-03-01
The timing of leaf emergence is an important diagnostic of climate change impacts on ecosystems. Here we present the first continental-scale analysis of multidecadal changes in the timing of spring onset across North American temperate and boreal forests based on Landsat imagery. Our results show that leaf emergence in Eastern Temperate Forests has consistently trended earlier, with a median change of about 1 week over the 30 year study period. Changes in leaf emergence dates in boreal forests were more heterogeneous, with some sites showing trends toward later dates. Interannual variability in leaf emergence dates was strongly sensitive to springtime accumulated growing degree days across all sites, and geographic patterns of changes in onset dates were highly correlated with changes in regional springtime temperatures. These results provide a refined characterization of recent changes in springtime forest phenology and improve understanding regarding the sensitivity of North American forests to climate change.
Is ultra-violet radiation the main force shaping molecular evolution of varicella-zoster virus?
2011-01-01
Background Varicella (chickenpox) exhibits a characteristic epidemiological pattern which is associated with climate. In general, primary infections in tropical regions are comparatively less frequent among children than in temperate regions. This peculiarity regarding varicella-zoster virus (VZV) infection among certain age groups in tropical regions results in increased susceptibility during adulthood in these regions. Moreover, this disease shows a cyclic behavior in which the number of cases increases significantly during winter and spring. This observation further supports the participation of environmental factors in global epidemiology of chickenpox. However, the underlying mechanisms responsible for this distinctive disease behavior are not understood completely. In a recent publication, Philip S. Rice has put forward an interesting hypothesis suggesting that ultra-violet (UV) radiation is the major environmental factor driving the molecular evolution of VZV. Discussion While we welcomed the attempt to explain the mechanisms controlling VZV transmission and distribution, we argue that Rice's hypothesis takes lightly the circulation of the so called "temperate VZV genotypes" in tropical regions and, to certain degree, overlooks the predominance of such lineages in certain non-temperate areas. Here, we further discuss and present new information about the overwhelming dominance of temperate VZV genotypes in Mexico regardless of geographical location and climate. Summary UV radiation does not satisfactorily explain the distribution of VZV genotypes in different tropical and temperate regions of Mexico. Additionally, the cyclic behavior of varicella does not shown significant differences between regions with different climates in the country. More studies should be conducted to identify the factors directly involved in viral spreading. A better understanding of the modes of transmissions exploited by VZV and their effect on viral fitness is likely to facilitate the implementation of preventive measures for disease control. PMID:21794170
NASA Astrophysics Data System (ADS)
Samartin, Stéphanie; Heiri, Oliver; Kaltenrieder, Petra; Kühl, Norbert; Tinner, Willy
2016-07-01
Vegetation and climate during the last ice age and the Last Glacial Maximum (LGM, ∼23,000-19,000 cal BP) were considerably different than during the current interglacial (Holocene). Cold climatic conditions and growing ice-sheets during the last glaciation radically reduced forest extent in Europe to a restricted number of so-called ;refugia;, mostly located in the southern part of the continent. On the basis of paleobotanical analyses the Euganian Hills (Colli Euganei) in northeastern Italy have previously been proposed as one of the northernmost refugia of temperate trees (e.g. deciduous Quercus, Tilia, Ulmus, Fraxinus excelsior, Acer, Abies alba, Fagus sylvatica, Carpinus and Castanea) in Europe. In this study we provide the first quantitative, vegetation independent summer air temperature reconstruction for Northern Italy spanning the time ∼31,000-17,000 cal yr BP, which covers the coldest periods of the last glacial, including the LGM and Heinrich stadials 1 to 3. Chironomids preserved in a lake sediment core from Lago della Costa (7m a.s.l.), a small lake at the south-eastern edge of the Euganean Hills, allowed quantitative reconstruction of Full and Late Glacial summer air temperatures using a combined Swiss-Norwegian temperature inference model based on chironomid assemblages from 274 lakes. Chironomid and pollen evidence from Lago della Costa derives from finely stratified autochthonous organic gyttja sediments, which excludes major sediment mixing or reworking. After reconstructing paleo-temperatures, we address the question whether climate conditions were warm enough to permit the local survival of temperate tree species during the LGM and whether local expansions and pollen-inferred contractions of temperate tree taxa coincided with chironomid-inferred climatic changes. Our results suggest that chironomids at Lago della Costa have responded to major climatic fluctuations such as temperature decreases during the LGM and Heinrich stadials. The vegetation of the Euganean Hills shows responses to these climatic oscillations although the effects of temperature changes were probably also strongly influenced by changes in humidity. Reconstructed July air temperatures at Lago della Costa never fell below 10-13 °C (error range of reconstruction ∼ ±1.5-1.6 °C), which is considerably above the limit considered necessary for forest growth (8-10 °C). Instead rather mild climatic conditions prevailed ∼31,000-17,000 cal yr BP with average summer temperatures between ∼12 and 16 °C, which most likely allowed survival of temperate tree taxa in the warmest (and moistest) microhabitats of the Euganean Hills during the LGM. Only assuming local survival is it possible to explain the repeated expansions and collapses of temperate trees at Lago della Costa which faithfully accompanied the climatic oscillations.
Muths, Erin L.; Chambert, Thierry A.; Schmidt, B. R.; Miller, D. A. W.; Hossack, Blake R.; Joly, P.; Grolet, O.; Green, D. M.; Pilliod, David S.; Cheylan, M.; Fisher, Robert N.; McCaffery, R. M.; Adams, M. J.; Palen, W. J.; Arntzen, J. W.; Garwood, J.; Fellers, Gary M.; Thirion, J. M.; Grant, Evan H. Campbell; Besnard, A.
2017-01-01
The pervasive and unabated nature of global amphibian declines suggests common demographic responses to a given driver, and quantification of major drivers and responses could inform broad-scale conservation actions. We explored the influence of climate on demographic parameters (i.e., changes in the probabilities of survival and recruitment) using 31 datasets from temperate zone amphibian populations (North America and Europe) with more than a decade of observations each. There was evidence for an influence of climate on population demographic rates, but the direction and magnitude of responses to climate drivers was highly variable among taxa and among populations within taxa. These results reveal that climate drivers interact with variation in life-history traits and population-specific attributes resulting in a diversity of responses. This heterogeneity complicates the identification of conservation ‘rules of thumb’ for these taxa, and supports the notion of local focus as the most effective approach to overcome global-scale conservation challenges.
Carbon Pools in a Temperate Heathland Resist Changes in a Future Climate
NASA Astrophysics Data System (ADS)
Ambus, P.; Reinsch, S.; Nielsen, P. L.; Michelsen, A.; Schmidt, I. K.; Mikkelsen, T. N.
2014-12-01
The fate of recently plant assimilated carbon was followed into ecosystem carbon pools and fluxes in a temperate heathland after a 13CO2 pulse in the early growing season in a 6-year long multi-factorial climate change experiment. Eight days after the pulse, recently assimilated carbon was significantly higher in storage organs (rhizomes) of the grass Deschampsia flexuosa under elevated atmospheric CO2 concentration. Experimental drought induced a pronounced utilization of recently assimilated carbon belowground (roots, microbes, dissolved organic carbon) potentially counterbalancing limited nutrient availability. The fate of recently assimilated carbon was not affected by moderate warming. The full factorial combination of elevated CO2, warming and drought simulating future climatic conditions as expected for Denmark in 2075 did not change short-term carbon turnover significantly compared to ambient conditions. Overall, climate factors interacted in an unexpected way resulting in strong resilience of the heathland in terms of short-term carbon turnover in a future climate.
Tangled trends for temperate rain forests as temperatures tick up
Noreen Parks; Tara Barrett
2013-01-01
Climate change is altering growing conditions in the temperate rain forest region that extends from northern California to the Gulf of Alaska. Longer, warmer growing seasons are generally increasing the overall potential for forest growth in the region. However, species differ in their ability to adapt to changing conditions. For example, researchers with Pacific...
USDA-ARS?s Scientific Manuscript database
The objectives of this work were to: 1) estimate heterosis and breed direct effects for cow reproduction traits of Romosinuano, Angus, and F1 cows in a temperate climate, and 2) assess the effects of the type of forage grazed (bermudagrass, endophyte-infected and endophyte-free tall fescue) durin...
The other side of the coin: urban heat islands as shields from extreme cold
NASA Astrophysics Data System (ADS)
Yang, J.; Bou-Zeid, E.
2017-12-01
Extensive studies focusing on urban heat islands (UHIs) during hot periods create a perception that UHIs are invariably hazardous to human health and the sustainability of cities. Consequently, cities have invested substantial resources to try to mitigate UHIs. These urban policies can have serious repercussions since the health risks associated with cold weather are in fact higher than for heat episodes, yet wintertime UHIs have hardly been explored. We combine ground observations from 12 U.S. cities and high-resolution simulations to show that UHIs not only warm urban areas in the winter, but also further intensify during cold waves by up to 1.32 ± 0.78 oC (mean ± standard deviation) at night. Urban heat islands serve as shelters against extreme colds and provide invaluable benefits of reducing health risks and heating demand. More importantly, our simulations indicate that standard UHI mitigation measures such as green or cool roofs reduce these cold time amenities to different extents. Cities, particularly in cool and cold temperate climates, should hence revisit policies and efforts that are only desgined for hot periods. A paradigm shift is urgently needed to give an equal weight to the wintertime benefits of UHIs in the sustainability and resilience blueprints of cities.
3D climate-carbon modelling of the early Earth
NASA Astrophysics Data System (ADS)
Charnay, B.; Le Hir, G.; Fluteau, F.; Forget, F.; Catling, D.
2017-09-01
We revisit the climate and carbon cycle of the early Earth at 3.8 Ga using a 3D climate-carbon model. Our resultsfavor cold or temperate climates with global mean temperatures between around 8°C (281 K) and 30°C (303 K) and with 0.1-0.36 bar of CO2 for the late Hadean and early Archean.
Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe
2013-01-01
The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems’ response to global climate change. China’s ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund–Potsdam–Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China’s terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change. PMID:23593325
Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe
2013-01-01
The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.
Forecasting the viability of sea turtle eggs in a warming world.
Pike, David A
2014-01-01
Animals living in tropical regions may be at increased risk from climate change because current temperatures at these locations already approach critical physiological thresholds. Relatively small temperature increases could cause animals to exceed these thresholds more often, resulting in substantial fitness costs or even death. Oviparous species could be especially vulnerable because the maximum thermal tolerances of incubating embryos is often lower than adult counterparts, and in many species mothers abandon the eggs after oviposition, rendering them immobile and thus unable to avoid extreme temperatures. As a consequence, the effects of climate change might become evident earlier and be more devastating for hatchling production in the tropics. Loggerhead sea turtles (Caretta caretta) have the widest nesting range of any living reptile, spanning temperate to tropical latitudes in both hemispheres. Currently, loggerhead sea turtle populations in the tropics produce nearly 30% fewer hatchlings per nest than temperate populations. Strong correlations between empirical hatching success and habitat quality allowed global predictions of the spatiotemporal impacts of climate change on this fitness trait. Under climate change, many sea turtle populations nesting in tropical environments are predicted to experience severe reductions in hatchling production, whereas hatching success in many temperate populations could remain unchanged or even increase with rising temperatures. Some populations could show very complex responses to climate change, with higher relative hatchling production as temperatures begin to increase, followed by declines as critical physiological thresholds are exceeded more frequently. Predicting when, where, and how climate change could impact the reproductive output of local populations is crucial for anticipating how a warming world will influence population size, growth, and stability.
NASA Astrophysics Data System (ADS)
Teslić, Nemanja; Zinzani, Giordano; Parpinello, Giuseppina P.; Versari, Andrea
2018-01-01
The trend of climate change and its effect on grape production and wine composition was evaluated using a real case study of seven wineries located in the "Romagna Sangiovese" appellation area (northern Italy), one of the most important wine producing region of Italy. This preliminary study focused on three key aspects: (i) Assessment of climate change trends by calculating bioclimatic indices over the last 61 years (from 1953 to 2013) in the Romagna Sangiovese area: significant increasing trends were found for the maximum, mean, and minimum daily temperatures, while a decreasing trend was found for precipitation during the growing season period (April-October). Mean growing season temperature was 18.49 °C, considered as warm days in the Romagna Sangiovese area and optimal for vegetative growth of Sangiovese, while nights during the ripening months were cold (13.66 °C). The rise of temperature shifted studied area from the temperate/warm temperate to the warm temperate-/warm grape-growing region (according to the Huglin classification). (ii) Relation between the potential alcohol content from seven wineries and the climate change from 2001 to 2012: dry spell index (DSI) and Huglin index (HI) suggested a large contribution to increasing level of potential alcohol in Sangiovese wines, whereas DSI showed higher correlation with potential alcohol respect to the HI. (iii) Relation between grape production and the climate change from 1982 to 2012: a significant increasing trend was found with little effect of the climate change trends estimated with used bioclimatic indices. Practical implication at viticultural and oenological levels is discussed.
Ford, Kevin R; Harrington, Constance A; Bansal, Sheel; Gould, Peter J; St Clair, J Bradley
2016-11-01
Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier growth initiation in the spring. Exposure to warm temperatures ('forcing') typically triggers growth initiation, but many trees also require exposure to cool temperatures ('chilling') while dormant to readily initiate growth in the spring. If warming increases forcing and decreases chilling, climate change could maintain, advance or delay growth initiation phenology relative to the onset of favorable conditions. We modeled the timing of height- and diameter-growth initiation in coast Douglas-fir (an ecologically and economically vital tree in western North America) to determine whether changes in phenology are likely to track changes in climate using data from field-based and controlled-environment studies, which included conditions warmer than those currently experienced in the tree's range. For high latitude and elevation portions of the tree's range, our models predicted that warming will lead to earlier growth initiation and allow trees to track changes in the onset of the warm but still moist conditions that favor growth, generally without substantially greater exposure to frost. In contrast, toward lower latitude and elevation range limits, the models predicted that warming will lead to delayed growth initiation relative to changes in climate due to reduced chilling, with trees failing to capture favorable conditions in the earlier parts of the spring. This maladaptive response to climate change was more prevalent for diameter-growth initiation than height-growth initiation. The decoupling of growth initiation with the onset of favorable climatic conditions could reduce the resilience of coast Douglas-fir to climate change at the warm edges of its distribution. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Ford, Kevin R.; Harrington, Constance A.; Bansal, Sheel; Gould, Petter J.; St. Clair, Bradley
2016-01-01
Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier growth initiation in the spring. Exposure to warm temperatures (“forcing”) typically triggers growth initiation, but many trees also require exposure to cool temperatures (“chilling”) while dormant to readily initiate growth in the spring. If warming increases forcing and decreases chilling, climate change could maintain, advance or delay growth initiation phenology relative to the onset of favorable conditions. We modeled the timing of height- and diameter-growth initiation in coast Douglas-fir (an ecologically and economically vital tree in western North America) to determine whether changes in phenology are likely to track changes in climate using data from field-based and controlled-environment studies, which included conditions warmer than those currently experienced in the tree's range. For high latitude and elevation portions of the tree's range, our models predicted that warming will lead to earlier growth initiation and allow trees to track changes in the onset of the warm but still moist conditions that favor growth, generally without substantially greater exposure to frost. In contrast, towards lower latitude and elevation range limits, the models predicted that warming will lead to delayed growth initiation relative to changes in climate due to reduced chilling, with trees failing to capture favorable conditions in the earlier parts of the spring. This maladaptive response to climate change was more prevalent for diameter-growth initiation than height-growth initiation. The decoupling of growth initiation with the onset of favorable climatic conditions could reduce the resilience of coast Douglas-fir to climate change at the warm edges of its distribution.
NASA Astrophysics Data System (ADS)
Lebourgeois, François; Pierrat, Jean-Claude; Perez, Vincent; Piedallu, Christian; Cecchini, Sébastien; Ulrich, Erwin
2010-09-01
After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.
Lebourgeois, François; Pierrat, Jean-Claude; Perez, Vincent; Piedallu, Christian; Cecchini, Sébastien; Ulrich, Erwin
2010-09-01
After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.
Jia, Xiaoxu; Xie, Baoni; Shao, Ming’an; Zhao, Chunlei
2015-01-01
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands. PMID:26295954
Jia, Xiaoxu; Xie, Baoni; Shao, Ming'an; Zhao, Chunlei
2015-01-01
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.
NASA Astrophysics Data System (ADS)
Reinmann, A.; Hutyra, L.
2016-12-01
Forest fragmentation resulting from land use and land cover change is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. However, our understanding of forest carbon dynamics and their response to climate largely comes from unfragmented forest systems, which presents an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink, but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge. These ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance, but across southern New England, USA it increases carbon uptake and storage by 12.5 ± 2.9% and 9.6 ± 1.4%, respectively. However, we also find that forest growth near the edge declines three times faster than in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.
Newell, Wayne L.; Dejong, B.D.
2011-01-01
The effects of Pleistocene cold-climate geomorphology are distributed across the weathered and eroded Mid-Atlantic Coastal Plain uplands from the Wisconsinan terminal moraine south to Tidewater Virginia. Cold-climate deposits and landscape modifications are superimposed on antecedent landscapes of old, weathered Neogene upland gravels and Pleistocene marine terraces that had been built during warm periods and sea-level highstands. In New Jersey, sequences of surficial deposits define a long history of repeating climate change events. To the south across the Delmarva Peninsula and southern Maryland, most antecedent topography has been obscured by Late Pleistocene surficial deposits. These are spatially variable and are collectively described as a cold-climate alloformation. The cold-climate alloformation includes time-transgressive details of climate deterioration from at least marine isotope stage (MIS) 4 through the end of MIS 2. Some deposits and landforms within the alloformation may be as young as the Younger Dryas. Southwards along the trend of the Potomac River, these deposits and their climatic affinities become diffused. In Virginia, a continuum of erosion and surficial deposits appears to be the product of ‘normal’ temperate, climate-forced processes. The cold-climate alloformation and more temperate deposits in Virginia are being partly covered by Holocene alluvium and bay mud.
Lens, Frederic; Vos, Rutger A.; Charrier, Guillaume; van der Niet, Timo; Merckx, Vincent; Baas, Pieter; Aguirre Gutierrez, Jesus; Jacobs, Bart; Chacon Dória, Larissa; Smets, Erik; Delzon, Sylvain; Janssens, Steven B.
2016-01-01
Background and Aims Angiosperms with simple vessel perforations have evolved many times independently of species having scalariform perforations, but detailed studies to understand why these transitions in wood evolution have happened are lacking. We focus on the striking difference in wood anatomy between two closely related genera of Adoxaceae, Viburnum and Sambucus, and link the anatomical divergence with climatic and physiological insights. Methods After performing wood anatomical observations, we used a molecular phylogenetic framework to estimate divergence times for 127 Adoxaceae species. The conditions under which the genera diversified were estimated using ancestral area reconstruction and optimization of ancestral climates, and xylem-specific conductivity measurements were performed. Key Results Viburnum, characterized by scalariform vessel perforations (ancestral), diversified earlier than Sambucus, having simple perforations (derived). Ancestral climate reconstruction analyses point to cold temperate preference for Viburnum and warm temperate for Sambucus. This is reflected in the xylem-specific conductivity rates of the co-occurring species investigated, showing that Viburnum lantana has rates much lower than Sambucus nigra. Conclusions The lack of selective pressure for high conductive efficiency during early diversification of Viburnum and the potentially adaptive value of scalariform perforations in frost-prone cold temperate climates have led to retention of the ancestral vessel perforation type, while higher temperatures during early diversification of Sambucus have triggered the evolution of simple vessel perforations, allowing more efficient long-distance water transport. PMID:27498812
Palaeovegetation. Diversity of temperate plants in east Asia.
Harrison, S P; Yu, G; Takahara, H; Prentice, I C
2001-09-13
The exceptionally broad species diversity of vascular plant genera in east Asian temperate forests, compared with their sister taxa in North America, has been attributed to the greater climatic diversity of east Asia, combined with opportunities for allopatric speciation afforded by repeated fragmentation and coalescence of populations through Late Cenozoic ice-age cycles. According to Qian and Ricklefs, these opportunities occurred in east Asia because temperate forests extended across the continental shelf to link populations in China, Korea and Japan during glacial periods, whereas higher sea levels during interglacial periods isolated these regions and warmer temperatures restricted temperate taxa to disjunct refuges. However, palaeovegetation data from east Asia show that temperate forests were considerably less extensive than today during the Last Glacial Maximum, calling into question the coalescence of tree populations required by the hypothesis of Qian and Ricklefs.
Macías-Macías, J O; Tapia-Gonzalez, J M; Contreras-Escareño, F
2017-01-01
Melipona colimana Ayala is an endemic species inhabiting temperate forests of pine and oak of south of Jalisco in Mexico. During a year, it was recorded every 15 days foraging activity, environmental parameters and the development of colonies of M. colimana in its wild habitat. For five minutes every hour from 7:00 to 21:00, the bees that entered and left the hive and bringing pollen and resin were registered. Every hour the relative humidity, temperature, wind speed and light intensity was recorded and related to foraging activity. Additionally, the weight of the colonies recently transferred to wooden boxes, the number of brood combs, honey pots and pollen were registered. The time of beginning and ending of the foraging activity differs from the reports of stingless bees of tropical weather and the same happens with the pollen collection. The environmental parameters that affect other tropical stingless bees in the foraging activity also affect M. colimana in temperate climate. It was determined that the major activity season and the presence of more pollen pots in the colony is from November through February, for what it could be the best time of the year for the division and obtainance of new colonies, while the critical period of minor activity and pollen flow was during rainy season. These data may be useful for the future sustainable use of this species in temperate climate.
Revisiting the climate impacts of cool roofs around the globe using an Earth system model
NASA Astrophysics Data System (ADS)
Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George
2016-08-01
Solar reflective ‘cool roofs’ absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11 ± 0.10 K) and the United States (-0.14 ± 0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.
Revisiting the Climate Impacts of Cool Roofs around the Globe Using an Earth System Model
NASA Astrophysics Data System (ADS)
Zhang, J.; Ban-Weiss, G. A.; Zhang, K.; Liu, J.
2016-12-01
Solar reflective "cool roofs" absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11±0.10 K) and the United States (-0.14±0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.
Soriano, E R; Barcan, L; Clara, L; Imamura, P; Catoggio, L J
1992-08-01
We describe a man in whom pyomyositis developed in a temperate climate. Three facts make this case unique. First the pyomyositis developed in someone with underlying dermatomyositis, this being the second reported case to our knowledge. Second, the organism involved was a Streptococcus and not a Staphylococcus as in most cases described, and the course of the disease was acute and not subacute as is usually reported. Finally, contrary to most described cases, surgical drainage was not necessary, probably because of the early diagnosis. Pyomyositis should be considered a possible cause of localized pain in patients with underlying inflammatory muscle disease.
Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions
NASA Astrophysics Data System (ADS)
Obermeier, W. A.; Lehnert, L. W.; Kammann, C. I.; Müller, C.; Grünhage, L.; Luterbacher, J.; Erbs, M.; Moser, G.; Seibert, R.; Yuan, N.; Bendix, J.
2017-02-01
The increase in atmospheric greenhouse gas concentrations from anthropogenic activities is the major driver of recent global climate change. The stimulation of plant photosynthesis due to rising atmospheric carbon dioxide concentrations ([CO2]) is widely assumed to increase the net primary productivity (NPP) of C3 plants--the CO2 fertilization effect (CFE). However, the magnitude and persistence of the CFE under future climates, including more frequent weather extremes, are controversial. Here we use data from 16 years of temperate grassland grown under `free-air carbon dioxide enrichment’ conditions to show that the CFE on above-ground biomass is strongest under local average environmental conditions. The observed CFE was reduced or disappeared under wetter, drier and/or hotter conditions when the forcing variable exceeded its intermediate regime. This is in contrast to predictions of an increased CO2 fertilization effect under drier and warmer conditions. Such extreme weather conditions are projected to occur more intensely and frequently under future climate scenarios. Consequently, current biogeochemical models might overestimate the future NPP sink capacity of temperate C3 grasslands and hence underestimate future atmospheric [CO2] increase.
Gorniak, Tobias; Meyer, Ulrich; Südekum, Karl-Heinz; Dänicke, Sven
2014-01-01
The aim of the present study was to evaluate the impact of summer temperatures in a temperate climate on mid-lactation Holstein dairy cows. Therefore, a data set was examined comprising five trials with dairy cows conducted at the experimental station of the Friedrich-Loeffler-Institute in Braunschweig, Germany. The temperature-humidity index (THI) was calculated using temperature and humidity data from the barns recorded between January 2010 and July 2012. By using a generalised additive mixed model, the impact of increasing THI on dry matter intake, milk yield and milk composition was evaluated. Dry matter intake and milk yield decreased when THI rose above 60, whilst water intake increased in a linear manner beyond THI 30. Furthermore, milk protein and milk fat content decreased continuously with increasing THI. The present results revealed that heat stress exists in Lower Saxony, Germany. However, further research is necessary to describe the mode of action of heat stress. Especially, mild heat stress has to be investigated in more detail and appropriate heat stress thresholds for temperate climates have to be developed.
NASA Astrophysics Data System (ADS)
Friedl, M. A.; Melaas, E. K.; Sulla-menashe, D. J.; Gray, J. M.
2014-12-01
Phenology, the seasonal progression of organisms through stages of dormancy, active growth, and senescence is a key regulator of ecosystem processes and is widely used as an indicator of vegetation responses to climate change. This is especially true in temperate forests, where seasonal dynamics in canopy development and senescence are tightly coupled to the climate system. Despite this, understanding of climate-phenology interactions is incomplete. A key impediment to improving this understanding is that available datasets are geographically sparse, and in most cases include relatively short time series. Remote sensing has been widely promoted as a useful tool for studies of large-scale phenology, but long-term studies from remote sensing have been limited to AVHRR data, which suffers from limitations related to its coarse spatial resolution and uncertainties in atmospheric corrections and radiometric adjustments that are used to create AVHRR time series. In this study, we used 30 years of Landsat data to quantify the nature and magnitude of long-term trends and short-term variability in the timing of spring leaf emergence and fall senescence. Our analysis focuses on temperate forest locations in the Northeastern United States that are co-located with surface meteorological observations, where we have estimated the timing of leaf emergence and leaf senescence at annual time steps using atmospherically corrected surface reflectances from Landsat TM and ETM+ imagery. Comparison of results from Landsat against ground observations demonstrates that phenological events can be reliably estimated from Landsat time series. More importantly, results from this analysis suggest two main conclusions related to the nature of climate change impacts on temperate forest phenology. First, there is clear evidence of trends towards longer growing seasons in the Landsat record. Second, interannual variability is large, with average year-to-year variability exceeding the magnitude of total changes to the growing season that have occurred over the last three decades. Based on these results we suggest that year-to-year variability in phenology, rather than long-term trends, provides the best basis for predicting future changes in temperate forest phenology in response to climate change.
Jason B. Fellman; David V. D’Amore; Eran Hood; Pat Cunningham
2017-01-01
The perhumid coastal temperate rainforest (PCTR) of southeast Alaska has some of the densest soil organic carbon (SOC) stocks in the world (>300 Mg C ha-1) but the fate of this SOC with continued warming remains largely unknown. We quantified dissolved organic carbon (DOC) and carbon dioxide (CO2) yields from four...
L. Heneghan; D.C. Coleman; X. Zou; D.A. Crossley; B.L. Hines
1998-01-01
The influence of climate, substrate quality and microarthropods on decomposition was studied by comparing the mass loss of litter at three forested sites: two tropical and one temperate. At each site,litter bags containing a dominant local litter were placed in the field in replicated plots. Half the bags were treated with naphthalene to reduce microarthropod...
Bonebrake, Timothy C; Mastrandrea, Michael D
2010-07-13
Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.
Medone, Paula; Ceccarelli, Soledad; Parham, Paul E.; Figuera, Andreína; Rabinovich, Jorge E.
2015-01-01
Chagas disease, caused by the parasite Trypanosoma cruzi, is the most important vector-borne disease in Latin America. The vectors are insects belonging to the Triatominae (Hemiptera, Reduviidae), and are widely distributed in the Americas. Here, we assess the implications of climatic projections for 2050 on the geographical footprint of two of the main Chagas disease vectors: Rhodnius prolixus (tropical species) and Triatoma infestans (temperate species). We estimated the epidemiological implications of current to future transitions in the climatic niche in terms of changes in the force of infection (FOI) on the rural population of two countries: Venezuela (tropical) and Argentina (temperate). The climatic projections for 2050 showed heterogeneous impact on the climatic niches of both vector species, with a decreasing trend of suitability of areas that are currently at high-to-moderate transmission risk. Consequently, climatic projections affected differently the FOI for Chagas disease in Venezuela and Argentina. Despite the heterogeneous results, our main conclusions point out a decreasing trend in the number of new cases of Tr. cruzi human infections per year between current and future conditions using a climatic niche approach. PMID:25688019
NASA Astrophysics Data System (ADS)
Kauffman, Chad Matthew
The temperature and precipitation that describe the norm of daily, monthly, and seasonal climate conditions are ``climate normals.'' They are usually calculated based on climate data covering a 30-year period, and updated in every 10 years. The next update will take place in year 2001. Because of the advent of the Automated Surface Observations Systems (ASOS) beginning in early 1990s and recognized temperature bias between ASOS and the conventional temperature sensors there is an uncertainty of how the ASOS data should be used to calculate the 1971-2000 temperature normal. This study examined the uncertainty and offered a method to minimize it. It showed that the ASOS bias has a measurable impact on the new 30-year temperature normal. The impact varies among stations and climate regions. Some stations with a cooling trend in ASOS temperature have a cooler normal for their temperature, while others with a warming trend have a warmer normal for temperature. These quantitative evaluations of ASOS effect for stations and regions can be used to reduce ASOS bias in temperature normals. This study also evaluated temperature normals for different length periods and compared them to the 30-year normal. It showed that the difference between the normals, is smaller in maritime climate than in continental temperate climate. In the former, the six- year normal describes a similar temperature variation as the 30-year normal does. In the latter, the 18-year normal starts to resemble the temperature variation that the 30-year normal describes. These results provide a theoretical basis for applying different normals in different regions. The study further compared temperature normal for different periods and identified a seasonal shift in climate change in the southwestern U.S. where the summer maximum temperature has shifted to a late summer month and the winter minimum temperature shifted to an early winter month in the past 30 years.
Sagili, Ramesh R; Breece, Carolyn R
2012-08-01
Honey bee, Apis mellifera L. (Hymenoptera: Apidae), nutrition is vital for colony growth and maintenance of a robust immune system. Brood rearing in honey bee colonies is highly dependent on protein availability. Beekeepers in general provide protein supplement to colonies during periods of pollen dearth. Honey bee brood pheromone is a blend of methyl and ethyl fatty acid esters extractable from cuticle of honey bee larvae that communicates the presence of larvae in a colony. Honey bee brood pheromone has been shown to increase protein supplement consumption and growth of honey bee colonies in a subtropical winter climate. Here, we tested the hypothesis that synthetic brood pheromone (SuperBoost) has the potential to increase protein supplement consumption during fall in a temperate climate and thus increase colony growth. The experiments were conducted in two locations in Oregon during September and October 2009. In both the experiments, colonies receiving brood pheromone treatment consumed significantly higher protein supplement and had greater brood area and adult bees than controls. Results from this study suggest that synthetic brood pheromone may be used to stimulate honey bee colony growth by stimulating protein supplement consumption during fall in a northern temperate climate, when majority of the beekeepers feed protein supplement to their colonies.
Leveraging the Novel Climates of Arboreta to Understand Tree Responses to Climate Change
NASA Astrophysics Data System (ADS)
Ettinger, A.; Wolkovich, E. M.; Joly, S.
2016-12-01
Rising global temperatures are expected to cause large-scale changes to forests, including altered mortality and recruitment rates, and dramatic changes in species composition, but exactly how tree growth will be affected by climate change is uncertain. Studies to date suggest that temperate and boreal tree responses to warming range from growing faster, slower, or at unchanged rates. Here we present an approach and preliminary findings that will improve predictions of tree responses to climate change by studying how tree traits, including phenology (e.g. the timing of leaf-out), wood density, leaf mass area, and height, relate to climate sensitivity (i.e. growth responses to annual changes in climate, Figure 1). We demonstrate how arboreta can be used to understand tree responses to climate change using 500 individuals across 65 tree species growing at the Arnold Arboretum, Boston, Massachusetts. Arboretum provide a unique opportunities for understanding temperate tree responses to climate change: they provide large collections of woody species growing together that enable traits to be studied across diverse species in a phylogenetic context. Furthermore, many species in arboreta are nonnative and have been exposed to "novel" climates that may resemble future conditions in their native distributions. We use a phylogenetic approach to understand how annual growth and climate sensitivity relate to focal traits, and asses what these findings may tell us about tree responses to climate change.
NASA Astrophysics Data System (ADS)
Tsujimoto, K.; Kato, T.; Nakaji, T.
2016-12-01
As well as a proxy of ecosystem level photosynthesis, sun-induced fluorescence (SIF) is expected to be an indicator of plant physiological information in photosynthesis (Frankenberg et al., 2011). Zhang et al. (2014) especially suggested that the SIF can be used to estimate the capacity of RuBP carboxylation, Vcmax, at the ecosystem scale by the simple inversion approach with the combination of both observation and modeling. However, the seasonal pattern of the relationships between SIF and such gas exchange physiological parameters has not been confirmed by the direct field observation, yet. Here, we present the field observation results of both gas exchange based photosynthetic parameters and fluorescence properties of canopy leaves of Japanese oak (Quercus crispula) in a cool-temperate forest. In the Tomakomai experimental forest site (42°40'N, 141°36'E), Hokkaido University in Japan, we conducted the periodical measurements of the seasonality in photosynthetic parameters (Li-6400, Li-Cor, USA) and LED-induced fluorescence yield (USB4000, OceanOptics, USA and mini-PAM, WALZ, Germany) from June to October in 2016. Every two or three weeks, the in-situ single leaf data were collected for 10-16 leaves (consisting of 3-4 leaves x 3-4 individual trees) of Japanese oak at the top of canopy at 15-20m above ground surface with approaching by the tall canopy crane. After the in-situ data acquisition, the leaves are frozen in liquid nitrogen immediately followed by removable from shoots, and are going to be analyzed their chemical properties (ex. Chla, Chlb etc.). By analyzing seasonal pattern of those leaf traits, we are going to show how effectively the chlorophyll fluorescence can assess the carbon assimilation capacity of cool temperate forest.
Blagrove, Marcus S C; Caminade, Cyril; Waldmann, Elisabeth; Sutton, Elizabeth R; Wardeh, Maya; Baylis, Matthew
2017-06-01
Mosquito-borne viruses have been estimated to cause over 100 million cases of human disease annually. Many methodologies have been developed to help identify areas most at risk from transmission of these viruses. However, generally, these methodologies focus predominantly on the effects of climate on either the vectors or the pathogens they spread, and do not consider the dynamic interaction between the optimal conditions for both vector and virus. Here, we use a new approach that considers the complex interplay between the optimal temperature for virus transmission, and the optimal climate for the mosquito vectors. Using published geolocated data we identified temperature and rainfall ranges in which a number of mosquito vectors have been observed to co-occur with West Nile virus, dengue virus or chikungunya virus. We then investigated whether the optimal climate for co-occurrence of vector and virus varies between "warmer" and "cooler" adapted vectors for the same virus. We found that different mosquito vectors co-occur with the same virus at different temperatures, despite significant overlap in vector temperature ranges. Specifically, we found that co-occurrence correlates with the optimal climatic conditions for the respective vector; cooler-adapted mosquitoes tend to co-occur with the same virus in cooler conditions than their warmer-adapted counterparts. We conclude that mosquitoes appear to be most able to transmit virus in the mosquitoes' optimal climate range, and hypothesise that this may be due to proportionally over-extended vector longevity, and other increased fitness attributes, within this optimal range. These results suggest that the threat posed by vector-competent mosquito species indigenous to temperate regions may have been underestimated, whilst the threat arising from invasive tropical vectors moving to cooler temperate regions may be overestimated.
Tree species distribution in temperate forests is more influenced by soil than by climate.
Walthert, Lorenz; Meier, Eliane Seraina
2017-11-01
Knowledge of the ecological requirements determining tree species distributions is a precondition for sustainable forest management. At present, the abiotic requirements and the relative importance of the different abiotic factors are still unclear for many temperate tree species. We therefore investigated the relative importance of climatic and edaphic factors for the abundance of 12 temperate tree species along environmental gradients. Our investigations are based on data from 1,075 forest stands across Switzerland including the cold-induced tree line of all studied species and the drought-induced range boundaries of several species. Four climatic and four edaphic predictors represented the important growth factors temperature, water supply, nutrient availability, and soil aeration. The climatic predictors were derived from the meteorological network of MeteoSwiss, and the edaphic predictors were available from soil profiles. Species cover abundances were recorded in field surveys. The explanatory power of the predictors was assessed by variation partitioning analyses with generalized linear models. For six of the 12 species, edaphic predictors were more important than climatic predictors in shaping species distribution. Over all species, abundances depended mainly on nutrient availability, followed by temperature, water supply, and soil aeration. The often co-occurring species responded similar to these growth factors. Drought turned out to be a determinant of the lower range boundary for some species. We conclude that over all 12 studied tree species, soil properties were more important than climate variables in shaping tree species distribution. The inclusion of appropriate soil variables in species distribution models allowed to better explain species' ecological niches. Moreover, our study revealed that the ecological requirements of tree species assessed in local field studies and in experiments are valid at larger scales across Switzerland.
Cho, Yeoungjee; Badve, Sunil V.; Hawley, Carmel M.; McDonald, Stephen P.; Brown, Fiona G.; Boudville, Neil; Wiggins, Kathryn J.; Bannister, Kym M.; Clayton, Philip; Johnson, David W.
2013-01-01
♦ Background: The impact of climatic variations on peritoneal dialysis (PD)-related peritonitis has not been studied in detail. The aim of the current study was to determine whether various climatic zones influenced the probability of occurrence or the clinical outcomes of peritonitis. ♦ Methods: Using ANZDATA registry data, the study in cluded all Australian patients receiving PD between 1 October 2003 and 31 December 2008. Climatic regions were defined according to the Köppen classification. ♦ Results: The overall peritonitis rate was 0.59 episodes per patient-year. Most of the patients lived in Temperate regions (65%), with others residing in Subtropical (26%), Tropical (6%), and Other climatic regions (Desert, 0.6%; Grassland, 2.3%). Compared with patients in Temperate regions, those in Tropical regions demonstrated significantly higher overall peritonitis rates and a shorter time to a first peritonitis episode [adjusted hazard ratio: 1.15; 95% confidence interval (CI): 1.01 to 1.31]. Culture-negative peritonitis was significantly less likely in Tropical regions [adjusted odds ratio (OR): 0.42; 95% CI: 0.25 to 0.73]; its occurrence in Subtropical and Other regions was comparable to that in Temperate regions. Fungal peritonitis was independently associated with Tropical regions (OR: 2.18; 95% CI: 1.22 to 3.90) and Other regions (OR: 3.46; 95% CI: 1.73 to 6.91), where rates of antifungal prophylaxis were also lower. Outcomes after first peritonitis episodes were comparable in all groups. ♦ Conclusions: Tropical regions were associated with a higher overall peritonitis rate (including fungal peritonitis) and a shorter time to a first peritonitis episode. Augmented peritonitis prophylactic measures such as antifungal therapy and exit-site care should be considered in PD patients residing in Tropical climates. PMID:22942270
Climate change affects winter chill for temperate fruit and nut trees.
Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H
2011-01-01
Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.
Climate change reduces extent of temperate drylands and intensifies drought in deep soils
Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Munson, Seth M.; Tietjen, Britta; Hall, Sonia A.; Wilson, Scott D.; Duniway, Michael C.; Jia, Gensuo; Pyke, David A.; Lkhagva, Ariuntsetseg; Jamiyansharav, Khishigbayar
2017-01-01
Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas.
Climate change reduces extent of temperate drylands and intensifies drought in deep soils
Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Munson, Seth M.; Tietjen, Britta; Hall, Sonia A.; Wilson, Scott D.; Duniway, Michael C.; Jia, Gensuo; Pyke, David A.; Lkhagva, Ariuntsetseg; Jamiyansharav, Khishigbayar
2017-01-01
Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas. PMID:28139649
Step tracking program for concentrator solar collectors
NASA Astrophysics Data System (ADS)
Ciobanu, D.; Jaliu, C.
2016-08-01
The increasing living standards in developed countries lead to increased energy consumption. The fossil fuel consumption and greenhouse gas effect that accompany the energy production can be reduced by using renewable energy. For instance, the solar thermal systems can be used in temperate climates to provide heating during the transient period or cooling during the warmer months. Most used solar thermal systems contain flat plate solar collectors. In order to provide the necessary energy for the house cooling system, the cooling machine uses a working fluid with a high temperature, which can be supplied by dish concentrator collectors. These collectors are continuously rotated towards sun by biaxial tracking systems, process that increases the consumed power. An algorithm for a step tracking program to be used in the orientation of parabolic dish concentrator collectors is proposed in the paper to reduce the consumed power due to actuation. The algorithm is exemplified on a case study: a dish concentrator collector to be implemented in Brasov, Romania, a location with the turbidity factor TR equal to 3. The size of the system is imposed by the environment, the diameter of the dish reflector being of 3 meters. By applying the proposed algorithm, 60 sub-programs are obtained for the step orientation of the parabolic dish collector over the year. Based on the results of the numerical simulations for the step orientation, the efficiency of the direct solar radiation capture on the receptor is up to 99%, while the energy consumption is reduced by almost 80% compared to the continuous actuation of the concentrator solar collector.
Yude Pan; Richard Birdsey; John Hom; Kevin McCullough
2007-01-01
We used our GIS variant of the PnET-CN model to investigate changes of forest carbon stocks and fluxes in Mid-Atlantic temperate forests over the last century (1900-2000). Forests in this region are affected by multiple environmental changes including climate, atmospheric CO2 concentration, N deposition and tropospheric ozone, and extensive land disturbances. Our...
Long-term variability in the water budget and its controls in an oak-dominated temperate forest
Jing Xie; Ge Sun; Hou-Sen Chu; Junguo Liu; Steven G. McNulty; Asko Noormets; Ranjeet John; Zutao Ouyang; Tianshan Zha; Haitao Li; Wenbin Guan; Jiquan Chen
2014-01-01
Water availability is one of the key environmental factors that control ecosystem functions in temperate forests. Changing climate is likely to alter the ecohydrology and other ecosystem processes, which affect forest structures and functions. We constructed a multi-year water budget (2004â2010) and quantified environmental controls on an evapotranspiration (ET) in a...
Cheaib, Alissar; Badeau, Vincent; Boe, Julien; Chuine, Isabelle; Delire, Christine; Dufrêne, Eric; François, Christophe; Gritti, Emmanuel S; Legay, Myriam; Pagé, Christian; Thuiller, Wilfried; Viovy, Nicolas; Leadley, Paul
2012-06-01
Model-based projections of shifts in tree species range due to climate change are becoming an important decision support tool for forest management. However, poorly evaluated sources of uncertainty require more scrutiny before relying heavily on models for decision-making. We evaluated uncertainty arising from differences in model formulations of tree response to climate change based on a rigorous intercomparison of projections of tree distributions in France. We compared eight models ranging from niche-based to process-based models. On average, models project large range contractions of temperate tree species in lowlands due to climate change. There was substantial disagreement between models for temperate broadleaf deciduous tree species, but differences in the capacity of models to account for rising CO(2) impacts explained much of the disagreement. There was good quantitative agreement among models concerning the range contractions for Scots pine. For the dominant Mediterranean tree species, Holm oak, all models foresee substantial range expansion. © 2012 Blackwell Publishing Ltd/CNRS.
Cool Science: Using Children's Art to Communicate Climate Change (Invited)
NASA Astrophysics Data System (ADS)
Lustick, D. S.; Lohmeier, J.; Chen, R. F.
2013-12-01
Cool Science is a K-12 Climate Change Science Art Competition. Working with teachers, parents, and students, the project aims to identify outstanding works of art by students about climate change and display the art throughout public mass transit. Cool Science has three distinct goals: 1) provide a convenient means for art and science teachers to incorporate climate change into their curriculum, 2) support teacher/student learning about climate change science, and 3) foster informal learning about climate change among people riding mass transit. By efficiently connecting formal and informal learning with one project, Cool Science is an innovative project that expands the way we engage and evaluate students. Using children's artwork to communicate complex scientific issues such as climate change is a powerful learning experience for the artist, teacher, and audience. Last year, Cool Science received nearly 600 entries from students representing 36 teachers from 32 school districts. Six winning entries went on public display with one highlighted each month from January through June. In addition, there were 6 Runner Ups and 12 Honorable Mentions. For the winning students, it is an unforgettable experience to see a nine-foot version of their artwork traveling around the streets on the side of a bus!
Protistan Diversity in the Arctic: A Case of Paleoclimate Shaping Modern Biodiversity?
Stoeck, Thorsten; Kasper, Jennifer; Bunge, John; Leslin, Chesley; Ilyin, Valya; Epstein, Slava
2007-01-01
Background The impact of climate on biodiversity is indisputable. Climate changes over geological time must have significantly influenced the evolution of biodiversity, ultimately leading to its present pattern. Here we consider the paleoclimate data record, inferring that present-day hot and cold environments should contain, respectively, the largest and the smallest diversity of ancestral lineages of microbial eukaryotes. Methodology/Principal Findings We investigate this hypothesis by analyzing an original dataset of 18S rRNA gene sequences from Western Greenland in the Arctic, and data from the existing literature on 18S rRNA gene diversity in hydrothermal vent, temperate sediments, and anoxic water column communities. Unexpectedly, the community from the cold environment emerged as one of the richest observed to date in protistan species, and most diverse in ancestral lineages. Conclusions/Significance This pattern is consistent with natural selection sweeps on aerobic non-psychrophilic microbial eukaryotes repeatedly caused by low temperatures and global anoxia of snowball Earth conditions. It implies that cold refuges persisted through the periods of greenhouse conditions, which agrees with some, although not all, current views on the extent of the past global cooling and warming events. We therefore identify cold environments as promising targets for microbial discovery. PMID:17710128
David M. Bell; James S. Clark
2016-01-01
Climatic effects on tree recruitment will be determined by the interactive effects of fecundity and seed predation. Evaluating how insect and vertebrate seed predators mediate tree reproductive responses to climate depends on long-term studies of seed production, development, and predation. In this study, our objectives were to (1) assess the effects of...
Indiana bat summer maternity distribution: effects of current and future climates
Susan C. Loeb; Eric A. Winters
2013-01-01
Temperate zone bats may be more sensitive to climate change than other groups of mammals because many aspects of their ecology are closely linked to temperature. However, few studies have tried to predict the responses of bats to climate change. The Indiana bat (Myotis sodalis) is a federally listed endangered species that is found in the eastern...
Global forest sector modeling: application to some impacts of climate change
Joseph Buongiorno
2016-01-01
This paper explored the potential long-term effects of a warming climate on the global wood sector, based on Way and Oren's synthesis (Tree Physiology 30,669-688) indicating positive responses of tree growth to higher temperature in boreal and temperative climates, and negative responses in the topics. Changes in forest productivity were introduced in the Global...
Velasquez, Eleanor; Bryan, Scott E; Ekins, Merrick; Cook, Alex G; Hurrey, Lucy; Firn, Jennifer
2018-05-01
The theory of island biogeography predicts that area and age explain species richness patterns (or alpha diversity) in insular habitats. Using a unique natural phenomenon, pumice rafting, we measured the influence of area, age, and oceanic climate on patterns of species richness. Pumice rafts are formed simultaneously when submarine volcanoes erupt, the pumice clasts breakup irregularly, forming irregularly shaped pumice stones which while floating through the ocean are colonized by marine biota. We analyze two eruption events and more than 5,000 pumice clasts collected from 29 sites and three climatic zones. Overall, the older and larger pumice clasts held more species. Pumice clasts arriving in tropical and subtropical climates showed this same trend, where in temperate locations species richness (alpha diversity) increased with area but decreased with age. Beta diversity analysis of the communities forming on pumice clasts that arrived in different climatic zones showed that tropical and subtropical clasts transported similar communities, while species composition on temperate clasts differed significantly from both tropical and subtropical arrivals. Using these thousands of insular habitats, we find strong evidence that area and age but also climatic conditions predict the fundamental dynamics of species richness colonizing pumice clasts.
Newman, Catherine E.; Austin, Christopher C.
2015-01-01
The dynamic geologic history of the southeastern United States has played a major role in shaping the geographic distributions of amphibians in the region. In the phylogeographic literature, the predominant pattern of distribution shifts through time of temperate species is one of contraction during glacial maxima and persistence in refugia. However, the diverse biology and ecology of amphibian species suggest that a “one-size-fits-all” model may be inappropriate. Nearly 10% of amphibian species in the region have a current distribution comprised of multiple disjunct, restricted areas that resemble the shape of Pleistocene refugia identified for other temperate taxa in the literature. Here, we apply genetics and spatially explicit climate analyses to test the hypothesis that the disjunct regions of these species ranges are climatic refugia for species that were more broadly distributed during glacial maxima. We use the salamander Plethodon serratus as a model, as its range consists of four disjunct regions in the Southeast. Phylogenetic results show that P. serratus is comprised of multiple genetic lineages, and the four regions are not reciprocally monophyletic. The Appalachian salamanders form a clade sister to all other P. serratus. Niche and paleodistribution modeling results suggest that P. serratus expanded from the Appalachians during the cooler Last Glacial Maximum and has since been restricted to its current disjunct distribution by a warming climate. These data reject the universal applicability of the glacial contraction model to temperate taxa and reiterate the importance of considering the natural history of individual species. PMID:26132077
Reinmann, Andrew B.; Hutyra, Lucy R.
2017-01-01
Forest fragmentation is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world’s remaining forest. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge, but ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance. To the extent that the findings from our research represent the forest of southern New England in the United States, we provide a preliminary estimate that edge growth enhancement could increase estimates of the region’s carbon uptake and storage by 13 ± 3% and 10 ± 1%, respectively. However, we also find that forest growth near the edge declines three times faster than that in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world’s other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest. PMID:27994137
Reinmann, Andrew B; Hutyra, Lucy R
2017-01-03
Forest fragmentation is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge, but ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance. To the extent that the findings from our research represent the forest of southern New England in the United States, we provide a preliminary estimate that edge growth enhancement could increase estimates of the region's carbon uptake and storage by 13 ± 3% and 10 ± 1%, respectively. However, we also find that forest growth near the edge declines three times faster than that in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, Jyotirmay; Bhandari, Mahabir S; Jain, Robin
Radiant cooling system has proven to be a low energy consumption system for building cooling needs. This study describes the use of cooling tower in radiant cooling system to improve the overall system efficiency. A comprehensive simulation feasibility study of the application of cooling tower in radiant cooling system was performed for the fifteen cities in different climatic zones of India. It was found that in summer, the wet bulb temperature (WBT) of the different climatic zones except warm-humid is suitable for the integration of cooling tower with radiant cooling system. In these climates, cooling tower can provide on averagemore » 24 C to 27 C water In order to achieve the energy saving potential, three different configurations of radiant cooling system have been compared in terms of energy consumption. The different configurations of the radiant cooling system integrated with cooling tower are: (1) provide chilled water to the floor, wall and ceiling mounted tubular installation. (2) provide chilled water to the wall and ceiling mounted tabular installation. In this arrangement a separate chiller has also been used to provide chilled water at 16 C to the floor mounted tubular installation. (3) provide chilled water to the wall mounted tabular installation and a separate chiller is used to provide chilled water at 16 C to the floor and ceiling mounted tabular installation. A dedicated outdoor air system is also coupled for dehumidification and ventilation in all three configurations. A conventional all-air system was simulated as a baseline to compare these configurations for assessing the energy saving potential.« less
An Alternative View of the Climate Warming Mitigation Potential of U.S. Temperate Forests
Many U.S. federal and non-governmental agencies promote forestation as a means to mitigate climate warming because of the carbon sequestration potential of forests. This biogeochemical-oriented carbon sequestration policy is somewhat inconsistent with a decade or more of researc...
Barron, J.A.; Bukry, D.; Field, D.
2010-01-01
Santa Barbara Basin (SBB) diatom and silicoflagellate assemblages are quantified from a box core record spanning AD 1940-2001 and an Ocean Drilling Program Hole 893A record from ???220 BC to AD 1880. The combined relative abundance of the diatoms Fragilariopsis doliolus and Nitzschia interrupteseriata from continuous two-year sampling intervals in the box core varies with sea surface temperature (SST), suggesting its utility in SST reconstruction. The assemblage data from the ODP 893A record indicate a broad interval of generally cooler SSTs between ???AD 800 and 1350, which corresponds to the Medieval Climate Anomaly (MCA), a period of generally warmer temperatures across other regions of the northern hemisphere. The assemblages also indicate an interval of generally warmer SSTs between ???AD 1400 and 1800, a period of otherwise global cooling referred to as the Little Ice Age (LIA). The changes in assemblages of diatoms and silicoflagellates support the hypothesis that the widespread droughts of the Medieval Climate Anomaly in the Western US were associated with cooler eastern North Pacific SST. The box core assemblages have higher percentages of tropical and subtropical compared to temperate and subpolar species than the ODP samples, reflecting a response of phytoplankton communities to an unusual 20th century warming. Pseudonitzschia australis, a diatom linked with domoic acid production, begins to become more common (>3% of the diatom assemblage) in the box core only after AD 1985, suggesting a link to anthropogenic activity. ?? 2008 Elsevier Ltd and INQUA.
Late Quaternary dynamics of forest vegetation on northern Vancouver Island, British Columbia, Canada
NASA Astrophysics Data System (ADS)
Lacourse, Terri
2005-01-01
Pollen analysis of radiocarbon-dated lake sediment from northern Vancouver Island, southwest British Columbia reveals regional changes in forest vegetation over the last 12,200 14C yr (14,900 cal yr). Between at least 12,200 and 11,700 14C yr BP (14,900-13,930 cal yr BP), open woodlands were dominated by Pinus contorta, Alnus crispa, and various ferns. As P. contorta decreased in abundance, Alnus rubra and more shade-tolerant conifers (i.e., Picea and Tsuga mertensiana) increased. Increases in T. mertensiana, P. contorta, and A. crispa pollen accumulation rates (PARs) between 10,600 and 10,400 14C yr BP (11,660-11,480 cal yr BP) reflect a cool and moist climate during the Younger Dryas chronozone. Orbitally induced warming around 10,000 14C yr BP (11,090 cal yr BP) allowed the northward extension of Pseudotsuga menziesii, although Picea, Tsuga heterophylla, and A. rubra dominated early Holocene forests. By 7500 14C yr BP (8215 cal yr BP), shade-tolerant T. heterophylla was the dominant forest tree. Cupressaceae ( Thuja plicata and Chamaecyparis nootkatensis) was present by 7500 14C yr BP but reached its maximum after 3500 14C yr BP (3600 cal yr BP), when a cooler and wetter regional climate facilitated the development of temperate rainforest. The highest rates of vegetation change are associated with Lateglacial climate change and species with rapid growth rates and short life spans.
Across a macro-ecological gradient forest competition is strongest at the most productive sites
Prior, Lynda D.; Bowman, David M. J. S.
2014-01-01
We tested the hypothesis that the effect of forest basal area on tree growth interacts with macro-ecological gradients of primary productivity, using a large dataset of eucalypt tree growth collected across temperate and sub- tropical mesic Australia. To do this, we derived an index of inter-tree competition based on stand basal area (stand BA) relative to the climatically determined potential basal area. Using linear mixed effects modeling, we found that the main effects of climatic productivity, tree size, and competition explained 26.5% of the deviance in individual tree growth, but adding interactions to the model could explain a further 8.9%. The effect of competition on growth interacts with the gradient of climatic productivity, with negligible effect of competition in low productivity environments, but marked negative effects at the most productive sites. We also found a positive interaction between tree size and stand BA, which was most pronounced in the most productive sites. We interpret these patterns as reflecting intense competition for light amongst maturing trees on more productive sites, and below ground moisture limitation at low productivity sites, which results in open stands with little competition for light. These trends are consistent with the life history and stand development of eucalypt forests: in cool moist environments, light is the most limiting resource, resulting in size-asymmetric competition, while in hot, low rainfall environments are open forests with little competition for light but where the amount of tree regeneration is limited by water availability. PMID:24926304
Strong biotic influences on regional patterns of climate regulation services
NASA Astrophysics Data System (ADS)
Serna-Chavez, H. M.; Swenson, N. G.; Weiser, M. D.; van Loon, E. E.; Bouten, W.; Davidson, M. D.; van Bodegom, P. M.
2017-05-01
Climate regulation services from forests are an important leverage in global-change mitigation treaties. Like most ecosystem services, climate regulation is the product of various ecological phenomena with unique spatial features. Elucidating which abiotic and biotic factors relate to spatial patterns of climate regulation services advances our understanding of what underlies climate-mitigation potential and its variation within and across ecosystems. Here we quantify and contrast the statistical relations between climate regulation services (albedo and evapotranspiration, primary productivity, and soil carbon) and abiotic and biotic factors. We focus on 16,955 forest plots in a regional extent across the eastern United States. We find the statistical effects of forest litter and understory carbon on climate regulation services to be as strong as those of temperature-precipitation interactions. These biotic factors likely influence climate regulation through changes in vegetation and canopy density, radiance scattering, and decomposition rates. We also find a moderate relation between leaf nitrogen traits and primary productivity at this regional scale. The statistical relation between climate regulation and temperature-precipitation ranges, seasonality, and climatic thresholds highlights a strong feedback with global climate change. Our assessment suggests the expression of strong biotic influences on climate regulation services at a regional, temperate extent. Biotic homogenization and management practices manipulating forest structure and succession will likely strongly impact climate-mitigation potential. The identity, strength, and direction of primary influences differed for each process involved in climate regulation. Hence, different abiotic and biotic factors are needed to monitor and quantify the full climate-mitigation potential of temperate forest ecosystems.
Corrosion fatigue in nitrocarburized quenched and tempered steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karim Khani, M.; Dengel, D.
1996-05-01
In order to investigate the fatigue strength and fracture mechanism of salt bath nitrocarburized steels, specimens of the steels SAE 4135 and SAE 4140, in a quenched and tempered state, and additionally in a salt bath nitrocarburized and oxidizing cooled state as well as in a polished (after the oxidizing cooling) and renewed oxidized state, were subjected to comparative rotating bending fatigue tests in inert oil and 5 pct NaCl solution. In addition, some of the quenched and tempered specimens of SAE 4135 material were provided with an approximately 50-{mu}m-thick electroless Ni-P layer, in order to compare corrosion fatigue behaviormore » between the Ni-P layer and the nitride layers. Long-life corrosion fatigue tests of SAE 4135 material were carried out under small stresses in the long-life range up to 10{sup 8} cycles with a test frequency of 100 Hz. Fatigue tests of SAE 4140 material were carried out in the range of finite life (low-cycle range) with a test frequency of 13 Hz. The results show that the 5 pct NaCl environment drastically reduced fatigue life, but nitrocarburizing plus oxidation treatment was found to improve the corrosion fatigue life over that of untreated and Ni-P coated specimens. The role of inclusions in initiating fatigue cracks was investigated. It was found that under corrosion fatigue conditions, the fatigue cracks started at cavities along the interfaces of MnS inclusions and matrix in the case of quenched and tempered specimens. The nitrocarburized specimens, however, showed a superposition of pitting corrosion and corrosion fatigue in which pores and nonmetallic inclusions in the compound layer play a predominant role concerning the formation of pits in the substrate.« less
Cambomba caroliniana Gray (Cabombaceae)
USDA-ARS?s Scientific Manuscript database
Cabomba, or water fanwort, is a fast-growing submerged aquatic plant that has the potential to infest permanent water bodies in a range of regions – from tropical to cool temperate – throughout the world. It is considered a serious pest in the United States, Canada, the Netherlands, Japan, India, Ch...
Cold plasma processing technology makes advances
USDA-ARS?s Scientific Manuscript database
Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...
Trend of earlier spring in central Europe continued
NASA Astrophysics Data System (ADS)
Ungersböck, Markus; Jurkovic, Anita; Koch, Elisabeth; Lipa, Wolfgang; Scheifinger, Helfried; Zach-Hermann, Susanne
2013-04-01
Modern phenology is the study of the timing of recurring biological events in the animal and plant world, the causes of their timing with regard to biotic and abiotic forces, and the interrelation among phases of the same or different species. The relationship between phenology and climate explains the importance of plant phenology for Climate Change studies. Plants require light, water, oxygen mineral nutrients and suitable temperature to grow. In temperate zones the seasonal life cycle of plants is primarily controlled by temperature and day length. Higher spring air temperatures are resulting in an earlier onset of the phenological spring in temperate and cool climate. On the other hand changes in phenology due to climate change do have impact on the climate system itself. Vegetation is a dynamic factor in the earth - climate system and has positive and negative feedback mechanisms to the biogeochemical and biogeophysical fluxes to the atmosphere Since the mid of the 1980s spring springs earlier in Europe and autumn is shifting back to the end of the year resulting in a longer vegetation period. The advancement of spring can be clearly attributed to temperature increase in the months prior to leaf unfolding and flowering, the timing of autumn is more complex and cannot easily be attributed to one or some few parameters. To demonstrate that the observed advancement of spring since the mid of 1980s is pro-longed in 2001 to 2010 and the delay of fall and the lengthening of the growing season is confirmed in the last decade we picked out several indicator plants from the PEP725 database www.pep725.eu. The PEP725 database collects data from different European network operators and thus offers a unique compilation of phenological observations; the database is regularly updated. The data follow the same classification scheme, the so called BBCH coding system so they can be compared. Lilac Syringa vulgaris, birch Betula pendula, beech Fagus and horse chestnut Aesculus hippocastanum are well represented in the PEP725 database. Flowering of lilac Syringa vulgaris is also used in the US as spring indicator . The flowering and/or leaf unfolding dates of lilac, horse chestnut show a clear advance to an earlier entrance in the last two decades 1991 to 2000 and 2001 to 2010 compared with the reference period 1961 to 1990, being more pronounced in northwestern regions of Central Europe. The growing season defined here as time span between leaf unfolding and leaf coloration of birch and beech has been lengthening up to two weeks in 2001 to 2010 compared to 1961 to 1990 in northeastern parts of Central Europe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chicca, Matthew; Wohlgemuth, John; TamizhMani, GovindaSamy
The primary objective of this research work is two-fold: (i) determine the degradation rates of Siemens-Arco M55 modules exposed over 18 and 28 years in a hot-dry climate of Arizona and a temperate climate of California, and; (ii) identify the potential modes responsible for these degradation losses. The degradation rates were determined based on the I-V data obtained on exposed modules and on the corresponding control modules which were not exposed in the fields. The degradation modes responsible for these degradations were determined using several nondestructive tests and destructive tests performed on these control and exposed modules. The nondestructive testsmore » included: current-voltage, visual inspection, cell-module quantum efficiency, and module level reflectance spectroscopy. The destructive tests included: transmittance spectroscopy of glass superstrates, and FTIR, DSC and TGA of encapsulant materials.« less
2014-01-01
Background Despite its high number of endemic deciduous broad-leaved species in China’s warm-temperate zone, far less attention has been paid to phylogeographic studies in this region. In this work, the phylogeographic history of Forsythia suspensa endemic to China’s warm-temperate zone was investigated to explore the effect of climate change during the Pleistocene on the distribution of this deciduous broad-leaved species in China. Results The cpDNA data revealed seven phylogeographical groups corresponding to geographical regions. By contrast, the nrDNA data supported the samples clustered into three groups, which was inconsistent with separate geographical regions supported by cpDNA data. Ecological niche modeling showed that the climatically suitable area during the cold period was larger than that during the warm period. Conclusions Both molecular data and ecological niche modeling indicated that F. suspensa expanded to nearby low-elevation plains in the glacial periods, and retreated to mountaintops during interglacial warmer stages. This study thus supported that F. suspensa persisted in situ during the glacial of the Pleistocene with enlarged distribution area, contrary to the hypothesis of long distance southward migration or large-scale range contraction. PMID:24885704
Climatic forcing of carbon-oxygen isotopic covariance in temperate-region marl lakes
NASA Technical Reports Server (NTRS)
Drummond, C. N.; Patterson, W. P.; Walker, J. C.
1995-01-01
Carbon and oxygen stable isotopic compositions of lacustrine carbonate from a southeastern Michigan marl lake display linear covariance over a range of 4.0% Peedee belemnite (PDB) in oxygen and 3.9% (PDB) in carbon. Mechanisms of delta 13 C-delta 18 O coupling conventionally attributed to lake closure in arid-region basins are inapplicable to hydrologically open lake systems. Thus, an alternative explanation of isotopic covariance in temperate region dimictic marl lakes is required. We propose that isotopic covariance is a direct record of change in regional climate. In short-residence-time temperate-region lake basins, summer meteoric precipitation is enriched in 18O relative to winter values, and summer organic productivity enriches epilimnic dissolved inorganic carbon in 13C. Thus, climate change toward longer summers and/or shorter winters could result in greater proportions of warm-month meteoric precipitation, longer durations of warm-month productivity, and net long-term enrichment in carbonate 18O and 13C. Isotopic covariance observed in the Michigan marl lake cores is interpreted to reflect postglacial warming from 10 to 3 ka followed by cooler mean annual temperature, a shift toward greater proportions of seasonal summer precipitation, a shortening of the winter season, or some combination of these three factors.
The Change in the area of various land covers on the Tibetan Plateau during 1957-2015
NASA Astrophysics Data System (ADS)
Cuo, Lan; Zhang, Yongxin
2017-04-01
With average elevation of 4000 m and area of 2.5×106 km2, Tibetan Plateau hosts various fragile ecosystems such as perennial alpine meadow, perennial alpine steppe, temperate evergreen needleleaf trees, temperate deciduous trees, temperate shrub grassland, and barely vegetated desert. Perennial alpine meadow and steppe are the two dominant vegetation types on the heartland of the plateau. MODIS Leaf Area Index (LAI) ranges from 0 to 2 in most part of the plateau. With climate change, these ecosystems are expected to undergo alteration. This study uses a dynamic vegetation model - Lund-Potsdam-Jena (LPJ) to investigate the change of the barely vegetated area and other vegetation types caused by climate change during 1957-2015 on the Tibetan Plateau. Model simulated foliage projective coverage (FPC) and plant functional types (PFTs) are selected for the investigation. The model is evaluated first using both field surveyed land cover map and MODIS LAI images. Long term trends of vegetation FPC is examined. Decadal variations of vegetated and barely vegetated land are compared. The impacts of extreme precipitation, air temperature and CO2 on the expansion and contraction of barely vegetated and vegetated areas are shown. The study will identify the dominant climate factors in affecting the desert area in the region.
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
NASA Astrophysics Data System (ADS)
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-09-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.
Medone, Paula; Ceccarelli, Soledad; Parham, Paul E; Figuera, Andreína; Rabinovich, Jorge E
2015-04-05
Chagas disease, caused by the parasite Trypanosoma cruzi, is the most important vector-borne disease in Latin America. The vectors are insects belonging to the Triatominae (Hemiptera, Reduviidae), and are widely distributed in the Americas. Here, we assess the implications of climatic projections for 2050 on the geographical footprint of two of the main Chagas disease vectors: Rhodnius prolixus (tropical species) and Triatoma infestans (temperate species). We estimated the epidemiological implications of current to future transitions in the climatic niche in terms of changes in the force of infection (FOI) on the rural population of two countries: Venezuela (tropical) and Argentina (temperate). The climatic projections for 2050 showed heterogeneous impact on the climatic niches of both vector species, with a decreasing trend of suitability of areas that are currently at high-to-moderate transmission risk. Consequently, climatic projections affected differently the FOI for Chagas disease in Venezuela and Argentina. Despite the heterogeneous results, our main conclusions point out a decreasing trend in the number of new cases of Tr. cruzi human infections per year between current and future conditions using a climatic niche approach. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Habitat correlates of the red panda in the temperate forests of Bhutan.
Dorji, Sangay; Vernes, Karl; Rajaratnam, Rajanathan
2011-01-01
Anthropogenic activities and associated global climate change are threatening the biodiversity in the Himalayas against a backdrop of poor knowledge of the region's threatened species. The red panda (Ailurus fulgens) is a threatened mammal confined to the eastern Himalayas, and because of Bhutan's central location in the distributional range of red pandas, its forests are integral to the long-term viability of wild populations. Detailed habitat requirements of the red panda are largely speculative, and there is virtually no ecological information available on this species in Bhutan. Between 2007 and 2009, we established 615 presence/absence plots in a systematic sampling of resident habitat types within Jigme Dorji and Thrumshingla National Parks, Bhutan, to investigate broad and fine-scale red panda habitat associations. Additional locality records of red pandas were obtained from interviewing 664 park residents. Red pandas were generally confined to cool broadleaf and conifer forests from 2,110-4,389 m above sea level (asl), with the majority of records between 2,400-3,700 m asl on south and east-facing slopes. At a finer scale, multivariate analysis revealed that red pandas were strongly associated with old growth Bhutan Fir (Abies densa) forest dominated by a dense cover of Yushania and Arundanaria bamboo with a high density of fallen logs and tree stumps at ground level; a high density of trees, dead snags, and rhododendron shrubs in the mid-storey; and locations that were close to water. Because Bhutan's temperate forests that encompass prime red panda habitat are also integral to human subsistence and socio-economic development, there exists an inadvertent conflict between the needs of people and red pandas. As such, careful sustainable management of Bhutan's temperate forests is necessary if a balance is to be met between the socioeconomic needs of people and the conservation goals for red pandas.
Melo-Ferreira, J; Boursot, P; Randi, E; Kryukov, A; Suchentrunk, F; Ferrand, N; Alves, P C
2007-02-01
The climatic fluctuations during glaciations have affected differently arctic and temperate species. In the northern hemisphere, cooling periods induced the expansion of many arctic species to the south, while temperate species were forced to retract in southern refugia. Consequently, in some areas the alternation of these species set the conditions for competition and eventually hybridization. Hares in the Iberian Peninsula appear to illustrate this phenomenon. Populations of Iberian hare (Lepus granatensis), brown hare (Lepus europaeus) and broom hare (Lepus castroviejoi) in Northern Iberia harbour mitochondrial haplotypes from the mountain hare (Lepus timidus), a mainly boreal and arctic species presently absent from the peninsula. To understand the history of this past introgression we analysed sequence variation and geographical distribution of mitochondrial control region and cytochrome b haplotypes of L. timidus origin found in 378 specimens of these four species. Among 124 L. timidus from the Northern Palaearctic and the Alps we found substantial nucleotide diversity (2.3%) but little differentiation between populations. Based on the mismatch distribution of the L. timidus sequences, this could result from an expansion at a time of temperature decrease favourable to this arctic species. The nucleotide diversity of L. timidus mtDNA found in Iberian L. granatensis, L. europaeus and L. castroviejoi (183, 70 and 1 specimens, respectively) was of the same order as that in L. timidus over its range (1.9%), suggesting repeated introgression of multiple lineages. The structure of the coalescent of L. granatensis sequences indicates that hybridization with L. timidus was followed by expansion of the introgressed haplotypes, as expected during a replacement with competition, and occurred when temperatures started to rise, favouring the temperate species. Whether a similar scenario explains the introgression into Iberian L. europaeus remains unclear but it is possible that it hybridized with already introgressed L. granatensis.
Habitat Correlates of the Red Panda in the Temperate Forests of Bhutan
Dorji, Sangay; Vernes, Karl; Rajaratnam, Rajanathan
2011-01-01
Anthropogenic activities and associated global climate change are threatening the biodiversity in the Himalayas against a backdrop of poor knowledge of the region's threatened species. The red panda (Ailurus fulgens) is a threatened mammal confined to the eastern Himalayas, and because of Bhutan's central location in the distributional range of red pandas, its forests are integral to the long-term viability of wild populations. Detailed habitat requirements of the red panda are largely speculative, and there is virtually no ecological information available on this species in Bhutan. Between 2007 and 2009, we established 615 presence/absence plots in a systematic sampling of resident habitat types within Jigme Dorji and Thrumshingla National Parks, Bhutan, to investigate broad and fine-scale red panda habitat associations. Additional locality records of red pandas were obtained from interviewing 664 park residents. Red pandas were generally confined to cool broadleaf and conifer forests from 2,110–4,389 m above sea level (asl), with the majority of records between 2,400–3,700 m asl on south and east-facing slopes. At a finer scale, multivariate analysis revealed that red pandas were strongly associated with old growth Bhutan Fir (Abies densa) forest dominated by a dense cover of Yushania and Arundanaria bamboo with a high density of fallen logs and tree stumps at ground level; a high density of trees, dead snags, and rhododendron shrubs in the mid-storey; and locations that were close to water. Because Bhutan's temperate forests that encompass prime red panda habitat are also integral to human subsistence and socio-economic development, there exists an inadvertent conflict between the needs of people and red pandas. As such, careful sustainable management of Bhutan's temperate forests is necessary if a balance is to be met between the socioeconomic needs of people and the conservation goals for red pandas. PMID:22039497
Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change.
Bestion, Elvire; Teyssier, Aimeric; Richard, Murielle; Clobert, Jean; Cote, Julien
2015-10-01
Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates.
Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change
Bestion, Elvire; Teyssier, Aimeric; Richard, Murielle; Clobert, Jean; Cote, Julien
2015-01-01
Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates. PMID:26501958
NASA Astrophysics Data System (ADS)
Manugula, Vijaya L.; Rajulapati, Koteswararao V.; Reddy, G. Madhusudhan; Mythili, R.; Bhanu Sankara Rao, K.
2017-08-01
The effects of tool rotational speed (200 and 700 rpm) on evolving microstructure during friction stir welding (FSW) of a reduced activation ferritic-martensitic steel (RAFMS) in the stir zone (SZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) have been explored in detail. The influence of post-weld direct tempering (PWDT: 1033 K (760 °C)/ 90 minutes + air cooling) and post-weld normalizing and tempering (PWNT: 1253 K (980 °C)/30 minutes + air cooling + tempering 1033 K (760 °C)/90 minutes + air cooling) treatments on microstructure and mechanical properties has also been assessed. The base metal (BM) microstructure was tempered martensite comprising Cr-rich M23C6 on prior austenite grain and lath boundaries with intra-lath precipitation of V- and Ta-rich MC precipitates. The tool rotational speed exerted profound influence on evolving microstructure in SZ, TMAZ, and HAZ in the as-welded and post-weld heat-treated states. Very high proportion of prior austenitic grains and martensite lath boundaries in SZ and TMAZ in the as-welded state showed lack of strengthening precipitates, though very high hardness was recorded in SZ irrespective of the tool speed. Very fine-needle-like Fe3C precipitates were found at both the rotational speeds in SZ. The Fe3C was dissolved and fresh precipitation of strengthening precipitates occurred on both prior austenite grain and sub-grain boundaries in SZ during PWNT and PWDT. The post-weld direct tempering caused coarsening and coalescence of strengthening precipitates, in both matrix and grain boundary regions of TMAZ and HAZ, which led to inhomogeneous distribution of hardness across the weld joint. The PWNT heat treatment has shown fresh precipitation of M23C6 on lath and grain boundaries and very fine V-rich MC precipitates in the intragranular regions, which is very much similar to that prevailed in BM prior to FSW. Both the PWDT and PWNT treatments caused considerable reduction in the hardness of SZ. In the as-welded state, the 200 rpm joints have shown room temperature impact toughness close to that of BM, whereas 700 rpm joints exhibited very poor impact toughness. The best combination of microstructure and mechanical properties could be obtained by employing low rotational speed of 200 rpm followed by PWNT cycle. The type and size of various precipitates, grain size, and evolving dislocation substructure have been presented and comprehensively discussed.
NASA Astrophysics Data System (ADS)
Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane
2016-04-01
Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in models and estimating their impact on the land carbon balance.
Andrew, Nigel R; Hart, Robert A; Jung, Myung-Pyo; Hemmings, Zac; Terblanche, John S
2013-09-01
Insects in temperate regions are predicted to be at low risk of climate change relative to tropical species. However, these assumptions have generally been poorly examined in all regions, and such forecasting fails to account for microclimatic variation and behavioural optimisation. Here, we test how a population of the dominant ant species, Iridomyrmex purpureus, from temperate Australia responds to thermal stress. We show that ants regularly forage for short periods (minutes) at soil temperatures well above their upper thermal limits (upper lethal temperature = 45.8 ± 1.3°C; CT(max) = 46.1°C) determined over slightly longer periods (hours) and do not show any signs of a classic thermal performance curve in voluntary locomotion across soil surface temperatures of 18.6-57°C (equating to a body temperature of 24.5-43.1°C). Although ants were present all year round, and dynamically altered several aspects of their thermal biology to cope with low temperatures and seasonal variation, temperature-dependence of running speed remained invariant and ants were unable to elevate high temperature tolerance using plastic responses. Measurements of microclimate temperature were higher than ant body temperatures during the hottest part of the day, but exhibited a stronger relationship with each other than air temperatures from the closest weather station. Generally close associations of ant activity and performance with microclimatic conditions, possibly to maximise foraging times, suggest I. purpureus displays highly opportunistic thermal responses and readily adjusts behaviour to cope with high trail temperatures. Increasing frequency or duration of high temperatures is therefore likely to result in an immediate reduction in foraging efficiency. In summary, these results suggest that (1) soil-dwelling temperate insect populations may be at higher risks of thermal stress with increased frequency or duration of high temperatures resulting from climate change than previously thought, however, behavioural cues may be able to compensate to some extent; and (2) indices of climate change-related thermal stress, warming tolerance and thermal safety margin, are strongly influenced by the scale of climate metrics employed. Copyright © 2013 Elsevier Ltd. All rights reserved.
As a strategy for sustainable development, green roof technology is gaining acceptance in the U.S. However, widespread adoption in highly variable continental climates, such as the Upper Midwest (EPA Region 5), lags behind green roof use in cities with simi...
USDA-ARS?s Scientific Manuscript database
Perennial horticultural crop production will be impacted by climate change effects on temperature, water availability, solar radiation, air pollution, and carbon dioxide. Horticultural crop value is derived from both the quantity and the quality of the harvested product; both of which are affected ...
Temperate forest health in an era of emerging megadisturbance
Millar, Constance I.; Stephenson, Nathan L.
2015-01-01
Although disturbances such as fire and native insects can contribute to natural dynamics of forest health, exceptional droughts, directly and in combination with other disturbance factors, are pushing some temperate forests beyond thresholds of sustainability. Interactions from increasing temperatures, drought, native insects and pathogens, and uncharacteristically severe wildfire are resulting in forest mortality beyond the levels of 20th-century experience. Additional anthropogenic stressors, such as atmospheric pollution and invasive species, further weaken trees in some regions. Although continuing climate change will likely drive many areas of temperate forest toward large-scale transformations, management actions can help ease transitions and minimize losses of socially valued ecosystem services.
Temperate macroalgae impacts tropical fish recruitment at forefronts of range expansion
NASA Astrophysics Data System (ADS)
Beck, H. J.; Feary, D. A.; Nakamura, Y.; Booth, D. J.
2017-06-01
Warming waters and changing ocean currents are increasing the supply of tropical fish larvae to temperature regions where they are exposed to novel habitats, namely temperate macroalgae and barren reefs. Here, we use underwater surveys on the temperate reefs of south-eastern (SE) Australia and western Japan ( 33.5°N and S, respectively) to investigate how temperate macroalgal and non-macroalgal habitats influence recruitment success of a range of tropical fishes. We show that temperate macroalgae strongly affected recruitment of many tropical fish species in both regions and across three recruitment seasons in SE Australia. Densities and richness of recruiting tropical fishes, primarily planktivores and herbivores, were over seven times greater in non-macroalgal than macroalgal reef habitat. Species and trophic diversity ( K-dominance) were also greater in non-macroalgal habitat. Temperate macroalgal cover was a stronger predictor of tropical fish assemblages than temperate fish assemblages, reef rugosities or wave exposure. Tropical fish richness, diversity and density were greater on barren reef than on reef dominated by turfing algae. One common species, the neon damselfish ( Pomacentrus coelestis), chose non-macroalgal habitat over temperate macroalgae for settlement in an aquarium experiment. This study highlights that temperate macroalgae may partly account for spatial variation in recruitment success of many tropical fishes into higher latitudes. Hence, habitat composition of temperate reefs may need to be considered to accurately predict the geographic responses of many tropical fishes to climate change.
The effect of tempering temperature on pitting corrosion resistance of 420 stainless steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anwar, Moch Syaiful, E-mail: moch026@lipi.go.id; Prifiharni, Siska, E-mail: sisk002@lipi.go.id; Mabruri, Efendi, E-mail: effe004@lipi.go.id
2016-04-19
The AISI Type 420 stainless steels are commonly used to steam generators, mixer blades, etc. These stainless steels are most prone to pitting in dissolved Cl{sup −} containing environments. In this paper, the effect of tempering temperature on pitting corrosion resistance of AISI Type 420 stainless steels was studied. The AISI Type 420 stainless steels specimens were heat treated at the temperature of 1050°C for 1 hour to reach austenite stabilization and then quench in the oil. After that, the specimens were tempered at the temperature of 150, 250, 350 and 450°C for 30 minutes and then air cooled tomore » the room temperature. The electrochemical potentiodynamic polarization test was conducted at 3.5% sodium chloride solution to evaluate corrosion rate and pitting corrosion behaviour. The Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) were used to evaluate the pitting corrosion product. The result have shown that highest pitting potential was found in the sample tempered at 250°C and corrosion pits were found to initiate preferentially around chromium carbides.« less
NASA Astrophysics Data System (ADS)
Spangehl, Thomas; Cubasch, Ulrich; Schimanke, Semjon
A fully coupled AO-GCM including representation of the middle atmosphere is used for tran-sient simulation of climate from 1630 to 2000 AD. For better representation of changes in the UV/visible part of the solar spectrum an improved short-wave radiation scheme is implemented. The model is driven by changes in GHG concentrations, solar activity and volcanic eruptions. Solar variability is introduced via changes in total/spectral solar irradiance (TSI/SSI) and pre-scribed changes in stratospheric ozone. The secular trend in TSI is in the range of 0.1 percent increase from Maunder Minimum to present-day. Volcanic eruptions are represented via abrupt reduction in TSI. With the applied forcings the model does not simulate a clear reduction of the annual Northern Hemisphere (NH) mean near surface temperature during Maunder Minimum. By contrast the Dalton Minimum is characterized by distinct cooling and there is a significant raise of NH mean near surface temperature until the end of the 20th century. Focusing on the North Atlantic/European region the winter mean near surface temperature change pat-tern from Late Maunder Minimum (1675-1715) to present-day (1960-1990) reveals maximum warming over north-eastern Europe and cooling over the western North Atlantic with maxi-mum cooling west of Greenland. These changes can partly be explained by a shift of the NAO towards a more positive phase. The simulated changes in tropospheric circulation are discussed with special emphasize on the role of the solar forcing. Besides the stratospheric solar forcing which may affect NAO variability via downward propagation of the solar signal from the strato-sphere to the troposphere the magnitude of the secular trend in TSI might play a role. For the period from Maunder Minimum to present-day the simulation shows less near surface temper-ature increase especially over arctic regions when compared to simulations performed with the same model including the standard radiation scheme but applying larger TSI variations. The associated changes in lower tropospheric baroclinicity are more favourable for synoptic scale wave activity over the North Atlantic and might thereby contribute to strengthening of the NAO.
Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass
USDA-ARS?s Scientific Manuscript database
Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated w...
The Possibilities of Using Organization Development Technologies in Thai Culture.
1983-03-01
four r.gions: the moun-ai- ous Worth, wher temperatures in the winter are cool .nouah to Dirmir cultivation of temperate fruits such as apples and...tims cff aftler a difficult period, and Offering swot :)-al support and understanding may help. d. Negotiaticn and Agreement_ Another technique Is
Climate of an Earth-Like World with Changing Eccentricity
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-02-01
Having a giant planet like Jupiter next door can really wreak havoc on your orbit! A new study examines what such a bad neighbor might mean for the long-term climate of an Earth-like planet.Influence of a Bad NeighborThe presence of a Jupiter-like giant planet in a nearby orbit can significantly affect how terrestrial planets evolve dynamically, causing elements like the planets orbital eccentricities and axial tilts to change over time. Earth is saved this inconvenience Jupiter isnt close enough to significantly influence us, and our large moon stabilizes our orbit against Jupiters tugs.Top panels: Authors simulationoutcomes for Case1, in which the planets eccentricity varies from 0 to 0.283 over 6500 years. Bottom panels: Outcomes for Case 2, in which the planets eccentricity varies from 0 to 0.066 over 4500 years. The highereccentricities reached in Case 1 causes the climate parameters to vary more widely. Click for a better look! [Way Georgakarakos 2017]Mars, on the other hand, isnt as lucky: its possible that Jupiters gravitational pull causes Marss axial tilt, for instance, to evolve through a range as large as 0 to 60 degrees on timescales of millions of years! Marss orbital eccentricity is similarly thought to vary due to Jupiters influence, and both of these factors play a major role in determining Marss climate.As exoplanet missions discover more planets many of which are Earth-like we must carefully consider which among these are most likely to be capable of sustaining life. If having a nearby neighbor like a Jupiter can tug an Earth-like world into an orbit with varying eccentricity, how does this affect the planets climate? Will the planet remain temperate? Or will it develop a runaway heating or cooling effect as it orbits, rendering it uninhabitable?Oceans and OrbitsTo examine these questions, two scientists have built the first ever 3D global climate model simulations of an Earth-like world using a fully coupled ocean (necessary for understanding the transport of heat across the planet) with a planetary orbit that evolves over time.The surface air temperature variation of a planet with orbital eccentricity of 0.283. The top panel shows the surface temperature when the planet is closest to the star in its orbit (periastron); the bottom when the planet is furthest from the star in its orbit (apoastron). [Way Georgakarakos 2017]The scientists, Michael Way (NASA Goddard and Uppsala University, Sweden) and Nikolaos Georgakarakos (New York University Abu Dhabi), focus in this study on the specific effects of a varying orbital eccentricity on an Earth-like planets climate, holding the planets axial tilt steady at Earths 23.5. They explore two scenarios: one in which the planets eccentricity evolves from 0 to 0.283 over 6500 years, and the other in which it evolves from 0 to 0.066 over 4500 years.Temperate OutcomesWay and Georgakarakos find that the planet with the more widely varying eccentricity has a greater increase rainfall and humidity as the planet approaches its host star in its orbit. Nonetheless, this effect is not enough to cause a runaway greenhouse scenario in which the planet becomes too warm for habitability. Similarly, the ocean ice fraction remains low enough even at apoastron in high-eccentricity scenarios for the planet to remain temperate.What does these results imply? Having a changing eccentricity caused by the gravitational pull of a nearby Jupiter-like neighbor may make a planets climate more variable, but not to the extent where the planet is no longer able to support life. Therefore, as we discover more such planets with current and upcoming exoplanet missions, we know that we neednt necessarily assume that they arent interest for habitability.CitationM. J. Way and Nikolaos Georgakarakos 2017 ApJL 835 L1. doi:10.3847/2041-8213/835/1/L1
Climate Change Impacts on Rivers and Implications for Electricity Generation in the United States
NASA Astrophysics Data System (ADS)
Miara, A.; Vorosmarty, C. J.; Macknick, J.; Corsi, F.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Prousevitch, A.
2015-12-01
The contemporary power sector in the United States is heavily reliant on water resources to provide cooling water for thermoelectric generation. Efficient thermoelectric plant operations require large volumes of water at sufficiently cool temperatures for their cooling process. The total amount of water that is withdrawn or consumed for cooling and any potential declines in efficiencies are determined by the sector's fuel mix and cooling technologies. As such, the impact of climate change, and the extent of impact, on the power sector is shaped by the choice of electricity generation technologies that will be built over the coming decades. In this study, we model potential changes in river discharge and temperature in the contiguous US under a set of climate scenarios to year 2050 using the Water Balance Model-Thermoelectric Power and Thermal Pollution Model (WBM-TP2M). Together, these models quantify, in high-resolution (3-min), river temperatures, discharge and power plant efficiency losses associated with changes in available cooling water that incorporates climate, hydrology, river network dynamics and multi-plant impacts, on both single power plant and regional scales. Results are used to assess the aptness and vulnerability of contemporary and alternative electricity generation pathways to changes in climate and water availability for cooling purposes, and the concomitant impacts on power plant operating efficiencies. We assess the potential impacts by comparing six regions (Northeast, Southeast, Midwest, Great Plains, Southwest, Northwest as in the National Climate Assessment (2014)) across the US. These experiments allow us to assess tradeoffs among electricity-water-climate to provide useful insight for decision-makers managing regional power production and aquatic environments.
NASA Astrophysics Data System (ADS)
Fonstein, N.; Kapustin, M.; Pottore, N.; Gupta, I.; Yakubovsky, O.
2007-09-01
The results of laboratory investigations of dual-phase steels with different contents of carbon and alloying elements after the controlled cooling from the two-phase field and the final low-temperature tempering are presented. It is shown that the ratio of the yield strength to the tensile strength of dual-phase steels, just as the return of the yield-point elongation, depends on the volume fraction of martensite, temperature of the martensite transformation of the austenite component, quenching stresses, concentration of carbon in ferrite, and the temperature of the final tempering.
Song, Bing; Niu, Shuli; Zhang, Zhe; Yang, Haijun; Li, Linghao; Wan, Shiqiang
2012-01-01
Soil is one of the most important carbon (C) and nitrogen (N) pools and plays a crucial role in ecosystem C and N cycling. Climate change profoundly affects soil C and N storage via changing C and N inputs and outputs. However, the influences of climate warming and changing precipitation regime on labile and recalcitrant fractions of soil organic C and N remain unclear. Here, we investigated soil labile and recalcitrant C and N under 6 years' treatments of experimental warming and increased precipitation in a temperate steppe in Northern China. We measured soil light fraction C (LFC) and N (LFN), microbial biomass C (MBC) and N (MBN), dissolved organic C (DOC) and heavy fraction C (HFC) and N (HFN). The results showed that increased precipitation significantly stimulated soil LFC and LFN by 16.1% and 18.5%, respectively, and increased LFC:HFC ratio and LFN:HFN ratio, suggesting that increased precipitation transferred more soil organic carbon into the quick-decayed carbon pool. Experimental warming reduced soil labile C (LFC, MBC, and DOC). In contrast, soil heavy fraction C and N, and total C and N were not significantly impacted by increased precipitation or warming. Soil labile C significantly correlated with gross ecosystem productivity, ecosystem respiration and soil respiration, but not with soil moisture and temperature, suggesting that biotic processes rather than abiotic factors determine variations in soil labile C. Our results indicate that certain soil carbon fraction is sensitive to climate change in the temperate steppe, which may in turn impact ecosystem carbon fluxes in response and feedback to climate change.
Song, Bing; Niu, Shuli; Zhang, Zhe; Yang, Haijun; Li, Linghao; Wan, Shiqiang
2012-01-01
Soil is one of the most important carbon (C) and nitrogen (N) pools and plays a crucial role in ecosystem C and N cycling. Climate change profoundly affects soil C and N storage via changing C and N inputs and outputs. However, the influences of climate warming and changing precipitation regime on labile and recalcitrant fractions of soil organic C and N remain unclear. Here, we investigated soil labile and recalcitrant C and N under 6 years' treatments of experimental warming and increased precipitation in a temperate steppe in Northern China. We measured soil light fraction C (LFC) and N (LFN), microbial biomass C (MBC) and N (MBN), dissolved organic C (DOC) and heavy fraction C (HFC) and N (HFN). The results showed that increased precipitation significantly stimulated soil LFC and LFN by 16.1% and 18.5%, respectively, and increased LFC∶HFC ratio and LFN∶HFN ratio, suggesting that increased precipitation transferred more soil organic carbon into the quick-decayed carbon pool. Experimental warming reduced soil labile C (LFC, MBC, and DOC). In contrast, soil heavy fraction C and N, and total C and N were not significantly impacted by increased precipitation or warming. Soil labile C significantly correlated with gross ecosystem productivity, ecosystem respiration and soil respiration, but not with soil moisture and temperature, suggesting that biotic processes rather than abiotic factors determine variations in soil labile C. Our results indicate that certain soil carbon fraction is sensitive to climate change in the temperate steppe, which may in turn impact ecosystem carbon fluxes in response and feedback to climate change. PMID:22479373
Phenology of temperate trees in tropical climates
NASA Astrophysics Data System (ADS)
Borchert, Rolf; Robertson, Kevin; Schwartz, Mark D.; Williams-Linera, Guadalupe
2005-09-01
Several North American broad-leaved tree species range from the northern United States at ˜47°N to moist tropical montane forests in Mexico and Central America at 15-20°N. Along this gradient the average minimum temperatures of the coldest month (T Jan), which characterize annual variation in temperature, increase from -10 to 12°C and tree phenology changes from deciduous to leaf-exchanging or evergreen in the southern range with a year-long growing season. Between 30 and 45°N, the time of bud break is highly correlated with T Jan and bud break can be reliably predicted for the week in which mean minimum temperature rises to 7°C. Temperature-dependent deciduous phenology—and hence the validity of temperature-driven phenology models—terminates in southern North America near 30°N, where T Jan>7°C enables growth of tropical trees and cultivation of frost-sensitive citrus fruits. In tropical climates most temperate broad-leaved species exchange old for new leaves within a few weeks in January-February, i.e., their phenology becomes similar to that of tropical leaf-exchanging species. Leaf buds of the southern ecotypes of these temperate species are therefore not winter-dormant and have no chilling requirement. As in many tropical trees, bud break of Celtis, Quercus and Fagus growing in warm climates is induced in early spring by increasing daylength. In tropical climates vegetative phenology is determined mainly by leaf longevity, seasonal variation in water stress and day length. As water stress during the dry season varies widely with soil water storage, climate-driven models cannot predict tree phenology in the tropics and tropical tree phenology does not constitute a useful indicator of global warming.
Brucet, Sandra; Boix, Dani; Nathansen, Louise W.; Quintana, Xavier D.; Jensen, Elisabeth; Balayla, David; Meerhoff, Mariana; Jeppesen, Erik
2012-01-01
Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes. PMID:22393354
Jing Xie; Jiquan Chen; Ge Sun; Housen Chu; Asko Noormets; Zutao Ouyang; Ranjeet John; Shiqiang Wan; Wenbin Guan
2014-01-01
Our understanding of the long-term carbon (C) cycle of temperate deciduous forests and its sensitivity to climate variability is limited due to the large temporal dynamics of C fluxes. The goal of the study was to quantify the effects of environmental variables on the C balance in a 70-year-old mixed-oak woodland forest over a 7-year period in northwest Ohio, USA. The...
Net ecosystem productivity of temperate grasslands in northern China: An upscaling study
Zhang, Li; Guo, Huadong; Jia, Gensuo; Wylie, Bruce; Gilmanov, Tagir; Howard, Daniel M.; Ji, Lei; Xiao, Jingfeng; Li, Jing; Yuan, Wenping; Zhao, Tianbao; Chen, Shiping; Zhou, Guangsheng; Kato, Tomomichi
2014-01-01
Grassland is one of the widespread biome types globally, and plays an important role in the terrestrial carbon cycle. We examined net ecosystem production (NEP) for the temperate grasslands in northern China from 2000 to 2010. We combined flux observations, satellite data, and climate data to develop a piecewise regression model for NEP, and then used the model to map NEP for grasslands in northern China. Over the growing season, the northern China's grassland had a net carbon uptake of 158 ± 25 g C m−2 during 2000–2010 with the mean regional NEP estimate of 126 Tg C. Our results showed generally higher grassland NEP at high latitudes (northeast) than at low latitudes (central and west) because of different grassland types and environmental conditions. In the northeast, which is dominated by meadow steppes, the growing season NEP generally reached 200–300 g C m−2. In the southwest corner of the region, which is partially occupied by alpine meadow systems, the growing season NEP also reached 200–300 g C m−2. In the central part, which is dominated by typical steppe systems, the growing season NEP generally varied in the range of 100–200 g C m−2. The NEP of the northern China's grasslands was highly variable through years, ranging from 129 (2001) to 217 g C m−2 growing season−1 (2010). The large interannual variations of NEP could be attributed to the sensitivity of temperate grasslands to climate changes and extreme climatic events. The droughts in 2000, 2001, and 2006 reduced the carbon uptake over the growing season by 11%, 29%, and 16% relative to the long-term (2000–2010) mean. Over the study period (2000–2010), precipitation was significantly correlated with NEP for the growing season (R2 = 0.35, p-value < 0.1), indicating that water availability is an important stressor for the productivity of the temperate grasslands in semi-arid and arid regions in northern China. We conclude that northern temperate grasslands have the potential to sequester carbon, but the capacity of carbon sequestration depends on grassland types and environmental conditions. Extreme climate events like drought can significantly reduce the net carbon uptake of grasslands.
Effect of tempering treatment upon the residual stress of bimetallic roll
NASA Astrophysics Data System (ADS)
Sano, Y.; Noda, N.-A.; Takase, Y.; Torigoe, R.; Tsuboi, K.; Aridi, M. R.; Sanada, Y.; Lan, L. Y.
2018-06-01
Bimetallic rolls are widely used in steel rolling industries because of the excellent hardness, wear resistance, and high temperature properties. However, thermal stress is produced by heating-cooling thermal cycles, which is a great challenge for their practical application. Indeed, if severe thermal tensile stress is introduced into these rolls, it can assist the thermal cracks to propagate, even lead to the overall failure of rolls. In this paper, we investigated the effect of tempering treatment on the residual stress after the bimetallic rolls were subjected to quenching. Compared with the non-uniform heating-quenching process, the tempering process makes the maximum stress at the core decreased by 15% (from 275 MPa to 234 MPa) with considering martensite transformation but decreased by 26% (from 275 MPa to 201 MPa) without considering martensite transformation. For tempering process after uniform heating quenching, the maximum stress at the core decreases by 24% from 357 MPa to 273 MPa with considering martensite transformation but decreases by 30% from 357 MPa to 246 MPa without considering martensite transformation. And compared with the non-uniform heating-quenching process, the double tempering process makes the maximum stress at the core decreased by 8% (from 275 MPa to 253 MPa) with considering martensite transformation but decreased by 27% (from 275 MPa to 200 MPa) without considering martensite transformation.
NASA Astrophysics Data System (ADS)
Kaltenrieder, Petra; Belis, Claudio A.; Hofstetter, Simone; Ammann, Brigitta; Ravazzi, Cesare; Tinner, Willy
2009-12-01
It has been hypothesized that refugia of thermophilous tree species were located in Northern Italy very close to the Alps, though, this hypothesis has yet to be tested thoroughly. In contrast to Central and Southern Italy with its relative wealth of data, only a few fragmentary records are currently available from Northern Italy for the last Glacial (Würm, Weichselian). Our new study site Lago della Costa lies adjacent to the catchment of the megafans of the Alpine forelands and the braided rivers of the Northeastern Po Plain that have so far inhibited the recovery of continuous Glacial and Late-Glacial records. We analyze pollen, plant macrofossils, charcoal and ostracods to reconstruct the vegetation, fire and lake history for the period 33,000-16,000 cal. BP. We compare our data with Glacial records from Southern Europe to discuss similarities and dissimilarities between these potential refugial areas. A comparison with independent paleoclimatic proxies allows to assess potential linkages between environmental and climatic variability. New macrofossil and pollen data at Lago della Costa unambiguously document the local persistence of boreal tree taxa such as Larix decidua and Betula tree species around the study site during the last Glacial. The regular occurrence of pollen of temperate trees in the organic lake sediments (fine-detritus calcareous gyttja) suggests that temperate taxa such as Corylus avellana, Quercus deciduous, Tilia, Ulmus, Fraxinus excelsior, Carpinus, Abies alba and Fagus sylvatica, most likely survived the Last Glacial Maximum (LGM) at favorable sites in the Euganean Hills. The percentage values of temperate trees are comparable with those from Southern Europe (e.g. Monticchio in Southern Italy). We conclude that the Euganean Hills were one of the northernmost refugial areas of temperate taxa in Europe. However, the relative and absolute abundances of pollen of temperate trees are highly variable. Pollen-inferred declines of temperate tree communities (e.g. Quercetum mixtum) and low ostracod-inferred water levels at Lago della Costa correspond to the cold Heinrich events H-2 (LGM; 23,000-19,000 cal. BP) and H-3 (around 28,000 cal. BP), as recorded in the marine sediments of the North Atlantic. Similar patterns of significant temperate tree population collapses during cold Heinrich events are recorded at southern Mediterranean sites (e.g. Monticchio and the Alboran Sea). These findings suggest close linkages between Northern Atlantic and South-Central European climates during the past Glacial.
Kuo, Li-Yaung; Chen, Cheng-Wei; Shinohara, Wataru; Ebihara, Atsushi; Kudoh, Hiroshi; Sato, Hirotoshi; Huang, Yao-Moan; Chiou, Wen-Liang
2017-03-01
Independent gametophyte ferns are unique among vascular plants because they are sporophyteless and reproduce asexually to maintain their populations in the gametophyte generation. Such ferns had been primarily discovered in temperate zone, and usually hypothesized with (sub)tropical origins and subsequent extinction of sporophyte due to climate change during glaciations. Presumably, independent fern gametophytes are unlikely to be distributed in tropics and subtropics because of relatively stable climates which are less affected by glaciations. Nonetheless, the current study presents cases of two independent gametophyte fern species in subtropic East Asia. In this study, we applied plastid DNA sequences (trnL-L-F and matK + ndhF + chlL datasets) and comprehensive sampling (~80%) of congeneric species for molecular identification and divergence time estimation of these independent fern gametophytes. The two independent gametophyte ferns were found belonging to genus Haplopteris (vittarioids, Pteridaceae) and no genetic identical sporophyte species in East Asia. For one species, divergence times between its populations imply recent oversea dispersal(s) by spores occurred during Pleistocene. By examining their ex situ and in situ fertility, prezygotic sterility was found in these two Haplopteris, in which gametangia were not or very seldom observed, and this prezygotic sterility might attribute to their lacks of functional sporophytes. Our field observation and survey on their habitats suggest microhabitat conditions might attribute to this prezygotic sterility. These findings point to consideration of whether recent climate change during the Pleistocene glaciation resulted in ecophysiological maladaptation of non-temperate independent gametophyte ferns. In addition, we provided a new definition to classify fern gametophyte independences at the population level. We expect that continued investigations into tropical and subtropical fern gametophyte floras will further illustrate the biogeographic significance of non-temperate fern gametophyte independence.
Is there a substitution of Pinaceae by Fagaceae in temperate forests at the global scale?
NASA Astrophysics Data System (ADS)
Alfaro Reyna, Teresa; Retana, Javier; Martínez-Vilalta, Jordi
2018-07-01
Reports on forest decline, changes in species composition and the distribution of forests in response to changes in climate and land use are increasing worldwide. Temperate forests are largely dominated by two tree families: Pinaceae and Fagaceae. These two families have distinct functional properties and different responses to environmental factors. Several local and regional assessments, particularly in Europe, have found that species of Fagaceae are invading areas previously dominated by Pinaceae. The main aim of this synthesis study is to analyze the relative dynamics of Pinaceae and Fagaceae species in temperate forests around the world, with the following specific objectives: (1) establish if there is a consistent directional substitution of Pinaceae by Fagaceae worldwide; and (2) determine whether these directional changes are associated with specific climatic conditions or certain geographic regions, reflecting differences in historical forest management and land use. A bibliographic review was performed and 51 papers were found that met the search criteria, including a total of 121 case studies in which the relative dynamics of Pinaceae and Fagaceae were evaluated. Our results show that the relative abundance of Fagaceae increased in 71% of cases (P → F dynamics), whereas Pinaceae relative abundance increased in 17% of cases (F → P) and 12% of cases did not show clear changes. Increases of Fagaceae relative to Pinaceae were less clear in areas where vegetation dynamics were driven by natural disturbances. Our results indicate a widespread increase in dominance of Fagaceae species at the expense of Pinaceae across northern temperate forests, with the exception of Eastern North America. The potential implications for ecosystem function and forest resilience under ongoing climate change are large and clearly deserve further study.
Zhang, Ying; Bi, Peng; Sun, Yuwei; Hiller, Janet E
2012-02-01
The impact of climate change on enteric infection has been a concern in recent years. This study aims to project disability burdens of bacillary dysentery (BD) associated with increasing temperature in different climatic zones in China. Years Lost due to Disabilities (YLDs) were used as the measure of burden of bacillary dysentery in this study. A temperate city in northern China and a subtropical city in southern China were selected as the study areas. The quantitative relationship between temperature and the number of cases in each city was base on the regression models developed in our previous studies. YLDs for bacillary dysentery in 2000 were used as the baseline data. Projection of YLDs for bacillary dysentery in 2020 and 2050 under future temperature scenarios were conducted. Demographic changes over the next 20 to 50 years in study cities were considered in the projections. Under the temperature scenarios alone, the YLDs for bacillary dysentery may increase by up to 80% by 2020 and 174% by 2050 in the temperate city and up to 75% increase in the YLDs by 2020 and a 147% increase by 2050 in the tropical city. Considering potential changes in both temperature and population size and structure, if other factors remain constant, compared with the YLDs observed in 2000, the YLDs for bacillary dysentery may double by 2020 and triple by 2050 in both the temperate and subtropical cities in China. The temperature-related health burden of enteric infection in China may greatly increase in the future if there is no effective intervention. Relevant public health strategies should be developed at an earlier stage to prevent and reduce the impact of infectious disease associated with climate change.
Legave, Jean-Michel; Guédon, Yann; Malagi, Gustavo; El Yaacoubi, Adnane; Bonhomme, Marc
2015-01-01
The responses of flowering phenology to temperature increases in temperate fruit trees have rarely been investigated in contrasting climatic regions. This is an appropriate framework for highlighting varying responses to diverse warming contexts, which would potentially combine chill accumulation (CA) declines and heat accumulation (HA) increases. To examine this issue, a data set was constituted in apple tree from flowering dates collected for two phenological stages of three cultivars in seven climate-contrasting temperate regions of Western Europe and in three mild regions, one in Northern Morocco and two in Southern Brazil. Multiple change-point models were applied to flowering date series, as well as to corresponding series of mean temperature during two successive periods, respectively determining for the fulfillment of chill and heat requirements. A new overview in space and time of flowering date changes was provided in apple tree highlighting not only flowering date advances as in previous studies but also stationary flowering date series. At global scale, differentiated flowering time patterns result from varying interactions between contrasting thermal determinisms of flowering dates and contrasting warming contexts. This may explain flowering date advances in most of European regions and in Morocco vs. stationary flowering date series in the Brazilian regions. A notable exception in Europe was found in the French Mediterranean region where the flowering date series was stationary. While the flowering duration series were stationary whatever the region, the flowering durations were far longer in mild regions compared to temperate regions. Our findings suggest a new warming vulnerability in temperate Mediterranean regions, which could shift toward responding more to chill decline and consequently experience late and extended flowering under future warming scenarios.
NASA Astrophysics Data System (ADS)
Prader, Sabine; Kotthoff, Ulrich; McCarthy, Francine; Greenwood, David
2016-04-01
During IODP Expedition 313, cores from three Sites (313-M0027, M0028, and M0029) from the New Jersey shallow shelf (water depth approximately 35 m) were retrieved in 2009. We have investigated the palynology of sediment cores from Site M0027, 45 km off the present-day coast of New Jersey in order to reconstruct environmental and climate change in the region during the second half of the Mid-Miocene Climatic Optimum (MMCO) and the subsequent transition to cooler conditions (ca. 15 to 13 million years before present). Transport-caused bias of the pollen assemblages was identified via the analysis of the terrestrial/marine palynomorph ratio and these results were considered when interpreting palaeo-vegetation from the pollen data. Pollen preservation in the interval analyzed herein was generally very good. Pollen grains were analyzed via both light and scanning electron microscopy. In the analyzed samples, angiosperm tree pollen grains were most abundant and probably formed the main vegetation zone in the lowland during the MMCO. The pollen-based results point to the presence of a deciduous-evergreen mixed forest that was characterised by e.g. Quercus, Carya, Liquidambar, Juglans, Pterocarya, Tilia, Engelhardia. Frequent conifer pollen grains indicate that highland forests with e.g. Pinus, Cathaya, and Picea were present the hinterland of the New Jersey shelf. Typical wetland elements like Nyssa and Taxodium as well as herbal taxa like Polygonum and Polygala were generally rare. The pollen-based climate reconstructions for the hinterland oft the New Jersey shallow shelf document a warm temperate climate without winterfrost and relatively high precipitation through the year during this time. Our results imply that the vegetation and regional climate in the hinterland of the New Jersey shelf did not react as sensitively to the cooling phase following the MMCO as other regions in North America or Europe.
Climate and respiratory disease in Auckland, New Zealand.
Gosai, Ashmita; Salinger, James; Dirks, Kim
2009-12-01
Increases in the incidence of diseases are often observed during the cold winter months, particularly in cities in temperate climates. The study aim is to describe daily, monthly and seasonal trends in respiratory hospital admissions with climate in Auckland, New Zealand. Daily hospital admissions for total respiratory infections or inflammations (RII), total bronchitis and asthma (BA), and total whooping cough and acute bronchitis (TWCAB) for various age groups and ethnicities were obtained for the Auckland Region and compared with climate parameters on daily, monthly and seasonal time scales. Seasonal and monthly relationships with minimum temperature were very strong (p<0.001) for RII over all age groups, for BA in the older age groups (14-64, 65+) and for TWCAB in the <1 year old age group. European, NZ Māori and Pacific Islanders all showed increases in admissions as temperatures decreased. Pacific Islanders were particularly susceptible to RII. There was a lag in admissions of three to seven days after a temperature event. Results show that increases in respiratory admissions are strongly linked to minimum temperatures during winter, typical of cities with temperate climates and poorly-insulated houses. There are implications for hospital bed and staffing planning in Auckland hospitals.
Winkler, Isaac S.; Mitter, Charles; Scheffer, Sonja J.
2009-01-01
A central but little-tested prediction of “escape and radiation” coevolution is that colonization of novel, chemically defended host plant clades accelerates insect herbivore diversification. That theory, in turn, exemplifies one side of a broader debate about the relative influence on clade dynamics of intrinsic (biotic) vs. extrinsic (physical-environmental) forces. Here, we use a fossil-calibrated molecular chronogram to compare the effects of a major biotic factor (repeated shift to a chemically divergent host plant clade) and a major abiotic factor (global climate change) on the macroevolutionary dynamics of a large Cenozoic radiation of phytophagous insects, the leaf-mining fly genus Phytomyza (Diptera: Agromyzidae). We find one of the first statistically supported examples of consistently elevated net diversification accompanying shift to new plant clades. In contrast, we detect no significant direct effect on diversification of major global climate events in the early and late Oligocene. The broader paleoclimatic context strongly suggests, however, that climate change has at times had a strong indirect influence through its effect on the biotic environment. Repeated rapid Miocene radiation of these flies on temperate herbaceous asterids closely corresponds to the dramatic, climate-driven expansion of seasonal, open habitats. PMID:19805134
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, Nicolas B.; Voigt, Aiko; Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu
In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity andmore » seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A pole-on observer would measure peak-to-trough amplitudes of 13% and 47% for the temperate and snowball climates, respectively. Diurnal heating is important for equatorial observers ({approx}5% phase variations), because the obliquity effects cancel to first order from that vantage. Finally, we compare the prospects of optical versus thermal direct imaging missions for constraining the climate on exoplanets and conclude that while zero- and one-dimensional models are best served by thermal measurements, second-order models accounting for seasons and planetary thermal inertia would require both optical and thermal observations.« less
Cool Science: K-12 Climate Change Art Displayed on Buses
NASA Astrophysics Data System (ADS)
Chen, R. F.; Lustick, D. S.; Lohmeier, J.; Thompson, S. R.
2015-12-01
Cool science is an art contest where K12 students create placards (7" x 22") to educate the public about climate change. Students are prompted to create their artwork in response to questions such as: What is the evidence for climate change? How does climate change impact your local community? What can you do to reduce the impacts of climate change? In each of three years, 500-600 student entrees have been submitted from more than 12 school districts across Massachusetts. A panel of judges including scientists, artists, rapid transit representatives, and educators chooses elementary, middle, and high school winners. Winners (6), runners-up (6), and honorable mentions (12) and their families and teachers are invited to an annual Cool Science Award Ceremony to be recognized and view winning artwork. All winning artwork is posted on the Cool Science website. The winning artwork (2 per grade band) is converted into placards (11" x 28") and posters (2.5' x 12') that are placed on the inside (placards) and outside (posters) of buses. Posters are displayed for one month. So far, Cool Science was implemented in Lowell, MA where over 5000 public viewers see the posters daily on the sides of Lowell Rapid Transit Authority (LRTA) buses, making approximately 1,000,000 impressions per year. Cool Science acts to increase climate literacy in children as well as the public, and as such promotes intergenerational learning. Using art in conjunction with science learning about climate change appears to be effective at engaging not just traditionally high achieving science students, but also those interested in the creative arts. Hearing winners' stories about how they created their artwork and what this contest meant to them supports the idea that Cool Science attracts a wide diversity of students. Parents discuss climate change with their children. Multiple press releases announcing the winners further promotes the awareness of climate change throughout school districts and their communities. Pre- and post-surveys of LRTA riders suggests that public viewers of winning artwork increase their awareness that climate change is happening, that climate change is human caused, and that they want to learn more. Using student voices (artwork) appears to be an effective way to communicate climate change issues to public audiences.
Warming-induced changes in predation, extinction and invasion in an ectotherm food web.
Seifert, Linda I; Weithoff, Guntram; Gaedke, Ursula; Vos, Matthijs
2015-06-01
Climate change will alter the forces of predation and competition in temperate ectotherm food webs. This may increase local extinction rates, change the fate of invasions and impede species reintroductions into communities. Invasion success could be modulated by traits (e.g., defenses) and adaptations to climate. We studied how different temperatures affect the time until extinction of species, using bitrophic and tritrophic planktonic food webs to evaluate the relative importance of predatory overexploitation and competitive exclusion, at 15 and 25 °C. In addition, we tested how inclusion of a subtropical as opposed to a temperate strain in this model food web affects times until extinction. Further, we studied the invasion success of the temperate rotifer Brachionus calyciflorus into the planktonic food web at 15 and 25 °C on five consecutive introduction dates, during which the relative forces of predation and competition differed. A higher temperature dramatically shortened times until extinction of all herbivore species due to carnivorous overexploitation in tritrophic systems. Surprisingly, warming did not increase rates of competitive exclusion among the tested herbivore species in bitrophic communities. Including a subtropical herbivore strain reduced top-down control by the carnivore at high temperature. Invasion attempts of temperate B. calyciflorus into the food web always succeeded at 15 °C, but consistently failed at 25 °C due to voracious overexploitation by the carnivore. Pre-induction of defenses (spines) in B. calyciflorus before the invasion attempt did not change its invasion success at the high temperature. We conclude that high temperatures may promote local extinctions in temperate ectotherms and reduce their chances of successful recovery.
Global Warming Impacts on Heating and Cooling Degree-Days in the United States
NASA Astrophysics Data System (ADS)
Petri, Y.; Caldeira, K.
2014-12-01
Anthropogenic climate change is expected to significantly alter residential air conditioning and space heating requirements, which account for 41% of U.S. household energy expenditures. The degree-day method can be used for reliable estimation of weather related building energy consumption and costs, as well as outdoor climatic thermal comfort. Here, we use U.S. Climate Normals developed by NOAA based on weather station observations along with Climate Model Intercomparison Project phase 5 (CMIP5) multi-model ensemble simulations. We add the projected change in heating and cooling degree-days based on the climate models to the estimates based on the NOAA U.S. Climate Normals to project future heating and cooling degree-days. We find locations with the lowest and highest combined index of cooling (CDDs) and heating degree-days (HDDs) for the historical period (1981 - 2010) and future period (2080 - 2099) under the Representation Concentration Pathway 8.5 (RCP8.5) climate change scenario. Our results indicate that in both time frames and among the lower 48 states, coastal areas in the West and South California will have the smallest degree-day sum (CDD + HDD), and hence from a climatic perspective become the best candidates for residential real estate. The Rocky Mountains region in Wyoming, in addition to northern Minnesota and North Dakota, will have the greatest CDD + HDD. While global warming is projected to reduce the median heating and cooling demand (- 5%) at the end of the century, CDD + HDD will decrease in the North, with an opposite effect in the South. This work could be helpful in deciding where to live in the United States based on present and future thermal comfort, and could also provide a basis for estimates of changes in heating and cooling energy demand.
Wildlife of southern forests habitat & management: Introduction
James G. Dickson
2003-01-01
The temperate climate, productive soils, and lush forests of the South support an abundant and diverse wildlife community. But these forests and the wildlife that inhabit them have never been stable. They have continually been molded by a variety of forces. Early, during the Pleistocene period, drastic periodic climatic shifts wrought wholesale changes to the nature...
Controls on winter ecosystem respiration in temperate and boreal ecosystems
T. Wang; P. Ciais; S.L. Piao; C. Ottle; P. Brender; F. Maignan; A. Arain; A. Cescatti; D. Gianelle; C. Gough; L Gu; P. Lafleur; T. Laurila; B. Marcolla; H. Margolis; L. Montagnani; E. Moors; N. Saigusa; T. Vesala; G. Wohlfahrt; C. Koven; A. Black; E. Dellwik; A. Don; D. Hollinger; A. Knohl; R. Monson; J. Munger; A. Suyker; A. Varlagin; S. Verma
2011-01-01
Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal...
D. Bachelet; J. Lenihan; R. Neilson; R. Drapek; T. Kittel
2005-01-01
The dynamic global vegetation model MC1 was used to examine climate, fire, and ecosystems interactions in Alaska under historical (1922-1996) and future (1997-2100) climate conditions. Projections show that by the end of the 21st century, 75%-90% of the area simulated as tundra in 1922 is replaced by boreal and temperate forest. From 1922 to 1996, simulation results...
NASA Technical Reports Server (NTRS)
Horgan, B.; Rutledge, A.; Rampe, E. B.
2015-01-01
Surface weathering on Earth is driven by precipitation (rain/snow melt). Here we summarize the influence of climate on minerals produced during surface weathering, based on terrestrial literature and our new laboratory analyses of weathering products from glacial analog sites. By comparison to minerals identified in likely surface environments on Mars, we evaluate the implications for early martian climate.
Lisa A. McCauley; Christine A. Ribic; Lars Y. Pomara; Benjamin Zuckerberg
2017-01-01
Context Temperate grasslands and their dependent species are exposed to high variability in weather and climate due to the lack of natural buffers such as forests. Grassland birds are particularly vulnerable to this variability, yet have failed to shift poleward in response to recent climate change like other bird species in North America. However, there have been few...
Kevin Ford; Connie Harrington; Sheel Bansal; Peter J. Gould; Brad St. Clair
2016-01-01
Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier growth initiation in the spring. Exposure to warm...
Refugia revisited: individualistic responses of species in space and time
Stewart, John R.; Lister, Adrian M.; Barnes, Ian; Dalén, Love
2010-01-01
Climate change in the past has led to significant changes in species' distributions. However, how individual species respond to climate change depends largely on their adaptations and environmental tolerances. In the Quaternary, temperate-adapted taxa are in general confined to refugia during glacials while cold-adapted taxa are in refugia during interglacials. In the Northern Hemisphere, evidence appears to be mounting that in addition to traditional southern refugia for temperate species, cryptic refugia existed in the North during glacials. Equivalent cryptic southern refugia, to the south of the more conventional high-latitude polar refugia, exist in montane areas during periods of warm climate, such as the current interglacial. There is also a continental/oceanic longitudinal gradient, which should be included in a more complete consideration of the interaction between species ranges and climates. Overall, it seems clear that there is large variation in both the size of refugia and the duration during which species are confined to them. This has implications for the role of refugia in the evolution of species and their genetic diversity. PMID:19864280
Experimental evidence for beneficial effects of projected climate change on hibernating amphibians.
Üveges, Bálint; Mahr, Katharina; Szederkényi, Márk; Bókony, Veronika; Hoi, Herbert; Hettyey, Attila
2016-05-27
Amphibians are the most threatened vertebrates today, experiencing worldwide declines. In recent years considerable effort was invested in exposing the causes of these declines. Climate change has been identified as such a cause; however, the expectable effects of predicted milder, shorter winters on hibernation success of temperate-zone Amphibians have remained controversial, mainly due to a lack of controlled experimental studies. Here we present a laboratory experiment, testing the effects of simulated climate change on hibernating juvenile common toads (Bufo bufo). We simulated hibernation conditions by exposing toadlets to current (1.5 °C) or elevated (4.5 °C) hibernation temperatures in combination with current (91 days) or shortened (61 days) hibernation length. We found that a shorter winter and milder hibernation temperature increased survival of toads during hibernation. Furthermore, the increase in temperature and shortening of the cold period had a synergistic positive effect on body mass change during hibernation. Consequently, while climate change may pose severe challenges for amphibians of the temperate zone during their activity period, the negative effects may be dampened by shorter and milder winters experienced during hibernation.
Lim, Tow Keang; Siow, Wen Ting
2018-01-01
Pneumonia in the tropics poses a heavy disease burden. The complex interplay of climate change, human migration influences and socio-economic factors lead to changing patterns of respiratory infections in tropical climate but also increasingly in temperate countries. Tropical and poorer countries, especially South East Asia, also bear the brunt of the global tuberculosis (TB) pandemic, accounting for almost one-third of the burden. But, as human migration patterns evolve, we expect to see more TB cases in higher income as well as temperate countries, and rise in infections like scrub typhus from ecotourism activities. Fuelled by the ease of air travel, novel zoonotic infections originating from the tropics have led to global respiratory pandemics. As such, clinicians worldwide should be aware of these new conditions as well as classical tropical bacterial pneumonias such as melioidosis. Rarer entities such as co-infections of leptospirosis and chikungunya or dengue will need careful consideration as well. In this review, we highlight aetiologies of pneumonia seen more commonly in the tropics compared with temperate regions, their disease burden, variable clinical presentations as well as impact on healthcare delivery. © 2017 Asian Pacific Society of Respirology.
A ventilation cooling shirt worn during office work in a hot climate: cool or not?
Zhao, Mengmeng; Kuklane, Kalev; Lundgren, Karin; Gao, Chuansi; Wang, Faming
2015-01-01
The aim of the study was to identify whether a ventilation cooling shirt was effective in reducing heat strain in a hot climate. Eight female volunteers were exposed to heat (38 °C, 45% relative humidity) for 2 h with simulated office work. In the first hour they were in normal summer clothes (total thermal insulation 0.8 clo); in the second hour a ventilation cooling shirt was worn on top. After the shirt was introduced for 1 h, the skin temperatures at the scapula and the chest were significantly reduced (p < 0.05). The mean skin and core temperatures were not reduced. The subjects felt cooler and more comfortable by wearing the shirt, but the cooling effect was most conspicuous only during the initial 10 min. The cooling efficiency of the ventilation shirt was not very effective under the low physical activity in this hot climate.
Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Cardoso, Rita M.; Soares, Pedro M. M.; Cancela, Javier J.; Pinto, Joaquim G.; Santos, João A.
2014-01-01
The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate. PMID:25251495
Fraga, Helder; Malheiro, Aureliano C; Moutinho-Pereira, José; Cardoso, Rita M; Soares, Pedro M M; Cancela, Javier J; Pinto, Joaquim G; Santos, João A
2014-01-01
The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.
Progress in Australian dendroclimatology: Identifying growth limiting factors in four climate zones.
Haines, Heather A; Olley, Jon M; Kemp, Justine; English, Nathan B
2016-12-01
Dendroclimatology can be used to better understand past climate in regions such as Australia where instrumental and historical climate records are sparse and rarely extend beyond 100years. Here we review 36 Australian dendroclimatic studies which cover the four major climate zones of Australia; temperate, arid, subtropical and tropical. We show that all of these zones contain tree and shrub species which have the potential to provide high quality records of past climate. Despite this potential only four dendroclimatic reconstructions have been published for Australia, one from each of the climate zones: A 3592year temperature record for the SE-temperate zone, a 350year rainfall record for the Western arid zone, a 140year rainfall record for the northern tropics and a 146year rainfall record for SE-subtropics. We report on the spatial distribution of tree-ring studies, the environmental variables identified as limiting tree growth in each study, and identify the key challenges in using tree-ring records for climate reconstruction in Australia. We show that many Australian species have yet to be tested for dendroclimatological potential, and that the application of newer techniques including isotopic analysis, carbon dating, wood density measurements, and anatomical analysis, combined with traditional ring-width measurements should enable more species in each of the climate zones to be used, and long-term climate records to be developed across the entire continent. Copyright © 2016 Elsevier B.V. All rights reserved.
Bennema, S C; Ducheyne, E; Vercruysse, J; Claerebout, E; Hendrickx, G; Charlier, J
2011-02-01
Fasciola hepatica, a trematode parasite with a worldwide distribution, is the cause of important production losses in the dairy industry. Diagnosis is hampered by the fact that the infection is mostly subclinical. To increase awareness and develop regionally adapted control methods, knowledge on the spatial distribution of economically important infection levels is needed. Previous studies modelling the spatial distribution of F. hepatica are mostly based on single cross-sectional samplings and have focussed on climatic and environmental factors, often ignoring management factors. This study investigated the associations between management, climatic and environmental factors affecting the spatial distribution of infection with F. hepatica in dairy herds in a temperate climate zone (Flanders, Belgium) over three consecutive years. A bulk-tank milk antibody ELISA was used to measure F. hepatica infection levels in a random sample of 1762 dairy herds in the autumns of 2006, 2007 and 2008. The infection levels were included in a Geographic Information System together with meteorological, environmental and management parameters. Logistic regression models were used to determine associations between possible risk factors and infection levels. The prevalence and spatial distribution of F. hepatica was relatively stable, with small interannual differences in prevalence and location of clusters. The logistic regression model based on both management and climatic/environmental factors included the factors: annual rainfall, mowing of pastures, proportion of grazed grass in the diet and length of grazing season as significant predictors and described the spatial distribution of F. hepatica better than the model based on climatic/environmental factors only (annual rainfall, elevation and slope, soil type), with an Area Under the Curve of the Receiver Operating Characteristic of 0.68 compared with 0.62. The results indicate that in temperate climate zones without large climatic and environmental variation, management factors affect the spatial distribution of F. hepatica, and should be included in future spatial distribution models. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Davis, S R; Spelman, R J; Littlejohn, M D
2017-04-01
Increasing environmental temperatures are a threat to the sustainability of livestock production and, because of the high metabolic demands of lactation, to dairy production in particular. Summer heat waves in temperate climates reduce feed intake, milk production, and cow comfort. In extreme heat events, there is an increase in cow mortality. In tropical climates, dairy cattle are mostly (zebu) type or zebu crossbred with temperate dairy breeds. Crossbreeding is undertaken to combine the heat tolerance and tick resistance of zebu with the productivity of temperate dairy breeds. In the absence of improved heat tolerance, milk production and fertility of temperate cattle is severely impaired. We have recently identified a key role for the prolactin pathway in regulating heat tolerance. A de novo mutation in prolactin that impairs prolactin activity was discovered in hairy and heat intolerant, New Zealand dairy cattle. The phenotypes produced were remarkably similar to those seen in fescue toxicosis, a syndrome seen in grazing cattle in the U.S. where ingestion of ergovaline, a fungal toxin from infected pasture, inhibits prolactin secretion. Recognition of the role of prolactin in hairy cattle led us to identify a deletion in exon 10 of the long-form of the prolactin receptor in Senepol cattle that causes truncation of the protein and determines the slick coat and heat tolerance traits found in this , beef breed. The short form of the prolactin receptor is predicted to be unaffected by the deletion. Knowledge of this dominant mutation has provided the impetus to begin a crossbreeding program to investigate performance and heat tolerance of temperate dairy cattle carrying the slick, prolactin receptor variant. The perceived opportunity is to introgress this variant into temperate dairy cattle to enable performance and welfare improvement in hot climates. Heat tolerance of cattle with slick coats appears to be mostly associated with coat type although sweating ability may also be enhanced. Further investigation is required of performance traits in cows homozygous for the slick variant because the published data are almost exclusively from heterozygous animals. Combination of the slick mutation with other favorable genes for heat tolerance, especially those for coat color, will be particularly enabled by gene editing technologies, offering opportunities for further improvement in bovine thermotolerance.
NASA Astrophysics Data System (ADS)
James, Noel P.; Bone, Yvonne
2017-07-01
Much of western Eyre Peninsula adjacent to the Great Australian Bight is veneered with siliceous and calcareous Quaternary aeolian dunes. The lengthy coastline adjacent to this cool-water carbonate factory is a series of Precambrian crystalline bedrock-Pleistocene aeolianite headlands that separate many long, sweeping, Holocene carbonate sand beaches and their backbeach dunes. Incessant SW waves, rolling swells, and onshore winds have resulted in > 350 km of semi-continuous calcareous strandline aeolian sands. The sediment is composed of quartz grains, Cenozoic limestone clasts, and relict particles (extraclasts) but the deposits are overwhelmingly dominated by contemporaneous biofragments from offshore. These skeletal grains are, in order of relative abundance, molluscs > benthic foraminifers > coralline algae > bryozoans, and echinoids. Benthic foraminifers are mostly small (especially rotaliids and miliolids) but the large relict symbiont-bearing protistMarginopora vertebralis, which grew in the latter stages of MIS 2, is present locally. There are no significant onshore-offshore trends within individual beach-dune complexes. There is, however, a prominent spatial partitioning, with extraclast-rich sediments in the north and biofragment-rich deposits in the south. This areal trend is interpreted to result from more active seafloor carbonate production in the south, an area of conspicuous seasonal nutrient upwelling and profound nektic and benthic biological productivity. The overall system is strikingly similar to Holocene and Pleistocene aeolianites along the inboard margin of the Lacepede Shelf and Bonney Coast some 500 km to the southeast, implying a potential universality to the nature of cool-water carbonate aeolianite deposition. The composition of these cool-water aeolianites is more multifaceted than those formed on warm-water, shallow flat-topped platforms, largely because of the comparatively deep, temperate shelf, the high-energy wave and swell climate impacting the shoreline, and thus the different geohistory during sea level change.
Jylhä, Kirsti; Ruosteenoja, Kimmo; Jokisalo, Juha; Pilli-Sihvola, Karoliina; Kalamees, Targo; Mäkelä, Hanna; Hyvönen, Reijo; Drebs, Achim
2015-09-01
Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled "Energy demand for the heating and cooling of residential houses in Finland in a changing climate" [1].
NASA Astrophysics Data System (ADS)
Mutz, Sebastian G.; Ehlers, Todd A.; Werner, Martin; Lohmann, Gerrit; Stepanek, Christian; Li, Jingmin
2018-04-01
The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 × 80 km at the Equator) palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA). Time periods and boundary conditions considered include the Pliocene (PLIO, ˜ 3 Ma), the Last Glacial Maximum (LGM, ˜ 21 ka), mid-Holocene (MH, ˜ 6 ka), and pre-industrial (PI, reference year 1850). The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last ˜ 3 Myr. Comparison of simulated climate with proxy-based reconstructions for the MH and LGM reveal satisfactory to good performance of the model in reproducing precipitation changes, although in some cases discrepancies between neighbouring proxy observations highlight contradictions between proxy observations themselves. Finally, we document regions where the largest magnitudes of late Cenozoic changes in precipitation and temperature occur and offer the highest potential for future observational studies that quantify the impact of climate change on denudation and weathering rates.
Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees
Luedeling, Eike; Girvetz, Evan H.; Semenov, Mikhail A.; Brown, Patrick H.
2011-01-01
Background Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. Methodology/Principal Findings We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the “Dynamic Model” and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. Conclusions/Significance The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops. PMID:21629649
NASA Astrophysics Data System (ADS)
Noda, H. M.; Nasahara, K. N.; Muraoka, H.
2016-12-01
Growing requirements to observe the spatial and temporal changes of forest canopy structure and functions under climate change expect advancement of ecophysiological interpretation of satellite remote sensing data. To achieve this we need mechanistic and quantitative understanding on the consequence between leaf-level traits and canopy-level spectral reflectance by coupling in-situ observation and analytical modeling. Deciduous forest is characterized by remarkable changes in canopy morphological and physiological structure through leaf expansion in spring to leaf fall in autumn. In addition, optical properties (spectral reflectance, absorption and transmittance of radiation) of leaves also change because they reflect leaf biochemical components such as pigments and water, and anatomical and surface structures. In this study we studied such consequence in a cool-temperate deciduous broadleaf forest, namely "Takayama site", on the northwestern slope of Mt. Norikura in central Japan. The forest canopy is dominated by Quercus crispula Blume and Betula ermanii Cham. In this forest, we measured the leaf optical properties of Q. crispula and B. ermanii during the growing season, from budburst in mid-May to senescence at beginning of November in 2004, 2005, 2006 and 2010. The measurement was conducted for both adaxial and abaxial side of the leaves.In the near infrared band, the leaf reflectance increased and the transmittance decreased during development period. Those changed very little in senescence period. The leaf reflectance in visible region changes small during the development period, the transmittance dropped remarkably. The abaxial side reflectance was about twice higher than adaxial side in the visible region. Those changes in the growing period fitted well to the development model base on air temperature. To validate the model, we simulate the canopy reflectance by using radiative transfer model SAIL. As our leaf spectral data and canopy spectral model have high flexibility to estimate the reflectance of target spectra according to the specificity of optical sensors on satellite, thus constructed mechanistic model would be applied to interpret many kinds of optical data observed by satellites.
Xie, Yingying; Wang, Xiaojing; Silander, John A
2015-11-03
Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041-2050 and 2090-2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models.
Jeppesen, Erik; Kronvang, Brian; Meerhoff, Mariana; Søndergaard, Martin; Hansen, Kristina M; Andersen, Hans E; Lauridsen, Torben L; Liboriussen, Lone; Beklioglu, Meryem; Ozen, Arda; Olesen, Jørgen E
2009-01-01
Climate change may have profound effects on phosphorus (P) transport in streams and on lake eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and arid climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In lakes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankton biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm arid lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.
NASA Astrophysics Data System (ADS)
Silver, W. L.; Smith, W. K.; Parton, W. J.; Wieder, W. R.; DelGrosso, S.
2016-12-01
Surface litter decomposition represents the largest annual carbon (C) flux to the atmosphere from terrestrial ecosystems (Esser et al. 1982). Using broad-scale long-term datasets we show that litter decomposition rates are largely predicted by a climate-decomposition index (CDI) at a global scale, and use CDI to estimate patterns in litter decomposition over the 110 years from 1901-2011. There were rapid changes in CDI over the last 30 y of the record amounting to a 4.3% increase globally. Boreal forests (+13.9%), tundra (+12.2%), savannas (+5.3%), and temperate (+2.4%) and tropical (+2.1%) forests all experienced accelerated decomposition. During the same period, most biomes experienced corresponding increases in a primary production index (PPI) estimated from an ensemble of long-term, observation-based productivity indices. The percent increase in PPI was only half that of decomposition globally. Tropical forests and savannas showed no increase in PPI to offset greater decomposition rates. Temperature-limited ecosystems (i.e., tundra, boreal, and temperate forests) showed the greatest differences between CDI and PPI, highlighting potentially large decoupling of C fluxes in these biomes. Precipitation and actual evapotranspiration were the best climate predictors of CDI at a global scale, while PPI varied consistently with actual evapotranspiration. As expected, temperature was the best predictor of PPI across temperature limited ecosystems. Our results show that climate change could be leading to a decoupling of C uptake and losses, potentially resulting in lower C storage in northern latitudes, temperate and tropical forests, and savannas.
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-01-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees. PMID:26330162
Hamilton, Jill A; El Kayal, Walid; Hart, Ashley T; Runcie, Daniel E; Arango-Velez, Adriana; Cooke, Janice E K
2016-11-01
Timely responses to environmental cues enable the synchronization of phenological life-history transitions essential for the health and survival of north-temperate and boreal tree species. While photoperiodic cues will remain persistent under climate change, temperature cues may vary, contributing to possible asynchrony in signals influencing developmental and physiological transitions essential to forest health. Understanding the relative contribution of photoperiod and temperature as determinants of the transition from active growth to dormancy is important for informing adaptive forest management decisions that consider future climates. Using a combination of photoperiod (long = 20 h or short = 8 h day lengths) and temperature (warm = 22 °C/16 °C and cool = 8 °C/4 °C day/night, respectively) treatments, we used microscopy, physiology and modeling to comprehensively examine hallmark traits of the growth-dormancy transition-including bud formation, growth cessation, cold hardiness and gas exchange-within two provenances of white spruce [Picea glauca (Moench) Voss] spanning a broad latitude in Alberta, Canada. Following exposure to experimental treatments, seedlings were transferred to favorable conditions, and the depth of dormancy was assessed by determining the timing and ability of spruce seedlings to resume growth. Short photoperiods promoted bud development and growth cessation, whereas longer photoperiods extended the growing season through the induction of lammas growth. In contrast, cool temperatures under both photoperiodic conditions delayed bud development. Photoperiod strongly predicted the development of cold hardiness, whereas temperature predicted photosynthetic rates associated with active growth. White spruce was capable of attaining endodormancy, but its release was environmentally determined. Dormancy depth varied substantially across experimental treatments suggesting that environmental cues experienced within one season could affect growth in the following season, which is particularly important for a determinate species such as white spruce. The joint influence of these environmental cues points toward the importance of including local constant photoperiod and shifting temperature cues into predictive models that consider how climate change may affect northern forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Bermudagrass [Cynodon dactylon (Pers.) L.] cultivars with improved cold tolerance can be utilized for grazing in the transition zone between the temperate northeast and subtropical southeast, but these bermudagrasses generally do not provide adequate growth for stocking until late May to early June....
USDA-ARS?s Scientific Manuscript database
The objective of this study was to investigate the effect of infrared (IR) drying followed by tempering and natural cooling on the change of physicochemical characteristics of white rice during up to 10 months of storage. The physicochemical characteristics of IR dried rice was also compared with th...
USDA-ARS?s Scientific Manuscript database
Understanding the growth dynamics of grass-legume swards is critical as pastoral management practices are adapted to economic constraints and environmental considerations. Efficient management must synchronize use of accumulated herbage with the needs of grazing livestock. This must be accomplishe...
Influences of Different Large Mammalian Fauna on Dung Beetle Diversity in Beech Forests
Enari, Hiroto; Koike, Shinsuke; Sakamaki, Haruka
2013-01-01
This paper focuses on biological relationships between mammalian species richness and the community structure of dung beetles in cool-temperate forests in the northernmost part of mainland Japan. The composition of beetle assemblages was evaluated at 3 sites in undisturbed beech forests with different mammalian fauna. In spring and summer 2009, beetles were collected at each site using pitfall traps baited with feces from Japanese macaques, Macaca fuscata Blyth (Primates: Cercopithecidae); Asiatic black bears, Ursus thibetanus Cuvier (Carnivora: Ursidae); Japanese serows, Capricornis crispus Temminck (Artiodactyla: Bovidae); and cattle. In the present study, 1,862 dung beetles representing 14 species were collected, and most dung beetles possessed the ecological characteristic of selecting specific mammalian feces. The present findings indicated that although species diversity in dung beetle assemblages was not necessarily positively correlated with mammalian species richness in cool-temperate forests, the absence of the macaque population directly resulted in the marked reduction of the beetle abundance, with the loss of the most frequent species, Aphodius eccoptus Bates (Coleoptera: Scarabaeidae) during spring. PMID:23909510
Villarreal, Zachary; Stephenson, Nicole; Foley, Janet
2018-06-01
Increasing rates of Rocky Mountain spotted fever (RMSF) in the southwestern United States and northern Mexico underscore the importance of studying the ecology of the brown dog tick, Rhipicephalus sanguineus, the vector in that region. This species is reported to comprise distinct tropical and temperate lineages that may differ in vectorial capacity for RMSF and are hypothesized to be limited in their geographical range by climatic conditions. In this study, lineage was determined for ticks from 9 locations in California, Arizona, and Mexico by DNA sequencing of 12S, 16S, and D-loop ribosomal RNA. As expected, sites in northern California and eastern Arizona had temperate-lineage ticks, and phylogenetic analysis revealed considerable genetic variability among these temperate-lineage ticks. However, tropical-lineage ticks extended north from Oaxaca, Mexico were well established along the entire border from San Diego, California to western Arizona, and were found as far north as Lytle Creek near Los Angeles, California (a site where both lineages were detected). Far less genetic variability in the tropical lineage despite the large geographical distances is supportive of a hypothesis of rapid northward expansion. Discovery of the tropical lineage north of the identified climatic limitations suggests that more work is needed to characterize this tick's ecology, vectorial capacity, expansion, possible evolution, and response to climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhiyuan; Zhang, Renduo; Cescatti, Alessandro
The net ecosystem CO 2 exchange is the result of the imbalance between the assimilation process (gross primary production, GPP) and ecosystem respiration (RE). The aim of this study was to investigate temperature sensitivities of these processes and the effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions. A database of 403 site-years of ecosystem flux data at 101 sites in the world was collected and analyzed. Temperature sensitivities of rates of RE and GPP were quantified with Q 10, defined as the increase of RE (or GPP) ratesmore » with a temperature rise of 10 °C. Results showed that on the annual time scale, the intrinsic temperature sensitivity of GPP (Q 10sG) was higher than or equivalent to the intrinsic temperature sensitivity of RE (Q 10sR). Q 10sG was negatively correlated to the mean annual temperature (MAT), whereas Q 10sR was independent of MAT. The analysis of the current temperature sensitivities and net ecosystem production suggested that temperature rise might enhance the CO 2 sink of terrestrial ecosystems both in the boreal and temperate regions. Additionally, ecosystems in these regions with different plant functional types should sequester more CO 2 with climate warming.« less
Zhang, Zhiyuan; Zhang, Renduo; Cescatti, Alessandro; Wohlfahrt, Georg; Buchmann, Nina; Zhu, Juan; Chen, Guanhong; Moyano, Fernando; Pumpanen, Jukka; Hirano, Takashi; Takagi, Kentaro; Merbold, Lutz
2017-06-08
The net ecosystem CO 2 exchange is the result of the imbalance between the assimilation process (gross primary production, GPP) and ecosystem respiration (RE). The aim of this study was to investigate temperature sensitivities of these processes and the effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions. A database of 403 site-years of ecosystem flux data at 101 sites in the world was collected and analyzed. Temperature sensitivities of rates of RE and GPP were quantified with Q 10 , defined as the increase of RE (or GPP) rates with a temperature rise of 10 °C. Results showed that on the annual time scale, the intrinsic temperature sensitivity of GPP (Q 10sG ) was higher than or equivalent to the intrinsic temperature sensitivity of RE (Q 10sR ). Q 10sG was negatively correlated to the mean annual temperature (MAT), whereas Q 10sR was independent of MAT. The analysis of the current temperature sensitivities and net ecosystem production suggested that temperature rise might enhance the CO 2 sink of terrestrial ecosystems both in the boreal and temperate regions. In addition, ecosystems in these regions with different plant functional types should sequester more CO 2 with climate warming.
Zhang, Zhiyuan; Zhang, Renduo; Cescatti, Alessandro; ...
2017-06-08
The net ecosystem CO 2 exchange is the result of the imbalance between the assimilation process (gross primary production, GPP) and ecosystem respiration (RE). The aim of this study was to investigate temperature sensitivities of these processes and the effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions. A database of 403 site-years of ecosystem flux data at 101 sites in the world was collected and analyzed. Temperature sensitivities of rates of RE and GPP were quantified with Q 10, defined as the increase of RE (or GPP) ratesmore » with a temperature rise of 10 °C. Results showed that on the annual time scale, the intrinsic temperature sensitivity of GPP (Q 10sG) was higher than or equivalent to the intrinsic temperature sensitivity of RE (Q 10sR). Q 10sG was negatively correlated to the mean annual temperature (MAT), whereas Q 10sR was independent of MAT. The analysis of the current temperature sensitivities and net ecosystem production suggested that temperature rise might enhance the CO 2 sink of terrestrial ecosystems both in the boreal and temperate regions. Additionally, ecosystems in these regions with different plant functional types should sequester more CO 2 with climate warming.« less
Chilling and heat requirements for flowering in temperate fruit trees
NASA Astrophysics Data System (ADS)
Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike
2014-08-01
Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut ( Castanea mollissima Blume) and jujube ( Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing's cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.
Chilling and heat requirements for flowering in temperate fruit trees.
Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike
2014-08-01
Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut (Castanea mollissima Blume) and jujube (Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing’s cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Fujinuma, Y.; Mukai, H.; Takahashi, Y.; Kakubari, Y.; Wang, Q.; Nakane, K.
2007-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux. The system equips 8 to 24 large automated chambers (90*90*50 cm, L*W*H). Since 1997, we have installed the chamber systems in the tundra in west Siberia, boreal forest in Alaska, cool- temperate and temperate forests in Japan, Korea and China, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 effluxes were estimated to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 30 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. From 2007, a big project that funded by Ministry of the Environment of Japan (MOE) has launched to evaluate the response and feedback of soil carbon dynamics of Japanese forest ecosystems to global change. We are installing another 6 chamber systems at the six of Japanese typical forests to conduct the soil warming experiments. For scaling-up the chamber experiments and understanding the mechanisms of soil organic matter (SOM) dynamics to global change, soil samples from about 100 forest ecosystems will be incubated for modeling development. Furthermore, the environmental (temperature and CO2) controlled large open-top chambers have been employed to investigate the balance of SOM (the input from litter falls and loss due to the decomposition) of forest ecosystems with global change.
Fournel, Sébastien; Ouellet, Véronique; Charbonneau, Édith
2017-01-01
Simple Summary The severity of heat stress issues on dairy cows will increase as global warming progresses. Fortunately, major advances in environmental management, including fans, misters, sprinklers, and cooled waterbeds, can attenuate the effects of thermal stress on cow health, production, and reproduction. These cooling systems were, however, tested in subtropical areas and their efficiency in northern regions is uncertain. This article assesses the potential of existing technologies to cool cows in humid continental climates through calculation of heat stress indices. Abstract Heat stress negatively affects the health and performance of dairy cows, resulting in considerable economic losses for the industry. In future years, climate change will exacerbate these losses by making the climate warmer. Physical modification of the environment is considered to be the primary means of reducing adverse effects of hot weather conditions. At present, to reduce stressful heat exposure and to cool cows, dairy farms rely on shade screens and various forms of forced convection and evaporative cooling that may include fans and misters, feed-line sprinklers, and tunnel- or cross-ventilated buildings. However, these systems have been mainly tested in subtropical areas and thus their efficiency in humid continental climates, such as in the province of Québec, Canada, is unclear. Therefore, this study reviewed the available cooling applications and assessed their potential for northern regions. Thermal stress indices such as the temperature-humidity index (THI) were used to evaluate the different cooling strategies. PMID:28468329
Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling
NASA Technical Reports Server (NTRS)
Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten
2017-01-01
Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.
NASA Astrophysics Data System (ADS)
Blinov, V. M.; Bannykh, O. A.; Lukin, E. I.; Kostina, M. V.; Blinov, E. V.
2014-11-01
The effect of the conditions of heat treatment and plastic deformation on the structure and the mechanical properties of low-carbon martensitic nickel steel (9 wt % Ni) with an overequilibrium nitrogen content is studied. The limiting strain to failure of 04N9Kh2A steel is found to be 40% at a rolling temperature of 20°C and 80% at a rolling temperature of 900°C. Significant strengthening of the steel (σ0.2 = 1089 MPa) is obtained after rolling at a reduction of 40% at 20°C. The start and final temperatures of the α → γ transformation on heating and those of the γ → α transformation on cooling are determined by dilatometry. The specific features of the formation of the steel structure have been revealed as functions of the annealing and tempering temperatures. Electron-microscopic studies show that, after quenching from 850°C and tempering at 600°C for 1 h, the structure contains packet martensite with thin interlayers of retained austenite between martensite crystals. The strength of the nitrogen-bearing 04N9Kh2A steel after quenching from 850 and 900°C, cooling in water, and subsequent tempering at 500°C for 1 h is significantly higher than that of carboncontaining 0H9 steel used in cryogenic engineering.
A New Continuous Cooling Transformation Diagram for AISI M4 High-Speed Tool Steel
NASA Astrophysics Data System (ADS)
Briki, Jalel; Ben Slima, Souad
2008-12-01
The increasing evolution of dilatometric techniques now allows for the identification of structural transformations with very low signal. The use of dilatometric techniques coupled with more common techniques, such as metallographic, hardness testing, and x-ray diffraction allows to plot a new CCT diagram for AISI M4 high-speed tool steel. This diagram is useful for a better selection of alternate solutions, hardening, and tempering heat treatments. More accurate determination of the various fields of transformation of austenite during its cooling was made. The precipitation of carbides highlighted at high temperature is at the origin of the martrensitic transformation into two stages (splitting phenomena). For slow cooling rates, it was possible to highlight the ferritic, pearlitic, and bainitic transformation.
NASA Technical Reports Server (NTRS)
Rampino, M. R.
1979-01-01
A possible relationship between large scale changes in global ice volume, variations in the earth's magnetic field, and short term climatic cooling is investigated through a study of the geomagnetic and climatic records of the past 300,000 years. The calculations suggest that redistribution of the Earth's water mass can cause rotational instabilities which lead to geomagnetic excursions; these magnetic variations in turn may lead to short-term coolings through upper atmosphere effects. Such double coincidences of magnetic excursions and sudden coolings at times of ice volume changes have occurred at 13,500, 30,000, 110,000, and 135,000 YBP.
Small Scale Solar Cooling Unit in Climate Conditions of Latvia: Environmental and Economical Aspects
NASA Astrophysics Data System (ADS)
Jaunzems, Dzintars; Veidenbergs, Ivars
2010-01-01
The paper contributes to the analyses from the environmental and economical point of view of small scale solar cooling system in climate conditions of Latvia. Cost analyses show that buildings with a higher cooling load and full load hours have lower costs. For high internal gains, cooling costs are around 1,7 €/kWh and 2,5 €/kWh for buildings with lower internal gains. Despite the fact that solar cooling systems have significant potential to reduce CO2 emissions due to a reduction of electricity consumption, the economic feasibility and attractiveness of solar cooling system is still low.
Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows
Hyndes, Glenn A.; Heck, Kenneth L.; Vergés, Adriana; Harvey, Euan S.; Kendrick, Gary A.; Lavery, Paul S.; McMahon, Kathryn; Orth, Robert J.; Pearce, Alan; Vanderklift, Mathew; Wernberg, Thomas; Whiting, Scott; Wilson, Shaun
2016-01-01
Abstract Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more direct-consumption-based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions. PMID:28533562
Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows.
Hyndes, Glenn A; Heck, Kenneth L; Vergés, Adriana; Harvey, Euan S; Kendrick, Gary A; Lavery, Paul S; McMahon, Kathryn; Orth, Robert J; Pearce, Alan; Vanderklift, Mathew; Wernberg, Thomas; Whiting, Scott; Wilson, Shaun
2016-11-01
Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more direct-consumption-based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions.
Cunningham, K.J.; Collins, Luke S.
2002-01-01
Upwelling of cool seawater, paleoceanographic circulation, paleoclimate, local tectonics and relative sea-level change controlled the lithofacies and sequence stratigraphy of a carbonate ramp and overlying platform that are part of a temporally well constrained carbonate complex in the Melilla basin, northeastern Morocco. At Melilla, from oldest to youngest, a third-order depositional sequence within the carbonate complex contains (1) a retrogradational, transgressive, warm temperate-type rhodalgal ramp; (2) an early highstand, progradational, bioclastic platform composed mainly of a temperate-type, bivalve-rich molechfor facies; and (3) late highstand, progradational to downstepping, subtropical/tropical-type chlorozoan fringing Porites reefs. The change from rhodalgal ramp to molechfor platform occurred at 7.0??0.14 Ma near the Tortonian/Messinian boundary. During a late stage in the development of the bioclastic platform a transition from temperate-type molechfor facies to subtropical/tropical-type chlorozoan facies occurred and is bracketed by chron 3An.2n (??? 6.3-6.6 Ma). Comparison to a well-dated carbonate complex in southeastern Spain at Cabo de Gata suggests that upwelling of cool seawater influenced production of temperate-type limestone within the ramp and platform at Melilla during postulated late Tortonian-early Messinian subtropical/tropical paleoclimatic conditions in the western Paleo-Mediterranean region. The upwelling of cool seawater across the bioclastic platform at Melilla could be related to the beginning of 'siphoning' of deep, cold Atlantic waters into the Paleo-Mediterranean Sea at 7.17 Ma. The facies change within the bioclastic platform from molechfor to chlorozoan facies may be coincident with a reduction of the siphoning of Atlantic waters and the end of upwelling at Melilla during chron 3An.2n. The ramp contains one retrogradational parasequence and the bioclastic platform three progradational parasequences. Minor erosional surfaces that bound the upper surface of the ramp and upper surface of the oldest platform parasequence are related to relative falls in sea level induced by local volcanism and associated tectonic uplift. These local relative falls had little influence on a broader-scale rise to stillstand in relative sea level that controlled development of the transgressive and early highstand systems tracts represented in the ramp and platform, respectively. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guha, Anirban; Han, Jimei; Cummings, Cadan; McLennan, David A.; Warren, Jeffrey M.
2018-06-01
Extreme summer heat waves are known to induce foliar and stem mortality in temperate forest ecosystems, yet our mechanistic knowledge of physiological thresholds for damage is lacking. Current spatiotemporal simulations of forest growth responses to climate change fail to explain the variability between co-occurring tree species to climate extremes, indicating a need for new model frameworks that include mechanistic understanding of trait-specific responses. In this context, using manipulative heat wave (hw) experiments we investigated ecophysiological responses and physiological recovery in four co-occurring temperate tree species of the southeastern United States including three deciduous angiosperms: southern red oak (Quercus falcata Michx.), shumard oak (Q. shumardii Buckl.) and, tulip-poplar (Liriodendron tulipifera L.) and one evergreen conifer: eastern white pine (Pinus strobus L.). The objectives were to investigate inter-specific differences in ecophysiological responses to hw events to understand mechanistic differences in resilience that may be useful for future model development. Two-year-old, well-irrigated potted saplings were exposed to progressively increasing extreme hw diurnal cycles followed by a recovery cycle, with peak midday air temperature increasing from 37 °C to a maximum of 51 °C on the third day of the hw. Plants were assessed for various photosynthetic and water use responses, chlorophyll fluorescence and photosystem-II (PSII) activity, leaf temperature and foliar pigments. Intense heat caused progressive down-regulation in net photosynthesis, but the stomata remained operational, which helped cool leaves through loss of latent heat. Even though whole plant transpiration increased for all species, the rate plateaued at higher hw events that allowed leaf temperature to exceed 45 °C, well beyond the optimal range. A significant increase in non-photochemical quenching over the hw cycles was evident in all species though indications of both transient and chronic PSII damage were evident in the most heat sensitive species, pine and tulip poplar. The oaks, especially Q. falcata, showed greater thermotolerance than other species with a higher threshold for photodamage to PSII, rapid overnight recovery of photoinhibition and minimal heat-induced canopy necrosis. We conclude that these co-occurring tree species exhibit large variability in thermotolerance and in their capability to repair both transient and chronic photodamage. Our results indicate that extreme heat induced damage to PSII within the leaf chloroplasts may be a mechanistic trait that can be used to project how different species respond to extreme weather events.
NASA Astrophysics Data System (ADS)
Innes, James B.; Zong, Yongqiang; Wang, Zhanghua; Chen, Zhongyuan
2014-09-01
The transition to the Late Holocene/Neoglacial occurred as a worldwide process of climatic deterioration from the optimum thermal conditions of the mid-Holocene, culminating in an abrupt decline around 4200 cal yr ago, in a period of severe climatic deterioration that lasted for two or three centuries. This sudden climatic event has been recorded in many proxy data archives from around the world, and its effects were manifest in different ways depending on the reaction of regional weather systems and conditions, but often as greatly increased aridity and/or cold temperatures. It has been regarded as causing or contributing to the sudden collapse of several well-established human societies at that time, including advanced agricultural Late Neolithic cultures in eastern China. We have used high-resolution pollen and non-pollen palynomorph analysis to examine the nature of this climatic transition through its impacts on the vegetation and hydrology at Pingwang, a site in the Yangtze coastal lowlands which has no evidence of complicating environmental influences such as sea-level rise or significant human land-use activity, factors previously suggested as alternative reasons for changes in forest composition. Our results show two phases of forest alteration, one gradual from about 5500 cal BP and one sudden at about 4200 cal BP., in which the frequencies of subtropical forest elements fall and are replaced by those of conifers and cold-tolerant trees. Total arboreal pollen frequencies do not decline and the proportion of temperate forest trees, tolerant of a wide range of temperatures, remains unchanged throughout, both ruling out human land clearance as a cause of the change in forest composition. As these dates accord very well with the known timings of climate deterioration established from other proxy archives in the region, we conclude that climate was the main driver of vegetation change in eastern China at the mid- to Late Holocene transition. Our hydrological results support the view that a combination of rising local water level and climatic cooling during the 4200 cal BP event was the probable cause of societal collapse in the lower Yangtze valley.
Quijano, Juan C; Jackson, P Ryan; Santacruz, Santiago; Morales, Viviana M; García, Marcelo H
2016-01-05
We use a numerical model to analyze the impact of climate change-in particular higher air temperatures-on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.
Quijano, Juan C; Jackson, P. Ryan; Santacruz, Santiago; Morales, Viviana M; Garcia, Marcelo H.
2016-01-01
We use a numerical model to analyze the impact of climate change--in particular higher air temperatures--on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.
Extreme climate, rather than population history, explains mid-facial morphology of Northern Asians.
Evteev, Andrej; Cardini, Andrea L; Morozova, Irina; O'Higgins, Paul
2014-03-01
Previous studies have examined mid-facial cold adaptation among either widely dispersed and genetically very diverse groups of humans isolated for tens of thousands of years, or among very closely related groups spread over climatically different regions. Here we present a study of one East Asian and seven North Asian populations in which we examine the evidence for convergent adaptations of the mid-face to a very cold climate. Our findings indicate that mid-facial morphology is strongly associated with climatic variables that contrast the temperate climate of East Asians and the very cold and dry climate of North Asians. This is also the case when either maxillary or nasal cavity measurements are considered alone. The association remains significant when mtDNA distances among populations are taken into account. The morphological contrasts between populations are consistent with physiological predictions and prior studies of mid-facial cold adaptation in more temperate regions, but among North Asians there appear to be some previously undescribed morphological features that might be considered as adaptive to extreme cold. To investigate this further, analyses of the seven North Asian populations alone suggest that mid-facial morphology remains strongly associated with climate, particularly winter precipitation, contrasting coastal Arctic and continental climates. However, the residual covariation among North Asian mid-facial morphology and climate when genetic distances are considered, is not significant. These findings point to modern adaptations to extreme climate that might be relevant to our understanding of the mid-facial morphology of fossil hominins that lived during glaciations. Copyright © 2013 Wiley Periodicals, Inc.
... countries worldwide, and in temperate, tropical, and subtropical climates. About 100 cases per year are diagnosed in ... MD, PhD, Assistant Professor in Medicine, Harvard Medical School; Assistant in Medicine, Division of Infectious Disease, Department ...
Climate-driven extinctions shape the phylogenetic structure of temperate tree floras.
Eiserhardt, Wolf L; Borchsenius, Finn; Plum, Christoffer M; Ordonez, Alejandro; Svenning, Jens-Christian
2015-03-01
When taxa go extinct, unique evolutionary history is lost. If extinction is selective, and the intrinsic vulnerabilities of taxa show phylogenetic signal, more evolutionary history may be lost than expected under random extinction. Under what conditions this occurs is insufficiently known. We show that late Cenozoic climate change induced phylogenetically selective regional extinction of northern temperate trees because of phylogenetic signal in cold tolerance, leading to significantly and substantially larger than random losses of phylogenetic diversity (PD). The surviving floras in regions that experienced stronger extinction are phylogenetically more clustered, indicating that non-random losses of PD are of increasing concern with increasing extinction severity. Using simulations, we show that a simple threshold model of survival given a physiological trait with phylogenetic signal reproduces our findings. Our results send a strong warning that we may expect future assemblages to be phylogenetically and possibly functionally depauperate if anthropogenic climate change affects taxa similarly. © 2015 John Wiley & Sons Ltd/CNRS.
Light, time, and the physiology of biotic response to rapid climate change in animals.
Bradshaw, William E; Holzapfel, Christina M
2010-01-01
Examination of temperate and polar regions of Earth shows that the nonbiological world is exquisitely sensitive to the direct effects of temperature, whereas the biological world is largely organized by light. Herein, we discuss the use of day length by animals at physiological and genetic levels, beginning with a comparative experimental study that shows the preeminent role of light in determining fitness in seasonal environments. Typically, at seasonally appropriate times, light initiates a cascade of physiological events mediating the input and interpretation of day length to the output of specific hormones that ultimately determine whether animals prepare to develop, reproduce, hibernate, enter dormancy, or migrate. The mechanisms that form the basis of seasonal time keeping and their adjustment during climate change are reviewed at the physiological and genetic levels. Future avenues for research are proposed that span basic questions from how animals transition from dependency on tropical cues to temperate cues during range expansions, to more applied questions of species survival and conservation biology during periods of climatic stress.
Forest structure and downed woody debris in boreal temperate, and tropical forest fragments
William A. Gould; Grizelle Gonzalez; Andrew T. Hudak; Teresa Nettleton Hollingsworth; Jamie Hollingsworth
2008-01-01
Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve...
Example Emergency Plan for Blue Marsh Dam and Lake.
1983-08-01
of 10 to 20 feet. The area is designated as seismic zone 2. d. Climate The project area is located in the temperate northeast Atlantic Coast climatic ...Hydrology and H ydr- aulics littncl shallI annia II Ai rekt a thorough inspection of all nriechani i al. electr-ical and other eq11inipmIent pr nent to
Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change
Patrick Gonzalez; Ronald P. Neilson; James M. Lenihan; Raymond J. Drapek
2010-01-01
Climate change threatens to shift vegetation, disrupting ecosystems and damaging human well-being. Field observations in boreal, temperate and tropical ecosystems have detected biome changes in the 20th century, yet a lack of spatial data on vulnerability hinders organizations that manage natural resources from identifying priority areas for adaptation measures. We...
Long-term vegetation changes in a temperate forest impacted by climate change
Lauren E. Oakes; Paul E. Hennon; Kevin L. O' Hara; Rodolfo Dirzo
2014-01-01
Pervasive forest mortality is expected to increase in future decades as a result of increasing temperatures. Climate-induced forest dieback can have consequences on ecosystem services, potentially mediated by changes in forest structure and understory community composition that emerge in response to tree death. Although many dieback events around the world have been...
Red spruce (Picea rubens Sarg.) cold hardiness and freezing injury susceptibility. Chapter 18
Donald H. DeHayes; Paul G. Schaberg; G.Richard Strimbeck
2001-01-01
To survive subfreezing winter temperatmes, perennial plant species have evolved tissue-specific mechanisms to undergo changes in freezing tolerance that parallel seasonal variations in climate. As such, most northern temperate tree species, including conifers, are adapted to the habitat and climatic conditions within their natural ranges and suffer little or no...
NASA Astrophysics Data System (ADS)
McPhee, James; Mengual, Sebastian; MacDonell, Shelley
2017-04-01
Seasonal snowpack melt constitutes the main water source for large portions of extratropical South America, including central Chile and Western Argentina. The properties and distribution of snow in the Andes are threatened by rapid climate change, characterised by warming and drying. This study provides a first attempt at detailed description of the energy balance of the seasonal snowpack and its variability along a latitudinal gradient, which is also correlated with an elevation and precipitation gradient, in the Andes Cordillera. The Snowpack model was validated at semi-arid, Mediterranean and temperate humid sites, where meteorological and snowpack properties have been observed since year 2013. Site elevations decrease from north to south, whereas precipitation climatology increases with latitude. Results show that turbulent energy exchange becomes relatively more important in periods of low snow accumulation, with sensible heat fluxes having a greater effect in cooling the snowpack at the high-altitude, low latitude site. Likewise, daily melt-freeze cycles are important in maintaining positive cold contents throughout the accumulation season at this site, and contribute to extending the duration of snow cover despite low accumulation and high radiation loads. In contrast, the southernmost, lowest elevation site shows smaller daily temperature amplitude and a much more preponderant radiation component to the energy balance. This modelling exercise highlights the nonlinearities of snow dynamics at different geographical settings in a sparsely monitored mountain area of the world, as well as the need for further understanding in order to evaluate the sensitivity of snow-dominated watersheds to global warming and climate change.
Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events.
Tinsley, Richard C; Stott, Lucy C; Viney, Mark E; Mable, Barbara K; Tinsley, Matthew C
Invasive, non-native species represent a major threat to biodiversity worldwide. The African amphibian Xenopus laevis is widely regarded as an invasive species and a threat to local faunas. Populations originating at the Western Cape, South Africa, have been introduced on four continents, mostly in areas with a similar Mediterranean climate. Some introduced populations are also established in cooler environments where persistence for many decades suggests a capacity for long-term adaptation. In these cases, recent climate warming might enhance invasion ability, favouring range expansion, population growth and negative effects on native faunas. In the cool temperate UK, populations have been established for about 50 years in Wales and for an unknown period, probably >20 years, in England (Lincolnshire). Our field studies over 30 and 10 years, respectively, show that in favourable conditions there may be good recruitment, fast individual growth rates and large body size; maximum longevity exceeds 23 years. Nevertheless, areas of distribution remained limited, with numbers <500 in each population. In 2010, only a single individual was captured at each locality and further searching failed to record any others in repeated sampling up to 2014. We conclude that both populations are now extinct. The winters of 2009-2010 and 2010-2011 experienced extreme cold and drought (December 2010 was the coldest in 120 years and the third driest in 100 years). The extinction of X. laevis in these areas indicates that even relatively long-established alien species remain vulnerable to rare extreme weather conditions.
Global warming effects: future feasibility of current cooling equipment for animal houses
NASA Astrophysics Data System (ADS)
Valiño, V.; Perdigones, A.; García, J. L.; de La Plaza, S.
2009-04-01
Interest in global warming effects on the agricultural systems is currently high, especially in areas which are likely to be more affected by this temperature rising, i.e. the Mediterranean area (IPCC, 2008). According to this report, the model projections of surface warming predict a temperature increase between 0.5°C to 1.5°C in the European area by the period 2020-2029. The aim of the present work was to assess the future consequences of the global warming effect on the feasibility of the cooling equipment in animal houses. Several equipment combinations were compared by means of modelling the inside climate in fattening pig houses, including forced ventilation and cooling pad. The modelling was carried out for six different European locations: Spain, Greece, Italy, The Netherlands, Germany and the United Kingdom, for the today conditions; secondly, the global warming effect in the inside climate was considered in a second set of simulations, and a mean temperature rising of 2°C was taken into account. Climate data. The six European locations were: Madrid (Spain); Aliartos (Greece); Bedford (The United Kingdom); Schipol (The Netherlands); Milan (Italy); and Stuttgart (Germany). From every location, the available climate data were monthly mean temperature (To; °C); monthly mean relative humidity (HRo, %) and monthly mean solar irradiation on horizontal surface (So; W m-2). From these monthly values, hourly means were calculated resulting in 24 data for a typical day, each month. Climate model. In this study, cooling strategies resulted from the combination of natural ventilation, mechanical ventilation and cooling pads. The climate model was developed taking into account the following energy fluxes: solar radiation, ventilation (Seginer, 2002), animal heat losses (Blanes and Pedersen, 2005), and loss of energy due to the cooling pads (Seginer, 2002). Results for the present work, show a comparative scene of the inside climate by using different cooling equipment combinations, from natural ventilation to cooling pads. Simulations which include the effects of climate change show the evolution in cooling technologies which will be necessary in this kind of animal houses, in six European locations, if the global temperature rising continues with the current rate. The necessary changes in cooling technologies of animal houses, will be important in Europe when the outside air temperature rising is greater than or equal to two Celsius degrees. Intergovernmental Panel on the Climate Change. 2008. Climate Change 2007: Synthesis Report. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4syr.pdf I. Seginer. 2002. The Penman-Monteith Evapotranspiration Equation as an Element in Greenhouse Ventilation Design. Biosystems Eng. 82(4): 423-439. doi:10.1006/bioe2002.0086 V. Blanes, S. Pedersen. 2005. Ventilation Flow in Pig Houses measured and calculated by Carbon Dioxide, Moisture and Heat Balance Equations. Biosystems Eng. 92(4): 483-493. doi:10.1006/j.biosystemseng.2005.09.002
NASA Astrophysics Data System (ADS)
Lee, Jeong-Beom; Bae, Jun-Sang; Matsumoto, Takaaki; Yang, Hun-Mo; Min, Young-Ki
2009-03-01
Natives of the tropics are able to tolerate high ambient temperatures. This results from their long-term residence in hot and often humid tropical climates. This study was designed to compare the peripheral mechanisms of thermal sweating in tropical natives with that of their temperate counterparts. Fifty-five healthy male subjects including 20 native Koreans who live in the temperate Korean climate (Temperate-N) and 35 native tropical Malaysian men that have lived all of their lives in Malaysia (Tropical-N) were enrolled in this study after providing written informed consent to participate. Quantitative sudomotor axon reflex testing after iontophoresis (2 mA for 5 min) with 10% acetylcholine (ACh) was used to determine directly activated (DIR) and axon reflex-mediated (AXR) sweating during ACh iontophoresis. The sweat rate, activated sweat gland density, sweat gland output per single gland activated, and oral and skin temperature changes were measured. The sweat onset time of AXR (nicotinic-receptor-mediated) was 56 s shorter in the Temperate-N than in the Tropical-N subjects ( P < 0.0001). The nicotinic-receptor-mediated sweating activity AXR (1), and the muscarinic-receptor-mediated sweating activity DIR, in terms of sweat volume, were 103% and 59% higher in the Temperate-N compared to the Tropical-N subjects ( P < 0.0001). The Temperate-N group also had a 17.8% ( P < 0.0001) higher active sweat gland density, 35.4% higher sweat output per gland, 0.24°C higher resting oral temperature, and 0.62°C higher resting forearm skin temperature compared to the Tropical-N subjects ( P < 0.01). ACh iontophoresis did not influence oral temperature, but increased skin temperature near where the ACh was administered, in both groups. These results suggest that suppressed thermal sweating in the Tropical-N subjects was, at least in part, due to suppressed sweat gland sensitivity to ACh through both recruitment of active sweat glands and the sweat gland output per each gland. This physiological trait guarantees a more economical use of body fluids, thus ensuring more efficient protection against heat stress.
Sleep and stress in man: an approach through exercise and exposure to extreme environments.
Buguet, A; Cespuglio, R; Radomski, M W
1998-05-01
In this paper, the effects of exercise on human sleep (in temperate, cold, and hot climates) are compared with those of exposure to extreme environments (tropical, polar climates). Exercise has two effect: (i) when the exercise load is too heavy or if the subject is not trained to the exercise conditions, the hypothalamo-pituitary-adrenocortical axis (HPA) is strongly activated (somatic stress reaction), and a diachronic (delayed) decrease in total sleep time and slow-wave sleep (SWS) occurs with a synchronic (concomitant) sleep disruption (such as a decrease in REM sleep); (ii) a diachronic enhancement of SWS and (or) REM sleep occurs during moderate training and in athletes, with a moderate HPA activation (neurogenic stress reaction). Heat acclimatization (neurogenic stress response) results in a diachronic increase in SWS, contrary to acute heat exposure (somatic stress) which leads to a diachronic decrease in SWS. Nocturnal cold exposure (somatic and (or) neurogenic stress) provokes a synchronic decrease in REM sleep with an activation of stress hormones, which are reduced by previous acclimation (neurogenic pathway); SWS remains undisturbed in the cold, as it occurs at the beginning of the night before body cooling. In conclusion, when the brain can deal with the stressor (neurogenic stress), diachronic increases in SWS and (or) REM sleep occur. When these "central" mechanisms are overloaded, the classical "somatic" stress reaction occurs with diachronic and synchronic disruptions of the sleep structure.
Watanabe, Akira; Moroi, Kunio; Sato, Hiromu; Tsutsuki, Kiyoshi; Maie, Nagamitsu; Melling, Lulie; Jaffé, Rudolf
2012-08-01
Wetlands are an important source of DOM. However, the quantity and quality of wetlands' DOM from various climatic regions have not been studied comprehensively. The relationship between the concentrations of DOM (DOC), humic substances (HS) and non-humic substances (NHS) in wetland associated sloughs, streams and rivers, in cool temperate (Hokkaido, Japan), sub-tropical (Florida, USA), and tropical (Sarawak, Malaysia) regions was investigated. The DOC ranged from 1.0 to 15.6 mg CL(-1) in Hokkaido, 6.0-24.4 mg CL(-1) in Florida, and 18.9-75.3 mg CL(-1) in Sarawak, respectively. The relationship between DOC and HS concentrations for the whole sample set was regressed to a primary function with y-intercept of zero (P<0.005) and a slope value of 0.841. A similar correlation was observed between DOC and NHS concentrations, with a smaller slope value of 0.159. However, the correlation coefficient of the latter was much larger when the data was regressed to a logarithmic curve. These observations suggest the presence of a general tendency that the increased DOC in the river waters was mainly due to the increased supply of HS from wetland soils, whereas the rate of the increase in the NHS supply has an upper limit which may be controlled by primary productivity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-16
...'') imported by Valeo, Inc., Valeo Engine Cooling Inc., and Valeo Climate Control Corp. (collectively, ``Valeo..., Inc., and Valeo Climate Control Corp. v. United States, Court No. 12-00381 (CIT February 13, 2013).\\2... Remand, Valeo, Inc., Valeo Engine Cooling, Inc., and Valeo Climate Control Corp. v. United States, Court...
Drought, multi-seasonal climate, and wildfire in northern New Mexico
Margolis, Ellis; Woodhouse, Connie A.; Swetnam, Thomas W.
2017-01-01
Wildfire is increasingly a concern in the USA, where 10 million acres burned in 2015. Climate is a primary driver of wildfire, and understanding fire-climate relationships is crucial for informing fire management and modeling the effects of climate change on fire. In the southwestern USA, fire-climate relationships have been informed by tree-ring data that extend centuries prior to the onset of fire exclusion in the late 1800s. Variability in cool-season precipitation has been linked to fire occurrence, but the effects of the summer North American monsoon on fire are less understood, as are the effects of climate on fire seasonality. We use a new set of reconstructions for cool-season (October–April) and monsoon-season (July–August) moisture conditions along with a large new fire scar dataset to examine relationships between multi-seasonal climate variability, fire extent, and fire seasonality in the Jemez Mountains, New Mexico (1599–1899 CE). Results suggest that large fires burning in all seasons are strongly influenced by the current year cool-season moisture, but fires burning mid-summer to fall are also influenced by monsoon moisture. Wet conditions several years prior to the fire year during the cool season, and to a lesser extent during the monsoon season, are also important for spring through late-summer fires. Persistent cool-season drought longer than 3 years may inhibit fires due to the lack of moisture to replenish surface fuels. This suggests that fuels may become increasingly limiting for fire occurrence in semi-arid regions that are projected to become drier with climate change.
Environment: Hothouse of disease
NASA Astrophysics Data System (ADS)
Sohn, Emily
2017-03-01
Dogs and cats in temperate regions are encountering pathogens that once thrived only in the tropics. As the climate warms and pests migrate north, animals, and some humans, are facing new health risks.
Guzzetta, Giorgio; Poletti, Piero; Montarsi, Fabrizio; Baldacchino, Frederic; Capelli, Gioia; Rizzoli, Annapaola; Rosà, Roberto; Merler, Stefano
2016-04-14
Based on 2015 abundance of Aedes albopictus in nine northern Italian municipalities with temperate continental/oceanic climate, we estimated the basic reproductive number R0 for Zika virus (ZIKV) to be systematically below the epidemic threshold in most scenarios. Results were sensitive to the value of the probability of mosquito infection after biting a viraemic host. Therefore, further studies are required to improve models and predictions, namely evaluating vector competence and potential non-vector transmissions.
NASA Astrophysics Data System (ADS)
Pickarski, N.; Litt, T.
2017-12-01
A new detailed pollen and oxygen isotope record of the penultimate interglacial-glacial cycle (ca. 250-129 ka; MIS 7-6), has been generated from the sediment core at Lake Van, Turkey. The integration of all available proxies (pollen, microscopic charcoal, δ18Obulk, and XRF) shows three temperate intervals of high effective soil moisture availability. This is evidenced by the predominance of oak steppe-forested landscapes similar to the present interglacial vegetation in this sensitive semiarid region. The wettest/warmest stage, as indicated by highest temperate tree percentages, can be broadly correlated with MIS 7c, while the amplitude of the tree population maximum during the oldest penultimate interglacial (MIS 7e) appears to be reduced due to warm but drier climatic conditions. A detailed comparison of the penultimate interglacial complex (MIS 7) to the last interglacial (MIS 5e) and the current interglacial (MIS 1) provides a vivid illustration of possible differences in the successive climatic cycles. Intervening periods of treeless vegetation (MIS 7d, 7a) were predominated by steppe elements. The occurrence of Artemisia and Chenopodiaceae during MIS 7d indicates very dry and cold climatic conditions, while higher temperate tree percentages (mainly deciduous Quercus) points to relatively humid and mild conditions throughout MIS 7b. Despite the general dominance of dry and cold desert-steppe vegetation during the penultimate glacial (MIS 6), this period can be divided into two parts: an early stage (ca. 193-157 ka) with higher oscillations in tree percentages and a later stage (ca. 157-131 ka) with lower tree percentages and subdued oscillations. Furthermore, we are able to identify the MIS 6e event (ca. 179-159 ka), which reveals clear climate variability due to rapid alternation in the vegetation cover. In comparison with long European pollen archives, speleothem isotope records from the Near East, and global climate parameters, the new high-resolution record presents an improved insight into regional vegetation dynamics and climate variability in the eastern Mediterranean region.
Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam.
Thai, Pham Quang; Choisy, Marc; Duong, Tran Nhu; Thiem, Vu Dinh; Yen, Nguyen Thu; Hien, Nguyen Tran; Weiss, Daniel J; Boni, Maciej F; Horby, Peter
2015-12-01
Experimental and ecological studies have shown the role of climatic factors in driving the epidemiology of influenza. In particular, low absolute humidity (AH) has been shown to increase influenza virus transmissibility and has been identified to explain the onset of epidemics in temperate regions. Here, we aim to study the potential climatic drivers of influenza-like illness (ILI) epidemiology in Vietnam, a tropical country characterized by a high diversity of climates. We specifically focus on quantifying and explaining the seasonality of ILI. We used 18 years (1993-2010) of monthly ILI notifications aggregated by province (52) and monthly climatic variables (minimum, mean, maximum temperatures, absolute and relative humidities, rainfall and hours of sunshine) from 67 weather stations across Vietnam. Seasonalities were quantified from global wavelet spectra, using the value of the power at the period of 1 year as a measure of the intensity of seasonality. The 7 climatic time series were characterized by 534 summary statistics which were entered into a regression tree to identify factors associated with the seasonality of AH. Results were extrapolated to the global scale using simulated climatic times series from the NCEP/NCAR project. The intensity of ILI seasonality in Vietnam is best explained by the intensity of AH seasonality. We find that ILI seasonality is weak in provinces experiencing weak seasonal fluctuations in AH (annual power <17.6), whereas ILI seasonality is strongest in provinces with pronounced AH seasonality (power >17.6). In Vietnam, AH and ILI are positively correlated. Our results identify a role for AH in driving the epidemiology of ILI in a tropical setting. However, in contrast to temperate regions, high rather than low AH is associated with increased ILI activity. Fluctuation in AH may be the climate factor that underlies and unifies the seasonality of ILI in both temperate and tropical regions. Alternatively, the mechanism of action of AH on disease transmission may be different in cold-dry versus hot-humid settings. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Advances in Canadian forest hydrology, 1995-1998
NASA Astrophysics Data System (ADS)
Buttle, J. M.; Creed, I. F.; Pomeroy, J. W.
2000-06-01
Approximately 42% of Canada is covered by forests, which in turn can be subdivided into nine distinct forest ecozones. Many forested ecozones are located in northern Canada, where cold winters and cool summers provide forest environments that are less well-understood than those in more temperate locations. A number of major developments in recent years have stressed the need for enhanced understanding of hydrological processes in these forest landscapes. These include an increased emphasis on sustainable forest management in Canada as well as major scientific initiatives (e.g. BOREAS) examining water, carbon and energy fluxes in forest ecosystems, with a particular focus on boreal and subarctic forests. Recent progress in our understanding of forest hydrology across Canada is reviewed. Studies of hydrological processes across the spectrum of forest ecozones are highlighted, as well as work on hydrological responses to forest disturbance and recovery. Links between studies of hydrological processes in Canada's forests and other fields of research are examined, with particular attention paid to ongoing efforts to model hydrological impacts and interactions with the climate, biogeochemistry, geomorphology and ecology of forested landscapes.
NASA Astrophysics Data System (ADS)
Barnston, A. G.
1988-06-01
A group of 62 mostly university student subjects kept structured diaries of their feelings and their productivity for six weeks in Illinois in early autumn. During the same period, daily frequency of telephone calls to a crisis intervention service in the same community was monitored, and complete daily weather data for the vicinity were provided by a local meteorological research facility. Major findings are as follows. The weather appears to influence mood and productivity, but only to a smallextent compared with the aggregate of all other controlling factors. Males show a relatively stronger effect than females. Psychologically troubled people generally appear to be more affected by weather than university students. The students and the crisis intervention service clients with “mild” problems tend to be stressed more when the weather is unstable, cloudy, warm and humid, and least stressed during sunny, dry, cool weather with rising barometric pressure. The crisis service clients with “severe” problems react oppositely to these two weather types. The meaning of these and other results and the strengths and weaknesses of this study's design are discussed.
NASA Astrophysics Data System (ADS)
Inbar, Assaf; Nyman, Petter; Lane, Patrick; Sheridan, Gary
2016-04-01
Water and radiation are unevenly distributed across the landscape due to variations in topography, which in turn causes water availability differences on the terrain according to elevation and aspect orientation. These differences in water availability can cause differential distribution of vegetation types and indirectly influence the development of soil and even landform, as expressed in hillslope asymmetry. While most of the research on the effects of climate on the vegetation and soil development and landscape evolution has been concentrated in drier semi-arid areas, temperate forested areas has been poorly studied, particularly in South Eastern Australia. This study uses soil profile descriptions and data on soil depth and landform across climatic gradients to explore the degrees to which coevolution of vegetation, soils and landform are controlled by radiative forcing and rainfall. Soil depth measurements were made on polar and equatorial facing hillslopes located at 3 sites along a climatic gradient (mean annual rainfall between 700 - 1800 mm yr-1) in the Victorian Highlands, where forest types range from dry open woodland to closed temperate rainforest. Profile descriptions were taken from soil pits dag on planar hillslopes (50 m from ridge), and samples were taken from each horizon for physical and chemical properties analysis. Hillslope asymmetry in different precipitation regimes of the study region was quantified from Digital Elevation Models (DEMs). Significant vegetation differences between aspects were noted in lower and intermediate rainfall sites, where polar facing aspects expressed higher overall biomass than the drier equatorial slope. Within the study domain, soil depth was strongly correlated with forest type and above ground biomass. Soil depths and chemical properties varied between topographic aspects and along the precipitation gradient, where wetter conditions facilitate deeper and more weathered soils. Furthermore, soil depths showed different patterns as a function of contributing area. While soils on the polar facing slope became deeper, soils on the equatorial facing slope kept a uniform depth with increasing contributing area, pointing to different governing geomorphic processes at work. Using slope-area relationships analysis, polar facing slopes were found to be generally steeper and with longer distance to channel initiation point (if existent) than that of the equatorial facing slopes, strengthening the evidence of climate-affected differential geomorphic processes shaping the hillslope form. The results point out to the effect of climate on the development and coevolution of soil, vegetation and landform in the temperate part of Australia.
Planetesimal Formation in the Warm, Inner Disk: Experiments with Tempered Dust
NASA Astrophysics Data System (ADS)
de Beule, Caroline; Landers, Joachim; Salamon, Soma; Wende, Heiko; Wurm, Gerhard
2017-03-01
It is an open question how elevated temperatures in the inner parts of protoplanetary disks influence the formation of planetesimals. We approach this problem here by studying the tensile strength of granular beds with dust samples tempered at different temperatures. We find via laboratory experiments that tempering at increasing temperatures is correlated with an increase in cohesive forces. We studied dust samples of palagonite (JSC Mars-1a) which were tempered for up to 200 hr at temperatures between 600 and 1200 K, and measured the relative tensile strengths of highly porous dust layers once the samples cooled to room temperature. Tempering increases the tensile strength from 800 K upwards. This change is accompanied by mineral transformations, the formation of iron oxide crystallites as analyzed by Mössbauer spectroscopy, changes in the number size distribution, and the morphology of the surface visible as cracks in larger grains. These results suggest a difference in the collisional evolution toward larger bodies with increasing temperature as collisional growth is fundamentally based on cohesion. While high temperatures might also increase sticking (not studied here), compositional evolution will already enhance the cohesion and the possibility of growing larger aggregates on the way toward planetesimals. This might lead to a preferred in situ formation of inner planets and explain the observed presence of dense inner planetary systems.
Climate evolution on the terrestrial planets
NASA Technical Reports Server (NTRS)
Kasting, J. F.; Toon, O. B.
1989-01-01
The present comparative evaluation of the long-term evolution of the Venus, earth, and Mars climates suggests that the earth's climate has remained temperate over most of its history despite a secular solar luminosity increase in virtue of a negative-feedback cycle based on atmospheric CO2 levels and climate. The examination of planetary climate histories suggests that an earth-sized planet should be able to maintain liquid water on its surface at orbital distances in the 0.9-1.5 AU range, comparable to the orbit of Mars; this, in turn, implies that there may be many other habitable planets within the Galaxy.
[Simulation on the seasonal growth patterns of grassland plant communities in northern China].
Zhang, Li; Zheng, Yuan-Run
2008-10-01
Soil moisture is the key factor limiting the productivity of grassland in northern China ranging from arid to subhumid arid regions. In this paper, the seasonal and annual growth, foliage projective cover (FPC), evaporative coefficient (k), and net primary productivity (NPP) of 7 types of grasslands in North China were simulated by using a simple model based on well established ecological processes of water balance and climatic data collected at 460 sites over 40 years. The observed NPPs were used to validate the model, and the simulated NPPs were in high agreement with the observed NPPs. The simulated k, NPP, and FPC deceased from east to west in temperate grasslands, and decreased from southeast to northwest in Qinghai-Tibet Plateau, reflecting the moisture gradient in northern China. Alpine meadow had the highest k, NPP, and FPC in the 7 types of grasslands, alpine steppe had the second highest FPC but with a NPP similar to that of temperate steppe, and the three simulated parameters of temperate desert were the smallest. The simulated results suggested that the livestock density should be lower than 5.2, 2.3, 3.6, 2.1, 1.0, 0.6, and 0.2 sheep unit x hm(-2), while the coverage of rehabilitated vegetation should be about 93%, 79%, 56%, 50%, 44%, 38%, and 37% in alpine meadow, alpine steppe, temperate meadow steppe, temperate steppe, temperate desert steppe, temperate steppe desert, and temperate desert, respectively.
NASA Astrophysics Data System (ADS)
Beilinson, Elisa; Sol Raigemborn, María
2013-04-01
Plio-Pleistocene paleosol-bearing alluvial strata of the Punta San Andrés Alloformation are continuously exposed along the marine cliffs of south-eastern Buenos Aires province, Argentina. Outcrops are dominated by floodplain siltstones and mudstones that exhibit a cyclic alternation between weakly to well-developed calcisols, vertisols and protosols. The study interval was deposited by a mixed, predominantly suspended-load fluvial system. The aim of this presentation is to determinate whether the evolution of the different types of paleosols was controlled by cyclic climatic changes in relation to the climatic deterioration that was registered during the Plio-Pleistocene of southern South America. The studied unit is composed of a two-tier cyclic stratal hierarchy produced by the combined effects of autogenic and allogenic processes. The lower hierarchy was identified as meter-scale fluvial aggradational cycles. All together, the four identified cycles make up the higher, decameter-scale hierarchy. This is dominated by sandstone bodies encased in paleosol-rich floodplain deposits that change their relative participation from base to top, towards more channelized deposits. This fluvial succession is disconformably bounded, and was possibly generated in response to fourth-order episodes of eustatic sea-level rise and fall in the Atlantic Ocean. Identified paleosols show a general trend from protosols to an alternation between vertisols and gradually better developed calcisols. In general, all the identified paleosol-types are characterized by the presence of carbonate cements, absence of redness of hue, low to moderate CIA-K values and a low alumina/bases ratio. All these suggests a weak base loss from the original soil and that the chemical weathering was low to moderate. This probably involved cool to temperate climates and a relatively low water percolation rate through feldspar and other weatherable minerals in soil parent material. The predominant occurrence of illite and I/S mixed-layer in all the studied paleosols suggests that mechanical erosion prevailed over chemical weathering. However, the presence of smectite and kaolinite in moderate to low concentrations indicates that some degree of chemical weathering must have taken place in these paleosols. The stratigraphic arrangement of the recognized paleosols and the clay mineral distribution indicates that paleoclimate during the deposition of the lower Punta San Andrés Alloformation was subhumid, (average MAP ~ 700 mm), seasonal and temperate (average MAT ~7.7°C) for at least 1 Ma (late Pliocene-early Pleistocene), although with several intervals where conditions became drier and probably colder. All the paleoclimatic indicators show a certain degree of homogeneity. However, it is possible to establish a general trend in the climatic evolution registered in the paleosols to relatively less humid and warmer conditions towards the top of the studied interval. This identified climatic trend in the lower Punta San Andrés Alloformation deposits constitutes a proxy for late Pliocene to early Pleistocene climate from southern South America.
Hu, Yu-Kun; Zhang, Ya-Lin; Liu, Guo-Fang; Pan, Xu; Yang, Xuejun; Li, Wen-Bing; Dai, Wen-Hong; Tang, Shuang-Li; Xiao, Tao; Chen, Ling-Yun; Xiong, Wei; Song, Yao-Bin; Dong, Ming
2017-02-24
Geographic patterns in leaf stoichiometry reflect plant adaptations to environments. Leaf stoichiometry variations along environmental gradients have been extensively studied among terrestrial plants, but little has been known about intraspecific leaf stoichiometry, especially for wetland plants. Here we analyzed the dataset of leaf N and P of a cosmopolitan wetland species, Phragmites australis, and environmental (geographic, climate and soil) variables from literature and field investigation in natural wetlands distributed in three climatic regions (subtropical, temperate and highland) across China. We found no clear geographic patterns in leaf nutrients of P. australis across China, except for leaf N:P ratio increasing with altitude. Leaf N and N:P decreased with mean annual temperature (MAT), and leaf N and P were closely related to soil pH, C:N ratio and available P. Redundancy analysis showed that climate and soil variables explained 62.1% of total variation in leaf N, P and N:P. Furthermore, leaf N in temperate region and leaf P in subtropical region increased with soil available P, while leaf N:P in subtropical region decreased with soil pH. These patterns in P. australis different from terrestrial plants might imply that changes in climate and soil properties can exert divergent effects on wetland and terrestrial ecosystems.
Climate variability decreases species richness and community stability in a temperate grassland.
Zhang, Yunhai; Loreau, Michel; He, Nianpeng; Wang, Junbang; Pan, Qingmin; Bai, Yongfei; Han, Xingguo
2018-06-26
Climate change involves modifications in both the mean and the variability of temperature and precipitation. According to global warming projections, both the magnitude and the frequency of extreme weather events are increasing, thereby increasing climate variability. The previous studies have reported that climate warming tends to decrease biodiversity and the temporal stability of community primary productivity (i.e., community stability), but the effects of the variability of temperature and precipitation on biodiversity, community stability, and their relationship have not been clearly explored. We used a long-term (from 1982 to 2014) field data set from a temperate grassland in northern China to explore the effects of the variability of mean temperature and total precipitation on species richness, community stability, and their relationship. Results showed that species richness promoted community stability through increases in asynchronous dynamics across species (i.e., species asynchrony). Both species richness and species asynchrony were positively associated with the residuals of community stability after controlling for its dependence on the variability of mean temperature and total precipitation. Furthermore, the variability of mean temperature reduced species richness, while the variability of total precipitation decreased species asynchrony and community stability. Overall, the present study revealed that species richness and species asynchrony promoted community stability, but increased climate variability may erode these positive effects and thereby threaten community stability.
Yang, Dongyang; Wang, Xiaomin; Xu, Jianhua; Xu, Chengdong; Lu, Debin; Ye, Chao; Wang, Zujing; Bai, Ling
2018-06-04
PM 2.5 pollution is an environmental issue caused by multiple natural and socioeconomic factors, presenting with significant spatial disparities across mainland China. However, the determinant power of natural and socioeconomic factors and their interactive impact on PM 2.5 pollution is still unclear. In the study, the GeogDetector method was used to quantify nonlinear associations between PM 2.5 and potential factors. This study found that natural factors, including ecological environments and climate, were more influential than socioeconomic factors, and climate was the predominant factor (q = 0.56) in influencing PM 2.5 pollution. Among all interactions of the six influencing factors, the interaction of industry and climate had the largest influence (q = 0.66). Two recognized major contaminated areas were the Tarim Basin in the northwest region and the eastern plain region; the former was mainly influenced by the warm temperate arid climate and desert, and the latter was mainly influenced by the warm temperate semi-humid climate and multiple socioeconomic factors. The findings provided an interpretation of the influencing mechanisms of PM 2.5 pollution, which can contribute to more specific policies aimed at successful PM 2.5 pollution control and abatement. Copyright © 2018 Elsevier Ltd. All rights reserved.
Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.
Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir
2017-08-04
Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.
USDA-ARS?s Scientific Manuscript database
Corn as a food that is heated and cooled to allow starch retrogradation has higher levels of resistant starch (RS). Increasing the amount of RS can make corn an even healthier food and may be accomplished by breeding and selection, especially by using exotic germplasm. Sixty breeding lines of introg...
The Neurobiology of Emotional Intelligence: Using Our Brain to Stay Cool under Pressure
ERIC Educational Resources Information Center
Bruno, Holly Elissa
2011-01-01
Losing self-control is costly. In the aftermath, a teacher wilts with shame or embarrassment. In truth, teachers may be unwittingly susceptible to rash behavior, not because they are inherently ill-tempered people, but because they are biologically wired to respond unthinkingly to perceived threats. Thanks to the evolving field of social…
Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass
Xiaoqing Yu; Paula M. Pijut; Stephen Byrne; Torben Asp; Guihua Bai; Yiwei Jiang
2015-01-01
Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated with winter survival and spring regrowth in a global...
Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.
Mosedale, Jonathan R.; Wilson, Robert J.; Maclean, Ilya M. D.
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions. PMID:26496127
NASA Astrophysics Data System (ADS)
Vahmani, P.; Jones, A. D.
2016-12-01
California has experienced progressive drought since 2012, with 2012-2014 constituting a nearly 10,000-year drought event, resulting in a suite of policies with the goal of reducing water consumption. At the same time, climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. In this study, for the first time, we assess the overarching benefits of cooling strategies on urban water consumption. We employ a satellite-supported regional climate-modeling framework over the San Francisco Bay Area to assess the effects of cool roofs on urban irrigation, a topic of increasing importance as it accounts for a significant fraction of urban water use particularly in arid and semi-arid regions. We use a suit of climatological simulations at high (1.5 km) spatial resolution, based on a Weather Research and Forecasting (WRF)-Urban Canopy Model (UCM) modeling framework, reinforced with remotely sensed observations of Green Vegetation Fraction (GVF), leaf area index (LAI), and albedo. Our analysis shows that widespread incorporation of cool roofs would result in a mean daytime cooling of about 0.7° C, which in turn results in roughly 4% reduction in irrigation water, largely due to decreases in surface evapotranspiration rates. We further investigate the critical interactions between cool roofs, wind, and sea-breeze patterns as well as fog formation, a dominant weather pattern in San Francisco Bay area.
Contingency Base Camp Solid Waste Generation
2013-09-01
day urine • vegetarian diet in a tropical climate: 0.40 kg/person/day feces (wet mass) and 1.0 L/person/day urine. The Composting Toilet System...widely depending on diet , water con- sumption, age (of the person), climate (temperature and humidity), and life (exercise) pattern. A Guide to the...following figures be used as reasonable averages: • high-protein diet in a temperate climate: 0.12 kg/person/day feces (wet mass), and 1.2 L/person
Ong, Joyce J L; Rountrey, Adam N; Black, Bryan A; Nguyen, Hoang Minh; Coulson, Peter G; Newman, Stephen J; Wakefield, Corey B; Meeuwig, Jessica J; Meekan, Mark G
2018-05-01
Entrainment of growth patterns of multiple species to single climatic drivers can lower ecosystem resilience and increase the risk of species extinction during stressful climatic events. However, predictions of the effects of climate change on the productivity and dynamics of marine fishes are hampered by a lack of historical data on growth patterns. We use otolith biochronologies to show that the strength of a boundary current, modulated by the El Niño-Southern Oscillation, accounted for almost half of the shared variance in annual growth patterns of five of six species of tropical and temperate marine fishes across 23° of latitude (3000 km) in Western Australia. Stronger flow during La Niña years drove increased growth of five species, whereas weaker flow during El Niño years reduced growth. Our work is the first to link the growth patterns of multiple fishes with a single oceanographic/climate phenomenon at large spatial scales and across multiple climate zones, habitat types, trophic levels and depth ranges. Extreme La Niña and El Niño events are predicted to occur more frequently in the future and these are likely to have implications for these vulnerable ecosystems, such as a limited capacity of the marine taxa to recover from stressful climatic events. © 2018 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiachen; Zhang, Kai; Liu, Junfeng
Solar reflective “cool roofs” absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofsmore » in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (0.11±0.10 K) and the United States (0.14±0.12 K); India and Europe show statistically insignificant changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (0.0021 ±0.026 K). This counters past research suggesting that cool roofs can reduce, or even increase global mean temperatures. Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.« less
Geological support for the Umbrella Effect as a link between geomagnetic field and climate
Kitaba, Ikuko; Hyodo, Masayuki; Nakagawa, Takeshi; Katoh, Shigehiro; Dettman, David L.; Sato, Hiroshi
2017-01-01
The weakening of the geomagnetic field causes an increase in galactic cosmic ray (GCR) flux. Some researchers argue that enhanced GCR flux might lead to a climatic cooling by increasing low cloud formation, which enhances albedo (umbrella effect). Recent studies have reported geological evidence for a link between weakened geomagnetic field and climatic cooling. However, more work is needed on the mechanism of this link, including whether the umbrella effect is playing a central role. In this research, we present new geological evidence that GCR flux change had a greater impact on continental climate than on oceanic climate. According to pollen data from Osaka Bay, Japan, the decrease in temperature of the Siberian air mass was greater than that of the Pacific air mass during geomagnetic reversals in marine isotope stages (MIS) 19 and 31. Consequently, the summer land-ocean temperature gradient was smaller, and the summer monsoon was weaker. Greater terrestrial cooling indicates that a reduction of insolation is playing a key role in the link between the weakening of the geomagnetic field and climatic cooling. The most likely candidate for the mechanism seems to be the increased albedo of the umbrella effect. PMID:28091595
Geological support for the Umbrella Effect as a link between geomagnetic field and climate.
Kitaba, Ikuko; Hyodo, Masayuki; Nakagawa, Takeshi; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi
2017-01-16
The weakening of the geomagnetic field causes an increase in galactic cosmic ray (GCR) flux. Some researchers argue that enhanced GCR flux might lead to a climatic cooling by increasing low cloud formation, which enhances albedo (umbrella effect). Recent studies have reported geological evidence for a link between weakened geomagnetic field and climatic cooling. However, more work is needed on the mechanism of this link, including whether the umbrella effect is playing a central role. In this research, we present new geological evidence that GCR flux change had a greater impact on continental climate than on oceanic climate. According to pollen data from Osaka Bay, Japan, the decrease in temperature of the Siberian air mass was greater than that of the Pacific air mass during geomagnetic reversals in marine isotope stages (MIS) 19 and 31. Consequently, the summer land-ocean temperature gradient was smaller, and the summer monsoon was weaker. Greater terrestrial cooling indicates that a reduction of insolation is playing a key role in the link between the weakening of the geomagnetic field and climatic cooling. The most likely candidate for the mechanism seems to be the increased albedo of the umbrella effect.
Corrosion fatigue in nitrocarburized quenched and tempered steels
NASA Astrophysics Data System (ADS)
Khani, M. Karim; Dengel, D.
1996-05-01
In order to investigate the fatigue strength and fracture mechanism of salt bath nitrocarburized steels, specimens of the steels SAE 4135 and SAE 4140, in a quenched and tempered state, and additionally in a salt bath nitrocarburized and oxidizing cooled state as well as in a polished (after the oxidizing cooling) and renewed oxidized state, were subjected to comparative rotating bending fatigue tests in inert oil and 5 pct NaCl solution. In addition, some of the quenched and tempered specimens of SAE 4135 material were provided with an approximately 50-μm-thick electroless Ni-P layer, in order to compare corrosion fatigue behavior between the Ni-P layer and the nitride layers. Long-life corrosion fatigue tests of SAE 4135 material were carried out under small stresses in the long-life range up to 108 cycles with a test frequency of 100 Hz. Fatigue tests of SAE 4140 material were carried out in the range of finite life (low-cycle range) with a test frequency of 13 Hz. The results show that the 5 pct NaCl environment drastically reduced fatigue life, but nitrocarburizing plus oxidation treatment was found to improve the corrosion fatigue life over that of untreated and Ni-P coated specimens. The beneficial effect of nitrocarburizing followed by oxidation treatment on cor-rosion fatigue life results from the protection rendered by the compound layer by means of a well-sealed oxide layer, whereby the pores present in the compound layer fill up with oxides. The role of inclusions in initiating fatigue cracks was investigated. It was found that under corrosion fatigue conditions, the fatigue cracks started at cavities along the interfaces of MnS inclusions and matrix in the case of quenched and tempered specimens. The nitrocarburized specimens, however, showed a superposition of pitting corrosion and corrosion fatigue in which pores and nonmetallic inclusions in the compound layer play a predominant role concerning the formation of pits in the substrate.
Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring
NASA Astrophysics Data System (ADS)
Signarbieux, Constant; Toledano, Ester; Sangines, Paula; Fu, Yongshuo; Schlaepfer, Rodolphe; Buttler, Alexandre; Vitasse, Yann
2017-04-01
In temperate trees, the timing of plant growth onset and cessation affect biogeochemical cycles, water and energy balance. Currently, phenological studies largely focus on specific phenophases and on their responses to warming. How differently spring phenology responds to the warming and cooling, and affects the subsequent phases, has not been well investigated. Here, we exposed saplings of Fagus sylvatica L. to warmer and cooler climate during the winter 2013-2014 by conducting a reciprocal transplant experiment between two elevations (1340 vs. 371 m.a.s.l., ca. 6°C difference) in the Swiss Jura mountains. To test the legacy effects of earlier or later budburst on the budset timing, saplings were moved back to their original elevation shortly after the occurrence of budburst in spring 2014. One degree decrease of air temperature resulted in a delay of 10.9 days in budburst dates, whereas one degree of warming advanced the date by 8.8 days. Interestingly, we found an asymmetric effect of the warmer winter vs. cooler winter on the budset timing in autumn: saplings experiencing a cooler winter showed a delay of 31 days in their budset timing compared to the control, whereas saplings experiencing a warmer winter showed 10 days earlier budset. The dependency of spring over autumn phenophases might be partly explained by the building up of the non-structural carbohydrate storage and suggests that the potential delay in growth cessation due to global warming might be smaller than expected. We did not find a significant correlation in budburst dates between 2014 and 2015, indicating that the legacy effects of the different phenophases might be reset during each winter. Adapting phenological models to the whole annual phenological cycle, and considering the different response to cooling and warming, would improve predictions of tree phenology under future climate warming conditions.
Aboveground carbon sequestration in dry temperate forests varies with climate not fire regime.
Gordon, Christopher E; Bendall, Eli R; Stares, Mitchell G; Collins, Luke; Bradstock, Ross A
2018-06-01
The storage of carbon in plant tissues and debris has been proposed as a method to offset anthropogenic increases in atmospheric [CO 2 ]. Temperate forests represent significant above-ground carbon (AGC) "sinks" because their relatively fast growth and slow decay rates optimise carbon assimilation. Fire is a common disturbance event in temperate forests globally that should strongly influence AGC because: discrete fires consume above-ground biomass releasing carbon to the atmosphere, and the long-term application of different fire-regimes select for specific plant communities that sequester carbon at different rates. We investigated the latter process by quantifying AGC storage at 104 sites in the Sydney Basin Bioregion, Australia, relative to differences in components of the fire regime: frequency, severity and interfire interval. To predict the potential impacts of future climate change on fire/AGC interactions, we stratified our field sites across gradients of mean annual temperature and precipitation and quantified within- and between-factor interactions between the fire and climate variables. In agreement with previous studies, large trees were the primary AGC sink, accounting for ~70% of carbon at sites. Generalised additive models showed that mean annual temperature was the strongest predictor of AGC storage, with a 54% near-linear decrease predicted across the 6.1°C temperature range experienced at sites. Mean annual precipitation, fire frequency, fire severity and interfire interval were consistently poor predictors of total above-ground storage, although there were some significant relationships with component stocks. Our results show resilience of AGC to frequent and severe wildfire and suggest temperature mediated decreases in forest carbon storage under future climate change predictions. © 2018 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
Exotic ecosystems: where root disease is not a beneficial component of temperate conifer forests
William J. Otrosina
2003-01-01
Forest tree species and ecosystems ahve evolved under climatic, geological, and biological forces over eons of time. The present flora represents the sum of these selective forces that have acted upon ancestral and modern species. Adaptations to climatic factors, soils, insects, diseases, and a host of disturbance events, operating at a variety of scales, ahve forged...
Alec M. Kretchun; Robert M. Scheller; Melissa S. Lucash; Kenneth L. Clark; John Hom; Steve Van Tuyl; Michael L. Fine
2014-01-01
Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to...
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods Ecologists are being challenged to predict ecosystem responses under changing climatic conditions. Water availability is the primary driver of ecosystem processes in temperate grasslands and shrublands, but uncertainty in the magnitude and direction of change in precipita...
Wen J. Wang; Hong S. He; Frank R. Thompson; Jacob S. Fraser; Brice B. Hanberry; William D. Dijak
2015-01-01
Most temperate forests in U.S. are recovering from heavy exploitation and are in intermediate successional stages where partial tree harvest is the primary disturbance. Changes in regional forest composition in response to climate change are often predicted for plant functional types using biophysical process models. These models usually simplify the simulation of...
Wildfire and fuel treatment effects on forest carbon dynamics in the western United States
Joseph C. Restiano; David L. Peterson
2013-01-01
Sequestration of carbon (C) in forests has the potential to mitigate the effects of climate change by offsetting future emissions of greenhouse gases. However, in dry temperate forests, wildfire is a natural disturbance agent with the potential to release large fluxes of C into the atmosphere. Climate-driven increases in wildfire extent and severity arc expected to...
Forest responses to increasing aridity and warmth in the southwestern United States
P. Williams; C.D. Allen; C.I. Millar; T.W. Swetnam; J. Michaelsen; C.J. Still; S.W. Leavitt
2010-01-01
In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasingmortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each...
Antunes, Jorge T.; Leão, Pedro N.; Vasconcelos, Vítor M.
2015-01-01
Cylindrospermopsis raciborskii is a cyanobacterial species extensively studied for its toxicity, bloom formation and invasiveness potential, which have consequences to public and environmental health. Its current geographical distribution, spanning different climates, suggests that C. raciborskii has acquired the status of a cosmopolitan species. From phylogeography studies, a tropical origin for this species seems convincing, with different conjectural routes of expansion toward temperate climates. This expansion may be a result of the species physiological plasticity, or of the existence of different ecotypes with distinct environmental requirements. In particular, C. raciborskii is known to tolerate wide temperature and light regimes and presents diverse nutritional strategies. This cyanobacterium is also thought to have benefited from climate change conditions, regarding its invasiveness into temperate climates. Other factors, recently put forward, such as allelopathy, may also be important to its expansion. The effect of C. raciborskii in the invaded communities is still mostly unknown but may strongly disturb species diversity at different trophic levels. In this review we present an up-to-date account of the distribution, phylogeography, ecophysiology, as well some preliminary reports of the impact of C. raciborskii in different organisms. PMID:26042108
Tectonic-driven climate change and the diversification of angiosperms.
Chaboureau, Anne-Claire; Sepulchre, Pierre; Donnadieu, Yannick; Franc, Alain
2014-09-30
In 1879, Charles Darwin characterized the sudden and unexplained rise of angiosperms during the Cretaceous as an "abominable mystery." The diversification of this clade marked the beginning of a rapid transition among Mesozoic ecosystems and floras formerly dominated by ferns, conifers, and cycads. Although the role of environmental factors has been suggested [Coiffard C, Gómez B (2012) Geol Acta 10(2):181-188], Cretaceous global climate change has barely been considered as a contributor to angiosperm radiation, and focus was put on biotic factors to explain this transition. Here we use a fully coupled climate model driven by Mesozoic paleogeographic maps to quantify and discuss the impact of continental drift on angiosperm expansion and diversification. We show that the decrease of desertic belts between the Triassic and the Cretaceous and the subsequent onset of long-lasting humid conditions during the Late Cretaceous were driven by the breakup of Pangea and were contemporaneous with the first rise of angiosperm diversification. Positioning angiosperm-bearing fossil sites on our paleobioclimatic maps shows a strong match between the location of fossil-rich outcrops and temperate humid zones, indicating that climate change from arid to temperate dominance may have set the stage for the ecological expansion of flowering plants.
Antunes, Jorge T; Leão, Pedro N; Vasconcelos, Vítor M
2015-01-01
Cylindrospermopsis raciborskii is a cyanobacterial species extensively studied for its toxicity, bloom formation and invasiveness potential, which have consequences to public and environmental health. Its current geographical distribution, spanning different climates, suggests that C. raciborskii has acquired the status of a cosmopolitan species. From phylogeography studies, a tropical origin for this species seems convincing, with different conjectural routes of expansion toward temperate climates. This expansion may be a result of the species physiological plasticity, or of the existence of different ecotypes with distinct environmental requirements. In particular, C. raciborskii is known to tolerate wide temperature and light regimes and presents diverse nutritional strategies. This cyanobacterium is also thought to have benefited from climate change conditions, regarding its invasiveness into temperate climates. Other factors, recently put forward, such as allelopathy, may also be important to its expansion. The effect of C. raciborskii in the invaded communities is still mostly unknown but may strongly disturb species diversity at different trophic levels. In this review we present an up-to-date account of the distribution, phylogeography, ecophysiology, as well some preliminary reports of the impact of C. raciborskii in different organisms.
Management of forest fires to maximize carbon sequestration in temperate and boreal forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guggenheim, D.E.
1996-12-31
This study examines opportunities for applying prescribed burning strategies to forest stands to enhance net carbon sequestration and compared prescribed burning strategies with more conventional forestry-based climate change mitigation alternatives, including fire suppression and afforestation. Biomass burning is a major contributor to greenhouse gas accumulation in the atmosphere. Biomass burning has increased by 50% since 1850. Since 1977, the annual extent of burning in the northern temperate and boreal forests has increased dramatically, from six- to nine-fold. Long-term suppression of fires in North America, Russia, and other parts of the world has led to accumulated fuel load and an increasemore » in the destructive power of wildfires. Prescribed burning has been used successfully to reduce the destructiveness of wildfires. However, across vast areas of Russia and other regions, prescribed burning is not a component of forest management practices. Given these factors and the sheer size of the temperate-boreal carbon sink, increasing attention is being focused on the role of these forests in mitigating climate change, and the role of fire management strategies, such as prescribed burning, which could work alongside more conventional forestry-based greenhouse gas offset strategies, such as afforestation.« less
Brischoux, François; Dupoué, Andréaz; Lourdais, Olivier; Angelier, Frédéric
2016-02-01
Temperate ectotherms are expected to benefit from climate change (e.g., increased activity time), but the impacts of climate warming during the winter have mostly been overlooked. Milder winters are expected to decrease body condition upon emergence, and thus to affect crucial life-history traits, such as survival and reproduction. Mild winter temperature could also trigger a state of chronic physiological stress due to inadequate thermal conditions that preclude both dormancy and activity. We tested these hypotheses on a typical temperate ectothermic vertebrate, the aspic viper (Vipera aspis). We simulated different wintering conditions for three groups of aspic vipers (cold: ~6 °C, mild: ~14 °C and no wintering: ~24 °C) during a one month long period. We found that mild wintering conditions induced a marked decrease in body condition, and provoked an alteration of some hormonal mechanisms involved in emergence. Such effects are likely to bear ultimate consequences on reproduction, and thus population persistence. We emphasize that future studies should incorporate the critical, albeit neglected, winter season when assessing the potential impacts of global changes on ectotherms. Copyright © 2015 Elsevier Inc. All rights reserved.
Evidence against a late Wisconsinan ice shelf in the Gulf of Maine
Oldale, R.N.; Williams, R.S.; Colman, Steven M.
1990-01-01
Proposals for the formation of a late Wisconsinan ice shelf in the Gulf of Maine during the retreat of the Laurentide Ice Sheet are considered to be inappropriate. An Antarctic-type ice shelf does not fit the field data that indicate temperate glacial, terrestrial, and marine climates for the region between 18 ka and 12 ka. A temperate ice shelf has no modern analogues and may be physically impossible. The preponderance of stratified drift in the Gulf of Maine region supports temperate climates during late Wisconsinan time. It also indicates that glacial meltwater, rather than ice in either an ice sheet or ice shelf, was the primary transport mechanism of glacial sediment and the source for the glaciomarine mud. For these reasons we have proposed glacial analogues for the deglaciation of the Gulf of Maine that consist of temperate or subpolar marine-based glaciers, characterized by depositional environments dominated by meltwater discharge directly to the sea or the sea by way of subaerial meltwater streams. These analogues include Alaskan fjord glaciers, glaciers on the Alaskan continental shelf that discharged meltwater directly into the sea in the not too distant past, and Austfonna (Nordaustandet, Svalbard, Norway) that is presently discharging meltwater in the sea along a grounded ice wall. This last example is the best modern-day analogue for the depositional environment for most of the glaciomarine mud in the Gulf of Maine and deglaciation of the Gulf.
NASA Astrophysics Data System (ADS)
Williamson, Grant J.; Prior, Lynda D.; Jolly, W. Matt; Cochrane, Mark A.; Murphy, Brett P.; Bowman, David M. J. S.
2016-03-01
Climate dynamics at diurnal, seasonal and inter-annual scales shape global fire activity, although difficulties of assembling reliable fire and meteorological data with sufficient spatio-temporal resolution have frustrated quantification of this variability. Using Australia as a case study, we combine data from 4760 meteorological stations with 12 years of satellite-derived active fire detections to determine day and night time fire activity, fire season start and end dates, and inter-annual variability, across 61 objectively defined climate regions in three climate zones (monsoon tropics, arid and temperate). We show that geographic patterns of landscape burning (onset and duration) are related to fire weather, resulting in a latitudinal gradient from the monsoon tropics in winter, through the arid zone in all seasons except winter, and then to the temperate zone in summer and autumn. Peak fire activity precedes maximum lightning activity by several months in all regions, signalling the importance of human ignitions in shaping fire seasons. We determined median daily McArthur forest fire danger index (FFDI50) for days and nights when fires were detected: FFDI50 varied substantially between climate zones, reflecting effects of fire management in the temperate zone, fuel limitation in the arid zone and abundance of flammable grasses in the monsoon tropical zone. We found correlations between the proportion of days when FFDI exceeds FFDI50 and the Southern Oscillation index across the arid zone during spring and summer, and Indian Ocean dipole mode index across south-eastern Australia during summer. Our study demonstrates that Australia has a long fire weather season with high inter-annual variability relative to all other continents, making it difficult to detect long term trends. It also provides a way of establishing robust baselines to track changes to fire seasons, and supports a previous conceptual model highlighting multi-temporal scale effects of climate in shaping continental-scale pyrogeography.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Koch, Hagen; Gädeke, Anne; Grünewald, Uwe; Kaltofen, Michael; Redetzky, Michael
2014-05-01
In the catchments of the rivers Schwarze Elster, Spree and Lusatian Neisse, hydrologic and socioeconomic systems are coupled via a complex water management system in which water users, reservoirs and water transfers are included. Lignite mining and electricity production are major water users in the region: To allow for open pit lignite mining, ground water is depleted and released into the river system while cooling water is used in the thermal power plants. In order to assess potential climate change impacts on water availability in the catchments as well as on the water demand of the thermal power plants, a climate change impact assessment was performed using the hydrological model SWIM and the long term water management model WBalMo. The potential impacts of climate change were considered by using three regional climate change scenarios of the statistical regional climate model STAR assuming a further temperature increase of 0, 2 or 3 K by the year 2050 in the region respectively. Furthermore, scenarios assuming decreasing mining activities in terms of a decreasing groundwater depression cone, lower mining water discharges, and reduced cooling water demand of the thermal power plants are considered. In the standard version of the WBalMo model cooling water demand is considered as static with regard to climate variables. However, changes in the future cooling water demand over time according to the plans of the local mining and power plant operator are considered. In order to account for climate change impacts on the cooling water demand of the thermal power plants, a dynamical approach for calculating water demand was implemented in WBalMo. As this approach is based on air temperature and air humidity, the projected air temperature and air humidity of the climate scenarios at the locations of the power plants are included in the calculation. Due to increasing temperature and decreasing precipitation declining natural and managed discharges, and hence a lower water availability in the region, were simulated by SWIM and WBalMo respectively. Next to changing climate conditions, also the different mining scenarios have considerable impacts on natural and managed discharges. Using the dynamic approach for cooling water demand, the simulated water demands are lower in winter, but higher in summer compared to the static approach. As a consequence of changes in the seasonal pattern of the cooling water demand of the power plants, lower summer discharges downstream of the thermal power plants are simulated using the dynamical approach. Due to the complex water management system in the region included in the water management model WBalMo, also the simulation of reservoir releases and volumes is impacted by the choice of either the static or the dynamic approach for calculating the cooling water demand of the thermal power plants.
Shifting relative importance of climatic constraints on land surface phenology
NASA Astrophysics Data System (ADS)
Garonna, Irene; de Jong, Rogier; Stöckli, Reto; Schmid, Bernhard; Schenkel, David; Schimel, David; Schaepman, Michael E.
2018-02-01
Land surface phenology (LSP), the study of seasonal dynamics of vegetated land surfaces from remote sensing, is a key indicator of global change, that both responds to and influences weather and climate. The effects of climatic changes on LSP depend on the relative importance of climatic constraints in specific regions—which are not well understood at global scale. Understanding the climatic constraints that underlie LSP is crucial for explaining climate change effects on global vegetation phenology. We used a combination of modelled and remotely-sensed vegetation activity records to quantify the interplay of three climatic constraints on land surface phenology (namely minimum temperature, moisture availability, and photoperiod), as well as the dynamic nature of these constraints. Our study examined trends and the relative importance of the three constrains at the start and the end of the growing season over eight global environmental zones, for the past three decades. Our analysis revealed widespread shifts in the relative importance of climatic constraints in the temperate and boreal biomes during the 1982-2011 period. These changes in the relative importance of the three climatic constraints, which ranged up to 8% since 1982 levels, varied with latitude and between start and end of the growing season. We found a reduced influence of minimum temperature on start and end of season in all environmental zones considered, with a biome-dependent effect on moisture and photoperiod constraints. For the end of season, we report that the influence of moisture has on average increased for both the temperate and boreal biomes over 8.99 million km2. A shifting relative importance of climatic constraints on LSP has implications both for understanding changes and for improving how they may be modelled at large scales.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.
2010-03-01
Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study substantially improved the model performance, the uncertainties that remained in terms of the sensitivity to water conditions should be examined in ongoing and long-term observations.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.
2009-08-01
Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, significantly improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites are positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget is partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicates that spring warming enhances the carbon sink, whereas summer warming decreases it across the larch forests. The summer radiation is the most important factor that controls the carbon fluxes in the temperate site, but the VPD and water conditions are the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between aboveground and belowground, is site-specific, and it is negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study significantly improves the model performance, the uncertainties that remain in terms of the sensitivity to water conditions should be examined in ongoing and long-term observations.
NASA Astrophysics Data System (ADS)
Barron, J. A.; Heusser, L. E.; Addison, J. A.; Burky, D.; Kusler, J. E.; Finney, B.
2013-12-01
Piston core TN062 0550, located 13 km offshore of Eureka, California (40.866 deg. N, 124.572 deg. W, 550 m water depth), contains a continuous high-resolution climate record of the past 7,300 yr. Deposition occurred at nearly constant sedimentation rates averaging 94 cm/kyr based on 14C AMS dating of planktonic foraminifers. Pollen and marine ecosystem proxies (diatoms, silicoflagellates, wt. percent biogenic silica) studied at 50-70 yr sample resolution show a stepwise development of the climate/ oceanographic system off northernmost California. The relative contributions of Sequoia sempervirens (coastal redwood) pollen, a proxy for coastal fog associated with offshore upwelling, and biogenic silica concentrations (a proxy for siliceous export productivity) increase (two fold and three fold, respectively) in successive steps at ~5,000 yr BP and from ~2,400 to 2,000 yr BP. These increases are interpreted to reflect a progressive intensification of spring upwelling based on modern observations of the California Current system. At 5,000 yr BP diatom assemblages change from an assorted mixture of warm, temperate, and cool-water taxa to a low diversity temperate-oceanic assemblage dominated by Thalassionema spp. At ~2,400 yr BP the diatom assemblage transitions to a mixture of nearshore upwelling taxa and taxa associated with the central North Pacific Gyre. Silicoflagellate assemblages undergo a similar increase in the representation of modern seasonal proxies at ~3,000 yr BP that may reflect intensified ENSO variability. A two-fold increase in the relative contributions of Quercus (oak) and riparian Alnus (alder) pollen between ~3,800 and 2,000 yr BP likely signals a period of enhanced fluvial runoff associated with increased winter precipitation. Given the present day association of the Eel River system with the northwestern half of the western US winter precipitation dipole, these pollen data suggest that the ~3,800 and 2,000 yr interval was dominated by protracted negative Pacific Decadal Oscillation-like (PDO) conditions. The widespread occurrence of drought in the southwestern US between ~3,800 and 2,200 yr BP supports this interpretation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudd, A.
This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudd, Armin
This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less
Changes in ENSO amplitude under climate warming and cooling
NASA Astrophysics Data System (ADS)
Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai
2018-05-01
The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.
Gutiérrez, Alvaro G.; Armesto, Juan J.; Díaz, M. Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests. PMID:25068869
NASA Astrophysics Data System (ADS)
Enquist, B. J.
2017-12-01
Tropical and temperate elevation gradients are natural laboratories to assess how changing climate can influence tropical forests. However, there is a need for theory and integrated data collection to scale from traits to ecosystems. We assess predictions of a novel trait-based metabolic scaling theory including whether observed shifts in forest traits across a broad tropical temperature gradient is consistent with local phenotypic optima and adaptive compensation for temperature. We tested a new anaytical theory - Trait Driver Theory - that is capable of scaling from traits to entire stands and ecosystems across several elevation gradients spanning 3300m. Each gradient consists of thousands of tropical and temperate tree trait measures taken from forest plots. In several of these plots, in particular in southern Perú, gross and net primary productivity (GPP and NPP) were measured. We measured multiple traits linked to variation in tree growth and assessed their frequency distributions within and across the elevation gradient. We paired these trait measures across individuals within forests with simultaneous measures of ecosystem net and gross primary productivity. Consistent with theory, variation in forest NPP and GPP primarily scaled with forest biomass but the secondary effect of temperature on productivity was much less than expected. This weak temperature dependency appears to reflect directional shifts in several mean community traits that underlie tree growth with decreases in site temperature. The observed shift in traits of trees that dominant more cold environments appear to reflect `adaptive/acclimatory' compensation for the kinetic effects of temperature on leaf photosynthesis and tree growth. Forest trait distributions across the gradient showed peaked and skewed distributions, consistent with the importance of local filtering of optimal growth traits and recent shifts in species composition and dominance due to warming from climate change. Trait-based metabolic scaling theory provides a basis to predict how shifts in climate have and will influence the trait composition and ecosystem functioning of temperate and tropical forests.
Ricalde, Marcelo P.; Nava, Dori E.; Loeck, Alci E.; Donatti, Michele G.
2012-01-01
The Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is one of the principal exotic pests affecting Brazilian production in the northeastern and southeastern regions of Brazil. In the south, it is has potential as a serious threat to temperate-climate fruit farms, since it is already found in urban and suburban communities in this region. We studied the biological characteristics of C. capitata populations from Pelotas-RS (temperate climate), Petrolina-PE (tropical), and Campinas-SP (subtropical). Ceratitis capitata biology was studied under controlled temperature (15, 20, 25, 30, and 35 ± 1 °C), 70 ± 10% RH, and 14:10 L:D photoperiod. The duration and survival rate of the egg, larval, and pupal stages were evaluated and the thermal requirements of these three populations were determined. The duration and survival of these developmental stages varied with temperature, with similar values for the three populations, except for some variation in the egg phase. Egg to adult developmental time for all three populations was inversely proportional to temperature; from 15 to 30 °C developmental time varied from 71.2 to 17.1, 70.2 to 17.1, and 68.5 to 16.9 days, respectively. Survival during development was affected at 15 to 30 °C, and differed significantly from survival at 20 to 25 °C. At 35 °C, immature stages did not develop. The basal temperature and degree-day requirement were similar for all immature stages except for the egg stage. The basal temperatures and thermal constants were 9.30 and 350, 8.47 and 341, and 9.60 °C and 328 degree-days for the Pelotas, Petrolina, and Campinas populations, respectively. Results suggested that survival and thermal requirements are similar for these tropical, subtropical, and temperate populations of C. capitata, and demonstrate the species' capacity to adapt to different climate conditions. PMID:22963468
Gutiérrez, Alvaro G; Armesto, Juan J; Díaz, M Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.
NASA Astrophysics Data System (ADS)
Choudhury, Biplab; Chatterjee, Pradip Kumar; Habib, Khairul; Saha, Bidyut Baran
2018-06-01
The demand for cooling, especially in the developing economies, is rising at a fast rate. Fast-depleting sources of fossil fuel and environmental concerns necessitate looking for alternative cooling solutions. Solar heat driven adsorption based cooling cycles are environmentally friendly due to their use of natural refrigerants and the thermal compression process. In this paper, a performance simulation study of a basic two-bed solar adsorption chiller has been performed through a transient model for two different climatic locations in India. Effect of operating temperatures and cycle time on the chiller performance has been studied. It is observed that the solar hot water temperature obtained in the composite climate of Delhi (28.65°N, 77.25°E) can run the basic adsorption cooling cycle efficiently throughout the year. Whereas, the monsoon months of July and August in the warm and humid climate of Durgapur (23.48°N, 87.32°E) are unable to supply the required driving heat.
Fournel, Sébastien; Ouellet, Véronique; Charbonneau, Édith
2017-05-02
Heat stress negatively affects the health and performance of dairy cows, resulting in considerable economic losses for the industry. In future years, climate change will exacerbate these losses by making the climate warmer. Physical modification of the environment is considered to be the primary means of reducing adverse effects of hot weather conditions. At present, to reduce stressful heat exposure and to cool cows, dairy farms rely on shade screens and various forms of forced convection and evaporative cooling that may include fans and misters, feed-line sprinklers, and tunnel- or cross-ventilated buildings. However, these systems have been mainly tested in subtropical areas and thus their efficiency in humid continental climates, such as in the province of Québec, Canada, is unclear. Therefore, this study reviewed the available cooling applications and assessed their potential for northern regions. Thermal stress indices such as the temperature-humidity index (THI) were used to evaluate the different cooling strategies.
Mid-Miocene cooling and the extinction of tundra in continental Antarctica
Lewis, Adam R.; Marchant, David R.; Ashworth, Allan C.; Hedenäs, Lars; Hemming, Sidney R.; Johnson, Jesse V.; Leng, Melanie J.; Machlus, Malka L.; Newton, Angela E.; Raine, J. Ian; Willenbring, Jane K.; Williams, Mark; Wolfe, Alexander P.
2008-01-01
A major obstacle in understanding the evolution of Cenozoic climate has been the lack of well dated terrestrial evidence from high-latitude, glaciated regions. Here, we report the discovery of exceptionally well preserved fossils of lacustrine and terrestrial organisms from the McMurdo Dry Valleys sector of the Transantarctic Mountains for which we have established a precise radiometric chronology. The fossils, which include diatoms, palynomorphs, mosses, ostracodes, and insects, represent the last vestige of a tundra community that inhabited the mountains before stepped cooling that first brought a full polar climate to Antarctica. Paleoecological analyses, 40Ar/39Ar analyses of associated ash fall, and climate inferences from glaciological modeling together suggest that mean summer temperatures in the region cooled by at least 8°C between 14.07 ± 0.05 Ma and 13.85 ± 0.03 Ma. These results provide novel constraints for the timing and amplitude of middle-Miocene cooling in Antarctica and reveal the ecological legacy of this global climate transition. PMID:18678903
Tietjen, Britta; Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K; Hall, Sonia A; Duniway, Michael C; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M; Pyke, David A; Wilson, Scott D
2017-07-01
Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change-induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water-limited ecosystems. © 2017 John Wiley & Sons Ltd.
Tietjen, Britta; Schlaepfer, Daniel R.; Bradford, John B.; Laurenroth, William K.; Hall, Sonia A.; Duniway, Michael C.; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M.; Pyke, David A.; Wilson, Scott D.
2017-01-01
Drylands occur world-wide and are particularly vulnerable to climate change since dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability, and also change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding.We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation.Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, i.e. leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water-limited ecosystems.
Warm summers during the Younger Dryas cold reversal.
Schenk, Frederik; Väliranta, Minna; Muschitiello, Francesco; Tarasov, Lev; Heikkilä, Maija; Björck, Svante; Brandefelt, Jenny; Johansson, Arne V; Näslund, Jens-Ove; Wohlfarth, Barbara
2018-04-24
The Younger Dryas (YD) cold reversal interrupts the warming climate of the deglaciation with global climatic impacts. The sudden cooling is typically linked to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in response to meltwater discharges from ice sheets. However, inconsistencies regarding the YD-response of European summer temperatures have cast doubt whether the concept provides a sufficient explanation. Here we present results from a high-resolution global climate simulation together with a new July temperature compilation based on plant indicator species and show that European summers remain warm during the YD. Our climate simulation provides robust physical evidence that atmospheric blocking of cold westerly winds over Fennoscandia is a key mechanism counteracting the cooling impact of an AMOC-slowdown during summer. Despite the persistence of short warm summers, the YD is dominated by a shift to a continental climate with extreme winter to spring cooling and short growing seasons.
NASA Astrophysics Data System (ADS)
Morinière, Jérôme; van Dam, Matthew H.; Hawlitschek, Oliver; Bergsten, Johannes; Michat, Mariano C.; Hendrich, Lars; Ribera, Ignacio; Toussaint, Emmanuel F. A.; Balke, Michael
2016-05-01
The underlying mechanisms responsible for the general increase in species richness from temperate regions to the tropics remain equivocal. Many hypotheses have been proposed to explain this astonishing pattern but additional empirical studies are needed to shed light on the drivers at work. Here we reconstruct the evolutionary history of the cosmopolitan diving beetle subfamily Colymbetinae, the majority of which are found in the Northern hemisphere, hence exhibiting an inversed latitudinal diversity gradient. We reconstructed a dated phylogeny using 12 genes, to investigate the biogeographical history and diversification dynamics in the Colymbetinae. We aimed to identify the role that phylogenetic niche conservatism plays in the inversed diversification pattern seen in this group. Our results suggest that Colymbetinae originated in temperate climates, which supports the hypothesis that their distribution is the result of an ancestral adaptation to temperate environmental conditions rather than tropical origins, and that temperate niche conservatism can generate and/or maintain inverse latitudinal diversity gradients.