Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years
Marchant, R.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J. H.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.B.; Cleef, A.M.; Duivenvoorden, J.F.; Flenley, J.R.; De Oliveira, P.; Van Geel, B.; Graf, K.J.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.C.S.; Horn, S.P.; Islebe, G.A.; Kuhry, P.; Ledru, M.
2009-01-01
The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000±500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000±500 14C yr BP reconstruction are comparatively small. Patterns of change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America also show a change in biome assignment to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000±1000 14C yr BP 61 samples from 34 sites record vegetation that reflects a generally cool and dry environment. Cool grass/shrubland prevalent in southeast Brazil, Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central M??xico and lowland Colombia remain unchanged in their biome assignments, although the affinities that these sites have to different biomes do change between 18 000±1000 14C yr BP and present. The " unresponsive" nature of these sites results from their location and the impact of local edaphic influence.
Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago
Marchant, R.; Cleef, A.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.; Duivenvoorden, J.; Flenley, J.; De Oliveira, P.; Van Gee, B.; Graf, K.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.; Horn, S.; Kuhry, P.; Ledru, M.-P.; Mayle, F.; Leyden, B.; Lozano-Garcia, S.; Melief, A.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G.; Salgado-Labouriau, M.; Schabitz, F.; Schreve-Brinkman, E. J.; Wille, M.
2009-01-01
The biomisation method is used to reconstruct Latin American vegetation at 6000??500 and 18 000??1000 radiocarbon years before present ( 14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000??500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000??500 14C yr BP reconstruction are comparatively small; change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America show a change in biome assignment, but to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000??1000 14C yr BP 61 samples from 34 sites record vegetation reflecting a generally cool and dry environment. Cool grass/shrubland is prevalent in southeast Brazil whereas Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central Mexico and lowland Colombia remain unchanged in the biome assignments of warm mixed forest and tropical dry forest respectively, although the affinities that these sites have to different biomes do change between 18000??1000 14C yr BP and present. The "unresponsive" nature of these sites results from their location and the impact of local edaphic influence. ?? Author(s) 2009.
Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years
Marchant, R.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J. H.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.B.; Cleef, A.M.; Duivenvoorden, J.F.; Flenley, J.R.; De Oliveira, P.; Van Geel, B.; Graf, K.J.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.C.S.; Horn, S.P.; Islebe, G.A.; Kuhry, P.; Ledru, M.-P.; Mayle, F.E.; Leyden, B.W.; Lozano-Garcia, S.; Melief, A.B.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G. B.; Salgado-Labouriau, M. L.; Schasignbitz, F.; Schreve-Brinkman, E. J.; Wille, M.
2009-01-01
The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation.
At 6000±500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000±500 14C yr BP reconstruction are comparatively small. Patterns of change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America also show a change in biome assignment to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded.
At 18 000±1000 14C yr BP 61 samples from 34 sites record vegetation that reflects a generally cool and dry environment. Cool grass/shrubland prevalent in southeast Brazil, Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central M??xico and lowland Colombia remain unchanged in their biome assignments, although the affinities that these sites have to different biomes do change between 18 000±1000 14C yr BP and present. The " unresponsive" nature of these sites results from their location and the impact of local edaphic influence.
Richardson, Sarah J; Laughlin, Daniel C; Lawes, Michael J; Holdaway, Robert J; Wilmshurst, Janet M; Wright, Monique; Curran, Timothy J; Bellingham, Peter J; McGlone, Matt S
2015-10-01
In fire-prone ecosystems, variation in bark thickness among species and communities has been explained by fire frequency; thick bark is necessary to protect cambium from lethal temperatures. Elsewhere this investment is deemed unnecessary, and thin bark is thought to prevail. However, in rain forest ecosystems where fire is rare, bark thickness varies widely among species and communities, and the causes of this variation remain enigmatic. We tested for functional explanations of bark thickness variation in temperate rain forest species and communities. We measured bark thickness in 82 tree species throughout New Zealand temperate rain forests that historically have experienced little fire and applied two complementary analyses. First, we examined correlations between bark traits and leaf habit, and leaf and stem traits. Second, we calculated community-weighted mean (CWM) bark thickness for 272 plots distributed throughout New Zealand to identify the environments in which thicker-barked communities occur. Conifers had higher size-independent bark thickness than evergreen angiosperms. Species with thicker bark or higher bark allocation coefficients were not associated with "slow economic" plant traits. Across 272 forest plots, communities with thicker bark occurred on infertile soils, and communities with thicker bark and higher bark allocation coefficients occurred in cooler, drier climates. In non-fire-prone temperate rain forest ecosystems, investment in bark is driven by soil resources, cool minimum temperatures, and seasonal moisture stress. The role of these factors in fire-prone ecosystems warrants testing. © 2015 Botanical Society of America.
Phosphorus limits Eucalyptus grandis seedling growth in an unburnt rain forest soil
Tng, David Y. P.; Janos, David P.; Jordan, Gregory J.; Weber, Ellen; Bowman, David M. J. S.
2014-01-01
Although rain forest is characterized as pyrophobic, pyrophilic giant eucalypts grow as rain forest emergents in both temperate and tropical Australia. In temperate Australia, such eucalypts depend on extensive, infrequent fires to produce conditions suitable for seedling growth. Little is known, however, about constraints on seedlings of tropical giant eucalypts. We tested whether seedlings of Eucalyptus grandis experience edaphic constraints similar to their temperate counterparts. We hypothesized that phosphorous addition would alleviate edaphic constraints. We grew seedlings in a factorial experiment combining fumigation (to simulate nutrient release and soil pasteurization by fire), soil type (E. grandis forest versus rain forest soil) and phosphorus addition as factors. We found that phosphorus was the principal factor limiting E. grandis seedling survival and growth in rain forest soil, and that fumigation enhanced survival of seedlings in both E. grandis forest and rain forest soil. We conclude that similar to edaphic constraints on temperate giant eucalypts, mineral nutrient and biotic attributes of a tropical rain forest soil may hamper E. grandis seedling establishment. In rain forest soil, E. grandis seedlings benefited from conditions akin to a fire-generated ashbed (i.e., an “ashbed effect”). PMID:25339968
Life on the edge: carbon fluxes from wetland to ocean along Alaska's coastal temperate rain forest
Rhonda Mazza; Richard Edwards; David D' Amore
2010-01-01
Acre for acre, streams of the coastal temperate rain forest along the Gulf of Alaska export 36 times as much dissolved organic carbon as the world average. Rain and snow are the great connectors, tightly linking aquatic and terrestrial systems of this region. The freshwater that flushes over and through the forest floor leaches carbon...
Global-scale patterns of forest fragmentation
Riitters, K.; Wickham, J.; O'Neill, R.; Jones, B.; Smith, E.
2000-01-01
We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 ?? 9 pixels, "small" scale) to 59,049 km 2 (243 ?? 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined) from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe - Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types) and Europe - Asia (four types), in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland). The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf. Copyright ?? 2000 by The Resilience Alliance.
Winston P. Smith; Scott M. Gende; Jeffrey V. Nichols
2005-01-01
We studied red-backed vole Clethrionomys gapperi and Keen' s mouse Peromyscus keeni populations in the Alexander Archipelago to test predictions regarding habitat relations in temperate rain forest of southeastern Alaska during August - September 1998 and 2000 and April - May 1999 and 2000. We measured 26 vegetative and...
Tangled trends for temperate rain forests as temperatures tick up
Noreen Parks; Tara Barrett
2013-01-01
Climate change is altering growing conditions in the temperate rain forest region that extends from northern California to the Gulf of Alaska. Longer, warmer growing seasons are generally increasing the overall potential for forest growth in the region. However, species differ in their ability to adapt to changing conditions. For example, researchers with Pacific...
Winston P. Smith; Scott M. Gende; Jeffrey V. Nichols
2005-01-01
Management indicator species (MIS) often are selected because their life history and demographics are thought to reflect a suite of ecosystem conditions that are too difficult or costly to measure directly. The northern flying squirrel (Glaucomys sabrinus) has been proposed as an MIS of temperate rain forest of southeastern Alaska based on previous...
NASA Astrophysics Data System (ADS)
Hashim, W.; Noor, M. N. M.; Shaffie, E.; Rahman, Z. A.; Arshad, A. K.
2018-04-01
While bright sunshine and warm temperatures make for the best paving weather, construction projects can get a bit rough in adverse weather conditions. In this case, porous asphalt is used on paving. Light sprinkles can usually be handled without any serious problems. Moderate rainfall events, on the other hand, will generally require the paving project to be postponed. Steady downpours will cool the porous asphalt mix and make proper compaction extremely difficult to obtain. For the viability of the project, contractors will always wait until the sky clears up. According to the JKR Specification 4(Clause 4.2.6.4), it clearly states that no pavement work should be done during rain. The rain is a cold medium where it will actually cools down everything that make contact with the water. Whereas, the mix porous asphalt (PA) is a hot medium. When these two elements combined, the surface and the PA will harden at a stage where it will not be well compacted. This will cause problems in the future. The test is conducted by pouring water onto the pavement(through raining simulation).Since the rain intensity can be determined by the size of the rain drops, the difference in the shower hole size is good enough to create different rain intensities to predict the PA cooling rate when it makes contact with water. These two variables will work as a comparison in this study between raining and no rain condition. As a result, whenever the water make a contact with the PA, the rates of cooling drops 98% from the normal rates of cooling of PA (without rain)giving the Time Available for Compaction (TAC) to be less than 60 seconds. This study may be a knowledge on how the rates of cooling work if the PA make contact with water. It can also be used as future reference on the study of cooling rates of porous pavement during raining condition.
NASA Technical Reports Server (NTRS)
Arp, G. K.; Phinney, D. E. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Through a series of contrasts, the statistical significance of differences in emissivity was determined for vegegation in dry and humid deserts, montane and deciduous rain forests, and the temperate region. No significant differences were found between the two types of desert vegetation or among the types of nondesert vegetation. However, the rain forest vegetation was significantly different from that of the temperate region. On a community-wide level, there is some physiological adaptation in plants to their radiational environment.
Sabri, Nurul Syazwani Ahmad; Zakaria, Zuriati; Mohamad, Shaza Eva; Jaafar, A Bakar; Hara, Hirofumi
2018-04-28
A soil cooling system that prepares soil for temperate soil temperatures for the growth of temperate crops under a tropical climate is described herein. Temperate agriculture has been threatened by the negative impact of temperature increases caused by climate change. Soil temperature closely correlates with the growth of temperate crops, and affects plant processes and soil microbial diversity. The present study focuses on the effects of soil temperatures on lettuce growth and soil microbial diversity that maintains the growth of lettuce at low soil temperatures. A model temperate crop, loose leaf lettuce, was grown on eutrophic soil under soil cooling and a number of parameters, such as fresh weight, height, the number of leaves, and root length, were evaluated upon harvest. Under soil cooling, significant differences were observed in the average fresh weight (P<0.05) and positive development of the roots, shoots, and leaves of lettuce. Janthinobacterium (8.142%), Rhodoplanes (1.991%), Arthrospira (1.138%), Flavobacterium (0.857%), Sphingomonas (0.790%), Mycoplana (0.726%), and Pseudomonas (0.688%) were the dominant bacterial genera present in cooled soil. Key soil fungal communities, including Pseudaleuria (18.307%), Phoma (9.968%), Eocronartium (3.527%), Trichosporon (1.791%), and Pyrenochaeta (0.171%), were also recovered from cooled soil. The present results demonstrate that the growth of temperate crops is dependent on soil temperature, which subsequently affects the abundance and diversity of soil microbial communities that maintain the growth of temperate crops at low soil temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spirn, A W; Santos, A N; Johnson, D A
1981-04-01
The potential of vegetation for cooling small, detached residential and commercial structures in temperate, humid climates is discussed. The results of the research are documented, a critical review of the literature is given, and a brief review of energy transfer processes is presented. A checklist of design objectives for passive cooling, a demonstration of design applications, and a palette of selected plant species suitable for passive cooling are included.
Influence of tempering and contraction mismatch on crack development in ceramic surfaces.
Anusavice, K J; DeHoff, P H; Hojjatie, B; Gray, A
1989-07-01
Tempering of glass produces a state of compressive stress in surface regions which can enhance the resistance to crack initiation and growth. The objective of this study was to determine the influence of tempering on the sizes of surface cracks induced within the tempered surfaces of opaque porcelain-body porcelain discs, with contraction coefficient differences (alpha O-alpha B) of +3.2, +0.7, 0.0, -0.9, and -1.5 ppm/degrees C. We fired the discs to the maturing temperature (982 degrees C) of body porcelain and then subjected them to three cooling procedures: slow cooling in a furnace (SC), fast cooling in air (FC), and tempering (T) by blasting the body porcelain surface with compressed air for 90 s. We used body porcelain discs as the thermally compatible (delta alpha = 0) control specimens. We measured the diameters of cracks induced by a microhardness indenter at an applied load of 4.9 N at 80 points along diametral lines within the surface of body porcelain. The mean values of the crack diameters varied from 75.9 microns (delta alpha = -1.5 ppm/degrees C) to 103.3 microns (delta alpha = +3.2 ppm/degrees C). The results of ANOVA indicate that significant differences in crack dimensions were controlled by cooling rate, contraction mismatch, and their combined effect (p less than 0.0001). Multiple contrast analysis (Tukey's HSD Test) revealed significantly lower (p less than 0.05) crack sizes for tempered specimens compared with those of fast-cooled and slow-cooled specimens.(ABSTRACT TRUNCATED AT 250 WORDS)
To cool, but not too cool: that is the question--immersion cooling for hyperthermia.
Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J
2008-11-01
Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.
Sorption of mercury in soils with different humus content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lodenius, M.; Seppaenen, A.; Autio S.
The strong sorption of mercury to humic matter in soil and water has raised the question about the influence of organic matter of different soil types on the mobilization of mercury from soil. Mercury is normally bound to humic and fulvic acids, which may be released in connection with flooding, draining and ditching. High mercury contents in fish from man-made lakes have been reported mainly from temperated regions. This has been assumed to be a result of the slower metabolism of methyl mercury in cool water but the effect of temperature on the mobilization process is still poorly known. Themore » sorption and leaching of mercury in three different soils was studied in vitro using a mercury concentrations near the natural level. Soil lysimeters were watered with distilled water or artificial acid rain at two temperatures.« less
NASA Astrophysics Data System (ADS)
Igarashi, Yaeko; Irino, Tomohisa; Sawada, Ken; Song, Lu; Furota, Satoshi
2018-04-01
We reconstructed fluctuations in the East Asian monsoon and vegetation in the Japan Sea region since the middle Pliocene based on pollen data obtained from sediments collected by the Integrated Ocean Drilling Program off the southwestern coast of northern Japan. Taxodiaceae conifers Metasequoia and Cryptomeria and Sciadopityacere conifer Sciadopitys are excellent indicators of a humid climate during the monsoon. The pollen temperature index (Tp) can be used as a proxy for relative air temperature. Based on changes in vegetation and reconstructed climate over a period of 4.3 Ma, we classified the sediment sequence into six pollen zones. From 4.3 to 3.8 Ma (Zone 1), the climate fluctuated between cool/moist and warm/moist climatic conditions. Vegetation changed between warm temperate mixed forest and cool temperate conifer forest. The Neogene type tree Carya recovered under a warm/moist climate. The period from 3.8 to 2.5 Ma (Zone 2) was characterized by increased Metasequoia pollen concentration. Warm temperate mixed forest vegetation developed under a cool/moist climate. The period from 2.5 to 2.2 Ma (Zone 3) was characterized by an abrupt increase in Metasequoia and/or Cryptomeria pollen and a decrease in warm broadleaf tree pollen, indicating a cool/humid climate. The Zone 4 period (2.2-1.7 Ma) was characterized by a decrease in Metasequoia and/or Cryptomeria pollen and an increase in cool temperate conifer Picea and Tsuga pollen, indicating a cool/moist climate. The period from 1.7 to 0.3 Ma (Zone 5) was characterized by orbital-scale climate fluctuations. Cycles of abrupt increases and decreases in Cryptomeria and Picea pollen and in Tp values indicated changes between warm/humid and cold/dry climates. The alpine fern Selaginella selaginoides appeared as of 1.6 Ma. Vegetation alternated among warm mixed, cool mixed, and cool temperate conifer forests. Zone 6 (0.3 Ma to present) was characterized by a decrease in Cryptomeria pollen. The warm temperate broadleaf forest and cool temperate conifer forest developed alternately under warm/moist and cold/dry climate. Zone 2 corresponded to a weak Tsushima Current breaking through the Tsushima Strait, and the beginning of orbital-scale climatic changes at 1.7 Ma during Zone 5 corresponded to the strong inflow of the Tsushima Current into the Japan Sea during interglacial periods (Gallagher et al., 2015).
Marie Oliver; David D' Amore
2015-01-01
New research reveals how topography, soil temperature, and subtle shifts in soil drainage are key drivers in ecosystem function in the coastal temperate rain forests of southeast Alaska and British Columbia. These studies, by Dave D'Amore and his colleagues, provide a better understanding of the influence of soil hydrology on dissolved organic carbon export and...
Mogi, M; Armbruster, P A; Tuno, N; Aranda, C; Yong, H S
2017-11-07
We compared climatic distribution ranges between Aedes albopictus (Skuse) (Diptera: Culicidae) and the five wild (nondomesticated) species of Albopictus Subgroup of Scutellaris Group of Aedes (Stegomyia) in southern Asia. Distribution sites of the wild species concentrate in seasonal forest and savannah climate zones in India, Indochina, and southern China. The distribution of Ae. albopictus is broader than the wild species under 1) tropical rain-forest climate, 2) steppe and temperate savannah climate, and 3) continental climate with large seasonal temperature variation (hot summer and cold winter) at temperate lowlands (northernmost sites 40°N in Ae. albopictus vs 32°N in the wild species). However, the distribution of Ae. albopictus is more limited at tropical and subtropical highlands where the climate is cool but less continental (small seasonal variation, mild summer, and winter). We discuss a possibility that the broader climate ranges of Ae. albopictus are ecological or eco-evolutionary consequences of adaptation to human habitats. We also propose a general scenario for the origin, dispersal, and adaptation of Ae. albopictus in Asia as a hypothesis for future research. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The mixing of rain with near-surface water
Dennis F. Houk
1976-01-01
Rain experiments were run with various temperature differences between the warm rain and the cool receiving water. The rain intensities were uniform and the raindrop sizes were usually uniform (2.2 mm, 3.6 mm, and 5.5 mm diameter drops). Two drop size distributions were also used.
Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement
NASA Astrophysics Data System (ADS)
Raoul, S.; Marini, B.; Pineau, A.
1998-11-01
In ferritic steels, brittle fracture usually occurs at low temperature by cleavage. However the segregation of impurities (P, As, Sn etc...) along prior γ grain boundaries can change the brittle fracture mode from transgranular to intergranular. In quenched and tempered steels, this segregation is associated with what is called the temper-embrittlement phenomenon. The main objective of the present study is to investigate the influence of the as-quenched microstructure (lower bainite or martensite) on the susceptibility of a low alloy steel (A533 cl.1) to temper-embrittlement. Dilatometric tests were performed to determine the continous-cooling-transformation (CCT) diagram of the material and to measure the critical cooling rate ( Vc) for a martensitic quench. Then subsized Charpy V-notched specimens were given various cooling rates from the austenitization temperature to obtain a wide range of as-quenched microstructures, including martensite and bainite. These specimens were subsequently given a heat treatment to develop temper embrittlement and tested to measure the V-notch fracture toughness at -50°C. The fracture surfaces were examined by SEM. It is shown that martensitic microstructures are more susceptible to intergranular embrittlement than bainitic microstructures. These observed microstructural influences are briefly discussed.
NASA Astrophysics Data System (ADS)
Karthikeyan, T.; Thomas Paul, V.; Saroja, S.; Moitra, A.; Sasikala, G.; Vijayalakshmi, M.
2011-12-01
This paper presents the results of an experimental investigation where an enhancement in Charpy impact toughness and decrease in DBTT was obtained through grain refinement in 9Cr-1Mo steel. The steel in the normalized and tempered condition (1323 K/air cool + 1023 K/2 h/air cool) had an average prior-austenite grain size of 26 μm. By designing a two-stage normalizing (1323 K/2 h/water quench + 1223 K/2 h/air cool) and tempering treatment (1023 K/2 h/air cool), a homogeneous tempered martensite microstructure with a lesser prior-austenite grain size of 12 μm could be obtained. An improvement trend in impact properties of standard sized Charpy specimens was obtained in fine-grained steel: upper shelf energy increased from 175 J to 210 J, and DBTT reduced from 243 K to 228 K. This heat treatment is unique since an attempt to carry out a single-stage low temperature normalizing treatment (1223 K/2 h/air cool) did not give a complete martensite structure, due to the incomplete dissolution of carbides during austenitization.
Truxton, Tyler T; Miller, Kevin C
2017-09-01
Clinical Scenario: Exertional heat stroke (EHS) is a medical emergency which, if left untreated, can result in death. The standard of care for EHS patients includes confirmation of hyperthermia via rectal temperature (T rec ) and then immediate cold-water immersion (CWI). While CWI is the fastest way to reduce T rec , it may be difficult to lower and maintain water bath temperature in the recommended ranges (1.7°C-15°C [35°F-59°F]) because of limited access to ice and/or the bath being exposed to high ambient temperatures for long periods of time. Determining if T rec cooling rates are acceptable (ie, >0.08°C/min) when significantly hyperthermic humans are immersed in temperate water (ie, ≥20°C [68°F]) has applications for how EHS patients are treated in the field. Are T rec cooling rates acceptable (≥0.08°C/min) when significantly hyperthermic humans are immersed in temperate water? T rec cooling rates of hyperthermic humans immersed in temperate water (≥20°C [68°F]) ranged from 0.06°C/min to 0.19°C/min. The average T rec cooling rate for all examined studies was 0.11±0.06°C/min. Clinical Bottom Line: Temperature water immersion (TWI) provides acceptable (ie, >0.08°C/min) T rec cooling rates for hyperthermic humans post-exercise. However, CWI cooling rates are higher and should be used if feasible (eg, access to ice, shaded treatment areas). Strength of Recommendation: The majority of evidence (eg, Level 2 studies with PEDro scores ≥5) suggests TWI provides acceptable, though not ideal, T rec cooling. If possible, CWI should be used instead of TWI in EHS scenarios.
The Fate of Cool Material in the Hot Corona: Solar Prominences and Coronal Rain
NASA Astrophysics Data System (ADS)
Liu, Wei; Antolin, Patrick; Sun, Xudong; Vial, Jean-Claude; Berger, Thomas
2017-08-01
As an important chain of the chromosphere-corona mass cycle, some of the million-degree hot coronal mass undergoes a radiative cooling instability and condenses into material at chromospheric or transition-region temperatures in two distinct forms - prominences and coronal rain (some of which eventually falls back to the chromosphere). A quiescent prominence usually consists of numerous long-lasting, filamentary downflow threads, while coronal rain consists of transient mass blobs falling at comparably higher speeds along well-defined paths. It remains puzzling why such material of similar temperatures exhibit contrasting morphologies and behaviors. We report recent SDO/AIA and IRIS observations that suggest different magnetic environments being responsible for such distinctions. Specifically, in a hybrid prominence-coronal rain complex structure, we found that the prominence material is formed and resides near magnetic null points that favor the radiative cooling process and provide possibly a high plasma-beta environment suitable for the existence of meandering prominence threads. As the cool material descends, it turns into coronal rain tied onto low-lying coronal loops in a likely low-beta environment. Such structures resemble to certain extent the so-called coronal spiders or cloud prominences, but the observations reported here provide critical new insights. We will discuss the broad physical implications of these observations for fundamental questions, such as coronal heating and beyond (e.g., in astrophysical and/or laboratory plasma environments).
NASA Technical Reports Server (NTRS)
Goldhirsh, J.
1982-01-01
The first absolute rain fade distribution method described establishes absolute fade statistics at a given site by means of a sampled radar data base. The second method extrapolates absolute fade statistics from one location to another, given simultaneously measured fade and rain rate statistics at the former. Both methods employ similar conditional fade statistic concepts and long term rain rate distributions. Probability deviations in the 2-19% range, with an 11% average, were obtained upon comparison of measured and predicted levels at given attenuations. The extrapolation of fade distributions to other locations at 28 GHz showed very good agreement with measured data at three sites located in the continental temperate region.
Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012
NASA Astrophysics Data System (ADS)
Vashalomidze, Z.; Kukhianidze, V.; Zaqarashvili, T. V.; Oliver, R.; Shergelashvili, B.; Ramishvili, G.; Poedts, S.; De Causmaecker, P.
2015-05-01
Context. The formation and dynamics of coronal rain are currently not fully understood. Coronal rain is the fall of cool and dense blobs formed by thermal instability in the solar corona towards the solar surface with acceleration smaller than gravitational free fall. Aims: We aim to study the observational evidence of the formation of coronal rain and to trace the detailed dynamics of individual blobs. Methods: We used time series of the 171 Å and 304 Å spectral lines obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) above active region AR 11420 on February 22, 2012. Results: Observations show that a coronal loop disappeared in the 171 Å channel and appeared in the 304 Å line more than one hour later, which indicates a rapid cooling of the coronal loop from 1 MK to 0.05 MK. An energy estimation shows that the radiation is higher than the heat input, which indicates so-called catastrophic cooling. The cooling was accompanied by the formation of coronal rain in the form of falling cold plasma. We studied two different sequences of falling blobs. The first sequence includes three different blobs. The mean velocities of the blobs were estimated to be 50 km s-1, 60 km s-1 and 40 km s-1. A polynomial fit shows the different values of the acceleration for different blobs, which are lower than free-fall in the solar corona. The first and second blob move along the same path, but with and without acceleration, respectively. We performed simple numerical simulations for two consecutive blobs, which show that the second blob moves in a medium that is modified by the passage of the first blob. Therefore, the second blob has a relatively high speed and no acceleration, as is shown by observations. The second sequence includes two different blobs with mean velocities of 100 km s-1 and 90 km s-1, respectively. Conclusions: The formation of coronal rain blobs is connected with the process of catastrophic cooling. The different acceleration of different coronal rain blobs might be due to the different values in the density ratio of blob to corona. All blobs leave trails, which might be a result of continuous cooling in their tails. Two movies attached to Fig. 1 are available in electronic form at http://www.aanda.org
Retention of ductility in high-strength steels
NASA Technical Reports Server (NTRS)
Parker, E. R.; Zackay, V. F.
1969-01-01
To produce high strength alloy steel with retention of ductility, include tempering, cooling and subsequent tempering. Five parameters for optimum results are pretempering temperature, amount of strain, strain rate, temperature during strain, and retempering temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antolin, P.; Vissers, G.; Shibata, K., E-mail: antolin@astro.uio.n, E-mail: g.j.m.vissers@astro.uio.n, E-mail: shibata@kwasan.kyoto-u.ac.j
Reported observations in H{alpha}, Ca II H, and K or other chromospheric lines of coronal rain trace back to the days of the Skylab mission. Corresponding to cool and dense plasma, coronal rain is often observed falling down along coronal loops in active regions. A physical explanation for this spectacular phenomenon has been put forward thanks to numerical simulations of loops with footpoint-concentrated heating, a heating scenario in which cool condensations naturally form in the corona. This effect has been termed 'catastrophic cooling' and is the predominant explanation for coronal rain. In this work, we further investigate the link betweenmore » this phenomenon and the heating mechanisms acting in the corona. We start by analyzing observations of coronal rain at the limb in the Ca II H line performed by the Hinode satellite, and derive interesting statistical properties concerning the dynamics. We then compare the observations with 1.5-dimensional MHD simulations of loops being heated by small-scale discrete events concentrated toward the footpoints (that could come, for instance, from magnetic reconnection events), and by Alfven waves generated at the photospheric level. Both our observation and simulation results suggest that coronal rain is a far more common phenomenon than previously thought. Also, we show that the structure and dynamics of condensations are far more sensitive to the internal pressure changes in loops than to gravity. Furthermore, it is found that if a loop is predominantly heated from Alfven waves, coronal rain is inhibited due to the characteristic uniform heating they produce. Hence, coronal rain may not only point to the spatial distribution of the heating in coronal loops but also to the agent of the heating itself. We thus propose coronal rain as a marker for coronal heating mechanisms.« less
NASA Astrophysics Data System (ADS)
Xiong, Xuesong; Yang, Feng; Zou, Xingrong; Suo, Jinping
2012-11-01
The effect of twice quenching and tempering on the mechanical properties and microstructures of SCRAM steel was investigated. The results from tensile tests showed that whether twice quenching and tempering processes(1253 K/0.5 h/W.C(water cool) + 1033 K/2 h/A.C(air cool) + 1233 K/0.5 h/W.C + 1033 K/2 h/A.C named after 2Q&2TI, and 1253 K/0.5 h/W.C + 1033 K/2 h/A.C + 1233 K/0.5 h/W.C + 1013 K/2 h/A.C named after 2Q&2TII)increased strength of steel or not depended largely on the second tempering temperature compared to quenching and tempering process(1253 K/0.5 h/W.C + 1033 K/2 h/A.C named after 1Q&1T). Charpy V-notch impact tests indicated that twice quenching and tempering processes reduced the ductile brittle transition temperature (DBTT). Microstructure inspection revealed that the prior austenitic grain size and martensite lath width were refined after twice quenching and tempering treatments. Precipitate growth was inhibited by a slight decrease of the second tempering temperature from 1033 to 1013 K. The finer average size of precipitates is considered to be the main possible reason for the higher strength and lower DBTT of 2Q&2TII compared with 2Q&2TI.
1949-01-13
Charpy specimens. These data are for one steel which has been given a single heat treatment. The effects of a reduction in cross-sectional area and of...air cooled. After this they were tempered at 650oC (1200*?) for 1 hour and water quenched. This treatment produced a structure of tempered bainite
Toughness of 2,25Cr-1Mo steel and weld metal
NASA Astrophysics Data System (ADS)
Acarer, Mustafa; Arici, Gökhan; Acar, Filiz Kumdali; Keskinkilic, Selcuk; Kabakci, Fikret
2017-09-01
2,25Cr-1Mo steel is extensively used at elevated temperature structural applications in fossil fire power plants for steam pipes, nozzle chambers and petrochemical industry for hydrocracking unit due to its excellent creep resistance and good redundant to oxidation. Also they should have acceptable weldability and toughness. The steels are supplied in quenched and tempered condition and their welded components are subjected to post-weld heat treatment (PWHT). Tempering process is carried out at 690-710°C to improve toughness properties. However they are sensitive to reheat cracking and temper embrittlement. To measure temper embrittlement of the steels and their weld metal, temper embrittlement factor and formula (J factor - Watanabe and X formula- Bruscato) are used. Step cooling heat treatment is also applied to determine temper embrittlement. In this study, toughness properties of Cr Mo (W) steels were reviewed. Also transition temperature curves of 2,25Cr-1Mo steel and its weld metal were constructed before and after step cool heat treatment as experimental study. While 2,25Cr-1Mo steel as base metal was supplied, all weld metal samples were produced in Gedik Welding Company. Hardness measurements and microstructure evaluation were also carried out.
Investigations on Heat Treatment of a High-Speed Steel Roll
NASA Astrophysics Data System (ADS)
Fu, Hanguang; Qu, Yinhu; Xing, Jiandong; Zhi, Xiaohui; Jiang, Zhiqiang; Li, Mingwei; Zhang, Yi
2008-08-01
High-carbon high-speed steels (HSS) are very abrasion-resistant materials primarily due to their high hardness MC-type carbide and high hardness martensitic matrix. The effects of quenching and tempering treatment on the microstructure, mechanical properties, and abrasion resistance of centrifugal casting high-carbon HSS roll were studied. Different microstructures and mechanical properties were obtained after the quenching and tempering temperatures of HSS roll were changed. With air-cooling and sodium silicate solution cooling, when the austenitizing temperature reaches 1273 K, the metallic matrix all transforms into the martensite. Afterwards, the eutectic carbides dissolve into the metallic matrix and their continuous network distribution changes into the broken network. The second hardening temperature of high-carbon HSS roll is around 793 K. No significant changes in tensile strength and elongation percentage are observed unless the tempering temperature is beyond 753 K. The tensile strength increases obviously and the elongation percentage decreases slightly beyond 753 K. However, the tensile strength decreases and the elongation percentage increases when the tempering temperature exceeds 813 K. When the tempering temperature excels 773 K, the impact toughness has a slight decrease. Tempering at 793-813 K, high-carbon HSS roll presents excellent abrasion resistance.
Lusk, Christopher H; Kelly, Jeff W G; Gleason, Sean M
2013-03-01
A trade-off between shade tolerance and growth in high light is thought to underlie the temporal dynamics of humid forests. On the other hand, it has been suggested that tree species sorting on temperature gradients involves a trade-off between growth rate and cold resistance. Little is known about how these two major trade-offs interact. Seedlings of Australian tropical and cool-temperate rainforest trees were grown in glasshouse environments to compare growth versus shade-tolerance trade-offs in these two assemblages. Biomass distribution, photosynthetic capacity and vessel diameters were measured in order to examine the functional correlates of species differences in light requirements and growth rate. Species light requirements were assessed by field estimation of the light compensation point for stem growth. Light-demanding and shade-tolerant tropical species differed markedly in relative growth rates (RGR), but this trend was less evident among temperate species. This pattern was paralleled by biomass distribution data: specific leaf area (SLA) and leaf area ratio (LAR) of tropical species were significantly positively correlated with compensation points, but not those of cool-temperate species. The relatively slow growth and small SLA and LAR of Tasmanian light-demanders were associated with narrow vessels and low potential sapwood conductivity. The conservative xylem traits, small LAR and modest RGR of Tasmanian light-demanders are consistent with selection for resistance to freeze-thaw embolism, at the expense of growth rate. Whereas competition for light favours rapid growth in light-demanding trees native to environments with warm, frost-free growing seasons, frost resistance may be an equally important determinant of the fitness of light-demanders in cool-temperate rainforest, as seedlings establishing in large openings are exposed to sub-zero temperatures that can occur throughout most of the year.
9 CFR 3.52 - Facilities, outdoor.
Code of Federal Regulations, 2014 CFR
2014-01-01
... °F. artificial cooling shall be provided by a sprinkler system or other means. (b) Shelter from rain... during rain or snow. (c) Shelter from cold weather. Shelter shall be provided for all rabbits kept...
9 CFR 3.52 - Facilities, outdoor.
Code of Federal Regulations, 2013 CFR
2013-01-01
... °F. artificial cooling shall be provided by a sprinkler system or other means. (b) Shelter from rain... during rain or snow. (c) Shelter from cold weather. Shelter shall be provided for all rabbits kept...
9 CFR 3.52 - Facilities, outdoor.
Code of Federal Regulations, 2012 CFR
2012-01-01
... °F. artificial cooling shall be provided by a sprinkler system or other means. (b) Shelter from rain... during rain or snow. (c) Shelter from cold weather. Shelter shall be provided for all rabbits kept...
9 CFR 3.52 - Facilities, outdoor.
Code of Federal Regulations, 2011 CFR
2011-01-01
... °F. artificial cooling shall be provided by a sprinkler system or other means. (b) Shelter from rain... during rain or snow. (c) Shelter from cold weather. Shelter shall be provided for all rabbits kept...
James D. Wickham; Timothy G. Wade; Kurt H. Riitters
2013-01-01
Aim Because of the low albedo of forests and other biophysical factors, most scenario-based climate modelling studies indicate that removal of temperate forest will promote cooling, indicating that temperate forests are a source of heat relative to other classes of land cover. Our objective was to test the hypothesis that US temperate forests reduce...
Effect of thermal tempering on strength and crack propagation behavior of feldspathic porcelains.
Anusavice, K J; Hojjatie, B
1991-06-01
The objective of this study was to test the hypothesis that tempering stress can retard the growth of surface cracks in layered porcelain discs with variable levels of contraction mismatch. Porcelain discs, 16 mm in diameter and 2 mm thick, were prepared with a 0.5-mm-thick layer of opaque porcelain (O) and a 1.5-mm-thick layer of body porcelain (B). The materials were selected to produce contraction coefficient differences, alpha O-alpha B, of +3.2, +0.7, -0.9, and -1.5 ppm/degrees C. Body porcelain discs with a thickness of 2 mm were used as the thermally compatible control specimens (delta alpha = 0). The discs were fired to the maturing temperature of body porcelain (982 degrees C) and were then subjected to three cooling procedures: slow cooling (SC) in a furnace, fast cooling (FC) in air, and tempering (T) by blasting the surface of the body porcelain with compressed and dried air for 90 s. The dimensions of cracks induced by a Vickers microhardness indenter under a load of 4.9 N were measured at baseline and six months after indentation at 80 points along diametral lines within the surface of body porcelain. In addition, biaxial flexure tests were performed to determine the influence of mismatch and tempering on flexure strength. The results of ANOVA indicate that crack dimensions were influenced significantly by the interaction of cooling rate and contraction mismatch (p less than 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
O'Donoghue, J.; Moore, L.; Stallard, T.; Melin, H.; Connerney, J. E. P.; Oliversen, R. J.
2017-09-01
In 2013, we discovered that the "ring rain" which falls on Saturn from the rings also leaves an imprint on the low-latitude upper-atmosphere. Specifically, the ionospheric-bound H3+ ion appeared to emit brightest where water products are known to fall. Here we show the first re-detections of the imprint of "ring rain" on Saturn's ionosphere, using ground-based Keck telescope data from 2013 and 2014. We have also found that the emission from low-latitudes decreases dramatically from 2011 to 2013, implying a planetary cooling over the time period, but we are unaware of the mechanism of this cooling at present.
Rain attenuation studies from radiometric and rain DSD measurements at two tropical locations
NASA Astrophysics Data System (ADS)
Halder, Tuhina; Adhikari, Arpita; Maitra, Animesh
2018-05-01
Efficient use of satellite communication in tropical regions demands proper characterization of rain attenuation, particularly, in view of the available popular propagation models which are mostly based on temperate climatic data. Thus rain attenuations at frequencies 22.234, 23.834 and 31.4/30 GHz over two tropical locations Kolkata (22.57°N, 88.36°E, India) and Belem (1.45°S, 48.49° W, Brazil), have been estimated for the year 2010 and 2011, respectively. The estimation has been done utilizing ground-based disdrometer observations and radiometric measurements over Earth-space path. The results show that rain attenuation estimations from radiometric data are reliable only at low rain rates (<30 mm/h). However, the rain attenuation estimations from disdrometer measurements show good agreement with the ITU-R model, even at high rain rates (upto100 mm/h). Despite having significant variability in terms of drop size distribution (DSD), the attenuation values calculated from DSD data (disdrometer measurements) at Kolkata and Belem differ a little for the rain rates below 30 mm/h. However, the attenuation values, obtained from radiometric measurements at the two places, show significant deviations ranging from 0.54 dB to 3.2 dB up to a rain rate of 30 mm/h, on account of different rain heights, mean atmospheric temperatures and climatology of the two locations.
How to prevent frostbite and hypothermia
Cold temperatures, wind, rain, and even sweat cool your skin and pull heat away from your body. You also lose heat ... inside your clothes Protect you from cold air, wind, snow, or rain Protect you from contact with ...
NASA Astrophysics Data System (ADS)
Jasoni, Richard; Arnone, John; Fenstermaker, Lynn; Wohlfahrt, Georg
2014-05-01
Eddy covariance measurements of net ecosystem CO2 exchange (NEE) in the Mojave Desert (Jasoni et al. 2005-Global Change Biology 11:749-756; Wohlfahrt et al. 2008-Global Change Biology 14:1475-1487), and in other deserts of the world (e.g., Hastings et al. 2005- Global Change Biology 14:927-939, indicate greater rates of net CO2 uptake (more negative NEE values) and net ecosystem productivity (NEP) than would have been expected for deserts (as high as -120 g C m-2 year-1). We continue to observe high rates of NEE and NEP and seek explanations for these findings at interannual, seasonal, and sub-seasonal time scales. Because moisture availability most strongly constrains biological activity in deserts, responses to rains probably play a significant role in defining components of NEE-namely net primary productivity (NPP, or roughly net photosynthesis by vascular and non-vascular plants) and heterotrophic respiration (Rh, mainly by soil microorganisms). Most precipitation in the Mojave Desert falls from October through April and periodically in the summer as convective storms. The main objective of this study was to quantify the extent to which NEE and the net flux of CO2 from/to biological soil crust (BSC) covered soil surfaces respond to rain pulses occurring during cool/cold and warm/hot times of the year. Flux data from 7 years (2005-2011) of measurements at our shub land desert site (average 150 mm rain per year) located 120 km northwest of Las Vegas showed a range in NEP from -111±34 to -47±28 g C m-2 year-1. Cool season rains usually stimulated NEE (more negative NEE values or net CO2 uptake) while warm season rains reversed this effect and led to positive NEE values (net ecosystem CO2 efflux. Cool season stimulation of NEE often occurred in the absence of green leaves on vascular plants, suggesting that photosynthesis of BSCs (up to 70% of soil surface covered by cyanobacteria, mosses, and lichens) were responsible for this net uptake. At other times during the cool season, herbaceous vascular plants also contributed to increases in NEE. Parallel experiments in which we simulated rain pulses (10 mm) in the cool (February) and warm (May) seasons and measured net CO2 fluxes from BSC covered soil surfaces showed responses similar to those observed at the level of the ecosystem. Earlier continuous measurements of soil air relative humidity (RH; 2001-2006) showed that soil moisture increases occurring after rains in the cool season persist up to 3 weeks after events (a total of 48-108 day equivalent per year at >98% RH) indicating conditions favorable for photosynthetic activity. Thus, net CO2 uptake by BSCs during cool months may largely determine large NEEs measured under moist conditions during this time of year and, together with NPP of herbaceous vascular plants, help explain overall consistently high annual NEP in these ecosystems.
NASA Technical Reports Server (NTRS)
Li, Xiaowen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne; Johnson, Daniel E.
2009-01-01
Part I of this paper compares two simulations, one using a bulk and the other a detailed bin microphysical scheme, of a long-lasting, continental mesoscale convective system with leading convection and trailing stratiform region. Diagnostic studies and sensitivity tests are carried out in Part II to explain the simulated contrasts in the spatial and temporal variations by the two microphysical schemes and to understand the interactions between cloud microphysics and storm dynamics. It is found that the fixed raindrop size distribution in the bulk scheme artificially enhances rain evaporation rate and produces a stronger near surface cool pool compared with the bin simulation. In the bulk simulation, cool pool circulation dominates the near-surface environmental wind shear in contrast to the near-balance between cool pool and wind shear in the bin simulation. This is the main reason for the contrasting quasi-steady states simulated in Part I. Sensitivity tests also show that large amounts of fast-falling hail produced in the original bulk scheme not only result in a narrow trailing stratiform region but also act to further exacerbate the strong cool pool simulated in the bulk parameterization. An empirical formula for a correction factor, r(q(sub r)) = 0.11q(sub r)(exp -1.27) + 0.98, is developed to correct the overestimation of rain evaporation in the bulk model, where r is the ratio of the rain evaporation rate between the bulk and bin simulations and q(sub r)(g per kilogram) is the rain mixing ratio. This formula offers a practical fix for the simple bulk scheme in rain evaporation parameterization.
Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits
NASA Astrophysics Data System (ADS)
Smith, Abigail M.; Nelson, Campbell S.
2003-10-01
Cool-water shelf carbonates differ from tropical carbonates in their sources, modes, and rates of deposition, geochemistry, and diagenesis. Inorganic precipitation, marine cementation, and sediment accumulation rates are absent or slow in cool waters, so that temperate carbonates remain longer at or near the sea bed. Early sea-floor processes, occurring between biogenic calcification and ultimate deposition, thus take on an important role, and there is the potential for considerable taphonomic loss of skeletal information into the fossilised record of cool-water carbonate deposits. The physical breakdown processes of dissociation, breakage, and abrasion are mediated mainly by hydraulic regime, and are always destructive. Impact damage reduces the size of grains, removes structure and therefore information, and ultimately may transform skeletal material into anonymous particles. Abrasion is highly selective amongst and within taxa, their skeletal form and structure strongly influencing resistance to mechanical breakdown. Dissolution and precipitation are the end-members of a two-way chemical equilibrium operating in sea water. In cool waters, inorganic precipitation is rare. There is conflicting opinion about the importance of diagenetic dissolution of carbonate skeletons on the temperate sea floor, but test maceration and early loss of aragonite in particular are reported. Dissolution may relate to undersaturated acidic pore waters generated locally by a combination of microbial metabolisation of organic matter, strong bioturbation, and oxidation of solid phase sulphides immediately beneath the sea floor in otherwise very slowly accumulating skeletal deposits. Laboratory experiments demonstrate that surface-to-volume ratio and skeletal mineralogy are both important in determining skeletal resistance to dissolution. Biological processes on the sea floor include encrustation and bioerosion. Encrustation, a constructive process, may be periodic or seasonal, and can be reversed. It produces both information and material. Bioerosion, in contrast, is destructive and permanent. In temperate areas bioerosion may destroy even very large shells during their long residence at the sea floor, on the order of hundreds to thousands of years. Overall, processes on the temperate sea floor may combine to destroy more carbonate than they produce, and the preservation potential of temperate shelf carbonate into the rock record may be significantly affected. Where preservation does occur in such a destructive regime, the effects of early sea-floor processes will be key determinants of the deposit, resulting in a "taphofacies" characteristic of temperate shelf carbonate sediments.
Caldwell, Joanne N; van den Heuvel, Anne M J; Kerry, Pete; Clark, Mitchell J; Peoples, Gregory E; Taylor, Nigel A S
2018-04-01
What is the central question of this study? Does the cold-water immersion (14°C) of profoundly hyperthermic individuals induce reductions in cutaneous and limb blood flow of sufficient magnitude to impair heat loss relative to the size of the thermal gradient? What is the main finding and its importance? The temperate-water cooling (26°C) of profoundly hyperthermic individuals was found to be rapid and reproducible. A vascular mechanism accounted for that outcome, with temperature-dependent differences in cutaneous and limb blood flows observed during cooling. Decisions relating to cooling strategies must be based upon deep-body temperature measurements that have response dynamics consistent with the urgency for cooling. Physiologically trivial time differences for cooling the intrathoracic viscera of hyperthermic individuals have been reported between cold- and temperate-water immersion treatments. One explanation for that observation is reduced convective heat delivery to the skin during cold immersion, and this study was designed to test both the validity of that observation, and its underlying hypothesis. Eight healthy men participated in four head-out water immersions: two when normothermic, and two after exercise-induced, moderate-to-profound hyperthermia. Two water temperatures were used within each thermal state: temperate (26°C) and cold (14°C). Tissue temperatures were measured at three deep-body sites (oesophagus, auditory canal and rectum) and eight skin surfaces, with cutaneous vascular responses simultaneously evaluated from both forearms (laser-Doppler flowmetry and venous-occlusion plethysmography). During the cold immersion of normothermic individuals, oesophageal temperature decreased relative to baseline (-0.31°C over 20 min; P < 0.05), whilst rectal temperature increased (0.20°C; P < 0.05). When rendered hyperthermic, oesophageal (-0.75°C) and rectal temperatures decreased (-0.05°C) during the transition period (<8.5 min, mostly in air at 22°C), with the former dropping to 37.5°C only 54 s faster when immersed in cold rather than in temperate water (P < 0.05). Minimal cutaneous vasoconstriction occurred during either normothermic immersion, whereas pronounced constriction was evident during both immersions when subjects were hyperthermic, with the colder water eliciting a greater vascular response (P < 0.05). It was concluded that the rapid intrathoracic cooling of asymptomatic, hyperthermic individuals in temperate water was a reproducible phenomenon, with slower than expected cooling in cold water brought about by stronger cutaneous vasoconstriction that reduced convective heat delivery to the periphery. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.
Coronal rain in magnetic bipolar weak fields
NASA Astrophysics Data System (ADS)
Xia, C.; Keppens, R.; Fang, X.
2017-07-01
Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org
Method for heating, forming and tempering a glass sheet
Boaz, Premakaran Tucker; Sitzman, Gary W.
1998-01-01
A method for heating, forming and tempering a glass sheet including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet.
Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.
2012-01-01
Twenty years of precipitation-chemistry data from the National Atmospheric Deposition Program site at El Verde, Puerto Rico, demonstrate that three major sources control the composition of solutes in rain in eastern Puerto Rico. In order of importance, these sources are marine salts, temperate contamination from the Northern Hemisphere, and Sahara Desert dust. Marine salts are a source of roughly 82 percent of the ionic charge in precipitation; marine salt inputs are greatest in January. Evaluation of 15 years of U.S. Geological Survey data for four watersheds in eastern Puerto Rico suggests that large storms, including hurricanes, are associated with exceptionally high chloride concentrations in stream waters. Some of these storms were missed in sampling by the National Atmospheric Deposition Program, and therefore its data on the marine contribution likely underestimate chloride. The marine contribution is a weak source of acidity. Temperate contamination contributes about 10 percent of the ionic charge in precipitation; contaminants are primarily nitrate, ammonia, and sulfate derived from various manmade and natural sources. Peak deposition of temperate contaminants is during January, April, and May, months in which strong weather fronts arrive from the north. Temperate contamination, a strong source of acidity, is the only component that is increasing through time. Sahara Desert dust provides 5 percent of the ionic charge in precipitation; it is strongly seasonal, peaking in June and July during times of maximum dust transport from the Sahara and sub-Saharan regions. This dust contributes, on average, enough alkalinity to neutralize the acidity in June and July rains.
Field drying rate differences amoung cool-season grasses harvested for hay
USDA-ARS?s Scientific Manuscript database
Making high-quality, cool-season grass hay is a challenge, due to the field drying time needed to reach the appropriate moisture content and the high probability of rain in the spring when hay is typically produced. This study was conducted to determine if cool-season grasses with different yield po...
NASA Astrophysics Data System (ADS)
Stoy, P. C.; Katul, G. G.; Juang, J.; Siqueira, M. B.; Novick, K. A.; Essery, R.; Dore, S.; Kolb, T. E.; Montes-Helu, M. C.; Scott, R. L.
2010-12-01
Vegetation is an important control on the surface energy balance and thereby surface temperature. Boreal forests and arctic shrubs are thought to warm the land surface by absorbing more radiation than the vegetation they replace. The surface temperatures of tropical forests tend to be cooler than deforested landscapes due to enhanced evapotranspiration. The effects of reforestation on surface temperature change in the temperate zone is less-certain, but recent modeling efforts suggest forests have a global warming effect. We quantified the mechanisms driving radiometric surface changes following landcover changes using paired ecosystem case studies from the Ameriflux database with energy balance models of varying complexity. Results confirm previous findings that deciduous and coniferous forests in the southeastern U.S. are ca. 1 °C cooler than an adjacent field on an annual basis because aerodynamic/ecophysiological cooling of 2-3 °C outweighs an albedo-related warming of <1 °C. A 50-70% reduction in the aerodynamic resistance to sensible and latent heat exchange in the forests dominated the cooling effect. A grassland ecosystem that succeeded a stand-replacing ponderosa pine fire was ca. 1 °C warmer than unburned stands because a 1.5 °C aerodynamic warming offset a slight surface cooling due to greater albedo and soil heat flux. An ecosystem dominated by mesquite shrub encroachment was nearly 2 °C warmer than a native grassland ecosystem as aerodynamic and albedo-related warming outweighed a small cooling effect due to changes in soil heat flux. The forested ecosystems in these case studies are documented to have higher carbon uptake than the non-forested systems. Results suggest that temperate forests tend to cool the land surface and suggest that previous model-based findings that forests warm the Earth’s surface globally should be reconsidered.Changes to radiometric surface temperature (K) following changes in vegetation using paired ecosystem case studies C4 grassland and shrub ecosystem surface temperatures were adjusted for differences in air temperature across sites.
Method for heating, forming and tempering a glass sheet
Boaz, P.T.; Sitzman, G.W.
1998-10-27
A method for heating, forming and tempering a glass sheet is disclosed including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet. 2 figs.
Radu, Danielle D; Duval, Tim P
2018-05-01
Climate projections forecast a redistribution of seasonal precipitation for much of the globe into fewer, larger events spaced between longer dry periods, with negligible changes in seasonal rainfall totals. This intensification of the rainfall regime is expected to alter near-surface water availability, which will affect plant performance and carbon uptake. This could be especially important in peatland systems, where large stores of carbon are tightly coupled to water surpluses limiting decomposition. Here, we examined the role of precipitation frequency on vegetation growth and carbon dioxide (CO 2 ) balances for communities dominated by a Sphagnum moss, a sedge, and an ericaceous shrub in a cool temperate poor fen. Field plots and laboratory monoliths received one of three rainfall frequency treatments, ranging from one event every three days to one event every 14 days, while total rain delivered in a two-week cycle and the entire season to each treatment remained the same. Separating incident rain into fewer but larger events increased vascular cover in all peatland communities: vascular plant cover increased 6× in the moss-dominated plots, nearly doubled in the sedge plots, and tripled in the shrub plots in Low-Frequency relative to High-Frequency treatments. Gross ecosystem productivity was lowest in moss communities receiving low-frequency rain, but higher in sedge and shrub communities under the same conditions. Net ecosystem exchange followed this pattern: fewer events with longer dry periods increased CO 2 flux to the atmosphere from the moss while vascular plant-dominated communities became more of a sink for CO 2 . Results of this study suggest that changes to rainfall frequency already occurring and predicted to continue will lead to increased vascular plant cover in peatlands and will impact their carbon-sink function. © 2018 John Wiley & Sons Ltd.
Valerie Rapp
2004-01-01
The Maybeso Experimental Forest is in southeast Alaska within the Tongass National Forest, the largest national forest in the United States and home to the Northern Hemi-sphere's largest temperate rain forest. Located about 42 miles west of Ketchikan, Alaska, it is on Prince of Wales Island, the largest island of the Alexander Archipelago and the third largest...
David Nicholls; Trista Patterson
2015-01-01
Sitka, Alaska, has substantial hydroelectric resources, limited driving distances, and a conservation-minded community, all suggesting strong opportunities for achieving a low community carbon footprint. In this research we evaluate the level of carbon dioxide (CO2) emissions from Sitka and compare this to the estimated CO2...
Den use and selection by northern flying squirrels in fragmented landscapes
Sanjay Pyare; Winston P. Smith; Colin S. Shanley
2010-01-01
We studied den use and den-habitat selection by the Prince of Wales Island flying squirrel (Glaucomys sabrinus griseifrons) at multiple spatial scales in fragmented temperate rain-forest habitats because of the role dens play in the distribution, reproduction, and population density of this endemic subspecies. We observed differences in spatial...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antolin, P.; Rouppe van der Voort, L., E-mail: patrick.antolin@astro.uio.no, E-mail: v.d.v.l.rouppe@astro.uio.no
Observed in cool chromospheric lines, such as H{alpha} or Ca II H, coronal rain corresponds to cool and dense plasma falling from coronal heights. Considered as a peculiar sporadic phenomenon of active regions, it has not received much attention since its discovery more than 40 years ago. Yet, it has been shown recently that a close relationship exists between this phenomenon and the coronal heating mechanism. Indeed, numerical simulations have shown that this phenomenon is most likely due to a loss of thermal equilibrium ensuing from a heating mechanism acting mostly toward the footpoints of loops. We present here onemore » of the first high-resolution spectroscopic observations of coronal rain, performed with the CRisp Imaging Spectro Polarimeter (CRISP) instrument at the Swedish Solar Telescope. This work constitutes the first attempt to assess the importance of coronal rain in the understanding of the coronal magnetic field in active regions. With the present resolution, coronal rain is observed to literally invade the entire field of view. A large statistical set is obtained in which dynamics (total velocities and accelerations), shapes (lengths and widths), trajectories (angles of fall of the blobs), and thermodynamic properties (temperatures) of the condensations are derived. Specifically, we find that coronal rain is composed of small and dense chromospheric cores with average widths and lengths of {approx}310 km and {approx}710 km, respectively, average temperatures below 7000 K, displaying a broad distribution of falling speeds with an average of {approx}70 km s{sup -1}, and accelerations largely below the effective gravity along loops. Through estimates of the ion-neutral coupling in the blobs we show that coronal rain acts as a tracer of the coronal magnetic field, thus supporting the multi-strand loop scenario, and acts as a probe of the local thermodynamic conditions in loops. We further elucidate its potential in coronal heating. We find that the cooling in neighboring strands occurs simultaneously in general suggesting a similar thermodynamic evolution among strands, which can be explained by a common footpoint heating process. Constraints for coronal heating models of loops are thus provided. Estimates of the fraction of coronal volume with coronal rain give values between 7% and 30%. Estimates of the occurrence time of the phenomenon in loops set times between 5 and 20 hr, implying that coronal rain may be a common phenomenon, in agreement with the frequent observations of cool downflows in extreme-ultraviolet lines. The coronal mass drain rate in the form of coronal rain is estimated to be on the order of 5 Multiplication-Sign 10{sup 9} g s{sup -1}, a significant quantity compared to the estimate of mass flux into the corona from spicules.« less
[Soil seed bank research in China: present status, progress and challenges].
Shen, You-Xin; Zhao, Chun-Yan
2009-02-01
By searching soil seed bank (SSB) papers from http://www.cqvip.com (1989-2006) and Web of Science (1985-2006), the information on SSB density, species richness, and research methods were summarized according to the 29 classified vegetation types in Vegetation of China. In total, the data of 238 sites with 14 vegetation types were collected. The results showed that the research methods adopted by different researchers and the obtained data of SSB density and species richness varied greatly. In related researches, sampling work was mostly conducted in April and October, sampling plot number ranged from 2 to 480, plot area ranged from 78 cm2 to 10,000 cm2, with 10 cm x 10 cm and 20 cm x 20 cm as most common, and total sampling area ranged from 600 cm2 to 500,000 cm2, with the most being 1,000-10,000 cm2. SSB density varied from 8 ind x m(-2) (desert) to 65,355 ind x m(-2) (tropical rain forest), and species richness varied from 1 (secondary bare alkali-saline patch in temperate) to 74 (tropical seasonal rain forest) per site. SSB density and species richness were higher in tropical rain forest and seasonal rain forest than in temperate coniferous forest, and in manmade forest than in agricultural land or barren land. Grassland, desert, and meadow had smaller species richness. In future, the SSB research should be extended both in scope and in deepness, with the focus on the long term research and strategy research of some important ecosystems, and the research should be incorporated into vegetation regeneration and restoration studies. The related methodological research should be also emphasized in the future.
Fajardo, Alex; Siefert, Andrew
2016-01-01
Background and Aims Ecologists are increasingly using plant functional traits to predict community assembly, but few studies have linked functional traits to species’ responses to fine-scale resource gradients. In this study, it was tested whether saplings of woody species partition fine-scale gradients in light availability based on their leaf mass per area (LMA) in three temperate rain forests and one Mediterranean forest in southern Chile. Methods LMA was measured under field conditions of all woody species contained in approx. 60 plots of 2 m2 in each site, and light availability, computed as the gap light index (GLI), was determined. For each site, species’ pairwise differences in mean LMA (Δ LMA) and abundance-weighted mean GLI (Δ light response) of 2 m2 plots were calculated and it was tested whether they were positively related using Mantel tests, i.e. if species with different LMA values differed in their response to light availability. Additionally linear models were fitted to the relationship between plot-level mean LMA and GLI across plots for each site. Key Results A positive and significant relationship was found between species’ pairwise differences in mean LMA and differences in light response across species for all temperate rain forests, but not for the Mediterranean forest. The results also indicated a significant positive interspecific link between LMA and light availability for all forests. This is in contrast to what is traditionally reported and to expectations from the leaf economics spectrum. Conclusions In environments subjected to light limitation, interspecific differences in a leaf trait (LMA) can explain the fine-scale partitioning of light availability gradients by woody plant species. This niche partitioning potentially facilitates species coexistence at the within-community level. The high frequency of evergreen shade-intolerant species in these forests may explain the positive correlation between light availability and LMA. PMID:27604280
Rationale for windshield glass system specification requirements for shuttle orbiter
NASA Technical Reports Server (NTRS)
Hayashida, K.; King, G. L.; Tesinsiky, J.; Wittenburg, D. R.
1972-01-01
A preliminary procurement specification for the space shuttle orbiter windshield pane, and some of the design considerations and rationale leading to its development are presented. The windshield designer is given the necessary methods and procedures for assuring glass pane structural integrity by proof test. These methods and procedures are fully developed for annealed and thermally tempered aluminosilicate, borosilicate, and soda lime glass and for annealed fused silica. Application of the method to chemically tempered glass is considered. Other considerations are vision requirements, protection against bird impact, hail, frost, rain, and meteoroids. The functional requirements of the windshield system during landing, ferrying, boost, space flight, and entry are included.
Janneke Hille Ris Lambers; James S. Clark
2003-01-01
Processes limiting recruitment of trees may have large impacts on forest dynamics. In this paper, we determined the effects of dispersal, shrubs (Rhododendron maximum), and density-dependent mortality on seed and seedling distributions of Southern Appalachian trees. We quantified the spatial distribution of seed rain, seed bank densities, first-year...
Colossal carbon! Disturbance and biomass dynamics in Alaska's national forests
John Kirkland; Tara Barrett
2016-01-01
The Chugach and Tongass National Forests are changing, possibly in response to global warming. Forested areas within Alaska's temperate rain forests are creeping into areas that were previously too cold or too wet. These forests are also becoming denser. As biomass increases, the amount of carbon stored in the forest also increases. Tara Barrett, a...
The influence of tempering process for DP lateritic steel in hardness and microstructure behavior
NASA Astrophysics Data System (ADS)
Hasbi, Muhammad Yunan; Saefudin, Romijarso, Toni Bambang
2018-05-01
In this study, the influence of tempering temperature on dual phase (DP) steel lateritic has been examined. Lateritic is chosen because of its excellence as austenite stabilizer in the formation of martensite and also increase the weldability due to nickel content. The hardness and microstructure behavior of steels were the main focus of this research. One of the goals was to obtain the combination of high strength and ductile materials for automotive application. The specimens used in this study were low carbon steel made by the hot-rolled process and followed by the initial heating process with various temperature (760 °C, 800 °C, 840 °C) continued with rapid cooling. The specimens also conducted by secondary heating with tempering process at 450 °C in an hour with very slow cooling. The experimental results showed that correlation between temperatures with hardness properties of materials. The hardness of the specimens increases as temperature increases. It was because austenite phase has a sufficient time and temperature to form, therefore the amount of transformed austenite becomes martensite was greater. The highest hardness reached by T = 840 °C was 46.98 HRC, it was about 153% from as cast (18.54 HRC). Decreasing in hardness value when the specimen was tempering at 450 °C indicated that martensite phase has been transformed into tempered martensite.
Temporal and Spatial Variations in Soil CO2 Effluxes of Different Ecosystems
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Suto, H.; Fujinuma, Y.; Inoue, G.
2005-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. Reasons include the lack of automated measurement systems that are commercially available, and the need for frequent servicing to ensure accurate measurements. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux during snow-free seasons. We installed the chamber systems in boreal forest in Alaska, tundra in west Siberia, temperate and cool-temperate forests in Japan and Korea, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 efflux were measured to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 26 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. Soil CO2 efflux of forest ecosystems showed large spatial variation and was correlated with vegetation type and the chamber size.
Water immersion in the treatment of exertional hyperthermia: physical determinants.
Friesen, Brian J; Carter, Mike R; Poirier, Martin P; Kenny, Glen P
2014-09-01
We examined the effect of differences in body surface area-to-lean body mass ratio (AD/LBM) on core temperature cooling rates during cold water immersion (CWI, 2°C) and temperate water immersion (TWI, 26°C) after exercise-induced hyperthermia. Twenty male participants were divided into two groups: high (315.6 ± 7.9 cm·kg, n = 10) and low (275.6 ± 8.6 cm·kg, n = 10) AD/LBM. On two separate occasions, participants ran on a treadmill in the heat (40.0°C, 20% relative humidity) wearing an impermeable rain suit until rectal temperature reached 40.0°C. After exercise, participants were immersed up to the nipples (arms remained out of the water) in either a CWI (2°C) or a TWI (26°C) circulated water bath until rectal temperature returned to 37.5°C. Overall rectal cooling rates were significantly different between experimental groups (high vs low AD/LBM, P = 0.005) and between immersion conditions (CWI vs TWI, P < 0.001). Individuals with a high AD/LBM had an approximately 1.7-fold greater overall rectal cooling rate relative to those with low AD/LBM during both CWI (high: 0.27°C·min ± 0.10°C·min vs low: 0.16°C·min ± 0.10°C·min) and TWI (high: 0.10°C·min ± 0.05°C·min vs low: 0.06°C·min ± 0.02°C·min). Further, the overall rectal cooling rates during CWI were approximately 2.7-fold greater than during TWI for both the high (CWI: 0.27°C·min ± 0.10°C·min vs TWI: 0.10°C·min ± 0.05°C·min) and the low (CWI: 0.16°C·min ± 0.10°C·min vs TWI: 0.06°C·min ± 0.02°C·min) AD/LBM groups. We show that individuals with a low AD/LBM have a reduced rectal cooling rate and take longer to cool than those with a high AD/LBM during both CWI and TWI. However, CWI provides the most effective cooling treatment irrespective of physical differences.
NASA Astrophysics Data System (ADS)
Ma, Qingshen; Huang, Leqing; Di, Guobiao; Wang, Yanfeng; Yang, Yongda; Ma, Changwen
2017-09-01
The effects of microalloying elements Nb, V and Ti on microstructure and properties of quenched and tempered steel were studied. Results showed that the addition of microalloying elements led to the formation of bainite and increased strength, while the austenization and ferrite transformation temperature was barely affected, i.e. 10°C. Microalloying elements shortened the incubation time for bainite transformation by refinement of austenite grain, and decreased the hardenability by forming carbides and therefore reducing the carbon content of super-cooled austenite. Either of them promoted the bainite transformation. The better tempering stability was ascribed to the as hot-rolled bainite microstructure and secondary carbide precipitation during tempering.
Ocean Cooling Pattern at the Last Glacial Maximum
Zhuang, Kelin; Giardino, John R.
2012-01-01
Ocean temperature and ocean heat content change are analyzed based on four PMIP3 model results at the Last Glacial Maximum relative to the prehistorical run. Ocean cooling mostly occurs in the upper 1000 m depth and varies spatially in the tropical and temperate zones. The Atlantic Ocean experiences greater cooling than the rest of the ocean basins. Ocean cooling is closely related to the weakening of meridional overturning circulation and enhanced intrusion of Antarctic Bottom Water into the North Atlantic.
Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels
NASA Astrophysics Data System (ADS)
Li, Meng-long; Wang, Fu-ming; Li, Chang-rong; Yang, Zhan-bing; Meng, Qing-yong; Tao, Su-fen
2015-06-01
The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al (Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s-1 and 0.43°C·s-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.
NASA Astrophysics Data System (ADS)
Liu, Wei; Berger, Thomas; Antolin, Patrick; Schrijver, Karel
2014-06-01
It has recently been recognized that a mass cycle (e.g., Berger et al. 2011; McIntosh et al. 2012) between the hot, tenuous solar corona and the cool, dense chromosphere underneath it plays an important role in the mass budget and dynamic evolution of the solar atmosphere. Although the corona ultimately loses mass through the solar wind and coronal mass ejections, a fraction of its mass returns to the chromosphere in coronal rain, downflows of prominences, and other as-yet unidentified processes. We present here analysis of joint observations of IRIS, SDO/AIA, and Hinode/SOT of such phenomena. By utilizing the wide temperature coverage (logT: 4 - 7) provided by these instruments combined, we track the coronal cooling sequence (e.g., Schrijver 2001; Liu et al. 2012; Berger et al. 2012) leading to the formation of such material at transition region or chromospheric temperatures (logT: 4 - 5) in the million-degree corona. We compare the cooling times with those expected from the radiative cooling instability. We also measure the kinematics and densities of such downflows and infer their mass fluxes, which are compared to the upward mass fluxes into the corona, e.g., those associated with spicules and flux emergence. Special attention is paid to coronal rain formed near cusp-shaped portions of coronal loops, funnel-shaped prominences at dips of coronal loops, and their respective magnetic environments. With the information about where and when such catastrophic cooling events take place, we discuss the implications for the enigmatic coronal heating mechanisms (e.g., Antolin et al. 2010).
NASA Astrophysics Data System (ADS)
Toda, M.; Knohl, A.; Herbst, M.; Keenan, T. F.; Yokozawa, M.
2016-12-01
The increase in extreme climate events associated with ongoing global warming may create severe damage to terrestrial ecosystems, changing plant structure and the eco-physiological functions that regulate ecosystem carbon exchange. However, most damage is usually due to moderate, rather than catastrophic, disturbances. The nature of plant functional responses to such disturbances, and the resulting effects on the terrestrial carbon cycle, remain poorly understood. To unravel the scientific question, tower-based eddy covariance data in the cool-temperate forests were used to constrain plant eco-physiological parameters in a persimoneous ecosystem model that may have affected carbon dynamics following extreme climate events using the statistic Bayesian inversion approach. In the present study, we raised two types of extreme events relevant for cool-temperate regions, i.e. a typhoon with mechanistic foliage destraction and a heat wave with severe drought. With appropriate evaluation of parameter and predictive uncertainties, the inversion analysis shows annual trajectory of activated photosynthetic responses following climate extremes compared the pre-disturbance state in each forest. We address that forests with moderate disturbance show substantial and rapid photosynthetic recovery, enhanced productivity, and, thus, ecosystem carbon exchange, although the effect of extreme climatic events varies depending on the stand successional phase and the type, intensity, timing and legacy of the disturbance.
The effects of wind disturbance on temperate rain forest structure and dynamics of southeast Alaska.
Gregory J. Nowacki; Marc G. Kramer
1998-01-01
Wind disturbance plays a fundamental role in shaping forest dynamics in southeast Alaska. Recent studies have increased our appreciation for the effects of wind at both large and small scales. Current thinking is that wind disturbance characteristics change over a continuum dependent on landscape features (e.g., exposure, landscape position, topography). Data modeling...
The response of sap flow to pulses of rain in a temperate Australian woodland
Melanie Zeppel; Catrioina M.O. Macinnis-Ng; Chelcy R. Ford; Derek Eamus
2008-01-01
In water-limited systems, pulses of rainfall can trigger a cascade of plant physiological responses. However, the timing and size of the physiological response can vary depending on plant and environmental characteristics, such as rooting depth, plant size, rainfall amount, or antecedent soil moisture. We investigated the influence of pulses of rainfall on the response...
T. P. Burt; C. Ford Miniat; S. H. Laseter; W. T. Swank
2017-01-01
A pattern of increasing frequency and intensity of heavy rainfall over land has been documented for several temperate regions and is associated with climate change. This study examines the changing patterns of daily precipitation at the Coweeta Hydrologic Laboratory, North Carolina, USA, since 1937 for four rain gauges across a range of elevations. We analyse...
Joint SDO and IRIS Observations of a Novel, Hybrid Prominence-Coronal Rain Complex
NASA Astrophysics Data System (ADS)
Liu, Wei; Antolin, Patrick; Sun, Xudong; Gao, Lijia; Vial, Jean-Claude; Gibson, Sarah; Okamoto, Takenori; Berger, Thomas; Uitenbroek, Han; De Pontieu, Bart
2016-10-01
Solar prominences and coronal rain are intimately related phenomena, both involving cool material at chromospheric temperatures within the hot corona and both playing important roles as part of the return flow of the chromosphere-corona mass cycle. At the same time, they exhibit distinct morphologies and dynamics not yet well understood. Quiescent prominences consist of numerous long-lasting, filamentary downflow threads, while coronal rain is more transient and falls comparably faster along well-defined curved paths. We report here a novel, hybrid prominence-coronal rain complex in an arcade-fan geometry observed by SDO/AIA and IRIS, which provides new insights to the underlying physics of such contrasting behaviors. We found that the supra-arcade fan region hosts a prominence sheet consisting of meandering threads with broad line widths. As the prominence material descends to the arcade, it turns into coronal rain sliding down coronal loops with line widths 2-3 times narrower. This contrast suggests that distinct local plasma and magnetic conditions determine the fate of the cool material, a scenario supported by our magnetic field extrapolations from SDO/HMI. Specifically, the supra-arcade fan (similar to those in solar flares; e.g., McKenzie 2013) is likely situated in a current sheet, where the magnetic field is weak and the plasma-beta could be close to unity, thus favoring turbulent flows like those prominence threads. In contrast, the underlying arcade has a stronger magnetic field and most likely a low-beta environment, such that the material is guided along magnetic field lines to appear as coronal rain. We will discuss the physical implications of these observations beyond prominence and coronal rain.
Investigation of Thermo-Magnetic Processing in Application to Heavy Duty Truck Suspension Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makiewicz, Kurt; Yurek, Theodore; Farrell, Brian
2016-04-19
Thermomagnetic processing (TMP) was examined as a methodology for increasing transformation rate during heat treatment in steel tubes. Two potential benefits were investigated, reduced energy consumption and improved mechanical properties. It is possible to reduce energy consumption with TMP by allowing tempering at lower temperatures and shorter times. Improved mechanical properties are possible by allowing a more copious distribution of fine carbides during tempering of martensite. Improved mechanical properties are also possible by quenching under a magnetic field after austenitization by formation of martensitic twins. The experiments in this work allowed for the following conclusions: the samples could not bemore » quenched fast enough to transform the entire wall thickness to martensite; the knee of the Continuous Cooling Curve (CCT) curve was shifted to the left when quenching following austenitizing in a magnetic field. The magnetic field during tempering did enhance the kinetics and allowed fine carbides to form. Since the through wall thickness was not hardened, the bulk mechanical properties were unaffected by the magnetic field. Hardness measurements after hardening showed that hardening in a magnetic field >0.5T resulted in a significant reduction in hardness. Combined with the inadequate cooling rate it was not possible to properly harden the samples. Tempering at 600 C without a magnetic field resulted in no formation of carbides, but tempering at 600 C and 450 C with a 1-2T field resulted in carbide formation in all samples.« less
A long pollen record from lowland Amazonia: Forest and cooling in glacial times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colinvaux, P.A.; Moreno, J.E.; Bush, M.B.
A continuous pollen history of more than 40,000 years was obtained from a lake in the lowland Amazon rain forest. Pollen spectra demonstrate that tropical rain forest occupied the region continuously and that savannas or grasslands were not present during the last glacial maximum. The data suggest that the western Amazon forest was not fragmented into refugia in glacial times and that the lowlands were not a source of dust. Glacial age forests were comparable to modern forests but also included species now restricted to higher evaluations by temperature, suggesting a cooling of the order of 5{degrees} to 6{degrees}C. 23more » refs., 22 tabs.« less
Gehrke, Berit
2018-01-01
Plant species tend to retain their ancestral ecology, responding to temporal, geographic and climatic changes by tracking suitable habitats rather than adapting to novel conditions. Nevertheless, transitions into different environments or biomes still seem to be common. Especially intriguing are the tropical alpine-like areas found on only the highest mountainous regions surrounded by tropical environments. Tropical mountains are hotspots of biodiversity, often with striking degrees of endemism at higher elevations. On these mountains, steep environmental gradients and high habitat heterogeneity within small spaces coincide with astounding species diversity of great conservation value. The analysis presented here shows that the importance of in situ speciation in tropical alpine-like areas has been underestimated. Additionally and contrary to widely held opinion, the impact of dispersal from other regions with alpine-like environments is relatively minor compared to that of immigration from other biomes with a temperate (but not alpine-like) climate. This suggests that establishment in tropical alpine-like regions is favoured by preadaptation to a temperate, especially aseasonal, freezing regime such as the cool temperate climate regions in the Tropics. Furthermore, emigration out of an alpine-like environment is generally rare, suggesting that alpine-like environments - at least tropical ones - are species sinks.
NASA Astrophysics Data System (ADS)
Grobner, P. J.; Blšs, V.
1984-07-01
Metallographic studies have been conducted on a 0.024 pct C-16 pct Cr-1.5 pct Mo-5 pct Ni stainless steel to study the phase reactions associated with heat treatments and investigate the strengthening mechanisms of the steel. In the normalized condition, air cooled from 1010 °C, the microstructure consists of 20 pct ferrite and 80 pct martensite. Tempering in a temperature range between 500 and 600 °C results in a gradual transformation of martensite to a fine mixture of ferrite and austenite. At higher tempering temperatures, between 600 and 800 °C, progressively larger quantities of austenite form and are converted during cooling to proportionally increasing amounts of fresh martensite. The amount of retained austenite in the microstructure is reduced to zero at 800 °C, and the microstructure contains 65 pct re-formed martensite and 35 pct total ferrite. Chromium rich M23C6 carbides precipitate in the single tempered microstructures. The principal strengthening is produced by the presence of martensite in the microstructure. Additional strengthening is provided by a second tempering treatment at 400 °C due to the precipitation of ultrafine (Cr, Mo) (C,N) particles in the ferrite.
Gehrke, Berit
2018-01-01
Abstract Plant species tend to retain their ancestral ecology, responding to temporal, geographic and climatic changes by tracking suitable habitats rather than adapting to novel conditions. Nevertheless, transitions into different environments or biomes still seem to be common. Especially intriguing are the tropical alpine-like areas found on only the highest mountainous regions surrounded by tropical environments. Tropical mountains are hotspots of biodiversity, often with striking degrees of endemism at higher elevations. On these mountains, steep environmental gradients and high habitat heterogeneity within small spaces coincide with astounding species diversity of great conservation value. The analysis presented here shows that the importance of in situ speciation in tropical alpine-like areas has been underestimated. Additionally and contrary to widely held opinion, the impact of dispersal from other regions with alpine-like environments is relatively minor compared to that of immigration from other biomes with a temperate (but not alpine-like) climate. This suggests that establishment in tropical alpine-like regions is favoured by preadaptation to a temperate, especially aseasonal, freezing regime such as the cool temperate climate regions in the Tropics. Furthermore, emigration out of an alpine-like environment is generally rare, suggesting that alpine-like environments – at least tropical ones – are species sinks. PMID:29706788
DOT National Transportation Integrated Search
1996-09-27
This research has shown that a Grade 70 construction steel of 1/2- to 1-inch plate thicknesses can be produced without a quench and temper or accelerated cooling from hot-rolling if the Cu content in the steel is sufficiently high. Coherent very fine...
Abiotic correlates of anuran calling phenology: the importance of rain, temperature, and season
Daniel Saenz; Lee A. Fitzgerald; Kristen A. Baum; Richard N. Conner
2006-01-01
We surveyed anuran calls nightly at eight ponds in eastern Texas from 1 January 2001 through 31 December 2002. Air temperatures and daily rainfall also were recorded for each of the sites. Eastern Texas contains a diverse temperate anuran fauna and a climate that provides a range of conditions for anuran reproduction. During our study, we measured air temperatures that...
Keith Jennings; Julia A. Jones
2015-01-01
This study tested multiple hydrologic mechanisms to explain snowpack dynamics in extreme rain-on-snow floods, which occur widely in the temperate and polar regions. We examined 26, 10 day large storm events over the period 1992â2012 in the H.J. Andrews Experimental Forest in western Oregon, using statistical analyses (regression, ANOVA, and wavelet coherence) of hourly...
Fred H. Everest; Douglas N. Swanston; Charles G. Shaw; Winston P. Smith; Kent R. Julin; Stewart D. Allen
1997-01-01
The Tongass National Forest is the largest remaining relatively unaltered coastal temperate rain forest in the world. The Forest consists of 16.9 million acres of land distributed across more that 22,000 islands and a narrow strip of mainland in southeast Alaska. The Forest contains abundant timber, wildlife, fisheries, mineral, and scenic resources. The authors...
Mason D. Bryant; Takashi Gomi; Jack J. Piccolo
2007-01-01
We focus on headwater streams originating in the mountainous terrain of northern temperate rain forests. These streams rapidly descend from gradients greater than 20% to less than 5% in U-shaped glacial valleys. We use a set of studies on headwater streams in southeast Alaska to define headwater stream catchments, link physical and biological processes, and describe...
Thermal dependence of locomotor performance in two cool-temperate lizards.
Gaby, Mya J; Besson, Anne A; Bezzina, Chalene N; Caldwell, Amanda J; Cosgrove, Sarai; Cree, Alison; Haresnape, Steff; Hare, Kelly M
2011-09-01
Temperate-zone ectotherms experience varying or very low ambient temperatures and may have difficulty in attaining preferred body temperatures. Thus, adaptations to reduce the thermal dependence of physiological processes may be present. We measured the optimal temperature range for sprint speed and compared it with the selected body temperatures (T (sel)) of two sympatric, cool-temperate lizards: the diurnal skink Oligosoma maccanni and the primarily nocturnal gecko Woodworthia (previously Hoplodactylus) "Otago/Southland". We also investigated whether time-of-day influenced sprint speed. Contrary to results for other reptiles, we found that time-of-day did not influence speed in either species. For each species, the optimal temperature range for sprinting and T (sel) overlapped, supporting the 'thermal coadaptation' hypothesis. However, the optimal range of temperatures for speed is not always attainable during activity by either species, which have limited opportunities to attain T (sel) in the field. The thermal sensitivity of sprint speed in these two species does not appear to have evolved to fully match their current thermal environment. More data on cold-adapted species are needed to fully understand physiological adaptation in ectotherms.
NASA Astrophysics Data System (ADS)
Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Giri, A.
2017-09-01
The effect of weld groove design and heat treatment on microstructure evolution and Charpy toughness of P91 pipe weldments was studied. The P91 pipe weldments were subjected to subcritical post weld heat treatment (760 °C-2 h) and normalizing/tempering conditions (normalized-1040 °C/40 min, air cooled; tempered 760 °C/2 h, air cooled) were employed. The influence of subsequent PWHT and N&T treatment on the microstructure of various zone of P91 pipe weldments were also investigated. The present investigation also described the effect of PWHT and N&T treatment on hardness, grain size, precipitate size, inter-particle spacing and fraction area of precipitates present in each zone of P91 pipe weldments. The result indicated great impact of heat treatment on the Charpy toughness and microstructure evolution of P91 weldments. The N&T treatment was found to be more effective heat treatment compared to subsequent PWHT. Charpy toughness value was found to be higher for narrow-groove design as compared to conventional V-groove design.
NASA Astrophysics Data System (ADS)
Wang, Meng; Liu, Zhenyu
2017-07-01
A novel process comprised of ultra-fast cooling after control rolling, intercritical quenching and tempering (UFC-LT) was applied to 3.5%Ni steel. In addition, quenching and tempering (QT) treatment was conducted in comparison. The present study focuses on the relationship between the microstructure and cryogenic toughness of 3.5%Ni steel. Results show that the microstructure of steel treated by UFC-LT consisted of tempered martensite, intercritical ferrite and two types of reversed austenite (RA) (needle shape and blocky). Compared to the QT sample, the UFC-LT sample's ultimate tensile strength decreased slightly, while its elongation increased from 32.3 to 35.7%, and its Charpy absorption energy at -135 °C increased from 112 to 237 J. The ductile-brittle transition temperature of UFC-LT sample was lower than that of the QT sample by 18 °C. The superior cryogenic toughness after UFC-LT compared to QT treatment can be attributed to the dissolution of cementite, approximately 3.0% increase in RA and the decrease in effective grain size.
The western Kenai Peninsula: An opportunity to study fire and its effects on soils and trees
Theresa Jain; Tara M. Barrett
2011-01-01
Most of the coastal Alaska inventory unit is part of the temperate rain-forest biome, and fire is an extremely rare event. However, for the western side of the Kenai Peninsula and the Cook Inlet region, fire is a common source of natural disturbance (fig. 50). Although wildfires are a normal part of the disturbance regime for this region, urban growth and associated...
NASA Technical Reports Server (NTRS)
Horgan, B.; Rutledge, A.; Rampe, E. B.
2015-01-01
Surface weathering on Earth is driven by precipitation (rain/snow melt). Here we summarize the influence of climate on minerals produced during surface weathering, based on terrestrial literature and our new laboratory analyses of weathering products from glacial analog sites. By comparison to minerals identified in likely surface environments on Mars, we evaluate the implications for early martian climate.
Scott Harris; Jeffrey Barnard
2017-01-01
This study assesses the understory plant response and associated effects on forage resources available to Sitka black-tailed deer (Odocoileus hemionus sitkensis), to the creation of artificial canopy gaps in a young-growth forest stand in the coastal temperate rain forest of southeast Alaska. The forest stand was approximately 58 years old when gaps were created and...
Patricia Manzano; Rurik List
2006-01-01
Grasslands are areas dominated by grasses and herbs with few or no trees. Grasslands receive too much rain for a desert environment and too little for a forest. Temperate North American grasslands, especially, have undergone changes on a continental level. Their high productivity and fertility, added to their level topography and lack of trees, make them ideal sites...
Roosevelt elk selection of temperate rain forest seral stages in western Washington
Schroer, Greg L.; Jenkins, Kurt J.; Moorhead, Bruce B.
1993-01-01
We studied habitat selection by Roosevelt elk (Cervus elaphus roosevelti) in a temperate rain forest in the lower Queets River Valley of the western Olympic Peninsula, Washington from June 1986-July 1987. Elk annual home ranges included predominantly unlogged forests protected within Olympic National Park and logged, regenerating forests adjacent to the park. Radio-collared elk selected valley floors during all seasons except winter, when elk frequently used an adjoining plateau 60 m above the floodplain. In winder, radio-collared elk selected 6-15 year-old clearcuts, which were available on the plateau. Elk selected mature deciduous forests of the valley floor during spring, summer, and autumn, and generally they selected old-age Sitka spruce forests during autumn and winter. Young clearcuts (1-5 years old) and even-aged, regenerating stands (16-150 years old) generally were avoided during all seasons. Management practices that retain preferred habitat of elk, such as deciduous forests, 6-15 yr-old coniferous stands, and old-age coniferous bottomland forests will benefit elk, particularly on elk ranges managed for short-rotation, even-aged stands. Silvicultural alternatives to typical even-aged stand management, such as uneven-aged management and commercial thinning, should also be considered for improving and maintaining interspersion of forage and cover.
1983-05-01
worn in the heat affects thermal comfort and with an added solar heat load subsequently interferes with the ability to dissipate stored body heat...worn in the heat affects thermal comfort and with an added solar heat load subsequently interferes with the ability to dissipate stored body heat...ratio; thermal comfort ; evaporative cooling; permeability; physiological responses mA]X .................................... INTRODUCTION The Temperate
Qi, Xin-Shuai; Chen, Chen; Comes, Hans Peter; Sakaguchi, Shota; Liu, Yi-Hui; Tanaka, Nobuyuki; Sakio, Hitoshi; Qiu, Ying-Xiong
2012-10-01
East Asia's temperate deciduous forests served as sanctuary for Tertiary relict trees, but their ages and response to past climate change remain largely unknown. To address this issue, we elucidated the evolutionary and population demographic history of Cercdiphyllum, comprising species in China/Japan (Cercdiphyllum japonicum) and central Japan (Cercdiphyllum magnificum). Fifty-three populations were genotyped using chloroplast and ribosomal DNA sequences and microsatellite loci to assess molecular structure and diversity in relation to past (Last Glacial Maximum) and present distributions based on ecological niche modelling. Late Tertiary climate cooling was reflected in a relatively recent speciation event, dated at the Mio-/Pliocene boundary. During glacials, the warm-temperate C. japonicum experienced massive habitat losses in some areas (north-central China/north Japan) but increases in others (southwest/-east China, East China Sea landbridge, south Japan). In China, the Sichuan Basin and/or the middle-Yangtze were source areas of postglacial northward recolonization; in Japan, this may have been facilitated through introgressive hybridization with the cool-temperate C. magnificum. Our findings challenge the notion of relative evolutionary and demographic stability of Tertiary relict trees, and may serve as a guideline for assessing the impact of Neogene climate change on the evolution and distribution of East Asian temperate plants. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Tree Circumference Dynamics in Four Forests Characterized Using Automated Dendrometer Bands
McMahon, Sean M.; Detto, Matteo; Lutz, James A.; Davies, Stuart J.; Chang-Yang, Chia-Hao; Anderson-Teixeira, Kristina J.
2016-01-01
Stem diameter is one of the most commonly measured attributes of trees, forming the foundation of forest censuses and monitoring. Changes in tree stem circumference include both irreversible woody stem growth and reversible circumference changes related to water status, yet these fine-scale dynamics are rarely leveraged to understand forest ecophysiology and typically ignored in plot- or stand-scale estimates of tree growth and forest productivity. Here, we deployed automated dendrometer bands on 12–40 trees at four different forested sites—two temperate broadleaf deciduous, one temperate conifer, and one tropical broadleaf semi-deciduous—to understand how tree circumference varies on time scales of hours to months, how these dynamics relate to environmental conditions, and whether the structure of these variations might introduce substantive error into estimates of woody growth. Diurnal stem circumference dynamics measured over the bark commonly—but not consistently—exhibited daytime shrinkage attributable to transpiration-driven changes in stem water storage. The amplitude of this shrinkage was significantly correlated with climatic variables (daily temperature range, vapor pressure deficit, and radiation), sap flow and evapotranspiration. Diurnal variations were typically <0.5 mm circumference in amplitude and unlikely to be of concern to most studies of tree growth. Over time scales of multiple days, the bands captured circumference increases in response to rain events, likely driven by combinations of increased stem water storage and bark hydration. Particularly at the tropical site, these rain responses could be quite substantial, ranging up to 1.5 mm circumference expansion within 48 hours following a rain event. We conclude that over-bark measurements of stem circumference change sometimes correlate with but have limited potential for directly estimating daily transpiration, but that they can be valuable on time scales of days to weeks for characterizing changes in stem growth and hydration. PMID:28030646
Fauna and paleoecological setting of the La Meseta Formation (Eocene), Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldmann, R.M.; Wiedman, L.A.; Zinsmeister, W.J.
The La Meseta Formation, an Eocene sandstone from Seymour Island, Palmer Peninsula, Antarctica, has yielded a diverse fossil assemblage of body and trace fossils representative of a cool temperate, littoral to shallow sublittoral habitat. Over 61 taxa of macroinvertebrates, excluding gastropod body fossils, and more than 18 ichnogenera collected from the La Meseta represent the largest, most comprehensive and most diverse assemblage of Paleogene fossils from Antarctica. Included in the body fossil assemblage are species representative of at least 26 taxa of bivales, four taxa of echinoids, two of crinoids, two of ophiuroids, two of asteroids, one inarticulate and fourmore » articulate brachiopods, two barnacles, six decapod crustaceans, two cyclostome and two cheilostome bryozoans, a scaphopod and one coral. The traces include several burrow forms characteristic of the Skolithos ichnofacies of Seilacher (1967), several halo and rind burrows, gastropod predation borings, and abundant examples of teredid bivalve borings in lithified wood.Autecological analyses of the preserved organisms and environmental interpretations of the ichnogenera indicate a littoral to very shallow sublittoral environment of deposition, generally above wave base, for the la Meseta Sandstone. Modern congeneric descendants of the body fossils are known to inhabit both deep water and shallow water habitats. Of the 20 extant genera of bivalves reported from the La Meseta, 19 generally occur only in cool temperate habitats. Only one genus is known to occur south of 60/sup 0/. Most of the shallow water forms are known from cool temperate, austral regimes.« less
Development of a Modulated-Microstructure Heat Treatable Steel
1975-07-10
IV. Heat Treatment V. Results and Discussion V. 1 Properties of the Soft Layer Alloy, PS4 V. 2 Properties of High Speed Steel (REX 71) V. 3...the High Strength System. Fig. 6 Hardness of Tempered PS4 Alloy. Cast alloy hardened by austenitizing, at 2175^ quenched, and reheating three times...at 1000oF and then cooling in liquid nitrogen to form martensite. Fig. 7A Metallographic Section Through Impact Fracture of PS4 Tempered at 300oF
Local structure of high-coercivity Fe-Ni-Al alloys
NASA Astrophysics Data System (ADS)
Menushenkov, A. P.; Menushenkov, V. P.; Chernikov, R. V.; Sviridova, T. A.; Grishina, O. V.; Sidorov, V. V.
2011-04-01
Results of hard magnetic Fe-Ni-Al alloys after various thermal processing local structure researches by method of EXAFS-spectroscopy with use of synchrotron radiation at temperature 77 K are presented. It is established, that during cooling a firm solution with critical speed reorganization of a local environment of nickel relative to quickly tempered sample owing to stratification of a firm solution is observed. The subsequent aging at 780°C practically restores local structure, characteristic for quickly tempered sample, keeping thus rather high coercitive force.
Sarah Hines; Hannah Brenkert-Smith; Patty Champ; Linda Joyce; Pete Robichaud; Sandra Ryan-Burkett
2014-01-01
The summer of 2013 was drier than normal along the Front Range, so when rain started falling on the northern end on September 9, 2013, some greeted it with enthusiasm. Others tempered their enthusiasm when the five-day forecast revealed an anomalous lineup of raincloud icons. In fact, a stationary low pressure system had developed over the Great Basin, to the west of...
Novel water-air circulation quenching process for AISI 4140 steel
NASA Astrophysics Data System (ADS)
Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai
2013-11-01
AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.
NASA Astrophysics Data System (ADS)
Takahara, Hikaru; Igarashi, Yaeko; Hayashi, Ryoma; Kumon, Fujio; Liew, Ping-Mei; Yamamoto, Masanobu; Kawai, Sayuri; Oba, Tadamichi; Irino, Tomohisa
2010-10-01
High-resolution pollen records from Taiwan, Japan and Sakhalin document regional vegetation changes during Dansgaard-Oeschger (D-O) cycles during the last glacial. During the period from the cold phase (GS 18/19) to warm phase (D-O 19), the biome shift from temperate conifer forest to cold/cool conifer forest in Japan and from subtropical forest to temperate deciduous/conifer forest in Taiwan. The vegetation in D-O 17, cool mixed forest in central Japan, temperate deciduous broadleaf forest in western Japan and subtropical forest in Taiwan, indicates warm condition but not wet in all area. These vegetation changes lead to biome shift from MIS (Marine Isotope Stage) 4 to MIS 3. The abundance of Cryptomeria japonica and Fagus crenata in D-O 12 and D-O 8 indicates wet conditions brought by the strong summer monsoon through the Islands and high snowfall brought by the inflow of the Tsushima Warm Current into the Sea of Japan. The registration of other D-O warming events in MIS 3, although reflected by shifts in the abundance of key species, is not sufficient to produce changes in biomes. Development of cold deciduous forest in HS (Heinrich events) 1 in Sakhalin, Hokkaido and central Japan was conspicuous and was much larger than that in YD. Vegetation response in YD was small scale and within the same biome in the East Asian Islands. In D-O 1 at the termination of the last glacial, the same taxa that developed in the early Holocene, cold evergreen needleleaf trees in northern region, temperate deciduous broadleaf trees in central and western Japan, and warm-temperate evergreen trees in Taiwan, increased.
Combining Passive Microwave Rain Rate Retrieval with Visible and Infrared Cloud Classification.
NASA Astrophysics Data System (ADS)
Miller, Shawn William
The relation between cloud type and rain rate has been investigated here from different approaches. Previous studies and intercomparisons have indicated that no single passive microwave rain rate algorithm is an optimal choice for all types of precipitating systems. Motivated by the upcoming Tropical Rainfall Measuring Mission (TRMM), an algorithm which combines visible and infrared cloud classification with passive microwave rain rate estimation was developed and analyzed in a preliminary manner using data from the Tropical Ocean Global Atmosphere-Coupled Ocean Atmosphere Response Experiment (TOGA-COARE). Overall correlation with radar rain rate measurements across five case studies showed substantial improvement in the combined algorithm approach when compared to the use of any single microwave algorithm. An automated neural network cloud classifier for use over both land and ocean was independently developed and tested on Advanced Very High Resolution Radiometer (AVHRR) data. The global classifier achieved strict accuracy for 82% of the test samples, while a more localized version achieved strict accuracy for 89% of its own test set. These numbers provide hope for the eventual development of a global automated cloud classifier for use throughout the tropics and the temperate zones. The localized classifier was used in conjunction with gridded 15-minute averaged radar rain rates at 8km resolution produced from the current operational network of National Weather Service (NWS) radars, to investigate the relation between cloud type and rain rate over three regions of the continental United States and adjacent waters. The results indicate a substantially lower amount of available moisture in the Front Range of the Rocky Mountains than in the Midwest or in the eastern Gulf of Mexico.
Ashton, L A; Nakamura, A; Burwell, C J; Tang, Y; Cao, M; Whitaker, T; Sun, Z; Huang, H; Kitching, R L
2016-05-23
South-western China is widely acknowledged as a biodiversity 'hotspot': there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China's biodiversity and can be used to monitor future changes to herbivore assemblages in a 'hotspot' of biodiversity.
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-01-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity. PMID:27211989
NASA Astrophysics Data System (ADS)
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-05-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity.
Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling
Baker, Allan J; Pereira, Sergio Luiz; Haddrath, Oliver P; Edge, Kerri-Anne
2005-01-01
Classic problems in historical biogeography are where did penguins originate, and why are such mobile birds restricted to the Southern Hemisphere? Competing hypotheses posit they arose in tropical–warm temperate waters, species-diverse cool temperate regions, or in Gondwanaland ∼100 mya when it was further north. To test these hypotheses we constructed a strongly supported phylogeny of extant penguins from 5851 bp of mitochondrial and nuclear DNA. Using Bayesian inference of ancestral areas we show that an Antarctic origin of extant taxa is highly likely, and that more derived taxa occur in lower latitudes. Molecular dating estimated penguins originated about 71 million years ago in Gondwanaland when it was further south and cooler. Moreover, extant taxa are inferred to have originated in the Eocene, coincident with the extinction of the larger-bodied fossil taxa as global climate cooled. We hypothesize that, as Antarctica became ice-encrusted, modern penguins expanded via the circumpolar current to oceanic islands within the Antarctic Convergence, and later to the southern continents. Thus, global cooling has had a major impact on penguin evolution, as it has on vertebrates generally. Penguins only reached cooler tropical waters in the Galapagos about 4 mya, and have not crossed the equatorial thermal barrier. PMID:16519228
The analysis of critical cooling rate for high-rise building steel S460
NASA Astrophysics Data System (ADS)
Lu, Shiping; Chen, Xia; Li, Qun; Wang, Haibao; Gu, Linhao
2017-09-01
High-rise building steel S460 is an important structure steel.The product process of the steel is Quenching&Tempering. The critical cooling rate of steel is very important in heavy plate quenching process, and it is also the basis of the cooling process[1].The critical cooling rate of HSLA steel S460 is obtained from the Thermal simulation method,and the differences about the microstructure and properties of different cooling rate is also analyzed.In this article, the angle of the grain boundary and the average grain size are analyzed by EBSD under different cooling rate. The relationship between grain boundary angle and grain size with the cooling rate is obtained. According to the experiment,it provides the basis for the formulation of the quenching process of the industrial production.
The macroalgal carbonate factory at a cool-to-warm temperate marine transition, Southern Australia
NASA Astrophysics Data System (ADS)
James, Noel P.; Reid, Catherine M.; Bone, Yvonne; Levings, Andrew; Malcolm, Isabelle
2013-06-01
The shallow neritic seafloor to depths of ~ 30 m along the coast of southwestern Victoria Australia, is the site of rocky reefs on volcanic and aeolianite bathymetric highs. The region, located near the warm- to cool-temperate environmental transition, is a site of prolific macroalgae (kelp) growth. Kelps are most prolific and diverse in high-energy, open-ocean environments whereas broad-leafed seagrasses, at their cold-water eastern limit, are restricted to local protected embayments. The seagrasses are reduced to one species of Amphibolis whereas the kelps are diverse and include the large intertidal bull kelp (Durvillaea), not present in warmer waters. The macroalgal forest extends from the intertidal to ~ 30 mwd (metres water depth) as a series of distinct biomes; 1) the Peritidal, 2) the Phaeophyte Forest (0-17 mwd), 3) the Rhodophyte Thicket (17-15 mwd), and 4) the Invertebrate Coppice (> 25 mwd). The Phaeophyte Forest is partitioned into a Durvillaea zone (0-2 mwd), a Phyllospora zone (2-10 mwd) and an Ecklonia zone (10-17mwd). The two major habitats within each biome comprise 1) an upward facing illuminated surface that supports a macroalgal canopy over an understorey of coralline algae and herbivorous gastropods, and 2) a separate, cryptic, shaded habitat dominated by a diverse community of filter-feeding invertebrates. These communities produce two different sediments; 1) geniculate and encrusting corallines and diverse gastropods from the upper surface, and 2) bryozoans, molluscs, barnacles, chitons, serpulids, and benthic foraminifers from the shaded, cryptic habitats. These particles are blended together with the latter becoming proportionally more abundant with increasing depth. Results of this study, when integrated with recent investigations in warm-temperate (South Australia) and cool-temperate (New Zealand) environments now define carbonate sedimentology of the macroalgal reef depositional system in this part of the northern Southern Ocean.
NASA Astrophysics Data System (ADS)
Bansal, Gaurav K.; Rajinikanth, V.; Ghosh, Chiradeep; Srivastava, V. C.; Kundu, S.; Ghosh Chowdhury, S.
2018-05-01
In the present investigation, an attempt has been made to stabilize austenite by carbon partitioning through quenching and nonisothermal partitioning (Q&P) technique. This will eliminate the need for additional heat-treatment facility to perform isothermal partitioning or tempering process. The presence of retained austenite in the microstructure helps in increasing the toughness, which in turn is expected to improve the abrasion resistance of steels. The carbon partitioning from different quench temperatures has been performed on two different alloys, with low-Si content (0.5 wt pct), in a salt bath furnace atmosphere, the cooling profile of which closely resembles the industrially produced hot-rolled coil cooling. The results show that the stabilization of retained austenite is possible and gives rise to increased work hardening, better impact toughness and abrasive wear loss comparable to that of a fully martensitic microstructure. In contrast, tempered martensite exhibits better wear properties at the expense of impact toughness.
Temperate pine barrens and tropical rain forests are both rich in undescribed fungi.
Luo, Jing; Walsh, Emily; Naik, Abhishek; Zhuang, Wenying; Zhang, Keqin; Cai, Lei; Zhang, Ning
2014-01-01
Most of fungal biodiversity on Earth remains unknown especially in the unexplored habitats. In this study, we compared fungi associated with grass (Poaceae) roots from two ecosystems: the temperate pine barrens in New Jersey, USA and tropical rain forests in Yunnan, China, using the same sampling, isolation and species identification methods. A total of 426 fungal isolates were obtained from 1600 root segments from 80 grass samples. Based on the internal transcribed spacer (ITS) sequences and morphological characteristics, a total of 85 fungal species (OTUs) belonging in 45 genera, 23 families, 16 orders, and 6 classes were identified, among which the pine barrens had 38 and Yunnan had 56 species, with only 9 species in common. The finding that grass roots in the tropical forests harbor higher fungal species diversity supports that tropical forests are fungal biodiversity hotspots. Sordariomycetes was dominant in both places but more Leotiomycetes were found in the pine barrens than Yunnan, which may play a role in the acidic and oligotrophic pine barrens ecosystem. Equal number of undescribed fungal species were discovered from the two sampled ecosystems, although the tropical Yunnan had more known fungal species. Pine barrens is a unique, unexplored ecosystem. Our finding suggests that sampling plants in such unexplored habitats will uncover novel fungi and that grass roots in pine barrens are one of the major reservoirs of novel fungi with about 47% being undescribed species.
Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees.
Sterck, F; Bongers, F
1998-02-01
Size, allometry, and mechanical design were measured for trees of three canopy species in a tropical rain forest in French Guiana. Mechanical design was expressed as the safety factor, using the elastic-stability model, and the wind resistance factor, using the constant-stress model. Changes with ontogeny were described as regressions using stem diameter as the independent variable, and they were compared between species. Height, crown size, and the wind resistance factor increased with ontogeny. The safety factor decreased to a minimum and then increased continuously in thicker trees. The crown width/height ratio did not change with ontogeny. Interspecific differences in allometry and mechanical design were related to the adult stature of the species, and not to shade tolerance. The short stature species (Vouacapoua americana) was less slender (height:DBH [stem diameter at 1.3 m] ratio) and had a higher crown width/height ratio than the tall stature species (Goupia glabra and Dicorynia guianensis). Vouacapoua had a higher safety factor, but a similar wind resistance factor. The safety factors of our study species were lower than those of two temperate tree species because of a higher slenderness. Differences in safety factors between tropical and temperate trees may result from unrealistic assumptions of the elastic-stability model, and may also be related to lower light levels and-or wind rates in the tropics.
Seasonal Patterns of the Insect Community Structure in Urban Rain Pools of Temperate Argentina
Fontanarrosa, M. Soledad; Collantes, Marta B.; Bachmann, Axel O.
2009-01-01
Temporary aquatic environments are widespread in the world, and although there are considerable regional differences in their type and method of formation they have many physical, chemical and biological properties in common. With the aim to increase knowledge of urban temporary pool fauna, the objectives of this work were to assess the seasonal patterns of species composition, richness, and diversity of the aquatic insect community inhabiting rain pools in urban temperate Argentina, and to identify the environmental variables associated to these patterns. Four temporary pools of an urban green space in Buenos Aires City were studied throughout a 1-year period. Eleven flood cycles with very varied hydroperiods and dry periods, mainly associated with rainfall, were identified. Insect species richness in these temporary urban pools, 86 taxa were documented, was found to be within the range reported for wild temporary water bodies of other regions of the world. The present results provide evidence for the existence of a clear link between habitat and community variability. Hydroperiod and seasonality were the main environmental factors involved in structuring the insect communities of the studied water bodies. Urban pools in green spaces have the potential to act to its dwellers like corridors through the urban matrix. Taking into account these characteristics and their accessibility, urban temporary pools can be considered as promising habitats for the study of ecological processes involving the insect community. PMID:19611261
The neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest
Sudhadham, M.; Prakitsin, S.; Sivichai, S.; Chaiyarat, R.; Dorrestein, G. M.; Menken, S.B.J.; de Hoog, G.S.
2008-01-01
The black yeast Exophiala dermatitidis is known as a rare etiologic agent of neurotropic infections in humans, occurring particularly in East and Southeast Asia. In search of its natural habitat, a large sampling was undertaken in temperate as well as in tropical climates. Sampling sites were selected on the basis of the origins of previously isolated strains, and on the basis of physiological properties of the species, which also determined a selective isolation protocol. The species was absent from outdoor environments in the temperate climate, but present at low abundance in comparable habitats in the tropics. Positive outdoor sites particularly included faeces of frugivorous birds and bats, in urban as well as in natural areas. Tropical fruits were found E. dermatitidis positive at low incidence. Of the human-made environments sampled, railway ties contaminated by human faeces and oily debris in the tropics were massively positive, while the known abundance of the fungus in steam baths was confirmed. On the basis of the species' oligotrophy, thermotolerance, acidotolerance, moderate osmotolerance, melanization and capsular yeast cells a natural life cycle in association with frugivorous animals in foci in the tropical rain forest, involving passage of living cells through the intestinal tract was hypothesized. The human-dominated environment may have become contaminated by ingestion of wild berries carrying fungal propagules PMID:19287537
NASA Astrophysics Data System (ADS)
Wang, Miao; Wang, Jin; Wang, Jiajin; Shi, Cheng
2018-02-01
A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.
The influence of climatic conditions on the heat balance of the human body
NASA Astrophysics Data System (ADS)
Blażejeczyk, Krzysztof; Krawczyk, Barbara
1991-06-01
The structure of heat exchange between the human body and its surroundings has been studied according to M.I. Budyko's model. Comparative measurements were carried out in the Polish Lakeland (maritime, temperate warm climate), in Central Mongolia (continental, temperate cool climate), and in the Kara Kum desert (dry subtropical climate). The results deal with the summer and early autumn seasons. The calculations indicate that the quantitative apportionment of various forms of heat exchange depend on specific weather conditions, which are typical for the distinguished climatic zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohutova, P.; Verwichte, E., E-mail: p.kohutova@warwick.ac.uk
Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS) , the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory ( SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillationsmore » traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s{sup −1} up to 180 km s{sup −1} and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO /AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO /AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.« less
Paleosol stable isotope evidence for early hominid occupation of East Asian temperate environments
Wang, Hongfang; Ambrose, S.H.; Liu, Chen; Follmer, L.R.
1997-01-01
Hominids left Africa and occupied mainland Asia by 1.8 myr ago. About 1.15 myr ago Homo erectus and an associated Stegodon-Ailuropoda fauna migrated from subtropical China across the Qinling Mountains into the temperate Loess Plateau. This migration may be an evolutionary milestone in human adaptability because it may represent the first occupation of a nontropical environment. Loess-paleosol stable isotope ratios from the last interglacial-glacial cycle provide comparative data for reconstructing the hominid paleoenvironments. The climate during Gongwangling hominid occupation about 1.15 myr ago was influenced by both Siberian-Mongolian winter and Indian summer monsoon systems characterized as a cold/cool, dry winter and warm/mild, semihumid summer and fall. The Gongwangling hominids preyed mainly on warm-climate-adapted animals such as Stegodon-Ailuropoda fauna, suggesting a warm season occupation. The stable isotope ratios also indicate that the Chenjiawo hominids occupied an environment similar to that of the Gongwangling about 650,000 yr ago. The associated fauna, with a mixture of forest and steppe, warm-and cold/cool-climate-adapted animal assemblage's, suggests a permanent occupation by this time. Thus, the reliable earliest and permanent occupation of temperate environments may have occurred 150,000 yr earlier in eastern Asia rather than in Europe. ?? 1997 University of Washington.
Isotopic signals of summer denitrification in a northern hardwood forested catchment.
Wexler, Sarah K; Goodale, Christine L; McGuire, Kevin J; Bailey, Scott W; Groffman, Peter M
2014-11-18
Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide isotopic evidence (δ(15)NNO3 and δ(18)ONO3) from shallow groundwater at the Hubbard Brook Experimental Forest indicating extensive denitrification during midsummer, when transient, perched patches of saturation developed in hillslopes, with poor hydrological connectivity to the stream, while streamwater showed no isotopic evidence of denitrification. During small rain events, precipitation directly contributed up to 34% of streamwater nitrate, which was otherwise produced by nitrification. Together, these measurements reveal the importance of denitrification in hydrologically disconnected patches of shallow groundwater during midsummer as largely overlooked control points for nitrogen loss from temperate forest catchments.
Isotopic signals of summer denitrification in a northern hardwood forested catchment
Wexler, Sarah K.; Goodale, Christine L.; Bailey, Scott W.; Groffman, Peter M.
2014-01-01
Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide isotopic evidence (δ15NNO3 and δ18ONO3) from shallow groundwater at the Hubbard Brook Experimental Forest indicating extensive denitrification during midsummer, when transient, perched patches of saturation developed in hillslopes, with poor hydrological connectivity to the stream, while streamwater showed no isotopic evidence of denitrification. During small rain events, precipitation directly contributed up to 34% of streamwater nitrate, which was otherwise produced by nitrification. Together, these measurements reveal the importance of denitrification in hydrologically disconnected patches of shallow groundwater during midsummer as largely overlooked control points for nitrogen loss from temperate forest catchments. PMID:25368188
Local cooling and warming effects of forests based on satellite observations.
Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng
2015-03-31
The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies.
Local cooling and warming effects of forests based on satellite observations
Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng
2015-01-01
The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies. PMID:25824529
Multiple antibiotic resistant Escherichia coli from a tropical rain forest stream
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrasco, C.E.; Alvarez, H.J.; Ortiz, N.
1988-12-31
High densities of fecal coliforms were obtained from a pristine site and sewage contaminated site in a tropical rain forest watershed in Puerto Rico. Confirmation of fecal coliform isolates as Escherichia coli was significantly lower than for temperate waters. Antibiotic resistance and multiple antibiotic resistance were common for isolates at both sites; however, the site receiving sewage effluent had a greater proportion of multiple antibiotic resistant isolates. R. plasmids were recovered from 4 MAR isolates, 2 from each site. All recovered plasmids were approximately 1 kilobase. The recovered plasmid were also capable of transforming E. coli HB101 in vitro. Themore » high concentrations of enterobacteriaceae, small R-plasmid size, R-plasmid transformability, and long term survival of fecal origin bacteria in tropical freshwater environments give increasing importance to adequate sewage treatment, and better indicator monitoring methods for tropical areas.« less
Guatemalan forest synthesis after Pleistocene aridity
Leyden, Barbara W.
1984-01-01
Sediments from two lakes in the Peten Department, Guatemala, provide palynological evidence from Central America of late Pleistocene aridity and subsequent synthesis of mesic forests. Late Glacial vegetation consisted of marsh, savanna, and juniper scrub. An early Holocene temperate forest preceded a mesic tropical forest with Brosimum (ramon). Thus “primeval” rain forests of Guatemala are no older than 10,000 to 11,000 years and are considerably younger in the Peten due to Mayan disturbances. Among dated Neotropical sites, the Peten has the most mesic vegetation yet shown to have supplanted xeric vegetation present during the Pleistocene. The arid late Glacial-humid early Holocene transition appears to have been pantropical in the lowlands. The Peten was not a Pleistocene refugium for mesophytic taxa, as has been suggested. Thus genesis of extant rain forests in northern Central America and southern Mexico remains unexplained. Images PMID:16593498
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salafsky, N.; Dugelby, B.L.; Terborgh, J.W.
1992-04-01
Extractive reserves in tropical rain forests, in which only non-timber products are harvested, have been heralded by some conservationists as a means of maintaining biodiversity while providing income for local people. The study of extraction systems in Peten, Guatemala, and in West Kalimantan, Indonesia, leads to a more tempered conclusion, for while the Peten program was quite successful, the Kalimantan program was not. The study finds the success of an extractive reserve to be contingent on: (1) ecological conditions, and (2) socioeconomic and political factors. Although the study focuses on market-oriented extractive reserves, many of the issues discussed apply asmore » well to other land uses such as the collection of non-timber forest products for household consumption or small-scale timber extraction.« less
Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale
Fritsche, J.; Wohlfahrt, G.; Ammann, C.; Zeeman, M.; Hammerle, A.; Obrist, D.; Alewell, C.
2013-01-01
In order to estimate the air-surface mercury exchange of grasslands in temperate climate regions, fluxes of gaseous elemental mercury (GEM) were measured at two sites in Switzerland and one in Austria during summer 2006. Two classic micrometeorological methods (aerodynamic and modified Bowen ratio) have been applied to estimate net GEM exchange rates and to determine the response of the GEM flux to changes in environmental conditions (e.g. heavy rain, summer ozone) on an ecosystem-scale. Both methods proved to be appropriate to estimate fluxes on time scales of a few hours and longer. Average dry deposition rates up to 4.3 ng m−2 h−1 and mean deposition velocities up to 0.10 cm s−1 were measured, which indicates that during the active vegetation period temperate grasslands are a small net sink for atmospheric mercury. With increasing ozone concentrations depletion of GEM was observed, but could not be quantified from the flux signal. Night-time deposition fluxes of GEM were measured and seem to be the result of mercury co-deposition with condensing water. Effects of grass cuts could also be observed, but were of minor magnitude. PMID:24348525
NASA Astrophysics Data System (ADS)
Tsujimoto, K.; Kato, T.; Nakaji, T.
2016-12-01
As well as a proxy of ecosystem level photosynthesis, sun-induced fluorescence (SIF) is expected to be an indicator of plant physiological information in photosynthesis (Frankenberg et al., 2011). Zhang et al. (2014) especially suggested that the SIF can be used to estimate the capacity of RuBP carboxylation, Vcmax, at the ecosystem scale by the simple inversion approach with the combination of both observation and modeling. However, the seasonal pattern of the relationships between SIF and such gas exchange physiological parameters has not been confirmed by the direct field observation, yet. Here, we present the field observation results of both gas exchange based photosynthetic parameters and fluorescence properties of canopy leaves of Japanese oak (Quercus crispula) in a cool-temperate forest. In the Tomakomai experimental forest site (42°40'N, 141°36'E), Hokkaido University in Japan, we conducted the periodical measurements of the seasonality in photosynthetic parameters (Li-6400, Li-Cor, USA) and LED-induced fluorescence yield (USB4000, OceanOptics, USA and mini-PAM, WALZ, Germany) from June to October in 2016. Every two or three weeks, the in-situ single leaf data were collected for 10-16 leaves (consisting of 3-4 leaves x 3-4 individual trees) of Japanese oak at the top of canopy at 15-20m above ground surface with approaching by the tall canopy crane. After the in-situ data acquisition, the leaves are frozen in liquid nitrogen immediately followed by removable from shoots, and are going to be analyzed their chemical properties (ex. Chla, Chlb etc.). By analyzing seasonal pattern of those leaf traits, we are going to show how effectively the chlorophyll fluorescence can assess the carbon assimilation capacity of cool temperate forest.
Peixoto, Murilo de Melo; Lee, D. K.; Sage, Rowan F.
2015-01-01
Miscanthus × giganteus grown in cool temperate regions of North America and Europe can exhibit severe mortality in the year after planting, and poor frost tolerance of leaves. Spartina pectinata (prairie cordgrass), a productive C4 perennial grass native to North America, has been suggested as an alternative biofuel feedstock for colder regions; however, its cold tolerance relative to M. × giganteus is uncertain. Here, we compare the cold tolerance thresholds for winter-dormant rhizomes and spring/summer leaves of M. × giganteus and three accessions of S. pectinata. All genotypes were planted at a field site in Ontario, Canada. In November and February, the temperatures corresponding to 50% rhizome mortality (LT50) were near −24°C for S. pectinata and −4°C for M. × giganteus. In late April, the LT50 of rhizomes rose to −10°C for S. pectinata but remained near −4°C for M. × giganteus. Twenty percent of the M. × giganteus rhizomes collected in late April were dead while S. pectinata rhizomes showed no signs of winter injury. Photosynthesis and electrolyte leakage measurements in spring and summer demonstrate that S. pectinata leaves have greater frost tolerance in the field. For example, S. pectinata leaves remained viable above −9°C while the mortality threshold was near −5°C for M. × giganteus. These results indicate M. × giganteus will be unsuitable for production in continental interiors of cool-temperate climate zones unless freezing and frost tolerance are improved. By contrast, S. pectinata has the freezing and frost tolerance required for a higher-latitude bioenergy crop. PMID:25873680
1989-11-01
Secretary of War for the Treasury Department for use as a Life Saving Service. This site was relocated in 1915 to land originally to be used for the...San Francisco Bay, PSF has a temperate, Mediterranean climate. 4 Generally, winter is rainy and mild, spring is sunny and mild, summer is foggy and cool ...associated with major Pacific storms and are of short duration. 4 The topography of the PSF shelters most of the north shore from the cool marine air
Bamforth, Stuart S
2015-01-01
A study of the temperate rain forests of New Zealand and Tasmania showed that their soil testate amoebae communities are composed of five groups of taxa: (1) seven taxa characteristic of wet acidic soils and Sphagnum peatlands (i.e., Amphitemidae, Apodera, Alcodera, Certesella, Cyphoderia, Placocista); (2) a group of 16 species of predatory Nebelids and Heleopera spp., characteristic of Sphagnum and rainforests; (3) a group of 17 species of litter and soil Euglypha, excluding the smallest ones; (4) a diverse population of other morphotypes common in other biomes; and (5) a population of small euryoecious taxa - Cryptodifflugia and Pseudodifflugia spp., Euglypha rotunda, E. laevis, Corythion and Trinema spp. This fifth group, with other r-selected protists (e.g., colpodid ciliates) appears in all habitats. Soil testate communities of other rainforests are composed of the same five groups and are distinguished by the first three assemblages. The fourth and fifth groups, often supplemented with a few Euglypha species, comprise the soil testate amoebae of other biomes. Nebelids and Heleopera, incorporating prey idiosomes into their shells, add an additional link to the role of Euglyphids in the silica cycle. Three Gondwanan Nebelid genera, Apodera, Alcodera, and Certesella were frequently observed, and the discovery of Alcodera cockayni in Tasmania extends its recorded distribution in the Southern Hemisphere. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.
Temperate Pine Barrens and Tropical Rain Forests Are Both Rich in Undescribed Fungi
Luo, Jing; Walsh, Emily; Naik, Abhishek; Zhuang, Wenying; Zhang, Keqin; Cai, Lei; Zhang, Ning
2014-01-01
Most of fungal biodiversity on Earth remains unknown especially in the unexplored habitats. In this study, we compared fungi associated with grass (Poaceae) roots from two ecosystems: the temperate pine barrens in New Jersey, USA and tropical rain forests in Yunnan, China, using the same sampling, isolation and species identification methods. A total of 426 fungal isolates were obtained from 1600 root segments from 80 grass samples. Based on the internal transcribed spacer (ITS) sequences and morphological characteristics, a total of 85 fungal species (OTUs) belonging in 45 genera, 23 families, 16 orders, and 6 classes were identified, among which the pine barrens had 38 and Yunnan had 56 species, with only 9 species in common. The finding that grass roots in the tropical forests harbor higher fungal species diversity supports that tropical forests are fungal biodiversity hotspots. Sordariomycetes was dominant in both places but more Leotiomycetes were found in the pine barrens than Yunnan, which may play a role in the acidic and oligotrophic pine barrens ecosystem. Equal number of undescribed fungal species were discovered from the two sampled ecosystems, although the tropical Yunnan had more known fungal species. Pine barrens is a unique, unexplored ecosystem. Our finding suggests that sampling plants in such unexplored habitats will uncover novel fungi and that grass roots in pine barrens are one of the major reservoirs of novel fungi with about 47% being undescribed species. PMID:25072783
Molluscan evidence for early middle Miocene marine glaciation in southern Alaska
Marincovich, L.
1990-01-01
Profound cooling of Miocene marine climates in southern Alaska culminated in early middle Miocene coastal marine glaciation in the northeastern Gulf of Alaska. This climatic change resulted from interaction of the Yakutat terrane with southern Alaska beginning in late Oligocene time. The ensuing extreme uplift of the coastal Chugach and St. Elias Mountains resulted in progressive regional cooling that culminated in coastal marine glaciation beginning in the early middle Miocene (15-16 Ma) and continuing to the present. The counterclockwise flow of surface water from the frigid northeastern Gulf of Alaska resulted in a cold-temperate shallow-marine environment in the western Gulf of Alaska, as it does today. Ironically, dating of Gulf of Alaska marine glaciation as early middle Miocene is strongly reinforced by the presence of a few tropical and subtropical mollusks in western Gulf of Alaska faunas. Shallow-marine waters throughout the Gulf of Alaska were cold-temperate to cold in the early middle Miocene, when the world ocean was undergoing peak Neogene warming. -Author
Corrosion fatigue in nitrocarburized quenched and tempered steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karim Khani, M.; Dengel, D.
1996-05-01
In order to investigate the fatigue strength and fracture mechanism of salt bath nitrocarburized steels, specimens of the steels SAE 4135 and SAE 4140, in a quenched and tempered state, and additionally in a salt bath nitrocarburized and oxidizing cooled state as well as in a polished (after the oxidizing cooling) and renewed oxidized state, were subjected to comparative rotating bending fatigue tests in inert oil and 5 pct NaCl solution. In addition, some of the quenched and tempered specimens of SAE 4135 material were provided with an approximately 50-{mu}m-thick electroless Ni-P layer, in order to compare corrosion fatigue behaviormore » between the Ni-P layer and the nitride layers. Long-life corrosion fatigue tests of SAE 4135 material were carried out under small stresses in the long-life range up to 10{sup 8} cycles with a test frequency of 100 Hz. Fatigue tests of SAE 4140 material were carried out in the range of finite life (low-cycle range) with a test frequency of 13 Hz. The results show that the 5 pct NaCl environment drastically reduced fatigue life, but nitrocarburizing plus oxidation treatment was found to improve the corrosion fatigue life over that of untreated and Ni-P coated specimens. The role of inclusions in initiating fatigue cracks was investigated. It was found that under corrosion fatigue conditions, the fatigue cracks started at cavities along the interfaces of MnS inclusions and matrix in the case of quenched and tempered specimens. The nitrocarburized specimens, however, showed a superposition of pitting corrosion and corrosion fatigue in which pores and nonmetallic inclusions in the compound layer play a predominant role concerning the formation of pits in the substrate.« less
Cambomba caroliniana Gray (Cabombaceae)
USDA-ARS?s Scientific Manuscript database
Cabomba, or water fanwort, is a fast-growing submerged aquatic plant that has the potential to infest permanent water bodies in a range of regions – from tropical to cool temperate – throughout the world. It is considered a serious pest in the United States, Canada, the Netherlands, Japan, India, Ch...
Cold plasma processing technology makes advances
USDA-ARS?s Scientific Manuscript database
Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...
Relating Convective and Stratiform Rain to Latent Heating
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Lang, Stephen; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari
2010-01-01
The relationship among surface rainfall, its intensity, and its associated stratiform amount is established by examining observed precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The results show that for moderate-high stratiform fractions, rain probabilities are strongly skewed toward light rain intensities. For convective-type rain, the peak probability of occurrence shifts to higher intensities but is still significantly skewed toward weaker rain rates. The main differences between the distributions for oceanic and continental rain are for heavily convective rain. The peak occurrence, as well as the tail of the distribution containing the extreme events, is shifted to higher intensities for continental rain. For rainy areas sampled at 0.58 horizontal resolution, the occurrence of conditional rain rates over 100 mm/day is significantly higher over land. Distributions of rain intensity versus stratiform fraction for simulated precipitation data obtained from cloud-resolving model (CRM) simulations are quite similar to those from the satellite, providing a basis for mapping simulated cloud quantities to the satellite observations. An improved convective-stratiform heating (CSH) algorithm is developed based on two sources of information: gridded rainfall quantities (i.e., the conditional intensity and the stratiform fraction) observed from the TRMM PR and synthetic cloud process data (i.e., latent heating, eddy heat flux convergence, and radiative heating/cooling) obtained from CRM simulations of convective cloud systems. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. Major differences between the new and old algorithms include a significant increase in the amount of low- and midlevel heating, a downward emphasis in the level of maximum cloud heating by about 1 km, and a larger variance between land and ocean in the new CSH algorithm.
The Coronal Monsoon: Thermal Nonequilibrium Revealed by Periodic Coronal Rain
NASA Astrophysics Data System (ADS)
Auchère, Frédéric; Froment, Clara; Soubrié, Elie; Antolin, Patrick; Oliver, Ramon; Pelouze, Gabriel
2018-02-01
We report on the discovery of periodic coronal rain in an off-limb sequence of Solar Dynamics Observatory/Atmospheric Imaging Assembly images. The showers are co-spatial and in phase with periodic (6.6 hr) intensity pulsations of coronal loops of the sort described by Auchère et al. and Froment et al. These new observations make possible a unified description of both phenomena. Coronal rain and periodic intensity pulsations of loops are two manifestations of the same physical process: evaporation/condensation cycles resulting from a state of thermal nonequilibrium. The fluctuations around coronal temperatures produce the intensity pulsations of loops, and rain falls along their legs if thermal runaway cools the periodic condensations down and below transition-region temperatures. This scenario is in line with the predictions of numerical models of quasi-steadily and footpoint heated loops. The presence of coronal rain—albeit non-periodic—in several other structures within the studied field of view implies that this type of heating is at play on a large scale.
NASA Astrophysics Data System (ADS)
Manugula, Vijaya L.; Rajulapati, Koteswararao V.; Reddy, G. Madhusudhan; Mythili, R.; Bhanu Sankara Rao, K.
2017-08-01
The effects of tool rotational speed (200 and 700 rpm) on evolving microstructure during friction stir welding (FSW) of a reduced activation ferritic-martensitic steel (RAFMS) in the stir zone (SZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) have been explored in detail. The influence of post-weld direct tempering (PWDT: 1033 K (760 °C)/ 90 minutes + air cooling) and post-weld normalizing and tempering (PWNT: 1253 K (980 °C)/30 minutes + air cooling + tempering 1033 K (760 °C)/90 minutes + air cooling) treatments on microstructure and mechanical properties has also been assessed. The base metal (BM) microstructure was tempered martensite comprising Cr-rich M23C6 on prior austenite grain and lath boundaries with intra-lath precipitation of V- and Ta-rich MC precipitates. The tool rotational speed exerted profound influence on evolving microstructure in SZ, TMAZ, and HAZ in the as-welded and post-weld heat-treated states. Very high proportion of prior austenitic grains and martensite lath boundaries in SZ and TMAZ in the as-welded state showed lack of strengthening precipitates, though very high hardness was recorded in SZ irrespective of the tool speed. Very fine-needle-like Fe3C precipitates were found at both the rotational speeds in SZ. The Fe3C was dissolved and fresh precipitation of strengthening precipitates occurred on both prior austenite grain and sub-grain boundaries in SZ during PWNT and PWDT. The post-weld direct tempering caused coarsening and coalescence of strengthening precipitates, in both matrix and grain boundary regions of TMAZ and HAZ, which led to inhomogeneous distribution of hardness across the weld joint. The PWNT heat treatment has shown fresh precipitation of M23C6 on lath and grain boundaries and very fine V-rich MC precipitates in the intragranular regions, which is very much similar to that prevailed in BM prior to FSW. Both the PWDT and PWNT treatments caused considerable reduction in the hardness of SZ. In the as-welded state, the 200 rpm joints have shown room temperature impact toughness close to that of BM, whereas 700 rpm joints exhibited very poor impact toughness. The best combination of microstructure and mechanical properties could be obtained by employing low rotational speed of 200 rpm followed by PWNT cycle. The type and size of various precipitates, grain size, and evolving dislocation substructure have been presented and comprehensively discussed.
Rain influences the physiological and metabolic responses to exercise in hot conditions.
Ito, Ryo; Yamashita, Naoyuki; Suzuki, Eiko; Matsumoto, Takaaki
2015-01-01
Outdoor exercise often proceeds in rainy conditions. However, the cooling effects of rain on human physiological responses have not been systematically studied in hot conditions. The present study determined physiological and metabolic responses using a climatic chamber that can precisely simulate hot, rainy conditions. Eleven healthy men ran on a treadmill at an intensity of 70% VO2max for 30 min in the climatic chamber at an ambient temperature of 33°C in the presence (RAIN) or absence (CON) of 30 mm · h(-1) of precipitation and a headwind equal to the running velocity of 3.15 ± 0.19 m · s(-1). Oesophageal temperature, mean skin temperature, heart rate, rating of perceived exertion, blood parameters, volume of expired air and sweat loss were measured. Oesophageal and mean skin temperatures were significantly lower from 5 to 30 min, and heart rate was significantly lower from 20 to 30 min in RAIN than in CON (P < 0.05 for all). Plasma lactate and epinephrine concentrations (30 min) and sweat loss were significantly lower (P < 0.05) in RAIN compared with CON. Rain appears to influence physiological and metabolic responses to exercise in heat such that heat-induced strain might be reduced.
The effect of tempering temperature on pitting corrosion resistance of 420 stainless steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anwar, Moch Syaiful, E-mail: moch026@lipi.go.id; Prifiharni, Siska, E-mail: sisk002@lipi.go.id; Mabruri, Efendi, E-mail: effe004@lipi.go.id
2016-04-19
The AISI Type 420 stainless steels are commonly used to steam generators, mixer blades, etc. These stainless steels are most prone to pitting in dissolved Cl{sup −} containing environments. In this paper, the effect of tempering temperature on pitting corrosion resistance of AISI Type 420 stainless steels was studied. The AISI Type 420 stainless steels specimens were heat treated at the temperature of 1050°C for 1 hour to reach austenite stabilization and then quench in the oil. After that, the specimens were tempered at the temperature of 150, 250, 350 and 450°C for 30 minutes and then air cooled tomore » the room temperature. The electrochemical potentiodynamic polarization test was conducted at 3.5% sodium chloride solution to evaluate corrosion rate and pitting corrosion behaviour. The Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) were used to evaluate the pitting corrosion product. The result have shown that highest pitting potential was found in the sample tempered at 250°C and corrosion pits were found to initiate preferentially around chromium carbides.« less
Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass
USDA-ARS?s Scientific Manuscript database
Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated w...
Most scenario‐based climate modeling studies indicate that replacing temperate forest with cropland will promote cooling by reducing surface air temperatures. These results are inconsistent with fieldbased microclimate studies that have found that forests are cooler, wetter, and...
The Possibilities of Using Organization Development Technologies in Thai Culture.
1983-03-01
four r.gions: the moun-ai- ous Worth, wher temperatures in the winter are cool .nouah to Dirmir cultivation of temperate fruits such as apples and...tims cff aftler a difficult period, and Offering swot :)-al support and understanding may help. d. Negotiaticn and Agreement_ Another technique Is
Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations
NASA Astrophysics Data System (ADS)
Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan
2017-11-01
Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of circulations may be revealed from a collocation of space-borne sensors, including the Global Precipitation Measurement (GPM) and upcoming Aeolus missions.
NASA Astrophysics Data System (ADS)
Fonstein, N.; Kapustin, M.; Pottore, N.; Gupta, I.; Yakubovsky, O.
2007-09-01
The results of laboratory investigations of dual-phase steels with different contents of carbon and alloying elements after the controlled cooling from the two-phase field and the final low-temperature tempering are presented. It is shown that the ratio of the yield strength to the tensile strength of dual-phase steels, just as the return of the yield-point elongation, depends on the volume fraction of martensite, temperature of the martensite transformation of the austenite component, quenching stresses, concentration of carbon in ferrite, and the temperature of the final tempering.
NASA Astrophysics Data System (ADS)
Oliveira, Dulce; Sánchez Goñi, Maria Fernanda; Naughton, Filipa; Polanco-Martínez, J. M.; Jimenez-Espejo, Francisco J.; Grimalt, Joan O.; Martrat, Belen; Voelker, Antje H. L.; Trigo, Ricardo; Hodell, David; Abrantes, Fátima; Desprat, Stéphanie
2017-04-01
Marine Isotope Stage 31 (MIS 31) is an important analogue for ongoing and projected global warming, yet key questions remain about the regional signature of its extreme orbital forcing and intra-interglacial variability. Based on a new direct land-sea comparison in SW Iberian margin IODP Site U1385 we examine the climatic variability between 1100 and 1050 ka including the ;super interglacial; MIS 31, a period dominated by the 41-ky obliquity periodicity. Pollen and biomarker analyses at centennial-scale-resolution provide new insights into the regional vegetation, precipitation regime and atmospheric and oceanic temperature variability on orbital and suborbital timescales. Our study reveals that atmospheric and SST warmth during MIS 31 was not exceptional in this region highly sensitive to precession. Unexpectedly, this warm stage stands out as a prolonged interval of a temperate and humid climate regime with reduced seasonality, despite the high insolation (precession minima values) forcing. We find that the dominant forcing on the long-term temperate forest development was obliquity, which may have induced a decrease in summer dryness and associated reduction in seasonal precipitation contrast. Moreover, this study provides the first evidence for persistent atmospheric millennial-scale variability during this interval with multiple forest decline events reflecting repeated cooling and drying episodes in SW Iberia. Our direct land-sea comparison shows that the expression of the suborbital cooling events on SW Iberian ecosystems is modulated by the predominance of high or low-latitude forcing depending on the glacial/interglacial baseline climate states. Severe dryness and air-sea cooling is detected under the larger ice volume during glacial MIS 32 and MIS 30. The extreme episodes, which in their climatic imprint are similar to the Heinrich events, are likely related to northern latitude ice-sheet instability and a disruption of the Atlantic Meridional Overturning Circulation (AMOC). In contrast, forest declines during MIS 31 are associated to neither SST cooling nor high-latitude freshwater forcing. Time-series analysis reveals a dominant cyclicity of about 6 ky in the temperate forest record, which points to a potential link with the fourth harmonic of precession and thus low-latitude insolation forcing.
NASA Astrophysics Data System (ADS)
Iturraspe, R. J.; Urciuolo, A. B.; Lofiego, R.
2007-05-01
The conception and application of policies and best practices for the appropriate land use from the view point of extreme floods attenuation, must be based on scientist acknowledge of the basin response, reaching each one of the hydrological cycle's components. That condition is necessary as a start point for an integrated intersectoral management of water and forest resources at the basin scale, especially when forest logging or forest urbanization appear as land use alternatives with socioeconomic importance, confronting the natural roll of the forest in the basin. Within this framework, this article analyzes the forest importance on the seasonal snow-pack and snow-melting process in the mountain basin environment of Tierra del Fuego Island, Argentina, where a mixed rain-snow hydrological regimen and a canopy of native Nothofagus forest are basic features considered. Extreme floods events are related to heavy rain and snow-melting combination. In theory, the worst scenario is the exceptional rain occurrence at the moment of the maximum snow storage, air temperature higher than 0ºC in the whole basin, and previous wet conditions. On this scenario we analyze aspects that indicate forest influences on the snow pack distribution and evolution which are favorable to the attenuation of the intensity of melting process which are induced by rain and temperate air mass. Results were obtained in the context of the EPIC FORCE (EU) Project.
Effect of tempering treatment upon the residual stress of bimetallic roll
NASA Astrophysics Data System (ADS)
Sano, Y.; Noda, N.-A.; Takase, Y.; Torigoe, R.; Tsuboi, K.; Aridi, M. R.; Sanada, Y.; Lan, L. Y.
2018-06-01
Bimetallic rolls are widely used in steel rolling industries because of the excellent hardness, wear resistance, and high temperature properties. However, thermal stress is produced by heating-cooling thermal cycles, which is a great challenge for their practical application. Indeed, if severe thermal tensile stress is introduced into these rolls, it can assist the thermal cracks to propagate, even lead to the overall failure of rolls. In this paper, we investigated the effect of tempering treatment on the residual stress after the bimetallic rolls were subjected to quenching. Compared with the non-uniform heating-quenching process, the tempering process makes the maximum stress at the core decreased by 15% (from 275 MPa to 234 MPa) with considering martensite transformation but decreased by 26% (from 275 MPa to 201 MPa) without considering martensite transformation. For tempering process after uniform heating quenching, the maximum stress at the core decreases by 24% from 357 MPa to 273 MPa with considering martensite transformation but decreases by 30% from 357 MPa to 246 MPa without considering martensite transformation. And compared with the non-uniform heating-quenching process, the double tempering process makes the maximum stress at the core decreased by 8% (from 275 MPa to 253 MPa) with considering martensite transformation but decreased by 27% (from 275 MPa to 200 MPa) without considering martensite transformation.
NASA Astrophysics Data System (ADS)
Zhai, Guoqing; Li, Xiaofan
2015-04-01
The Bergeron-Findeisen process has been simulated using the parameterization scheme for the depositional growth of ice crystal with the temperature-dependent theoretically predicted parameters in the past decades. Recently, Westbrook and Heymsfield (2011) calculated these parameters using the laboratory data from Takahashi and Fukuta (1988) and Takahashi et al. (1991) and found significant differences between the two parameter sets. There are two schemes that parameterize the depositional growth of ice crystal: Hsie et al. (1980), Krueger et al. (1995) and Zeng et al. (2008). In this study, we conducted three pairs of sensitivity experiments using three parameterization schemes and the two parameter sets. The pre-summer torrential rainfall event is chosen as the simulated rainfall case in this study. The analysis of root-mean-squared difference and correlation coefficient between the simulation and observation of surface rain rate shows that the experiment with the Krueger scheme and the Takahashi laboratory-derived parameters produces the best rain-rate simulation. The mean simulated rain rates are higher than the mean observational rain rate. The calculations of 5-day and model domain mean rain rates reveal that the three schemes with Takahashi laboratory-derived parameters tend to reduce the mean rain rate. The Krueger scheme together with the Takahashi laboratory-derived parameters generate the closest mean rain rate to the mean observational rain rate. The decrease in the mean rain rate caused by the Takahashi laboratory-derived parameters in the experiment with the Krueger scheme is associated with the reductions in the mean net condensation and the mean hydrometeor loss. These reductions correspond to the suppressed mean infrared radiative cooling due to the enhanced cloud ice and snow in the upper troposphere.
Atmospheric Science Data Center
2014-05-15
... scale. At the time of the overpass, MISR recorded low-level wind speeds of up to 75 miles per hour (65 knots) from cloud motion observed ... moist air at low levels in the atmosphere, convert it into energy in the form of wind and rain, and then eject cool, dry air at high ...
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Wu, H. T.
2004-01-01
In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Wu, H. T.
2004-01-01
In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.
Formation and plasma circulation of solar prominences and coronal rains
NASA Astrophysics Data System (ADS)
Xia, C.
2016-12-01
Solar prominences are long-lived cool and dense plasma curtains in the hot and rarefied corona. The physical mechanism responsible for their formation and especially for their internal plasma circulation has been uncertain for decades. The observed ubiquitous down flows in quiescent prominences are difficult to interpret as plasma with high conductivity seems to move across horizontal magnetic field lines. Here we present three-dimensional (3D) numerical simulations of prominence formation and evolution in an elongated magnetic flux rope as a result of in-situ plasma condensations fueled by continuous plasma evaporation from the solar chromosphere. The prominence is born and maintained in a fragmented, highly dynamic state with continuous reappearance of multiple blobs and thread structures that move mainly downward dragging along mass-loaded field lines. The prominence plasma circulation is characterized by the dynamic balance between the drainage of prominence plasma back to the chromosphere and the formation of prominence plasma via continuous condensation. Plasma evaporates from the chromosphere, condenses into the prominence in the corona, and drains back to the chromosphere, establishing a stable chromosphere-corona plasma cycle. Another form of cool and dense plasma in the corona is coronal rain, which forms in-situ and drain down arched pathways along loops near active regions. We present 3D simulations of coronal rain in a bipolar arcade and compare it with observational results.
Strong contributions of local background climate to the cooling effect of urban green vegetation.
Yu, Zhaowu; Xu, Shaobin; Zhang, Yuhan; Jørgensen, Gertrud; Vejre, Henrik
2018-05-01
Utilization of urban green vegetation (UGV) has been recognized as a promising option to mitigate urban heat island (UHI) effect. While we still lack understanding of the contributions of local background climate to the cooling effect of UGV. Here we proposed and employed a cooling effect framework and selected eight typical cities located in Temperate Monsoon Climate (TMC) and Mediterranean Climate (MC) demonstrate that local climate condition largely affects the cooling effect of UGV. Specifically, we found increasing (artificial) rainfall and irrigation contribute to improving the cooling intensity of grassland in both climates, particularly in the hot-dry environment. The cities with high relative humidity would restrict the cooling effect of UGV. Increasing wind speed would significantly enhance the tree-covered while weakening the grass-covered UGVs' cooling effect in MC cities. We also identified that, in order to achieve the most effective cooling with the smallest sized tree-covered UGV, the area of trees in both climate zones' cities should generally be planned around 0.5 ha. The method and results enhance understanding of the cooling effect of UGVs on larger (climate) scales and provide important insights for UGV planning and management.
USDA-ARS?s Scientific Manuscript database
Bermudagrass [Cynodon dactylon (Pers.) L.] cultivars with improved cold tolerance can be utilized for grazing in the transition zone between the temperate northeast and subtropical southeast, but these bermudagrasses generally do not provide adequate growth for stocking until late May to early June....
USDA-ARS?s Scientific Manuscript database
The objective of this study was to investigate the effect of infrared (IR) drying followed by tempering and natural cooling on the change of physicochemical characteristics of white rice during up to 10 months of storage. The physicochemical characteristics of IR dried rice was also compared with th...
USDA-ARS?s Scientific Manuscript database
Rice (Oryza sativa L.) is often exposed to cool or cold temperatures during spring planting in a temperate climate. A better understanding of the genetic pathways regulating this chilling tolerance will enable breeders to develop varieties with improved tolerance during the germination and young see...
USDA-ARS?s Scientific Manuscript database
Understanding the growth dynamics of grass-legume swards is critical as pastoral management practices are adapted to economic constraints and environmental considerations. Efficient management must synchronize use of accumulated herbage with the needs of grazing livestock. This must be accomplishe...
Influences of Different Large Mammalian Fauna on Dung Beetle Diversity in Beech Forests
Enari, Hiroto; Koike, Shinsuke; Sakamaki, Haruka
2013-01-01
This paper focuses on biological relationships between mammalian species richness and the community structure of dung beetles in cool-temperate forests in the northernmost part of mainland Japan. The composition of beetle assemblages was evaluated at 3 sites in undisturbed beech forests with different mammalian fauna. In spring and summer 2009, beetles were collected at each site using pitfall traps baited with feces from Japanese macaques, Macaca fuscata Blyth (Primates: Cercopithecidae); Asiatic black bears, Ursus thibetanus Cuvier (Carnivora: Ursidae); Japanese serows, Capricornis crispus Temminck (Artiodactyla: Bovidae); and cattle. In the present study, 1,862 dung beetles representing 14 species were collected, and most dung beetles possessed the ecological characteristic of selecting specific mammalian feces. The present findings indicated that although species diversity in dung beetle assemblages was not necessarily positively correlated with mammalian species richness in cool-temperate forests, the absence of the macaque population directly resulted in the marked reduction of the beetle abundance, with the loss of the most frequent species, Aphodius eccoptus Bates (Coleoptera: Scarabaeidae) during spring. PMID:23909510
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Fujinuma, Y.; Mukai, H.; Takahashi, Y.; Kakubari, Y.; Wang, Q.; Nakane, K.
2007-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux. The system equips 8 to 24 large automated chambers (90*90*50 cm, L*W*H). Since 1997, we have installed the chamber systems in the tundra in west Siberia, boreal forest in Alaska, cool- temperate and temperate forests in Japan, Korea and China, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 effluxes were estimated to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 30 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. From 2007, a big project that funded by Ministry of the Environment of Japan (MOE) has launched to evaluate the response and feedback of soil carbon dynamics of Japanese forest ecosystems to global change. We are installing another 6 chamber systems at the six of Japanese typical forests to conduct the soil warming experiments. For scaling-up the chamber experiments and understanding the mechanisms of soil organic matter (SOM) dynamics to global change, soil samples from about 100 forest ecosystems will be incubated for modeling development. Furthermore, the environmental (temperature and CO2) controlled large open-top chambers have been employed to investigate the balance of SOM (the input from litter falls and loss due to the decomposition) of forest ecosystems with global change.
NASA Astrophysics Data System (ADS)
Blinov, V. M.; Bannykh, O. A.; Lukin, E. I.; Kostina, M. V.; Blinov, E. V.
2014-11-01
The effect of the conditions of heat treatment and plastic deformation on the structure and the mechanical properties of low-carbon martensitic nickel steel (9 wt % Ni) with an overequilibrium nitrogen content is studied. The limiting strain to failure of 04N9Kh2A steel is found to be 40% at a rolling temperature of 20°C and 80% at a rolling temperature of 900°C. Significant strengthening of the steel (σ0.2 = 1089 MPa) is obtained after rolling at a reduction of 40% at 20°C. The start and final temperatures of the α → γ transformation on heating and those of the γ → α transformation on cooling are determined by dilatometry. The specific features of the formation of the steel structure have been revealed as functions of the annealing and tempering temperatures. Electron-microscopic studies show that, after quenching from 850°C and tempering at 600°C for 1 h, the structure contains packet martensite with thin interlayers of retained austenite between martensite crystals. The strength of the nitrogen-bearing 04N9Kh2A steel after quenching from 850 and 900°C, cooling in water, and subsequent tempering at 500°C for 1 h is significantly higher than that of carboncontaining 0H9 steel used in cryogenic engineering.
A New Continuous Cooling Transformation Diagram for AISI M4 High-Speed Tool Steel
NASA Astrophysics Data System (ADS)
Briki, Jalel; Ben Slima, Souad
2008-12-01
The increasing evolution of dilatometric techniques now allows for the identification of structural transformations with very low signal. The use of dilatometric techniques coupled with more common techniques, such as metallographic, hardness testing, and x-ray diffraction allows to plot a new CCT diagram for AISI M4 high-speed tool steel. This diagram is useful for a better selection of alternate solutions, hardening, and tempering heat treatments. More accurate determination of the various fields of transformation of austenite during its cooling was made. The precipitation of carbides highlighted at high temperature is at the origin of the martrensitic transformation into two stages (splitting phenomena). For slow cooling rates, it was possible to highlight the ferritic, pearlitic, and bainitic transformation.
Cunningham, K.J.; Collins, Luke S.
2002-01-01
Upwelling of cool seawater, paleoceanographic circulation, paleoclimate, local tectonics and relative sea-level change controlled the lithofacies and sequence stratigraphy of a carbonate ramp and overlying platform that are part of a temporally well constrained carbonate complex in the Melilla basin, northeastern Morocco. At Melilla, from oldest to youngest, a third-order depositional sequence within the carbonate complex contains (1) a retrogradational, transgressive, warm temperate-type rhodalgal ramp; (2) an early highstand, progradational, bioclastic platform composed mainly of a temperate-type, bivalve-rich molechfor facies; and (3) late highstand, progradational to downstepping, subtropical/tropical-type chlorozoan fringing Porites reefs. The change from rhodalgal ramp to molechfor platform occurred at 7.0??0.14 Ma near the Tortonian/Messinian boundary. During a late stage in the development of the bioclastic platform a transition from temperate-type molechfor facies to subtropical/tropical-type chlorozoan facies occurred and is bracketed by chron 3An.2n (??? 6.3-6.6 Ma). Comparison to a well-dated carbonate complex in southeastern Spain at Cabo de Gata suggests that upwelling of cool seawater influenced production of temperate-type limestone within the ramp and platform at Melilla during postulated late Tortonian-early Messinian subtropical/tropical paleoclimatic conditions in the western Paleo-Mediterranean region. The upwelling of cool seawater across the bioclastic platform at Melilla could be related to the beginning of 'siphoning' of deep, cold Atlantic waters into the Paleo-Mediterranean Sea at 7.17 Ma. The facies change within the bioclastic platform from molechfor to chlorozoan facies may be coincident with a reduction of the siphoning of Atlantic waters and the end of upwelling at Melilla during chron 3An.2n. The ramp contains one retrogradational parasequence and the bioclastic platform three progradational parasequences. Minor erosional surfaces that bound the upper surface of the ramp and upper surface of the oldest platform parasequence are related to relative falls in sea level induced by local volcanism and associated tectonic uplift. These local relative falls had little influence on a broader-scale rise to stillstand in relative sea level that controlled development of the transgressive and early highstand systems tracts represented in the ramp and platform, respectively. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Finkelstein, S. A.; Avendano, C. E.; Cowling, S. A.
2009-05-01
Paleoecology requires understanding the correspondences between modern pollen rain and local-regional vegetation, in order to develop accurate paleovegetation reconstructions. Paleoecology in Guatemala has been developed largely over decades in the northern lowlands in close relationship with Classic Maya archaeology, where paleoenvironmental reconstructions have been made mainly through the use of fossil pollen. Scarcity of calibration studies in the Mesoamerican region however remains evident; nevertheless, they are necessary to produce reliable reconstructions. We present calibration pollen data from two locations in Central Guatemala: Lachua Lowlands and Purulha Highlands. Pollen spectra were analyzed from surface sediments samples (SS) from a lake and a small pond in Lachua, a river floodplain and a lake shore in Purulha. Bryophyte polsters samples (BP) were collected from the interior of minimally disturbed forests in both Lachua (rain forest) and Purulha (cloud forest). Pollen spectra between SS and BP differed in both locations. Analysis per location indicates that SS were more similar for Purulha, as compared to Lachua. Combined analysis of locations indicates that SS from both locations were related to anemophilous taxa - great production of pollen quantities that has high dispersion capacities-. This provides evidence that the pollen signal from SS is probably more regional than local. BP from Lachua and Purulha differed notably in their pollen signal, each location containing local taxa, tropical and temperate respectively. Some temperate anemophilous taxa were better represented in Lachua than in Purulha. Purulha SS were similar, and contained more taxa related to disturbance and anemophilous taxa. The arboreal pollen (AP) to non-arboreal (NAP) ratio (AP/NAP) of both SS and BP corresponded with the tree- prevalent landscape in Lachua. The SS AP/NAP ratio represented the deforested landscape of the river floodplain and lake environments in Purulha, while for BP the extensive forest cover from the cloud forest was represented. Comparison of SS with BP provides foundation to understand better the pollen signal recorded in the sedimentary record, since BP pollen signal bring information about what is not represented. The calibration analysis that we present brings in-depth exploration of pollen-vegetation relationships and represents an important contribution for paleoecological research in Guatemala.
The evolution of Titan's mid-latitude clouds
Griffith, C.A.; Penteado, P.; Baines, K.; Drossart, P.; Barnes, J.; Bellucci, G.; Bibring, J.; Brown, R.; Buratti, B.; Capaccioni, F.; Cerroni, P.; Clark, R.; Combes, M.; Coradini, A.; Cruikshank, D.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.; McCord, T.; Mennella, V.; Nelson, R.; Nicholson, P.; Sicardy, B.; Sotin, Christophe; Soderblom, L.A.; Kursinski, R.
2005-01-01
Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal that the horizontal structure, height, and optical depth of Titan's clouds are highly, dynamic. Vigorous cloud centers are seen to rise from the middle to the upper troposphere within 30 minutes and dissipate within the next hour. Their development indicates that Titan's clouds evolve convectively; dissipate through rain; and, over the next several hours, waft downwind to achieve their great longitude extents. These and other characteristics suggest that temperate clouds originate from circulation-induced convergence, in addition to a forcing at the surface associated with Saturn's tides, geology, and/or surface composition.
NASA Technical Reports Server (NTRS)
Lau, K-M.; Wu, H-T.
2010-01-01
This study investigates the evolution of cloud and rainfall structures associated with Madden Julian oscillation (MJO) using Tropical Rainfall Measuring Mission (TRMM) data. Two complementary indices are used to define MJO phases. Joint probability distribution functions (PDFs) of cloud-top temperature and radar echo-top height are constructed for each of the eight MJO phases. The genesis stage of MJO convection over the western Pacific (phases 1 and 2) features a bottom-heavy PDF, characterized by abundant warm rain, low clouds, suppressed deep convection, and higher sea surface temperature (SST). As MJO convection develops (phases 3 and 4), a transition from the bottom-heavy to top-heavy PDF occurs. The latter is associated with the development of mixed-phase rain and middle-to-high clouds, coupled with rapid SST cooling. At the MJO convection peak (phase 5), a top-heavy PDF contributed by deep convection with mixed-phase and ice-phase rain and high echo-top heights (greater than 5 km) dominates. The decaying stage (phases 6 and 7) is characterized by suppressed SST, reduced total rain, increased contribution from stratiform rain, and increased nonraining high clouds. Phase 7, in particular, signals the beginning of a return to higher SST and increased warm rain. Phase 8 completes the MJO cycle, returning to a bottom-heavy PDF and SST conditions similar to phase 1. The structural changes in rain and clouds at different phases of MJO are consistent with corresponding changes in derived latent heating profiles, suggesting the importance of a diverse mix of warm, mixed-phase, and ice-phase rain associated with low-level, congestus, and high clouds in constituting the life cycle and the time scales of MJO.
Planetesimal Formation in the Warm, Inner Disk: Experiments with Tempered Dust
NASA Astrophysics Data System (ADS)
de Beule, Caroline; Landers, Joachim; Salamon, Soma; Wende, Heiko; Wurm, Gerhard
2017-03-01
It is an open question how elevated temperatures in the inner parts of protoplanetary disks influence the formation of planetesimals. We approach this problem here by studying the tensile strength of granular beds with dust samples tempered at different temperatures. We find via laboratory experiments that tempering at increasing temperatures is correlated with an increase in cohesive forces. We studied dust samples of palagonite (JSC Mars-1a) which were tempered for up to 200 hr at temperatures between 600 and 1200 K, and measured the relative tensile strengths of highly porous dust layers once the samples cooled to room temperature. Tempering increases the tensile strength from 800 K upwards. This change is accompanied by mineral transformations, the formation of iron oxide crystallites as analyzed by Mössbauer spectroscopy, changes in the number size distribution, and the morphology of the surface visible as cracks in larger grains. These results suggest a difference in the collisional evolution toward larger bodies with increasing temperature as collisional growth is fundamentally based on cohesion. While high temperatures might also increase sticking (not studied here), compositional evolution will already enhance the cohesion and the possibility of growing larger aggregates on the way toward planetesimals. This might lead to a preferred in situ formation of inner planets and explain the observed presence of dense inner planetary systems.
USDA-ARS?s Scientific Manuscript database
Corn as a food that is heated and cooled to allow starch retrogradation has higher levels of resistant starch (RS). Increasing the amount of RS can make corn an even healthier food and may be accomplished by breeding and selection, especially by using exotic germplasm. Sixty breeding lines of introg...
The Neurobiology of Emotional Intelligence: Using Our Brain to Stay Cool under Pressure
ERIC Educational Resources Information Center
Bruno, Holly Elissa
2011-01-01
Losing self-control is costly. In the aftermath, a teacher wilts with shame or embarrassment. In truth, teachers may be unwittingly susceptible to rash behavior, not because they are inherently ill-tempered people, but because they are biologically wired to respond unthinkingly to perceived threats. Thanks to the evolving field of social…
Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass
Xiaoqing Yu; Paula M. Pijut; Stephen Byrne; Torben Asp; Guihua Bai; Yiwei Jiang
2015-01-01
Perennial ryegrass (Lolium perenne L.) is a widely cultivated cool-season grass species because of its high quality for forage and turf. Susceptibility to freezing damage limits its further use in temperate zones. The objective of this study was to identify candidate genes significantly associated with winter survival and spring regrowth in a global...
USDA-ARS?s Scientific Manuscript database
Tall fescue is a cool-season perennial grass that is widely utilized for grazing in a region covering the transition zone between the temperate northeast and the subtropical southeast Although tall fescue is well adapted to the climate and soils in the region, an endophytic fungus infects fescue pla...
Effects of Cloud-Microphysics on Tropical Atmospheric Hydrologic Processes in the GEOS GCM
NASA Technical Reports Server (NTRS)
Lau, K. M.; Wu, H. T.; Sud, Y. C.; Walker, G. K.
2004-01-01
The sensitivity of tropical atmospheric hydrologic processes to cloud-microphysics is investigated using the NASA GEOS GCM. Results show that a faster autoconversion - rate produces more warm rain and less clouds at all levels. Fewer clouds enhances longwave cooling and reduces shortwave heating in the upper troposphere, while more warm rain produces increased condensation heating in the lower troposphere. This vertical heating differential destablizes the tropical atmosphere, producing a positive feedback resulting in more rain over the tropics. The feedback is maintained via a two-cell secondary circulation. The lower cell is capped by horizontal divergence and maximum cloud detrainment near the melting/freezing, with rising motion in the warm rain region connected to descending motion in the cold rain region. The upper cell is found above the freezing/melting level, with longwave-induced subsidence in the warm rain and dry regions, coupled to forced ascent in the deep convection region. The tropical large scale circulation is found to be very sensitive to the radiative-dynamic effects induced by changes in autoconversion rate. Reduced cloud-radiation processes feedback due to a faster autoconversion rate results in intermittent but more energetic eastward propagating Madden and Julian Oscillations (MJO). Conversely,-a slower autconversion rate, with increased cloud radiation produces MJO's with more realistic westward propagating transients, resembling a supercloud cluster structure. Results suggests that warm rain and associated low and mid level clouds, i.e., cumulus congestus, may play a critical role in regulating the time-intervals of deep convections and hence the fundamental time scales of the MJO.
Corrosion fatigue in nitrocarburized quenched and tempered steels
NASA Astrophysics Data System (ADS)
Khani, M. Karim; Dengel, D.
1996-05-01
In order to investigate the fatigue strength and fracture mechanism of salt bath nitrocarburized steels, specimens of the steels SAE 4135 and SAE 4140, in a quenched and tempered state, and additionally in a salt bath nitrocarburized and oxidizing cooled state as well as in a polished (after the oxidizing cooling) and renewed oxidized state, were subjected to comparative rotating bending fatigue tests in inert oil and 5 pct NaCl solution. In addition, some of the quenched and tempered specimens of SAE 4135 material were provided with an approximately 50-μm-thick electroless Ni-P layer, in order to compare corrosion fatigue behavior between the Ni-P layer and the nitride layers. Long-life corrosion fatigue tests of SAE 4135 material were carried out under small stresses in the long-life range up to 108 cycles with a test frequency of 100 Hz. Fatigue tests of SAE 4140 material were carried out in the range of finite life (low-cycle range) with a test frequency of 13 Hz. The results show that the 5 pct NaCl environment drastically reduced fatigue life, but nitrocarburizing plus oxidation treatment was found to improve the corrosion fatigue life over that of untreated and Ni-P coated specimens. The beneficial effect of nitrocarburizing followed by oxidation treatment on cor-rosion fatigue life results from the protection rendered by the compound layer by means of a well-sealed oxide layer, whereby the pores present in the compound layer fill up with oxides. The role of inclusions in initiating fatigue cracks was investigated. It was found that under corrosion fatigue conditions, the fatigue cracks started at cavities along the interfaces of MnS inclusions and matrix in the case of quenched and tempered specimens. The nitrocarburized specimens, however, showed a superposition of pitting corrosion and corrosion fatigue in which pores and nonmetallic inclusions in the compound layer play a predominant role concerning the formation of pits in the substrate.
Upper Ocean Response to the Atmospheric Cold Pools Associated With the Madden-Julian Oscillation
NASA Astrophysics Data System (ADS)
Pei, Suyang; Shinoda, Toshiaki; Soloviev, Alexander; Lien, Ren-Chieh
2018-05-01
Atmospheric cold pools are frequently observed during the Madden-Julian Oscillation events and play an important role in the development and organization of large-scale convection. They are generally associated with heavy precipitation and strong winds, inducing large air-sea fluxes and significant sea surface temperature (SST) fluctuations. This study provides a first detailed investigation of the upper ocean response to the strong cold pools associated with the Madden-Julian Oscillation, based on the analysis of in situ data collected during the Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign and one-dimensional ocean model simulations validated by the data. During strong cold pools, SST drops rapidly due to the atmospheric cooling in a shoaled mixed layer caused by the enhanced near-surface salinity stratification generated by heavy precipitation. Significant contribution also comes from the component of surface heat flux produced by the cold rain temperature. After the period of heavy rain, while net surface cooling remains, SST gradually recovers due to the enhanced entrainment of warmer waters below the mixed layer.
NASA Astrophysics Data System (ADS)
Merino, Carolina; Matus, Francisco; Fontaine, Sebastien
2016-04-01
Aluminium (Al) and it influence on the mineralization of dissolved organic matter (DOM) and thus on carbon (C) sequestration in forest soils is poorly understood. We hypothesized that an addition of Al to the soil solution beyond a molar Al:C ratio of 0.1, induces precipitation of the organic matter which leads to an excess Al in the soil solution causing an inhibitory effect for growing microorganisms. We investigated the effect of Al concentrations for the potential of C biodegradation at different Al:C ratios from DOM and Ah mineral soil horizons from two temperate rain forest soils from southern Chile. Dissolved organic matter and surface mineral horizons were incubated with initial molar Al:C ratio from 0.08 to 1.38 found under at field conditions. Mineralization was quantified by measurement of C-CO2 evolved during 15 days. Increasing the initial Al:C ratio > 0.12, led to a considerable reduction in mineralization (up to 70%). For Al:C ratio < 0.12, the mineralization rates from DOM and mineral soils were unaffected. Consequently, there would be a considerable reduction in the biodegradation of DOM and thus an increased in the C sequestration in mineral soils with molar Al:C ratio > 0.12. The observed DOM losses in the stream water of pristine southern forests can be explained by increasing the bioavailability of organic C for Al:C ratio < 0.12. Aluminium concentration had a marked effect at the spectral ART-FTIR bands assigned to cellulose-like and aromatic compounds in Ah mineral soil, diminishing the mineralization. The present results were also confirmed by the Al fluorescence using a confocal microscopy.
Tree fern trunks facilitate seedling regeneration in a productive lowland temperate rain forest.
Gaxiola, Aurora; Burrows, Larry E; Coomes, David A
2008-03-01
Seedling regeneration on forest floors is often impaired by competition with established plants. In some lowland temperate rain forests, tree fern trunks provide safe sites on which tree species establish, and grow large enough to take root in the ground and persist. Here we explore the competitive and facilitative effects of two tree fern species, Cyathea smithii and Dicksonia squarrosa, on the epiphytic regeneration of tree species in nutrient-rich alluvial forests in New Zealand. The difficulties that seedlings have in establishing on vertical tree fern trunks were indicated by the following observations. First, seedling abundance was greatest on the oldest sections of tree fern trunks, near the base, suggesting that trunks gradually recruited more and more seedlings over time, but many sections of trunk were devoid of seedlings, indicating the difficulty of establishment on a vertical surface. Second, most seedlings were from small-seeded species, presumably because smaller seeds can easily lodge on tree fern trunks. Deer browsing damage was observed on 73% of epiphytic seedlings growing within 2 m of the ground, whereas few seedlings above that height were browsed. This suggests that tree ferns provide refugia from introduced deer, and may slow the decline in population size of deer-preferred species. We reasoned that tree ferns would compete with epiphytic seedlings for light, because below the tree fern canopy photosynthetically active radiation (PAR) was about 1% of above-canopy PAR. Frond removal almost tripled %PAR on the forest floor, leading to a significant increase in the height growth rate (HGR) of seedlings planted on the forest floor, but having no effects on the HGRs of epiphytic seedlings. Our study shows evidence of direct facilitative interactions by tree ferns during seedling establishment in plant communities associated with nutrient-rich soils.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne
2010-01-01
Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on Clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. In this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific, In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection. The model results suggest that evaporative cooling is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions with the low-level wind shear. Consequently, precipitation processes can be more vigorous. For example,, the evaporative cooling is more than two times stronger in the lower troposphere with high CCN for the Pacific case. Sensitivity tests also suggest that ice processes are crucial for suppressing precipitation in the Oklahoma case with high CCN.
NASA Technical Reports Server (NTRS)
Iacovazzi, Robert A., Jr.; Prabhakara, C.
2002-01-01
In this study, a model is developed to estimate mesoscale-resolution atmospheric latent heating (ALH) profiles. It utilizes rain statistics deduced from Tropical Rainfall Measuring Mission (TRMM) data, and cloud vertical velocity profiles and regional surface thermodynamic climatologies derived from other available data sources. From several rain events observed over tropical ocean and land, ALH profiles retrieved by this model in convective rain regions reveal strong warming throughout most of the troposphere, while in stratiform rain regions they usually show slight cooling below the freezing level and significant warming above. The mesoscale-average, or total, ALH profiles reveal a dominant stratiform character, because stratiform rain areas are usually much larger than convective rain areas. Sensitivity tests of the model show that total ALH at a given tropospheric level varies by less than +/- 10 % when convective and stratiform rain rates and mesoscale fractional rain areas are perturbed individually by +/- 15 %. This is also found when the non-uniform convective vertical velocity profiles are replaced by one that is uniform. Larger variability of the total ALH profiles arises when climatological ocean- and land-surface temperatures (water vapor mixing ratios) are independently perturbed by +/- 1.0 K (+/- 5%) and +/- 5.0 K (+/- 15%), respectively. At a given tropospheric level, such perturbations can cause a +/- 25% variation of total ALH over ocean, and a factor-of-two sensitivity over land. This sensitivity is reduced substantially if perturbations of surface thermodynamic variables do not change surface relative humidity, or are not extended throughout the entire model evaporation layer. The ALH profiles retrieved in this study agree qualitatively with tropical total diabatic heating profiles deduced in earlier studies. Also, from January and July 1999 ALH-profile climatologies generated separately with TRMM Microwave Imager and Precipitation Radar rain statistics, it is shown that ALH profiles can be retrieved utilizing diverse satellite-derived rain products that offer convective and stratiform discrimination. Therefore, the ALH retrieval model developed in this study can be used to make regional estimates of total diabatic heating profiles in the future Global Precipitation Measurement mission, and to assimilate these profiles into numerical weather forecast and climate models.
NASA Technical Reports Server (NTRS)
Iacovazzi, Robert A., Jr.; Prabhakara, C.; Lau, William K. M. (Technical Monitor)
2001-01-01
In this study, a model is developed to estimate mesoscale-resolution atmospheric latent heating (ALH) profiles. It utilizes rain statistics deduced from Tropical Rainfall Measuring Mission (TRMM) data, and cloud vertical velocity profiles and regional surface thermodynamic climatologies derived from other available data sources. From several rain events observed over tropical ocean and land, ALH profiles retrieved by this model in convective rain regions reveal strong warming throughout most of the troposphere, while in stratiform rain regions they usually show slight cooling below the freezing level and significant warming above. The mesoscale-average, or total, ALH profiles reveal a dominant stratiform character, because stratiform rain areas are usually much larger than convective rain areas. Sensitivity tests of the model show that total ALH at a given tropospheric level varies by less than +/- 10 % when convective and stratiform rain rates and mesoscale fractional rain areas are perturbed individually by 1 15 %. This is also found when the non-uniform convective vertical velocity profiles are replaced by one that is uniform. Larger variability of the total ALH profiles arises when climatological ocean- and land-surface temperatures (water vapor mixing ratios) are independently perturbed by +/- 1.0 K (+/- 5 %) and +/- 5.0 K (+/- 15 %), respectively. At a given tropospheric level, such perturbations can cause a +/- 25 % variation of total ALH over ocean, and a factor-of-two sensitivity over land. This sensitivity is reduced substantially if perturbations of surface thermodynamic variables do not change surface relative humidity, or are not extended throughout the entire model evaporation layer. The ALH profiles retrieved in this study agree qualitatively with tropical total diabatic heating profiles deduced in earlier studies. Also, from January and July 1999 ALH-profile climatologies generated separately with TRMM Microwave Imager and Precipitation Radar rain statistics, it is shown that ALH profiles can be retrieved utilizing diverse satellite-derived rain products that offer convective and stratiform discrimination. Therefore, the ALH retrieval model developed in this study can be used to make regional estimates of total diabatic heating profiles in the future Global Precipitation Measurement mission, and to assimilate these profiles into numerical weather forecast and climate models.
NASA Astrophysics Data System (ADS)
Whitfield, Alan K.; James, Nicola C.; Lamberth, Stephen J.; Adams, Janine B.; Perissinotto, Renzo; Rajkaran, Anusha; Bornman, Thomas G.
2016-04-01
The South African coastline is just over 3000 km in length yet it covers three major biogeographic regions, namely subtropical, warm temperate and cool temperate. In this review we examine published information to assess the possible role of climate change in driving distributional changes of a wide variety of organisms around the subcontinent. In particular we focus on harmful algal blooms, seaweeds, eelgrass, mangroves, salt marsh plants, foraminiferans, stromatolites, corals, squid, zooplankton, zoobenthos, fish, birds, crocodiles and hippopotamus, but also refer to biota such as pathogens, coralline algae, jellyfish and otters. The role of pioneers or propagules as indicators of an incipient range expansion are discussed, with mangroves, zoobenthos, fishes and birds providing the best examples of actual and imminent distributional changes. The contraction of the warm temperate biogeographic region, arising from the intrusion of cool upwelled waters along the Western Cape shores, and increasingly warm Agulhas Current waters penetrating along the eastern parts of the subcontinent, are highlighted. The above features provide an ideal setting for the monitoring of biotic drivers and responses to global climate change over different spatial and temporal scales, and have direct relevance to similar studies being conducted elsewhere in the world. We conclude that, although this review focuses mainly on the impact of global climate change on South African coastal biodiversity, other anthropogenic drivers of change such as introduced alien invasive species may act synergistically with climate change, thereby compounding both short and long-term changes in the distribution and abundance of indigenous species.
NASA Astrophysics Data System (ADS)
Soták, Ján
2010-10-01
The sedimentary sequence of the Central-Carpathian Paleogene Basin provides proxy records of climatic changes related to cooling events at the Eocene/Oligocene boundary (TEE). In this basin, climatic deterioration is inferred from the demise of the carbonate platform and oligotrophic benthic biota in the SBZ19 and from the last species of warm-water planktonic foraminifers in the E14 Zone. Upper Eocene formations already indicate warm-temperate to cool-temperate productivity and nutrient-enriched conditions (Bryozoan Marls, Globigerina Marls). Rapid cooling during the earliest Oligocene (Oi-1 event) led to a temperature drop (~11 °C), humidity, fresh water influx and continental runoff, water mass stratification, bottom water anoxia, eutrofication, estuarine circulation and upwelling, carbonate depletion, sapropelitic and biosiliceous deposition, H2S intoxication and mass faunal mortality, and also other characteristics of Black Sea-type basins. Tectonoeustatic events with the interference of TA 4.4 sea-level fall and the Pyrenean phase caused basin isolation at the beginning of the Paratethys. The Early Oligocene stage of Paratethyan isolation is indicated by a stagnant regime, low tide influence, endemic fauna development, widespread anoxia and precipitation of manganese deposits. The episodic rise in the sea-level, less humid conditions and renewed circulation is marked by calcareous productivity, nannoplankton blooms and the appearance of planktic pteropods and re-oxygenation. Paleogeographic differentiation of the Carpatho-Pannonian Paleogene basins resulted from plate-tectonic reorganization during the Alpine orogenesis.
Impact of cool versus warm temperatures on gestation in the aspic viper (Vipera aspis).
Michel, Catherine Louise; Pastore, Jean-Henri; Bonnet, Xavier
2013-07-01
Previous experimental data suggested that digestion and growth rates are not impaired under cool constant temperature (23°C) in a viviparous snake (Vipera aspis). These results challenged the widespread notion that both elevated temperatures (e.g. 30°C) and temperature fluctuations are required for digestion and growth in temperate climate reptiles. Here, we investigated the impact of constant cool temperatures on another physiological performance that is crucial to population persistence: gestation. At the time when reproductive females were midway through vitellogenesis, we placed ten reproductive and two non-reproductive female aspic vipers at each of two contrasted constant temperature conditions: cool (23°C) versus warm (28°C). Sixty percent of the females placed at 28°C gave birth to healthy offspring, suggesting that constant warm body temperatures were compatible with normal offspring production. Conversely, none of the cool females gave birth to healthy offspring. A blister disease affected exclusively cool pregnant females. Apparently, the combination of cool temperatures plus gestation was too challenging for such females. Our results suggest that reproduction is more thermally sensitive than digestion or growth, indeed gestation faltered under moderately cool thermal constraints. This sensitivity could be a crucial factor determining the capacity of this species to colonize different habitats. Copyright © 2013 Elsevier Inc. All rights reserved.
Real-time PCR and spore trap-based detection of the downy mildew pathogen, Peronospora effusa
USDA-ARS?s Scientific Manuscript database
Peronospora effusa is an obligate pathogen and the causal agent of downy mildew on spinach. The pathogen can be dispersed by splashing rain and wind, and may overwinter as oospores. Outbreaks of downy mildew on spinach are common in the cool climate of central coastal California, including the Sal...
Re-Assessing the Measurement of Fogwater Inputs to a Tropical Ecosystem
NASA Astrophysics Data System (ADS)
Burkard, R.; Eugster, W.; Holwerda, F.; Bruijnzeel, S.; Scatena, F.; Siegwolf, R.
2002-12-01
For several years the hydrological importance of the fog- and cloudwater deposition to ecosystems in the tropics has been of great interest. In earlier studies carried out in the humid tropics the amount of deposited cloudwater was estimated by indirect methods based on the physical characteristics of the utilized cloudwater collector. In the temperate climatic zone of central Europe most of the studies dealing with cloudwater focus on the additional chemical input due to cloudwater in relation to the amount of deposited rainwater. During our experiment in the Luquillo mountains of Puerto Rico the different aspects of the chemical and hydrological impacts of cloudwater deposition have been investigated. During 43 days, cloudwater fluxes were measured with an eddy covariance setup consisting of a Solent ultrasonic anemometer and a size-resolving cloud droplet spectrometer. Cloudwater samples were taken with a Caltech-type active strand cloudwater collector. Additionally, measurements of rain, throughfall and stemflow were performed. Samples of fog, rain, throughfall and stemflow were analyzed for inorganic ion and stabile isotope concentrations (δ18O and δ2H). First analysis of the hydrological input show that there exist some significant differences in the deposited amount of cloudwater as measured with our instruments in comparison with previous studies carried out at the same location: Mean liquid water content was 78.6 mg m-3 during situations with a visibility below 1000 m (84% of the entire field campaign). The deposition rate of cloudwater was 0.88 mm d-1. A mismatch was found regarding the water balance. We conclude from this that the rainfall amount and therefore also the chemical input by rain is strongly underestimated due to wind-driven rain, which is not measured by standard rain gauges. Depending on the reference value, we have to conclude that the deposition of cloudwater accounts for 6--11% of wet deposition.
Lichen Persistence and Recovery in Response to Varied Volcanic Disturbances
NASA Astrophysics Data System (ADS)
Nelson, P.; Wheeler, T. B.
2015-12-01
Volcanic eruptions produce many ecological disturbances that structure vegetation. While lichens are sensitive to disturbances, little is known about their responses to volcanic disturbances, except for colonization of lava. We examined lichen community responses through time to different disturbances produced by the May 1, 2008 eruption of Volcan Chaiten in south-central Chile. Pre-eruption vegetation near the volcano was old-growth Valdivian temperate rainforest dominated by closed-canopy Nothofagus sp... In 2012, we installed thirteen 1-acre plots across volcanic disturbance zones on which a time-constrained search was done for all macrolichen species, each of which was assigned an approximate log10 categorical abundance. We also installed a 0.2 m2 quadrat on two representative trees per plot for repeat photography of lichen cover. We remeasured at least one plot per disturbance zone in 2014 and re-photographed tree quadrats in 2013 and 2014. We then analyzed species composition and abundance differences among disturbance zones. In 2012, the blast (pyroclastic density flow), scorch (standing scorched forest at the edge of the blast) and deep tephra (>10 cm) zones had the lowest lichen species richness (5-13 species), followed by reference (unimpacted) and shallow (<10 cm) tephra (17-20 species). Gravel rain (preexisting rock ejected by eruption initiation), gravel rain + pumice and flooded forests (fluvially reworked volcanic material entrained by heavy rains) were species-rich (25-42 species). In 2014, the blast and deep tephra had regained 2-3 times the number of lichen species since 2012 while the light tephra and reference were essentially unchanged. Gravel rain, gravel rain + pumice and flooded forest plots all had about the same number of species in 2014 as 2012. Lichen colonization and growth in tree quadrats varied widely, from very little colonization in the blast to prolific colonization in the gravel rain + pumice zone. Lichen's varied responses to different volcanic disturbances were attributable to varying degrees of mortality and subsequent availability of substrate, quantity of light and removal of competitors. While sensitive to disturbance, lichens are apparently resilient to and can quickly recolonize after a variety of large, violent volcanic disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-03-01
Excess nitrogen, whether from fertilization or from acid rain, seems to reduce the amount of methane that soil organisms can remove from the atmosphere. Methane, an important greenhouse gas, contributes to global warming by acting as an atmospheric blanket. The gas has been increasing approximately 1% a year for the past decade, due either to increases in global sources or decrease in biological sinks. The largest such sinks are the microorganisms in aerobic soils. Recent research by P.A. Steudler, R.D. Bowden, and J.M. Melillo of the Marine Biological Laboratory, Woods Hole, Massachusetts, and J.D. Aber of the University of Newmore » Hampshire, Durham, has shown that added nitrogen significantly decreases the rates at which temperate forest soils can take up methane. Laboratory studies with soil microorganisms support the field observations, suggesting that high nitrogen suppresses methane uptake. The researchers say further measurements in agroecosystems, pastures, and other high-nitrogen systems are needed to clarify the nitrogen-methane interaction before extrapolation to a global basis.« less
Urban evaporation rates for water-permeable pavements.
Starke, P; Göbel, P; Coldewey, W G
2010-01-01
In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.
Precipitation Regime Shift Enhanced the Rain Pulse Effect on Soil Respiration in a Semi-Arid Steppe
Yan, Liming; Chen, Shiping; Xia, Jianyang; Luo, Yiqi
2014-01-01
The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m−2) and 39.6% (61.7 g C m−2) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r 2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953–2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953–2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change. PMID:25093573
Precipitation regime shift enhanced the rain pulse effect on soil respiration in a semi-arid steppe.
Yan, Liming; Chen, Shiping; Xia, Jianyang; Luo, Yiqi
2014-01-01
The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m(-2)) and 39.6% (61.7 g C m(-2)) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953-2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953-2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change.
Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact
NASA Technical Reports Server (NTRS)
Pope, K. O.; Baines, K. H.; Ocampo, A. C.; Ivanov, B. A.
1997-01-01
A comprehensive analysis of volatiles in the Chicxulub impact strongly supports the hypothesis that impact-generated sulfate aerosols caused over a decade of global cooling, acid rain, and disruption of ocean circulation, which contributed to the mass extinction at the Cretaceous/Tertiary (K/T) boundary. The crater size, meteoritic content of the K/T boundary clay, and impact models indicate that the Chicxulub crater was formed by a short period comet or an asteroid impact that released 0.7-3.4 x 10(31) ergs of energy. Impact models and experiments combined with estimates of volatiles in the projectile and target rocks predict that over 200 gigatons (Gt) each of SO2 and water vapor, and over 500 Gt of CO2, were globally distributed in the stratosphere by the impact. Additional volatiles may have been produced on a global or regional scale that formed sulfate aerosols rapidly in cooler parts of the vapor plume, causing an early, intense pulse of sulfuric acid rain. Estimates of the conversion rate of stratospheric SO2 and water vapor to sulfate aerosol, based on volcanic production of sulfate aerosols, coupled with calculations of diffusion, coagulation, and sedimentation, demonstrate that the 200 Gt stratospheric SO2 and water vapor reservoir would produce sulfate aerosols for 12 years. These sulfate aerosols caused a second pulse of acid rain that was global. Radiative transfer modeling of the aerosol clouds demonstrates (1) that if the initial rapid pulse of sulfate aerosols was global, photosynthesis may have been shut down for 6 months and (2) that for the second prolonged aerosol cloud, solar transmission dropped 80% by the end of first year and remained 50% below normal for 9 years. As a result, global average surface temperatures probably dropped between 5 degrees and 31 degrees K, suggesting that global near-freezing conditions may have been reached. Impact-generated CO2 caused less than 1 degree K greenhouse warming and therefore was insignificant compare to the sulfate cooling. The magnitude of sulfate cooling depends largely upon the rate of ocean mixing as surface waters cool, sink, and are replaced by upwelling of deep ocean water. This upwelling apparently drastically altered ocean stratification and circulation, which may explain the global collapse of the delta 13C gradient between surface and deep ocean waters at the K/T boundary.
Pumpless thermal management of water-cooled high-temperature proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Song, Tae-Won; Choi, Kyoung-Hwan; Kim, Ji-Rae; Yi, Jung S.
2011-05-01
Proton exchange membrane fuel cells (PEMFCs) have been considered for combined heat and power (CHP) applications, but cost reduction has remained an issue for commercialization. Among various types of PEMFC, the high-temperature (HT) PEMFC is gaining more attention due to the simplicity of the system, that will make the total system cost lower. A pumpless cooling concept is introduced to reduce the number of components of a HT PEMFC system even further and also decrease the parasitic power required for operating the system. In this concept, water is used as the coolant, and the buoyancy force caused by the density difference between vapour and liquid when operated above boiling temperate is utilized to circulate the coolant between the stack and the cooling device. In this study, the basic parameters required to design the cooling device are discussed, and the stable operation of the HT PEMFC stack in both the steady-state and during transient periods is demonstrated. It found that the pumpless cooling method provides more uniform temperature distribution within the stack, regardless of the direction of coolant flow.
NASA Astrophysics Data System (ADS)
Thompson, Elizabeth J.
Heating and rain freshening often stabilize the upper tropical ocean, bringing the ocean mixed layer depth to the sea surface. Thin mixed layer depths concentrate subsequent fluxes of heat, momentum, and freshwater in a thin layer. Rapid heating and cooling of the tropical sea surface is important for controlling or triggering atmospheric convection. Ocean mixed layer depth and SST variability due to rainfall events have not been as comprehensively explored as the ocean's response to heating or momentum fluxes, but are very important to understand in the tropical warm pool where precipitation exceeds evaporation and many climate phenomena such as ENSO and the MJO (Madden Julian Oscillation) originate. The first part of the dissertation investigates tropical, oceanic convective and stratiform rainfall variability and determines how to most accurately estimate rainfall accumulation with radar from each rain type. The second, main part of the dissertation uses central Indian Ocean salinity and temperature microstructure measurements and surrounding radar-derived rainfall maps throughout two DYNAMO MJO events to determine the impact of precipitating systems on upper-ocean mixed layer depth and resulting SST variability. The ocean mixed layer was as shallow as 0-5 m during 528/1071 observation hours throughout 2 MJOs (54% of the data record). Out of 43 observation days, thirty-eight near-surface mixed layer depth events were attributed to freshwater stabilization, called rain-formed mixed layers (RFLs). Thirty other mixed layer stratification events were classified as diurnal warm layers (DWLs) due to stable temperature stratification by daytime heating. RFLs and DWLs were observed to interact in two ways: 1) RFLs fill preexisting DWLs and add to total near-surface mixed layer stratification, which occurred ten times; 2) RFLs last long enough to heat, creating a new DWL on top of the RFL, which happened nine times. These combination stratification events were responsible for the highest SST warming rates and some of the highest SSTs leading up to the most active precipitation and wind stage of the each MJO. DWLs without RFL interaction helped produce the highest SSTs in suppressed MJO conditions. As storm intensity, frequency, duration, and the ability of storms to maintain stratiform rain areas increased, RFLS became more common in the disturbed and active MJO phases. Along with the barrier layer, DWL and RFL stratification events helped suppress wind-mixing, cooling, and mixed layer deepening throughout the MJO. We hypothesize that both salinity and temperature stratification events, and their interactions, are important for controlling SST variability and therefore MJO initiation in the Indian Ocean. Most RFLs were caused by submesoscale and mesoscale convective systems with stratiform rain components and local rain accumulations above 10 mm but with winds mostly below 8 m s-1. We hypothesize that the stratiform rain components of storms helped stratify the ocean by providing weak but widespread, steady, long-lived freshwater fluxes. Although generally limited to rain rates ≤ 10 mm hr-1, it is demonstrated that stratiform rain can exert a strong buoyancy flux into the ocean, i.e. as high as maximum daytime solar heating. Storm morphology and the preexisting vertical structure of ocean stability were critical in determining ocean mixed layer depth variability in the presence of rain. Therefore, we suggest that high spatial and temporal resolution coupled ocean-atmosphere models that can parameterize or resolve storm morphology as well as ocean mixed layer and barrier layer evolution are needed to reproduce the diurnal and intraseasonal SST variability documented throughout the MJO.
J. Hope Hornbeck; Carolyn Hull Sieg; Deanna J. Reyher
2003-01-01
Great-spurred violet (Viola selkirkii Pursh ex Goldie; Violaceae) is an early spring flowering herb that occurs in the boreal and Rocky Mountain regions of North America, and cool temperate regions of Eurasia, eastern China and Japan. In the Black Hills, the species is restricted to spruce-dominated forests in cold, shady ravines from 5,400 to 7,000...
Oguchi, Riichi; Hiura, Tsutom; Hikosaka, Kouki
2017-08-01
Gap formation increases the light intensity in the forest understorey. The growth responses of seedlings to the increase in light availability show interspecific variation, which is considered to promote biodiversity in forests. At the leaf level, some species increase their photosynthetic capacity in response to gap formation, whereas others do not. Here we address the question of whether the interspecific difference in the photosynthetic response results in the interspecific variation in the growth response. If so, the interspecific difference in photosynthetic response would also contribute to species coexistence in forests. We also address the further relevant question of why some species do not increase their photosynthetic capacity. We assumed that some cost of photosynthetic plasticity may constrain acquisition of the plasticity in some species, and hypothesized that species with larger photosynthetic plasticity exhibit better growth after gap formation and lower survivorship in the shade understorey of a cool-temperate deciduous forest. We created gaps by felling canopy trees and studied the relationship between the photosynthetic response and the subsequent growth rate of seedlings. Naturally growing seedlings of six deciduous woody species were used and their mortality was examined for 8 years. The light-saturated rate of photosynthesis (Pmax) and the relative growth rate (RGR) of the seedlings of all study species increased at gap plots. The extent of these increases varied among the species. The stimulation of RGR over 4 years after gap formation was strongly correlated with change in photosynthetic capacity of newly expanded leaves. The increase in RGR and Pmax correlated with the 8-year mortality at control plots. These results suggest a trade-off between photosynthetic plasticity and the understorey shade tolerance. Gap-demanding species may acquire photosynthetic plasticity, sacrificing shade tolerances, whereas gap-independent species may acquire shade tolerances, sacrificing photosynthetic plasticity. This strategic difference among species would contribute to species coexistence in cool-temperate deciduous forests. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Deposition pattern and throughfall fluxes in secondary cool temperate forest, South Korea
NASA Astrophysics Data System (ADS)
Kumar Gautam, Mukesh; Lee, Kwang-Sik; Song, Byeong-Yeol
2017-07-01
Chemistry and deposition fluxes in the rainfall and throughfall of red pine (Pinus densiflora), black locust (Robinia pseudoacacia), and chestnut (Castanea crenata) monocultures, and mixed red pine-black locust-chestnut stands were examined in a nutrient-limited cool temperate forest of central South Korea. Throughfall was enriched in both basic and acidic constituents relative to rainfall, suggesting that both dry deposition and canopy leaching are important sources of throughfall constituents. Net throughfall fluxes (NTFs) of cations and anions significantly differed among four different stands as well as seasonally. Red pine exhibited highest fluxes (TF and NTF) for Ca2+, black locust for K+, mixed stands for Mg2+, and chestnut for Na+. In contrast, NTF of SO42-, NO3-, and NH4+was highest in the red pine, intermediate in the chestnut and mixed stands, and lowest in the black locust. In general, canopy uptake of H+ and NH4+ for all stands was higher in summer than in winter. Dry deposition appears to play a major role in atmospheric deposition to this cool temperate forest, especially in summer. Dry deposition for both cations and anions displayed high spatial variability, even though stands were adjacent to one another and experienced identical atmospheric deposition loads. Canopy leaching of K+ (95-78% of NTF), Mg2+ (92-23% of NTF), and Ca2+ (91-12% of NTF) was highest for the black locust, lowest for chestnut, and intermediate for the red pine and mixed stands. The present study documented significant changes in throughfall chemistry and NTF among different forest stands, which presumably be related with the differences in the canopy characteristics and differences in their scavenging capacity for dry deposition and canopy exchange. Difference in the canopy retention of H+ and base cation leaching suggests that canopy exchange was mainly driven by weak acid excretion and lesser by H+ exchange reaction. Our results indicate that despite a high base cation deposition, a combination of higher input of acidifying constituents, low soil pH, and total acidic deposition approaching South Korean critical loads make regional forest vulnerable to acidification.
9 Cr-- 1 Mo steel material for high temperature application
Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher
2012-11-27
One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.
NASA Astrophysics Data System (ADS)
Abbasi-Khazaei, Bijan; Mollaahmadi, Akbar
2017-04-01
In this research, the effect of rapid tempering on the microstructure, mechanical properties and corrosion resistance of AISI 420 martensitic stainless steel has been investigated. At first, all test specimens were austenitized at 1050 °C for 1 h and tempered at 200 °C for 1 h. Then, the samples were rapidly reheated by a salt bath furnace in a temperature range from 300 to 1050 °C for 2 min and cooled in air. The tensile tests, impact, hardness and electrochemical corrosion were carried out on the reheated samples. Scanning electron microscopy was used to study the microstructure and fracture surface. To investigate carbides, transmission electron microscopy and also scanning electron microscopy were used. X-ray diffraction was used for determination of the retained austenite. The results showed that the minimum properties such as the tensile strength, impact energy, hardness and corrosion resistance were obtained at reheating temperature of 700 °C. Semi-continuous carbides in the grain boundaries were seen in this temperature. Secondary hardening phenomenon was occurred at reheating temperature of 500 °C.
Dew Point Evaporative Comfort Cooling
2012-11-01
assisting with the installation of the data acquisition system and multiyear performance testing. Fort Carson engineers worked with the project...partners to design and integrate the Coolerado units into five facilities and designed an innovative rain water catchment system for four units at the...Theater. Mountain Energy Partnership provided invaluable assistance with the design and installation of the data acquisition system , as well as data
Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields
Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.
2016-01-01
Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field’s thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability. PMID:27929097
Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields.
Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H
2016-12-08
Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field's thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability.
Morphology and properties of low-carbon bainite
NASA Astrophysics Data System (ADS)
Ohtani, H.; Okaguchi, S.; Fujishiro, Y.; Ohmori, Y.
1990-03-01
Morphology of low-carbon bainite in commercial-grade high-tensile-strength steels in both isothermal transformation and continuous cooling transformation is lathlike ferrite elongated in the <11l>b direction. Based on carbide distribution, three types of bainites are classified: Type I, is carbide-free, Type II has fine carbide platelets lying between laths, and Type III has carbides parallel to a specific ferrite plane. At the initial stage of transformation, upper bainitic ferrite forms a subunit elongated in the [-101]f which is nearly parallel to the [lll]b direction with the cross section a parallelogram shape. Coalescence of the subunit yields the lathlike bainite with the [-101]f growth direction and the habit plane between (232)f and (lll)f. Cementite particles precipitate on the sidewise growth tips of the Type II bainitic ferrite subunit. This results in the cementite platelet aligning parallel to a specific ferrite plane in the laths after coalescence. These morphologies of bainites are the same in various kinds of low-carbon high-strength steels. The lowest brittle-ductile transition temperature and the highest strength were obtained either by Type III bainite or bainite/martensite duplex structure because of the crack path limited by fine unit microstructure. It should also be noted that the tempered duplex structure has higher strength than the tempered martensite in the tempering temperature range between 200 °C and 500 °C. In the case of controlled rolling, the accelerated cooling afterward produces a complex structure comprised of ferrite, cementite, and martensite as well as BI-type bainite. Type I bainite in this structure is refined by controlled rolling and plays a very important role in improving the strength and toughness of low-carbon steels.
Qiu, Ying-Xiong; Fu, Cheng-Xing; Comes, Hans Peter
2011-04-01
The Sino-Japanese Floristic Region (SJFR) of East Asia harbors the most diverse of the world's temperate flora, and was the most important glacial refuge for its Tertiary representatives ('relics') throughout Quaternary ice-age cycles. A steadily increasing number of phylogeographic studies in the SJFR of mainland China and adjacent areas, including the Qinghai-Tibetan-Plateau (QTP) and Sino-Himalayan region, have documented the population histories of temperate plant species in these regions. Here we review this current literature that challenges the oft-stated view of the SJFR as a glacial sanctuary for temperate plants, instead revealing profound effects of Quaternary changes in climate, topography, and/or sea level on the current genetic structure of such organisms. There are three recurrent phylogeographic scenarios identified by different case studies that broadly agree with longstanding biogeographic or palaeo-ecological hypotheses: (i) postglacial re-colonization of the QTP from (south-)eastern glacial refugia; (ii) population isolation and endemic species formation in Southwest China due to tectonic shifts and river course dynamics; and (iii) long-term isolation and species survival in multiple localized refugia of (warm-)temperate deciduous forest habitats in subtropical (Central/East/South) China. However, in four additional instances, phylogeographic findings seem to conflict with a priori predictions raised by palaeo-data, suggesting instead: (iv) glacial in situ survival of some hardy alpine herbs and forest trees on the QTP platform itself; (v) long-term refugial isolation of (warm-)temperate evergreen taxa in subtropical China; (vi) 'cryptic' glacial survival of (cool-)temperate deciduous forest trees in North China; and (vii) unexpectedly deep (Late Tertiary/early-to-mid Pleistocene) allopatric-vicariant differentiation of disjunct lineages in the East China-Japan-Korea region due to past sea transgressions. We discuss these and other consequences of the main phylogeographic findings in light of palaeo-environmental evidence, emphasize notable gaps in our knowledge, and outline future research prospects for disentangling the evolution and biogeographic history of the region's extremely diverse temperate flora. Copyright © 2011 Elsevier Inc. All rights reserved.
Counter-Flow Cooling Tower Test Cell
NASA Astrophysics Data System (ADS)
Dvořák, Lukáš; Nožička, Jiří
2014-03-01
The article contains a design of a functional experimental model of a cross-flow mechanical draft cooling tower and the results and outcomes of measurements. This device is primarily used for measuring performance characteristics of cooling fills, but with a simple rebuild, it can be used for measuring other thermodynamic processes that take part in so-called wet cooling. The main advantages of the particular test cell lie in the accuracy, size, and the possibility of changing the water distribution level. This feature is very useful for measurements of fills of different heights without the influence of the spray and rain zone. The functionality of this test cell has been verified experimentally during assembly, and data from the measurement of common film cooling fills have been compared against the results taken from another experimental line. For the purpose of evaluating the data gathered, computational scripts were created in the MATLAB numerical computing environment. The first script is for exact calculation of the thermal balance of the model, and the second is for determining Merkel's number via Chebyshev's method.
Testing Precipitation-Driven Feedback Models in Nearby Ellipticals
NASA Astrophysics Data System (ADS)
Donahue, Megan
2016-09-01
We propose to analyze the inner cooling-time and entropy profiles of 12 elliptical galaxies with strong radio AGN. X-ray studies of galaxy-cluster cores and massive ellipticals indicate that feedback from an AGN replaces energy radiated by these objects. The AGN at 10 pc seems tuned to the thermodynamic state of gas on 10 kpc scales, but how that occurs is a resilient mystery. The precipitation model posits if the AGN does not provide enough heat, then thermal instabilities rain cold clouds on it, increasing accretion from Bondi to 100 times that rate when t_cool drops below 10 t_ff. We will test precipitation-driven feedback models by measuring t_cool and gravitational potential within the central kpc and to see how radio power is related to t_c/t_ff at small radii in these galaxies.
Evaporative cooling of speleothem drip water
Cuthbert, M. O.; Rau, G. C.; Andersen, M. S.; Roshan, H.; Rutlidge, H.; Marjo, C. E.; Markowska, M.; Jex, C. N.; Graham, P. W.; Mariethoz, G.; Acworth, R. I.; Baker, A.
2014-01-01
This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ18O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change. PMID:24895139
NASA Astrophysics Data System (ADS)
Paukert, M.; Hoose, C.; Simmel, M.
2017-03-01
In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. In contrast, the immersion freezing of larger drops—"rain"—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. Here we introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation in raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.
NASA Astrophysics Data System (ADS)
Dutta, R. K.; Huizenga, R. M.; Petrov, R. H.; Amirthalingam, M.; King, A.; Gao, H.; Hermans, M. J. M.; Richardson, I. M.
2014-01-01
In-situ synchrotron diffraction studies on the kinetics of phase transformation and transformation strain development during bainitic transformation were presented in part I of the current article. In the current article, in-situ phase transformation behavior of a high-strength (830 MPa yield stress) quenched and tempered S690QL1 [Fe-0.16C-0.2Si-0.87Mn-0.33Cr-0.21Mo (wt. pct)] structural steel, during continuous cooling and under different mechanical loading conditions to promote martensitic transformation, has been studied. Time-temperature-load resolved 2D synchrotron diffraction patterns were recorded and used to calculate the phase fractions and lattice parameters of the phases during heating and cooling cycles under different loading conditions. In addition to the thermal expansion behavior, the effects of the applied stress on the elastic strains during the martensitic transformation were calculated. The results show that small tensile stresses applied at the transformation temperature do not change the kinetics of the phase transformation. The start temperature for the martensitic transformation increases with the increasing applied tensile stress. The elastic strains are not affected significantly with the increasing tensile stress. The variant selection during martensitic transformation under small applied loads (in the elastic region) is weak.
Stromatolites on the rise in peat-bound karstic wetlands.
Proemse, Bernadette C; Eberhard, Rolan S; Sharples, Chris; Bowman, John P; Richards, Karen; Comfort, Michael; Barmuta, Leon A
2017-11-13
Stromatolites are the oldest evidence for life on Earth, but modern living examples are rare and predominantly occur in shallow marine or (hyper-) saline lacustrine environments, subject to exotic physico-chemical conditions. Here we report the discovery of living freshwater stromatolites in cool-temperate karstic wetlands in the Giblin River catchment of the UNESCO-listed Tasmanian Wilderness World Heritage Area, Australia. These stromatolites colonize the slopes of karstic spring mounds which create mildly alkaline (pH of 7.0-7.9) enclaves within an otherwise uniformly acidic organosol terrain. The freshwater emerging from the springs is Ca-HCO 3 dominated and water temperatures show no evidence of geothermal heating. Using 16 S rRNA gene clone library analysis we revealed that the bacterial community is dominated by Cyanobacteria, Alphaproteobacteria and an unusually high proportion of Chloroflexi, followed by Armatimonadetes and Planctomycetes, and is therefore unique compared to other living examples. Macroinvertebrates are sparse and snails in particular are disadvantaged by the development of debilitating accumulations of carbonate on their shells, corroborating evidence that stromatolites flourish under conditions where predation by metazoans is suppressed. Our findings constitute a novel habitat for stromatolites because cool-temperate freshwater wetlands are not a conventional stromatolite niche, suggesting that stromatolites may be more common than previously thought.
Tsujino, Riyou; Yumoto, Takakazu
2013-03-01
In order to clarify how vegetation types change along the environmental gradients in a cool temperate to sub-alpine mountainous zone and the determinant factors that define plant species richness, we established 360 plots (each 4 × 10 m) within which the vegetation type, species richness, elevation, topographic position index (TPI), slope inclination, and ground light index (GLI) of the natural vegetation were surveyed. Mean elevation, TPI, slope inclination, and GLI differed across vegetation types. Tree species richness was negatively correlated with elevation, whereas fern and herb species richness were positively correlated. Tree species richness was greater in the upper slope area than the lower slope area, whereas fern and herb species richness were greater in the lower slope area. Ferns and trees species richness were smaller in the open canopy, whereas herb species richness was greater in the open canopy. Vegetation types were determined firstly by elevation and secondary by topographic configurations, such as topographic position, and slope inclination. Elevation and topography were the most important factors affecting plant richness, but the most influential variables differed among plant life-form groups. Moreover, the species richness responses to these environmental gradients greatly differed among ferns, herbs, and trees.
Planetesimal Formation in the Warm, Inner Disk: Experiments with Tempered Dust
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Beule, Caroline; Landers, Joachim; Salamon, Soma
2017-03-01
It is an open question how elevated temperatures in the inner parts of protoplanetary disks influence the formation of planetesimals. We approach this problem here by studying the tensile strength of granular beds with dust samples tempered at different temperatures. We find via laboratory experiments that tempering at increasing temperatures is correlated with an increase in cohesive forces. We studied dust samples of palagonite (JSC Mars-1a) which were tempered for up to 200 hr at temperatures between 600 and 1200 K, and measured the relative tensile strengths of highly porous dust layers once the samples cooled to room temperature. Temperingmore » increases the tensile strength from 800 K upwards. This change is accompanied by mineral transformations, the formation of iron oxide crystallites as analyzed by Mössbauer spectroscopy, changes in the number size distribution, and the morphology of the surface visible as cracks in larger grains. These results suggest a difference in the collisional evolution toward larger bodies with increasing temperature as collisional growth is fundamentally based on cohesion. While high temperatures might also increase sticking (not studied here), compositional evolution will already enhance the cohesion and the possibility of growing larger aggregates on the way toward planetesimals. This might lead to a preferred in situ formation of inner planets and explain the observed presence of dense inner planetary systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antolin, P.; Verwichte, E., E-mail: patrick.antolin@astro.uio.no, E-mail: erwin.verwichte@warwick.ac.uk
The condensations composing coronal rain, falling down along loop-like structures observed in cool chromospheric lines such as H{alpha} and Ca II H, have long been a spectacular phenomenon of the solar corona. However, considered a peculiar sporadic phenomenon, it has not received much attention. This picture is rapidly changing due to recent high-resolution observations with instruments such as the Hinode/Solar Optical Telescope (SOT), CRISP of the Swedish 1-m Solar Telescope, and the Solar Dynamics Observatory. Furthermore, numerical simulations have shown that coronal rain is the loss of thermal equilibrium of loops linked to footpoint heating. This result has highlighted themore » importance that coronal rain can play in the field of coronal heating. In this work, we further stress the importance of coronal rain by showing the role it can play in the understanding of the coronal magnetic field topology. We analyze Hinode/SOT observations in the Ca II H line of a loop in which coronal rain puts in evidence in-phase transverse oscillations of multiple strand-like structures. The periods, amplitudes, transverse velocities, and phase velocities are calculated, allowing an estimation of the energy flux of the wave and the coronal magnetic field inside the loop through means of coronal seismology. We discuss the possible interpretations of the wave as either standing or propagating torsional Alfven or fast kink waves. An estimate of the plasma beta parameter of the condensations indicates a condition that may allow the often observed separation and elongation processes of the condensations. We also show that the wave pressure from the transverse wave can be responsible for the observed low downward acceleration of coronal rain.« less
Ecological setting of the Wind River old-growth forest.
David C. Shaw; Jerry F. Franklin; Ken Bible; Jeffrey Klopatek; Elizabeth Freeman; Sarah Greene; Geoffrey G. Parker
2004-01-01
The Wind River old-growth forest, in the southern Cascade Range of Washington State, is a cool (average annual temperature, 8.7°C), moist (average annual precipitation, 2223 mm), 500-year-old Douglas-fir-western hemlock forest of moderate to low productivity at 371-m elevation on a less than 10% slope. There is a seasonal snowpack (November-March), and rain-on-snow and...
Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus
NASA Astrophysics Data System (ADS)
Young, Gillian; Connolly, Paul J.; Dearden, Christopher; Choularton, Thomas W.
2018-02-01
Large-scale subsidence, associated with high-pressure systems, is often imposed in large-eddy simulation (LES) models to maintain the height of boundary layer (BL) clouds. Previous studies have considered the influence of subsidence on warm liquid clouds in subtropical regions; however, the relationship between subsidence and mixed-phase cloud microphysics has not specifically been studied. For the first time, we investigate how widespread subsidence associated with synoptic-scale meteorological features can affect the microphysics of Arctic mixed-phase marine stratocumulus (Sc) clouds. Modelled with LES, four idealised scenarios - a stable Sc, varied droplet (Ndrop) or ice (Nice) number concentrations, and a warming surface (representing motion southwards) - were subjected to different levels of subsidence to investigate the cloud microphysical response. We find strong sensitivities to large-scale subsidence, indicating that high-pressure systems in the ocean-exposed Arctic regions have the potential to generate turbulence and changes in cloud microphysics in any resident BL mixed-phase clouds.Increased cloud convection is modelled with increased subsidence, driven by longwave radiative cooling at cloud top and rain evaporative cooling and latent heating from snow growth below cloud. Subsidence strengthens the BL temperature inversion, thus reducing entrainment and allowing the liquid- and ice-water paths (LWPs, IWPs) to increase. Through increased cloud-top radiative cooling and subsequent convective overturning, precipitation production is enhanced: rain particle number concentrations (Nrain), in-cloud rain mass production rates, and below-cloud evaporation rates increase with increased subsidence.Ice number concentrations (Nice) play an important role, as greater concentrations suppress the liquid phase; therefore, Nice acts to mediate the strength of turbulent overturning promoted by increased subsidence. With a warming surface, a lack of - or low - subsidence allows for rapid BL turbulent kinetic energy (TKE) coupling, leading to a heterogeneous cloud layer, cloud-top ascent, and cumuli formation below the Sc cloud. In these scenarios, higher levels of subsidence act to stabilise the Sc layer, where the combination of these two forcings counteract one another to produce a stable, yet dynamic, cloud layer.
Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D
1998-05-01
Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P < 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass , R d-mass rises with increasing SLA and/or decreasing leaf life-span. The relationships between R d and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits.
Observed Trends in West Coast Atmospheric River Temperatures
NASA Astrophysics Data System (ADS)
Gonzales, K. R.; Swain, D. L.; Barnes, E. A.; Diffenbaugh, N. S.
2017-12-01
Understanding the changing characteristics of atmospheric rivers (ARs) in a warming climate is critical in light of their importance in generating precipitation and creating the potential for flood and geophysical hazards. Numerous changes to the characteristics of ARs under the influence of a changing climate have been documented or hypothesized; one simple hypothesis is that AR precipitation will occur at increasingly warm temperatures, potentially altering the critical rain/snow balance in snowpack-dependent watersheds and causing precipitation at higher elevations to fall as rain rather than snow. Not only would warmer, primarily rain-producing ARs greatly affect snow accumulation, but they might also increase the intensity of runoff, the potential for flooding, and the occurrence of rain-on-snow events. Since the West Coast of North America relies heavily on ARs as a source of precipitation and snowpack accumulation, these regions may be profoundly affected by changes in AR temperatures and associated impacts. Using a catalog of ARs encompassing 1979-2014 and ERA-Interim reanalysis, we assess whether detectable trends exist in cool season AR temperatures over the Pacific Coast states of California, Oregon, and Washington. We define AR temperature by the mean temperature of the air mass between 1000 hPa and 750 hPa, and compare AR temperature trends to background temperature trends over the same period. We find overall AR warming over this period and particularly robust warming in March ARs coincident with an apparent poleward shift in March AR frequency. Further analysis suggests that warmer ARs have higher rates of warming than cooler ARs. AR temperature trends generally scale with background temperature trends, although some regions exhibit a near one-to-one relationship while others are largely uncorrelated. The observed warming of ARs making landfall on the West Coast may have potentially significant implications for rain vs. snow at higher elevations, the rain/snow balance, and rain-on-snow flood hazards (particularly in March).
Anomalous heat transport and condensation in convection of cryogenic helium
Urban, Pavel; Schmoranzer, David; Hanzelka, Pavel; Sreenivasan, Katepalli R.; Skrbek, Ladislav
2013-01-01
When a hot body A is thermally connected to a cold body B, the textbook knowledge is that heat flows from A to B. Here, we describe the opposite case in which heat flows from a colder but constantly heated body B to a hotter but constantly cooled body A through a two-phase liquid–vapor system. Specifically, we provide experimental evidence that heat flows through liquid and vapor phases of cryogenic helium from the constantly heated, but cooler, bottom plate of a Rayleigh–Bénard convection cell to its hotter, but constantly cooled, top plate. The bottom plate is heated uniformly, and the top plate is cooled by heat exchange with liquid helium maintained at 4.2 K. Additionally, for certain experimental conditions, a rain of helium droplets is detected by small sensors placed in the cell at about one-half of its height. PMID:23576759
Medeiros, Juliana S; Tomeo, Nicholas J; Hewins, Charlotte R; Rosenthal, David M
2016-08-01
We investigated the effects of historic soil chemistry changes associated with acid rain, i.e., reduced soil pH and a shift from nitrogen (N)- to phosphorus (P)-limitation, on the coordination of leaf water demand and xylem hydraulic supply traits in two co-occurring temperate tree species differing in growth rate. Using a full-factorial design (N × P × pH), we measured leaf nutrient content, water relations, leaf-level and canopy-level gas exchange, total biomass and allocation, as well as stem xylem anatomy and hydraulic function for greenhouse-grown saplings of fast-growing Acer rubrum (L.) and slow-growing Quercus alba (L.). We used principle component analysis to characterize trait coordination. We found that N-limitation, but not P-limitation, had a significant impact on plant water relations and hydraulic coordination of both species. Fast-growing A. rubrum made hydraulic adjustments in response to N-limitation, but trait coordination was variable within treatments and did not fully compensate for changing allocation across N-availability. For slow-growing Q. alba, N-limitation engendered more strict coordination of leaf and xylem traits, resulting in similar leaf water content and hydraulic function across all treatments. Finally, low pH reduced the propensity of both species to adjust leaf water relations and xylem anatomical traits in response to nutrient manipulations. Our data suggest that a shift from N- to P-limitation has had a negative impact on the water relations and hydraulic function of A. rubrum to a greater extent than for Q. alba We suggest that current expansion of A. rubrum populations could be tempered by acidic N-deposition, which may restrict it to more mesic microsites. The disruption of hydraulic acclimation and coordination at low pH is emphasized as an interesting area of future study. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Özdemir, Z.
2017-03-01
A bimetallic `low-alloy steel - high-chromium cast iron' composite obtained by successive sand casting is studied and shown to have good cohesion on the interface and no casting defects. The hardness and the impact toughness of the bimetal increase simultaneously. The microstructure is more homogeneous after diffusion annealing at 1040°C, rapid cooling, and 3-h tempering at 270°C.
Low-carbon martensitic steels. Alloying and properties
NASA Astrophysics Data System (ADS)
Kleiner, L. M.; Shatsov, A. A.; Larinin, D. M.
2011-03-01
Requirements on the structure of a steel with structural strength and a set of characteristics higher than those of medium-carbon steels with a structure of tempered sorbite are formulated. Principles for choosing compositions for process-adaptable low-carbon martensitic steels are presented. The combination of carbon and alloying elements providing high stability of austenite in the ranges of normal and intermediate transformations is determined, which makes it possible to obtain lath martensite in slow cooling.
NASA Astrophysics Data System (ADS)
Park, M.; Moon, M.; Park, J.; Cho, S.; Kim, H. S.
2016-12-01
Individual tree growth rates can be affected by various factors such as species, soil fertility, stand development stage, disturbance, and climate etc. To estimate the effect of changes in tree growth rate on the structure and functionality of forest ecosystem in the future, we analyzed the change of species-specific growth trends using the fifth Korea national forest inventory data, which was collected from 2006 to 2010. The ring samples of average tree were collected from nationwide inventory plots and the total number of individual tree ring series was 69,128 covering 185 tree species. Among those, fifty one species with more than 100 tree ring series were used for our analysis. For growth-trend analysis, standardized regional curves of individual species growth were generated from three forest zone in South Korea; subarctic, cool temperate, warm temperate forest zone. Then individual tree ring series was indexed by dividing the growth of the tree by expected growth from standardized regional curves. Then the ratio of all tree ring series were aligned by year and the Spearman's correlation coefficient of each species was calculated. The results show that most of species had increasing growth rates as forests developed after Korean war. For the last thirty years, 67.3% of species including Quercus spp. and Zelkova serrata had positive growth trends, on the other hand, 11.5% of species including Pinus spp. showed negative growth trends probably due to the changes in successional stages in Korean forests and climate change. These trends also vary with climate zone and species. For examples, Pinus densiflora, which showed negative growth trend overall, had steep negative growth trends in boreal and temperate zone, whereas it showed no specific trend in sub-tropical climate zone. Our trend analysis on 51 temperate tree species growth will be essential to predict the temperate forests species change for the this century.
NASA Astrophysics Data System (ADS)
McGee, D.; Green, B.; Donohoe, A.; Marshall, J.
2015-12-01
Recent studies have provided a framework for understanding the zonal-mean position of the tropical rain belt by documenting relationships between rain belt latitude and atmospheric heat transport across the equator (Donohoe et al., 2013). Modern seasonal and interannual variability in globally-averaged rain belt position (often referred to as 'ITCZ position') reflects the interhemispheric heat balance, with the rain belt's displacement toward the warmer hemisphere directly proportional to atmospheric heat transport into the cooler hemisphere. Model simulations suggest that rain belt shifts are likely to have obeyed the same relationship with interhemispheric heat transport in response to past changes in orbital parameters, ice sheets, and ocean circulation. This relationship implies that even small (±1 degree) shifts in the mean rain belt require large changes in hemispheric heat budgets, placing tight bounds on mean rain belt shifts in past climates. This work has primarily viewed tropical circulation in two dimensions, as a pair of zonal-mean Hadley cells on either side of the rain belt that are displaced north and south by perturbations in hemispheric energy budgets, causing the atmosphere to transport heat into the cooler hemisphere. Here we attempt to move beyond this zonal-mean perspective, motivated by arguments that the Asian monsoon system, rather than the zonal-mean circulation, plays the dominant role in annual-mean heat transport into the southern hemisphere in the modern climate (Heaviside and Czaja, 2012; Marshall et al., 2014). We explore a range of climate change experiments, including simulations of North Atlantic cooling and mid-Holocene climate, to test whether changes in interhemispheric atmospheric heat transport are primarily driven by the mean Hadley circulation, the Asian monsoon system, or other regional-scale atmospheric circulation changes. The scalings that this work identifies between Asian monsoon changes and atmospheric heat transport help to provide quantitative insights into Asian monsoon variability in past climates. References cited: Donohoe, A. et al., (2013) Journal of Climate 26, 3597-3618. Heaviside, C. and Czaja, A. (2012) Quart. J. Royal Met. Soc. 139, 2181-2189. Marshall, J. et al., (2014) Climate Dynamics 42, 1967-1979.
Cool Space Bags Filled With Funny Voice Air Studying Space Rain
NASA Astrophysics Data System (ADS)
Halford, A. J.; MacDonald, E.
2016-12-01
Today I will tell you a bit about our work: big bags of funny voice air looking at space rain into the top of the sky, where there's not much sky left. So what makes stuff, both hot and cold tiny stuff, and I mean tiny tiny things, like really tiny things, fall into the top of the sky? Many different things. Some of these things are really really long waves, long waves, short waves that make angry cat noises, and short waves that sound like animals that fly in the morning along with other things. But how do we study this? We use big bags filled with funny voice air to fly near the top of the sky. When the tiny things that can't be seen rain into the top of the sky they make lights that can not be seen by eye, some move fast like the tiny things and many move slower. Our big bags of funny voice air carry computers and things that can see this light that can not be seen by eye. We use this not seen light to tell us what stuff fell into the top of the sky. Some waves will push the slower tiny stuff and some waves will push the faster tiny stuff. By looking at the number of slow and fast stuff we can help find out what pushed it. With our friends, computers who fly in space, we can see the different waves in space and see if it was where the tiny things rained into the top of the sky. Why do we study this? These tiny things can hurt our friends in space, both the computers as well as people in space and here in the world. We want to be able to know when this space rain will happen. But in order to know when these tiny tiny things will fall into the sky we have to first learn how to best look at and study them. Then we will know how often they rain down, where this space rain happens, and how large of an area this space rain falls in.
Gutiérrez, Alvaro G.; Armesto, Juan J.; Díaz, M. Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests. PMID:25068869
Gutiérrez, Alvaro G; Armesto, Juan J; Díaz, M Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.
Atlantic forcing of Western Mediterranean winter rain minima during the last 12,000 years
NASA Astrophysics Data System (ADS)
Zielhofer, Christoph; Fletcher, William J.; Mischke, Steffen; De Batist, Marc; Campbell, Jennifer F. E.; Joannin, Sebastien; Tjallingii, Rik; El Hamouti, Najib; Junginger, Annett; Stele, Andreas; Bussmann, Jens; Schneider, Birgit; Lauer, Tobias; Spitzer, Katrin; Strupler, Michael; Brachert, Thomas; Mikdad, Abdeslam
2017-02-01
The limited availability of high-resolution continuous archives, insufficient chronological control, and complex hydro-climatic forcing mechanisms lead to many uncertainties in palaeo-hydrological reconstructions for the Western Mediterranean. In this study we present a newly recovered 19.63 m long core from Lake Sidi Ali in the North African Middle Atlas, a transition zone of Atlantic, Western Mediterranean and Saharan air mass trajectories. With a multi-proxy approach based on magnetic susceptibility, carbonate and total organic C content, core-scanning and quantitative XRF, stable isotopes of ostracod shells, charcoal counts, Cedrus pollen abundance, and a first set of diatom data, we reconstruct Western Mediterranean hydro-climatic variability, seasonality and forcing mechanisms during the last 12,000 yr. A robust chronological model based on AMS 14C dated pollen concentrates supports our high-resolution multi-proxy study. Long-term trends reveal low lake levels at the end of the Younger Dryas, during the mid-Holocene interval 6.6 to 5.4 cal ka BP, and during the last 3000 years. In contrast, lake levels are mostly high during the Early and Mid-Holocene. The record also shows sub-millennial- to centennial-scale decreases in Western Mediterranean winter rain at 11.4, 10.3, 9.2, 8.2, 7.2, 6.6, 6.0, 5.4, 5.0, 4.4, 3.5, 2.9, 2.2, 1.9, 1.7, 1.5, 1.0, 0.7, and 0.2 cal ka BP. Early Holocene winter rain minima are in phase with cooling events and millennial-scale meltwater discharges in the sub-polar North Atlantic. Our proxy parameters do not show so far a clear impact of Saharan air masses on Mediterranean hydro-climate in North Africa. However, a significant hydro-climatic shift at the end of the African Humid Period (∼5 ka) indicates a change in climate forcing mechanisms. The Late Holocene climate variability in the Middle Atlas features a multi-centennial-scale NAO-type pattern, with Atlantic cooling and Western Mediterranean winter rain maxima generally associated with solar minima.
A temperate rocky super-Earth transiting a nearby cool star
NASA Astrophysics Data System (ADS)
Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Bonfils, Xavier; Astudillo-Defru, Nicola; Haywood, Raphaëlle D.; Berta-Thompson, Zachory K.; Newton, Elisabeth R.; Rodriguez, Joseph E.; Winters, Jennifer G.; Tan, Thiam-Guan; Almenara, Jose-Manuel; Bouchy, François; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Murgas, Felipe; Pepe, Francesco; Santos, Nuno C.; Udry, Stephane; Wünsche, Anaël; Esquerdo, Gilbert A.; Latham, David W.; Dressing, Courtney D.
2017-04-01
M dwarf stars, which have masses less than 60 per cent that of the Sun, make up 75 per cent of the population of the stars in the Galaxy. The atmospheres of orbiting Earth-sized planets are observationally accessible via transmission spectroscopy when the planets pass in front of these stars. Statistical results suggest that the nearest transiting Earth-sized planet in the liquid-water, habitable zone of an M dwarf star is probably around 10.5 parsecs away. A temperate planet has been discovered orbiting Proxima Centauri, the closest M dwarf, but it probably does not transit and its true mass is unknown. Seven Earth-sized planets transit the very low-mass star TRAPPIST-1, which is 12 parsecs away, but their masses and, particularly, their densities are poorly constrained. Here we report observations of LHS 1140b, a planet with a radius of 1.4 Earth radii transiting a small, cool star (LHS 1140) 12 parsecs away. We measure the mass of the planet to be 6.6 times that of Earth, consistent with a rocky bulk composition. LHS 1140b receives an insolation of 0.46 times that of Earth, placing it within the liquid-water, habitable zone. With 90 per cent confidence, we place an upper limit on the orbital eccentricity of 0.29. The circular orbit is unlikely to be the result of tides and therefore was probably present at formation. Given its large surface gravity and cool insolation, the planet may have retained its atmosphere despite the greater luminosity (compared to the present-day) of its host star in its youth. Because LHS 1140 is nearby, telescopes currently under construction might be able to search for specific atmospheric gases in the future.
A temperate rocky super-Earth transiting a nearby cool star.
Dittmann, Jason A; Irwin, Jonathan M; Charbonneau, David; Bonfils, Xavier; Astudillo-Defru, Nicola; Haywood, Raphaëlle D; Berta-Thompson, Zachory K; Newton, Elisabeth R; Rodriguez, Joseph E; Winters, Jennifer G; Tan, Thiam-Guan; Almenara, Jose-Manuel; Bouchy, François; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Murgas, Felipe; Pepe, Francesco; Santos, Nuno C; Udry, Stephane; Wünsche, Anaël; Esquerdo, Gilbert A; Latham, David W; Dressing, Courtney D
2017-04-19
M dwarf stars, which have masses less than 60 per cent that of the Sun, make up 75 per cent of the population of the stars in the Galaxy. The atmospheres of orbiting Earth-sized planets are observationally accessible via transmission spectroscopy when the planets pass in front of these stars. Statistical results suggest that the nearest transiting Earth-sized planet in the liquid-water, habitable zone of an M dwarf star is probably around 10.5 parsecs away. A temperate planet has been discovered orbiting Proxima Centauri, the closest M dwarf, but it probably does not transit and its true mass is unknown. Seven Earth-sized planets transit the very low-mass star TRAPPIST-1, which is 12 parsecs away, but their masses and, particularly, their densities are poorly constrained. Here we report observations of LHS 1140b, a planet with a radius of 1.4 Earth radii transiting a small, cool star (LHS 1140) 12 parsecs away. We measure the mass of the planet to be 6.6 times that of Earth, consistent with a rocky bulk composition. LHS 1140b receives an insolation of 0.46 times that of Earth, placing it within the liquid-water, habitable zone. With 90 per cent confidence, we place an upper limit on the orbital eccentricity of 0.29. The circular orbit is unlikely to be the result of tides and therefore was probably present at formation. Given its large surface gravity and cool insolation, the planet may have retained its atmosphere despite the greater luminosity (compared to the present-day) of its host star in its youth. Because LHS 1140 is nearby, telescopes currently under construction might be able to search for specific atmospheric gases in the future.
Darby, B.J.; Housman, D.C.; Zaki, A.M.; Shamout, Y.; Adl, S.M.; Belnap, J.; Neher, D.A.
2006-01-01
Biological soil crusts are diverse assemblages of bacteria, cyanobacteria, algae, fungi, lichens, and mosses that cover much of arid land soils. The objective of this study was to quantify protozoa associated with biological soil crusts and test the response of protozoa to increased temperature and precipitation as is predicted by some global climate models. Protozoa were more abundant when associated with cyanobacteria/lichen crusts than with cyanobacteria crusts alone. Amoebae, flagellates, and ciliates originating from the Colorado Plateau desert (cool desert, primarily winter precipitation) declined 50-, 10-, and 100-fold, respectively, when moved in field mesocosms to the Chihuahuan Desert (hot desert, primarily summer rain). However, this was not observed in protozoa collected from the Chihuahuan Desert and moved to the Sonoran desert (hot desert, also summer rain, but warmer than Chihuahuan Desert). Protozoa in culture began to encyst at 37??C. Cysts survived the upper end of daily temperatures (37-55??C), and could be stimulated to excyst if temperatures were reduced to 15??C or lower. Results from this study suggest that cool desert protozoa are influenced negatively by increased summer precipitation during excessive summer temperatures, and that desert protozoa may be adapted to a specific desert's temperature and precipitation regime. ?? 2006 by the International Society of Protistologists.
Expansion and Contraction of the Indo-Pacific Tropical Rain Belt over the Last Three Millennia.
Denniston, Rhawn F; Ummenhofer, Caroline C; Wanamaker, Alan D; Lachniet, Matthew S; Villarini, Gabriele; Asmerom, Yemane; Polyak, Victor J; Passaro, Kristian J; Cugley, John; Woods, David; Humphreys, William F
2016-09-29
The seasonal north-south migration of the intertropical convergence zone (ITCZ) defines the tropical rain belt (TRB), a region of enormous terrestrial and marine biodiversity and home to 40% of people on Earth. The TRB is dynamic and has been shown to shift south as a coherent system during periods of Northern Hemisphere cooling. However, recent studies of Indo-Pacific hydroclimate suggest that during the Little Ice Age (LIA; AD 1400-1850), the TRB in this region contracted rather than being displaced uniformly southward. This behaviour is not well understood, particularly during climatic fluctuations less pronounced than those of the LIA, the largest centennial-scale cool period of the last millennium. Here we show that the Indo-Pacific TRB expanded and contracted numerous times over multi-decadal to centennial scales during the last 3,000 yr. By integrating precisely-dated stalagmite records of tropical hydroclimate from southern China with a newly enhanced stalagmite time series from northern Australia, our study reveals a previously unidentified coherence between the austral and boreal summer monsoon. State-of-the-art climate model simulations of the last millennium suggest these are linked to changes in the structure of the regional manifestation of the atmosphere's meridional circulation.
Expansion and Contraction of the Indo-Pacific Tropical Rain Belt over the Last Three Millennia
Denniston, Rhawn F.; Ummenhofer, Caroline C.; Wanamaker, Alan D.; Lachniet, Matthew S.; Villarini, Gabriele; Asmerom, Yemane; Polyak, Victor J.; Passaro, Kristian J.; Cugley, John; Woods, David; Humphreys, William F.
2016-01-01
The seasonal north-south migration of the intertropical convergence zone (ITCZ) defines the tropical rain belt (TRB), a region of enormous terrestrial and marine biodiversity and home to 40% of people on Earth. The TRB is dynamic and has been shown to shift south as a coherent system during periods of Northern Hemisphere cooling. However, recent studies of Indo-Pacific hydroclimate suggest that during the Little Ice Age (LIA; AD 1400–1850), the TRB in this region contracted rather than being displaced uniformly southward. This behaviour is not well understood, particularly during climatic fluctuations less pronounced than those of the LIA, the largest centennial-scale cool period of the last millennium. Here we show that the Indo-Pacific TRB expanded and contracted numerous times over multi-decadal to centennial scales during the last 3,000 yr. By integrating precisely-dated stalagmite records of tropical hydroclimate from southern China with a newly enhanced stalagmite time series from northern Australia, our study reveals a previously unidentified coherence between the austral and boreal summer monsoon. State-of-the-art climate model simulations of the last millennium suggest these are linked to changes in the structure of the regional manifestation of the atmosphere’s meridional circulation. PMID:27682252
Expansion and Contraction of the Indo-Pacific Tropical Rain Belt over the Last Three Millennia
NASA Astrophysics Data System (ADS)
Denniston, Rhawn F.; Ummenhofer, Caroline C.; Wanamaker, Alan D.; Lachniet, Matthew S.; Villarini, Gabriele; Asmerom, Yemane; Polyak, Victor J.; Passaro, Kristian J.; Cugley, John; Woods, David; Humphreys, William F.
2016-09-01
The seasonal north-south migration of the intertropical convergence zone (ITCZ) defines the tropical rain belt (TRB), a region of enormous terrestrial and marine biodiversity and home to 40% of people on Earth. The TRB is dynamic and has been shown to shift south as a coherent system during periods of Northern Hemisphere cooling. However, recent studies of Indo-Pacific hydroclimate suggest that during the Little Ice Age (LIA; AD 1400-1850), the TRB in this region contracted rather than being displaced uniformly southward. This behaviour is not well understood, particularly during climatic fluctuations less pronounced than those of the LIA, the largest centennial-scale cool period of the last millennium. Here we show that the Indo-Pacific TRB expanded and contracted numerous times over multi-decadal to centennial scales during the last 3,000 yr. By integrating precisely-dated stalagmite records of tropical hydroclimate from southern China with a newly enhanced stalagmite time series from northern Australia, our study reveals a previously unidentified coherence between the austral and boreal summer monsoon. State-of-the-art climate model simulations of the last millennium suggest these are linked to changes in the structure of the regional manifestation of the atmosphere’s meridional circulation.
Paukert, M.; Hoose, C.; Simmel, M.
2017-02-21
In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. Conversely, the immersion freezing of larger drops—“rain”—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. We introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation inmore » raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This also provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paukert, M.; Hoose, C.; Simmel, M.
In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. Conversely, the immersion freezing of larger drops—“rain”—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. We introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation inmore » raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This also provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.« less
Whitlock, C.; Sarna-Wojcicki, A. M.; Bartlein, P.J.; Nickmann, R.J.
2000-01-01
Sediment cores from Carp Lake provide a pollen record of the last ca. 125,000 years that helps disclose vegetational and climatic conditions from the present day to the previous interglaciation (120-133 ka). The core also contained 15 tephra layers, which were characterised by electron-microprobe analysis of volcanic glass shards. Identified tephra include Mount St. Helens Ye, 3.69 ka; Mazama ash bed, 7.54 ka; Mount St. Helens layer C, 35-50 ka; an unnamed Mount St. Helens tephra, 75-150 ka; the tephra equivalent of layer E at Pringle Falls, Oregon, <218 ka; and an andesitic tephra layer similar to that at Tulelake, California, 174 ka. Ten calibrated radiocarbon ages and the ages of Mount St. Helens Ye, Mazama ash, and the unnamed Mount St. Helens tephra were used to develop an age-depth model. This model was refined by also incorporating the age of marine oxygen isotope stage (IS) boundary 4/5 (73.9 ka) and the age of IS-5e (125 ka). The justification for this age-model is based on an analysis of the pollen record and lithologic data. The pollen record is divided into 11 assemblage zones that describe alternations between periods of montane conifer forest, pine forest, and steppe. The previous interglacial period (IS-5e) supported temperate xerothermic forests of pine and oak and a northward and westward expansion of steppe and juniper woodland, compared to their present occurrence. The period from 83 to 117 ka contains intervals of pine forest and parkland alternating with pine-spruce forest, suggesting shifts from cold humid to cool temperate conditions. Between 73 and 83 ka, a forest of oak, hemlock, Douglas-fir, and fir was present that has no modem analogue. It suggests warm wet summers and cool wet winters. Cool humid conditions during the mid-Wisconsin interval supported mixed conifer forest with Douglas-fir and spruce. The glacial interval featured cold dry steppe, with an expansion of spruce in the late-glacial. Xerothermic communities prevailed in the early Holocene, when temperate steppe was widespread and the lake dried intermittently. The middle Holocene was characterised by ponderosa pine forest, and the modem vegetation was established in the last 3900 yr, when ponderosa pine, Douglas-fir, fir, and oak were part of the local vegetation.
Cooling rate dependence of synthetic SD,PSD,MD magnetite
NASA Astrophysics Data System (ADS)
Koch, S.; Ferk, A.; Hess, K.; Leonhardt, R.
2010-12-01
The influence of the cooling rate on the thermoremanent magnetization is investigated experimentally. Several remelted volcanic glass samples as well as six samples of synthetic magnetite with grain sizes ranging from below 1 μm (single domain) to 12.1 μm (multidomain) are treated. The aim of this study is to investigate the theoretical log-linear relationship of magnetization acquisition with cooling rate and its domain state dependency. Earlier investigations suggest that an assemblage of non interacting SD particles acquires a larger TRM during slower cooling. Negative and/or MD particles, however, lead to a lower TRM after slower cooling rates. To avoid chemical alteration the synthetic samples are sealed in evacuated quartz glass tubes and stabilized thermally. Additionally, a natural phonolitic glass from Tenerife was investigated which was tempered for 10h. The dominating magnetic remanence carriers of the remelted volcanic glass are low titanium titanomagnetites. All samples are heated and cooled in the Earth magnetic field (approx. 48.000 nT) using 5 different cooling rates between 1 K/min and 15 K/m in the unblocking spectrum. The acquired TRM of all samples is measured after the controlled heating/cooling process using a cryogenic magnetometer of type 3G. Additional rock magnetic measurements like hysteresis loops are conducted for the remelted glasses to obtain an independent measure of domain state. Remelted glass samples show single domain characteristics in all rock magnetic measurements. As expected they acquire larger TRMs during slower cooling. Synthetic magnetite samples are currently measured. Unfortunately, due to problems with the cryogenic magnetometer, results were not available by the time of abstract submission.
Forests and climate change: forcings, feedbacks, and the climate benefits of forests.
Bonan, Gordon B
2008-06-13
The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
Spatial contagiousness of canopy disturbance in tropical rain forest: an individual-tree-based test.
Jansen, Patrick A; van der Meer, Peter J; Bongers, Frans
2008-12-01
Spatial contagiousness of canopy dynamics-the tendency of canopy disturbances to occur nearby existing canopy openings due to an elevated risk of tree fall around gaps-has been demonstrated in many temperate-zone forests, but only inferentially for tropical forests. Hypothesized mechanisms increasing the risk of tree fall around tropical forest gaps are (1) increased tree exposure to wind around gaps, (2) reduced stability of trees alongside gaps due to crown asymmetry, or (3) reduced tree health around gaps due to damage from prior disturbances. One hypothesized consequence of elevated disturbance levels around gaps would be that gap-edge zones offer relatively favorable prospects for seedling recruitment, growth, and survival. We tested whether disturbance levels are indeed elevated around natural canopy gaps in a neotropical rain forest in French Guiana, and more so as gaps are larger. We followed the fate of 5660 trees >10 cm stem diameter over five years across 12 ha of old-growth forest and analyzed the risk and magnitude of canopy disturbance events in relation to tree diameter and the proximity and size of natural canopy gaps. We found that the cumulative incidence of disturbance over the five-year survey was not significantly elevated around preexisting gaps, and only weakly related to gap size. Also, neither the risk nor the magnitude of canopy disturbances increased significantly with the proximity of gaps. Moreover, canopy disturbance risk around gaps was independent of gap size, while the magnitude of disturbance events around gaps was weakly related to gap size. Tree size was the major driver of disturbance risk as well as magnitude. We did find an elevated incidence of disturbance inside preexisting gaps, but this "repeat disturbance" was due to an elevated disturbance risk inside gaps, not around gaps. Overall, we found no strong evidence for canopy dynamics in this rain forest being spatially contagious. Our findings are consistent with the traditional view of tropical rain forests as mosaics of patches with predictable regeneration cycles.
NASA Astrophysics Data System (ADS)
Jennings, Keith; Jones, Julia A.
2015-09-01
This study tested multiple hydrologic mechanisms to explain snowpack dynamics in extreme rain-on-snow floods, which occur widely in the temperate and polar regions. We examined 26, 10 day large storm events over the period 1992-2012 in the H.J. Andrews Experimental Forest in western Oregon, using statistical analyses (regression, ANOVA, and wavelet coherence) of hourly snowmelt lysimeter, air and dewpoint temperature, wind speed, precipitation, and discharge data. All events involved snowpack outflow, but only seven events had continuous net snowpack outflow, including three of the five top-ranked peak discharge events. Peak discharge was not related to precipitation rate, but it was related to the 10 day sum of precipitation and net snowpack outflow, indicating an increased flood response to continuously melting snowpacks. The two largest peak discharge events in the study had significant wavelet coherence at multiple time scales over several days; a distribution of phase differences between precipitation and net snowpack outflow at the 12-32 h time scale with a sharp peak at π/2 radians; and strongly correlated snowpack outflow among lysimeters representing 42% of basin area. The recipe for an extreme rain-on-snow event includes persistent, slow melt within the snowpack, which appears to produce a near-saturated zone within the snowpack throughout the landscape, such that the snowpack may transmit pressure waves of precipitation directly to streams, and this process is synchronized across the landscape. Further work is needed to understand the internal dynamics of a melting snowpack throughout a snow-covered landscape and its contribution to extreme rain-on-snow floods.
NASA Astrophysics Data System (ADS)
Ravazzi, Cesare; Pini, Roberta; Breda, Marzia
2009-12-01
We carried out a systematic investigation on the pollen content of sediment adhering to skeletal elements of large mammals which originate from the long lacustrine record of Leffe (Early Pleistocene of the Italian Alps). Three local faunas were discovered during mining activities along the intermediate part (spanning from 1.5 to 0.95 Ma) of the basin succession. The excellent pollen preservation allowed testing the reproducibility of the pollen signal from single skeletons. A clear palaeoenvironmental patterning, consistent with the ecological preferences of the considered mammal species, emerged from the canonical correspondence analysis of pollen types diagnostic for vegetation communities. Edaphic factors related to seasonal river activity changes and to the development of swamp forests in the riverbanks are significantly associated to the occurrences of Hippopotamus cf. antiquus, whereas finds of Mammuthus meridionalis belong to fully forested landscapes dominated by conifer or mixed forests of oceanic, warm to cool-temperate climate. Rhinoceros habitats include variable forest cover under different climate states. Distinct cool-temperate, partially open vegetation could be recognized for large deer included Cervalces cf carnutorum. A palynostratigraphic correlation between individual spectra and a reference palynostratigraphic record allowed assignment of many fossil remains to a precise stratigraphic position. This procedure also shown that the Leffe local faunas include specimens accumulated under different environmental and climate states, as a consequence of high-frequency climate changes characterizing the Late Villafranchian Early Pleistocene.
Nakanishi, Takahiro; Atarashi-Andoh, Mariko; Koarashi, Jun; Saito-Kokubu, Yoko; Hirai, Keizo
2014-02-01
Water-extractable organic carbon (WEOC) in soil consists of a mobile and bioavailable portion of the dissolved organic carbon (DOC) pool. WEOC plays an important role in dynamics of soil organic carbon (SOC) and transport of radionuclides in forest soils. Although considerable research has been conducted on the importance of recent litter versus older soil organic matter as WEOC sources in forest soil, a more thorough evaluation of the temporal pattern of WEOC is necessary. We investigated the seasonal variation in WEOC in a Japanese cool-temperate beech forest soil by using the carbon isotopic composition ((14)C and (13)C) of WEOC as a tracer for the carbon sources. Our observations demonstrated that fresh leaf litter DOC significantly contributed to WEOC in May (35-52%) when the spring snowmelt occurred because of the high water flux and low temperature. In the rainy season, increases in the concentration of WEOC and the proportion of hydrophobic compounds were caused by high microbial activity under wetter conditions. From summer to autumn, the WEOC in the mineral soil horizons was also dominated by microbial release from SOC (>90%). These results indicate that the origin and dynamics of WEOC are strongly controlled by seasonal events such as the spring snowmelt and the rainy season's intense rainfall. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cotter, J D; Sleivert, G G; Roberts, W S; Febbraio, M A
2001-04-01
Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (P<0.05). They remained lower at 20 min [e.g. Tc: CON 38.4+/-0.2 (+/-S.E.), LW 37.9+/-0.1, and LC 37.8+/-0.1 degrees C; HR: 177+/-3, 163+/-3 and 167+/-3 b.p.m.), except that FBF was equivalent (P=0.10) between CON (15.5+/-1.6) and LW (13.6+/-1.0 ml.100 ml tissue(-1) x min(-1)). Subsequent power output was higher in LW (2.95+/-0.24) and LC (2.91+/-0.25) than in CON (2.52+/-0.28 W kg(-1), P=0.00, N=8), yet final Tc remained lower. Pre-cooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled.
Native fat globules of different sizes selected from raw milk: thermal and structural behavior.
Michalski, Marie-Caroline; Ollivon, Michel; Briard, Valérie; Leconte, Nadine; Lopez, Christelle
2004-12-01
The aim of this study was to characterize differences in the thermal and structural behavior between different sized native milk fat globules. A novel microfiltration process permits the selection of native small fat globules (SFG, 1-3 microm) and large fat globules (LFG, >5 microm) in raw milk, that were analyzed by X-ray diffraction (XRD) coupled to differential scanning calorimetry (DSC). There were no major differences in triglyceride crystalline structures between SFG and LFG, after eliminating thermal history and the influence of cooling rates. The three main 3L and 2L crystalline structures appearing under slow cooling existed regardless of globule size. The supercooling increased for the SFG, mainly due to heterogeneous nucleation in winter milk, and also to compositional variations in spring milk. Differences appeared regarding stabilized crystalline forms at 20 degrees C and subsequent cooling: the SFG contained less 2L triglyceride structures than the LFG. These results can be important in dairy manufactures using tempering periods.
High Energy Halogen Chemistry.
1976-01-01
hydrochloric acid . The product was extracted with methylene chloride, dried over magnesium sulfate and distilled to give 65 5 (50$) of (3... hydrochloric acid and water was added to nake the solution turbid (l ml). After 30 rain, the product was distilled to give 1.5 g (£7$) of bis-(3...pressure. The residue was dissolved in 150 ml of absolute ethanol and 30 ml of 5$ hydrochloric acid was added slowly with cooling. The mixture was
Begum, Shahanara; Kudo, Kayo; Matsuoka, Yugo; Nakaba, Satoshi; Yamagishi, Yusuke; Nabeshima, Eri; Rahman, Md Hasnat; Nugroho, Widyanto Dwi; Oribe, Yuichiro; Jin, Hyun-O; Funada, Ryo
2016-01-01
Background and Aims In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. Methods A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. Key Results The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. Conclusions Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees. PMID:26703452
Begum, Shahanara; Kudo, Kayo; Matsuoka, Yugo; Nakaba, Satoshi; Yamagishi, Yusuke; Nabeshima, Eri; Rahman, Md Hasnat; Nugroho, Widyanto Dwi; Oribe, Yuichiro; Jin, Hyun-O; Funada, Ryo
2016-03-01
In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM
NASA Technical Reports Server (NTRS)
Bacmeister, Julio T.; Suarez, Max J.; Robertson, Franklin R.
2004-01-01
Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.
NASA Astrophysics Data System (ADS)
Heusser, Linda; Heusser, Cal; Mix, Alan; McManus, Jerry
2006-12-01
Joint pollen and oxygen isotope data from Ocean Drilling Program Site 1234 in the southeast Pacific provide the first, continuous record of temperate South American vegetation and climate from the last 140 ka. Located at ˜36°S, ˜65 km offshore of Concepcion, Chile, Site 1234 monitors the climatic transition zone between northern semi-arid, summer dry-winter wet climate and southern year-round, rainy, cool temperate climate. Dominance of onshore winds suggests that pollen preserved here reflects transport to the ocean via rivers that drain the region and integrate conditions from the coastal mountains to the Andean foothills. Down-hole changes in diagnostic pollen assemblages from xeric lowland deciduous forest (characterized by grasses, herbs, ferns, and trees such as deciduous beech, Nothofagus obliqua), mesic Valdivian Evergreen Forest (including conifers such as the endangered Prumnopitys andina), and Subantarctic Evergreen Rainforest (comprised primarily of southern beech, N. dombeyi) reveal large rapid shifts that likely reflect latitudinal movements in atmospheric circulation and storm tracks associated with the southern westerly winds. During glacial intervals (MIS 2-4, and 6), rainforests and parkland dominated by Nothofagus moved northward into the region. At the MIS 6/5e transition, coeval with the rapid shift to lower isotopic values, rainforest vegetation was rapidly replaced by xeric plant communities associated with Mediterranean-type climate. An increased prominence of halophytic vegetation suggests that MIS 5e was more arid and possibly warmer than MIS 1. Although rainforest pollen rises again at the end of MIS 5e, lowland deciduous forest pollen persists through MIS 5d and 5c, into MIS 5b. Substantial millennial-scale variations occur in both interglacial and glacial regimes, attesting to the sensitivity of the southern westerly belt to climate change. Comparison of the cool, mesic N. dombeyi rainforest assemblage from Site 1234 with δ18O in the Byrd Ice core shows that on time scales longer than ˜10 ka, cool-moist conditions in central Chile were coherent with and occurred in phase with Antarctic cooling. This is also likely at millennial scales, although rainforest pollen lags Antarctic cooling with exponential response times of about 1000 years, which plausibly reflects the ecological response time to regional climate change.
NASA Astrophysics Data System (ADS)
Dutta, R. K.; Huizenga, R. M.; Amirthalingam, M.; Hermans, M. J. M.; King, A.; Richardson, I. M.
2013-09-01
In situ phase transformation behavior of a high strength S690QL1 steel during continuous cooling under different mechanical loading conditions has been used to investigate the effect of small external loads on the transformation-induced plasticity during bainitic and martensitic transformations. The results show that during phase transformations, the untransformed austenite undergoes plastic deformation, thereby retarding further transformation to bainite/martensite. This occurs independent of external load.
Role of modern climate and hydrology in world oil preservation
NASA Astrophysics Data System (ADS)
Szatmari, Peter
1992-12-01
The accumulation of oil requires a favorable source, a reservoir, good seal-rock quality, and suitably timed thermal history and structuring. The accumulated oil, especially its light fractions, may be subsequently removed by hydrologically controlled processes such as water washing, biodegradation, and tilting of the oil-water contact. These processes are dependent on the climate. In regions that have become increasingly cold or dry during late Cenozoic time, low rainfall, low ground-water flow rates, and low input of nutrients and microorganisms have protected the oil; in warm or temperate rainy climates, high flow rates and high input of nutrients and microorganisms have led to partial or total removal of oil. Thus, most of the rich (>500 000 barrels/day) oil provinces on land are in cold or dry regions, where water is recharged in highlands that receive little rain (<500 mm/yr), such as Texas, Oklahoma, Wyoming, Alaska's North Slope, California, Algeria, Libya, Egypt, the Middle East, the Volga-Ural basin, and western Siberia. Where upland recharge areas are warm or temperate and rainy, as in the eastern United States, western Europe, sub-Saharan Africa, Brazil, India, and most of China, rich oil provinces on land (outside young deltas) are rare, and biodegradation is widespread.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.S.; Chevone, B.I.; Seiler, J.R.
1988-01-01
Red spruce (Picea rubens Sarg.) is a long-lived, shade-tolerant tree that is commonly present in the cool, moist climates at high elevations of the Appalachian Mountains. Recently, an accelerated decline of red spruce has been reported in the northern Appalachians in the Green Mountains on Camels Hump, Vermont and on Whiteface Mountain in New York as well as in the mid and southern Appalachians. Even though many possible causes of this decline have been suggested, none have been established conclusively at present. High acid inputs and elevated concentrations of heavy metals, in addition to ozone stress, have been strongly suspectedmore » as contributing factors for the decline. The objectives of this research is to investigate the efforts of simulated acidic rain and ozone on growth and drought susceptibility of red spruce seedlings by measuring biomass, foliar nutrient status, root hydraulic conductivity, and gas exchange rates.« less
NASA Astrophysics Data System (ADS)
Theobalt, D.; Mandic, O.
2012-04-01
Badenian transgression is well exposed in the open coal pit Bogutovo Selo near Ugljevik in NE Bosnia and Herzegovina, located at the southern margin of the Pannonian Basin. Middle Miocene marine sediments superpose Late Oligocene lignite bearing lacustrine deposits. The studied succession is about 62 m thick and includes the uppermost part of the lake deposits, comprising clays, sands and coal seams, followed by marine sediments. These consist mainly of gray marls, which show some intercalations of thin, dark clay layers, volcanic ash layers and fossiliferous beds as well as carbonate bodies of different thicknesses. The presence of Orbulina suturalis allows a biostratigraphic correlation of the marine transgression horizon with the upper part of the Lower Badenian. 28 planktonic foraminiferal assemblages were investigated using quantitative analysis to evaluate the climate development during the initial marine flooding by the Paratethys Sea. Further on the samples were statistically treated to find out if there are significant differences in assemblages from the marine sediments deposited before and after the initial Serravallian cooling event coinciding with the onset of the Middle Badenian (Wielician) Salinity Crisis. 17 planktonic foraminiferal species were grouped by their palaeoclimatic significance into cool (Globigerina bulloides, G. praebulloides, G. diplostoma, G. concinna, G. tarchanensis, G. falconensis, Turborotalita quinqueloba), temperate (Globorotalia bykovae, G. transsylvanica, G. peripheroronda, Globoturborotalita woodi), warm-temperate (Globigerinella regularis, Tenuitellinata angustiumbilicata) and warm indicators (Globigerinoides trilobus, G. quadrilobatus, Orbulina suturalis, Globoquadrina cf. altispira). The counts were performed mainly on generic level. Upper Lower Badenian (Upper Lagenidae Zone) is represented in the marly succession in the lower part of the section, where the foraminiferal assemblages indicate warmer conditions with high percentages of warm water indicators. A distinct cooling is shown in the uppermost passage of the lower part, which is followed by a 13 m thick carbonate platform of Wielician age. This transition corresponds to the gradual shift from Greenhouse into Icehouse climate after the late Middle Miocene Climatic Optimum. The superposing marly deposits of the late Wielician age (Earliest Serravallian) contain planktonic foraminiferal assemblages that indicate cooler conditions. The general percentage of cool water indicators is much higher than in the lower Badenian sediments.
Thivilliers, Florence; Laurichesse, Eric; Saadaoui, Hassan; Leal-Calderon, Fernando; Schmitt, Véronique
2008-12-02
We produced triglyceride-in-water emulsions comprising partially crystallized droplets, stabilized by a mixture of protein and low molecular weight surfactant. The emulsions were emulsified in the melted state of the oil phase and stored at low temperature (4 degrees C) right after fabrication to induce oil crystallization. The systems were then warmed to room temperature for a short period of time and cooled again to 4 degrees C. Owing to this treatment referred to as temperature cycling or "tempering", the initially fluid emulsions turned into hard gels. We followed the bulk rheological properties of the materials during and after tempering. The storage modulus, G', exhibited a dramatic increase when tempering was applied. We showed that the systems evolved following two distinct regimes that depend on the average droplet size and on the surfactant-to-protein molar ratio. Gelling may involve partial coalescence of the droplets, i.e., film rupturing with no further shape relaxation because of the solid nature of the droplets. Alternatively, gelling may occur without film rupturing, and is reminiscent of a jamming transition induced by surface roughness. We discussed the origin of these two mechanisms in terms of the properties (size and protuberance) of the interfacial oil crystals.
Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph
2016-01-01
Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine root productivity (FRP) and fine root turnover (and its inverse, root longevity) of three EM and three AM broad-leaved tree species in a natural cool-temperate mixed forest using ingrowth cores and combined the productivity data with data on root biomass per root orders. FRP and root turnover were related to root morphological traits and aboveground productivity. FRP differed up to twofold among the six coexisting species with larger species differences in lower horizons than in the topsoil. Root turnover varied up to fivefold among the species with lowest values in Acer pseudoplatanus and highest in its congener Acer platanoides. Variation in root turnover was larger within the two groups than between EM and AM species. We conclude that the main determinant of FRP and turnover in this mixed forest is species identity, while the influence of mycorrhiza type seems to be less important. PMID:27617016
Hare, K M; Miller, J H; Clark, A G; Daugherty, C H
2005-12-01
The dependence of metabolic processes on temperature constrains the behavior, physiology and ecology of many ectothermic animals. The evolution of nocturnality in lizards, especially in temperate regions, requires adaptations for activity at low temperatures when optimal body temperatures are unlikely to be obtained. We examined whether nocturnal lizards have cold-adapted lactate dehydrogenase (LDH). LDH was chosen as a representative metabolic enzyme. We measured LDH activity of tail muscle in six lizard species (n=123: three nocturnal, two diurnal and one crepuscular) between 5 and 35 degrees C and found no differences in LDH-specific activity or thermal sensitivity among the species. Similarly, the specific activity and thermal sensitivity of LDH were similar between skinks and geckos. Similar enzyme activities among nocturnal and diurnal lizards indicate that there is no selection of temperature specific LDH enzyme activity at any temperature. As many nocturnal lizards actively thermoregulate during the day, LDH may be adapted for a broad range of temperatures rather than adapted specifically for the low temperatures encountered when the animals are active. The total activity of LDH in tropical and temperate lizards is not cold-adapted. More data are required on biochemical adaptations and whole animal thermal preferences before trends can be established.
Physical Controls on Carbon Flux from a Temperate Lake During Autumn Cooling
NASA Astrophysics Data System (ADS)
Czikowsky, M. J.; Miller, S. D.; Tedford, E. W.; MacIntyre, S.
2011-12-01
Seasonally-stratified temperate lakes are a source of carbon dioxide to the atmosphere during autumn overturning as CO2 trapped below the thermocline becomes available to the surface for release to the atmosphere. We made continuous measurements of the vertical profile of pCO2 in a ~600 ha temperate lake (Lake Pleasant, maximum depth ~24 m) in southwestern Adirondack Park, New York from mid-September to mid-October 2010 from a moored pontoon boat. Continuous eddy covariance flux measurements of momentum, sensible and latent heat, and CO2 were made in situ, and the water column thermal structure was measured using thermistor chains. The spatial variability (horizontal and vertical) of pCO2 throughout the lake was characterized periodically using a roving profiling system. At the beginning of the study interval, pCO2 at the pontoon boat varied from 500 ppm at the surface to > 3000 ppm below the thermocline. The vertical profile of pCO2 changed markedly during the campaign due to the effects of wind forcing and evaporation (buoyancy), with nearly uniform, high pCO2 throughout the water column at the end of the campaign (Figure 1). The elevated surface water pCO2 increased CO2 emission to the atmosphere.
NASA Astrophysics Data System (ADS)
Biyanto, T. R.; Matradji; Syamsi, M. N.; Fibrianto, H. Y.; Afdanny, N.; Rahman, A. H.; Gunawan, K. S.; Pratama, J. A. D.; Malwindasari, A.; Abdillah, A. I.; Bethiana, T. N.; Putra, Y. A.
2017-11-01
The development of green building has been growing in both design and quality. The development of green building was limited by the issue of expensive investment. Actually, green building can reduce the energy usage inside the building especially in utilization of cooling system. External load plays major role in reducing the usage of cooling system. External load is affected by type of wall sheathing, glass and roof. The proper selection of wall, type of glass and roof material are very important to reduce external load. Hence, the optimization of energy efficiency and conservation in green building design is required. Since this optimization consist of integer and non-linear equations, this problem falls into Mixed-Integer-Non-Linear-Programming (MINLP) that required global optimization technique such as stochastic optimization algorithms. In this paper the optimized variables i.e. type of glass and roof were chosen using Duelist, Killer-Whale and Rain-Water Algorithms to obtain the optimum energy and considering the minimal investment. The optimization results exhibited the single glass Planibel-G with the 3.2 mm thickness and glass wool insulation provided maximum ROI of 36.8486%, EUI reduction of 54 kWh/m2·year, CO2 emission reduction of 486.8971 tons/year and reduce investment of 4,078,905,465 IDR.
Keith, Heather; Mackey, Brendan G; Lindenmayer, David B
2009-07-14
From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized.
Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests
Keith, Heather; Mackey, Brendan G.; Lindenmayer, David B.
2009-01-01
From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized. PMID:19553199
NASA Astrophysics Data System (ADS)
Lebsock, Matthew D.; L'Ecuyer, Tristan S.; Pincus, Robert
Data from several coincident satellite sensors are analyzed to determine the dependence of cloud and precipitation characteristics of tropical regions on the variance in the water vapor field. Increased vapor variance is associated with decreased high cloud fraction and an enhancement of low-level radiative cooling in dry regions of the domain. The result is found across a range of sea surface temperatures and rain rates. This suggests the possibility of an enhanced low-level circulation feeding the moist convecting areas when vapor variance is large. These findings are consistent with idealized models of self-aggregation, in which the aggregation of convection is maintained by a combination of low-level radiative cooling in dry regions and mid-to-upper-level radiative warming in cloudy regions.
Effect of heat treatment on the tensile strength of 'Elgiloy' orthodontic wire.
Philip, S M; Darvell, B W
2016-08-01
Elgiloy is the trade name of a cobalt-chromium-nickel superalloy that is offered for orthodontic use as wire. Despite some years of use, there is very little information in the dental literature on its mechanical properties, and especially on the effect of the hardening heat treatment (HT), that may be used after forming, on the tensile strength (TS) in relation to the four 'tempers' that are available. Straight lengths of round wire of the four available tempers, Blue, Yellow, Green and Red, were tested in direct tension at 5mm/min in air at 23°C to fracture, both as-supplied (AS) and with HT at 500°C for 5h, in air. HT was done in a high-uniformity, three-zone tube furnace in an alumina boat. The wires were then allowed to cool to room temperature in the boat, outside the furnace. The nominal (original cross-sectional area) peak stress was calculated. TS varied from 1.4 to 2.1GPa, AS, and 1.6 to 2.8GPa HT, according to temper, but with appreciable variation within tempers. Even so, the TS plot of HT vs. AS was very straight and of narrow distribution (intercept: -0.638±0.064GPa, slope: 1.575±0.036, r(2): 0.994918, n=12, F=1957.7, p∼8×10(-13)). The strengthening due to HT was highly regular and TS can be reliably predicted on the basis of the AS value, but this of course cannot be known without specific batch testing. However, the unexpectedly large variation in the AS values within tempers renders such a prediction of lower reliability and usefulness in practice. Indeed, the distinction between tempers can be negligible, making selection according to application demands problematic, and differential property expectation less than certain. No such product data are provided commercially. Quality control is not as tight as might be expected. The implications for treatment need to be explored. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.
Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki
2015-01-01
Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.
Isotopic tracing of the outflow during artificial rain-on-snow event
NASA Astrophysics Data System (ADS)
Juras, Roman; Pavlásek, Jirka; Vitvar, Tomáš; Šanda, Martin; Holub, Jirka; Jankovec, Jakub; Linda, Miloslav
2016-10-01
The frequency of rain-on-snow (ROS) occurrence is increasing and this natural phenomenon is beginning to play an important role in temperate climate regions. Present knowledge of outflow generation mechanisms and rainwater dynamics during ROS is still insufficient. The study introduces a combined method of artificial ROS, isotopic tracing and energy balance to partition the event rainwater and the pre-event non-rainwater in the outflow. A rainfall simulator and water enriched with deuterium were used for identifying event rainwater and pre-event non-rainwater during an ROS event. The ROS experiment was conducted in the Krkonoše Mountains in the Czech Republic. An experimental snow block consisting of ripe and isothermal snow was sprayed with deuterium enriched water. The outflow from the snowpack was continuously monitored to gain quantitative and qualitative information about outflow water. The isotopic deuterium content was further analysed from the samples by means of laser spectroscopy in order to separate the hydrograph components. The deuterium content was also analysed from the snow samples gathered before and after the experiment to identify the retention of event rainwater in the snowpack. Isotopic hydrograph separation revealed that although high rain intensity was applied, the event rainwater represented one half (52.7%) of the total outflow volume. The ripe snowpack retained about one third of the rainwater input (33.6%). Significant changes in the outflowing water quality can therefore be expected during ROS events. This experiment also shows that rainwater during ROS firstly pushes-out the non-rainwater and then contributes to the outflow. These results show that the presented technique allows us to gain sufficient information about rainwater dynamics during ROS.
Modeling Skin Injury from Hot Rice Porridge Spills
2018-01-01
The present work analyzes skin burns from spills of hot rice and milk products. The traditional Norwegian rice porridge serves as an example. By testing spills on objects emulating an arm, it was concluded that spills were seldom thinner than 3 mm, and stayed in place due to the viscosity of the porridge for more than one minute. The Pennes bioheat equation was solved numerically for such spills, including heat conduction to the skin and convective heat losses from the porridge surface. Temperatures were analyzed in the porridge and skin layers, and the resulting skin injury was calculated based on the basal layer temperature. Parameters influencing burn severity, such as porridge layer thickness, porridge temperature, removal of the porridge and thermal effects of post scald tempered (15 °C) water cooling were analyzed. The spilled porridge resulted in a prolonged heat supply to the skin, and the skin injury developed significantly with time. The porridge temperature turned out to be the most important injury parameter. A 70 °C porridge temperature could develop superficial partial-thickness burns. Porridge temperatures at processing temperatures nearly instantly developed severe burns. It was demonstrated that prompt removal of the hot porridge significantly reduced the injury development. The general advice is to avoid serving porridge and similar products at temperatures above 65 °C and, if spilled on the skin, to remove it quickly. After such scald incidents, it is advised to cool the injured area by tempered water for a prolonged period to stimulate healing. PMID:29677134
Harlin-Cognato, April D; Markowitz, Tim; Würsig, Bernd; Honeycutt, Rodney L
2007-08-03
The dusky dolphin (Lagenorhynchus obscurus) is distributed along temperate, coastal regions of New Zealand, South Africa, Argentina, and Peru where it feeds on schooling anchovy, sardines, and other small fishes and squid tightly associated with temperate ocean sea surface temperatures. Previous studies have suggested that the dusky dolphin dispersed in the Southern Hemisphere eastward from Peru via a linear, temperate dispersal corridor provided by the circumpolar west-wind drift. With new mitochondrial and nuclear DNA sequence data, we propose an alternative phylogeographic history for the dusky dolphin that was structured by paleoceanographic conditions that repeatedly altered the distribution of its temperate prey species during the Plio-Pleistocene. In contrast to the west-wind drift hypothesis, phylogenetic analyses support a Pacific/Indian Ocean origin, with a relatively early and continued isolation of Peru from other regions. Dispersal of the dusky dolphin into the Atlantic is correlated with the history of anchovy populations, including multiple migrations from New Zealand to South Africa. Additionally, the cooling of the Eastern Equatorial Pacific led to the divergence of anchovy populations, which in turn explains the north-south equatorial transgression of L. obliquidens and the subsequent divergence of L. obscurus in the Southern Hemisphere. Overall, our study fails to support the west-wind drift hypothesis. Instead, our data indicate that changes in primary productivity and related abundance of prey played a key role in shaping the phylogeography of the dusky dolphin, with periods of ocean change coincident with important events in the history of this temperate dolphin species. Moderate, short-term changes in sea surface temperatures and current systems have a powerful effect on anchovy populations; thus, it is not infeasible that repeated fluctuations in anchovy populations continue to play an important role in the history of coastal dolphin populations.
Catchment scale molecular composition of hydrologically mobilized dissolved organic matter
NASA Astrophysics Data System (ADS)
Raeke, Julia; Lechtenfeld, Oliver J.; Oosterwoud, Marieke R.; Bornmann, Katrin; Tittel, Jörg; Reemtsma, Thorsten
2016-04-01
Increasing concentrations of dissolved organic matter (DOM) in rivers of temperate catchments in Europe and North Amerika impose new technical challenges for drinking water production. The driving factors for this decadal increase in DOM concentration are not conclusive and changes in annual temperatures, precipitation and atmospheric deposition are intensely discussed. It is known that the majority of DOM is released by few but large hydrologic events, mobilizing DOM from riparian wetlands for export by rivers and streams. The mechanisms of this mobilization and the resulting molecular composition of the released DOM may be used to infer long-term changes in the biogeochemistry of the respective catchment. Event-based samples collected over two years from streams in three temperate catchments in the German mid-range mountains were analyzed after solid-phase extraction of DOM for their molecular composition by ultra-high resolution mass spectrometry (FT-ICR MS). Hydrologic conditions, land use and water chemistry parameters were used to complement the molecular analysis. The molecular composition of the riverine DOM was strongly dependent on the magnitude of the hydrologic events, with unsaturated, oxygen-enriched compounds being preferentially mobilized by large events. This pattern is consistent with an increase in dissolved iron and aluminum concentrations. In contrast, the relative proportions of nitrogen and sulfur bearing compounds increased with an increased agricultural land use but were less affected by the mobilization events. Co-precipitation experiments with colloidal aluminum showed that unsaturated and oxygen-rich compounds are preferentially removed from the dissolved phase. The precipitated compounds thus had similar chemical characteristics as compared to the mobilized DOM from heavy rain events. Radiocarbon analyses also indicated that this precipitated fraction of DOM was of comparably young radiocarbon age. DOM radiocarbon from field samples showed that also the event-mobilized DOM had higher radiocarbon content. Overall, hydrology not only controls the quantity of exported carbon from temperate catchments but also strongly influences the molecular composition by mobilizing distinct compound classes in conjunction with dissolved iron and aluminum. From these results future compositional changes in temperate river DOM can be assessed, given an expected increase in the magnitude of hydrologic events, and technical advice for drinking water production may be inferred.
The NASA CloudSat/GPM Light Precipitation Validation Experiment (LPVEx)
NASA Technical Reports Server (NTRS)
Petersen, Walter A.; L'Ecuyer, Tristan; Moisseev, Dmitri
2011-01-01
Ground-based measurements of cool-season precipitation at mid and high latitudes (e.g., above 45 deg N/S) suggest that a significant fraction of the total precipitation volume falls in the form of light rain, i.e., at rates less than or equal to a few mm/h. These cool-season light rainfall events often originate in situations of a low-altitude (e.g., lower than 2 km) melting level and pose a significant challenge to the fidelity of all satellite-based precipitation measurements, especially those relying on the use of multifrequency passive microwave (PMW) radiometers. As a result, significant disagreements exist between satellite estimates of rainfall accumulation poleward of 45 deg. Ongoing efforts to develop, improve, and ultimately evaluate physically-based algorithms designed to detect and accurately quantify high latitude rainfall, however, suffer from a general lack of detailed, observationally-based ground validation datasets. These datasets serve as a physically consistent framework from which to test and refine algorithm assumptions, and as a means to build the library of algorithm retrieval databases in higher latitude cold-season light precipitation regimes. These databases are especially relevant to NASA's CloudSat and Global Precipitation Measurement (GPM) ground validation programs that are collecting high-latitude precipitation measurements in meteorological systems associated with frequent coolseason light precipitation events. In an effort to improve the inventory of cool-season high-latitude light precipitation databases and advance the physical process assumptions made in satellite-based precipitation retrieval algorithm development, the CloudSat and GPM mission ground validation programs collaborated with the Finnish Meteorological Institute (FMI), the University of Helsinki (UH), and Environment Canada (EC) to conduct the Light Precipitation Validation Experiment (LPVEx). The LPVEx field campaign was designed to make detailed measurements of cool-season light precipitation by leveraging existing infrastructure in the Helsinki Precipitation Testbed. LPVEx was conducted during the months of September--October, 2010 and featured coordinated ground and airborne remote sensing components designed to observe and quantify the precipitation physics associated with light rain in low-altitude melting layer environments over the Gulf of Finland and neighboring land mass surrounding Helsinki, Finland.
NASA Astrophysics Data System (ADS)
Fakir, Rachid; Barka, Noureddine; Brousseau, Jean
2018-03-01
This paper proposes a statistical approach to analyze the mechanical properties of a standard test specimen, of cylindrical geometry and in steel 4340, with a diameter of 6 mm, heat-treated and quenched in three different fluids. Samples were evaluated in standard tensile test to access their characteristic quantities: hardness, modulus of elasticity, yield strength, tensile strength and ultimate deformation. The proposed approach is gradually being built (a) by a presentation of the experimental device, (b) a presentation of the experimental plan and the results of the mechanical tests, (c) anova analysis of variance and a representation of the output responses using the RSM response surface method, and (d) an analysis of the results and discussion. The feasibility and effectiveness of the proposed approach leads to a precise and reliable model capable of predicting the variation of mechanical properties, depending on the tempering temperature, the tempering time and the cooling capacity of the quenching medium.
NASA Astrophysics Data System (ADS)
Nadig, D. S.; Bhat, M. R.; Pavan, V. K.; Mahishi, Chandan
2017-09-01
Cryogenic treatment on metals is a well known technology where the materials are exposed to cryogenic temperature for prolonged time duration. The process involves three stages viz. slow cooling, holding at cryogenic temperature and warming to room temperature. During this process, hard and micro sized carbide particles are released within the steel material. In addition, soft and unconverted austenite of steel changes to strong martensite structure. These combined effects increase the strength and hardness of the cryotreated steel. In this experimental study, the effects of cryogenic treatment, austenitising and tempering on the mechanical properties of stainless steel (07X16H6) have been carried. After determining the strength properties of the original material, the specimens were cryotreated at 98K for 24 hours in a specially developed cryotreatment system. The effects of austenitising prior to cryogenic treatment and tempering post cryotreatment on the mechanical properties of steel samples have been experimentally determined and analysed.
NASA Astrophysics Data System (ADS)
Magyari, E. K.; Veres, D.; Wennrich, V.; Wagner, B.; Braun, M.; Jakab, G.; Karátson, D.; Pál, Z.; Ferenczy, Gy; St-Onge, G.; Rethemeyer, J.; Francois, J.-P.; von Reumont, F.; Schäbitz, F.
2014-12-01
The Carpathian Mountains were one of the main mountain reserves of the boreal and cool temperate flora during the Last Glacial Maximum (LGM) in East-Central Europe. Previous studies demonstrated Lateglacial vegetation dynamics in this area; however, our knowledge on the LGM vegetation composition is very limited due to the scarcity of suitable sedimentary archives. Here we present a new record of vegetation, fire and lacustrine sedimentation from the youngest volcanic crater of the Carpathians (Lake St Anne, Lacul Sfânta Ana, Szent-Anna-tó) to examine environmental change in this region during the LGM and the subsequent deglaciation. Our record indicates the persistence of boreal forest steppe vegetation (with Pinus, Betula, Salix, Populus and Picea) in the foreland and low mountain zone of the East Carpathians and Juniperus shrubland at higher elevation. We demonstrate attenuated response of the regional vegetation to maximum global cooling. Between ˜22,870 and 19,150 cal yr BP we find increased regional biomass burning that is antagonistic with the global trend. Increased regional fire activity suggests extreme continentality likely with relatively warm and dry summers. We also demonstrate xerophytic steppe expansion directly after the LGM, from ˜19,150 cal yr BP, and regional increase in boreal woodland cover with Pinus and Betula from 16,300 cal yr BP. Plant macrofossils indicate local (950 m a.s.l.) establishment of Betula nana and Betula pubescens at 15,150 cal yr BP, Pinus sylvestris at 14,700 cal yr BP and Larix decidua at 12,870 cal yr BP. Pollen data furthermore support population genetic inferences regarding the regional presence of some temperate deciduous trees during the LGM (Fagus sylvatica, Corylus avellana, Fraxinus excelsior). Our sedimentological data also demonstrate intensified aeolian dust accumulation between 26,000 and 20,000 cal yr BP.
You can't eat moon rocks. [aerospace technology spinoffs assessment
NASA Technical Reports Server (NTRS)
Kubokawa, C. C.
1976-01-01
The effects produced by the aerospace program are investigated. The technology developed from aerospace-related research, development, and manufacturing has been made available to the public for its use through the NASA Technology Utilization Program. A description is presented of 'spinoffs' of NASA's aerospace programs which are used on a daily basis by the public. Attention is given to the liquid cooled garment technology, meal systems for the elderly, the zinc-rich coating, the emergency blanket, the flexible urethane foam Temper Foam, the 'Fog-Away Coating', and composite graphite equipment.
The As-Quenched Microstructure and Tempering Behaviour of Rapidly Solidified Tungsten Steels.
1980-06-12
probably either martensite or a mixture of martensite and 6-ferrite. In the investigations by Jama and Thursfield 16 Tuli et al 17,18 and Sare1 , higher...ferrite clooe to the foil surface, 17,18 while in the work of Tuli et al , the 6-ferrite existed as cells surrounded by regions of austenite, M 2 C and...present work lies between the experimental 17,18 1 results of Tuli et al and that of Sare , on the scale of increasing cooling rate, and is in
Martin, Thomas E.; Boyce, Andy J.; Fierro-Calderon, Karolina; Mitchell, Adam E.; Armstad, Connor E.; Mouton, James C.; Bin Soudi, Evertius E.
2017-01-01
Nest structure is thought to provide benefits that have fitness consequences for several taxa. Traditionally, reduced nest predation has been considered the primary benefit underlying evolution of nest structure, whereas thermal benefits have been considered a secondary or even non-existent factor. Yet, the relative roles of these factors on nest structures remain largely unexplored.Enclosed nests have a constructed or natural roof connected to sides that allow a restricted opening or tube entrance that provides cover in all directions except the entrance, whereas open nests are cups or platforms that are open above. We show that construction of enclosed nests is more common among songbirds (Passeriformes) in tropical and southern hemisphere regions than in north temperate regions. This geographic pattern may reflect selection from predation risk, under long-standing assumptions that nest predation rates are higher in southern regions and that enclosed nests reduce predation risk compared with open cup nests. We therefore compared nest predation rates between enclosed vs. open nests in 114 songbird species that do not nest in tree holes among five communities of coexisting birds, and for 205 non-hole-nesting species from the literature, across northern temperate, tropical, and southern hemisphere regions.Among coexisting species, enclosed nests had lower nest predation rates than open nests in two south temperate sites, but not in either of two tropical sites or a north temperate site. Nest predation did not differ between nest types at any latitude based on literature data. Among 319 species from both our field studies and the literature, enclosed nests did not show consistent benefits of reduced predation and, in fact, predation was not consistently higher in the tropics, contrary to long-standing perspectives.Thermal benefits of enclosed nests were indicated based on three indirect results. First, species that built enclosed nests were smaller than species using open nests both among coexisting species and among species from the literature. Smaller species lose heat fastest and thereby may gain important thermal benefits from reduced convective cooling. Second, eggs were warmed by parents for less time in species with enclosed nests, as can be expected if egg cooling rates are slower. Finally, species using enclosed nests exhibited enhanced growth of mass and wings compared with species using open nests, suggesting reduced thermoregulatory costs allowed increased energy for growth.Enclosed nests may therefore provide more consistent thermal than nest predation benefits, counter to long-standing perspectives.
Thermospheric Nitric Oxide Response to Shock-led Storms
Knipp, D. J.; Pette, D. V.; Kilcommons, L. M.; Isaacs, T. L.; Cruz, A. A.; Mlynczak, M. G.; Hunt, L. A.; Lin, C. Y.
2017-01-01
We present a multi-year superposed epoch study of the Sounding of the Atmosphere using Broadband Emission Radiometry nitric oxide (NO) emission data. NO is a trace constituent in the thermosphere that acts as cooling agent via infrared (IR) emissions. The NO cooling competes with storm time thermospheric heating resulting in a thermostat effect. Our study of nearly 200 events reveals that shock-led interplanetary coronal mass ejections (ICMEs) are prone to early and excessive thermospheric NO production and IR emissions. Excess NO emissions can arrest thermospheric expansion by cooling the thermosphere during intense storms. The strongest events curtail the interval of neutral density increase and produce a phenomenon known as thermospheric ‘overcooling’. We use Defense Meteorological Satellite Program particle precipitation data to show that interplanetary shocks and their ICME drivers can more than double the fluxes of precipitating particles that are known to trigger the production of thermospheric NO. Coincident increases in Joule heating likely amplify the effect. In turn, NO emissions more than double. We discuss the roles and features of shock/sheath structures that allow the thermosphere to temper the effects of extreme storm time energy input and explore the implication these structures may have on mesospheric NO. Shock-driven thermospheric NO IR cooling likely plays an important role in satellite drag forecasting challenges during extreme events. PMID:28824340
Thermospheric Nitric Oxide Response to Shock-led Storms.
Knipp, D J; Pette, D V; Kilcommons, L M; Isaacs, T L; Cruz, A A; Mlynczak, M G; Hunt, L A; Lin, C Y
2017-02-01
We present a multi-year superposed epoch study of the Sounding of the Atmosphere using Broadband Emission Radiometry nitric oxide (NO) emission data. NO is a trace constituent in the thermosphere that acts as cooling agent via infrared (IR) emissions. The NO cooling competes with storm time thermospheric heating resulting in a thermostat effect. Our study of nearly 200 events reveals that shock-led interplanetary coronal mass ejections (ICMEs) are prone to early and excessive thermospheric NO production and IR emissions. Excess NO emissions can arrest thermospheric expansion by cooling the thermosphere during intense storms. The strongest events curtail the interval of neutral density increase and produce a phenomenon known as thermospheric 'overcooling'. We use Defense Meteorological Satellite Program particle precipitation data to show that interplanetary shocks and their ICME drivers can more than double the fluxes of precipitating particles that are known to trigger the production of thermospheric NO. Coincident increases in Joule heating likely amplify the effect. In turn, NO emissions more than double. We discuss the roles and features of shock/sheath structures that allow the thermosphere to temper the effects of extreme storm time energy input and explore the implication these structures may have on mesospheric NO. Shock-driven thermospheric NO IR cooling likely plays an important role in satellite drag forecasting challenges during extreme events.
NASA Astrophysics Data System (ADS)
Ma, Xiaoping; Langelier, Brian; Gault, Baptiste; Subramanian, Sundaresa
2017-05-01
The role of Nb in normalized and tempered Ti-bearing 13Cr5Ni2Mo super martensitic stainless steel is investigated through in-depth characterization of the bimodal chemistry and size of Nb-rich precipitates/atomic clusters and Nb in solid solution. Transmission electron microscopy and atom probe tomography are used to analyze the samples and clarify precipitates/atom cluster interactions with dislocations and austenite grain boundaries. The effect of 0.1 wt pct Nb addition on the promotion of (Ti, Nb)N-Nb(C,N) composite precipitates, as well as the retention of Nb in solution after cooling to room temperature, are analyzed quantitatively. (Ti, Nb)N-Nb(C,N) composite precipitates with average diameters of approximately 24 ± 8 nm resulting from epitaxial growth of Nb(C,N) on pre-existing (Ti,Nb)N particles, with inter-particle spacing on the order of 205 ± 68 nm, are found to be associated with mean austenite grain size of 28 ± 10 µm in the sample normalized at 1323 K (1050 °C). The calculated Zener limiting austenite grain size of 38 ± 13 µm is in agreement with the experimentally observed austenite grain size distribution. 0.08 wt pct Nb is retained in the as-normalized condition, which is able to promote Nb(C, N) atomic clusters at dislocations during tempering at 873 K (600 °C) for 2 hours, and increases the yield strength by 160 MPa, which is predicted to be close to maximum increase in strengthening effect. Retention of solute Nb before tempering also leads to it preferentially combing with C and N to form Nb(C, N) atom clusters, which suppresses the occurrence of Cr- and Mo-rich carbides during tempering.
Transformation and precipitation in vanadium treated steels
NASA Astrophysics Data System (ADS)
Vassiliou, Andreas D.
A series of carbon manganese steels containing varying amounts of carbon, vanadium and nitrogen was investigated in relation to the solubility of VC and VN in austenite, the grain coarsening characteristics of austenite, the tempering of martensite and other structures, the transformation during continuous cooling, the effect of vanadium addition and increasing nitrogen content on the thermo-mechanical processing of austenite, and the transformation of various morphologies of austenite to ferrite.The sites for preferential nucleation and growth of ferrite were identified and the effect of ferrite grain size inhomogeneity was investigated with a view to minimising it.The C/N ratio in the V(CN) precipitates was largely controlled by C/N ratio in the steel and it was also influenced by the austenitising treatment. As expected, the solubility of VN was less than that of VC.A systematic investigation of austenitising time and temperature on the grain coarsening characteristics was carried out showing the effects of vanadium, carbon and nitrogen. It was tentatively suggested that C-C and N-N clustering in the vanadium free steels controlled the grain growth whereas in the presence of vanadium, it was shown that VN and VC pinned the austenite grain boundaries and restricted grain growth. However coarsening or solution of VC and VN allowed the grain bondaries to migrate and grain coarsening occurred. The grain coarsening temperature was controlled predominantly by VN, whilst the VC dissolved frequently below the grain coarsening temperature.In the as quenched martensite, increasing nitrogen progressively increased the as quenched hardness, and the hardness also greatly increased with increasing carbon and vanadium added together. Examining the precipitation strengthening in tempered martensite showed that in the absence of vanadium, martensite softened progressively with increasing temperature and time. Vanadium additions increased the hardness level during low temperature tempering and at higher tempering temperature introduced secondary hardening. The intensity of secondary hardening increased with increasing vanadium, whereas austenitising temperature had little or no effect. The softening after the secondary hardening was faster after austenitising at the higher temperature and when recrystallisation occurred at the highest tempering temperatures, the hardness was lower due to coarse recrystallised ferrite.Isothermal transformation studies showed that vanadium additions raised the Ar3 temperature and accelerated ferrite nucleation, whilst the growth of ferrite was delayed due to the formation of V(CN) interphase and general precipitation pinning, of the transformation front. Increasing nitrogen content in the V-steel increased the incubation period for ferrite nucleation and increasingly reduced the ferrite growth by increasing V(CN) precipitation pinning of the transformation front.Transformation during continuous cooling was examined in relation to the effect of vanadium, carbon and nitrogen together with the effect of austenitising temperature. Increasing austenitising temperature increased the austenite grain size, and it then became apparent that increasing vanadium, carbon and nitrogen increased the hardenability and raised the hardness level of the jominy curve for the non-martensitic products. (Abstract shortened by ProQuest.).
Impact production of NO and reduced species
NASA Technical Reports Server (NTRS)
Zahnle, K.; Kasting, J.; Sleep, N.
1988-01-01
It has recently been suggested that a reported spike in seawater (87)Sr/(86)Sr at the K-T boundary is the signature of an impact-generated acid deluge. However, the amount of acid required is implausibly large. Some about 3 x 10 to the 15th power moles of Sr must be weathered from silicates to produce the inferred Sr spike. The amount of acid required is at least 100 and probably 1000 times greater. Production of 3 x 10 to the 18th power moles of NO is clearly untenable. The atmosphere presently contains only 1.4 x 10 to the 20th power moles of N-sub 2 and 3.8 x 10 to the 19th power moles of O sub 2 If the entire atmosphere were shocked to 2000 K and cooled within a second, the total NO produced would be about 3 x 10 to the 18th power moles. This is obviously unrealistic. A (still to short) cooling time of 10th to the 3rd power sec reduces NO production by an order of magnitude. In passing, we note that if the entire atmosphere had in fact been shocked to 2000 K, acid rain would have been the least of a dinosaur's problems. Acid rain as a mechanism poses poses other difficulties. Recently deposited carbonates would have been most susceptable to acid attack. The researchers' preferred explanation is simply increased continental erosion following ecological trauma, coupled with enchanced levels of CO-sub 2.
Heat treated 9 Cr-1 Mo steel material for high temperature application
Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher
2012-08-21
The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.
NASA Astrophysics Data System (ADS)
Alamo, A.; Brachet, J. C.; Castaing, A.; Lepoittevin, C.; Barcelo, F.
1998-10-01
This paper essentially deals with chemical composition effects on metallurgical and mechanical behaviour of Fe-7.5/11CrWVTa low activation martensitic steels. Materials investigated are experimental alloys as well as large-scale heats having different contents of Cr (7.5-11%), Ta (0-0.1%), W (0.8-3%) and interstitial elements, like carbon (0.09-0.17%) and nitrogen (0.004-0.045%). For this purpose, phase transformation during heating and cooling have been investigated in anisothermal and isothermal conditions to establish the corresponding Continuous Cooling Transformation (CCT) and Time-Temperature-Transformation (TTT) diagrams. Austenitisation (normalisation) and tempering treatments were performed in a wide range of temperatures. Tensile and impact properties as a function of composition and metallurgical conditions have been determined and compared to 9Cr-1Mo conventional martensitic steels.
Penguin heat-retention structures evolved in a greenhouse Earth.
Thomas, Daniel B; Ksepka, Daniel T; Fordyce, R Ewan
2011-06-23
Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a 'Greenhouse Earth' interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets.
Small, Gaston E.; Torres, Pedro J.; Schwizer, Lauren M.; Duff, John H.; Pringle, Catherine M.
2013-01-01
The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient-poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N- and P-excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year-round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic-terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.
NASA Astrophysics Data System (ADS)
Roth, T. R.; Nolin, A. W.
2015-12-01
Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.
NASA Astrophysics Data System (ADS)
Foley, B. J.; Driscoll, P. E.
2015-12-01
Many factors have conspired to make Earth a home to complex life. Earth has abundant water due to a combination of factors, including orbital distance and the climate regulating feedbacks of the long-term carbon cycle. Earth has plate tectonics, which is crucial for maintaining long-term carbon cycling and may have been an important energy source for the origin of life in seafloor hydrothermal systems. Earth also has a strong magnetic field that shields the atmosphere from the solar wind and the surface from high-energy particles. Synthesizing recent work on these topics shows that water, a temperate climate, plate tectonics, and a strong magnetic field are linked together through a series of negative feedbacks that stabilize the system over geologic timescales. Although the physical mechanism behind plate tectonics on Earth is still poorly understood, climate is thought to be important. In particular, temperate surface temperatures are likely necessary for plate tectonics because they allow for liquid water that may be capable of significantly lowering lithospheric strength, increase convective stresses in the lithosphere, and enhance the effectiveness of "damage" processes such as grainsize reduction. Likewise, plate tectonics is probably crucial for maintaining a temperate climate on Earth through its role in facilitating the long-term carbon cycle, which regulates atmospheric CO2 levels. Therefore, the coupling between plate tectonics and climate is a feedback that is likely of first order importance for the evolution of rocky planets. Finally, plate tectonics is thought to be important for driving the geodynamo. Plate tectonics efficiently cools the mantle, leading to vigorous thermo-chemical convection in the outer core and dynamo action; without plate tectonics inefficient mantle cooling beneath a stagnant lid may prevent a long-lived magnetic field. As the magnetic field shields a planet's atmosphere from the solar wind, the magnetic field may be important for preserving hydrogen, and therefore water, on the surface. Thus whole planet coupling between the magnetic field, atmosphere, mantle, and core is possible. We lay out the basic physics governing whole planet coupling, and discuss the implications this coupling has for the evolution of rocky planets and their prospects for hosting life.
NASA Astrophysics Data System (ADS)
Contreras, L.; Pross, J.; Bijl, P. K.; O'Hara, R. B.; Raine, J. I.; Sluijs, A.; Brinkhuis, H.
2014-01-01
Reconstructing the early Paleogene climate dynamics of terrestrial settings in the high southern latitudes is important to assess the role of high-latitude physical and biogeochemical processes in the global climate system. However, whereas a number of high-quality Paleogene climate records has become available for the marine realm of the high southern latitudes over the recent past, the long-term evolution of coeval terrestrial climates and ecosystems is yet poorly known. We here explore the climate and vegetation dynamics on Tasmania from the middle Paleocene to the early Eocene (60.7-54.2 Ma) based on a sporomorph record from Ocean Drilling Program (ODP) Site 1172 on the East Tasman Plateau. Our results show that three distinctly different vegetation types thrived on Tasmania under a high-precipitation regime during the middle Paleocene to early Eocene, with each type representing different temperature conditions: (i) warm-temperate forests dominated by gymnosperms that were dominant during the middle and late Paleocene; (ii) cool-temperate forests dominated by southern beech (Nothofagus) and araucarians across the middle/late Paleocene transition interval (~59.5 to ~59.0 Ma); and (iii) paratropical forests rich in ferns that were established during and in the wake of the Paleocene-Eocene Thermal Maximum (PETM). The transient establishment of cool-temperate forests lacking any frost-sensitive elements (i.e., palms and cycads) across the middle/late Paleocene transition interval indicates markedly cooler conditions, with the occurrence of frosts in winter, on Tasmania during that time. The integration of our sporomorph data with previously published TEX86-based sea-surface temperatures from ODP Site 1172 documents that the vegetation dynamics on Tasmania were closely linked with the temperature evolution in the Tasman sector of the Southwest Pacific region. Moreover, the comparison of our season-specific climate estimates for the sporomorph assemblages from ODP Site 1172 with the TEX86L- and TEX86H-based temperature data suggests a warm-season bias of both calibrations for the early Paleogene of the high southern latitudes.
NASA Astrophysics Data System (ADS)
Contreras, L.; Pross, J.; Bijl, P. K.; O'Hara, R. B.; Raine, J. I.; Sluijs, A.; Brinkhuis, H.
2014-07-01
Reconstructing the early Palaeogene climate dynamics of terrestrial settings in the high southern latitudes is important to assess the role of high-latitude physical and biogeochemical processes in the global climate system. However, whereas a number of high-quality Palaeogene climate records has become available for the marine realm of the high southern latitudes over the recent past, the long-term evolution of coeval terrestrial climates and ecosystems is yet poorly known. We here explore the climate and vegetation dynamics on Tasmania from the middle Palaeocene to the early Eocene (60.7-54.2 Ma) based on a sporomorph record from Ocean Drilling Program (ODP) Site 1172 on the East Tasman Plateau. Our results show that three distinctly different vegetation types thrived on Tasmania under a high-precipitation regime during the middle Palaeocene to early Eocene, with each type representing different temperature conditions: (i) warm-temperate forests dominated by gymnosperms that were dominant during the middle and late Palaeocene (excluding the middle/late Palaeocene transition); (ii) cool-temperate forests dominated by southern beech (Nothofagus) and araucarians that transiently prevailed across the middle/late Palaeocene transition interval (~ 59.5 to ~ 59.0 Ma); and (iii) paratropical forests rich in ferns that were established during and in the wake of the Palaeocene-Eocene Thermal Maximum (PETM). The transient establishment of cool-temperate forests lacking any frost-sensitive elements (i.e. palms and cycads) across the middle/late Palaeocene transition interval indicates markedly cooler conditions, with the occurrence of frosts in winter, on Tasmania during that time. The integration of our sporomorph data with previously published TEX86-based sea-surface temperatures from ODP Site 1172 documents that the vegetation dynamics on Tasmania were closely linked with the temperature evolution in the Tasman sector of the Southwest Pacific region. Moreover, the comparison of our season-specific climate estimates for the sporomorph assemblages from ODP Site 1172 with the TEX86L- and TEX86H-based temperature data suggests a warm bias of both calibrations for the early Palaeogene of the high southern latitudes.
NASA Astrophysics Data System (ADS)
Hwang, Yen-Ting; Frierson, Dargan M. W.; Kang, Sarah M.
2013-06-01
In this paper, we demonstrate a global scale southward shift of the tropical rain belt during the latter half of the 20th century in observations and global climate models (GCMs). In rain gauge data, the southward shift maximizes in the 1980s and is associated with signals in Africa, Asia, and South America. A southward shift exists at a similar time in nearly all CMIP3 and CMIP5 historical simulations, and occurs on both land and ocean, although in most models the shifts are significantly less than in observations. Utilizing a theoretical framework based on atmospheric energetics, we perform an attribution of the zonal mean southward shift of precipitation across a large suite of CMIP3 and CMIP5 GCMs. Our results suggest that anthropogenic aerosol cooling of the Northern Hemisphere is the primary cause of the consistent southward shift across GCMs, although other processes affecting the atmospheric energy budget also contribute to the model-to-model spread.
2010-03-19
Explanation: In this picture, the Sun's surface is quite dark. A frame from a movie recorded on November 9th by the orbiting TRACE telescope, it shows coronal loops lofted over a solar active region. Glowing brightly in extreme ultraviolet light, the hot plasma entrained above the Sun along arching magnetic fields is cooling and raining back down on the solar surface. Hours earlier, on November 8th, astronomers had watched this particular active region produce a not so spectacular solar flare. Still, the M-class flare spewed forth an intense storm of particles, suddenly showering satellites near the Earth with high energy protons. The flare event was also associated with a large coronal mass ejection, a massive cloud of material which impacted our fair planet's magnetic field about 31 hours later. The result ... a strong geomagnetic storm. Credit: NASA/GSFC/TRACE To learn more go to: nasascience.nasa.gov/missions/trace To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, S.C.; Hamilton, L.D.
This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effectsmore » considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables.« less
Liang, Yuting; Jiang, Yuji; Wang, Feng; Wen, Chongqing; Deng, Ye; Xue, Kai; Qin, Yujia; Yang, Yunfeng; Wu, Liyou; Zhou, Jizhong; Sun, Bo
2015-12-01
To understand soil microbial community stability and temporal turnover in response to climate change, a long-term soil transplant experiment was conducted in three agricultural experiment stations over large transects from a warm temperate zone (Fengqiu station in central China) to a subtropical zone (Yingtan station in southern China) and a cold temperate zone (Hailun station in northern China). Annual soil samples were collected from these three stations from 2005 to 2011, and microbial communities were analyzed by sequencing microbial 16S ribosomal RNA gene amplicons using Illumina MiSeq technology. Our results revealed a distinctly differential pattern of microbial communities in both northward and southward transplantations, along with an increase in microbial richness with climate cooling and a corresponding decrease with climate warming. The microbial succession rate was estimated by the slope (w value) of linear regression of a log-transformed microbial community similarity with time (time-decay relationship). Compared with the low turnover rate of microbial communities in situ (w=0.046, P<0.001), the succession rate at the community level was significantly higher in the northward transplant (w=0.058, P<0.001) and highest in the southward transplant (w=0.094, P<0.001). Climate warming lead to a faster succession rate of microbial communities as well as lower species richness and compositional changes compared with in situ and climate cooling, which may be related to the high metabolic rates and intense competition under higher temperature. This study provides new insights into the impacts of climate change on the fundamental temporal scaling of soil microbial communities and microbial phylogenetic biodiversity.
Westby, K. M.
2015-01-01
Biotic and abiotic factors change seasonally and impact life history in temperate-zone ectotherms. Temperature and photoperiod are factors that change in predictable ways. Most studies testing for effects of temperature on vectors use constant temperatures and ignore potential correlated effects of photoperiod. In two experiments, we tested for effects of larval rearing environments creating ecologically relevant temperatures and photoperiods simulating early and late season conditions (June and August), or constant temperatures (cool and warm) with the June or August photoperiods, respectively. We determined effects on survivorship, development, size, and a composite performance index in a temperate-zone population of Aedes triseriatus (Say). We followed cohorts of resulting females, all held under the same environmental conditions, to assess carry-over effects of rearing conditions for larvae on longevity, blood feeding, and egg production. Larval survivorship was affected by treatment in one experiment. Development time was greater in the June and cool treatments, but the constant and fluctuating temperatures did not differ. Significantly larger mosquitoes were produced in fluctuating versus constant temperature treatments. There were no significant treatment effects on the composite performance index. Adult female longevity was lower after rearing at constant versus fluctuating temperature, but there was no difference between June and August, nor did size affect longevity. There was no effect of treatments on blood feeding and a limited effect on egg production. We conclude that seasonal temperatures and photoperiods during development have limited effects on this population of A. triseriatus and find little evidence of strong effects of fluctuating versus constant temperatures. PMID:26336255
Duncan, C J; Worth, J R P; Jordan, G J; Jones, R C; Vaillancourt, R E
2016-01-01
Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania.
Synchronism of the Siberian Traps and the Permian-Triassic boundary
Campbell, I.H.; Czamanske, G.K.; Fedorenko, V.A.; Hill, R.I.; Stepanov, V.
1992-01-01
Uranium-lead ages from an ion probe were taken for zircons from the ore-bearing Noril'sk I intrusion that is comagmatic with, and intrusive to, the Siberian Traps. These values match, within an experimental error of ??4 million years, the dates for zircons extracted from a tuff at the Permian-Triassic (P-Tr) boundary. The results are consistent with the hypothesis that the P-Tr extinction was caused by the Siberian basaltic flood volcanism. It is likely that the eruption of these magmas was accompanied by the injection of large amounts of sulfur dioxide into the upper atmosphere, which may have led to global cooling and to expansion of the polar ice cap. The P-Tr extinction event may have been caused by a combination of acid rain and global cooling as well as rapid and extreme changes in sea level resulting from expansion of the polar ice cap.
Convection and Easterly Wave Structure Observed in the Eastern Pacific Warm-Pool during EPIC-2001
NASA Technical Reports Server (NTRS)
Peterson, Walter A.; Cifelli, R.; Boccippio, D.; Rutledge, S. A.; Fairall, C. W.; Arnold, James E. (Technical Monitor)
2002-01-01
During September-October 2001, the East Pacific Investigation of Climate Processes in the Coupled Ocean-Atmosphere System (EPIC-2001) ITCZ field campaign focused on studies of deep convection in the warm-pool region of the East Pacific. In addition to the TAO mooring array, observational platforms deployed during the field phase included the NOAA ship RN Ronald H. Brown, the NSF ship RN Horizon, and the NOAA P-3 and NCAR C-130 aircraft. This study combines C-band Doppler radar, rawinsonde, and surface heat flux data collected aboard the RN Brown to describe ITCZ convective structure and rainfall statistics in the eastern Pacific as a function of 3-5 day easterly wave phase. Three distinct easterly wave passages occurred during EPIC-2001. Wind and thermodynamic data reveal that the wave trough axes exhibited positively correlated U and V winds and a slight westward phase tilt with height. A relatively strong (weak) northeasterly deep tropospheric shear followed the trough (ridge) axis. Temperature and humidity perturbations exhibited mid-to upper level cooling (warming) and drying (moistening) in the northerly (trough and southerly) phase. At low levels warming (cooling) occurred in the northerly (southerly) phase with little change in the relative humidity, though mixed layer mixing ratios were larger during the northerly phase. When composited, radar, sounding, lightning and surface heat flux observations suggest the following systematic behavior as a function of wave phase: approximately zero to one quarter wavelength ahead of (behind) the wave trough in northerly (southerly) flow, larger (smaller) CAPE, lower (higher) CIN, weaker (stronger) tropospheric shear, higher (lower) conditional mean rain rates, higher (lower) lightning flash densities, and more (less) robust convective vertical structure occurred. Latent and sensible heat fluxes reached a minimum in the northerly phase and then increased through the trough, reaching a peak during the ridge phase (leading the peak in CAPE). From a radar echo coverage perspective, larger areas of light rain and slightly larger (10%) area averaged rain rates occurred in the vicinity of, and just behind, the trough axes in southerly flow. Importantly, the transition in convective structure observed across the trough axis when considered with the relatively small change in area mean rain rates suggests the presence of a transition in the vertical structure of diabatic heating across the easterly waves examined. The inferred transition in heating structure is supported by radar diagnosed divergence profiles that exhibit convective (stratiform) characteristics ahead of (behind) the trough.
NASA Astrophysics Data System (ADS)
Rasmussen, Roy; Ikeda, Kyoko; Liu, Changhai; Gutmann, Ethan; Gochis, David
2016-04-01
Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize the large moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of the landform can significantly impact vertical velocity profiles and cloud moisture entrainment rates. This study presents results for high resolution regional climate modeling study of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model run at 4 km horizontal resolution and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF modeling system can produce credible depictions of winter orographic precipitation over the Colorado Rockies if run at horizontal resolutions < 6 km. Here we present results from a detailed study of an extreme springtime snowfall event that occurred along the Colorado Front Range in March 2003. Results from the impact of warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. The results show using the Pseudo Global Warming technique that intense precipitation rates significantly increased during the event and a significant fraction of the snowfall converts to rain which significantly amplifies the runoff response from one where runoff is produced gradually to one in which runoff is rapidly translated into streamflow values that approach significant flooding risks. Results from a new, CONUS scale high resolution climate simulation of extreme events in a current and future climate will be presented as time permits.
Bowling, David R.; Grote, E.E.; Belnap, J.
2011-01-01
Biological activity in arid grasslands is strongly dependent on moisture. We examined gas exchange of biological soil crusts (biocrusts), the underlying soil biotic community, and the belowground respiratory activity of C3 and C4 grasses over 2 years in southeast Utah, USA. We used soil surface CO2 flux and the amount and carbon isotope composition (δ13C) of soil CO2 as indicators of belowground and soil surface activity. Soil respiration was always below 2 μmol m-2s-1 and highly responsive to soil moisture. When moisture was available, warm spring and summer temperature was associated with higher fluxes. Moisture pulses led to enhanced soil respiration lasting for a week or more. Biological response to rain was not simply dependent on the amount of rain, but also depended on antecedent conditions (prior moisture pulses). The short-term temperature sensitivity of respiration was very dynamic, showing enhancement within 1-2 days of rain, and diminishing each day afterward. Carbon uptake occurred by cyanobacterially dominated biocrusts following moisture pulses in fall and winter, with a maximal net carbon uptake of 0.5 μmol m-2s-1, although typically the biocrusts were a net carbon source. No difference was detected in the seasonal activity of C3 and C4 grasses, contrasting with studies from other arid regions (where warm- versus cool-season activity is important), and highlighting the unique biophysical environment of this cold desert. Contrary to other studies, the δ13C of belowground respiration in the rooting zone of each photosynthetic type did not reflect the δ13C of C3 and C4 physiology.
Tian, Linwei; Bi, Yan; Ho, Suzanne C; Liu, Wenjie; Liang, Song; Goggins, William B; Chan, Emily YY; Zhou, Shuisen; Sung, Joseph JY
2008-01-01
Background Malaria is a major public health burden in the tropics with the potential to significantly increase in response to climate change. Analyses of data from the recent past can elucidate how short-term variations in weather factors affect malaria transmission. This study explored the impact of climate variability on the transmission of malaria in the tropical rain forest area of Mengla County, south-west China. Methods Ecological time-series analysis was performed on data collected between 1971 and 1999. Auto-regressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Results At the time scale of months, the predictors for malaria incidence included: minimum temperature, maximum temperature, and fog day frequency. The effect of minimum temperature on malaria incidence was greater in the cool months than in the hot months. The fog day frequency in October had a positive effect on malaria incidence in May of the following year. At the time scale of years, the annual fog day frequency was the only weather predictor of the annual incidence of malaria. Conclusion Fog day frequency was for the first time found to be a predictor of malaria incidence in a rain forest area. The one-year delayed effect of fog on malaria transmission may involve providing water input and maintaining aquatic breeding sites for mosquitoes in vulnerable times when there is little rainfall in the 6-month dry seasons. These findings should be considered in the prediction of future patterns of malaria for similar tropical rain forest areas worldwide. PMID:18565224
Buckeridge, John
2015-11-01
Extensive barnacle coquinas (barnamols) formed around New Zealand's North and Chatham Islands during the late Pliocene to early Pleistocene. The inner-shelf megabalanine Fosterella is the primary constituent of these lithofacies, which also include epifaunal bivalves, bryozoans and less modified balanids like Notobalanus and Notomegabalanus. The status of genus Fosterella is reviewed, 3 species are retained and a new genus, Porobalanus, is proposed for Fosterella hennigi, a species restricted to the Early Pliocene of Cockburn Island, Antarctica. Significantly, Fosterella did not survive the New Zealand Pleistocene, although Notobalanus and Notomegabalanus, which have fossil records extending back to the Early Miocene, remain important components of present day cool-temperate Southern Hemisphere faunas. Extinction of Fosterella, in shelf waters off Argentina, is explained through a combination of changing circulatory and sedimentary regimes, competition for food and space, predation and physiological constraints. The driver of these factors was rapid regional cooling. Zoobank registration: urn:lsid:zoobank.org:pub:DBB1CB34-83E4-48BA-AA10-81823017F37A. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Rapid continental-scale vegetation response to the Younger Dryas Cool Episode
NASA Astrophysics Data System (ADS)
Peros, M.; Gajewski, K.; Viau, A.
2006-12-01
The Younger Dryas Cool Episode had rapid and widespread effects on flora and fauna throughout the Americas. Fossil pollen records document how plant communities responded to this event, although such data are generally only representative of changes at local- to regional-scales. We use a new approach to provide insight into vegetation responses to the Younger Dryas at a continental-scale, by focusing on data extracted for a single taxon (Populus poplar, cottonwood, aspen) from pollen diagrams throughout North America. We show that Populus underwent a rapid and continent-wide decline as the climate rapidly cooled and dried. At the termination of the Younger Dryas, Populus underwent another widespread decline, this time in response to competition from boreal and temperate taxa as the climate abruptly warmed. Late glacial-early Holocene pollen assemblages with high quantities of Populus pollen often lack modern analogues and thus confound quantitative paleoclimatic reconstructions; our results provide a context to interpret these assemblages. Furthermore, while Populus may continue to expand in the future in response to human disturbance and increasing temperatures, its sensitivity to competition may eventually put it at risk as global warming accelerates.
NASA Astrophysics Data System (ADS)
Dhua, Sanjay Kumar; Sarkar, Partha Pratim; Saxena, Atul; Jha, Bimal Kumar
2016-12-01
Low-carbon bainitic steels have created enormous interest among scientists across the world in the past few decades because of their high strength, toughness, and weldability replacing the conventional quenched and tempered medium-carbon steels. Three experimental steels with varying alloy additions were made in a 100-kg laboratory induction furnace and cast into 100-mm-diameter cylindrical ingots. These ingots were hot-rolled and air-cooled to 6-mm plates in an experimental rolling mill with selected thermomechanical parameters. Steels processed through this process provided an ultrafine low-carbon bainitic microstructure with maximum yield strength (YS) and ultimate tensile strength (UTS) 575 and 705 MPa, respectively. The Charpy impact toughness of the experimental steels was excellent, and at 253 K (-20 °C), it varied from 114 to 170 Joules. Cu-B-added steel was found to give an optimum combination of strength, YS-575 MPa, and toughness, 114 J at 253 K (-20 °C). Thus, fine-grained, low-carbon bainitic steels could be developed with a proper combination of alloying elements and thermomechanical parameters even by air-cooling.
Verde, Cinzia; Giordano, Daniela; di Prisco, Guido
2008-01-01
In the Antarctic, fishes of dominant suborder Notothenioidei have evolved in a unique thermal scenario. Phylogenetically related taxa of the suborder live in a wide range of latitudes, in Antarctic, sub-Antarctic and temperate oceans. Consequently, they offer a remarkable opportunity to study the physiological and biochemical characters gained and, conversely, lost during their evolutionary history. The evolutionary perspective has also been pursued by comparative studies of some features of the heme protein devoted to O(2) transport in fish living in the other polar region, the Arctic. The two polar regions differ by age and isolation. Fish living in each habitat have undergone regional constraints and fit into different evolutionary histories. The aim of this contribution is to survey the current knowledge of molecular structure, functional features, phylogeny and adaptations of the haemoglobins of fish thriving in the Antarctic, sub-Antarctic and Arctic regions (with some excursions in the temperate latitudes), in search of insights into the convergent processes evolved in response to cooling. Current climate change may disturb adaptation, calling for strategies aimed at neutralising threats to biodiversity.
Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel
NASA Astrophysics Data System (ADS)
Avishan, Behzad
2017-09-01
The microstructural evolution and consequent changes in strength and ductility of advanced NANOBAIN steel during prolonged isothermal heat-treatment stages were investigated. The microstructure and mechanical properties of nanostructured bainite were not expected to be influenced by extending the heat-treatment time beyond the optimum value because of the autotempering phenomenon and high tempering resistance. However, experimental results indicated that the microstructure was thermodynamically unstable and that prolonged austempering resulted in carbon depletion from high-carbon retained austenite and carbide precipitations. Therefore, austenite became thermally less stable and partially transformed into martensite during cooling to room temperature. Prolonged austempering did not lead to the typical tempering sequence of bainite, and the sizes of the microstructural constituents were independent of the extended heat-treatment times. This independence, in turn, resulted in almost constant ultimate tensile strength values. However, microstructural variations enhanced the yield strength and the hardness of the material at extended isothermal heat-treatment stages. Finally, although microstructural changes decreased the total elongation and impact toughness, considerable combinations of mechanical properties could still be achieved.
The changing role of fire in conifer-dominated temperate rainforest through the last 14,000 years
NASA Astrophysics Data System (ADS)
Fletcher, M.-S.; Bowman, D. M. J. S.; Whitlock, C.; Mariani, M.; Stahle, L.
2018-02-01
Climate, fire and vegetation dynamics are often tightly coupled through time. Here, we use a 14 kyr sedimentary charcoal and pollen record from Lake Osborne, Tasmania, Australia, to explore how this relationship changes under varying climatic regimes within a temperate rainforest ecosystem. Superposed epoch analysis reveals a significant relationship between fire and vegetation change throughout the Holocene at our site. Our data indicates an initial resilience of the rainforest system to fire under a stable cool and humid climate regime between ca. 12-6 ka. In contrast, fires that occurred after 6 ka, under an increasingly variable climate regime wrought by the onset of the El Niño-Southern Oscillation (ENSO), resulted in a series of changes within the local rainforest vegetation that culminated in the replacement of rainforest by fire-promoted Eucalypt forest. We suggest that an increasingly variable ENSO-influenced climate regime inhibited rainforest recovery from fire because of slower growth, reduced fecundity and increased fire frequency, thus contributing to the eventual collapse of the rainforest system.
Terrestrial biosphere changes over the last 120 kyr
NASA Astrophysics Data System (ADS)
Hoogakker, B. A. A.; Smith, R. S.; Singarayer, J. S.; Marchant, R.; Prentice, I. C.; Allen, J. R. M.; Anderson, R. S.; Bhagwat, S. A.; Behling, H.; Borisova, O.; Bush, M.; Correa-Metrio, A.; de Vernal, A.; Finch, J. M.; Fréchette, B.; Lozano-Garcia, S.; Gosling, W. D.; Granoszewski, W.; Grimm, E. C.; Grüger, E.; Hanselman, J.; Harrison, S. P.; Hill, T. R.; Huntley, B.; Jiménez-Moreno, G.; Kershaw, P.; Ledru, M.-P.; Magri, D.; McKenzie, M.; Müller, U.; Nakagawa, T.; Novenko, E.; Penny, D.; Sadori, L.; Scott, L.; Stevenson, J.; Valdes, P. J.; Vandergoes, M.; Velichko, A.; Whitlock, C.; Tzedakis, C.
2016-01-01
A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with simulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial-interglacial cycle. Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those inferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large-scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are reflected in BIOME4 simulations of global net primary productivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composition of seawater as terrestrial carbon is depleted in 13C.
Late quaternary regional geoarchaeology of Southeast Alaska Karst: A progress report
Dixon, E.J.; Heaton, T.H.; Fifield, T.E.; Hamilton, T.D.; Putnam, D.E.; Grady, F.
1997-01-01
Karst systems, sea caves, and rock shelters within the coastal temperate rain forest of Alaska's Alexander Archipelago preserve important records of regional archaeology, sea level history, glacial and climatic history, and vertebrate paleontology. Two 14C AMS dates on human bone discovered in a remote cave (49-PET-408) on Prince of Wales Island document the oldest reliably dated human in Alaska to ca. 9800 B.P. A series of 14C AMS dates from cave deposits span the past 40,000 years and provide the first evidence of Pleistocene faunas from the northwest coast of North America. Other discoveries include sea caves and marine beach deposits elevated above modern sea level, extensive solution caves, and mammalian remains of species previously undocumented within the region. Records of human activity, including cave art, artifacts, and habitation sites may provide new insights into the early human colonization of the Americas. ??1997 John Wiley & Sons, Inc.
Propolis: A Wonder Bees Product and Its Pharmacological Potentials
Wagh, Vijay D.
2013-01-01
Propolis is a natural resinous mixture produced by honey bees from substances collected from parts of plants, buds, and exudates. Due to its waxy nature and mechanical properties, bees use propolis in the construction and repair of their hives for sealing openings and cracks and smoothing out the internal walls and as a protective barrier against external invaders like snakes, lizards, and so forth, or against weathering threats like wind and rain. Bees gather propolis from different plants, in the temperate climate zone mainly from poplar. Current antimicrobial applications of propolis include formulations for cold syndrome (upper respiratory tract infections, common cold, and flu-like infections), wound healing, treatment of burns, acne, herpes simplex and genitalis, and neurodermatitis. Worldwide propolis has a tremendous popularity, but in India the studies over propolis have just started, not extensively reported except few regions of India like Maharashtra, West Bengal, Tamil Nadu, Gujrat, and Madhya Pradesh. PMID:24382957
Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing.
Moum, James N; Perlin, Alexander; Nash, Jonathan D; McPhaden, Michael J
2013-08-01
Sea surface temperature (SST) is a critical control on the atmosphere, and numerical models of atmosphere-ocean circulation emphasize its accurate prediction. Yet many models demonstrate large, systematic biases in simulated SST in the equatorial 'cold tongues' (expansive regions of net heat uptake from the atmosphere) of the Atlantic and Pacific oceans, particularly with regard to a central but little-understood feature of tropical oceans: a strong seasonal cycle. The biases may be related to the inability of models to constrain turbulent mixing realistically, given that turbulent mixing, combined with seasonal variations in atmospheric heating, determines SST. In temperate oceans, the seasonal SST cycle is clearly related to varying solar heating; in the tropics, however, SSTs vary seasonally in the absence of similar variations in solar inputs. Turbulent mixing has long been a likely explanation, but firm, long-term observational evidence has been absent. Here we show the existence of a distinctive seasonal cycle of subsurface cooling via mixing in the equatorial Pacific cold tongue, using multi-year measurements of turbulence in the ocean. In boreal spring, SST rises by 2 kelvin when heating of the upper ocean by the atmosphere exceeds cooling by mixing from below. In boreal summer, SST decreases because cooling from below exceeds heating from above. When the effects of lateral advection are considered, the magnitude of summer cooling via mixing (4 kelvin per month) is equivalent to that required to counter the heating terms. These results provide quantitative assessment of how mixing varies on timescales longer than a few weeks, clearly showing its controlling influence on seasonal cooling of SST in a critical oceanic regime.
Variations in Bacterial Community in a Temperate Lake Associated with an Agricultural Watershed.
Song, Liyan; Li, Lei
2016-08-01
Terrestrially derived carbon and nutrients are washed into lakes, providing nutritional drivers for both microbial heterotrophy and phototrophy. Changes in the quantity and diversity of carbon and nutrients exported from watersheds in response to alterations in long-term land use have led to a need for evaluation of the linkage between watershed-exported carbon and nutrients and bacterial community structure in watershed associated lakes. To learn more about these interactions, we investigated Muskrat Lake in Michigan, which has a well-defined moderately sized watershed dominated by agriculture. We measured the water chemistry, characterized the dissolved organic carbon, and determined the structure of the bacterial communities at the inlet and center of this lake (five depths per site) over the summer and fall of 2008. The lake had temporal and rain event-based fluctuations in water chemistry, as well as temporal and rain event-dependent shifts in bacterial communities as measured by terminal restriction fragment length polymorphism. Agricultural watershed inputs were observed in the lake during and after rain events. Terminal restriction fragment length polymorphism and 454 pyrosequencing of the bacterial communities indicated that there were differences over time and that the dominant phylotypes shifted between summer and late fall. Some populations (e.g., Polynucleobacter and Mycobacterium) increased during fall, while others (e.g., Gemmatimonas) diminished. Redundancy and partitioning analyses showed that water chemistry is highly correlated with variations in the bacterial community of the lake, which explained 34 % of the variations in the bacterial community. Dissolved organic carbon had the greatest effects on variations in the Muskrat Lake bacterial community (2 %). The results of this study provide information that will enable a better understanding of the interaction between the bacterial community of lakes and changes in chemical properties as a result of nutrient importation from the surrounding watershed.
NASA Astrophysics Data System (ADS)
Le Roux, J. P.
2012-03-01
Climate changes in southern South America and the Antarctic Peninsula during the Tertiary show a strong correlation with ocean warming and cooling events, which are in turn related to tectonic processes. During periods of accelerated sea-floor spreading and mid-ocean ridge activity, sea-levels rose so that parts of the continents were flooded and forests were destroyed. However, this was balanced by the large-scale release of CO2 during volcanic outgassing and carbonate precipitation on the continental shelves, which caused rising air temperatures and the poleward expansion of (sub)tropical and temperate forests. Cooling episodes generally caused an increase in the north-south thermal gradient because of an equatorward shift in climate belts, so that the Westerly Winds intensified and brought higher rainfall to the lower latitudes. An increase in wind-blown dust caused temperatures to drop further by reflecting sunlight back into space. The rising Andes Range had a marked influence on climate patterns. Up to the middle Miocene it was still low enough to allow summer rainfall to reach central and north-central Chile, but after about 14 Ma it rose rapidly and effectively blocked the spill-over of moisture from the Atlantic Ocean and Amazon Basin. At this time, the cold Humboldt Current was also established, which together with the Andes helped to create the "Arid Diagonal" of southern South America stretching from the Atacama Desert to the dry steppes of Patagonia. This caused the withdrawal of subtropical forests to south-central Chile and the expansion of sclerophytic vegetation to central Chile. However, at the same time it intercepted more rain from the northeast, causing the effect of the South American monsoon to intensify in northwestern Argentina and southern Bolivia, where forest communities presently occur. In Patagonia, glaciation started as early as 10.5 Ma, but by 7 Ma had become a prominent feature of the landscape and continued apparently uninterruptedly into the Pleistocene. The Antarctic Peninsula saw its first mountain glaciation between 45 and 41 Ma, with major ice sheet expansion commencing at about 34 Ma. Isolated stands of Nothofagus forests were still present in low-lying areas, suggesting that the glaciers were initially wet-based, but dry-based glaciers were established at around 8 Ma. Although temperatures rose briefly during the Messinian-Pliocene transition, causing sub-Antarctic flora to retreat to higher elevations of the Transantarctic Mountains, the present cold polar conditions were finally established by about 3 Ma.
Process design of press hardening with gradient material property influence
NASA Astrophysics Data System (ADS)
Neugebauer, R.; Schieck, F.; Rautenstrauch, A.
2011-05-01
Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.
Process design of press hardening with gradient material property influence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neugebauer, R.; Professorship for Machine Tools and Forming Technology, TU Chemnitz; Schieck, F.
Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steelmore » sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.« less
Sekimoto, Takero; Iyota, Koki; Osumi, Yuki; Shiraki, Takashi; Harada, Tetsuo
2013-06-01
Adult specimens of three species of oceanic sea skater, Halobates sericeus Eschscholtz, Halobates micans Eschscholtz, and Halobates sp. were placed in one of four solutions of different salinity (sea water [35-36‰], sea water : fresh water = 2:1 [23-24‰], sea water : fresh water = 1:2 [11-13‰], and fresh water [0‰]) after collection from the temperate and subtropical Pacific Ocean, tropical Indian Ocean, and Tomini Gulf in Indonesia, and observed in 2-h intervals until they died. H. micans collected from the tropical Indian Ocean survived twice a long (80-100 h) on average as H. sericeus collected from the temperate and subtropical Pacific Ocean (35-45 h) under salinities of 12-36‰. Paralysis from freshwater treatment occurred within 2-9 h in all specimens of both species of H. sericeus from the Pacific Ocean and H. micans from the Indian Ocean, and all insects died within 2 hr of starting the paralysis. In fresh water, oceanic sea skaters of H. sp. collected from the inner water of Tomini Gulf survived for ≍24 h on average, significantly longer than those collected from the open ocean. Significantly longer length of survival was shown by the three species on one-thirds, two-thirds brackish, and 100‰ sea water than on fresh water. The long length of survival shown by oceanic sea skaters even in brackish water may be an adaptation to the occasional rain fall on the sea water film.
Mammals of the Braulio Carrillo- La Selva Complex, Costa Rica
Timm, Robert M.; Wilson, Don E.; Clauson, Barbara L.; LaVal, Richard K.; Vaughan, Christopher S.
1989-01-01
Costa Rica's La Selva-Braulio Carrillo complex encompasses a 60-km protected corridor of Caribbean rain and cloud forest extending from 30 m at the La Selva Biological Station to 2,906 m at the top of Volcán Barva. The 52,000-ha complex covers four life zones and two transitional zones, including tropical wet forest, tropical wet forest cool-transition, tropical premontane wet-transition rain forest, tropical premontane rain forest, lower montane rain forest, and montane rain forest. Located in the northeastern part of the country, the area is representative of Central American Caribbean slope forests that extend from Mexico to Panama. The extensive elevational gradient of the complex provides protected habitat for a variety of altitudinal migrants. With support from the National Geographic Society and Rice Foundation, the Organization for Tropical Studies organized a biological survey of the complex in early 1986. The mammal team worked at six sites along the elevational transect established by the expedition: 300 m, 700 m, 1,000 m, 1,500 m, 2,050 m, and 2,600 m. We supplemented our collecting records with unpublished records made available by colleagues, records in the published literature, and specimens in museum collections. In addition, observations recorded by a variety of observers at the La Selva Biological Station are summarized. The mammal fauna of the complex comprises 142 species including 79 bats, 23 rodents, 15 carnivores, 7 marsupials, 6 edentates, 4 artiodactyls, 3 primates, 2 rabbits, 2 shrews, and 1 perissodactyl. At least 10 additional species are likely to occur there. The only species of mammal likely to have been extirpated from the area is the giant anteater. Recognizing the importance of the area to wildlife and to mankind in general, the government of Costa Rica added 13,500 ha to the complex on 13 April 1986. This area, previously known as the “Zona Protectora,” provided the mid-elevational link between the lowlands of the La Selva Biological Station and the montane forests of Braulio Carrillo National Park. Unfortunately, destruction of the rain forests surrounding the complex will soon render it an isolated island of protected forest. Thus, the area will become increasingly valuable as a refuge for many species with home ranges that require extensive tracts of undisturbed habitat.
Multispecies genetic structure and hybridization in the Betula genus across Eurasia.
Tsuda, Yoshiaki; Semerikov, Vladimir; Sebastiani, Federico; Vendramin, Giovanni Giuseppe; Lascoux, Martin
2017-01-01
Boreal and cool temperate forests are the major land cover of northern Eurasia, and information about continental-scale genetic structure and past demographic history of forest species is important from an evolutionary perspective and has conservation implications. However, although many population genetic studies of forest tree species have been conducted in Europe or Eastern Asia, continental-scale genetic structure and past demographic history remain poorly known. Here, we focus on the birch genus Betula, which is commonly distributed in boreal and cool temperate forests, and examine 129 populations of two tetraploid and four diploid species collected from Iceland to Japan. All individuals were genotyped at seven to 18 nuclear simple sequence repeats (nSSRs). Pairwise FST' among the six species ranged from 0.285 to 0.903, and genetic differentiation among them was clear. structure analysis suggested that Betula pubescens is an allotetraploid and one of the parental species was Betula pendula. In both species pairs of B. pendula and B. plathyphylla, and B. pubescens and B. ermanii, genetic diversity was highest in central Siberia. A hybrid zone was detected around Lake Baikal for eastern and western species pairs regardless of ploidy level. Approximate Bayesian computation suggested that the divergence of B. pendula and B. platyphylla occurred around the beginning of the last ice age (36 300 years BP, 95% CI: 15 330-92 700) and hybridization between them was inferred to have occurred after the last glacial maximum (1614 years BP, 95% CI: 561-4710), with B. pendula providing a higher contribution to hybrids. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Grundan, Ekaterina; Kürschner, Wolfram; Krijgsman, Wout
2017-04-01
A palynological study of Neogene sediments from the cape "Zhelezny Rog" (Taman peninsula, the Black Sea area) was carried out as part of integrated micropaleontological, lithological and paleomagnetic research. The Neogene section of the cape "Zhelezny Rog" (the Zhelezny Rog section) is one of the most representative Upper Miocene to Lower Pliocene succession of Eastern Paratethys. The section covers the Sarmatian, Maeotian, Pontian (upper Miocene) and Kimmerian (lower Pliocene) local stages. One hundred and eighteen samples were selected from the Zhelezny rog section for quantitative palynological analysis. Using PCA analysis and additional proxy such as "steppe index", art/chen and poa/ast ratios the regional climate history was reconstructed. The Early Maeotian is characterized by a warm, warm-temperate climate on the background of relatively high humidity. During the Late Maeotian it became colder and dryer. The coldest and driest conditions during the Maeotian correspond to the middle part of the Late Maeotian. There were a high number of steppe elements (as Artemisia) and low amount of thermophilous ones. Climate of the end of the Maeotian was characterized by warmer and wetter conditions. In the beginning of the Pontian there was a cooling trend, as evidenced by the decreasing thermophilous elements and the increasing high-latitude trees. Most significant changes were found within the Pontian-Kimmerian boundary beds. This level is characterized by decreasing of thermophilous elements, increasing of cool-temperate pollen and Sphagnum spores that are considered as an evidence of a temperature decrease in the background of high humidity conditions. The results will be discussed and correlated to Neogene global climate trends.
NASA Astrophysics Data System (ADS)
Wickham, J.; Wade, T. G.; Riitters, K. H.
2014-09-01
Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that forests tend to be warmer than grasslands and croplands because forest albedos tend to be lower than non-forest albedos. A lower forest albedo results in higher absorption of solar radiation and increased sensible warming that is not offset by the cooling effects of carbon uptake in extra-tropical regions. However, comparison of forest warming potential in the context of climate models is based on a coarse classification system of tropical, temperate, and boreal. There is considerable variation in climate within the broad latitudinal zonation of tropical, temperate, and boreal, and the relationship between biophysical (albedo) and biogeochemical (carbon uptake) mechanisms may not be constant within these broad zones. We compared wintertime forest and non-forest surface temperatures for the southeastern United States and found that forest surface temperatures shifted from being warmer than non-forest surface temperatures north of approximately 36°N to cooler south of 36°N. Our results suggest that the biophysical aspects of forests' influence on climate reinforce the biogeochemical aspects of forests' influence on climate south of 36°N. South of 36°N, both biophysical and biogeochemical properties of forests appear to support forestation as a climate mitigation policy. We also provide some quantitative evidence that evergreen forests tend to have cooler wintertime surface temperatures than deciduous forests that may be attributable to greater evapotranspiration rates.
NASA Astrophysics Data System (ADS)
Kaputkina, L. M.; Prokoshkina, V. G.
2003-10-01
Structures and properties of metastable austenitic alloys Fe-18Cr-16Ni-I2Mn-(0.17 to 0. 50)N, Fe-18Cr-12Mn-(0.48 to 1.12)N, Fe-18Cr-(0.1 to 1.18)N, and Fe-(12 to 20)Ni-(0.6 to 1.3)C, Fe-(6 to 8)Mn-(0.6 to 1.0)C, Fe-(5 to 6)Cr-(4 to 5)Mn-(0.6 to 0.8)C, Fe-6Cr-(1.0 to 1.3)C resulting from martensitic transformations under cooling and cold deformation (CD), as well as following tempering processes, were studied by magnetometry, X-ray and electron microscopy analyses, hardness measurements and mechanical properties tests. Martensite with a b.c.t. lattice was formed in all alloys with M_s{>}-196^circC during cooling. Under CD transformations of γ{to}α, γ{to}\\varepsilon{to}α, or γ{to}\\varepsilon types were realized depending on the alloy composition. Carbon increased but nitrogen decreased stacking fault energy. Thus carbon assists α-martensite formation but nitrogen promotese. As CD level and/or concentration of carbon and nitrogen increase residual stresses resulting from the CD also increase. The martensitic transformation during CD can decrease the residual stresses. Kinetic of tempering of b.c.t. thermal martensite differs from those of CD-induced martensite. In the second case, deformation aging, texture, and residual stresses are more visible. The maximal strengthening under CD takes place in (Mn+N)-steels. (Cr+N) and (Cr+Mn+N)-steels are high-strength, non-magnetic and corrosion resistant and are easily hardened by a low level of plastic deformation.
NASA Astrophysics Data System (ADS)
Ueyama, Masahito; Yoshikawa, Kota; Takagi, Kentaro
2018-07-01
Upland forests are thought to be methane (CH4) sinks due to oxidation by methanotrophs in aerobic soils. However, CH4 budget for upland forests are not well quantified at the ecosystem scale, when possible CH4 sources, such as small wet areas, exists in the ecosystem. Here, we quantified CH4 fluxes in a cool-temperate larch plantation based on four-year continuous measurements using the hyperbolic relaxed eddy accumulation (HREA) method and dynamic closed chambers with a laser-based analyzer. After filling data gaps for half-hourly data using machine-learning-based regressions, we found that the forest acted as a net CH4 source at the canopy scale: 30 ± 11 mg CH4 m-2 yr-1 in 2014, 56 ± 8 mg CH4 m-2 yr-1 in 2015, 154 ± 5 mg CH4 m-2 yr-1 in 2016, and 132 ± 6 mg CH4 m-2 yr-1 in 2017. Hotspot emissions from the edge of the pond could strongly contribute to the canopy-scale emissions. The magnitude of the hotspot emissions was 10-100 times greater than the order of the canopy-scale and chamber-based CH4 fluxes at the dry soils. The high temperatures with wet conditions stimulated the hotspot emissions, and thus induced canopy-scale CH4 emissions in the summer. Understanding and modeling the dynamics of hotspot emissions are important for quantifying CH4 budgets of upland forests. Micrometeorological measurements at various forests are required for revisiting CH4 budget of upland forests.
Yamashita, Satoshi; Hattori, Tsutomu; Abe, Hisashi
2010-01-01
We examined the species richness and host utilization patterns of wood-inhabiting aphyllophoraceous fungi (polypores and related fungi) in an old-growth beech and oak forest in a cool, temperate area of Japan. Coarse woody debris (CWD) > or = 20 cm diam within a 6 ha plot was surveyed in Sep 2002. Tree genus, diameter, decay class and tree part of CWD samples were recorded. Fruiting bodies of aphyllophoraceous fungi that arose from the CWD were surveyed three times and identified to species. In total 256 CWD samples from 12 tree genera were surveyed with Quercus being the most frequent followed by Castanea and Fagus. From 196 CWD samples we recorded 436 wood-inhabiting fungi belonging to 63 species. Fifteen fungal species had at least 10 records, with Hymenochaete rubiginosa, Daedalea dickinsii, Xylobolus frustulatus, Rigidoporus cinereus and the small form of Fomes fomentarius being the most frequent. The number of fungal species that appeared on Fagus was significantly larger than that on Castanea, when the number of fruiting bodies collected was at least 50. The occurrences of the 15 dominant fungal species, except Trametes versicolor, were related to traits of the CWD. Tree genus was a predictor variable that affected the appearance of 11 of the 15 species of wood-inhabiting fungi. Only the tree part was selected for the models of Rigidoporus eminens, Schizopora flavipora and Stereum ostrea. Our results suggest that tree genus and tree part are important factors determining fungal community structure because these were selected as complementary predictor variables. Both oak and beech appear to be the most important tree genera for maintaining wood-inhabiting fungal species richness because the fungal flora formed on oak CWD is nearly complementary to those on chestnut, with low fungal species richness.
Karpyn Esqueda, Mijail; Yen, Alan L.; Rochfort, Simone; Guthridge, Kathryn M.; Powell, Kevin S.; Edwards, Jacqueline; Spangenberg, German C.
2017-01-01
The major insect pest of Australian cool temperate pastures is the root-feeding insect Heteronychus arator (African black beetle, ABB). Significant pasture damage can occur even at low ABB densities (11 individuals per square meter), and often re-sowing of the whole paddock is required. Mitigation of the effects of pasture pests, and in particular subterranean species such as the larval form of ABB, can be challenging. Early detection is limited by the ability to visualize above-ground symptoms, and chemical control of insects in soil is often ineffective. This review takes a look at the historical events that molded the pastoral landscape in Australia. The importation route, changes in land management and pasture composition by European settlers may have aided the establishment of ABB in Australia. Perennial ryegrass Lolium perenne is discussed as it is one of the most important perennial agricultural grasses and is widely-sown in moderate-to-high-rainfall temperate zones of the world. Endophytic fungi from the genus Epichloë form symbiotic relationships with cool season grasses such as Lolium perenne (perennial ryegrass). They have been studied extensively and are well documented for enhancing persistence in pasture via a suite of bioactive secondary metabolites produced by the fungal symbionts. Several well-characterized secondary metabolites are discussed. Some can have negative effects on cattle (e.g., ergovaline and lolitrems) while others have been shown to benefit the host plant through deterrence of insect pests from feeding and by insecticidal activity (e.g., peramine, lolines, ergopeptines). Various control methods for ABB are also discussed, with a focus on the potential role of asexual Epichloë endophytes. PMID:28154571
Liang, Yuting; Jiang, Yuji; Wang, Feng; Wen, Chongqing; Deng, Ye; Xue, Kai; Qin, Yujia; Yang, Yunfeng; Wu, Liyou; Zhou, Jizhong; Sun, Bo
2015-01-01
To understand soil microbial community stability and temporal turnover in response to climate change, a long-term soil transplant experiment was conducted in three agricultural experiment stations over large transects from a warm temperate zone (Fengqiu station in central China) to a subtropical zone (Yingtan station in southern China) and a cold temperate zone (Hailun station in northern China). Annual soil samples were collected from these three stations from 2005 to 2011, and microbial communities were analyzed by sequencing microbial 16S ribosomal RNA gene amplicons using Illumina MiSeq technology. Our results revealed a distinctly differential pattern of microbial communities in both northward and southward transplantations, along with an increase in microbial richness with climate cooling and a corresponding decrease with climate warming. The microbial succession rate was estimated by the slope (w value) of linear regression of a log-transformed microbial community similarity with time (time–decay relationship). Compared with the low turnover rate of microbial communities in situ (w=0.046, P<0.001), the succession rate at the community level was significantly higher in the northward transplant (w=0.058, P<0.001) and highest in the southward transplant (w=0.094, P<0.001). Climate warming lead to a faster succession rate of microbial communities as well as lower species richness and compositional changes compared with in situ and climate cooling, which may be related to the high metabolic rates and intense competition under higher temperature. This study provides new insights into the impacts of climate change on the fundamental temporal scaling of soil microbial communities and microbial phylogenetic biodiversity. PMID:25989371
Inferring Past Climate in Equatorial East Africa using Glacier Models
NASA Astrophysics Data System (ADS)
Doughty, A. M.; Kelly, M. A.; Anderson, B.; Russell, J. M.; Jackson, M. S.
2016-12-01
Mountain glaciers in the northern and southern middle latitudes advanced nearly synchronously during the Last Glacial Maximum (LGM), but the timing and magnitude of cooling is less certain for the tropics. Knowing the degree of cooling in high altitude, low latitude regions advances our understanding of the cryosphere in understudied areas and contributes to our understanding of what causes ice ages. Here we use a 2-D ice flow and mass balance model to simulate glacier extents in the Rwenzori Mountains of Uganda and the Democratic Republic of the Congo during the Last Glacial Maximum. In particular, we model steady-state ice extent that matches the dated moraines in the Rwenzori Mountains to infer past climate. Steady-state simulations of LGM glacier extents, which match moraines dated to 20,000 years ago, can be obtained with a 20% reduction in precipitation and a 7°C cooling to match the associated moraines. A 0-50% reduction in precipitation combined with a 5-8°C cooling, respectively, agrees well with paleoclimate estimates from independent proxy records. As expected in a high precipitation environment, these glaciers are very sensitive to decreases in temperature, converting large volumes of precipitation from rain to snow as well as decreasing melting. Glaciers in equatorial Africa appear to have been waxing and waning synchronously and by the same magnitude as glaciers in the middle latitudes, suggesting a common, global forcing mechanism.
Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling?
Shaw, A Jonathan; Devos, Nicolas; Cox, Cymon J; Boles, Sandra B; Shaw, Blanka; Buchanan, Alex M; Cave, Lynette; Seppelt, Rodney
2010-06-01
Global climate changes sometimes spark biological radiations that can feed back to effect significant ecological impacts. Northern Hemisphere peatlands dominated by living and dead peatmosses (Sphagnum) harbor almost 30% of the global soil carbon pool and have functioned as a net carbon sink throughout the Holocene, and probably since the late Tertiary. Before that time, northern latitudes were dominated by tropical and temperate plant groups and ecosystems. Phylogenetic analyses of mosses (phylum Bryophyta) based on nucleotide sequences from the plastid, mitochondrial, and nuclear genomes indicate that most species of Sphagnum are of recent origin (ca. <20 Ma). Sphagnum species are not only well-adapted to boreal peatlands, they create the conditions that promote development of peatlands. The recent radiation that gave rise to extant diversity of peatmosses is temporally associated with Miocene climatic cooling in the Northern Hemisphere. The evolution of Sphagnum has had profound influences on global biogeochemistry because of the unique biochemical, physiological, and morphological features of these plants, both while alive and after death. 2010 Elsevier Inc. All rights reserved.
Penguin heat-retention structures evolved in a greenhouse Earth
Thomas, Daniel B.; Ksepka, Daniel T.; Fordyce, R. Ewan
2011-01-01
Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a ‘Greenhouse Earth’ interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets. PMID:21177693
When Love Is in the Air: Understanding Why Dogs Tend to Mate when It Rains.
Sen Majumder, Sreejani; Bhadra, Anindita
2015-01-01
Seasonality of reproduction is observed in many species of organisms, across taxa, and is influenced by both biotic and abiotic factors. While such seasonality is easy to understand in temperate species exposed to extreme climates, it is more difficult to explain in the tropics. In many tropical species offspring are born during the season of high precipitation, which also coincides with high resource availability. Interestingly, in India, free-ranging dogs seem to mate, and not whelp, when it rains--an observation that cannot be explained by the resource abundance hypothesis. We carried out an extensive study to identify the mating seasons of free-ranging dogs, and observed a strong correlation between both the incidence and frequency of mating related behaviours of dogs, and precipitation levels. There are two clear mating seasons, of which the primary mating season coincides with the monsoon (rainy season) and the secondary mating season coincides with the nor'westerlies in this part of India. We speculate that this strong correlation is an effect of chemistry, rather than biology. While male dogs can mate round the year, females come into estrous seasonally. In the urban environment, dogs are exposed to a lot of olfactory noise, which can dilute the signal present in sex pheromones of the females in heat. A shower leads to increased humidity and reduced temperature of the air, leading to intensification of pheromone signals that trigger a sexual response in the dogs.
Carrillo, M; Estrada, E; Hazen, T C
1985-01-01
The density of Bifidobacterium spp., fecal coliforms, Escherichia coli, and total anaerobic bacteria, acridine orange direct counts, percentages of total bacterial community activity and respiration, and 12 physical and chemical parameters were measured simultaneously at six sites for 12 months in the Mameyes River rain forest watershed, Puerto Rico. The densities of all bacteria were higher than those reported for uncontaminated temperate rivers, even though other water quality parameters would indicate that all uncontaminated sites were oligotrophic. The highest densities for all indicator bacteria were at the site receiving sewage effluent; however, the highest elevation site in the watershed had the next highest densities. Correlations between bacterial densities, nitrates, temperature, phosphates, and total phosphorus indicated that all viable counts were related to nutrient levels, regardless of the site sampled. In situ diffusion chamber studies at two different sites indicated that E. coli could survive, remain physiologically active, and regrow at rates that were dependent on nutrient levels of the ambient waters. Bifidobacterium adolescentis did not survive at either site but did show different rates of decline and physiological activity at the two sites. Bifidobacteria show promise as a better indicator of recent fecal contamination in tropical freshwaters than E. coli or fecal coliforms; however, the YN-6 medium did not prove to be effective for enumeration of bifidobacteria. The coliform maximum contaminant levels for assessing water usability for drinking and recreation appear to be unworkable in tropical freshwaters. PMID:3901921
NASA Astrophysics Data System (ADS)
Martin, E. E.; Ingalls, A. E.; Santos, G.; Keil, R. G.; Wefferling, L.; Jones, A.; Druffel, E. R. M.
2015-12-01
Although temperate rainforests of the North American Pacific Coast contain a small proportion of the world's forests, they contain some of the highest densities of biomass of any terrestrial system, and they store large quantities of carbon in soil. Understanding the residence time of organic carbon in these watersheds is of ecological significance. Given that rivers can mobilize sediment (and associated carbon) from across the catchment, carefully deciphering the organic signatures found within riverine particles can be a powerful tool to inform our understanding of carbon cycling catchment-wide. Here we examine the lignin phenol content (lignin is a biomarker unique to vascular plants) and the radiocarbon age (Δ14C) of fine particulate organic carbon (FPOC) exported by the Queets River of Washington State's Olympic Peninsula over the course of one year, targeting winter storm events. This mountainous catchment is one of the largest and most pristine found on the Olympic Peninsula. The Δ14C of FPOC was quantified for each of the twelve sampling events, whereas the Δ14C of the individual lignin phenols was determined during a late-winter storm event. Sediments were enriched in lignin phenols at the end of the summer dry season and into the first storm of the fall, suggesting that surface soils were transported early on. The Δ14C of individual lignin phenols ranged from -161 to 26‰, with biomarkers for non-woody vegetation being most depleted. These results suggest that particulate lignin exported from temperate catchments is considerably aged, especially relative to the tropics. These findings are consistent with cool temperatures and abundant moisture limiting microbial decomposition, increasing the residence time of plant-derived organic carbon in temperate rainforests. We will compare the Δ14C content of lignin phenols to that of bulk organic matter to partition riverine FPOC amongst possible organic matter sources.
Exploring the nonlinear cloud and rain equation
NASA Astrophysics Data System (ADS)
Koren, Ilan; Tziperman, Eli; Feingold, Graham
2017-01-01
Marine stratocumulus cloud decks are regarded as the reflectors of the climate system, returning back to space a significant part of the income solar radiation, thus cooling the atmosphere. Such clouds can exist in two stable modes, open and closed cells, for a wide range of environmental conditions. This emergent behavior of the system, and its sensitivity to aerosol and environmental properties, is captured by a set of nonlinear equations. Here, using linear stability analysis, we express the transition from steady to a limit-cycle state analytically, showing how it depends on the model parameters. We show that the control of the droplet concentration (N), the environmental carrying-capacity (H0), and the cloud recovery parameter (τ) can be linked by a single nondimensional parameter (μ=√{N }/(ατH0) ) , suggesting that for deeper clouds the transition from open (oscillating) to closed (stable fixed point) cells will occur for higher droplet concentration (i.e., higher aerosol loading). The analytical calculations of the possible states, and how they are affected by changes in aerosol and the environmental variables, provide an enhanced understanding of the complex interactions of clouds and rain.
Preliminary Investigation into the Water Usage from Fracking in Drought Ridden California
NASA Astrophysics Data System (ADS)
Lew, S.; Wu, M.
2014-12-01
Hydraulic fracking is a common method used to obtain natural gas as well as oil from the ground. The process begins with drilling the ground, which is then followed by thousands of gallons of fluid being pumped into the ground to break the shale rock and release natural gas. The job requires thousands of gallons of water, and chemicals are added to the water, often making it unusable for other purposes. The amount of water being used for fracking in California has been recently brought to attention because the state is currently facing a drought. Currently California is experiencing the worst drought since the 1920's. In the time frame of 2013-2014 California rainfall has been 50% below the average with 2013 being the driest year. The lack of rain is attributed to the Pacific Decadal Oscillation which occurs every 20-30 years and causes the Pacific Ocean to cool, leading to less rain because storms are diverted to the north. As a result of the drought, food prices are expected to rise and farmers are pumping 75% of their water need from reserved aquifers.
Schwarzhans, Werner; Mörs, Thomas; Engelbrecht, Andrea; Reguero, Marcelo; Kriwet, Jürgen
2017-01-01
The first record of fossil teleostean otoliths from Antarctica is reported. The fossils were obtained from late Early Eocene shell beds of the La Meseta Formation, Seymour Island that represent the last temperate marine climate phase in Antarctica prior to the onset of cooling and subsequent glaciation during the late Eocene. A total of 17 otolith-based teleost taxa are recognized, with 10 being identifiable to species level containing nine new species and one new genus: Argentina antarctica sp. nov., Diaphus? marambionis sp. nov., Macruronus eastmani sp. nov., Coelorinchus balushkini sp. nov., Coelorinchus nordenskjoeldi sp. nov., Palimphemus seymourensis sp. nov., Hoplobrotula? antipoda sp. nov., Notoberyx cionei gen. et sp. nov. and Cepola anderssoni sp. nov. Macruronus eastmani sp. nov. is also known from the late Eocene of Southern Australia, and Tripterophycis immutatus Schwarzhans, widespread in the southern oceans during the Eocene, has been recorded from New Zealand, southern Australia, and now Antarctica. The otolith assemblage shows a typical composition of temperate fishes dominated by gadiforms, very similar at genus and family levels to associations known from middle Eocene strata of New Zealand and the late Eocene of southern Australia, but also to the temperate Northern Hemisphere associations from the Paleocene of Denmark. The Seymour Island fauna bridges a gap in the record of global temperate marine teleost faunas during the early Eocene climate maximum. The dominant gadiforms are interpreted as the main temperate faunal component, as in the Paleocene of Denmark. Here they are represented by the families Moridae, Merlucciidae (Macruroninae), Macrouridae and Gadidae. Nowadays Gadidae are a chiefly Northern Hemisphere temperate family. Moridae, Macruroninae and Macrouridae live today on the lower shelf to deep-water or mesopelagically with Macruroninae being restricted to the Southern Ocean. The extant endemic Antarctic gadiform family Muraenolepididae is missing, as are the dominant modern Antarctic fishes of the perciform suborder Notothenioidei. Recently, there has been much debate on isolated jaw bones of teleost fishes found in the La Meseta Formation and whether they would represent gadiforms (Merlucciidae in this case) or some early, primitive notothenioid. Otoliths are known to often complement rather than duplicate skeletal finds. With this in mind, we conclude that our otolith data support the presence of gadiforms in the early Eocene of Antarctica while it does not rule out the presence of notothenioids at the same time. http://zoobank.org/urn:lsid:zoobank.org:pub:A30E5364-0003-4467-B902-43A41AD456CC PMID:28077930
Schwarzhans, Werner; Mörs, Thomas; Engelbrecht, Andrea; Reguero, Marcelo; Kriwet, Jürgen
2017-01-01
The first record of fossil teleostean otoliths from Antarctica is reported. The fossils were obtained from late Early Eocene shell beds of the La Meseta Formation, Seymour Island that represent the last temperate marine climate phase in Antarctica prior to the onset of cooling and subsequent glaciation during the late Eocene. A total of 17 otolith-based teleost taxa are recognized, with 10 being identifiable to species level containing nine new species and one new genus: Argentina antarctica sp. nov., Diaphus? marambionis sp. nov., Macruronus eastmani sp. nov., Coelorinchus balushkini sp. nov., Coelorinchus nordenskjoeldi sp. nov., Palimphemus seymourensis sp. nov., Hoplobrotula? antipoda sp. nov., Notoberyx cionei gen. et sp. nov. and Cepola anderssoni sp. nov. Macruronus eastmani sp. nov. is also known from the late Eocene of Southern Australia, and Tripterophycis immutatus Schwarzhans, widespread in the southern oceans during the Eocene, has been recorded from New Zealand, southern Australia, and now Antarctica. The otolith assemblage shows a typical composition of temperate fishes dominated by gadiforms, very similar at genus and family levels to associations known from middle Eocene strata of New Zealand and the late Eocene of southern Australia, but also to the temperate Northern Hemisphere associations from the Paleocene of Denmark. The Seymour Island fauna bridges a gap in the record of global temperate marine teleost faunas during the early Eocene climate maximum. The dominant gadiforms are interpreted as the main temperate faunal component, as in the Paleocene of Denmark. Here they are represented by the families Moridae, Merlucciidae (Macruroninae), Macrouridae and Gadidae. Nowadays Gadidae are a chiefly Northern Hemisphere temperate family. Moridae, Macruroninae and Macrouridae live today on the lower shelf to deep-water or mesopelagically with Macruroninae being restricted to the Southern Ocean. The extant endemic Antarctic gadiform family Muraenolepididae is missing, as are the dominant modern Antarctic fishes of the perciform suborder Notothenioidei. Recently, there has been much debate on isolated jaw bones of teleost fishes found in the La Meseta Formation and whether they would represent gadiforms (Merlucciidae in this case) or some early, primitive notothenioid. Otoliths are known to often complement rather than duplicate skeletal finds. With this in mind, we conclude that our otolith data support the presence of gadiforms in the early Eocene of Antarctica while it does not rule out the presence of notothenioids at the same time. http://zoobank.org/urn:lsid:zoobank.org:pub:A30E5364-0003-4467-B902-43A41AD456CC.
NASA Astrophysics Data System (ADS)
Muraoka, H.; Nagao, A.; Saitoh, T. M.
2016-12-01
Influences of global warming have been observed or predicted in deciduous forest ecosystems in temperate regions. One of the remarkable changes can be hound in phenology, i.e., seasonality of canopy. Timing and growth rate of leaf expansion (morphological and physiological development), timing and rate of leaf senescence, and timing of leaf fall, and resulting length of photosynthetically active period, are the phenological events that have been focused over wide range of research from single leaf measurements at long-term research sites to satellite remote sensing at continental scales. These phenological changes under global warming have been predicted to influence carbon sequestration as a balance of photosynthesis and respiration. However, we still lack ecophysiological evidence and understandings on such phenological changes, to ask (1) do the phenological changes occur in both leaf morphology and physiology?, (2) does the leaf photosynthetic capacity change by warming?, and (3) do different tree species inhabiting in the same forest respond in a same way?In order to examine these questions, we conducted an open-warming experiments on foliage of matured canopy trees in a cool-temperate deciduous broadleaf forest in central Japan. Warming treatment was made by open-top canopy chambers with 1.5m W x 2m L x 1.8m H. The chamber was made of transparent acrylic boards and vinyl sheet. Three sunlit branches (1-2m) of Quercus crispula (16m height) and one sunlit branch (1m) of Betula ermanii (18m height) were examined at 15m above ground, since 2011 for Quercus and 2013 for Betula. The chambers increased mean daytime air temperature by about 1.5 degreeC.Artificial warming led earlier leaf expansion by about 3 days in Quercus during 2013-2015 and 2 days in Betula, and delayed leaf fall by 2-7 days and 2-3 days in Quercus and Betula, respectively. Quercus leaves showed clear influence of warming: higher seasonal growth, higher capacity and slower senescence of leaf photosynthetic capacity. Although the leaf expansion was stimulated by warming, its relationship with cumulative temperature from spring was consistent with leaves under ambient conditions. Our simple estimation showed that the warming treatment would might increase photosynthetic productivity by 14-21% in Quercus, but not in Betula.
High strength, tough alloy steel
Thomas, Gareth; Rao, Bangaru V. N.
1979-01-01
A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.
Eocene and miocene rocks off the northeastern coast of the United States
Gibson, T.G.
1965-01-01
A grab sample from a depth of 1675 m at a point south of Cape Cod contains early Eocene planktonic Foraminifera and is correlated with the Globorotalia rex zone of Trinidad. The assemblage indicates a depth comparable to that existing today. Regional relations suggest that the Cretaceous and Eocene deposits deepen to the west toward New Jersey. Two mollusk-bearing blocks dredged from the northern side of Georges Bank are correlative with the Miocene Yorktown Formation. Rocks from two other stations are probably Miocene. Benthonic Foraminifera in one sample indicate deposition in cool temperate waters of less than 60 m depth. ?? 1965.
Simulated Annealing in the Variable Landscape
NASA Astrophysics Data System (ADS)
Hasegawa, Manabu; Kim, Chang Ju
An experimental analysis is conducted to test whether the appropriate introduction of the smoothness-temperature schedule enhances the optimizing ability of the MASSS method, the combination of the Metropolis algorithm (MA) and the search-space smoothing (SSS) method. The test is performed on two types of random traveling salesman problems. The results show that the optimization performance of the MA is substantially improved by a single smoothing alone and slightly more by a single smoothing with cooling and by a de-smoothing process with heating. The performance is compared to that of the parallel tempering method and a clear advantage of the idea of smoothing is observed depending on the problem.
Raining a magma ocean: Thermodynamics of rocky planets after a giant impact
NASA Astrophysics Data System (ADS)
Stewart, S. T.; Lock, S. J.; Caracas, R.
2017-12-01
Rocky planets in exoplanetary systems have equilibrium temperatures up to a few 1000 K. The thermal evolution after a giant impact is sensitive to the equilibrium temperature. Post-impact rocky bodies are thermally stratified, with cooler, lower-entropy silicate overlain by vaporized, higher-entropy silicate. The radii of impact-vaporized rocky planets are much larger than the radii of equivalent condensed bodies. Furthermore, after some high-energy, high-angular momentum collisions, the post-impact body exceeds the corotation limit for a rocky planet and forms a synestia. Initially, volatiles and silicates are miscible at the high temperatures of the outer layer. If the equilibrium temperature with the star is lower than the silicate condensation temperature ( 2000 K), silicate droplets form at the photosphere and fall while volatile components remain in the vapor. Radiation and turbulent convection cool the vapor outer layer to the silicate vapor curve. A distinct magma ocean forms as the thermal profile crosses the silicate vapor curve and the critical curves for the volatiles. Near the temperatures and pressures of the critical curves, volatiles and silicates are partially soluble in each other. As the system continues cooling, the volatile vapor and silicate liquid separate toward the end member compositions, which are determined by the equilibrium temperature and the total vapor pressure of volatiles. If the equilibrium temperature with the star is near or above the condensation temperature for silicates, there would be limited condensation at the photosphere. Initially, the cooler lower mantle would slowly, diffusively equilibrate with the hotter upper mantle. In some cases, the thermal profile may cross the silicate vapor curve in the middle of the silicate layer, producing a silicate rain layer within the body. With continued evolution toward an adiabatic thermal profile, the body would separate into a silicate liquid layer underlying a silicate-volatile vapor layer. As the hottest rocky planets become tidally locked to their star, cooling progresses asymmetrically. The timing and degree of differentiation of rocky planets into silicate mantles and volatile atmospheres depends on the thermal evolution of vaporized rocky planets and may vary widely with equilibrium temperature.
Magnetic Topology of a Long-Lived Coronal Condensation Site Lasting Eight Months
NASA Astrophysics Data System (ADS)
Sun, X.; Yu, S.; Liu, W.
2017-12-01
It is well known that cool material, such as prominences or coronal rain, can form in-situ by condensation of hot coronal plasma due to a runaway radiative cooling instability (a.k.a. thermal non-equilibrium). Recent observations and numerical simulations suggest that such condensations are quite common, but in quiet-Sun regions, they occur preferentially in locations where magnetic field is weak (e.g., null points) or discontinuous (e.g., current sheets). Such events usually have short lifetimes of hours to days. Surprisingly, we observed a high-latitude condensation site lasting over eight months in 2014 with recurrent and episodic condensations fueling a funnel-shaped prominence. We analyze the coronal magnetic topology to investigate the necessary condition of such a long-lived condensation site. We find that the site was directly above a poleward photospheric flux surge when the polar field polarity was close to its solar cycle reversal. The large-scale magnetic cancellation front may have sustained interchange reconnection at this location, creating suitable conditions for coronal plasma condensation.
Centennial-scale reductions in nitrogen availability in temperate forests of the United States
McLauchlan, Kendra K.; Gerhart, Laci M.; Battles, John J.; Craine, Joseph M.; Elmore, Andrew J.; Higuera, Phil E.; Mack, Michelle M; McNeil, Brendan E.; Nelson, David M.; Pederson, Neil; Perakis, Steven
2017-01-01
Forests cover 30% of the terrestrial Earth surface and are a major component of the global carbon (C) cycle. Humans have doubled the amount of global reactive nitrogen (N), increasing deposition of N onto forests worldwide. However, other global changes—especially climate change and elevated atmospheric carbon dioxide concentrations—are increasing demand for N, the element limiting primary productivity in temperate forests, which could be reducing N availability. To determine the long-term, integrated effects of global changes on forest N cycling, we measured stable N isotopes in wood, a proxy for N supply relative to demand, on large spatial and temporal scales across the continental U.S.A. Here, we show that forest N availability has generally declined across much of the U.S. since at least 1850 C.E. with cool, wet forests demonstrating the greatest declines. Across sites, recent trajectories of N availability were independent of recent atmospheric N deposition rates, implying a minor role for modern N deposition on the trajectory of N status of North American forests. Our results demonstrate that current trends of global changes are likely to be consistent with forest oligotrophication into the foreseeable future, further constraining forest C fixation and potentially storage.
NASA Astrophysics Data System (ADS)
Barrick, Erin J.
United States naval applications require the use of steels with high strength and resistance to fracture at low temperatures to provide good ballistic properties. In recent years, 10 wt% Ni steel has been developed with strength and toughness values exceeding those of steels currently used, and is now being considered as a candidate material to replace existing high-strength, low alloy steels. This steel has excellent toughness from the mechanically induced transformation of interlath austenite films to martensite. These austenite films are formed via a carefully developed quenching, lamellarizing, and tempering heat treatment. However, before 10 wt% Ni steel can be implemented for full-scale applications, the effects of the rapid heating and cooling rates associated with welding thermal cycles on phase transformations and mechanical properties must be understood. In this research, a fundamental understanding of phase transformations and mechanical properties in the heat-affected zone of fusion welds in 10 wt% Ni steel was developed through heating and cooling rate dilatometry experiments, gas tungsten arc welding, and simulation of gas metal arc welding. First, an investigation into the effects of heating and cooling rate on the phase transformations in 10 wt% Ni steel was performed. The Ac1 and Ac3 temperatures during heating were determined as a function of heating rate, and sluggish transformation during fast heating rates manifested itself as a high Ac3 temperature of 1050°C as opposed to a temperature of 850°C at slow heating rates. A continuous cooling transformation diagram produced for 10 wt% Ni steel reveals that martensite will form over a very wide range of cooling rates, which reflects a very high hardenability of this alloy. This is significant because the range of cooling rates for which the diagram was constructed over easily covers the range associated with fusion welding, so there would not be the need for precise control over the weld processing conditions. The microstructures observed in a single pass gas tungsten arc weld were rationalized with the observations from the heating and cooling rate experiments. The microhardness of gas tungsten arc weld is highest in the intercritical heat affected zone, which is unexpected based on the usual behavior of quench and tempered steels. The hardness of the heat affected zone is always higher than the base metal which is a promising outcome. Having understood the overall effects of heating and cooling on the phase transformations in 10 wt% Ni steel, the microstructure and mechanical property evolution through the heat affected zone was investigated. A Gleeble 3500 thermo-mechanical simulator was used to replicate microstructures observed in the gas-tungsten arc weld, and the microstructural factors influencing the strength and toughness in the simulated heat affected zone samples were correlated to mechanical property results. The strength is the highest in the intercritical heat-affected zone, mostly attributed to microstructural refinement. With increasing peak temperature of the thermal cycle, the volume fraction of retained austenite decreases. The local atom probe tomography results suggest this is due to the destabilization of the austenite brought on by the diffusion of Ni out of the austenite. There is a local low toughness region in the intercritical heat-affected zone, corresponding to a low retained austenite content. However, the retained austenite is similarly low in higher peak temperature regions but the toughness is high. This suggests that while 10 wt% Ni steel is a TRIP-assisted steel and thus obtains high toughness from the plasticity-induced martensite to austenite transformation, the toughness of the steel is also based on other microstructural factors. Overall, the results presented in this work have established, for the first time, the effects of rapid heating and cooling on the phase transformations and mechanical properties in 10 wt% Ni steel, and have started to identify the microstructural features influencing the strength and toughness of this alloy.
A new approach to chemically-speciated submicron aerosol fluxes over tropical and temperate forests.
NASA Astrophysics Data System (ADS)
Farmer, D. K.; Kimmel, J. R.; Nemitz, E.; Phillips, G.; Docherty, K.; Chen, Q.; Martin, S.; Cubison, M.; Jimenez, J.
2008-12-01
Aerosols play an important role in the planet's radiation balance; however, their sources and sinks remain highly uncertain. In particular, due to instrumental limitations, there are few measurements of particle fluxes over the Earth's surface. Particles are expected to deposit over forests, leading not only to an aerosol sink, but also to an ecosystem source of nutrients and acids. However, forests emit volatile organic compounds (VOCs) that are known to produce secondary organic aerosol, thus also acting as aerosol sources. We have developed a new approach to measure biosphere-atmosphere exchange of chemically-speciated aerosol using a High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS; DeCarlo et al., Anal. Chem., 2006) in a new Eddy Covariance Flux mode (10 Hz). This approach allows us to directly measure fluxes of non-refractory organic, sulphate, nitrate and ammonium in submicron particles. Measurements have been carried out over two forests: a temperate ponderosa pine plantation at Blodgett Forest (BEARPEX-I campaign, 2007) and a tropical rain forest in the Brazilian Amazon during the wet season (AMAZE campaign, 2008). Data collected at these sites allows us to demonstrate that the flux mode of the HR-ToF-AMS meets the rigorous instrumental requirements of the eddy covariance approach and that fluxes of different chemical species can be quantified. Aerosol fluxes under clean and anthropogenically-impacted conditions are compared. These measurements allow us to better constrain dry deposition over forested environments and to understand the potential of flux measurements to constrain the biogenic SOA budget.
NASA Astrophysics Data System (ADS)
Salem, Talaat A.; Omar, Mohie El Din M.; El Gammal, H. A. A.
2017-11-01
Alternative clean water resources are needed in Egypt to face the current water shortage and water quality deterioration. Therefore, this research investigates the suitability of harvesting fog and rain water for irrigation using a pilot fog collector for water quantity, water quality, and economic aspects. A pilot fog collector was installed at one location at Delta Barrage, Egypt. Freeze liquid nitrogen was fixed at the back of the fiberglass sheet to increase the condensation rate. The experiment was conducted during the period from November 2015 to February 2016. In general, all physicochemical variables are observed with higher values in the majority of fog than rain water. The fog is assumed to contain higher concentrations of anthropogenic emissions. TDS in both waters collected are less than 700 mg/l at sodium content less than 60%, classifying these waters as good for various plants under most conditions. In addition, SAR calculated values are less than 3.0 in each of fog and rain water, which proves the water suitability for all irrigated agriculture. Al and Fe concentrations were found common in all samples with values less than the permissible limits of the guidelines. These metals originate from soil material, ash and metal surfaces. The sensitive heavy metals (Cd and Pb) were within the permissible limits of the guideline in fog water, indicating this water is suitable for irrigation. On the contrary, rain water that has heavy metals is not permitted in irrigation water as per the Egyptian law. As per WQI, the rain water is classified as good quality while fog is classified as medium quality. Regarding the water quantity, a significant increase in the harvested fog quantity was observed after cooling the collector surface with freeze liquid nitrogen. The current fog collector produced the lowest water quantity among different fog collectors worldwide. However, these comparative results confirmed that quantity is different from one location to another worldwide even in the same country. The cost of the unit water volume of harvested water by the current pilot collector is relatively low among different collectors worldwide. This study proves that fog harvesting in Egypt is feasible using the current pilot collector in terms of water quantity, water quality, and economy. But it recommends collection of fog at various locations and times, since both water quantity and water quality are variable in time and space. It is more or less viable solution to meet the shortage of water in Egypt.
NASA Astrophysics Data System (ADS)
Taylor, K. W.; Hollis, C. J.; Pancost, R. D.
2010-12-01
The Cretaceous-Paleogene (K/Pg) boundary marks a catastrophic global extinction event, believed to be caused by an asteroid impact in northern Yucatan. Whilst the extent of mass extinction is well documented, there is ongoing debate about the immediate and longer term climatic and environmental changes triggered by the event. The northern South Island of New Zealand has several records of the K/Pg boundary, representing a range of terrestrial and marine environments. Previous studies of terrestrial palynomorphs and siliceous microfossils from these sections suggested significant cooling and terrestrial vegetation reconfiguration in the earliest Paleocene. Extinctions or local disappearances of thermophilic taxa at the K/Pg boundary are consistent with the hypothesis of a short-lived “impact winter”. The Mid-Waipara K/Pg boundary section, north Canterbury, has been identified as suitable for organic geochemical study because sufficient organic carbon is present in the siliciclastic sediments and is thermally immature. Sediments were deposited in outer shelf to upper slope depths under a neritic watermass. New estimates of sea surface temperature variation based on TEX86 elucidate the relationship between biological and climatic changes that followed the K/Pg event. Within the 0.25 m-thick interval identified as the “fern spike” in basal Paleocene sediments in this section there is no indication of a significant change in temperature relative to the Cretaceous (22-25°C). Foraminiferal and radiolarian biostratigraphy indicates that this interval spans ~100 kyrs and includes a fern succession from colonising ground ferns to tree ferns, the latter suggesting a temperate, humid climate. The transition from ferns to a conifer-dominated pollen assemblage corresponds with a remarkable decrease in temperature recorded in the TEX86 record. These cool temperatures persist over 10 m. The dominant conifer pollen type over this interval is Phyllocladites mawsonii, indicative of cool-temperate conditions. Preliminary biostratigraphic correlation suggests that this interval is condensed, possibly truncated at the base, and may be correlated to a more expanded biogenic silica-rich interval in the pelagic K/Pg boundary sections in eastern Marlborough, northeastern South Island. These results support siliceous microfossil evidence for pronounced cooling in early Paleocene in New Zealand. Organic biomarker records provide further insight into terrestrial and marine ecological reconfiguration through the K/Pg boundary transition at Mid-Waipara River. Major reorganisations of the phytoplankton and archaeal communities are indicated by pronounced changes in sterol and tetraether distributions following the K/Pg boundary. Transient disruption of higher plants at the boundary is verified by suppression of n-alkane and triterpenoid biomarker concentrations, succeeded by a gradual recovery into the Early Paleocene. The scenario envisaged may be summarised as climate instability following the K/Pg boundary event, culminating in cool climatic conditions and a strengthened local upwelling regime leading to widespread deposition of diatom-rich siliceous sediments, lasting for around 1 Myr.
Van Stan, John T; Levia, Delphis F; Inamdar, Shreeram P; Lepori-Bui, Michelle; Mitchell, Myron J
2012-07-15
Seasonal variations in the washoff and leaching dynamics of throughfall ionic fluxes represent a significant process affecting the biogeochemical cycling of forested ecosystems-particularly for temperate deciduous forests with distinct phenological seasons (or "phenoseasons"). Most studies on temperate deciduous forests aggregate seasonal throughfall fluxes to the leafed (growing) and leafless (dormant) periods, yet the phenological conditions controlling seasonality demand finer-scale demarcations that include the transitional phenoseasons (leaf senescence and emergence). To fill these gaps our study examines the washoff and leaching dynamics of Na(+), Mg(2+), K(+), Ca(2+), Cl(-), SO(4)(2-), and NO(3)(-) throughfall derived from bulk and sequentially sampled rain events across leafed, leafless and both transitional phenoseasons over a 3-year period (2008-2010). As throughfall washoff and leached solute fluxes are also closely-coupled to rainfall conditions, we further examine the effects of storm characteristics on phenoseasonal washoff-dominated (Na(+) and Cl(-)) and leaching-dominated (K(+), Ca(2+), Mg(2+)) fluxes through intrastorm event comparison plots and factorial MANOVA. Highly significant differences in leached and washoff solute fluxes were found across meteorological conditions (p<0.001) nested within phenoseasonal divisions (p<0.00001). Phenoseasonal washoff Na(+) and Cl(-) fluxes seemed to be more closely related to leaf area; whereas, leaching flux and canopy exchange of all solutes to correspond more with major phenological changes (when the canopies tend to be most metabolically active). The greatest differences in leached Mg(2+), K(+), Ca(2+), and SO(4)(2-) fluxes were not between the full leafed and leafless phenoseasons (33-80% difference), but between the transitional periods (80 to 200 fold greater during leaf senescence than leaf emergence). Intrastorm average canopy NO(3)(-) leaching, however, ranged from low losses (1 μmol(c)m(-2)h(-1)) to canopy uptake (-2 μmol(c)m(-2)h(-1)) during both transitional phenoseasons. K(+), Ca(2+), Mg(2+) were all markedly more exchangeable during senescence, with Ca(2+) and Mg(2+) being more tightly held by the canopy. Leaching rates and fluxes for all measured solutes were negligible to negative during emergence, except for K(+) and SO(4)(2-). Our results indicate that much of the variance in timing and magnitude of throughfall solute fluxes to forest soils within temperate deciduous ecosystems may be ascribed to phenologically-delineated seasons and storm conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
Redman, Regina S.; Ranson, Judith; Rodriguez, Rusty J.
2006-01-01
Cantharellus formosus growing on the Olympic Peninsula of the Pacific Northwest was sampled from September – November 1995 for genetic analysis. A total of ninety-six basidiomes from five clusters separated from one another by 3 - 25 meters were genetically characterized by PCR analysis of 13 arbitrary loci and rDNA sequences. The number of basidiomes in each cluster varied from 15 to 25 and genetic analysis delineated 15 genets among the clusters. Analysis of variance utilizing thirteen apPCR generated genetic molecular markers and PCR amplification of the ribosomal ITS regions indicated that 81.41% of the genetic variation occurred between clusters and 18.59% within clusters. Proximity of the basidiomes within a cluster was not an indicator of genotypic similarity. The molecular profiles of each cluster were distinct and defined as unique populations containing 2 - 6 genets. The monitoring and analysis of this species through non-lethal sampling and future applications is discussed.
Silica fractionation and reactivity in soils
NASA Astrophysics Data System (ADS)
Unzué Belmonte, Dácil; Barão, Lúcia; Vandevenne, Floor; Schoelynck, Jonas; Struyf, Eric; Meire, Patrick
2014-05-01
The Si cycle is a globally important biogeochemical cycle, with strong connections to other biogeochemical cycles, including C. Silica is taken up by plants to form protective structures called phytoliths, which become a part of the soil and contribute strongly to soil Si cycling upon litter burial. Different silica fractions are found in soils, with phytoliths among the most easily soluble, especially compared to silicate minerals. A whole set of secondary non-biogenic fractions exist, that also have a high reactivity (adsorbed Si, reactive secondary minerals…). A good characterization of the different fractions of reactive silica is crucial to move forward knowledge on ecosystem Si cycling, which has been recognized in the last decade as crucial for terrestrial Si fluxes. A new method to analyze the different fractions of silica in soils has been described by Koning et al. (2002) and adapted by our research team (Barão et al. 2013). Using a continuous extraction of Si and aluminum in 0.5M NaOH, biogenic and non-biogenic reactive fractions are separated based on their Si/Al ratios and their reactivity in NaOH. Applying this new method I will investigate three emerging ideas on how humans can affect directly terrestrial Si fluxes. -Land use. I expect strong silica fractionation and reactivity differences in different land uses. These effects due to agricultural and forestry management have already been shown earlier in temperate soils (Vandevenne et al. 2012). Now we will test this hypothesis in recently deforested soils, in the south of Brazil. 'Pristine' forest, managed forest and tobacco field soils (with and without rotation crops) will be studied. This research belongs to an interdisciplinary project on soils and global change. -Fire. According to the IPCC report, extreme events such as fires (number and intensity) would increase due to climate change. We analyzed litter from spruce forest, beech forest and peat soils at two burning levels, after 350°C and 550°C burnings. The first results showed differences in silica fractions between treatments and between soil types. This project is a close collaboration with University of Dresden. -Fertilization. Humans use fertilizers to increase crops growth and to avoid plagues affecting soil biogeochemistry. We set up a greenhouse experiment where olivine (a relatively easily weatherable silicate mineral) fertilization is applied to two crops (barley and wheat), at two rain application regimes (daily rain and weekly heavy rain) and with different fertilizer grain sizes. The aim of this project is to investigate how olivine application affects Si fractionation and reactivity in the soil profile. Barão, L., Clymans, W., Vandevenne, F., Meire, P., Conley, D.J. and Struyf, E. Pedogenic and biogenic amorphous Si distribution along a temperate land use gradient. Submitted, European Journal of Soil Science, 2013. Koning, E., Epping, E., and Van Raaphorst, W.: Determining bio- genic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions, Aquat. Geochem., 8, 37-67, 2002. Vandevenne, F.I., Struyf, E., Clymans, W. & Meire, P. 2012. Agricultural silica harvest: have humans created a new and important loop in the global silica cycle? Frontiers in Ecology and the Environment 10: 243-248.
Franco, Marcela; Contreras, Carolina; Cortés, Pablo; Chappell, Mark A.; Soto-Gamboa, Mauricio; Nespolo, Roberto F.
2012-01-01
Summary During periods of cold, small endotherms depend on a continuous supply of food and energy to maintain euthermic body temperature (Tb), which can be challenging if food is limited. In these conditions, energy-saving strategies are critical to reduce the energetic requirements for survival. Mammals from temperate regions show a wide arrange of such strategies, including torpor and huddling. Here we provide a quantitative description of thermoregulatory capacities and energy-saving strategies in Dromiciops gliroides, a Microbiotherid marsupial inhabiting temperate rain forests. Unlike many mammals from temperate regions, preliminary studies have suggested that this species has low capacity for control and regulation of body temperature, but there is still an incomplete picture of its bioenergetics. In order to more fully understand the physiological capacities of this “living fossil”, we measured its scope of aerobic power and the interaction between huddling and torpor. Specifically, we evaluated: (1) the relation between basal (BMR) and maximum metabolic rate (MMR), and (2) the role of huddling on the characteristics of torpor at different temperatures. We found that BMR and MMR were above the expected values for marsupials and the factorial aerobic scope (from CO2) was 6.0±0.45 (using CO2) and 6.2±0.23 (using O2), an unusually low value for mammals. Also, repeatability of physiological variables was non-significant, as in previous studies, suggesting poor time-consistency of energy metabolism. Comparisons of energy expenditure and body temperature (using attached data-loggers) between grouped and isolated individuals showed that at 20°C both average resting metabolic rate and body temperature were higher in groups, essentially because animals remained non-torpid. At 10°C, however, all individuals became torpid and no differences were observed between grouped and isolated individuals. In summary, our study suggests that the main response of Dromiciops gliroides to low ambient temperature is reduced body temperature and torpor, irrespective of huddling. Low aerobic power and low time-consistency of most thermoregulatory traits of Dromiciops gliroides support the idea of poor thermoregulatory abilities in this species. PMID:23259051
Method of making high strength, tough alloy steel
Thomas, Gareth; Rao, Bangaru V. N.
1979-01-01
A high strength, tough alloy steel, particularly suitable for the mining industry, is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other subsitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.
NASA Astrophysics Data System (ADS)
Clemens, William A.; Gayle Nelms, L.
1993-06-01
The latest Cretaceous cool temperate environment of the Alaskan North Slope included dinosaurs (some species represented by both juveniles and adults) and mammals, all probably endothermic, and freshwater fish among its terrestrial vertebrate fauna. No traces have been found of amphibians or nondinosaurian reptiles, ectothermic vertebrates that are abundantly represented in approximately contemporaneous faunas of North American middle paleolatitudes. A geologically brief period of intense cold and darkness has been hypothesized as the primary cause of terminal Cretaceous extinctions. However, the extinction of the lineages of Alaskan dinosaurs and mammals, in contrast to the survival of most lineages of amphibians and nondinosaurian reptiles into the Tertiary, contradicts this hypothesis.
Convection Fingerprints on the Vertical Profiles of Q1 and Q2
NASA Astrophysics Data System (ADS)
Chang, C.; Lin, H.; Chou, C.
2013-12-01
Different types of tropical convection left their fingerprints on vertical structures of apparent heat source (Q1) and apparent moisture sink (Q2). Profile of deep convection on condensation heating and drying has been well-documented, yet direct assessment of shallow convection remains to be explored. Shallow convection prevails over subtropical ocean, where large-scale subsidence is primarily balanced by radiative cooling and moistening due to surface evaporation instead of moist convection. In this study a united framework is designed to investigate the vertical structures of tropical marine convections in three reanalysis data, including ERA-Interim, MERRA, and CFSR. It starts by sorting and binning data from the lightest to the heaviest rain. Then the differences between two neighboring bins are used to examine the direct effects for precipitation change, in light of the fact that non-convective processes would change slowly from bin to bin. It is shown that all three reanalyses reveal the shallow convective processes in light rain bins, featured by re-evaporating and detraining at the top of boundary layer and lower free troposphere. For heavy rain bins, three reanalyses mainly differ in their numbers and altitudes of heating and drying peaks, implying no universal agreement has been reached on partitioning of cloud populations. Coherent variations in temperature, moisture, and vertical motion are also discussed. This approach permits a systematical survey and comparison of tropical convection in GCM-type models, and preliminary studies of three reanalyses suggest certain degree of inconsistency in simulated convective feedback to large-scale heat and moisture budgets.
NASA Astrophysics Data System (ADS)
1982-08-01
A solar house is described. It is a three-story single family detached residence in New Jersey. It is equipped with a 540 cubic foot vented Trombe wall constructed of concrete filled concrete blocks and glazed with 344 square feet of insulated tempered glass. Heat is also provided by a 168 square foot sunspace of insulated glass. In the loft area is a phase change storage system composed of 32 PSI Thermal-81 phase change storage rods. Auxiliary heating is y a wood-burning stove and a dual-fuel, propane and wood, forced air furnace. A breadbox type hot water preheater is located on the roof. Summer cooling is accomplished by opening windows, doors, and exhaust dampers and operating a whole house ventilation fan. Operation of the solar system and the auxiliary subsystems may involve one or more of 5 modes: collector-to-storage, storage-to-space heating, auxiliary-to-space heating, energy-to-load-summer cooling, and domestic hot water. The house, its solar heating systems, storage, load, operation, on-site performance evaluation instrumentation, and data depicting the solar portion of construction costs are outlined.
The design of an Fe-12Mn-O.2Ti alloy steel for low temperature use
NASA Technical Reports Server (NTRS)
Hwang, S. K.; Morris, J. W., Jr.
1977-01-01
An investigation was made to improve the low temperature mechanical properties of Fe-8 approximately 12% Mn-O 2Ti alloy steels. A two-phase(alpha + gamma) tempering in combination with cold working or hot working was identified as an effective treatment. A potential application as a Ni-free cryogenic steel was shown for this alloy. It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated martensitic structure and absence of epsilon phase. A significant reduction of the ductile-brittle transition temperature was obtained in this alloy. The nature and origin of brittle fracture in Fe-Mn alloys were also investigated. Two embrittling regions were found in a cooling curve of an Fe-12Mn-O 2Ti steel which was shown to be responsible for intergranular fracture. Auger electron spectroscopy identified no segregation during solution-annealing treatment. Avoiding the embrittling zones by controlled cooling led to a high cryogenic toughness in a solution-annealed condition.
Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia
NASA Astrophysics Data System (ADS)
A, G.; Velicogna, I.; Kimball, J. S.; Kim, Y.
2015-12-01
We use GRACE-derived terrestrial water storage (TWS) and ERA-interim air temperature, as proxy for available water and temperature constraints on vegetation productivity, inferred from MODIS satellite normalized difference vegetation index (NDVI), in Northern Eurasia during 2002-2011. We investigate how changes in TWS affect the correlation between NDVI and temperature during the non-frozen season. We find that vegetation growth exhibits significant spatial and temporal variability associated with varying trend in TWS and temperature. The largest NDVI gains occur over boreal forests associated with warming and wetting. The largest NDVI losses occur over grasslands in the Southwestern Ob associated with regional drying and cooling, with dominant constraint from TWS. Over grasslands and temperate forests in the Southeast Ob and South Yenisei, wetting and cooling lead to a dominant temperature constraint due to the relaxation of TWS constraints. Overall, we find significant monthly correlation of NDVI with TWS and temperature over 35% and 50% of the domain, respectively. These results indicate that water availability (TWS) plays a major role in modulating Eurasia vegetation response to temperature changes.
Optimal bus temperature for thermal comfort during a cool day.
Velt, K B; Daanen, H A M
2017-07-01
A challenge for electric buses is to minimize heating and cooling power to maximally extend the driving range, but still provide sufficient thermal comfort for the driver and passengers. Therefore, we investigated the thermal sensation (TS) and thermal comfort (TC) of passengers in buses during a cool day (temperature 13.4 ± 0.5 °C, relative humidity (RH) 60 ± 5.8%) typical for the Dutch temperate maritime climate. 28 Males and 72 females rated TS and TC and gave information on age, stature, body weight and worn garments. The temperature in the bus of 22.5 ± 1.1 °C and RH of 59.9 ± 5.8% corresponded to a slightly warm feeling (TS = 0.85 ± 1.06) and TC of 0.39 ± 0.65. TS related significantly to bus temperature, clothing insulation and age. Linear regression based on these parameters showed that the temperature in the bus corresponding to TC = 0 and TS = 0 would have been 20.9 ± 0.6 °C. In conclusion, a 1.6 °C lower bus temperature during the investigated cool day probably would have led to less thermal discomfort and energy savings of electrical busses. The methodology to relate climatic measurements to subjective assessments is currently employed in a wider climatic range and may prove to be useful to find a better balance between thermal comfort and energy savings of the bus. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microbiomes of Ecologically Dominant Zooxanthellate Anthozoans: A Tropical-Temperate Comparison
NASA Astrophysics Data System (ADS)
Campbell, T. L.; Geller, J. B.; Schmeltzer, E.; Little, M.
2016-02-01
Marine bacteria are known to play an important role in cnidarian health, the cycling of organic matter and dimethylsulfionopropionate (DMSP) in reef ecosystems. The breadth of investigation surrounding this relationship in tropical reefs is vast; however, little work has been done in temperate non-reef building systems. Anthopleura elegantissima is a common zooxanthellate anthozoan on the Northeastern (NE) Pacific coast, also known to produce DMSP, yet relatively little is known about the bacterial community it harbors. In this study, we compare the bacterial communities of tropical Porites and Pocillopora species with the temperate Anthopleura elegantissima. We further compare bleached A. elegantissima polyps to polyps dark with zooxanthellae to investigate the complex relationship between host, symbiodinium, and bacteria. We sampled coral mucus from 45 individual coral colonies of Porites rus and Pocillopora damicornis, and Porites lutea in Moorea, French Polynesia and capitulum from 6 individual A. elegantissima polyps, which strikingly varied in color attributable to symbionts, from Moss Landing, California. All samples were processed according to the environmental microbiome project (EMP) protocols. The A. elegantissima samples also underwent microbial metagenome sequencing in an attempt to infer environmental function of these symbionts. In corals, major bacterial groups included Alteromonas, Rhodobacteraceae, and Vibrio. Vibrio, along with Rhodobacteraceae, are associated with DMSP metabolism. Pseudoalteromonadaceae varied greatly among samples, without correlation to species, similar to previous studies. Data analysis for anemones is in progress. DMSP and DMS have been studied for their role in forming cloud condensation nuclei, potentially leading to climate cooling. Anthopleura is thought to be the most abundant upper intertidal invertebrate in the NE Pacific, potentially making it an important player in coastal DMSP cycling.
NASA Astrophysics Data System (ADS)
Luiselli, Luca; Akani, Godfrey C.
2002-05-01
Most of the studies concerning the thermal and reproductive relationships of snakes have been conducted in temperate regions, whereas very few data are available for African tropical species. In the present study, aspects of the comparative thermal and reproductive ecology of four sympatric freshwater snakes from tropical Africa (the colubrids Natriciteres fuliginoides, N. variegata, Afronatrix anoscopus, and Grayia smythii) are studied with emphasis on exploring whether their thermal ecology relations with reproduction biology may indicate a substantial influence of thermoregulation on their life-history traits (as shown in several studies from temperate-zone reptiles), or whether thermoregulatory biology is less important in tropical reptiles (as suggested in some recent experimental studies). The present study showed that, with minor species-specific differences, thermoregulation certainly has some relevance for the activity and life-history attributes of the studied species, as (i) the females tended to show body temperatures inversely related to their size (snout-vent length), and (ii) gravid specimens tended to maintain higher body temperatures than non-gravid specimens. However, other sets of our data (e.g., the high and constant Tb exhibited during night-time) strongly indicate that these four species of tropical water snakes can maintain high and stable Tb with little overt thermoregulatory behaviour. As is the rule in most of the other snake species studied to date, the maternal size of the females strongly influenced the number of eggs produced, and testifies that reproductive biology models linking reproductive performance to thermal ecology, highlighted in other snakes from temperate and cool regions, may well apply at least to some extent also to these Afrotropical species.
Modelling the dissipation and leaching of two herbicides in decomposing mulch of crop residues
NASA Astrophysics Data System (ADS)
Aslam, Sohaib; Iqbal, Akhtar; Lafolie, François; Recous, Sylvie; Benoit, Pierre; Garnier, Patricia
2013-04-01
Conservation agricultural practices are increasingly adopted because of ecosystem services such as conservation of soil and water resources. These farming systems are characterized mainly by the presence of mulch made of residues of harvested or cover crops on soil surface. The mulch can intercept and retain applied pesticides depending on pesticide molecule and rainfall timing. The pesticide wash-off from mulch is considered a key process in pesticide fate and can have effects on degradation and transport processes. This work highlights a modelling approach to study the pesticide wash-off from mulch residues and their further transport in soil under two rainfall regimes. Transformation and leaching of two herbicides, s-metolachlor and glyphosate, was studied and simulated by Pastis-mulch model. A pesticide module describing pesticide degradation in mulch and soil was coupled to a transport model including a mulch module. The model was tested to simulate the pesticide dissipation, wash-off from mulch and further leaching in soil. Pesticide degradation parameters in mulch were estimated from incubation experiments with 14C-labelled molecules in small cylinders. The model was then tested using the data obtained through a soil column experiment (reconstructed soil cores :15 cm diameter x 35 cm depth), a mulch of Zea mais + Doliquos lablab and with two treatments varied by water regimes: i) frequent rain (temperate, twice a week) with week intensity (6 mm/hr); and ii) occasional rain (tropical, twice a month) with stronger intensity (20 mm/hr). Columns were incubated at 20 °C for 84 days to monitor soil water, C, N and pesticide dynamics. Model successfully simulated the experimental data of pesticide dissipation in mulch residues. Results showed that the rain regime affected more S-metolachlor than glyphosate behavior. The simulated results indicated also that the dynamics in mulch of the two molecules differed according to the rain treatment. Glyphosate showed a greater leaching from mulch than S-metolachlor because of its lower adsorption coefficients to organic mulch. Moreover, simulated results showed a much faster degradation of glyphosate but greater non-extractable residue formation for S-metolachlor. Keywords: Mulch; Pesticides; Transport; Degradation; Modeling; Pastis-mulch References Findeling, A., Garnier, P., Coppens, F., Lafolie, F., Recous, S., 2007. Modelling water, carbon and nitrogen dynamics in soil covered with decomposing mulch. European Journal of Soil Science 58, 196-206. Lashermes, G., Zhang, Y., Houot, S., Barriuso, E., Steyer, J.P., Patureau, D., Garnier, P., 2013. A model coupling organic carbon and organic pollutant dynamics during composting. Journal of Environmental Quality. In Press.
Tichavský, Radek; Šilhán, Karel; Tolasz, Radim
2017-02-01
Hydro-geomorphic processes have significantly influenced the recent development of valley floors, river banks and depositional forms in mountain environments, have caused considerable damage to manmade developments and have disrupted forest management. Trees growing along streams are affected by the transported debris mass and provide valuable records of debris flow/flood histories in their tree-ring series. Dendrogeomorphic approaches are currently the most accurate methods for creating a chronology of the debris flow/flood events in forested catchments without any field-monitoring or a stream-gauging station. Comprehensive studies focusing on the detailed chronology of hydro-geomorphic events and analysis of meteorological triggers and weather circulation patterns are still lacking for the studied area. We provide a spatio-temporal reconstruction of hydro-geomorphic events in four catchments of the Hrubý Jeseník Mountains, Czech Republic, with an analysis of their triggering factors using meteorological data from four nearby rain gauges. Increment cores from 794 coniferous trees (Picea abies [L.] Karst.) allowed the identification of 40 hydro-geomorphic events during the period of 1889-2013. Most of the events can be explained by extreme daily rainfalls (≥50mm) occurring in at least one rain gauge. However, in several cases, there was no record of extreme precipitation at rain gauges during the debris flow/flood event year, suggesting extremely localised rainstorms at the mountain summits. We concluded that the localisation, intensity and duration of rainstorms; antecedent moisture conditions; and amount of available sediments all influenced the initiation, spatial distribution and characteristics of hydro-geomorphic events. The most frequent synoptic situations responsible for the extreme rainfalls (1946-2015) were related to the meridional atmospheric circulation pattern. Our results enhance current knowledge of the occurrences and triggers of debris flows/floods in the Central European mountains in transition between temperate oceanic and continental climatic conditions and may prompt further research of these phenomena in the Eastern Sudetes in general. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hirl, Regina; Schnyder, Hans; Auerswald, Karl; Vetter, Sylvia; Ostler, Ulrike; Schleip, Inga; Wingate, Lisa; Ogée, Jérôme
2015-04-01
The oxygen isotope composition (δ18O) of water in terrestrial ecosystems usually shows strong and dynamic variations within and between the various compartments. These variations originate from changes in the δ18O of water inputs (e.g. rain or water vapour) and from 18O fractionation phenomena in the soil-plant-atmosphere continuum. Investigations of δ18O in ecosystem water pools and of their main drivers can help us understand water relations at plant, canopy or ecosystem scale and interpret δ18O signals in plant and animal tissues as paleo-climate proxies. During the vegetation periods of 2006 to 2012, soil, leaf and stem water as well as atmospheric humidity, rain water and groundwater were sampled at bi-weekly intervals in a temperate humid pasture of the Grünschwaige Grassland Research Station near Munich (Germany). The sampling was performed following standardised MIBA (Moisture Isotopes in the Biosphere and Atmosphere) protocols. Leaf water samples were prepared from a mixture of co-dominant species in the plant community in order to obtain a canopy-scale leaf water δ18O signal. All samples were then analysed for their δ18O compositions. The measured δ18O of leaf, stem and soil water were then compared with the δ18O signatures simulated by the process-based isotope-enabled ecosystem model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere). MuSICA integrates current mechanistic understanding of processes in the soil-plant-atmosphere continuum. Hence, the comparison of modelled and measured data allows the identification of gaps in current knowledge and of questions to be tackled in the future. Soil and plant characteristics for model parameterisation were derived from investigations at the experimental site and supplemented by values from the literature. Eddy-covariance measurements of ecosystem CO2 (GPP, NEE) and energy (H, LE) fluxes and soil temperature data were used for model evaluation. The comparison of measured and predicted ecosystem fluxes showed that the model captured the main features of the diurnal cycles of GPP, NEE, LE and H, as well as the soil temperature dynamics. In this presentation I will present the main results of this model-data comparison, as well as results from a model sensitivity analysis performed over a range of soil, plant and meteorological parameters to evaluate the relative importance of each parameter on the δ18O signatures of the various water pools.
Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes
Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F.
2015-01-01
The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h–1 to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as –6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as –14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. PMID:25788733
NASA Astrophysics Data System (ADS)
Salzmann, Ulrich; Strother, Stephanie; Sangiorgi, Francesca; Bijl, Peter; Pross, Joerg; Woodward, John; Escutia, Carlota; Brinkhuis, Henk
2016-04-01
The question whether Cenozoic climate was warm enough to support a substantial vegetation cover on the Antarctic continent is of great significance to the ongoing controversial debate on the dynamic behaviour of Antarctic land ice during the transition from a greenhouse to an icehouse world. Here we present palynological results from an Oligocene to Miocene sediment record provided by the Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin (East Antarctica). The Oligocene assemblages (33.9-23 Ma) are dominated by pollen and spores from temperate forest and sub-Antarctic shrub vegetation inhabiting different altitudinal zones. These include a lowland cold temperate forest with Dacrydium and Lagarostrobos (both common in southern forests of New Zealand and Tasmania today) and a high altitude tundra shrubland comprising Microcachrys, Nothofagus (southern beech) and Podocarpaceae conifers. A decline in pollen percentages of Dacrydium and Lagarostrobos and absence of Proteaceae indicate climate cooling during the late Oligocene (~25-23 Ma). However, the continuous presence of Lagarostrobos suggests that the full transition to a tundra environment had not yet occurred and climate on Wilkes Land during the late Oligocene was still warm enough to support forest vegetation in sheltered areas. Temperature reconstructions derived from the fossil pollen assemblages using the Coexistence Approach suggest mean annual temperatures (MATs) between 6.7-13.7°C during the early Oligocene and a drop of minimum MATs to 5.8°C in the late Oligocene. Pollen of "unambiguous" forest indicators, such as Lagarostrobos, are absent in the Miocene sediment record (16.2 -12.5 Ma) but temperatures were still high enough (minimum MATs > 5°C) to sustain a woody sub-Antarctic vegetation under partially ice-free conditions. Wilkes Land provides a unique record of Antarctic vegetation change from a subtropical, highly diverse Eocene rainforest to an Oligocene cold temperate forest and an impoverished Miocene sub-Antarctic shrubland. The pollen record suggests that temperatures were higher than in the Ross Sea region (i.e. Andrill, Cape Roberts) and the Wilkes Land margins were possibly one of the last refugia for temperate forest taxa on Antarctica during the Late Oligocene.
Hardness of H13 Tool Steel After Non-isothermal Tempering
NASA Astrophysics Data System (ADS)
Nelson, E.; Kohli, A.; Poirier, D. R.
2018-04-01
A direct method to calculate the tempering response of a tool steel (H13) that exhibits secondary hardening is presented. Based on the traditional method of presenting tempering response in terms of isothermal tempering, we show that the tempering response for a steel undergoing a non-isothermal tempering schedule can be predicted. Experiments comprised (1) isothermal tempering, (2) non-isothermal tempering pertaining to a relatively slow heating to process-temperature and (3) fast-heating cycles that are relevant to tempering by induction heating. After establishing the tempering response of the steel under simple isothermal conditions, the tempering response can be applied to non-isothermal tempering by using a numerical method to calculate the tempering parameter. Calculated results are verified by the experiments.
NASA Astrophysics Data System (ADS)
Noda, H. M.; Muraoka, H.
2014-12-01
Satellite remote sensing of structure and function of canopy is crucial to detect temporal and spatial distributions of forest ecosystems dynamics in changing environments. The spectral reflectance of the canopy is determined by optical properties (spectral reflectance and transmittance) of single leaves and their spatial arrangements in the canopy. The optical properties of leaves reflect their pigments contents and anatomical structures. Thus detailed information and understandings of the consequence between ecophysiological traits and optical properties from single leaf to canopy level are essential for remote sensing of canopy ecophysiology. To develop the ecophysiological remote sensing of forest canopy, we have been promoting multiple and cross-scale measurements in "Takayama site" belonging to AsiaFlux and JaLTER networks, located in a cool-temperate deciduous broadleaf forest on a mountainous landscape in Japan. In this forest, in situ measurement of canopy spectral reflectance has been conducted continuously by a spectroradiometer as part of the "Phenological Eyes Network (PEN)" since 2004. To analyze the canopy spectral reflectance from leaf ecophysiological viewpoints, leaf mass per area, nitrogen content, chlorophyll contents, photosynthetic capacities and the optical properties have been measured for dominant canopy tree species Quercus crispla and Betula ermanii throughout the seasons for multiple years.Photosynthetic capacity was largely correlated with chlorophyll contents throughout the growing season in both Q. crispla and B. ermanii. In these leaves, the reflectance at "red edge" (710 nm) changed by corresponding to the changes of chlorophyll contents throughout the seasons. Our canopy-level examination showed that vegetation indices obtained by red edge reflectance have linear relationship with leaf chlorophyll contents and photosynthetic capacity. Finally we apply this knowledge to the Rapid Eye satellite imagery around Takayama site to scale-up the leaf-level findings to canopy and landscape levels on a mountainous landscape.
Radiation budget changes with dry forest clearing in temperate Argentina.
Houspanossian, Javier; Nosetto, Marcelo; Jobbágy, Esteban G
2013-04-01
Land cover changes may affect climate and the energy balance of the Earth through their influence on the greenhouse gas composition of the atmosphere (biogeochemical effects) but also through shifts in the physical properties of the land surface (biophysical effects). We explored how the radiation budget changes following the replacement of temperate dry forests by crops in central semiarid Argentina and quantified the biophysical radiative forcing of this transformation. For this purpose, we computed the albedo and surface temperature for a 7-year period (2003-2009) from MODIS imagery at 70 paired sites occupied by native forests and crops and calculated the radiation budget at the tropopause and surface levels using a columnar radiation model parameterized with satellite data. Mean annual black-sky albedo and diurnal surface temperature were 50% and 2.5 °C higher in croplands than in dry forests. These contrasts increased the outgoing shortwave energy flux at the top of the atmosphere in croplands by a quarter (58.4 vs. 45.9 W m(-2) ) which, together with a slight increase in the outgoing longwave flux, yielded a net cooling of -14 W m(-2) . This biophysical cooling effect would be equivalent to a reduction in atmospheric CO2 of 22 Mg C ha(-1) , which involves approximately a quarter to a half of the typical carbon emissions that accompany deforestation in these ecosystems. We showed that the replacement of dry forests by crops in central Argentina has strong biophysical effects on the energy budget which could counterbalance the biogeochemical effects of deforestation. Underestimating or ignoring these biophysical consequences of land-use changes on climate will certainly curtail the effectiveness of many warming mitigation actions, particularly in semiarid regions where high radiation load and smaller active carbon pools would increase the relative importance of biophysical forcing. © 2012 Blackwell Publishing Ltd.
A review of the impacts of nature based recreation on birds.
Steven, Rochelle; Pickering, Catherine; Guy Castley, J
2011-10-01
Nature based recreation such as wildlife viewing, hiking, running, cycling, canoeing, horse riding and dog walking can have negative environmental effects. A review of the recreation ecology literature published in English language academic journals identified 69 papers from 1978 to 2010 that examined the effect of these activities on birds. Sixty-one of the papers (88%) found negative impacts, including changes in bird physiology (all 11 papers), immediate behaviour (37 out of 41 papers), as well as changes in abundance (28 out of 33 papers) and reproductive success (28 out of 33 papers). Previous studies are concentrated in a few countries (United States, England, Argentina and New Zealand), mostly in cool temperate or temperate climatic zones, often in shoreline or wetland habitats, and mostly on insectivore, carnivore and crustaceovore/molluscivore foraging guilds. There is limited research in some regions with both high bird diversity and nature based recreation such as mainland Australia, Central America, Asia, and Africa, and for popular activities such as mountain bike riding and horse riding. It is clear, however, that non-motorised nature based recreation has negative impacts on a diversity of birds from a range of habitats in different climatic zones and regions of the world. Copyright © 2011 Elsevier Ltd. All rights reserved.
Office-like Test Chambers to Measure Cool Roof Energy Savings in Four Indian Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Rathish; B, Sasank; T, Rajappa
Selecting a high albedo (solar reflectance) waterproofing layer on the top of a roof helps lower the roof’s surface temperature and reduce the air conditioning energy consumption in the top floor of a building. The annual energy savings depend on factors including weather, internal loads, and building operation schedule. To demonstrate the energy saving potential of high albedo roofs, an apparatus consisting of two nearly identical test chambers (A and B) has been built in four Indian climates: Chennai (hot & humid), Bangalore (temperate), Jhagadia (Hot & dry) and Delhi (composite). Each chamber has well-insulated walls to mimic the coremore » of an office building. Both chambers have the same construction, equipment, and operating schedule, differing only in roof surface. The reinforced cement concrete roof of Chamber A is surfaced with a low-albedo cement layer, while that of Chamber B is surfaced with a high-albedo water proof membrane (change in solar reflectance of 0.28). The experiment will be carried out for one year to explore seasonal variations in energy savings. Initial results in the month of July (post summer) shows that savings from high albedo roof ranges from 0.04 kWh/m2/day in temperate climates, to 0.08 kWh/m2/day in hot & dry climate.« less
NASA Astrophysics Data System (ADS)
Foroozmehr, Ehsan; Kovacevic, Radovan
2011-07-01
A thermokinetic model coupling finite-element heat transfer with transformation kinetics is developed to determine the effect of deposition patterns on the phase-transformation kinetics of laser powder deposition (LPD) process of a hot-work tool steel. The finite-element model is used to define the temperature history of the process used in an empirical-based kinetic model to analyze the tempering effect of the heating and cooling cycles of the deposition process. An area is defined to be covered by AISI H13 on a substrate of AISI 1018 with three different deposition patterns: one section, two section, and three section. The two-section pattern divides the area of the one-section pattern into two sections, and the three-section pattern divides that area into three sections. The results show that dividing the area under deposition into smaller areas can influence the phase transformation kinetics of the process and, consequently, change the final hardness of the deposited material. The two-section pattern shows a higher average hardness than the one-section pattern, and the three-section pattern shows a fully hardened surface without significant tempered zones of low hardness. To verify the results, a microhardness test and scanning electron microscope were used.
Deriving Vegetation Dynamics of Natural Terrestrial Ecosystems from MODIS NDVI/EVI Data over Turkey.
Evrendilek, Fatih; Gulbeyaz, Onder
2008-09-01
The 16-day composite MODIS vegetation indices (VIs) at 500-m resolution for the period between 2000 to 2007 were seasonally averaged on the basis of the estimated distribution of 16 potential natural terrestrial ecosystems (NTEs) across Turkey. Graphical and statistical analyses of the time-series VIs for the NTEs spatially disaggregated in terms of biogeoclimate zones and land cover types included descriptive statistics, correlations, discrete Fourier transform (DFT), time-series decomposition, and simple linear regression (SLR) models. Our spatio-temporal analyses revealed that both MODIS VIs, on average, depicted similar seasonal variations for the NTEs, with the NDVI values having higher mean and SD values. The seasonal VIs were most correlated in decreasing order for: barren/sparsely vegetated land > grassland > shrubland/woodland > forest; (sub)nival > warm temperate > alpine > cool temperate > boreal = Mediterranean; and summer > spring > autumn > winter. Most pronounced differences between the MODIS VI responses over Turkey occurred in boreal and Mediterranean climate zones and forests, and in winter (the senescence phase of the growing season). Our results showed the potential of the time-series MODIS VI datasets in the estimation and monitoring of seasonal and interannual ecosystem dynamics over Turkey that needs to be further improved and refined through systematic and extensive field measurements and validations across various biomes.
THE SM-1 ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM, NOVEMBER 1954- DECEMBER 1960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pressman, M; Pruett, P B
1961-08-31
BS>An environmental radiological monitoring program was conducted. All data obtained during a period extending from l 1/2 years prior to SM-1 reactor start-up through more than 3 years of reactor operation are summarized. The period extended from November 1954 through December 1960. Samples assayed for radioactivity include river water and bottom silt, SM-1 condenser cooling water, subsurface ground water, rain and snow, atmospheric particles obtained by air filtration and fallout, and biota. The report concludes that after more than 3 years of SM-1 reactor operation, no significant increase has been noted in the radiological background level in the Fort Belvoirmore » area.« less
NASA Astrophysics Data System (ADS)
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-07-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
Meerschaert, Mark M; Sabzikar, Farzad; Chen, Jinghua
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
MEERSCHAERT, MARK M.; SABZIKAR, FARZAD; CHEN, JINGHUA
2014-01-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series. PMID:26085690
Timing of breeding in variable environments: tropical birds as model systems.
Hau, M
2001-09-01
Animals need to adjust reproductive decisions to environmental seasonality. In contrast to species from the well-studied temperate zones, little is known for tropical birds about the environmental cues that stimulate reproductive activity and the physiological mechanisms that regulate reproduction. I am investigating the environmental and endocrine mechanisms that underlie the timing of reproduction in spotted antbirds from the near-equatorial Panamanian rainforest and in small ground finches from the equatorial arid Galápagos islands. Spotted antbirds live in a fairly predictable seasonal environment and show regular changes in gonad sizes and some reproductive hormones. Despite the small annual variation in photoperiod close to the equator, these birds can measure slight photoperiodic increases and use it to initiate reproductive activity. Spotted antbirds also respond to seasonal changes in food availability, which allows them to flexibly adjust gonad growth to environmental conditions. Testosterone is involved in regulating song and aggressive behavior in these year-round territorial birds, although it can remain at low plasma levels throughout the year. In contrast, small ground finches exposed to a rather unpredictable climate on Galápagos appear to grow their gonads whenever heavy rains fall and have regressed gonads during other times of the year. The lack of a physiological preparation for the breeding season and their response to short-term cues related to rainfall indicate a striking flexibility in the regulation of breeding in small ground finches. I suggest that tropical birds can serve as model systems to study the physiological adaptations to different environments. Unraveling the neuroendocrine mechanisms behind the flexibility in reproductive timing will clarify whether differences found between temperate and tropical birds represent variations of the same basic mechanism or instead reflect a fundamental divergence in physiological control systems. Copyright 2001 Academic Press.
Edwards, Nicholas M.; Myer, Gregory D.; Kalkwarf, Heidi J.; Woo, Jessica G.; Khoury, Philip R.; Hewett, Timothy E.; Daniels, Stephen R.
2015-01-01
Objective Evaluate effects of local weather conditions on physical activity in early childhood. Methods Longitudinal prospective cohort study of 372 children, 3 years old at enrollment, drawn from a major US metropolitan community. Accelerometer-measured (RT3) physical activity was collected every 4 months over 5 years and matched with daily weather measures: day length, heating/cooling degrees (degrees mean temperature < 65°F or ≥ 65°F, respectively), wind, and precipitation. Mixed regression analyses, adjusted for repeated measures, were used to test the relationship between weather and physical activity. Results Precipitation and wind speed were negatively associated with total physical activity and moderate-vigorous physical activity (P<0.0001). Heating and cooling degrees were negatively associated with total physical activity and moderate-vigorous physical activity and positively associated with inactivity (all P<0.0001), independent of age, sex, race, BMI, day length, wind, and precipitation. For every 10 additional heating degrees there was a five-minute daily reduction in moderate-vigorous physical activity. For every additional 10 cooling degrees there was a 17-minute reduction in moderate-vigorous physical activity. Conclusions Inclement weather (higher/lower temperature, greater wind speed, more rain/snow) is associated with less physical activity in young children. These deleterious effects should be considered when planning physical activity research, interventions, and policies. PMID:25423667
Microstructure and Mechanical Properties of Austempered Medium-Carbon Spring Steel
NASA Astrophysics Data System (ADS)
Kim, Seong Hoon; Kim, Kwan-Ho; Bae, Chul-Min; Lee, Jae Sang; Suh, Dong-Woo
2018-03-01
Changes in microstructure and mechanical properties of medium-carbon spring steel during austempering were investigated. After austempering for 1 h at 290 °C or 330 °C, the bainite transformation stabilized austenite, and microstructure consisting of bainitic ferrite and austenite could be obtained after final cooling; the retained austenite fraction was smaller in the alloy austempered at 290 °C because carbon redistribution between bainitic ferrite and austenite slowed as the temperature decreased, and thereby gave persistent driving force for the bainite transformation. The products of tensile strength and reduction of area in the austempered alloy were much larger in the austempered steel than in quenched and tempered alloy, mainly because of significant increase in reduction of area in austempered alloy.
Microstructure and Mechanical Properties of Austempered Medium-Carbon Spring Steel
NASA Astrophysics Data System (ADS)
Kim, Seong Hoon; Kim, Kwan-Ho; Bae, Chul-Min; Lee, Jae Sang; Suh, Dong-Woo
2018-07-01
Changes in microstructure and mechanical properties of medium-carbon spring steel during austempering were investigated. After austempering for 1 h at 290 °C or 330 °C, the bainite transformation stabilized austenite, and microstructure consisting of bainitic ferrite and austenite could be obtained after final cooling; the retained austenite fraction was smaller in the alloy austempered at 290 °C because carbon redistribution between bainitic ferrite and austenite slowed as the temperature decreased, and thereby gave persistent driving force for the bainite transformation. The products of tensile strength and reduction of area in the austempered alloy were much larger in the austempered steel than in quenched and tempered alloy, mainly because of significant increase in reduction of area in austempered alloy.
Industrial Test of High Strength Steel Plates Free Boron Q890D Used for Engineering Machinery
NASA Astrophysics Data System (ADS)
Dong, Ruifeng; Liu, Zetian; Gao, Jun
The chemistry composition, process parameters and the test results of Q890D free boron high strength steel plate used for engineering machinery was studied. The 16 40 mm thickness steel plates with good mechanical properties that was yield strength of 930 970 MPa, tensile strength of 978 1017 MPa, elongation of 13.5 15%, the average impact energy value of more than 100 J were developed by improving steel purity, adopting the reasonable controlled rolling and cooling process, using reasonable off-line quenching and tempering process. The test plates have good crack resistance in 60 °C preheat temperature condition because of that there are no any cracks in the surfaces, cross-section and roots of welding joints.
Thermal and Electrical Conductivity Measurements of Cda 510 Phosphor Bronze
NASA Astrophysics Data System (ADS)
Tuttle, J.; Canavan, E.; DiPirro, M.
2010-04-01
Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, results vary among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). These harnesses dominate the heat conducted into the JWST instrument stage, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment that measured its electrical and thermal conductivity between 4 and 295 Kelvin.
NASA Astrophysics Data System (ADS)
Davis, B.
2013-12-01
Extensive evidence from high latitudes of the Northern Hemisphere indicates that temperatures were warmer than present during the early-mid Holocene, a period known as the Holocene thermal maximum (HTM). The existence of the HTM over lower mid-latitudes and the sub-tropics however is less clear, with pollen-based reconstructions in particular actually indicating a contrary cooling at this time in these regions. This apparent cooling is controversial because it is not shown in climate model simulations, which indicate that the HTM occurred across all extra-tropical latitudes of the Northern Hemisphere. This is also supported by alkenone based SST reconstructions, which also show a much more widespread HTM than indicated by the pollen data. Here this problem is investigated by reviewing the evidence both for, and against, the HTM in the Mediterranean region, which represents one of the most intensively studied regions of sub-tropical climate in the Northern Hemisphere. This evidence includes a large number of both marine and terrestrial records that can be directly compared due to their close proximity around the Mediterranean Sea. The results highlight the potential for bias in both marine and terrestrial climate proxies, but despite many criticisms of the pollen-based record, it is shown that the existence of more extensive temperate vegetation in the early-mid Holocene in the Mediterranean is difficult to explain by anything other than a cooler climate. For instance, vegetation models driven by climate model output show that the warmer climate suggested by the models produces a HTM vegetation even more arid than today. The results have important implications in the interpretation of proxy records, but perhaps most importantly, the potential for climate models to underestimate cooling processes in a warmer world needs further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu; Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu; Chen, Jinghua, E-mail: cjhdzdz@163.com
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a temperedmore » fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.« less
Climate change impacts on wildlife in a High Arctic archipelago - Svalbard, Norway.
Descamps, Sébastien; Aars, Jon; Fuglei, Eva; Kovacs, Kit M; Lydersen, Christian; Pavlova, Olga; Pedersen, Åshild Ø; Ravolainen, Virve; Strøm, Hallvard
2017-02-01
The Arctic is warming more rapidly than other region on the planet, and the northern Barents Sea, including the Svalbard Archipelago, is experiencing the fastest temperature increases within the circumpolar Arctic, along with the highest rate of sea ice loss. These physical changes are affecting a broad array of resident Arctic organisms as well as some migrants that occupy the region seasonally. Herein, evidence of climate change impacts on terrestrial and marine wildlife in Svalbard is reviewed, with a focus on bird and mammal species. In the terrestrial ecosystem, increased winter air temperatures and concomitant increases in the frequency of 'rain-on-snow' events are one of the most important facets of climate change with respect to impacts on flora and fauna. Winter rain creates ice that blocks access to food for herbivores and synchronizes the population dynamics of the herbivore-predator guild. In the marine ecosystem, increases in sea temperature and reductions in sea ice are influencing the entire food web. These changes are affecting the foraging and breeding ecology of most marine birds and mammals and are associated with an increase in abundance of several temperate fish, seabird and marine mammal species. Our review indicates that even though a few species are benefiting from a warming climate, most Arctic endemic species in Svalbard are experiencing negative consequences induced by the warming environment. Our review emphasizes the tight relationships between the marine and terrestrial ecosystems in this High Arctic archipelago. Detecting changes in trophic relationships within and between these ecosystems requires long-term (multidecadal) demographic, population- and ecosystem-based monitoring, the results of which are necessary to set appropriate conservation priorities in relation to climate warming. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Beck, Kristen K.; Fletcher, Michael-Shawn; Gadd, Patricia S.; Heijnis, Henk; Saunders, Krystyna M.; Simpson, Gavin L.; Zawadzki, Atun
2018-02-01
Critical transitions in ecosystem states are often sudden and unpredictable. Consequently, there is a concerted effort to identify measurable early warning signals (EWS) for these important events. Aquatic ecosystems provide an opportunity to observe critical transitions due to their high sensitivity and rapid response times. Using palaeoecological techniques, we can measure properties of time series data to determine if critical transitions are preceded by any measurable ecosystem metrics, that is, identify EWS. Using a suite of palaeoenvironmental data spanning the last 2,400 years (diatoms, pollen, geochemistry, and charcoal influx), we assess whether a critical transition in diatom community structure was preceded by measurable EWS. Lake Vera, in the temperate rain forest of western Tasmania, Australia, has a diatom community dominated by Discostella stelligera and undergoes an abrupt compositional shift at ca. 820 cal yr BP that is concomitant with increased fire disturbance of the local vegetation. This shift is manifest as a transition from less oligotrophic acidic diatom flora (Achnanthidium minutissimum, Brachysira styriaca, and Fragilaria capucina) to more oligotrophic acidic taxa (Frustulia elongatissima, Eunotia diodon, and Gomphonema multiforme). We observe a marked increase in compositional variance and rate-of-change prior to this critical transition, revealing these metrics are useful EWS in this system. Interestingly, vegetation remains complacent to fire disturbance until after the shift in the diatom community. Disturbance taxa invade and the vegetation system experiences an increase in both compositional variance and rate-of-change. These trends imply an approaching critical transition in the vegetation and the probable collapse of the local rain forest system.
The Effect of Intermittent Arm and Shoulder Cooling on Baseball Pitching Velocity.
Bishop, Stacy H; Herron, Robert L; Ryan, Gregory A; Katica, Charles P; Bishop, Phillip A
2016-04-01
The throwing arm of a baseball pitcher is subjected to high stress as a result of the repetitive activity of pitching. Intermittent cryotherapy may facilitate recovery from this repeated high stress, but few researchers have investigated cryotherapy's efficacy in an ecologically valid setting. This study investigated the effects of intermittent cryotherapy on pitching velocity and subjective measures of recovery and exertion in a simulated baseball game. Trained college-aged male baseball pitchers (n = 8) threw 12 pitches (1 pitch every 20 seconds) per inning for 5 total innings during a simulated pitching start. Between each inning, pitchers received shoulder and arm cooling (AC) or, on a separate occasion, no cooling (NC). All sessions took place in a temperate environment (18.3 ± 2.8° C; 49 ± 4% relative humidity). Pitch speeds were averaged for each participant each inning and overall for 5 innings. Perceived exertion (rating of perceived exertion [RPE]) was recorded at the end of each simulated inning. Perceived recovery (perceived recovery scale [PRS]) was recorded after treatment between each inning. Mean pitching velocity for all-innings combined was higher (p = 0.04) for shoulder and elbow cooling (AC) (31.2 ± 2.1 m·s) than for no cooling (NC) (30.6 ± 2.1 m·s). Average pitch speed was significantly higher in the fourth (p = <0.01) and fifth (p = 0.02) innings in AC trial (31.3 ± 2 m·s for both innings) compared with NC trial (30.0 ± 2.22 m·s and 30.4 ± 1.99 m·s, for the fourth and fifth innings, respectively. AC resulted in a significantly lower RPE (p ≤ 0.01) and improved PRS (p ≤ 0.01) compared with NC. Intermittent cryotherapy attenuated velocity loss in baseball pitching, decreased RPE, and facilitated subjective recovery during a 5-inning simulated game.
Tourism climatology for camping: a case study of two Ontario parks (Canada)
NASA Astrophysics Data System (ADS)
Hewer, Micah J.; Scott, Daniel; Gough, William A.
2015-08-01
Climate and weather act as central motivators for the travel decisions of tourists. Due to their seasonality, these factors determine the availability and quality of certain outdoor recreational activities. Park visitation in Ontario, Canada, has been identified as a weather sensitive tourism and recreation activity. This study used a survey-based approach to identify and compare stated weather preferences and thresholds, as well as weather-related decision-making for campers at two provincial parks in Ontario, Canada. The two parks were selected for differing physical and environmental characteristics (forested lake versus coastal beach). Statistically significant differences were detected between the two parks in relation to the importance of weather and weather-based decision-making. Specific temperatures that were considered ideal and thresholds that were too cool and too warm were identified for both parks, both during the day and the night. Heavy rain and strong winds were the most influential factors in weather-related decision-making and on-site behavioural adaptations. Beach campers placed greater importance on the absence of rain and the presence of comfortable temperatures compared to forest campers. In addition, beach campers were more likely to leave the park early due to incremental weather changes. The results of this study suggest that beach campers are more sensitive to weather than forest campers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, X.; Xia, C.; Keppens, R.
We extend our earlier multidimensional, magnetohydrodynamic simulations of coronal rain occurring in magnetic arcades with higher resolution, grid-adaptive computations covering a much longer (>6 hr) time span. We quantify how blob-like condensations forming in situ grow along and across field lines and show that rain showers can occur in limit cycles, here demonstrated for the first time in 2.5D setups. We discuss dynamical, multi-dimensional aspects of the rebound shocks generated by the siphon inflows and quantify the thermodynamics of a prominence–corona transition-region-like structure surrounding the blobs. We point out the correlation between condensation rates and the cross-sectional size of loopmore » systems where catastrophic cooling takes place. We also study the variations of the typical number density, kinetic energy, and temperature while blobs descend, impact, and sink into the transition region. In addition, we explain the mechanisms leading to concurrent upflows while the blobs descend. As a result, there are plenty of shear flows generated with relative velocity difference around 80 km s{sup −1} in our simulations. These shear flows are siphon flows set up by multiple blob dynamics and they in turn affect the deformation of the falling blobs. In particular, we show how shear flows can break apart blobs into smaller fragments, within minutes.« less
Modeling Skin Injury from Hot Spills on Clothing.
Log, Torgrim
2017-11-11
The present work analyzes scald burns from hot beverages, such as coffee and tea, spilled on the lap, i.e., an incident that may occur in daily life. The Pennes bioheat equation is solved numerically for small spills wetting the clothing, i.e., the fabric prevents the spilled liquid from draining away. Temperatures are analyzed in the wetted fabric and the skin layers and the resulting skin injury is calculated based on the basal layer temperature. Parameters influencing burn severity, such as clothing thickness, liquid temperature, removal of fabric and thermal effects of post scald water cooling are analyzed. The fabric cools the water some but represents a threat since the entrapped water results in a prolonged heat supply. The liquid temperature turned out to be the most important injury parameter, where liquid temperature of about 80-85 °C seems to be a limit for developing superficial partial-thickness burns in the present minimum case, i.e., where the liquid just wets the fabric. Spilling water in excess of just wetting the fabric, more severe burns will develop at lower liquid temperatures due to the prolonged heat supply. Higher liquid temperatures will nearly instantly develop more severe burns. It is demonstrated that removal of the clothing within the first seconds after the spill may significantly reduce the scalding severity. The general advice is therefore to avoid excessive heating of beverages and, if the beverage is spilled, to quickly remove the wetted clothing. Prolonged tempered water cooling is advised to improve the healing processes.
Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution
NASA Astrophysics Data System (ADS)
Foley, Bradford J.; Driscoll, Peter E.
2016-05-01
Earth's climate, mantle, and core interact over geologic time scales. Climate influences whether plate tectonics can take place on a planet, with cool climates being favorable for plate tectonics because they enhance stresses in the lithosphere, suppress plate boundary annealing, and promote hydration and weakening of the lithosphere. Plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate. Plate tectonics provides long-term cooling of the core, which is vital for generating a magnetic field, and the magnetic field is capable of shielding atmospheric volatiles from the solar wind. Coupling between climate, mantle, and core can potentially explain the divergent evolution of Earth and Venus. As Venus lies too close to the sun for liquid water to exist, there is no long-term carbon cycle and thus an extremely hot climate. Therefore, plate tectonics cannot operate and a long-lived core dynamo cannot be sustained due to insufficient core cooling. On planets within the habitable zone where liquid water is possible, a wide range of evolutionary scenarios can take place depending on initial atmospheric composition, bulk volatile content, or the timing of when plate tectonics initiates, among other factors. Many of these evolutionary trajectories would render the planet uninhabitable. However, there is still significant uncertainty over the nature of the coupling between climate, mantle, and core. Future work is needed to constrain potential evolutionary scenarios and the likelihood of an Earth-like evolution.
Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes.
Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F
2015-07-01
The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h(-1) to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as -6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as -14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Computational studies of the glass-forming ability of model bulk metallic glasses
NASA Astrophysics Data System (ADS)
Zhang, Kai; Wang, Minglei; Papanikolaou, Stefanos; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D.; O'Hern, Corey S.
2013-09-01
Bulk metallic glasses (BMGs) are produced by rapidly thermally quenching supercooled liquid metal alloys below the glass transition temperature at rates much faster than the critical cooling rate Rc below which crystallization occurs. The glass-forming ability of BMGs increases with decreasing Rc, and thus good glass-formers possess small values of Rc. We perform molecular dynamics simulations of binary Lennard-Jones (LJ) mixtures to quantify how key parameters, such as the stoichiometry, particle size difference, attraction strength, and heat of mixing, influence the glass-formability of model BMGs. For binary LJ mixtures, we find that the best glass-forming mixtures possess atomic size ratios (small to large) less than 0.92 and stoichiometries near 50:50 by number. In addition, weaker attractive interactions between the smaller atoms facilitate glass formation, whereas negative heats of mixing (in the experimentally relevant regime) do not change Rc significantly. These results are tempered by the fact that the slowest cooling rates achieved in our simulations correspond to ˜1011 K/s, which is several orders of magnitude higher than Rc for typical BMGs. Despite this, our studies represent a first step in the development of computational methods for quantitatively predicting glass-formability.
Combined climate and carbon-cycle effects of large-scale deforestation
Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T. J.; Lobell, D. B.; Delire, C.; Mirin, A.
2007-01-01
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate. PMID:17420463
Combined climate and carbon-cycle effects of large-scale deforestation.
Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A
2007-04-17
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO(2) to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.
Qin, Sheng; Li, Zhongquan; Guo, Guoqiang; An, Qinglong; Chen, Ming; Ming, Weiwei
2016-09-28
The tool coating and cooling strategy are two key factors when machining difficult-to-cut materials such as titanium alloy. In this paper, diamond coating was deposited on a commercial carbide insert as an attempt to increase the machinability of TC11 alloy during the turning process. An uncoated carbide insert and a commercial Al₂O₃/TiAlN-coated tool were also tested as a comparison. Furthermore, MQL was applied to improve the cutting condition. Cutting performances were analyzed by cutting force, cutting temperate and surface roughness measurements. Tool wears and tool lives were evaluated to find a good matchup between the tool coating and cooling strategy. According to the results, using MQL can slightly reduce the cutting force. By applying MQL, cutting temperatures and tool wears were reduced by a great amount. Besides, MQL can affect the tool wear mechanism and tool failure modes. The tool life of an Al₂O₃/TiAlN-coated tool can be prolonged by 88.4% under the MQL condition. Diamond-coated tools can obtain a good surface finish when cutting parameters and lubrication strategies are properly chosen.
Qin, Sheng; Li, Zhongquan; Guo, Guoqiang; An, Qinglong; Chen, Ming; Ming, Weiwei
2016-01-01
The tool coating and cooling strategy are two key factors when machining difficult-to-cut materials such as titanium alloy. In this paper, diamond coating was deposited on a commercial carbide insert as an attempt to increase the machinability of TC11 alloy during the turning process. An uncoated carbide insert and a commercial Al2O3/TiAlN-coated tool were also tested as a comparison. Furthermore, MQL was applied to improve the cutting condition. Cutting performances were analyzed by cutting force, cutting temperate and surface roughness measurements. Tool wears and tool lives were evaluated to find a good matchup between the tool coating and cooling strategy. According to the results, using MQL can slightly reduce the cutting force. By applying MQL, cutting temperatures and tool wears were reduced by a great amount. Besides, MQL can affect the tool wear mechanism and tool failure modes. The tool life of an Al2O3/TiAlN-coated tool can be prolonged by 88.4% under the MQL condition. Diamond-coated tools can obtain a good surface finish when cutting parameters and lubrication strategies are properly chosen. PMID:28773926
Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, G; Caldeira, K; Wickett, M
2006-10-17
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has amore » net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.« less
NASA Astrophysics Data System (ADS)
Yajie, Cheng; Qingliang, Liao; Yue, Zhang
Due to composition segregation and cooling speed, streamline or banded structure were often obtained in the thermal forming parts along the direction of parts forming. Generally speaking, banded structure doesn't decrease the longitudinal mechanical properties, so the secondary banded structure can't get enough attention. The effect of secondary banded structure on the fatigue properties of micro alloyed DG20Mn and 35CrMo steel was investigated using the axial tensile fatigue test of stress ratio of 0.1. The result shows that secondary banded structure was obtained in the center of the steel parts, because of the composition segregation and the lower cooling rate in center part of steel. Secondary banded structure has no significant effect on axial tensile properties of both DG20Mn and 35CrMo, but decreases the axial tensile fatigue performance of DG20Mn steel. This study suggests that under the high cyclic tensile stress, multi-source damage cracks in steel initiated by large strain of pearlite of secondary banded structure, which is larger than damage strain, is the major factor of the decrease of fatigue life of steel.
McGuire, Krista L; Allison, Steven D; Fierer, Noah; Treseder, Kathleen K
2013-01-01
Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0-20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.
Earth-space links and fade-duration statistics
NASA Technical Reports Server (NTRS)
Davarian, Faramaz
1995-01-01
In recent years, fade-duration statistics have been the subject of several experimental investigations. A good knowledge of the fade-duration distribution is important for the assessment of a satellite communication system's channel dynamics: What is a typical link outage duration? How often do link outages exceeding a given duration occur? Unfortunately there is yet no model that can universally answer the above questions. The available field measurements mainly come from temperate climatic zones and only from a few sites. Furthermore, the available statistics are also limited in the choice of frequency and path elevation angle. Yet, much can be learned from the available information. For example, we now know that the fade-duration distribution is approximately lognormal. Under certain conditions, we can even determine the median and other percentiles of the distribution. This paper reviews the available data obtained by several experimenters in different parts of the world. Areas of emphasis are mobile and fixed satellite links. Fades in mobile links are due to roadside-tree shadowing, whereas fades in fixed links are due to rain attenuation.
Earth-Space Links and Fade-Duration Statistics
NASA Technical Reports Server (NTRS)
Davarian, Faramaz
1996-01-01
In recent years, fade-duration statistics have been the subject of several experimental investigations. A good knowledge of the fade-duration distribution is important for the assessment of a satellite communication system's channel dynamics: What is a typical link outage duration? How often do link outages exceeding a given duration occur? Unfortunately there is yet no model that can universally answer the above questions. The available field measurements mainly come from temperate climatic zones and only from a few sites. Furthermore, the available statistics are also limited in the choice of frequency and path elevation angle. Yet, much can be learned from the available information. For example, we now know that the fade-duration distribution is approximately lognormal. Under certain conditions, we can even determine the median and other percentiles of the distribution. This paper reviews the available data obtained by several experimenters in different parts of the world. Areas of emphasis are mobile and fixed satellite links. Fades in mobile links are due to roadside-tree shadowing, whereas fades in fixed links are due to rain attenuation.
Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets
NASA Astrophysics Data System (ADS)
Gaspari, M.; Ruszkowski, M.; Sharma, P.
2012-02-01
Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI/t ff) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments "rain" down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI/t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI/t ff <~ 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.
Atmospheric Characteristics of Cool Season Intermittent Precipitation Near Portland, Oregon
NASA Astrophysics Data System (ADS)
Cunningham, Jeffrey Glenn
Pacific Northwest cool season precipitation is often described as mostly stratiform (i.e. steady and continuous). While most regional precipitation is stratiform in terms of area and duration, embedded convective cells within stratiform precipitation occur frequently enough to warrant study. Embedded cells locally increase rain rate, total precipitation, and streamflow discharge and hence raise the risk of flooding, landslides, and debris flows. Analysis of vertically pointing radar data near Portland, Oregon for three cool seasons (2005 to 2008) indicates that fallstreaks in the snow layer, locally enhanced precipitation regions a few kilometers in size indicated in radar reflectivity data above the 0° C altitude, are nearly ubiquitous on days with significant rainfall accumulation and large areas of precipitation. The observed fallstreaks in snow enhance rainfall immediately below the snow fallstreak. Compared to stratiform periods, embedded convective periods include higher Doppler vertical velocity values and higher variability in velocities especially in the snow layer. The combination of these findings points to generating cells within the snow layer and the seeder-feeder mechanism as important sources of surface precipitation variability for periods of embedded convective cells within stratiform precipitation. The primary goal of this study was to determine the sources of instability typically associated with convective cells embedded within stratiform precipitation for Pacific Northwest cool season storms. Storm periods occurring over six cool seasons (2002 to 2008, totaling 1923 hours) of operational radar data (KRTX) and 166 upper air soundings (KSLE) are analyzed. A new method was employed to objectively determine the degree of precipitation intermittency in sequences of radar scans. The resulting continuum of intermittency values was grouped into four categories: mostly convective precipitation, mostly stratiform precipitation, embedded convective cells within stratiform precipitation, and other. Atmospheric soundings during periods with embedded convective cells within stratiform precipitation are more likely to have convective available potential energy (CAPE) than soundings during periods of mostly stratiform precipitation. Specifically, most unstable parcel CAPE (MUCAPE) > 0 J kg-1 occurs 2.8 more frequently during embedded periods than for mostly stratiform periods. Over 90% of embedded periods have MUCAPE > 0 J kg-1 or at least two 500 meter layers of potential instability. In contrast to the near surface based instability most commonly associated with the mostly convective precipitation, embedded convection is elevated. The median most unstable parcel height of origin for embedded convective periods is 2.5 km compared to 0.5 km for mostly convective periods. Although this present research did not deal directly with orographic precipitation enhancement, it does address synoptic and mesoscale precipitation processes that frequently occur near terrain in the Pacific Northwest. The exclusion of the seeder-feeder mechanism as a mode of cellularity for orographic precipitation in recent work is inconsistent with the observations presented here and inconsistent with much of the pre-2000 literature, which show the seeder-feeder mechanism directly modulating surface rain rate with or without terrain present. Numerical models, whether operational or idealized, need to represent the seeder-feeder process in order to accurately simulate precipitation variability at small spatial scales (less than < 5-10 km) and temporal scales (< 3 hours) within the warm sector of Pacific Northwest extratropical cyclones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenfeld, Daniel; Chemke, Rei; DeMott, Paul J.
The formation of highly supercooled rain was documented by aircraft observations in clouds at a wide range of conditions near the coastal region of the western United States. Several case studies are described in detail using combined cloud and aerosol measurements to document both the highly super-cooled condition and the relatively pristine aerosol conditions under which it forms. The case studies include: (1) Marine convective clouds over the coastal waters of northern California, as measured by cloud physics probes flown on a Gulfstream-1 aircraft during the CALWATER campaign in February and early March 2011. The clouds had extensive drizzle inmore » their tops, which extended downward to the 0°C isotherm as supercooled rain. Ice multiplication was observed only in mature parts of the clouds where cloud water was already depleted. (2) Orographically triggered convective clouds in marine air mass over the foothills of the Sierra Nevada to the east of Sacramento, as measured in CALWATER. Supercooled rain was observed down to -21°C. No indications for ice multiplication were evident. (3) Orographic layer clouds over Yosemite National Park, also measured in CALWATER. The clouds had extensive drizzle at -21°C, which intensified with little freezing lower in the cloud, and (4) Supercooled drizzle drops in layer clouds near Juneau, Alaska, as measured by the Wyoming King Air as part of a FAA project to study aircraft icing in this region. Low concentrations of CCN was a common observation in all these clouds, allowing for the formation of clouds with small concentration of large drops that coalesced into supercooled drizzle and raindrops. Another common observation was the absence of ice nuclei and/or ice crystals in measurable concentrations was associated with the persistent supercooled drizzle and rain. Average ice crystal concentrations were 0.007 l-1 at the top of convective clouds at -12°C and 0.03 l-1 in the case of layer clouds at -21°C. In combination these two conditions provide ideal conditions for the formation of highly supercooled drizzle and rain. These results help explain the anomalously high incidences of aircraft icing at cold temperatures in U.S. west coast clouds (Bernstein et al., 2004) and highlight the need to include aerosol effects when simulating aircraft icing with cloud models. These case studies can also serve as benchmarks for explicit cloud microphysics models attempting to simulate the formation of precipitation in these types of pristine conditions.« less
Effect of heat treatment on the microstructure of a 2CrMoNiWV rotor steel
NASA Astrophysics Data System (ADS)
Li, Cheng
A wide range of experiments have been carried out on a 2CrMoNiWV low alloy steel to investigate the effect of various heat treatment conditions on microstructural change, alloy carbide transformation mechanism and mechanical properties.Two complete continuous cooling transformation (CCT) diagrams were constructed for this steel on the basis of experimental dilatometry thermal analysis, metallographic examination and current phase transformation theory. The significance of these two diagrams is in that they can be directly utilised in industrial practice as a reference during heat treatment for this material. Meanwhile it was confirmed that this 2CrMoNiWV steel can be transformed to a fully bainitic microstructure over a wide range of cooling rates and this feature proved this steel suitable for large diameter steam turbine rotor application.An innovative carbide extraction technique for the XRD identification of carbide phase has been developed. The detailed description of this new technique and its advantages are discussed in this thesis. The extensive work using TEM/EDX has set up essential "finger prints" for the quick examination of large amounts of individual carbide existing at various heat treated conditions. Simultaneous measurements and determinations were made on particle composition, morphological change, the type, amount and distribution of these carbide phases. Thus the sequence of carbide transformation for this 2CrMoNiWV steel during tempering has been established.The characteristic microstructures of various heat treated specimens were carefully examined and discussed. Theoretical thermodynamic equilibria predictions were calculated using MTDATA. A very good agreement was found between experimental results and theoretical predictions on those critical transformation temperatures and a good correlation of carbide evolution sequences was obtained. Based on experimental results and theoretical predictions, the role of tungsten in promoting creep resistance to the material is elucidated.The usefulness of equilibrium thermodynamic calculations using MTDATA in predicting the microstructural changes and carbide evolution has been demonstrated in this work, particularly the separate effect of composition on the stable carbide dispersion where a thermodynamic approach offers great benefits.A possibly optimised heat treatment route is suggested for the large diameter rotor forgings which involves austenitising at 980°C for 10 hours following by oil quenching and then tempering at 675°C for 20 hours following by air cooling.Some general conclusions are drawn from this study, especially with regard to the effect of heat treatment on the microstructure of this 2CrMoNiWV steel and suggestions for further work are made.
Estimation of Rain Intensity Spectra over the Continental US Using Ground Radar-Gauge Measurements
NASA Technical Reports Server (NTRS)
Lin, Xin; Hou, Arthur Y.
2013-01-01
A high-resolution surface rainfall product is used to estimate rain characteristics over the continental US as a function of rain intensity. By defining each data at 4-km horizontal resolutions and 1-h temporal resolutions as an individual precipitating/nonprecipitating sample, statistics of rain occurrence and rain volume including their geographical and seasonal variations are documented. Quantitative estimations are also conducted to evaluate the impact of missing light rain events due to satellite sensors' detection capabilities. It is found that statistics of rain characteristics have large seasonal and geographical variations across the continental US. Although heavy rain events (> 10 mm/hr.) only occupy 2.6% of total rain occurrence, they may contribute to 27% of total rain volume. Light rain events (< 1.0 mm/hr.), occurring much more frequently (65%) than heavy rain events, can also make important contributions (15%) to the total rain volume. For minimum detectable rain rates setting at 0.5 and 0.2 mm/hr which are close to sensitivities of the current and future space-borne precipitation radars, there are about 43% and 11% of total rain occurrence below these thresholds, and they respectively represent 7% and 0.8% of total rain volume. For passive microwave sensors with their rain pixel sizes ranging from 14 to 16 km and the minimum detectable rain rates around 1 mm/hr., the missed light rain events may account for 70% of train occurrence and 16% of rain volume. Statistics of rain characteristics are also examined on domains with different temporal and spatial resolutions. Current issues in estimates of rain characteristics from satellite measurements and model outputs are discussed.
NASA Astrophysics Data System (ADS)
Alchapar, Noelia Liliana; Pezzuto, Claudia Cotrim; Correa, Erica Norma; Chebel Labaki, Lucila
2017-10-01
This paper describes different ways of reducing urban air temperature and their results in two cities: Campinas, Brazil—a warm temperate climate with a dry winter and hot summer (Cwa), and Mendoza, Argentina—a desert climate with cold steppe (BWk). A high-resolution microclimate modeling system—ENVI-met 3.1—was used to evaluate the thermal performance of an urban canyon in each city. A total of 18 scenarios were simulated including changes in the surface albedo, vegetation percentage, and the H/W aspect ratio of the urban canyons. These results revealed the same trend in behavior for each of the combinations of strategies evaluated in both cities. Nevertheless, these strategies produce a greater temperature reduction in the warm temperate climate (Cwa). Increasing the vegetation percentage reduces air temperatures and mean radiant temperatures in all scenarios. In addition, there is a greater decrease of urban temperature with the vegetation increase when the H/W aspect ratio is lower. Also, applying low albedo on vertical surfaces and high albedo on horizontal surfaces is successful in reducing air temperatures without raising the mean radiant temperature. The best combination of strategies—60 % of vegetation, low albedos on walls and high albedos on pavements and roofs, and 1.5 H/W—could reduce air temperatures up to 6.4 °C in Campinas and 3.5 °C in Mendoza.
Liu, Shanshan; Wang, Feng; Xue, Kai; Sun, Bo; Zhang, Yuguang; He, Zhili; Van Nostrand, Joy D; Zhou, Jizhong; Yang, Yunfeng
2015-03-01
Soil transplant into warmer regions has been shown to alter soil microbiology. In contrast, little is known about the effects of soil transplant into colder regions, albeit that climate cooling has solicited attention in recent years. To address this question, we transplanted bare fallow soil over large transects from southern China (subtropical climate zone) to central (warm temperate climate zone) and northern China (cold temperate climate zone). After an adaptation period of 4 years, soil nitrogen components, microbial biomass and community structures were altered. However, the effects of soil transplant on microbial communities were dampened by maize cropping, unveiling a negative interaction between cropping and transplant. Further statistical analyses with Canonical correspondence analysis and Mantel tests unveiled annual average temperature, relative humidity, aboveground biomass, soil pH and NH4 (+) -N content as environmental attributes closely correlated with microbial functional structures. In addition, average abundances of amoA-AOA (ammonia-oxidizing archaea) and amoA-AOB (ammonia-oxidizing bacteria) genes were significantly (P < 0.05) correlated with soil nitrification capacity, hence both AOA and AOB contributed to the soil functional process of nitrification. These results suggested that the soil nitrogen cycle was intimately linked with microbial community structure, and both were subjected to disturbance by soil transplant to colder regions and plant cropping. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Effects of drainage-basin geomorphology on insectivorous bird abundance in temperate forests.
Iwata, Tomoya; Urabe, Jotaro; Mitsuhashi, Hiromune
2010-10-01
Interfaces between terrestrial and stream ecosystems often enhance species diversity and population abundance of ecological communities beyond levels that would be expected separately from both the ecosystems. Nevertheless, no study has examined how stream configuration within a watershed influences the population of terrestrial predators at the drainage-basin scale. We examined the habitat and abundance relationships of forest insectivorous birds in eight drainage basins in a cool temperate forest of Japan during spring and summer. Each basin has different drainage-basin geomorphology, such as the density and frequency of stream channels. In spring, when terrestrial arthropod prey biomass is limited, insectivorous birds aggregated in habitats closer to streams, where emerging aquatic prey was abundant. Nevertheless, birds ceased to aggregate around streams in summer because terrestrial prey became plentiful. Watershed-scale analyses showed that drainage basins with longer stream channels per unit area sustained higher densities of insectivorous birds. Moreover, such effects of streams on birds continued from spring through summer, even though birds dispersed out of riparian areas in the summer. Although our data are from only a single year, our findings imply that physical modifications of stream channels may reduce populations of forest birds; thus, they emphasize the importance of landscape-based management approaches that consider both stream and forest ecosystems for watershed biodiversity conservation. © 2010 Society for Conservation Biology.
Projecting effects of climate change on marine systems: is the mean all that matters?
Boersma, Maarten; Grüner, Nico; Tasso Signorelli, Natália; Montoro González, Pedro E.; Wiltshire, Karen H.
2016-01-01
Studies dealing with the effects of changing global temperatures on living organisms typically concentrate on annual mean temperatures. This, however, might not be the best approach in temperate systems with large seasonality where the mean annual temperature is actually not experienced very frequently. The mean annual temperature across a 50-year, daily time series of measurements at Helgoland Roads (54.2° N, 7.9° E) is 10.1°C while seasonal data are characterized by a clear, bimodal distribution; temperatures are around 6°C in winter and 15°C in summer with rapid transitions in spring and autumn. Across those 50 years, the temperature at which growth is maximal for each single bloom event for 115 phytoplankton species (more than 6000 estimates of optimal temperature) mirrors the bimodal distribution of the in situ temperatures. Moreover, independent laboratory data on temperature optima for growth of North Sea organisms yielded similar results: a deviance from the normal distribution, with a gap close to the mean annual temperature, and more optima either above or below this temperature. We conclude that organisms, particularly those that are short-lived, are either adapted to the prevailing winter or summer temperatures in temperate areas and that few species exist with thermal optima within the periods characterized by rapid spring warming and autumn cooling. PMID:26791614
Egg size variation among tropical and temperate songbirds: An embryonic temperature hypothesis
Martin, Thomas E.
2008-01-01
Species with “slow” life history strategies (long life, low fecundity) are thought to produce high-quality offspring by investing in larger, but fewer, young. Larger eggs are indeed associated with fewer eggs across taxa and can yield higher-quality offspring. Tropical passerines appear to follow theory because they commonly exhibit slow life history strategies and produce larger, but fewer, eggs compared with northern species. Yet, I show here that relative egg mass (corrected for adult mass) varies extensively in the tropics and subtropics for the same clutch size, and this variation is unexplained. I propose a hypothesis to explain egg size variation both within the tropics and between latitudes: Relative egg mass increases in species with cooler egg temperatures and longer embryonic periods to offset associated increases in energetic requirements of embryos. Egg temperatures of birds are determined by parental incubation behavior and are often cooler among tropical passerines because of reduced parental attentiveness of eggs. Here, I show that cooler egg temperatures and longer embryonic periods explained the enigmatic variation in egg mass within and among regions, based on field studies in tropical Venezuela (36 species), subtropical Argentina (16 species), and north temperate Arizona (20 species). Alternative explanations are not supported. Thus, large egg sizes may reflect compensation for increased energetic requirements of cool egg temperatures and long embryonic periods that result from reduced parental attentiveness in tropical birds. PMID:18591674
Structural and phase transformations in Hadfield steel upon frictional loading in liquid nitrogen
NASA Astrophysics Data System (ADS)
Korshunov, L. G.; Sagaradze, V. V.; Chernenko, N. L.
2016-08-01
Structural transformations that occur in 110G13 steel (Hadfield) upon sliding friction in liquid nitrogen (-196°C) have been investigated by metallographic, electron-microscopic, and X-ray diffraction methods. The frictional action was performed through the reciprocating sliding of a cylindrical indenter of quenched 110G13 steel over a plate of the studied steel. A like friction pair was immersed into a bath with liquid nitrogen. It has been shown that the Hadfield steel quenched from 1100°C under the given temperature conditions of frictional loading retains the austenitic structure completely. The frictional action forms in a surface layer up to 10 μm thick the nanocrystalline structure with austenite grains 10-50 nm in size and a hardness 6 GPa. Upon subsequent low-temperature friction, the tempering of steel at 400°C (3 h) and at 600°C (5 min and 5 h) brings about the formation of a large amount (tens of vol %) of ɛ (hcp) martensite in steel. The formation of this phase under friction is supposedly a consequence of the reduction in the stacking fault energy of Hadfield steel, which is achieved due to the combined action of the following factors: low-temperature cooling, a decrease in the carbon content in the austenite upon tempering, and the presence of high compressive stresses in the friction-contact zone.
Projecting effects of climate change on marine systems: is the mean all that matters?
Boersma, Maarten; Grüner, Nico; Tasso Signorelli, Natália; Montoro González, Pedro E; Peck, Myron A; Wiltshire, Karen H
2016-01-27
Studies dealing with the effects of changing global temperatures on living organisms typically concentrate on annual mean temperatures. This, however, might not be the best approach in temperate systems with large seasonality where the mean annual temperature is actually not experienced very frequently. The mean annual temperature across a 50-year, daily time series of measurements at Helgoland Roads (54.2° N, 7.9° E) is 10.1°C while seasonal data are characterized by a clear, bimodal distribution; temperatures are around 6°C in winter and 15°C in summer with rapid transitions in spring and autumn. Across those 50 years, the temperature at which growth is maximal for each single bloom event for 115 phytoplankton species (more than 6000 estimates of optimal temperature) mirrors the bimodal distribution of the in situ temperatures. Moreover, independent laboratory data on temperature optima for growth of North Sea organisms yielded similar results: a deviance from the normal distribution, with a gap close to the mean annual temperature, and more optima either above or below this temperature. We conclude that organisms, particularly those that are short-lived, are either adapted to the prevailing winter or summer temperatures in temperate areas and that few species exist with thermal optima within the periods characterized by rapid spring warming and autumn cooling. © 2016 The Author(s).
Phase Transformation Temperatures and Solute Redistribution in a Quaternary Zirconium Alloy
NASA Astrophysics Data System (ADS)
Cochrane, C.; Daymond, M. R.
2018-05-01
This study investigates the phase stability and redistribution of solute during heating and cooling of a quaternary zirconium alloy, Excel (Zr-3.2Sn-0.8Mo-0.8Nb). Time-of-flight neutron diffraction data are analyzed using a novel Vegard's law-based approach to determine the phase fractions and location of substitutional solute atoms in situ during heating from room temperature up to 1050 °C. It is seen that this alloy exhibits direct nucleation of the β Zr phase from martensite during tempering, and stable retention of the β Zr phase to high temperatures, unlike other two-phase zirconium alloys. The transformation strains resulting from the α \\leftrightarrow β transformation are shown to have a direct impact on the development of microstructure and crystallographic texture.
2008-06-24
CAPE CANAVERAL, Fla. – Inside a truck, a veterinarian, left, and Sea World representatives cool the skin of a Melon-Headed Whale found stranded south of Launch Pad 39A at NASA's Kennedy Space Center near Cape Canaveral Air Force Station. The whale will be taken to Sea World for evaluation. After assessment by veterinarians at Sea World, the whale will be transported to a whale rescue center in the Panhandle for rehabilitation and release. The Melon-Headed Whale lives well off-shore in all the world's tropical and sub-tropical oceans. At the northern fringes of its range, it may also be found in the warm currents of temperate waters, such as Florida. It is closely related to the Pygmy Killer Whale and the Pilot Whales. Its primary diet is squid. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Luo, Quanshun; Kitchen, Matthew; Patel, Vinay; Filleul, Martin; Owens, Dave
We introduce a new strengthening heat treatment of a Ni-Cr-Mo-V alloyed spring steel by partial isothermal salt-bath and subsequent air-cooling and tempering. Detailed isothermal treatments were made at temperatures below or above the Ms point (230°C). The salt bath time was controlled between 10 and 80 minutes. Through the new treatment, the candidate steel developed ultrahigh tensile strength 2,100 MPa, yield strength 1,800 MPa, elongation 8-10 %, hardness 580-710 HV, and V-notch Charpy toughness 10-12 J. Optical and electron microscopic observations and X-ray diffraction revealed multi-phase microstructures of bainitic/martensitic ferrites, fine carbide precipitates and retained austenite. Carbon partitioning during the bainitic/martensitic transformation was investigated for its remarkable influence on the strengthening mechanism.
Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze
NASA Technical Reports Server (NTRS)
Tuttle, James E.; Canavan, Edgar; DiPirro, Michael
2009-01-01
Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.
Population Annealing Monte Carlo for Frustrated Systems
NASA Astrophysics Data System (ADS)
Amey, Christopher; Machta, Jonathan
Population annealing is a sequential Monte Carlo algorithm that efficiently simulates equilibrium systems with rough free energy landscapes such as spin glasses and glassy fluids. A large population of configurations is initially thermalized at high temperature and then cooled to low temperature according to an annealing schedule. The population is kept in thermal equilibrium at every annealing step via resampling configurations according to their Boltzmann weights. Population annealing is comparable to parallel tempering in terms of efficiency, but has several distinct and useful features. In this talk I will give an introduction to population annealing and present recent progress in understanding its equilibration properties and optimizing it for spin glasses. Results from large-scale population annealing simulations for the Ising spin glass in 3D and 4D will be presented. NSF Grant DMR-1507506.
An updated checklist of aquatic plants of Myanmar and Thailand
2014-01-01
Abstract The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa) were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras. PMID:24723783
Systems design of transformation toughened blast-resistant naval hull steels
NASA Astrophysics Data System (ADS)
Saha, Arup
A systems approach to computational materials design has demonstrated a new class of ultratough, weldable secondary hardened plate steels combining new levels of strength and toughness while meeting processability requirements. A first prototype alloy has achieved property goals motivated by projected naval hull applications requiring extreme fracture toughness (Cv > 85 ft-lbs (115 J) corresponding to KId > 200 ksi.in1/2 (220 MPa.m1/2)) at strength levels of 150--180 ksi (1034--1241 MPa) yield strength in weldable, formable plate steels. A theoretical design concept was explored integrating the mechanism of precipitated nickel-stabilized dispersed austenite for transformation toughening in an alloy strengthened by combined precipitation of M2C carbides and BCC copper both at an optimal ˜3nm particle size for efficient strengthening. This concept was adapted to plate steel design by employing a mixed bainitic/martensitic matrix microstructure produced by air-cooling after solution-treatment and constraining the composition to low carbon content for weldability. With optimized levels of copper and M2C carbide formers based on a quantitative strength model, a required alloy nickel content of 6.5 wt% was predicted for optimal austenite stability for transformation toughening at the desired strength level of 160 ksi (1100 MPa) yield strength. A relatively high Cu level of 3.65 wt% was employed to allow a carbon limit of 0.05 wt% for good weldability. Hardness and tensile tests conducted on the designed prototype confirmed predicted precipitation strengthening behavior in quench and tempered material. Multi-step tempering conditions were employed to achieve the optimal austenite stability resulting in significant increase of impact toughness to 130 ft-lb (176 J) at a strength level of 160 ksi (1100 MPa). Comparison with the baseline toughness-strength combination determined by isochronal tempering studies indicates a transformation toughening increment of 60% in Charpy energy. Predicted Cu particle number densities and the heterogeneous nucleation of optimal stability high Ni 5 nm austenite on nanometer-scale copper precipitates in the multi-step tempered samples was confirmed using three-dimensional atom probe microscopy. Charpy impact tests and fractography demonstrate ductile fracture with C v > 90 ft-lbs (122 J) down to -40°C, with a substantial toughness peak at 25°C consistent with designed transformation toughening behavior. The properties demonstrated in this first prototype represent a substantial advance over existing naval hull steels.
NASA Technical Reports Server (NTRS)
Goldhirsh, Julius; Musiani, Bert H.
1989-01-01
During a period spanning more than 5 years, low elevation radar measurements of rain were systematically obtained in the mid-Atlantic coast of the U.S. Drop size distribution measurements with a disdrometer were also acquired on the same rain days. The drop size data were utilized to convert the radar reflectivity factors to estimated rain rates for the respective rain days of operation. Applying high level algorithms to the rain data, core values of rain intensities were identified (peak rain rates), and families of rain rate isopleths analyzed. In particular, equicircle diameters of the family of isopleths enveloping peak rain intensities were statistically characterized. The presented results represents the analysis of two rain days, 12 radar scans, corresponding to 430 culled rain rate isopleths from an available data base of 22,000 contours, approximately 100 scans encompassing 17 rain days. The results presented show trends of the average rain rate vs. contour scale dimensions, and cumulative distributions of rain cell dimensions which belong to core families of precipitation.
NASA Technical Reports Server (NTRS)
Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.
2004-01-01
Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.
Effects of chromium addition on the metallurgy and P/M processing response of Alumix 431D
NASA Astrophysics Data System (ADS)
Mosher, Michael Patrick
The ever growing industry of Powder Metallurgy (P/M) is developing to include new alloys and improve those currently available. This project relates to the optimization of a commercially available Al-Zn-Mg-Cu based alloy (Alumix 431D). This alloy is the P/M equivalent of the wrought 7075 alloy, and yields some of the top performance found in any available aluminum alloy. Optimization of the alloy has been conducted with a focus on sintering conditions; in particular the effect of sintering temperature and post-sintering cooling. Five sintering temperatures were investigated and the optimal temperature was found to be 605°C. Cr was added in trace amounts as per literature recommendations in an attempt to improve corrosion resistance. Both the Cr-free and Cr-containing alloys were then assessed for post-sinter cooling effects. The Alumix 431D w/Cr compacted and sintered to a higher density which further resulted in improved hardness over the Cr-free counterpart. The cooling profile was modified to include an increasingly larger post-sinter furnace-cooling section, before gas quenching. Seven quenching temperatures were chosen to investigate ranging from the sintering temperature (605°C) down to 480°C. This furnace cooling allowed the alloy-rich liquid phase to dwell for an extended time at elevated temperature and thereby diffuse into the matrix grains increasing the alloy content. This was confirmed through EPMA and correlated with an increase in mechanical properties. For both alloys peak hardness was produced by specimens cooled to 520°C before quenching. Tensile strength also increased by as much as 12% when furnace cooled to 540°C. The heat treatment parameters were determined to yield an optimal T6 temper. Specimens of both alloys processed under all conditions were then subjected to this heat treatment and further characterized. Many of the improvements offered by furnace cooling that were obvious in the T1 'as-sintered' product, became less pronounced after heat treatment. Corrosion resistance was also studied and compared to the wrought 7075 equivalent. For 'as-sintered' P/M components the Tafel extrapolation was less effective in accurately determining corrosion rate due to the effect of porosity on surface area. To remedy this, samples were hot worked to near full density (>99.5% theoretical), heat treated and tested. The hot worked P/M samples performed up to 2x better than the wrought 7075 with respect to corrosion current densities.
Dodge, Kara L.; Galuardi, Benjamin; Miller, Timothy J.; Lutcavage, Molly E.
2014-01-01
Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m−3), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km−1) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging habitat in neritic regions. High-use habitat for leatherbacks in our study occurred in coastal waters of the North American eastern seaboard and eastern Caribbean, putting turtles at heightened risk from land- and ocean-based human activity. PMID:24646920
Habitat correlates of the red panda in the temperate forests of Bhutan.
Dorji, Sangay; Vernes, Karl; Rajaratnam, Rajanathan
2011-01-01
Anthropogenic activities and associated global climate change are threatening the biodiversity in the Himalayas against a backdrop of poor knowledge of the region's threatened species. The red panda (Ailurus fulgens) is a threatened mammal confined to the eastern Himalayas, and because of Bhutan's central location in the distributional range of red pandas, its forests are integral to the long-term viability of wild populations. Detailed habitat requirements of the red panda are largely speculative, and there is virtually no ecological information available on this species in Bhutan. Between 2007 and 2009, we established 615 presence/absence plots in a systematic sampling of resident habitat types within Jigme Dorji and Thrumshingla National Parks, Bhutan, to investigate broad and fine-scale red panda habitat associations. Additional locality records of red pandas were obtained from interviewing 664 park residents. Red pandas were generally confined to cool broadleaf and conifer forests from 2,110-4,389 m above sea level (asl), with the majority of records between 2,400-3,700 m asl on south and east-facing slopes. At a finer scale, multivariate analysis revealed that red pandas were strongly associated with old growth Bhutan Fir (Abies densa) forest dominated by a dense cover of Yushania and Arundanaria bamboo with a high density of fallen logs and tree stumps at ground level; a high density of trees, dead snags, and rhododendron shrubs in the mid-storey; and locations that were close to water. Because Bhutan's temperate forests that encompass prime red panda habitat are also integral to human subsistence and socio-economic development, there exists an inadvertent conflict between the needs of people and red pandas. As such, careful sustainable management of Bhutan's temperate forests is necessary if a balance is to be met between the socioeconomic needs of people and the conservation goals for red pandas.
Melo-Ferreira, J; Boursot, P; Randi, E; Kryukov, A; Suchentrunk, F; Ferrand, N; Alves, P C
2007-02-01
The climatic fluctuations during glaciations have affected differently arctic and temperate species. In the northern hemisphere, cooling periods induced the expansion of many arctic species to the south, while temperate species were forced to retract in southern refugia. Consequently, in some areas the alternation of these species set the conditions for competition and eventually hybridization. Hares in the Iberian Peninsula appear to illustrate this phenomenon. Populations of Iberian hare (Lepus granatensis), brown hare (Lepus europaeus) and broom hare (Lepus castroviejoi) in Northern Iberia harbour mitochondrial haplotypes from the mountain hare (Lepus timidus), a mainly boreal and arctic species presently absent from the peninsula. To understand the history of this past introgression we analysed sequence variation and geographical distribution of mitochondrial control region and cytochrome b haplotypes of L. timidus origin found in 378 specimens of these four species. Among 124 L. timidus from the Northern Palaearctic and the Alps we found substantial nucleotide diversity (2.3%) but little differentiation between populations. Based on the mismatch distribution of the L. timidus sequences, this could result from an expansion at a time of temperature decrease favourable to this arctic species. The nucleotide diversity of L. timidus mtDNA found in Iberian L. granatensis, L. europaeus and L. castroviejoi (183, 70 and 1 specimens, respectively) was of the same order as that in L. timidus over its range (1.9%), suggesting repeated introgression of multiple lineages. The structure of the coalescent of L. granatensis sequences indicates that hybridization with L. timidus was followed by expansion of the introgressed haplotypes, as expected during a replacement with competition, and occurred when temperatures started to rise, favouring the temperate species. Whether a similar scenario explains the introgression into Iberian L. europaeus remains unclear but it is possible that it hybridized with already introgressed L. granatensis.
Dodge, Kara L; Galuardi, Benjamin; Miller, Timothy J; Lutcavage, Molly E
2014-01-01
Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m(-3)), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km(-1)) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging habitat in neritic regions. High-use habitat for leatherbacks in our study occurred in coastal waters of the North American eastern seaboard and eastern Caribbean, putting turtles at heightened risk from land- and ocean-based human activity.
Habitat Correlates of the Red Panda in the Temperate Forests of Bhutan
Dorji, Sangay; Vernes, Karl; Rajaratnam, Rajanathan
2011-01-01
Anthropogenic activities and associated global climate change are threatening the biodiversity in the Himalayas against a backdrop of poor knowledge of the region's threatened species. The red panda (Ailurus fulgens) is a threatened mammal confined to the eastern Himalayas, and because of Bhutan's central location in the distributional range of red pandas, its forests are integral to the long-term viability of wild populations. Detailed habitat requirements of the red panda are largely speculative, and there is virtually no ecological information available on this species in Bhutan. Between 2007 and 2009, we established 615 presence/absence plots in a systematic sampling of resident habitat types within Jigme Dorji and Thrumshingla National Parks, Bhutan, to investigate broad and fine-scale red panda habitat associations. Additional locality records of red pandas were obtained from interviewing 664 park residents. Red pandas were generally confined to cool broadleaf and conifer forests from 2,110–4,389 m above sea level (asl), with the majority of records between 2,400–3,700 m asl on south and east-facing slopes. At a finer scale, multivariate analysis revealed that red pandas were strongly associated with old growth Bhutan Fir (Abies densa) forest dominated by a dense cover of Yushania and Arundanaria bamboo with a high density of fallen logs and tree stumps at ground level; a high density of trees, dead snags, and rhododendron shrubs in the mid-storey; and locations that were close to water. Because Bhutan's temperate forests that encompass prime red panda habitat are also integral to human subsistence and socio-economic development, there exists an inadvertent conflict between the needs of people and red pandas. As such, careful sustainable management of Bhutan's temperate forests is necessary if a balance is to be met between the socioeconomic needs of people and the conservation goals for red pandas. PMID:22039497
NASA Technical Reports Server (NTRS)
2004-01-01
Topics include: Embedded Heaters for Joining or Separating Plastic Parts; Curing Composite Materials Using Lower-Energy Electron Beams; Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites; Fibrous-Ceramic/Aerogel Composite Insulating Tiles; Urethane/Silicone Adhesives for Bonding Flexing Metal Parts; Scalable Architecture for Multihop Wireless ad Hoc Networks; Improved Thermoplastic/Iron-Particle Transformer Cores; Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration Dual-Frequency Airborne Scanning Rain Radar Antenna System Eight-Channel Continuous Timer Reduction of Phase Ambiguity in an Offset-QPSK Receiver Ambient-Light-Canceling Camera Using Subtraction of Frames Lightweight, Flexible, Thin, Integrated Solar-Power Packs Windows(Registered Trademark)-Based Software Models Cyclic Oxidation Behavior Software for Analyzing Sequences of Flow-Related Images Improved Ball-and-Socket Docking Mechanism Two-Stage Solenoid Ordered Nanostructures Made Using Chaperonin Polypeptides Low-Temperature Plasma Functionalization of Carbon Nanotubes Improved Cryostat for Cooling a Wide Panel Current Pulses Momentarily Enhance Thermoelectric Cooling Hand-Held Color Meters Based on Interference Filters Calculating Mass Diffusion in High-Pressure Binary Fluids Fresnel Lenses for Wide-Aperture Optical Receivers Increasing Accuracy in Computed Inviscid Boundary Conditions Higher-Order Finite Elements for Computing Thermal Radiation Radar for Monitoring Hurricanes from Geostationary Orbit Time-Transfer System for Two Orbiting Spacecraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faduska, A.; Rau, E.; Alger, J.V.
Data are given on the corrosion properties of type 410 stainless steel tempered at 1150 d F. Control mechanismn-drive motor tubes and some outer housings are constructed of 650 d F tempered type 410 stainless steel. Since the stress corrosion resistance of type 410 in the 1150 d F tempered condition is superior, the utilization of the 1150 d F tempered material is more desirable for this application. The properties of 410 stainless steel hardened and tempered at 1150 d F are given. (W.L.H.)
Li, Zheng-Quan; Ma, Hao; Mao, Yu-Ding; Feng, Tao
2014-02-01
Using long-term observation data of acid rain at Lin'an Regional Background Station (Lin'an RBS), this paper studied the interannual and monthly variations of acid rain, the reasons for the variations, and the relationships between acid rain and meteorological factors. The results showed that interannual variation of acid rain at Lin'an RBS had a general increasing trend in which there were two obvious intensifying processes and two distinct weakening processes, during the period ranging from 1985 to 2012. In last two decades, the monthly variation of acid rain at Lin'an RBS indicated that rain acidity and frequency of severe acid rain were increasing but the frequency of weak acid rain was decreasing when moving towards bilateral side months of July. Acid rain occurrence was affected by rainfall intensity, wind speed and wind direction. High frequency of severe acid rain and low frequency of weak acid rain were on days with drizzle, but high frequency of weak acid rain and low frequency of severe acid rain occurred on rainstorm days. With wind speed upgrading, the frequency of acid rain and the proportion of severe acid rain were declining, the pH value of precipitation was reducing too. Another character is that daily dominant wind direction of weak acid rain majorly converged in S-W section ,however that of severe acid rain was more likely distributed in N-E section. The monthly variation of acid rain at Lin'an RBS was mainly attributed to precipitation variation, the increasing and decreasing of monthly incoming wind from SSE-WSW and NWN-ENE sections of wind direction. The interannual variation of acid rain could be due to the effects of energy consumption raising and significant green policies conducted in Zhejiang, Jiangsu and Shanghai.
Texture and Tempered Condition Combined Effects on Fatigue Behavior in an Al-Cu-Li Alloy
NASA Astrophysics Data System (ADS)
Wang, An; Liu, Zhiyi; Liu, Meng; Wu, Wenting; Bai, Song; Yang, Rongxian
2017-05-01
Texture and tempered condition combined effects on fatigue behavior in an Al-Cu-Li alloy have been investigated using tensile testing, cyclic loading testing, scanning electron microscope (SEM), transmission electron microscopy (TEM) and texture analysis. Results showed that in near-threshold region, T4-tempered samples possessed the lowest fatigue crack propagation (FCP) rate. In Paris regime, T4-tempered sample had similar FCP rate with T6-tempered sample. T83-tempered sample exhibited the greatest FCP rate among the three tempered conditions. 3% pre-stretching in T83-tempered sample resulted in a reducing intensity of Goss texture and facilitated T1 precipitation. SEM results showed that less crack deflection was observed in T83-tempered sample, as compared to other two tempered samples. It was the combined effects of a lower intensity of Goss texture and T1 precipitates retarding the reversible dislocation slipping in the plastic zone ahead the crack tip.
Wakschlag, Lauren S.; Choi, Seung W.; Carter, Alice S.; Hullsiek, Heide; Burns, James; McCarthy, Kimberly; Leibenluft, Ellen; Briggs-Gowan, Margaret J.
2013-01-01
Background Temper modulation problems are both a hallmark of early childhood and a common mental health concern. Thus, characterizing specific behavioral manifestations of temper loss along a dimension from normative misbehaviors to clinically significant problems is an important step toward identifying clinical thresholds. Methods Parent-reported patterns of temper loss were delineated in a diverse community sample of preschoolers (n = 1,490). A developmentally sensitive questionnaire, the Multidimensional Assessment of Preschool Disruptive Behavior (MAP-DB), was used to assess temper loss in terms of tantrum features and anger regulation. Specific aims were: (a) document the normative distribution of temper loss in preschoolers from normative misbehaviors to clinically concerning temper loss behaviors, and test for sociodemographic differences; (b) use Item Response Theory (IRT) to model a Temper Loss dimension; and (c) examine associations of temper loss and concurrent emotional and behavioral problems. Results Across sociodemographic subgroups, a unidimensional Temper Loss model fit the data well. Nearly all (83.7%) preschoolers had tantrums sometimes but only 8.6% had daily tantrums. Normative misbehaviors occurred more frequently than clinically concerning temper loss behaviors. Milder behaviors tended to reflect frustration in expectable contexts, whereas clinically concerning problem indicators were unpredictable, prolonged, and/or destructive. In multivariate models, Temper Loss was associated with emotional and behavioral problems. Conclusions Parent reports on a developmentally informed questionnaire, administered to a large and diverse sample, distinguished normative and problematic manifestations of preschool temper loss. A developmental, dimensional approach shows promise for elucidating the boundaries between normative early childhood temper loss and emergent psychopathology. PMID:22928674
Estimating Rain Rates from Tipping-Bucket Rain Gauge Measurements
NASA Technical Reports Server (NTRS)
Wang, Jianxin; Fisher, Brad L.; Wolff, David B.
2007-01-01
This paper describes the cubic spline based operational system for the generation of the TRMM one-minute rain rate product 2A-56 from Tipping Bucket (TB) gauge measurements. Methodological issues associated with applying the cubic spline to the TB gauge rain rate estimation are closely examined. A simulated TB gauge from a Joss-Waldvogel (JW) disdrometer is employed to evaluate effects of time scales and rain event definitions on errors of the rain rate estimation. The comparison between rain rates measured from the JW disdrometer and those estimated from the simulated TB gauge shows good overall agreement; however, the TB gauge suffers sampling problems, resulting in errors in the rain rate estimation. These errors are very sensitive to the time scale of rain rates. One-minute rain rates suffer substantial errors, especially at low rain rates. When one minute rain rates are averaged to 4-7 minute or longer time scales, the errors dramatically reduce. The rain event duration is very sensitive to the event definition but the event rain total is rather insensitive, provided that the events with less than 1 millimeter rain totals are excluded. Estimated lower rain rates are sensitive to the event definition whereas the higher rates are not. The median relative absolute errors are about 22% and 32% for 1-minute TB rain rates higher and lower than 3 mm per hour, respectively. These errors decrease to 5% and 14% when TB rain rates are used at 7-minute scale. The radar reflectivity-rainrate (Ze-R) distributions drawn from large amount of 7-minute TB rain rates and radar reflectivity data are mostly insensitive to the event definition.
Acid Rain: What It Is -- How You Can Help!
ERIC Educational Resources Information Center
National Wildlife Federation, Washington, DC.
This publication discusses the nature and consequences of acid precipitation (commonly called acid rain). Topic areas include: (1) the chemical nature of acid rain; (2) sources of acid rain; (3) geographic areas where acid rain is a problem; (4) effects of acid rain on lakes; (5) effect of acid rain on vegetation; (6) possible effects of acid rain…
NASA Astrophysics Data System (ADS)
Noda, H. M.; Nasahara, K. N.; Muraoka, H.
2016-12-01
Growing requirements to observe the spatial and temporal changes of forest canopy structure and functions under climate change expect advancement of ecophysiological interpretation of satellite remote sensing data. To achieve this we need mechanistic and quantitative understanding on the consequence between leaf-level traits and canopy-level spectral reflectance by coupling in-situ observation and analytical modeling. Deciduous forest is characterized by remarkable changes in canopy morphological and physiological structure through leaf expansion in spring to leaf fall in autumn. In addition, optical properties (spectral reflectance, absorption and transmittance of radiation) of leaves also change because they reflect leaf biochemical components such as pigments and water, and anatomical and surface structures. In this study we studied such consequence in a cool-temperate deciduous broadleaf forest, namely "Takayama site", on the northwestern slope of Mt. Norikura in central Japan. The forest canopy is dominated by Quercus crispula Blume and Betula ermanii Cham. In this forest, we measured the leaf optical properties of Q. crispula and B. ermanii during the growing season, from budburst in mid-May to senescence at beginning of November in 2004, 2005, 2006 and 2010. The measurement was conducted for both adaxial and abaxial side of the leaves.In the near infrared band, the leaf reflectance increased and the transmittance decreased during development period. Those changed very little in senescence period. The leaf reflectance in visible region changes small during the development period, the transmittance dropped remarkably. The abaxial side reflectance was about twice higher than adaxial side in the visible region. Those changes in the growing period fitted well to the development model base on air temperature. To validate the model, we simulate the canopy reflectance by using radiative transfer model SAIL. As our leaf spectral data and canopy spectral model have high flexibility to estimate the reflectance of target spectra according to the specificity of optical sensors on satellite, thus constructed mechanistic model would be applied to interpret many kinds of optical data observed by satellites.
Caldwell, Amanda J; While, Geoffrey M; Beeton, Nicholas J; Wapstra, Erik
2015-08-01
Climatic changes are predicted to be greater in higher latitude and mountainous regions but species specific impacts are difficult to predict. This is partly due to inter-specific variance in the physiological traits which mediate environmental temperature effects at the organismal level. We examined variation in the critical thermal minimum (CTmin), critical thermal maximum (CTmax) and evaporative water loss rates (EWL) of a widespread lowland (Niveoscincus ocellatus) and two range restricted highland (N. microlepidotus and N. greeni) members of a cool temperate Tasmanian lizard genus. The widespread lowland species had significantly higher CTmin and CTmax and significantly lower EWL than both highland species. Implications of inter-specific variation in thermal tolerance for activity were examined under contemporary and future climate change scenarios. Instances of air temperatures below CTmin were predicted to decline in frequency for the widespread lowland and both highland species. Air temperatures of high altitude sites were not predicted to exceed the CTmax of either highland species throughout the 21st century. In contrast, the widespread lowland species is predicted to experience air temperatures in excess of CTmax on 1 or 2 days by three of six global circulation models from 2068-2096. To estimate climate change effects on activity we reran the thermal tolerance models using minimum and maximum temperatures selected for activity. A net gain in available activity time was predicted under climate change for all three species; while air temperatures were predicted to exceed maximum temperatures selected for activity with increasing frequency, the change was not as great as the predicted decline in air temperatures below minimum temperatures selected for activity. We hypothesise that the major effect of rising air temperatures under climate change is an increase in available activity period for both the widespread lowland and highland species. The consequences of a greater available activity period will depend on the extent to which changes in climate alters other related factors, such as the nature and level of competition between the respective species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carbon dioxide and methane exchange at a cool-temperate freshwater marsh
NASA Astrophysics Data System (ADS)
Strachan, Ian B.; Nugent, Kelly A.; Crombie, Stephanie; Bonneville, Marie-Claude
2015-06-01
Freshwater marshes have been shown to be strong sinks for carbon dioxide (CO2) on an annual basis relative to other wetland types; however it is likely that these ecosystems are also strong emitters of methane (CH4), reducing their carbon (C) sequestration potential. Multiyear C balances in these ecosystems are necessary therefore to determine their contribution to the global C cycle. Despite this, the number of multiyear studies in marshes is few, with, to the best of our knowledge, only one other Northern marsh C balance reported. This study presents five years of eddy covariance flux measurements of CO2, and four years of warm-season chamber measurements of CH4 at a cool-temperate Typha angustifolia marsh. Annual average cumulative net ecosystem exchange of CO2 (NEE) at the marsh was -224 ± 54 g C m-2 yr-1 (±SD) over the five-year period, ranging from -126 to -284 g C m-2 yr-1. Enhancement of the ecosystem respiration during warmer spring, autumn and winter periods appeared the strongest determinant of annual NEE totals. Warm season fluxes of CH4 from the Typha vegetation (avg. 1.0 ± 1.2 g C m-2 d-1) were significantly higher than fluxes from the water surface (0.5 ± 0.4 g C m-2 d-1) and unvegetated mats (0.2 ± 0.2 g C m-2 d-1). Air temperature was a primary driver of all CH4 fluxes, while water table was not a significant correlate as water levels were always at or above the vegetative mat surfaces. Weighting by the surface cover proportion of water and vegetation yielded a net ecosystem CH4 emission of 127 ± 19 g C m-2 yr-1. Combining CO2 and CH4, the annual C sink at the Mer Bleue marsh was reduced to -97 ± 57 g C m-2 yr-1, illustrating the importance of accounting for CH4 when generating marsh C budgets.
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2017-11-01
Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (-10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems.
STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION.
Meerschaert, Mark M; Sabzikar, Farzad
2014-07-01
Tempered fractional Brownian motion is obtained when the power law kernel in the moving average representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we develop some basic results on tempered fractional calculus.
Step tracking program for concentrator solar collectors
NASA Astrophysics Data System (ADS)
Ciobanu, D.; Jaliu, C.
2016-08-01
The increasing living standards in developed countries lead to increased energy consumption. The fossil fuel consumption and greenhouse gas effect that accompany the energy production can be reduced by using renewable energy. For instance, the solar thermal systems can be used in temperate climates to provide heating during the transient period or cooling during the warmer months. Most used solar thermal systems contain flat plate solar collectors. In order to provide the necessary energy for the house cooling system, the cooling machine uses a working fluid with a high temperature, which can be supplied by dish concentrator collectors. These collectors are continuously rotated towards sun by biaxial tracking systems, process that increases the consumed power. An algorithm for a step tracking program to be used in the orientation of parabolic dish concentrator collectors is proposed in the paper to reduce the consumed power due to actuation. The algorithm is exemplified on a case study: a dish concentrator collector to be implemented in Brasov, Romania, a location with the turbidity factor TR equal to 3. The size of the system is imposed by the environment, the diameter of the dish reflector being of 3 meters. By applying the proposed algorithm, 60 sub-programs are obtained for the step orientation of the parabolic dish collector over the year. Based on the results of the numerical simulations for the step orientation, the efficiency of the direct solar radiation capture on the receptor is up to 99%, while the energy consumption is reduced by almost 80% compared to the continuous actuation of the concentrator solar collector.
Modeling Skin Injury from Hot Spills on Clothing
2017-01-01
The present work analyzes scald burns from hot beverages, such as coffee and tea, spilled on the lap, i.e., an incident that may occur in daily life. The Pennes bioheat equation is solved numerically for small spills wetting the clothing, i.e., the fabric prevents the spilled liquid from draining away. Temperatures are analyzed in the wetted fabric and the skin layers and the resulting skin injury is calculated based on the basal layer temperature. Parameters influencing burn severity, such as clothing thickness, liquid temperature, removal of fabric and thermal effects of post scald water cooling are analyzed. The fabric cools the water some but represents a threat since the entrapped water results in a prolonged heat supply. The liquid temperature turned out to be the most important injury parameter, where liquid temperature of about 80–85 °C seems to be a limit for developing superficial partial-thickness burns in the present minimum case, i.e., where the liquid just wets the fabric. Spilling water in excess of just wetting the fabric, more severe burns will develop at lower liquid temperatures due to the prolonged heat supply. Higher liquid temperatures will nearly instantly develop more severe burns. It is demonstrated that removal of the clothing within the first seconds after the spill may significantly reduce the scalding severity. The general advice is therefore to avoid excessive heating of beverages and, if the beverage is spilled, to quickly remove the wetted clothing. Prolonged tempered water cooling is advised to improve the healing processes. PMID:29137118
Survival of freezing by hydrated tardigrades inhabiting terrestrial and freshwater habitats.
Guidetti, Roberto; Altiero, Tiziana; Bertolani, Roberto; Grazioso, Pasqualina; Rebecchi, Lorena
2011-04-01
The seasonality and unpredictability of environmental conditions at high altitudes and latitudes govern the life cycle patterns of organisms, giving rise to stresses that cause death or development of specific adaptations. Ice formation is a major variable affecting the survival of both freshwater fauna and fauna inhabiting lichens, mosses and leaf litter. Tardigrades occupy a wide range of niches in marine, freshwater and terrestrial environments. The highest number of species is found in terrestrial habitats thanks to their ability to enter anhydrobiosis and cryobiosis. The cryobiotic ability of tardigrade species from polar regions is well known. Consequently, we focused our research on the ability to survive freezing in the active hydrated state using seven tardigrade species differing in phylogenetic position and collected at various altitudes and from different habitats in a temperate area. Specimens were cooled at different cooling rates (from 0.31° C min(-1) to 3.26° C min(-1)). Even though the final survival and the time required by animals to recover to active life were both inversely related to the cooling rate, highly significant interspecific differences were found. Species survival ability ranged from excellent to none. Species living in xeric habitats withstood freezing better than those living in hygrophilous habitats, while true limnic species did not exhibit any cryobiotic ability. The ability to withstand freezing seems linked to the anhydrobiotic ability. The differences in cryptobiotic performance among tardigrade species seem more influenced by selective pressures linked to local adaptation to habitat characteristics than by phylogenetic relationships. Copyright © 2011 Elsevier GmbH. All rights reserved.
Parameterizations of Cloud Microphysics and Indirect Aerosol Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Wei-Kuo
1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e.,more » Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bins). Atmospheric aerosols are also described using number density size-distribution functions (containing 33 bins). Droplet nucleation (activation) is derived from the analytical calculation of super-saturation, which is used to determine the sizes of aerosol particles to be activated and the corresponding sizes of nucleated droplets. Primary nucleation of each type of ice crystal takes place within certain temperature ranges. A detailed description of these explicitly parameterized processes can be found in Khain and Sednev (1996) and Khain et al. (1999, 2001). 2.3 Case Studies Three cases, a tropical oceanic squall system observed during TOGA COARE (Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment, which occurred over the Pacific Ocean warm pool from November 1992 to February 1993), a midlatitude continental squall system observed during PRESTORM (Preliminary Regional Experiment for STORM-Central, which occurred in Kansas and Oklahoma during May-June 1985), and mid-afternoon convection observed during CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cumulus Experiment, which occurred in Florida during July 2002), will be used to examine the impact of aerosols on deep, precipitating systems. 3. SUMMARY of RESULTS • For all three cases, higher CCN produces smaller cloud droplets and a narrower spectrum. Dirty conditions delay rain formation, increase latent heat release above the freezing level, and enhance vertical velocities at higher altitude for all cases. Stronger updrafts, deeper mixed-phase regions, and more ice particles are simulated with higher CCN in good agreement with observations. • In all cases, rain reaches the ground early with lower CCN. Rain suppression is also evident in all three cases with high CCN in good agreement with observations (Rosenfeld, 1999, 2000 and others). Rain suppression, however, only occurs during the first hour of simulation. This result suggests that microphysical processes dominate the impact of aerosols on precipitation in the early stage of precipitation development. • During the mature stage of the simulations, the effect of increasing aerosol concentration ranges from rain suppression in the PRESTORM case to little effect on surface rainfall in the CRYSTAL-FACE case to rain enhancement in the TOGA COARE case. • The model results suggest that evaporative cooling is a key process in determining whether higher CCN reduces or enhances precipitation. Cold pool strength can be enhanced by stronger evaporation. When cold pool interacts with the near surface wind shear, the low-level convergence can be stronger, facilitating secondary cloud formation and more vigorous precipitation processes. Evaporative cooling is more than two times stronger at low levels with higher CCN for the TOGA COARE case during the early stages of precipitation development. However, evaporative cooling is slightly stronger at lower levels with lower CCN for the PRESTORM case. The early formation of rain in the clean environment could allow for the formation of an earlier and stronger cold pool compared to a dirty environment. PRESTORM has a very dry environment and both large and small rain droplets can evaporate. Consequently, the cold pool is relatively weaker, and the system is relatively less intense with higher CCN. • Sensitivity tests are conducted to determine the impact of ice processes on aerosol-precipitation interaction. The results suggested that ice processes are crucial for suppressing precipitation due to high CCN for the PRESTORM case. More and smaller ice particles are generated in the dirty case and transported to the trailing stratiform region. This reduces the heavy convective rain and contributes to the weakening of the cold pool. Warm rain processes dominate the TOGA COARE case. Therefore, ice processes only play a secondary role in terms of aerosol-precipitation interaction. • Two of the three cloud systems presented in this paper formed a line structure (squall system). A 2D simulation, therefore, gives a good approximation to such a line of convective clouds. Since the real atmosphere is 3D, further 3D cloud-resolving simulations are needed to address aerosol-precipitation interactions. 4. REFERENCES Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophy. Res., 112, D24S18, doi:10.1029/2007JD008728. All other references can be found in above paper. 5. Acknowledgements The GCE model is mainly supported by the NASA Headquarters Atmospheric Dynamics and Thermodynamics Program and the NASA Tropical Rainfall Measuring Mission (TRMM). The research was also supported by the Office of Science (BER), U. S. Department of Energy/Atmospheric Radiation Measurement (DOE/ARM) Interagency. The authors acknowledge NASA Goddard Space Flight Center for computer time used in this research.« less
Hanya, Goro; Tsuji, Yamato; Grueter, Cyril C
2013-04-01
In order to understand the ecological adaptations of primates to survive in temperate forests, we need to know the general patterns of plant phenology in temperate and tropical forests. Comparative analyses have been employed to investigate general trends in the seasonality and abundance of fruit and young leaves in tropical and temperate forests. Previous studies have shown that (1) fruit fall biomass in temperate forest is lower than in tropical forest, (2) non-fleshy species, in particular acorns, comprise the majority of the fruit biomass in temperate forest, (3) the duration of the fruiting season is shorter in temperate forest, and (4) the fruiting peak occurs in autumn in most temperate forests. Through our comparative analyses of the fruiting and flushing phenology between Asian temperate and tropical forests, we revealed that (1) fruiting is more annually periodic (the pattern in one year is similar to that seen in the next year) in temperate forest in terms of the number of fruiting species or trees, (2) there is no consistent difference in interannual variations in fruiting between temperate and tropical forests, although some oak-dominated temperate forests exhibit extremely large interannual variations in fruiting, (3) the timing of the flushing peak is predictable (in spring and early summer), and (4) the duration of the flushing season is shorter. The flushing season in temperate forests (17-28 % of that in tropical forests) was quite limited, even compared to the fruiting season (68 %). These results imply that temperate primates need to survive a long period of scarcity of young leaves and fruits, but the timing is predictable. Therefore, a dependence on low-quality foods, such as mature leaves, buds, bark, and lichens, would be indispensable for temperate primates. Due to the high predictability of the timing of fruiting and flushing in temperate forests, fat accumulation during the fruit-abundant period and fat metabolization during the subsequent fruit-scarce period can be an effective strategy to survive the lean period (winter).
The Influence of Microphysical Cloud Parameterization on Microwave Brightness Temperatures
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, Gail M.; Gasiewski, Albin J.; Wang, James R.; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
The microphysical parameterization of clouds and rain-cells plays a central role in atmospheric forward radiative transfer models used in calculating passive microwave brightness temperatures. The absorption and scattering properties of a hydrometeor-laden atmosphere are governed by particle phase, size distribution, aggregate density., shape, and dielectric constant. This study identifies the sensitivity of brightness temperatures with respect to the microphysical cloud parameterization. Cloud parameterizations for wideband (6-410 GHz observations of baseline brightness temperatures were studied for four evolutionary stages of an oceanic convective storm using a five-phase hydrometeor model in a planar-stratified scattering-based radiative transfer model. Five other microphysical cloud parameterizations were compared to the baseline calculations to evaluate brightness temperature sensitivity to gross changes in the hydrometeor size distributions and the ice-air-water ratios in the frozen or partly frozen phase. The comparison shows that, enlarging the rain drop size or adding water to the partly Frozen hydrometeor mix warms brightness temperatures by up to .55 K at 6 GHz. The cooling signature caused by ice scattering intensifies with increasing ice concentrations and at higher frequencies. An additional comparison to measured Convection and Moisture LA Experiment (CAMEX 3) brightness temperatures shows that in general all but, two parameterizations produce calculated T(sub B)'s that fall within the observed clear-air minima and maxima. The exceptions are for parameterizations that, enhance the scattering characteristics of frozen hydrometeors.
Evaluation of TRMM Ground-Validation Radar-Rain Errors Using Rain Gauge Measurements
NASA Technical Reports Server (NTRS)
Wang, Jianxin; Wolff, David B.
2009-01-01
Ground-validation (GV) radar-rain products are often utilized for validation of the Tropical Rainfall Measuring Mission (TRMM) spaced-based rain estimates, and hence, quantitative evaluation of the GV radar-rain product error characteristics is vital. This study uses quality-controlled gauge data to compare with TRMM GV radar rain rates in an effort to provide such error characteristics. The results show that significant differences of concurrent radar-gauge rain rates exist at various time scales ranging from 5 min to 1 day, despite lower overall long-term bias. However, the differences between the radar area-averaged rain rates and gauge point rain rates cannot be explained as due to radar error only. The error variance separation method is adapted to partition the variance of radar-gauge differences into the gauge area-point error variance and radar rain estimation error variance. The results provide relatively reliable quantitative uncertainty evaluation of TRMM GV radar rain estimates at various times scales, and are helpful to better understand the differences between measured radar and gauge rain rates. It is envisaged that this study will contribute to better utilization of GV radar rain products to validate versatile spaced-based rain estimates from TRMM, as well as the proposed Global Precipitation Measurement, and other satellites.
Reinhardt, Keith; Smith, William K
2008-01-01
The southern Appalachian spruce-fir (Picea rubens Sarg. and Abies fraseri (Pursh) Poir.) forest is found only on high altitude mountain tops that receive copious precipitation ( > 2000 mm year(-1)) and experience frequent cloud immersion. These high-elevation, temperate rain forests are immersed in clouds on approximately 65% of the total growth season days and for 30-40% of a typical summer day, and cloud deposition accounts for up to 50% of their annual water budget. We investigated environmental influences on understory leaf gas exchange and water relations at two sites: Mt. Mitchell, NC (MM; 35 degrees 45'53'' N, 82 degrees 15'53'' W, 2028 m elevation) and Whitetop Mtn., VA (WT; 36 degrees 38'19'' N, 81 degrees 36'19'' W, 1685 m elevation). We hypothesized that the cool, moist and cloudy conditions at these sites exert a strong influence on leaf gas exchange. Maximum photosynthesis (A(max)) varied between 1.6 and 4.0 micromol CO(2) m(-2) s(-1) for both spruce and fir and saturated at irradiances between approximately 200 and 400 micromol m(-2) s(-1) at both sites. Leaf conductance (g) ranged between 0.05 and 0.25 mol m(-2) s(-1) at MM and between 0.15 and 0.40 mol m(-2) s(-1) at WT and was strongly associated with leaf-to-air vapor pressure difference (LAVD). At both sites, g decreased exponentially as LAVD increased, with an 80-90% reduction in g between 0 and 0.5 kPa. Predawn leaf water potentials remained between -0.25 and -0.5 MPa for the entire summer, whereas late afternoon values declined to between -1.25 and -1.75 MPa by late summer. Thus, leaf gas exchange appeared tightly coupled to the response of g to LAVD, which maintained high water status, even at the relatively low LAVD of these cloud forests. Moreover, the cloudy, humid environment of these refugial forests appears to exert a strong influence on tree leaf gas exchange and water relations. Because global climate change is predicted to increase regional cloud ceiling levels, more research on cloud impacts on carbon gain and water relations is needed to predict future impacts on these relict forests.
NASA Astrophysics Data System (ADS)
Tedford, E. W.; MacIntyre, S.; Miller, S. D.; Czikowsky, M. J.
2013-12-01
The actively mixing layer, or surface layer, is the region of the upper mixed layer of lakes, oceans and the atmosphere directly influenced by wind, heating and cooling. Turbulence within the surface mixing layer has a direct impact on important ecological processes. The Monin-Obukhov length scale (LMO) is a critical length scale used in predicting and understanding turbulence in the actively mixed layer. On the water side of the air-water interface, LMO is defined as: LMO=-u*^3/(0.4 JB0) where u*, the shear velocity, is defined as (τ/rho)^0.5 where τ is the shear stress and rho is the density of water and JBO is the buoyancy flux at the surface. Above the depth equal to the absolute value of the Monin-Obukhov length scale (zMO), wind shear is assumed to dominate the production of turbulent kinetic energy (TKE). Below zMO, the turbulence is assumed to be suppressed when JB0 is stabilizing (warming surface waters) and enhanced when the buoyancy flux is destabilizing (cooling surface waters). Our observed dissipations were well represented using the canonical similarity scaling equations. The Monin-Obukhov length scale was generally effective in separating the surface-mixing layer into two regions: an upper region, dominated by wind shear; and a lower region, dominated by buoyancy flux. During both heating and cooling and above a depth equal to |LMO|, turbulence was dominated by wind shear and dissipation followed law of the wall scaling although was slightly augmented by buoyancy flux during both heating and cooling. Below a depth equal to |LMO| during cooling, dissipation was nearly uniform with depth. Although distinguishing between an upper region of the actively mixing layer dominated by wind stress and a lower portion dominated by buoyancy flux is typically accurate the most accurate estimates of dissipation include the effects of both wind stress and buoyancy flux throughout the actively mixed layer. We demonstrate and discuss the impact of neglecting the non-dominant forcing (buoyancy flux above zMO and wind stress below zMO) above and below zMO.
Choong, Tsui-Wei; He, Jie; Lee, Sing K.; Dodd, Ian C.
2016-01-01
Temperate crops cannot grow well in the tropics without rootzone cooling. As cooling increased production costs, this experiment aimed to study the growth of various Lactuca genotypes and propose possible ways of reducing these costs, without compromising productivity. A recombinant inbred line (RIL) of lettuce and its parental lines (L. serriola and L. sativa “Salinas”) were grown aeroponically in a tropical greenhouse under 24°C cool (C) or warm fluctuating 30–36°C ambient (A) rootzone temperature (RZT). Their roots were misted with Netherlands standard nutrient solution for 1 min, at intervals of either 5 min (A5, C5) or 10 min (A10, C10) in attempting to reduce electricity consumption and production costs. Lower mortality and higher productivity were observed in all genotypes when grown in C-RZT. Higher shoot fresh weight was observed under C5 than C10, for the RIL and L. serriola. Since “Salinas” had similar shoot fresh weight at both C-RZ treatments, this may indicate it is more sensitive to RZT than water availability. Under A-RZ treatments, higher carotenoid content, with correspondingly higher nonphotochemical quenching, was observed in A10 for the RIL and “Salinas.” Further, total chlorophyll content was also highest at this RZ treatment for the RIL though photochemical quenching was contrastingly the lowest. Cumulatively, productivity was compromised at A10 as the RIL seemed to prioritize photoprotection over efficiency in photosynthesis, under conditions of higher RZT and lower water availability. Generally, higher RZ ethylene concentrations accumulated in A10 and C10 than A5 and C5, respectively—probably due to spray frequency exerting a greater effect on RZ ethylene accumulation than RZT. In the C5 RZ treatment, lowest RZ ethylene concentration corresponded with highest shoot fresh weight. As such, further research on ethylene (in)sensitivity and water use efficiency could be conducted to identify Lactuca cultivars that are better suited for growth in the tropics, so as to allay production costs with reduced cooling and spray intervals. PMID:27679582
μ-tempered metadynamics: Artifact independent convergence times for wide hills
NASA Astrophysics Data System (ADS)
Dickson, Bradley M.
2015-12-01
Recent analysis of well-tempered metadynamics (WTmetaD) showed that it converges without mollification artifacts in the bias potential. Here, we explore how metadynamics heals mollification artifacts, how healing impacts convergence time, and whether alternative temperings may be used to improve efficiency. We introduce "μ-tempered" metadynamics as a simple tempering scheme, inspired by a related mollified adaptive biasing potential, that results in artifact independent convergence of the free energy estimate. We use a toy model to examine the role of artifacts in WTmetaD and solvated alanine dipeptide to compare the well-tempered and μ-tempered frameworks demonstrating fast convergence for hill widths as large as 60∘ for μTmetaD.
μ-tempered metadynamics: Artifact independent convergence times for wide hills.
Dickson, Bradley M
2015-12-21
Recent analysis of well-tempered metadynamics (WTmetaD) showed that it converges without mollification artifacts in the bias potential. Here, we explore how metadynamics heals mollification artifacts, how healing impacts convergence time, and whether alternative temperings may be used to improve efficiency. We introduce "μ-tempered" metadynamics as a simple tempering scheme, inspired by a related mollified adaptive biasing potential, that results in artifact independent convergence of the free energy estimate. We use a toy model to examine the role of artifacts in WTmetaD and solvated alanine dipeptide to compare the well-tempered and μ-tempered frameworks demonstrating fast convergence for hill widths as large as 60(∘) for μTmetaD.
NASA Astrophysics Data System (ADS)
Zhang, Chuanyou; Wang, Qian; Sun, Yu; Wang, Huibin; Zhang, Wei; Wang, Qingfeng; Guo, Aimin; Sun, Kaiming
Extensive investigations of metallurgical roles played by Nb microalloying in advanced products of seamless steel tube have been carried out. The results show that with Nb microalloyed , the recrystallized austenite grain (RAG) and final ferrite grain of tubular steel are evidently refined even experiencing a piercing and a continuous rolling at very high temperature, and a certain quantity of (Nb,V)(C,N) and (Ti,Nb,V)(C,N) particles form on air cooling. Moreover, for quenching (Q) & tempering (T) treated tubular steels, the nanoscale particles of (Nb,V) (C,N) further precipitate on heating stage of Q at 900-1000°C, leading to a significant refinement of prior austenite grain (PAG) and final martensitic or bainitic packet/block structures, and during subsequent T at 600-700°C, producing an improved resistance to softening.
Vasculature of the hive: heat dissipation in the honey bee ( Apis mellifera) hive
NASA Astrophysics Data System (ADS)
Bonoan, Rachael E.; Goldman, Rhyan R.; Wong, Peter Y.; Starks, Philip T.
2014-06-01
Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees ( Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Keith; McLaughlin, Brendan M.; Lane, Ian C., E-mail: i.lane@qub.ac.uk
BaH (and its isotopomers) is an attractive molecular candidate for laser cooling to ultracold temperatures and a potential precursor for the production of ultracold gases of hydrogen and deuterium. The theoretical challenge is to simulate the laser cooling cycle as reliably as possible and this paper addresses the generation of a highly accurate ab initio {sup 2}Σ{sup +} potential for such studies. The performance of various basis sets within the multi-reference configuration-interaction (MRCI) approximation with the Davidson correction is tested and taken to the Complete Basis Set (CBS) limit. It is shown that the calculated molecular constants using a 46more » electron effective core-potential and even-tempered augmented polarized core-valence basis sets (aug-pCVnZ-PP, n = 4 and 5) but only including three active electrons in the MRCI calculation are in excellent agreement with the available experimental values. The predicted dissociation energy D{sub e} for the X{sup 2}Σ{sup +} state (extrapolated to the CBS limit) is 16 895.12 cm{sup −1} (2.094 eV), which agrees within 0.1% of a revised experimental value of <16 910.6 cm{sup −1}, while the calculated r{sub e} is within 0.03 pm of the experimental result.« less
Vasculature of the hive: heat dissipation in the honey bee (Apis mellifera) hive.
Bonoan, Rachael E; Goldman, Rhyan R; Wong, Peter Y; Starks, Philip T
2014-06-01
Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees (Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.
The other side of the coin: urban heat islands as shields from extreme cold
NASA Astrophysics Data System (ADS)
Yang, J.; Bou-Zeid, E.
2017-12-01
Extensive studies focusing on urban heat islands (UHIs) during hot periods create a perception that UHIs are invariably hazardous to human health and the sustainability of cities. Consequently, cities have invested substantial resources to try to mitigate UHIs. These urban policies can have serious repercussions since the health risks associated with cold weather are in fact higher than for heat episodes, yet wintertime UHIs have hardly been explored. We combine ground observations from 12 U.S. cities and high-resolution simulations to show that UHIs not only warm urban areas in the winter, but also further intensify during cold waves by up to 1.32 ± 0.78 oC (mean ± standard deviation) at night. Urban heat islands serve as shelters against extreme colds and provide invaluable benefits of reducing health risks and heating demand. More importantly, our simulations indicate that standard UHI mitigation measures such as green or cool roofs reduce these cold time amenities to different extents. Cities, particularly in cool and cold temperate climates, should hence revisit policies and efforts that are only desgined for hot periods. A paradigm shift is urgently needed to give an equal weight to the wintertime benefits of UHIs in the sustainability and resilience blueprints of cities.
NASA Astrophysics Data System (ADS)
gochis, David; rasmussen, Roy; Yu, Wei; Ikeda, Kyoko
2014-05-01
Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize large magnitudes of moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of landform can significantly influence vertical velocity profiles and cloud moisture entrainment rates. In this work we report on recent progress in high resolution regional climate modeling of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF-Hydro modeling system forced by high resolution WRF model output can produce credible depictions of winter orographic precipitation and resultant monthly and annual river flows. Here we present results from a detailed study of an extreme springtime snowfall event that occurred along the Colorado Front Range in March of 2003. First an analysis of the simulated streamflows resulting from the melt out of that event are presented followed by an analysis of projected streamflows from the event where the atmospheric forcing in the WRF model is perturbed using the Psuedo-Global-Warming (PGW) perturbation methodology. Results from the impact of warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. It is shown that under the assumptions of the PGW method, intense precipitation rates increase during the event and, more importantly, that more precipitation falls as rain versus snow which significantly amplifies the runoff response from one where runoff is produced gradually to where runoff is more rapidly translated into streamflow values that approach significant flooding risks.
NASA Astrophysics Data System (ADS)
Zuidema, Paquita; Torri, Giuseppe; Muller, Caroline; Chandra, Arunchandra
2017-11-01
Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed ˜ 2 mm h^{-1}, convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4-5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but near the cold pool edge; these are not consistent with observations, but do improve with smaller horizontal grid spacings.
NASA Astrophysics Data System (ADS)
Zuidema, Paquita; Torri, Giuseppe; Muller, Caroline; Chandra, Arunchandra
Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed 2 mm h-1, convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4-5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but near the cold pool edge; these are not consistent with observations, but do improve with smaller horizontal grid spacings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Y.; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240; Li, W., E-mail: weilee@sjtu.edu.cn
Low temperature tempering is important in improving the mechanical properties of steels. In this study, the thermoelectric power method was employed to investigate carbon segregation during low temperature tempering ranging from 110 °C to 170 °C of a medium carbon alloyed steel, combined with micro-hardness, transmission electron microscopy and atom probe tomography. Evolution of carbon dissolution from martensite and segregation to grain boundaries/interfaces and dislocations were investigated for different tempering conditions. Carbon concentration variation was quantified from 0.33 wt.% in quenching sample to 0.15 wt.% after long time tempering. The kinetic of carbon diffusion during tempering process was discussed throughmore » Johnson-Mehl-Avrami equation. - Highlights: • The thermoelectric power (TEP) was employed to investigate the low temperature tempering of a medium carbon alloyed steel. • Evolution of carbon dissolution was investigated for different tempering conditions. • Carbon concentration variation was quantified from 0.33 wt.% in quenching sample to 0.15 wt.% after long time tempering.« less
NASA Astrophysics Data System (ADS)
Kuang, Chun-fu; Zheng, Zhi-wang; Wang, Min-li; Xu, Quan; Zhang, Shen-gen
2017-12-01
A C-Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s (process A) or rapidly cooled to 350°C and then reheated to 450°C (process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel (DP600) was investigated using optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength (YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient ( n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength (UTS) and elongation ( A 80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties (YS = 362 MPa, UTS = 638 MPa, A 80 = 24.3%, n = 0.17) was obtained via process A.
NASA Astrophysics Data System (ADS)
Ummenhofer, Caroline; Denniston, Rhawn
2017-04-01
The seasonal north-south migration of the intertropical convergence zone defines the tropical rain belt (TRB), a region of enormous terrestrial biodiversity and home to 40% of the world's population. The TRB is dynamic and has been shown to shift south as a coherent system during periods of Northern Hemisphere cooling. However, recent studies of Indo-Pacific hydroclimate suggest that during the Little Ice Age (AD 1400-1850), the TRB in this region contracted rather than being displaced uniformly southward. This behaviour is not well understood, particularly during climatic fluctuations less pronounced than those of the Little Ice Age, the largest centennial-scale cool period of the last millennium. Using state-of-the-art climate model simulations conducted as part of the Last Millennium Ensemble with the Community Earth System Model (CESM), we evaluate variations in the width of the Indo-Pacific TRB, as well as movements in the position of its northward and southward edges, across a range of timescales over the pre-Industrial portion of the last millennium (AD 850-1850). The climate model results complement a recent reconstruction of late Holocene variability of the Indo-Pacific TRB, based on a precisely-dated, monsoon-sensitive stalagmite reconstruction from northern Australia (cave KNI-51), located at the southern edge of the TRB and thus highly sensitive to variations at its southern edge. Integrating KNI-51 with a record from Dongge Cave in southern China allows a stalagmite-based TRB reconstruction. Our results reveal that rather than shifting meridionally, the Indo-Pacific TRB expanded and contracted over multidecadal/centennial time scales during the late Holocene, with symmetric weakening/strengthening of summer monsoons in the Northern and Southern Hemispheres of the Indo-Pacific (the East Asian summer monsoon in China and the Australian summer monsoon in northern Australia). Links to large-scale climatic conditions across the Indo-Pacific region, including its leading modes of variability, are made in the climate model simulations to elucidate the dynamics of TRB variations during periods of expansion and contraction over the last millennium.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Dishman, W. K.
1982-01-01
A simple attenuation model (SAM) is presented for estimating rain-induced attenuation along an earth-space path. The rain model uses an effective spatial rain distribution which is uniform for low rain rates and which has an exponentially shaped horizontal rain profile for high rain rates. When compared to other models, the SAM performed well in the important region of low percentages of time, and had the lowest percent standard deviation of all percent time values tested.
McKeown, Meghan; Schubert, Marian; Preston, Jill C; Fjellheim, Siri
2017-09-01
Flowering time is a carefully regulated trait controlled primarily through the action of the central genetic regulator, FLOWERING LOCUS T (FT). Recently it was demonstrated that a microRNA, miR5200, targets the end of the second exon of FT under short-day photoperiods in the grass subfamily Pooideae, thus preventing FT transcripts from reaching threshold levels under non-inductive conditions. Pooideae are an interesting group in that they rapidly diversified from the tropics into the northern temperate region during a major global cooling event spanning the Eocene-Oligocene transition. We hypothesize that miR5200 photoperiod-sensitive regulation of Pooideae flowering time networks assisted their transition into northern seasonal environments. Here, we test predictions derived from this hypothesis that miR5200, originally found in bread wheat and later identified in Brachypodium distachyon, (1) was present in the genome of the Pooideae common ancestor, (2) is transcriptionally regulated by photoperiod, and (3) is negatively correlated with FT transcript abundance, indicative of miR5200 regulating FT. Our results demonstrate that miR5200 did evolve at or around the base of Pooideae, but only acquired photoperiod-regulated transcription within the Brachypodium lineage. Based on expression profiles and previous data, we posit that the progenitor of miR5200 was co-regulated with FT by an unknown mechanism. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
van Wijngaarden, René P A; Brock, Theo C M; Douglas, Mark T
2005-10-01
Three experiments were conducted to determine the impact of the insecticide chlorpyrifos (single applications of 0.01 to 10 microg AI litre(-1)) in plankton-dominated nutrient-rich microcosms. The microcosms (water volume approximately 14 litres) were established in the laboratory under temperature, light regimes and nutrient levels that simulated cool 'temperate' and warm 'Mediterranean' environmental conditions. The fate of chlorpyrifos in the water column was monitored and the effects on zooplankton, phytoplankton and community metabolism were followed for 4 or 5 weeks. The mean half-life (t1/2) of chlorpyrifos in the water of the test systems was 45 h under 'temperate' conditions and about 30 h under 'Mediterranean' environmental conditions. Microcrustaceans (cladocerans and copepod nauplii) were amongst the most sensitive organisms. All three experiments yielded community NOEC (no observed effect concentrations) of 0.1 microg AI litre(-1), similar to those derived from more complex outdoor studies. Above this threshold level, responses and effect chains, and time spans for recovery, differed between the experiments. For example, algal blooms as an indirect effect from the impact of exposure on grazing organisms were only observed under the 'Mediterranean' experimental conditions. The relatively simple indoor test system seems to be sufficient to provide estimates of safe threshold levels for the acute insecticidal effects of low-persistence compounds such as chlorpyrifos. The robustness of the community NOEC indicates that this threshold level is likely to be representative for many freshwater systems. Copyright (c) 2005 Society of Chemical Industry.
Seasonal variation in diet and nutrition of the northern-most population of Rhinopithecus roxellana.
Hou, Rong; He, Shujun; Wu, Fan; Chapman, Colin A; Pan, Ruliang; Garber, Paul A; Guo, Songtao; Li, Baoguo
2018-04-01
There is a great deal of spatial and temporal variation in the availability and nutritional quality of foods eaten by animals, particularly in temperate regions where winter brings lengthy periods of leaf and fruit scarcity. We analyzed the availability, dietary composition, and macronutrients of the foods eaten by the northern-most golden snub-nosed monkey (Rhinopithecus roxellana) population in the Qinling Mountains, China to understand food choice in a highly seasonal environment dominated by deciduous trees. During the warm months between April and November, leaves are consumed in proportion to their availability, while during the leaf-scarce months between December and March, bark and leaf/flower buds comprise most of their diet. When leaves dominated their diet, golden snub-nosed monkeys preferentially selected leaves with higher ratios of crude protein to acid detergent fiber. While when leaves were less available, bark and leaf/flower buds that were high in nonstructural carbohydrates and energy, and low in acid detergent fiber were selected. Southern populations of golden snub-nosed monkey can turn to eating lichen, however, the population studied here in this lichen-absent area have adapted to their cool deciduous habitat by instead consuming buds and bark. Carbohydrate and energy rich foods appear to be the critical resources required for the persistence of this species in temperate habitat. The dietary flexibility of these monkeys, both among seasons and populations, likely contributes to their wide distribution over a range of habitats and environments. © 2018 Wiley Periodicals, Inc.
Adaptation to seasonality and the winter freeze
Preston, Jill C.; Sandve, Simen R.
2013-01-01
Flowering plants initially diversified during the Mesozoic era at least 140 million years ago in regions of the world where temperate seasonal environments were not encountered. Since then several cooling events resulted in the contraction of warm and wet environments and the establishment of novel temperate zones in both hemispheres. In response, less than half of modern angiosperm families have members that evolved specific adaptations to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy, and vernalization responsiveness. Despite compelling evidence for multiple independent origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is not well understood. However, the recent increase in molecular genetic studies examining the response of model and crop species to seasonal cold offers new insight into the evolutionary lability of these traits. This insight has major implications for our understanding of complex trait evolution, and the potential role of local adaptation in response to past and future climate change. In this review, we discuss the biochemical, morphological, and developmental basis of adaptations to seasonal cold, and synthesize recent literature on the genetic basis of these traits in a phylogenomic context. We find evidence for multiple genetic links between distinct physiological responses to cold, possibly reinforcing the coordinated expression of these traits. Furthermore, repeated recruitment of the same or similar ancestral pathways suggests that land plants might be somewhat pre-adapted to dealing with temperature stress, perhaps making inducible cold traits relatively easy to evolve. PMID:23761798
Dinoflagellate cysts and bloom events at Todos Santos Bay, Baja California, México, 1999 2000
NASA Astrophysics Data System (ADS)
Peña-Manjarrez, José Luis; Helenes, Javier; Gaxiola-Castro, Gilberto; Orellana-Cepeda, Elizabeth
2005-07-01
Forty-two species of dinoflagellate motile cells and 18 species of organic-walled dinoflagellate resting cysts were identified in samples collected at Todos Santos Bay, Baja California, México, from September 1999 to June 2000. These temperate to cool-temperate species belong mainly to the families Gonyaulacaceae and Protoperidiniaceae. Lingulodinium polyedrum (Stein, 1883) Dodge 1989 was the dominant species both in the sediments and water column. During this period we observed planktonic motile cells, temporary cysts with cellulose walls, and resting cysts with resistant dinosporin walls. Two dinoflagellate blooms occurred in the spring to summer of 2000 allowing us to observe the timing of cyst production. The temporary cysts appeared between these blooms and also in the summer, whereas the resting cysts appeared during the preceding fall and winter. Resting cysts appeared in colder conditions, whereas the temporary cysts were produced within a particular thermal window and under nutrient depletion. Resting cysts were concentrated in discrete areas at depths of less than 25 m, and associated with sediments ranging from silt to fine sand. These cysts were abundant in the surface sediments during summer, fall and winter, whereas the motile cells dominated during the spring and summer, when the two L. polyedrum blooms were observed. The abundance of cells in the plankton, comprising motile cells and temporary cysts, appears to be inversely proportional to the concentration of resting cysts of the same species in the surface sediments.
Egg size variation among tropical and temperate songbirds: An embryonic temperature hypothesis
Martin, T.E.
2008-01-01
Species with 'slow' life history strategies (long life, low fecundity) are thought to produce high-quality offspring by investing in larger, but fewer, young. Larger eggs are indeed associated with fewer eggs across taxa and can yield higher-quality offspring. Tropical passerines appear to follow theory because they commonly exhibit slow life history strategies and produce larger, but fewer, eggs compared with northern species. Yet, I show here that relative egg mass (corrected for adult mass) varies extensively in the tropics and subtropics for the same clutch size, and this variation is unexplained. I propose a hypothesis to explain egg size variation both within the tropics and between latitudes: Relative egg mass increases in species with cooler egg temperatures and longer embryonic periods to offset associated increases in energetic requirements of embryos. Egg temperatures of birds are determined by parental incubation behavior and are often cooler among tropical passerines because of reduced parental attentiveness of eggs. Here, I show that cooler egg temperatures and longer embryonic periods explained the enigmatic variation in egg mass within and among regions, based on field studies in tropical Venezuela (36 species), subtropical Argentina (16 species), and north temperate Arizona (20 species). Alternative explanations are not supported. Thus, large egg sizes may reflect compensation for increased energetic requirements of cool egg temperatures and long embryonic periods that result from reduced parental attentiveness in tropical birds. ?? 2008 by The National Academy of Sciences of the USA.
NASA Technical Reports Server (NTRS)
2002-01-01
In the summer months in the Northern Hemisphere, dust storms originating in the deserts around the Arabian Peninsula have a significant impact on the amount of solar radiation that reaches the surface. Winds sweep desert sands into the air and transport them eastward toward India and Asia with the seasonal monsoon. These airborne particles absorb and deflect incoming radiation and can produce a cooling effect as far away as North America. According to calculations performed by the NASA Goddard Institute for Space Studies (GISS), the terrain surrounding the southern portions of the Red Sea is one of the areas most dramatically cooled by the presence of summertime dust storms. That region is shown experiencing a dust storm in this true-color image from the Moderate Resolution Imaging Spectroradiometer (MODIS) acquired on July 11, 2002. The GISS model simulations indicate that between June and August, the temperatures would be as much as 2 degrees Celsius warmer than they are if it weren't for the dust in the air-a cooling equivalent to the passage of a rain cloud overhead. The image shows the African countries of Sudan (top left), Ethiopia (bottom left), with Eritrea nestled between them along the western coast of the Red Sea. Toward the right side of the image are Saudi Arabia (top) and Yemen (bottom) on the Arabian Peninsula. Overlooking the Red Sea, a long escarpment runs along the western edge of the Arabian Peninsula, and in this image appears to be blocking the full eastward expansion of the dust storm. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, Xiaowen
2016-01-01
A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updraftsdowndrafts in the middlelower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.
Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico
NASA Astrophysics Data System (ADS)
Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.
2013-05-01
Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments that correspond to deserts. Application of PFR model to fire management is discussed.
The effect of prescribed burning on plant rarity in a temperate forest.
Patykowski, John; Holland, Greg J; Dell, Matt; Wevill, Tricia; Callister, Kate; Bennett, Andrew F; Gibson, Maria
2018-02-01
Rare species can play important functional roles, but human-induced changes to disturbance regimes, such as fire, can inadvertently affect these species. We examined the influence of prescribed burns on the recruitment and diversity of plant species within a temperate forest in southeastern Australia, with a focus on species that were rare prior to burning. Floristic composition was compared among plots in landscapes before and after treatment with prescribed burns differing in the extent of area burnt and season of burn (before-after, control-impact design). Floristic surveys were conducted before burns, at the end of a decade of drought, and 3 years postburn. We quantified the effect of prescribed burns on species grouped by their frequency within the landscape before burning (common, less common, and rare) and their life-form attributes (woody perennials, perennial herbs or geophytes, and annual herbs). Burn treatment influenced the response of rare species. In spring-burn plots, the recruitment of rare annual herbs was promoted, differentiating this treatment from both autumn-burn and unburnt plots. In autumn-burn plots, richness of rare species increased across all life-form groups, although composition remained statistically similar to control plots. Richness of rare woody perennials increased in control plots. For all other life-form and frequency groups, the floristic composition of landscapes changed between survey years, but there was no effect of burn treatment, suggesting a likely effect of rainfall on species recruitment. A prescribed burn can increase the occurrence of rare species in a landscape, but burn characteristics can affect the promotion of different life-form groups and thus affect functional diversity. Drought-breaking rain likely had an overarching effect on floristic composition during our study, highlighting that weather can play a greater role in influencing recruitment and diversity in plant communities than a prescribed burn.
Climate change implications in the northern coastal temperate rainforest of North America
Shanley, Colin S.; Pyare, Sanjay; Goldstein, Michael I.; Alaback, Paul B.; Albert, David M.; Beier, Colin M.; Brinkman, Todd J.; Edwards, Rick T.; Hood, Eran; MacKinnon, Andy; McPhee, Megan V.; Patterson, Trista; Suring, Lowell H.; Tallmon, David; Wipfli, Mark S.
2015-01-01
We synthesized an expert review of climate change implications for hydroecological and terrestrial ecological systems in the northern coastal temperate rainforest of North America. Our synthesis is based on an analysis of projected temperature, precipitation, and snowfall stratified by eight biogeoclimatic provinces and three vegetation zones. Five IPCC CMIP5 global climate models (GCMs) and two representative concentration pathways (RCPs) are the basis for projections of mean annual temperature increasing from a current average (1961–1990) of 3.2 °C to 4.9–6.9 °C (5 GCM range; RCP4.5 scenario) or 6.4–8.7 °C (RCP8.5), mean annual precipitation increasing from 3130 mm to 3210–3400 mm (3–9 % increase) or 3320–3690 mm (6–18 % increase), and total precipitation as snow decreasing from 1200 mm to 940–720 mm (22–40 % decrease) or 720–500 mm (40–58 % decrease) by the 2080s (2071–2100; 30-year normal period). These projected changes are anticipated to result in a cascade of ecosystem-level effects including: increased frequency of flooding and rain-on-snow events; an elevated snowline and reduced snowpack; changes in the timing and magnitude of stream flow, freshwater thermal regimes, and riverine nutrient exports; shrinking alpine habitats; altitudinal and latitudinal expansion of lowland and subalpine forest types; shifts in suitable habitat boundaries for vegetation and wildlife communities; adverse effects on species with rare ecological niches or limited dispersibility; and shifts in anadromous salmon distribution and productivity. Our collaborative synthesis of potential impacts highlights the coupling of social and ecological systems that characterize the region as well as a number of major information gaps to help guide assessments of future conditions and adaptive capacity.
A Method to Retrieve Rainfall Rate over Land from TRMM Observations
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.
2002-01-01
Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) observations over mesoscale convective systems (MCSs) reveal that there are localized maxima in the rain rate with a scale of about 10 to 20 km that represent thunderstorms (Cbs). Some of these Cbs are developing or intense, while others are decaying or weak. These Cbs constitute only about 20 % of the rain area of a given MCS. Outside of Cbs, the average rain rate is much weaker than that within Cbs. From an analysis of the PR data, we find that the spatial distribution of rain and its character, convective or stratiform, is highly inhomogeneous. This complex nature of rain exists on a scale comparable to that of a Cb. The 85 GHz brightness temperature, T85, observations of the TRMM Microwave Imager (TMI) radiometer taken over an MCS reflect closely the PR rain rate pattern over land. Local maxima in rain rate shown by PR are observed as local minima in T85. Where there are no minima in T85, PR observations indicate there is light rain. However, the TMI brightness temperature measurements (Tbs) have poor ability to discriminate convective rain from stratiform rain. For this reason, a TMI rain retrieval procedure that depends primarily on the magnitude of Tbs performs poorly. In order to retrieve rain rate from TMI data on land one has to include the spatial distribution information deduced from the T85 data in the retrieval method. Then, quantitative estimation of rain rate can be accomplished. A TMI rain retrieval method developed along these lines can yield estimates of rain rate and its frequency distribution which agree closely with that given by PR. We find the current TRMM project TMI (Version 5) rain retrieval algorithm on land could be improved with the retrieval scheme developed here. To support the conceptual frame work of the rain retrieval method developed here, a theoretical analysis of the TMI brightness temperatures in convective and stratiform regions is presented.
Self-Consistency of Rain Event Definitions
NASA Astrophysics Data System (ADS)
Teves, J. B.; Larsen, M.
2014-12-01
A dense optical rain disdrometer array was constructed to study rain variability on spatial scales less than 100 meters with temporal resolution of 1 minute. Approximately two months of data were classified into rain events using methods common in the literature. These methods were unable to identify an array-wide consensus as to the total number of rain events; instruments as little as 2 meters apart with similar data records sometimes identified different rain event totals. Physical considerations suggest that these differing event totals are likely due to instrument sampling fluctuations that are typically not accounted for in rain event studies. Detection of varying numbers of rain events impact many commonly used storm statistics including storm duration distributions and mean rain rate. A summary of the results above and their implications are presented.
A meteorological potential forecast model for acid rain in Fujian Province, China.
Cai, Yi Yong; Lin, Chang Cheng; Liu, Jing Xiong; Wu, De Hui; Lian, Dong Ying; Chen, Bin Bin
2010-05-01
Based on the acid rain and concurrent meteorological observational data during the past 10 years in Fujian Province, China, the dependence of distribution characteristics of acid rain on season, rain rate, weather pattern and dominant airflow in four regions of Fujian Province is analyzed. On the annual average, the acid rain frequency is the highest (above 40%) in the southern and mid-eastern regions, and the lowest (16.2%) in the western region. The acid rain occurs most frequently in spring and winter, and least frequent in summer. The acid rain frequency in general increases with the increase of precipitation. It also depend on the direction of dominant airflows at 850 hPa. In the mid-eastern region, more than 40% acid rains appear when the dominant wind directions are NW, W, SW, S and SE. In the southern region, high acid rain occurrence happens when the dominant wind directions are NW, W, SW and S. In the northern region, 41.8% acid rains occur when the southwesterly is pronounced. In the western region, the southwesterly is associated with a 17% acid rain rate. The examination of meteorological sounding conditions over Fuzhou, Xiamen and Shaowu cities shows that the acid rain frequency increases with increased inversion thickness. Based on the results above, a meteorological potential forecast model for acid rain is established and tested in 2007. The result is encouraging. The model provides an objective basis for the development of acid rain forecasting operation in the province.
NASA Astrophysics Data System (ADS)
Belachsen, Idit; Marra, Francesco; Peleg, Nadav; Morin, Efrat
2017-04-01
Space-time patterns of rainfall are important climatic characteristics that influence runoff generation and flash flood magnitude. Their derivation requires high-resolution measurements to adequately represent the rainfall distribution, and is best provided by remote sensing tools. This need is further emphasized in dry climate regions, where rainfall is scarce and, often, local and highly variable. Our research is focused on understanding the nature of rainfall events in the dry Dead Sea region (Eastern Mediterranean) by identifying and characterizing the spatial structure and the dynamics of convective storm cores (known as rain cells). To do so, we take advantage of 25 years of corrected and gauge-adjusted weather radar data. A statistical analysis of convective rain-cells spatial and temporal characteristics was performed with respect to synoptic pattern, geographical location, and flash flood generation. Rain cells were extracted from radar data using a cell segmentation method and a tracking algorithm and were divided into rain events. A total of 10,500 rain cells, 2650 cell tracks and 424 rain events were elicited. Rain cell properties, such as mean areal and maximal rain intensity, area, life span, direction and speed, were derived. Rain events were clustered, according to several ERA-Interim atmospheric parameters, and associated with three main synoptic patterns: Cyprus Low, Low to the East of the study region and Active Red Sea Trough. The first two originate from the Mediterranean Sea, while the third is an extension of the African monsoon. On average, the convective rain cells in the region are 90 km2 in size, moving from West to East in 13 ms-1 and living 18 minutes. Several significant differences between rain cells of the various synoptic types were observed. In particular, Active Red Sea Trough rain cells are characterized by higher rain intensities and lower speeds, suggesting a higher flooding potential for small catchments. The north-south negative gradient of mean annual rainfall in the study region was found to be negatively correlated with rain cells intensity and positively correlated with rain cells area. Additional analysis was done for convective rain cells over two nearby catchments located in the central part of the study region, by ascribing some of the rain events to observed flash-flood events. It was found that rain events associated with flash-floods have higher maximal rain cell intensity and lower minimal cell speed than rain events that did not lead to a flash-flood in the watersheds. This information contributes to our understanding of rain patterns over the dry area of the Dead Sea and their connection to flash-floods. The statistical distributions of rain cells properties can be used for high space-time resolution stochastic simulations of rain storms that can serve as an input to hydrological models.
Model simulations of the competing climatic effects of SO[sub 2] and CO[sub 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufman, Y.J.; Chou, M.D.
Sulfur dioxide-derived cloud condensation nuclei are expected to enhance the planetary albedo, thereby cooling the planet. This effect might counteract the global warming expected from enhanced greenhouse gases. A detailed treatment of the relationship between fossil fuel burning and the SO[sub 2] effect on cloud albedo is implemented in a two-dimensional model for assessing the climate impact. Some general conclusions can be reached. Using a conservative approach, results show that the cooling induced by the SO[sub 2] emission can presently counteract 50% of the CO[sub 2] greenhouse warming. Since 1980, a strong warming trend has been predicted by the model,more » 0.15[degrees]C, during the 1980-1990 period alone. The model predicts that by the year 2060 the SO[sub 2] cooling reduces climate warming by 0.5[degrees]C or 25% for the Intergovernmental Panel on Climate Change (IPCC) business as usual (BAU) scenario and 0.2[degrees]C for 20% for scenario D (for a slow pace of fossil fuel burning). The hypothesis is examined that the different responses between the Northern Hemisphere (NH) and the Southern Hemisphere (SH) can be used to validate the presence of the SO[sub 2]-induced cooling. Despite the fact that most of SO[sub 2]-induced cooling takes place in the Northern Hemispheric continents, the model-predicted difference in the temperature response between the NH and the SH of [minus]0.2[degrees]C in 1980 is expected to remain about the same at least until 2060. This result is a combined effect of the much faster response of the continents that the oceans and the larger forcing due to CO[sub 2] than due to the SO[sub 2]. The climate response to a complete filtering of SO[sub 2] from the emission products in order to reduce acid rain is also examined. The result is a warming surge of 0.4[degrees]C in the first few years after the elimination of the SO[sub 2] emission. 64 refs., 7 figs., 3 tabs.« less
40 CFR 426.60 - Applicability; description of the automotive glass tempering subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... automotive glass tempering subcategory. 426.60 Section 426.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.60 Applicability; description of the automotive glass tempering...
40 CFR 426.60 - Applicability; description of the automotive glass tempering subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... automotive glass tempering subcategory. 426.60 Section 426.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Tempering Subcategory § 426.60 Applicability; description of the automotive glass tempering...
Spaceborne Applications of P Band Imaging Radars for Measuring Forest Biomass
NASA Technical Reports Server (NTRS)
Rignot, Eric J.; Zimmermann, Reiner; vanZyl, Jakob J.
1995-01-01
In three sites of boreal and temperate forests, P band HH, HV, and VV polarization data combined estimate total aboveground dry woody biomass within 12 to 27% of the values derived from allometric equations, depending on forest complexity. Biomass estimates derived from HV-polarization data only are 2 to 14% less accurate. When the radar operates at circular polarization, the errors exceed 100% over flooded forests, wet or damaged trees and sparse open tall forests because double-bounce reflections of the radar signals yield radar signatures similar to that of tall and massive forests. Circular polarizations, which minimize the effect of Faraday rotation in spaceborne applications, are therefore of limited use for measuring forest biomass. In the tropical rain forest of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 50 kg/sq m in old, undisturbed floodplain stands, the P band horizontal and vertical polarization data combined separate biomass classes in good agreement with forest inventory estimates. The worldwide need for large scale, updated, biomass estimates, achieved with a uniformly applied method, justifies a more in-depth exploration of multi-polarization long wavelength imaging radar applications for tropical forests inventories.
Postglacial vegetation history of Orcas Island, northwestern Washington
NASA Astrophysics Data System (ADS)
Leopold, Estella B.; Dunwiddie, Peter W.; Whitlock, Cathy; Nickmann, Rudy; Watts, William A.
2016-05-01
The revegetation of islands following retreat of Pleistocene glaciers is of great biogeographical interest. The San Juan Islands, Washington, feature regionally distinctive xerophytic plant communities, yet their vegetation history, as it relates to past climate and sea level, is poorly known. We describe a 13,700-year-old pollen record from Killebrew Lake Fen and compare the vegetation reconstruction with others from the region. The data suggest that the narrow channels surrounding Orcas Island were not a barrier to early postglacial immigration of plants. Between 13,700 and 12,000 cal yr BP, Pinus, Tsuga, Picea, Alnus viridis, and possibly Juniperus maritima were present in a mosaic that supported Bison antiquus and Megalonyx. The rise of Alnus rubra-type pollen and Pteridium spores at ca. 12,000 cal yr BP suggests a warming trend and probably more fires. Temperate conifer taxa, including Cupressaceae, Pseudotsuga, Tsuga heterophylla, and Abies, increased after 11,000 cal yr BP and especially in the last 7000 cal yr BP. After 6000 cal yr BP, Pseudotsuga and Cupressaceae dominated the vegetation. The last 1500 yr were the wettest period of the record. Due to its rain shadow location, Orcas Island experienced drier conditions than on the mainland during most of the postglacial period.
Influence of simulated acidic rain on root-infecting fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafer, S.R.
1983-01-01
Influences of the acidity of simulated rain on root-infecting fungi were investigated. Effects of rain acidity on Phytophthora cinnamomi were studied. Propagule densities in soil depended upon the acidity (pH 5.6, 4.0, 3.2, or 2.4) of simulated rain and soil depth (1, 2, 4, or 8 cm). Lowest densities occurred in 1 to 2 cm soil layers exposed to rains at pH 3.2 or 2.4. Sporangium production on radicles of Lupinus angustifolius in Lakeland sand moistened with rain solution at pH 2.4 was 47% less than production with solution at pH 5.6. A linear response to solution acidity was exhibited.more » Infection of L. angustifolius roots by zoospores demonstrated a linear response to acidity of rain. Approximately 44% fewer lesions occurred on roots of seedlings exposed to rain at pH 2.4 than on roots of seedlings exposed to rain at pH 5.6. The acidity (pH 5.6, 4.0, 3.2, or 2.4) of repeated rains had no consistent effect on disease progress among L. augustifolius seedlings planted in infested soil. The formation of ectomycorrhizae on Pinus taeda seedlings exhibited a quadratic response to acidity of repeated rains. The percentage of short roots that were ectomycorrhizal was greatest among seedlings exposed to rains at pH 2.4 and least among seedlings exposed to rains at pH 4.0. The density of Macrophomina phaseolina propagules in Lakeland sand exposed to repeated rains at pH 2.4 was an average of 20% less than densities associated with rains at pH 5.6, 4.0, or 3.2.« less
NASA Astrophysics Data System (ADS)
Oliver, Allison A.; Tank, Suzanne E.; Giesbrecht, Ian; Korver, Maartje C.; Floyd, William C.; Sanborn, Paul; Bulmer, Chuck; Lertzman, Ken P.
2017-08-01
The perhumid region of the coastal temperate rainforest (CTR) of Pacific North America is one of the wettest places on Earth and contains numerous small catchments that discharge freshwater and high concentrations of dissolved organic carbon (DOC) directly to the coastal ocean. However, empirical data on the flux and composition of DOC exported from these watersheds are scarce. We established monitoring stations at the outlets of seven catchments on Calvert and Hecate islands, British Columbia, which represent the rain-dominated hypermaritime region of the perhumid CTR. Over several years, we measured stream discharge, stream water DOC concentration, and stream water dissolved organic-matter (DOM) composition. Discharge and DOC concentrations were used to calculate DOC fluxes and yields, and DOM composition was characterized using absorbance and fluorescence spectroscopy with parallel factor analysis (PARAFAC). The areal estimate of annual DOC yield in water year 2015 was 33.3 Mg C km-2 yr-1, with individual watersheds ranging from an average of 24.1 to 37.7 Mg C km-2 yr-1. This represents some of the highest DOC yields to be measured at the coastal margin. We observed seasonality in the quantity and composition of exports, with the majority of DOC export occurring during the extended wet period (September-April). Stream flow from catchments reacted quickly to rain inputs, resulting in rapid export of relatively fresh, highly terrestrial-like DOM. DOC concentration and measures of DOM composition were related to stream discharge and stream temperature and correlated with watershed attributes, including the extent of lakes and wetlands, and the thickness of organic and mineral soil horizons. Our discovery of high DOC yields from these small catchments in the CTR is especially compelling as they deliver relatively fresh, highly terrestrial organic matter directly to the coastal ocean. Hypermaritime landscapes are common on the British Columbia coast, suggesting that this coastal margin may play an important role in the regional processing of carbon and in linking terrestrial carbon to marine ecosystems.
Characteristics of rain penetration through a gravity ventilator used for natural ventilation.
Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon
2008-01-01
Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.
Soil emission and uptake of carbonyl sulfide at a temperate mountain grassland
NASA Astrophysics Data System (ADS)
Kitz, Florian; Hammerle, Albin; Laterza, Tamara; Spielmann, Felix M.; Wohlfahrt, Georg
2016-04-01
Flux partitioning, i.e. inferring gross primary productivity (GPP) and ecosystem respiration from the measured net ecosystem carbon dioxide (CO2) exchange, is one uncertainty in modelling the carbon cycle and in times where robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive GPP by measuring carbonyl sulfide (COS), the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite to use COS as a proxy for canopy photosynthesis is a robust estimation of COS sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on properties like soil temperature and soil water content. The main aim of this study was to quantify the soil COS exchange and its drivers of a temperate mountain grassland in order to aid the use of COS as tracer for canopy CO2 and water vapor exchange. We conducted a field campaign with a Quantum cascade laser at a temperate mountain grassland to estimate the soil COS fluxes under ambient conditions and while simulating a drought. We used self-built fused silica (i.e. light-transparent) soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. Vegetation was removed within the chambers, therefor more radiation reached the soil surface compared to natural conditions. This might be the reason for highly positive fluxes during daytime more similar to agricultural study sites. To further investigate this large soil COS source we conducted within canopy concentration measurements near the soil surface and still recorded fluxes confirming the soil as a COS source during daytime. Results from the drought experiment suggested a strong impact of incoming radiation on soil COS fluxes followed by soil temperature, whereas the influence of soil water content (SWC) seemed to be negligible, even though the SWC dropped significantly due to rain exclusion. These results were bolstered by soil nighttime fluxes around zero and measurements with non-transparent chambers exhibiting much smaller fluxes compared to transparent ones. In the case that other ecosystems react in a similar fashion and biotic processes are negligible when parameterizing soil COS fluxes, we are a step closer to using COS as a proxy for GPP.
The Cretaceous-Tertiary extinction: A lethal mechanism involving anhydrite target rocks
Brett, R.
1992-01-01
The Chicxulub Crater, Yucatan, Mexico, is a leading contender as the site for the impact event that caused the Cretaceous-Tertiary (K-T) extinctions. A considerable thickness of anhydrite (CaSO4) forms part of the target rock. High temperatures resulting from impact would drive SO2 off from the anhydrite. Hundreds of billions of tonnes of sulfuric acid aerosol would thus enter the stratosphere and cause considerable cooling of the Earth's surface, decrease photosynthesis by orders of magnitude, deplete the ozone layer, and permit increased UV radiation to reach the Earth's surface. Finally, the aerosol would fall back to Earth as acid rain and devastate land and some lacustrine biota and near-surface marine creatures. The presence of anhydrite in the Chicxulub target rock may thus help explain the many extinctions observed at the K-T boundary. ?? 1992.
Biospheric Effects of the Chicxulub Impact and Their Role in the Cretaceous/Tertiary Mass Extinction
NASA Technical Reports Server (NTRS)
Pope, Kevin O.
1997-01-01
A comprehensive analysis of volatiles in the Chicxulub impact strongly supports the hypothesis that impact-generated sulfate aerosols caused over a decade of global cooling, acid rain, and disruption of ocean circulation, which contributed to the mass extinction at the Cretaceous/Tertiary (K/T) boundary. The crater size, meteoritic content of the K/T boundary clay, and impact models indicate that the Chicxulub crater was formed by a short period comet or an asteroid impact that released 0.7-3.4 x 10(exp 31) ergs of energy. Impact models and experiments combined with estimates of volatiles in the projectile and target rocks predict that over 200 gigatons (Gt) each of SO2 and water vapor, and over 500 Gt of CO2, were globally distributed in the stratosphere by the impact.
40 CFR 72.31 - Information requirements for Acid Rain permit applications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Information requirements for Acid Rain... (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Permit Applications § 72.31 Information requirements for Acid Rain permit applications. A complete Acid Rain permit application shall include the...
40 CFR 72.31 - Information requirements for Acid Rain permit applications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Information requirements for Acid Rain... (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Permit Applications § 72.31 Information requirements for Acid Rain permit applications. A complete Acid Rain permit application shall include the...
40 CFR 72.31 - Information requirements for Acid Rain permit applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Information requirements for Acid Rain... (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Permit Applications § 72.31 Information requirements for Acid Rain permit applications. A complete Acid Rain permit application shall include the...
40 CFR 72.31 - Information requirements for Acid Rain permit applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Information requirements for Acid Rain... (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Permit Applications § 72.31 Information requirements for Acid Rain permit applications. A complete Acid Rain permit application shall include the...
40 CFR 72.31 - Information requirements for Acid Rain permit applications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Information requirements for Acid Rain... (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Permit Applications § 72.31 Information requirements for Acid Rain permit applications. A complete Acid Rain permit application shall include the...
Effects of simulated rain acidified with sulfuric acid on host-parasite interactions
D. S. Shriner
1976-01-01
Wind-blown rain, rain splash, and films of free moisture play important roles in the epidemiology of many plant diseases. The effects of simulated rain acidified with sulfuric acid were studied on several host-parasite systems. Plants were exposed, in greenhouse or field, to simulated rain of pH 3.2 ? 0.1 or pH 6.0 ? 0.2. Simulated "rain" of pH 3.2 resulted...
Inter-comparison of automatic rain gauges
NASA Technical Reports Server (NTRS)
Nystuen, Jeffrey A.
1994-01-01
The Ocean Acoustics Division (OAD) of the Atlantic Oceanographic and Meteorological Laboratory (AOML), in cooperation with NOAA/NESDIS and NASA, has deployed six rain gauges for calibration and intercomparison purposes. These instruments include: (1) a weighing rain gauge, (2) a RM Young Model 50202 capacitance rain gauge, (3) a ScTI ORG-705 (long path) optical rain gauge, (4) a ScTI ORG-105 (mini-ORG) optical rain gauge, (5) a Belfort Model 382 tipping bucket rain gauge, and (6) a Distromet RD-69 disdrometer. The system has been running continuously since July 1993. During this time period, roughly 150 events with maximum rainfall rate over 10 mm/hr and 25 events with maximum rainfall rates over 100 mm/hr have been recorded. All rain gauge types have performed well, with intercorrelations 0.9 or higher. However, limitations for each type of rain gauge have been observed.
[Characteristics and the impact factors of acid rain in Fuzhou and Xiamen 1992-2012].
Zheng, Qiu-Ping; Wang, Hong; Chen, Bin-Bin; Sui, Ping; Lin, Wen
2014-10-01
Based on the observed acid rain data, synoptic situations and mass concentrations of atmospheric pollutants data from 1992 to 2012, the temporal variation characteristics and the impact factors of acid rain were analyzed in Fuzhou and Xiamen. The results showed that acid rain and non-acid rain accounted for 38.1% and 61.9% respectively in Fuzhou, 40.6% and 59.4% respectively in Xiamen. The annual average pH was 4.1-5.5 in Fuzhou. Acid rain pollution alleviated after 2007 in Fuzhou, and alleviated after 2006 in Xiamen. Acid rain was more serious in winter and spring than in summer and autumn. Precipitation intensity could affect the acidity of rain. Acid rain was observed more serious in southeast, southwest, west and northwest wind in Fuzhou, and more serious in northeast, southwest, west and northwest wind in Xiamen. Acid rain was most severe under the condition of transformed surface cold high, while most light under the conditions of typhoon (intertropical convergence zone) and outside of typhoon (intertropical convergence zone). There was a negative correlation between the mass concentrations of atmospheric pollutants, such as SO2, NO2, PM10, and the pH of rain in Fuzhou.
Borup, Morten; Grum, Morten; Mikkelsen, Peter Steen
2013-01-01
When an online runoff model is updated from system measurements, the requirements of the precipitation input change. Using rain gauge data as precipitation input there will be a displacement between the time when the rain hits the gauge and the time where the rain hits the actual catchment, due to the time it takes for the rain cell to travel from the rain gauge to the catchment. Since this time displacement is not present for system measurements the data assimilation scheme might already have updated the model to include the impact from the particular rain cell when the rain data is forced upon the model, which therefore will end up including the same rain twice in the model run. This paper compares forecast accuracy of updated models when using time displaced rain input to that of rain input with constant biases. This is done using a simple time-area model and historic rain series that are either displaced in time or affected with a bias. The results show that for a 10 minute forecast, time displacements of 5 and 10 minutes compare to biases of 60 and 100%, respectively, independent of the catchments time of concentration.
A comparative assessment of R. M. Young and tipping bucket rain gauges
NASA Technical Reports Server (NTRS)
Goldhirsh, Julius; Gebo, Norman E.
1992-01-01
Rain rates as derived from standard tipping bucket rain gauges have variable integration times corresponding to the interval between bucket tips. For example, the integration time for the Weathertronics rain gauge is given by delta(T) = 15.24/R (min), where R is the rain rate expressed in mm/h and delta(T) is the time between tips expressed in minutes. It is apparent that a rain rate of 1 mm/h has an integration time in excess of 15 minutes. Rain rates larger than 15.24 mm/h will have integration times smaller than 1 minute. The integration time is dictated by the time it takes to fill a small tipping bucket where each tip gives rise to 0.254 mm of rainfall. Hence, a uniform rain rate of 1 mm/h over a 15 minute period will give rise to the same rain rate as 0 mm/h rainfall over the first 14 minutes and 15 mm/h between 14 to 15 minutes from the reference tip. Hence, the rain intensity fluctuations may not be captured with the tipping bucket rain gauge for highly variable rates encompassing lower and higher values over a given integration time. The objective of this effort is to provide an assessment of the features of the R. M. Young capacitive gauge and to compare these features with those of the standard tipping bucket rain gauge. A number of rain rate-time series derived from measurements with approximately co-located gauges are examined.
Ginkgo biloba's footprint of dynamic Pleistocene history dates back only 390,000 years ago.
Hohmann, Nora; Wolf, Eva M; Rigault, Philippe; Zhou, Wenbin; Kiefer, Markus; Zhao, Yunpeng; Fu, Cheng-Xin; Koch, Marcus A
2018-04-27
At the end of the Pliocene and the beginning of Pleistocene glaciation and deglaciation cycles Ginkgo biloba went extinct all over the world, and only few populations remained in China in relict areas serving as sanctuary for Tertiary relict trees. Yet the status of these regions as refuge areas with naturally existing populations has been proven not earlier than one decade ago. Herein we elaborated the hypothesis that during the Pleistocene cooling periods G. biloba expanded its distribution range in China repeatedly. Whole plastid genomes were sequenced, assembled and annotated, and sequence data was analyzed in a phylogenetic framework of the entire gymnosperms to establish a robust spatio-temporal framework for gymnosperms and in particular for G. biloba Pleistocene evolutionary history. Using a phylogenetic approach, we identified that Ginkgoatae stem group age is about 325 million years, whereas crown group radiation of extant Ginkgo started not earlier than 390,000 years ago. During repeated warming phases, Gingko populations were separated and isolated by contraction of distribution range and retreated into mountainous regions serving as refuge for warm-temperate deciduous forests. Diversification and phylogenetic splits correlate with the onset of cooling phases when Ginkgo expanded its distribution range and gene pools merged. Analysis of whole plastid genome sequence data representing the entire spatio-temporal genetic variation of wild extant Ginkgo populations revealed the deepest temporal footprint dating back to approximately 390,000 years ago. Present-day directional West-East admixture of genetic diversity is shown to be the result of pronounced effects of the last cooling period. Our evolutionary framework will serve as a conceptual roadmap for forthcoming genomic sequence data, which can then provide deep insights into the demographic history of Ginkgo.
May common model biases reduce CMIP5's ability to simulate the recent Pacific La Niña-like cooling?
NASA Astrophysics Data System (ADS)
Luo, Jing-Jia; Wang, Gang; Dommenget, Dietmar
2018-02-01
Over the recent three decades sea surface temperate (SST) in the eastern equatorial Pacific has decreased, which helps reduce the rate of global warming. However, most CMIP5 model simulations with historical radiative forcing do not reproduce this Pacific La Niña-like cooling. Based on the assumption of "perfect" models, previous studies have suggested that errors in simulated internal climate variations and/or external radiative forcing may cause the discrepancy between the multi-model simulations and the observation. But the exact causes remain unclear. Recent studies have suggested that observed SST warming in the other two ocean basins in past decades and the thermostat mechanism in the Pacific in response to increased radiative forcing may also play an important role in driving this La Niña-like cooling. Here, we investigate an alternative hypothesis that common biases of current state-of-the-art climate models may deteriorate the models' ability and can also contribute to this multi-model simulations-observation discrepancy. Our results suggest that underestimated inter-basin warming contrast across the three tropical oceans, overestimated surface net heat flux and underestimated local SST-cloud negative feedback in the equatorial Pacific may favor an El Niño-like warming bias in the models. Effects of the three common model biases do not cancel one another and jointly explain 50% of the total variance of the discrepancies between the observation and individual models' ensemble mean simulations of the Pacific SST trend. Further efforts on reducing common model biases could help improve simulations of the externally forced climate trends and the multi-decadal climate fluctuations.
NASA Astrophysics Data System (ADS)
James, Noel P.; Bone, Yvonne
2017-07-01
Much of western Eyre Peninsula adjacent to the Great Australian Bight is veneered with siliceous and calcareous Quaternary aeolian dunes. The lengthy coastline adjacent to this cool-water carbonate factory is a series of Precambrian crystalline bedrock-Pleistocene aeolianite headlands that separate many long, sweeping, Holocene carbonate sand beaches and their backbeach dunes. Incessant SW waves, rolling swells, and onshore winds have resulted in > 350 km of semi-continuous calcareous strandline aeolian sands. The sediment is composed of quartz grains, Cenozoic limestone clasts, and relict particles (extraclasts) but the deposits are overwhelmingly dominated by contemporaneous biofragments from offshore. These skeletal grains are, in order of relative abundance, molluscs > benthic foraminifers > coralline algae > bryozoans, and echinoids. Benthic foraminifers are mostly small (especially rotaliids and miliolids) but the large relict symbiont-bearing protistMarginopora vertebralis, which grew in the latter stages of MIS 2, is present locally. There are no significant onshore-offshore trends within individual beach-dune complexes. There is, however, a prominent spatial partitioning, with extraclast-rich sediments in the north and biofragment-rich deposits in the south. This areal trend is interpreted to result from more active seafloor carbonate production in the south, an area of conspicuous seasonal nutrient upwelling and profound nektic and benthic biological productivity. The overall system is strikingly similar to Holocene and Pleistocene aeolianites along the inboard margin of the Lacepede Shelf and Bonney Coast some 500 km to the southeast, implying a potential universality to the nature of cool-water carbonate aeolianite deposition. The composition of these cool-water aeolianites is more multifaceted than those formed on warm-water, shallow flat-topped platforms, largely because of the comparatively deep, temperate shelf, the high-energy wave and swell climate impacting the shoreline, and thus the different geohistory during sea level change.
Rockweit, Jeremy T.; Franklin, Alan B.; Bakken, George S.; Gutiérrez, R. J.
2012-01-01
Many bird species do not make their own nests; therefore, selection of existing sites that provide adequate microclimates is critical. This is particularly true for owls in north temperate climates that often nest early in the year when inclement weather is common. Spotted owls use three main types of nest structures, each of which are structurally distinct and may provide varying levels of protection to the eggs or young. We tested the hypothesis that spotted owl nest configuration influences nest microclimate using both experimental and observational data. We used a wind tunnel to estimate the convective heat transfer coefficient (hc) of eggs in 25 potential nest configurations that mimicked 2 nest types (top-cavity and platform nests), at 3 different wind speeds. We then used the estimates of hc in a biophysical heat transfer model to estimate how long it would take unattended eggs to cool from incubation temperature (∼36°C) to physiological zero temperature (PZT; ∼26°C) under natural environmental conditions. Our results indicated that the structural configuration of nests influences the cooling time of the eggs inside those nests, and hence, influences the nest microclimate. Estimates of time to PZT ranged from 10.6 minutes to 33.3 minutes. Nest configurations that were most similar to platform nests always had the fastest egg cooling times, suggesting that platform nests were the least protective of those nests we tested. Our field data coupled with our experimental results suggested that nest choice is important for the reproductive success of owls during years of inclement weather or in regions characterized by inclement weather during the nesting season. PMID:22859993
Rain pH estimation based on the particulate matter pollutants and wet deposition study.
Singh, Shweta; Elumalai, Suresh Pandian; Pal, Asim Kumar
2016-09-01
In forecasting of rain pH, the changes caused by particulate matter (PM) are generally neglected. In regions of high PM concentration like Dhanbad, the role of PM in deciding the rain pH becomes important. Present work takes into account theoretical prediction of rain pH by two methods. First method considers only acid causing gases (ACG) like CO2, SO2 and NOx in pH estimation, whereas, second method additionally accounts for effect of PM (ACG-PM). In order to predict the rain pH, site specific deposited dust that represents local PM was studied experimentally for its impact on pH of neutral water. After incorporation of PM correction factor, it was found that, rain pH values estimated were more representative of the observed ones. Fractional bias (FB) for the ACG-PM method reduced to values of the order of 10(-2) from those with order of 10(-1) for the ACG method. The study confirms neutralization of rain acidity by PM. On account of this, rain pH was found in the slightly acidic to near neutral range, despite of the high sulfate flux found in rain water. Although, the safer range of rain pH blurs the severity of acid rain from the picture, yet huge flux of acidic and other ions get transferred to water bodies, soil and ultimately to the ground water system. Simple use of rain pH for rain water quality fails to address the issues of its increased ionic composition due to the interfering pollutants and thus undermines severity of pollutants transferred from air to rain water and then to water bodies and soil. Copyright © 2016 Elsevier B.V. All rights reserved.