Surface tension confined liquid cryogen cooler
NASA Technical Reports Server (NTRS)
Castles, Stephen H. (Inventor); Schein, Michael E. (Inventor)
1989-01-01
A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.
Lu, Zhou; Hebert, Vincent R; Miller, Glenn C
2017-02-01
Temperature is a major environmental factor influencing land surface volatilization at the time of agricultural field fumigation. Cooler fumigation soil temperatures relevant to Pacific Northwest (PNW) application practices with metam sodium/potassium should result in appreciably reduced methyl isothiocyanate (MITC) emission rates, thus minimizing off target movement and bystander inhalation exposure. Herein, a series of laboratory controlled flow-through soil column assessments were performed evaluating MITC emissions over the range of cooler temperatures (2-13°C). Assessments were also conducted at the maximum allowed label application temperature of 32°C. All assessments were conducted at registration label-specified field moisture capacity, and no more than 50% cumulative MITC loss was observed over the 2-day post-fumigation timeframe. Three-fold reductions in MITC peak fluxes at cooler PNW application temperatures were observed compared to the label maximum temperature. This study supports current EPA metam sodium/potassium label language that indicates surface fumigations during warmer soil conditions should be discouraged.
NASA Astrophysics Data System (ADS)
Yılmaz, Erkan
2016-04-01
In this study, the seasonal variation of the surface temperature of Ankara urban area and its enviroment have been analyzed by using Landsat 7 image. The Landsat 7 images of each month from 2007 to 2011 have been used to analyze the annually changes of the surface temperature. The land cover of the research area was defined with supervised classification method on the basis of the satellite image belonging to 2008 July. After determining the surface temperatures from 6-1 bands of satellite images, the monthly mean surface temperatures were calculated for land cover classification for the period between 2007 and 2011. According to the results obtained, the surface temperatures are high in summer and low in winter from the airtemperatures. all satellite images were taken at 10:00 am, it is found that urban areas are cooler than rural areas at 10:00 am. Regarding the land cover classification, the water surfaces are the coolest surfaces during the whole year.The warmest areas are the grasslands and dry farming areas. While the parks are warmer than the urban areas during the winter, during the summer they are cooler than artificial land covers. The urban areas with higher building density are the cooler surfaces after water bodies.
The effect of engine operating conditions on exhaust gas recirculation cooler fouling
Lance, Michael J.; Mills, Zachary G.; Seylar, Joshua C.; ...
2018-05-17
Exhaust gas recirculation (EGR) cooler fouling occurs when particulate matter (PM) and hydrocarbons (HC) in diesel exhaust form a deposit on the walls of the EGR cooler through thermophoresis and condensation. To better understand the mechanisms controlling deposit formation and removal and how operating conditions can affect cooler performance, 20 identical tube-in-shell EGR coolers with sinusoidal fins were fouled using a 5-factor, 3-level experimental design. The deposit thickness was measured using two methods: (1) epoxy-mounting and polishing cooler cross-sections and comparing deposit thicknesses on the primary (outer tube) to the secondary (fins) heat transfer surfaces, and (2) milling tube sectionsmore » such that the surface of a fin could be observed and measuring the deposit thickness across the fin using a 3D profilometer. Near the cooler inlet, high inlet gas temperatures reduced deposit thickness by promoting mud-cracking and spallation. Near the middle of the cooler, the flow rate had the largest impact on the deposit thickness through the effect on residence time of the PM. The HC concentration along with flow rate had the largest effects near the cooler outlet where the lower temperatures allows for more HC condensation. Furthermore, these insights into how engine operating conditions influence the development of fouling layers in EGR coolers learned through this study will aid in the development of more fouling resistant coolers in the future.« less
The effect of engine operating conditions on exhaust gas recirculation cooler fouling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lance, Michael J.; Mills, Zachary G.; Seylar, Joshua C.
Exhaust gas recirculation (EGR) cooler fouling occurs when particulate matter (PM) and hydrocarbons (HC) in diesel exhaust form a deposit on the walls of the EGR cooler through thermophoresis and condensation. To better understand the mechanisms controlling deposit formation and removal and how operating conditions can affect cooler performance, 20 identical tube-in-shell EGR coolers with sinusoidal fins were fouled using a 5-factor, 3-level experimental design. The deposit thickness was measured using two methods: (1) epoxy-mounting and polishing cooler cross-sections and comparing deposit thicknesses on the primary (outer tube) to the secondary (fins) heat transfer surfaces, and (2) milling tube sectionsmore » such that the surface of a fin could be observed and measuring the deposit thickness across the fin using a 3D profilometer. Near the cooler inlet, high inlet gas temperatures reduced deposit thickness by promoting mud-cracking and spallation. Near the middle of the cooler, the flow rate had the largest impact on the deposit thickness through the effect on residence time of the PM. The HC concentration along with flow rate had the largest effects near the cooler outlet where the lower temperatures allows for more HC condensation. Furthermore, these insights into how engine operating conditions influence the development of fouling layers in EGR coolers learned through this study will aid in the development of more fouling resistant coolers in the future.« less
Development of a space qualified Surface Tension Confined Liquid Cryogen Cooler (STCLCC)
NASA Technical Reports Server (NTRS)
Castles, Stephen H.; Schein, Michael E.
1988-01-01
The Surface Tension Confined Liquid Cryogen Cooler (STCLCC), a new type of cryogenic cooler which is being developed by the NASA-GSFC for spaceflight payloads, is described. The STCLCC will be capable of maintaining instrumentation within the temperature range of 10-120 K and will allow liquid cryogens to be flown in space without the risk of liquid being entrained in the vent gas. A low-density open-cell material in the STCLCC acts as a 'sponge', with the surface tension trapping the liquid cryogen within its pores and keeping the liquid away from the cooler's vent during launch, zero-g operations, and landing. It is emphasized that the STCLCC concept is amenable to a wide variety of applications, whenever a passive low-cost cooler is required or when the on-orbit service of a cooler would increase a mission's lifetime.
Multi-stage circulating fluidized bed syngas cooling
Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang
2016-10-11
A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.
Movement of moisture in refrigerated cheese samples transferred to room temperature.
Emmons, D B; Bradley, R L; Campbell, C; Sauvé, J P
2001-01-01
When cheese samples refrigerated at 4 degrees C in 120 mL plastic tubs were transferred to room temperature at 23 degrees C, moisture began to move from the warmer surface to the cooler interior; the difference after 1 h was 0.2-0.4%. Others had observed that moisture moved from the interior of warmer blocks of cheese to the cooler surface during cooling at the end of cheese manufacture. In loosely packed cheese prepared for analysis, part of the moisture movement may have been due to evaporation from the warmer surface and condensation on the cooler cheese. It is recommended that cheese be prepared for analysis immediately before weighing. Cheese samples that have been refrigerated, as in interlaboratory trials, should also be remixed or prepared again.
Radiant coolers - Theory, flight histories, design comparisons and future applications
NASA Technical Reports Server (NTRS)
Donohoe, M. J.; Sherman, A.; Hickman, D. E.
1975-01-01
Radiant coolers have been developed for application to the cooling of infrared detectors aboard NASA earth observation systems and as part of the Defense Meteorological Satellite Program. The prime design constraints for these coolers are the location of the cooler aboard the satellite and the satellite orbit. Flight data from several coolers indicates that, in general, design temperatures are achieved. However, potential problems relative to the contamination of cold surfaces are also revealed by the data. A comparison among the various cooler designs and flight performances indicates design improvements that can minimize the contamination problem in the future.
Reassessment of ice-age cooling of the tropical ocean and atmosphere
Hostetler, S.W.; Mix, A.C.
1999-01-01
The CLIMAP project's reconstruction of past sea surface temperature inferred limited ice-age cooling in the tropical oceans. This conclusion has been controversial, however, because of the greater cooling indicated by other terrestrial and ocean proxy data. A new faunal sea surface temperature reconstruction, calibrated using the variation of foraminiferal species through time, better represents ice-age faunal assemblages and so reveals greater cooling than CLIMAP in the equatorial current systems of the eastern Pacific and tropical Atlantic oceans. Here we explore the climatic implications of this revised sea surface temperature field for the Last Glacial Maximum using an atmospheric general circulation model. Relative to model results obtained using CLIMAP sea surface temperatures, the cooler equatorial oceans modify seasonal air temperatures by 1-2??C or more across parts of South America, Africa and southeast Asia and cause attendant changes in regional moisture patterns. In our simulation of the Last Glacial Maximum, the Amazon lowlands, for example, are cooler and drier, whereas the Andean highlands are cooler and wetter than the control simulation. Our results may help to resolve some of the apparent disagreements between oceanic and continental proxy climate data. Moreover, they suggest a wind-related mechanism for enhancing the export of water vapour from the Atlantic to the Indo-Pacific oceans, which may link variations in deep-water production and high-latitude climate changes to equatorial sea surface temperatures.
Refractory lining system for high wear area of high temperature reaction vessel
Hubble, David H.; Ulrich, Klaus H.
1998-01-01
A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag.
Clinical relevance of pre-ovulatory follicular temperature in heat-stressed lactating dairy cows.
López-Gatius, F; Hunter, Rhf
2017-06-01
Temperature gradients in female reproductive tissues seem to influence the success of key processes such as ovulation and fertilization. The objective of this study was to investigate whether pre-ovulatory follicles are cooler than neighbouring uterine tissue and deep rectal temperatures in lactating dairy cows under heat stress conditions. Temperatures within the pre-ovulatory follicle, on the uterine adjacent surface and 20 cm deep within rectum, were measured using fine thermistor probes within 45 min after sunrise (dawn). Cows were selected from synchronized groups for fixed-time insemination during the warm period of the year. Five cows under direct sun radiation and 11 cows in the shade were included in the study. None of the cows in the sun area ovulated within 24 hr, whereas 10 of the 11 cows in the sun area ovulated. Four of the 10 ovulating cows became pregnant. In the ovulating cows, follicular temperatures were 0.74 and 1.54°C significantly cooler than uterine surface and rectal temperatures, respectively, whereas temperatures in the uterine area were 0.80°C significantly cooler than rectal temperatures. No significant differences among temperatures were found in non-ovulating cows. Follicular size was similar for ovulating and non-ovulating cows. Environmental temperatures in the shade area were 6.4°C significantly lower than those in the sun area. Results of this study indicate that pre-ovulatory follicles are cooler than neighbouring uterine tissue and deep rectal temperatures and those temperature gradients were not found in cows suffering ovulation failure. © 2017 Blackwell Verlag GmbH.
Nelson, J. Stuart; Anvari, Bahman; Tanenbaum, B. Samuel; Milner, Thomas E.
1999-01-01
Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.
Refractory lining system for high wear area of high temperature reaction vessel
Hubble, D.H.; Ulrich, K.H.
1998-04-21
A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag. 10 figs.
Refractory lining system for high wear area of high temperature reaction vessel
Hubble, D.H.; Ulrich, K.H.
1998-09-22
A refractory-lined high temperature reaction vessel comprises a refractory ring lining constructed of refractory brick, a cooler, and a heat transfer medium disposed between the refractory ring lining and the cooler. The refractory brick comprises magnesia (MgO) and graphite. The heat transfer medium contacts the refractory brick and a cooling surface of the cooler, and is composed of a material that accommodates relative movement between the refractory brick and the cooler. The brick is manufactured such that the graphite has an orientation providing a high thermal conductivity in the lengthwise direction through the brick that is higher than the thermal conductivity in directions perpendicular to the lengthwise direction. The graphite preferably is flake graphite, in the range of about 10 to 20 wt %, and has a size distribution selected to provide maximum brick density. The reaction vessel may be used for performing a reaction process including the steps of forming a layer of slag on a melt in the vessel, the slag having a softening point temperature range, and forming a protective frozen layer of slag on the interior-facing surface of the refractory lining in at least a portion of a zone where the surface contacts the layer of slag, the protective frozen layer being maintained at or about the softening point of the slag. 10 figs.
Temperature sequence of eggs from oviposition through distribution: processing--part 2.
Koelkebeck, K W; Patterson, P H; Anderson, K E; Darre, M J; Carey, J B; Ahn, D U; Ernst, R A; Kuney, D R; Jones, D
2008-06-01
The Egg Safety Action Plan released in 1999 raised questions concerning egg temperature used in the risk assessment model. Therefore, a national study was initiated to determine the internal and external temperature sequence of eggs from oviposition through distribution. Researchers gathered data from commercial egg production, shell egg processing, and distribution facilities. The experimental design was a mixed model with 2 random effects for season and geographic region and a fixed effect for operation type (inline or offline). For this report, internal and external egg temperature data were recorded at specific points during shell egg processing in the winter and summer months. In addition, internal egg temperatures were recorded in pre- and postshell egg processing cooler areas. There was a significant season x geographic region interaction (P < 0.05) for both surface and internal temperatures. Egg temperatures were lower in the winter vs. summer, but eggs gained in temperature from the accumulator to the postshell egg processing cooler. During shell egg processing, summer egg surface and internal temperatures were greater (P < 0.05) than during the winter. When examining the effect of shell egg processing time and conditions, it was found that 2.4 and 3.8 degrees C were added to egg surface temperatures, and 3.3 and 6.0 degrees C were added to internal temperatures in the summer and winter, respectively. Internal egg temperatures were higher (P < 0.05) in the preshell egg processing cooler area during the summer vs. winter, and internal egg temperatures were higher (P < 0.05) in the summer when eggs were (3/4) cool (temperature change required to meet USDA-Agricultural Marketing Service storage regulation of 7.2 degrees C) in the postshell egg processing area. However, the cooling rate was not different (P > 0.05) for eggs in the postshell egg processing cooler area in the summer vs. winter. Therefore, these data suggest that season of year and geographic location can affect the temperature of eggs during shell egg processing and should be a component in future assessments of egg safety.
Experimental investigation on the miniature mixed refrigerant cooler driven by a mini-compressor
NASA Astrophysics Data System (ADS)
Chen, Gaofei; Gong, Maoqiong; Wu, Yinong
2018-05-01
Three miniature Joule-Thomson cryogenic coolers and a testing set up were built to investigate the cooling performance in this work. Shell-and-tube heat exchanger and plate fin heat exchangers with rectangular micro channels were designed to achieve high specific surface area. The main processing technology of micro mixed refrigerant cooler (MMRC) was described. The design and fabrication processing of the plate fin heat exchangers were also described. The new developed micro plate-fin type heat exchanger shows high compactness with the specific heat surface larger than 1.0x104 m2/m3. The results of experimental investigations on miniature mixed refrigerant J-T cryogenic coolers driven by a Mini-Compressor were discussed. The performance evaluation and comparison of the three coolers was made to find out the features for each type of cooler. Expressions of refrigeration coefficient and exergy efficiency were pointed out. No-load temperature of about 112 K, and the cooling power of 4.0W at 118K with the input power of 120W is achieved. The exergy efficiency of the SJTC is 5.14%.
Most scenario‐based climate modeling studies indicate that replacing temperate forest with cropland will promote cooling by reducing surface air temperatures. These results are inconsistent with fieldbased microclimate studies that have found that forests are cooler, wetter, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-13
... temperatures; a higher fraction for warmer ocean temperatures and a lower fraction for cooler temperatures. Warmer ocean temperatures favor the production of Pacific sardine. For 2010, the fraction used was 15 percent, based on three seasons of sea surface temperature at Scripps Pier, California. Classification...
Jericho, K W; O'Laney, G; Kozub, G C
1998-10-01
To enhance food safety and keeping quality, beef carcasses are cooled immediately after leaving the slaughter floor. Within hazard analysis and critical control point (HACCP) systems, this cooling process needs to be monitored by the industry and verified by regulatory agencies. This study assessed the usefulness of the temperature-function integration technique (TFIT) for the verification of the hygienic adequacy of two cooling processes for beef carcasses at one abattoir. The cooling process passes carcasses through a spray cooler for at least 17 h and a holding cooler for at least 7 h. The TFIT is faster and cheaper than culture methods. For spray cooler 1, the Escherichia coli generations predicted by TFIT for carcass surfaces (pelvic and shank sites) were compared to estimated E. coli counts from 120 surface excision samples (rump, brisket, and sacrum; 5 by 5 by 0.2 cm) before and after cooling. Counts of aerobic bacteria, coliforms, and E. coli were decreased after spray cooler 1 (P < or = 0.001). The number of E. coli generations (with lag) at the pelvic site calculated by TFIT averaged 0.85 +/- 0.19 and 0.15 +/- 0.04 after emerging from spray coolers 1 and 2, respectively. The TFIT (with lag) was considered convenient and appropriate for the inspection service to verify HACCP systems for carcass cooling processes.
High resolution windows into early Holocene climate: Sr/(Ca) coral records from the Huon Peninsula
NASA Astrophysics Data System (ADS)
McCulloch, Malcolm; Mortimer, Graham; Esat, Tezer; Xianhua, Li; Pillans, Brad; Chappell, John
1996-02-01
High-precision measurements of Sr/Ca ratios are reported for Porites corals from the uplifted Holocene coral terraces at Huon Peninsula, Papua New Guinea. The early Holocene Porites have UTh mass spectrometric ages of 8920 ± 60 yr and 7370 ± 50 yr, and δ 234U(t) values of 145 ± 2, similar to modern seawater. The Sr/Ca coral records provide 5-6 year high resolution (near weekly) time windows into early Holocene sea surface temperatures. Seasonal temperature fluctuations are generally in the range of ± 1°C, with occasional excursions of ± 2°C, which may indicate the more frequent recurrence of very strong ENSO (El Niño-Southern Oscillation) events. Mean annual Sr/Ca temperatures of 24.2 ± 1.1°C and 22.9 ± 0.8°C have been obtained, which are ˜ 2-3°C cooler than that exhibited by a modern Porites. These results indicate that, during the early Holocene, the equatorial western Pacific ocean was at least several degrees cooler than present-day temperatures. This is consistent with late glacial coral records from the Caribbean that indicate lower (˜ 6°C) sea surface temperatures for the equatorial oceans. The Huon Peninsula corals also indicate that SSTs were several degrees cooler than those in the Caribbean during the early Holocene. Thus, although the northern hemisphere summer radiation maximum occurred at ˜ 10 ka, there appears to have been a significant lag in the response of the equatorial western Pacific ocean to this warming. Cooler early Holocene sea surface temperatures in the western Pacific may have been due to changing patterns of ocean-atmosphere circulation, resulting from the exposure of large areas of continental shelf in the southeast Asia region, a consequence of lower glacial sea levels. It is likely that ocean temperatures in the Huon Peninsula were influenced by the opening at ˜ 7 ka of the Torres Strait, that now separates New Guinea from the Australian mainland.
Code of Federal Regulations, 2012 CFR
2012-01-01
...—Temperature Conditions Internal Temperatures (cooled space within the envelope) Cooler Dry Bulb Temperature 35...) Freezer and Cooler Dry Bulb Temperatures 75 °F. Subfloor Temperatures Freezer and Cooler Dry Bulb...,int,dp = dry-bulb air temperature internal to the cooler or freezer, °F, as prescribed in Table A.1...
Code of Federal Regulations, 2013 CFR
2013-01-01
...—Temperature Conditions Internal Temperatures (cooled space within the envelope) Cooler Dry Bulb Temperature 35...) Freezer and Cooler Dry Bulb Temperatures 75 °F. Subfloor Temperatures Freezer and Cooler Dry Bulb...,int,dp = dry-bulb air temperature internal to the cooler or freezer, °F, as prescribed in Table A.1...
Effects of polyethylene film wrap on cooler shrink and the microbial status of beef carcasses.
Sampaio, Guilherme S L; Pflanzer-Júnior, Sérgio B; Roça, Roberto de O; Casagrande, Leandro; Bedeschi, Elaine A; Padovani, Carlos R; Miguel, Giulianna Z; Santos, Carolina T; Girão, Lucio V C; Miranda, Zander B; Franco, Robson M
2015-02-01
The present study evaluated the use of polyethylene film wrapping of beef half carcasses and its effects on cooler shrink, cooling characteristics and microbial status of the half carcasses. Film wrapping reduced cooler shrink by 55.2%, 43.1%, 36.0% and 30% after 24, 48, 72 and 96 h of cooling, respectively, compared to the unwrapped half carcasses, whereas the surface water activity showed no significant differences among the time periods. The wrapped half carcasses had a lower cooling rate and higher surface and internal temperatures. The highest values of the aerobic mesophiles, Staphylococcus aureus and Enterobacteriaceae were found in the half carcasses wrapped in film. No significant differences were found in the values of Escherichia coli. The polyethylene film was effective in reducing cooler shrink; however, it caused a delay in cooling, thereby enabling greater microbial occurrences and counts and impairing the hygienic and sanitary conditions of the carcasses, which may be an impediment to the practical application of this technology.
Calculations of air cooler for new subsonic wind tunnel
NASA Astrophysics Data System (ADS)
Rtishcheva, A. S.
2017-10-01
As part of the component development of TsAGI’s new subsonic wind tunnel where the air flow velocity in the closed test section is up to 160 m/sec hydraulic and thermal characteristics of air cooler are calculated. The air cooler is one of the most important components due to its highest hydraulic resistance in the whole wind tunnel design. It is important to minimize its hydraulic resistance to ensure the energy efficiency of wind tunnel fans and the cost-cutting of tests. On the other hand the air cooler is to assure the efficient cooling of air flow in such a manner as to maintain the temperature below 40 °C for seamless operation of measuring equipment. Therefore the relevance of this project is driven by the need to develop the air cooler that would demonstrate low hydraulic resistance of air and high thermal effectiveness of heat exchanging surfaces; insofar as the cooling section must be given up per unit time with the amount of heat Q=30 MW according to preliminary evaluations. On basis of calculation research some variants of air cooler designs are proposed including elliptical tubes, round tubes, and lateral plate-like fins. These designs differ by the number of tubes and plates, geometrical characteristics and the material of finned surfaces (aluminium or cooper). Due to the choice of component configurations a high thermal effectiveness is achieved for finned surfaces. The obtained results form the basis of R&D support in designing the new subsonic wind tunnel.
Performance Testing of a Lightweight, High Efficiency 95 K Cryocooler
NASA Technical Reports Server (NTRS)
Salerno, Lou; Kittel, P.; Kashani, A.; Helvensteijn, B. P. M.; Tward, E.; Arnold, Jim A. (Technical Monitor)
2001-01-01
Performance data are presented for a flight-like, lightweight, high efficiency pulse tube cryogenic cooler. The cooler has a mass of less than 4.0 kg, and an efficiency of 12 W/W, which is 18% of Carnot at 95 K, nearly double the efficiency of previous cooler designs, The mass of the cooler has been reduced by approximately a factor of three. The design point cooling power is 10 watts at 95 K at a heat rejection temperature of 300 K. The no-load temperature is 45 K. The compressor is built by Hymatic Engineering, UK, and is of a horizontally opposed piston design using flexure bearings. The vertical pulse tube is built by TRW with the heat exchanger or cold block located approximately mid-way along the tube. The final assembly and integration is also performed by TRW. The inertance tube and dead volume are contained within one of the compressor end caps. The cooler was developed by TRW under a joint NASA-DOD program, and has a goal of 10 yr operating lifetime. Potential NASA applications will focus on using coolers of this type in Zero boil off (ZBO) cryogen storage topologies for next generation launch vehicles. Zero boil off systems will feature significant reductions in tank size and Initial Mass to Low Earth Orbit (IMLEO), thereby significantly reducing the cost of access to space, and enabling future missions. The coolers can be used directly in liquid oxygen (LOx) or liquid methane ZBO systems, as shield coolers in liquid hydrogen tanks, or as first stage coolers in two-stage liquid hydrogen (LH2) ZBO cooler systems. Finally, the coolers could find applications in exploration missions where either propellants or breathable oxygen are extracted from the planetary atmosphere using a Sabatier or similar process. The gases could then be liquefied for storage either directly in return vehicle propellant tanks or on the planetary surface. Data presented were taken with the cooler operating in a vacuum of 10 (exp -5) torr, at controlled rejection temperatures from 300 K down to 275 K using a cold water heat exchanger bolted to the cooler. Heat loads were varied between 0.5 W and 15 W by supplying current to a 50 omega resistor mounted on a copper cold plate which was bolted to the cooler cold block. Silicon diodes mounted on both the cold plate and the heat exchanger provided accurate temperature measurement to within plus or minus 0.25 K and plus or minus 0.5 K respectively, up to 100 K with plus or minus 1% accuracy above 100 K. Input power to the compressor was limited to 180 W, corresponding to a maximum stroke of 80%.
System for maintaining materials at freezer temperatures for shipping
Schabron, John F [Laramie, WY; Sorini-Wong, Susan S [Laramie, WY
2007-08-28
At least one embodiment of the inventive technology relates to a frozen environmental sample temperature control system that comprises a frozen formulation having water in an amount from substantially 87% to 78% by weight of the formulation, and salt in an amount from substantially 13% to 22% by weight of the formulation, the system further including at least one container containing the frozen formulation; and a cooler having insulating material disposed between an outer wall and an inner surface that defines an inner chamber into which the at least one container and the at least one frozen environmental sample may be placed for storage and/or transport. Various embodiments may incorporate specific types of insulating material and/or adaptations to an inner surface of the cooler to enhance the insulation effected thereby.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Table A.1—Temperature Conditions Internal Temperatures (cooled space within the envelope) Cooler Dry... the envelope) Freezer and Cooler Dry Bulb Temperatures 75 °F. Subfloor Temperatures Freezer and Cooler... prescribed in Table A.1; and TDB,int,dp = dry-bulb air temperature internal to the cooler or freezer, °F, as...
Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.
1999-01-01
Avalanche photodiodes (APDS) are quantum optical detectors that are used for visible and near infrared optical detection applications. Although APDs are compact, rugged, and have an internal gain mechanism that is suitable for low light intensity; their responsivity, and therefore their output, is strongly dependent on the device temperature. Thermoelectric coolers (TEC) offers a suitable solution to this problem. A TEC is a solid state cooling device, which can be controlled by changing its current. TECs are compact and rugged, and they can precisely control the temperature to within 0.1 C with more than a 150 C temperature gradient between its surfaces. In this Memorandum, a proportional integral (PI) temperature controller for APDs using a TEC is discussed. The controller is compact and can successfully cool the APD to almost 0 C in an ambient temperature environment of up to 27 C.
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
Guzek, J.C.; Lujan, R.A.
1984-01-01
Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.
Lundquist, J.D.; Cayan, D.R.
2007-01-01
A realistic description of how temperatures vary with elevation is crucial for ecosystem studies and for models of basin-scale snowmelt and spring streamflow. This paper explores surface temperature variability using temperature data from an array of 37 sensors, called the Yosemite network, which traverses both slopes of the Sierra Nevada in the vicinity of Yosemite National Park, California. These data indicate that a simple lapse rate is often a poor description of the spatial temperature structure. Rather, the spatial pattern of temperature over the Yosemite network varies considerably with synoptic conditions. Empirical orthogonal functions (EOFs) were used to identify the dominant spatial temperature patterns and how they vary in time. Temporal variations of these surface temperature patterns were correlated with large-scale weather conditions, as described by National Centers for Environmental Prediction-National Center for Atmospheric Research Reanalysis data. Regression equations were used to downscale larger-scale weather parameters, such as Reanalysis winds and pressure, to the surface temperature structure over the Yosemite network. These relationships demonstrate that strong westerly winds are associated with relatively warmer temperatures on the east slope and cooler temperatures on the west slope of the Sierra, and weaker westerly winds are associated with the opposite pattern. Reanalysis data from 1948 to 2005 indicate weakening westerlies over this time period, a trend leading to relatively cooler temperatures on the east slope over decadal timescale's. This trend also appears in long-term observations and demonstrates the need to consider topographic effects when examining long-term changes in mountain regions. Copyright 2007 by the American Geophysical Union.
A temperature control design for a tapered element oscillating microbalance sensing surface
NASA Technical Reports Server (NTRS)
1982-01-01
A design study is presented which shows that a tapered element oscillating microbalance can be adapted for temperature control under space application by mating with multistage thermoelectric coolers in such a way that an integral structure evolves. The control of the temperature of the sensing surface can be achieved in a number of ways. An indirect method which uses a measurement of the absorbed power is recommended. The design goals can be met if a relaxation of the power requirement can be considered.
STS-55 Earth observation of the Timor Sea
NASA Technical Reports Server (NTRS)
1993-01-01
STS-55 Earth observation taken from Columbia, Orbiter Vehicle (OV) 102, shows the Timor Sea along the south coast of Timor. The sunglint pattern shows a sharp boundary in sea surface temperature, with cooler water along the coast and warmer water offshore. The sunglint brightness reveals water surface roughness with bright indicating smooth water and dark representing rough water. Cooler water is smoother because it acts to stabilize the atmospheric boundary layer, while the warm water acts to destabilize the atmosphere. Another indication of water temperature is the cloud pattern. Advection within the atmosphere as a result of warming at the sea surface forms low-level clouds with the small, popcorn-like appearance seen in upper right corner of the photograph. The cool water, on the other hand, is relatively free of the popcorn-like clouds. The distribution of the clouds indicates that the wind is blowing toward the upper right corner of the photograph. Also note the line of low-level
NASA Technical Reports Server (NTRS)
Beach, Duane E.
2003-01-01
High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.
Surface temperatures and temperature gradient features of the US Gulf Coast waters
NASA Technical Reports Server (NTRS)
Huh, O. K.; Rouse, L. J., Jr.; Smith, G. W.
1977-01-01
Satellite thermal infrared data on the Gulf of Mexico show that a seasonal cycle exists in the horizontal surface temperature structure. In the fall, the surface temperatures of both coastal and deep waters are nearly uniform. With the onset of winter, atmospheric cold fronts, which are accompanied by dry, low temperature air and strong winds, draw heat from the sea. A band of cooler water forming on the inner shelf expands, until a thermal front develops seaward along the shelf break between the cold shelf waters and the warmer deep waters of the Gulf. Digital analysis of the satellite data was carried out in an interactive mode using a minicomputer and software. A time series of temperature profiles illustrates the temporal and spatial changes in the sea-surface temperature field.
Thermal Imaging of Medical Saw Blades and Guides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinwiddie, Ralph Barton; Steffner, Thomas E
2007-01-01
Better Than New, LLC., has developed a surface treatment to reduce the friction and wear of orthopedic saw blades and guides. The medical saw blades were thermally imaged while sawing through fresh animal bone and an IR camera was used to measure the blade temperature as it exited the bone. The thermal performance of as-manufactured saw blades was compared to surface-treated blades, and a freshly used blade was used for temperature calibration purposes in order to account for any emissivity changes due to organic transfer layers. Thermal imaging indicates that the treated saw blades cut faster and cooler than untreatedmore » blades. In orthopedic surgery, saw guides are used to perfectly size the bone to accept a prosthesis. However, binding can occur between the blade and guide because of misalignment. This condition increases the saw blade temperature and may result in tissue damage. Both treated ad untreated saw guides were also studied. The treated saw guide operated at a significantly lower temperature than untreated guide. Saw blades and guides that operate at a cooler temperature are expected to reduce the amount of tissue damage (thermal necrosis) and may reduce the number of post-operative complications.« less
ATS-F radiant cooler contamination test in a hydrazine thruster exhaust
NASA Technical Reports Server (NTRS)
Chirivella, J. E.
1973-01-01
A test was conducted under simulated space conditions to determine the potential thermal degradation of the ATS-F radiant cooler from any contaminants generated by a 0.44-N(0.1-lbf) hydrazine thruster. The radiant cooler, a 0.44-N(0.1-lbf)hydrazine engine, and an aluminum plate simulating the satellite interface were assembled to simulate their flight configuration. The cooler was provided with platinum sensors for measuring temperature, and its surfaces were instrumented with six quartz crystal microbalance units (QCM) to measure contaminant mass deposits. The complete assembly was tested in the molecular sink vacuum facility (Molsink) at the Jet Propulsion Laboratory. This was the first time that a radiant cooler and a hydrazine engine were tested together in a very-high-vacuum space simulator, and this test was the first successful measurement of detectable deposits from hydrazine rocket engine plumes in a high vacuum. The engine was subjected to an accelerated duty cycle of 1 pulse/min, and after 2-hr of operation, the QCMs began to shift in frequency. The tests continued for several days and, although there was considerable activity in the QCMs, the cooler never experienced thermal degradation.
Coolers development for the ATHENA X-IFU cryogenic chain
NASA Astrophysics Data System (ADS)
Duband, L.; Charles, I.; Duval, J.-M.
2014-07-01
The hot and energetic universe has been selected by ESA as the science theme for the L2 mission with a planned launch in 2028. The Athena mission is one the potential mission concept for the next X-rays generation satellite. One of the instruments of this mission is the X-ray Integral Field Unit (X-IFU) which provides spatially resolved high resolution spectroscopy. This low temperature instrument requires high detector sensitivity that can only be achieved using 50 mK cooling. To obtain this temperature level, a careful design of the cryostat and of the cooling chain comprising different stages in cascade is needed. CEA has undertaken development in various areas to contribute to this cryochain including pulse tube coolers and sub-Kelvin coolers. This paper will describe the status of our different cooler developments. High temperature two stage pulse tube can be used for thermal shields cooling, 15 K pulse tube cooler for 2 K JT precooling and 4 K pulse tube cooler for a potential direct cooling of the sub-kelvin cooler. The 50 mK temperature is achieved using a sub-kelvin cooler comprising an adsorption cooler linked to an ADR stage. This elegant solution gives way to a light, compact and reliable cooler which has been validated in the SPICA/SAFARI project. Modified solutions are also under study to accommodate alternative design.
Energy balance studies and plasma catecholamine values for patients with healed burns.
Wallace, B H; Cone, J B; Caldwell, F T
1991-01-01
We report heat balance studies and plasma catecholamine values for 49 children and young adults with healed burn wounds (age range 0.6 to 31 years and burn range 1% to 82% body surface area burned; mean 41%). All measurements were made during the week of discharge. Heat production for patients with healed burns was not significantly different from predicted normal values. However, compartmented heat loss demonstrated a persistent increment in evaporative heat loss that was secondary to continued elevation of cutaneous water vapor loss immediately after wound closure. A reciprocal decrement in dry heat loss was demonstrated (as a result of a cooler average surface temperature, 0.84 degree C cooler than the average integrated skin temperature of five normal volunteers who were studied in our unit under similar environmental conditions). Mean values for plasma catecholamines were in the normal range: epinephrine = 56 +/- 37 pg/ml, norepinephrine = 385 +/- 220 pg/ml, and dopamine = 34 +/- 29 pg/ml. In conclusion, patients with freshly healed burn wounds have normal rates of heat production; however, there is a residual increment in transcutaneous water vapor loss, which produces surface cooling and decreased average surface temperature, which in turn lowers dry heat loss by an approximately equivalent amount.
Thermal regimes and snowpack relations of periglacial talus slopes, Sierra Nevada, California, USA.
Constance I Millar; Robert D. Westfall; Diane L. Delany
2014-01-01
Thermal regimes of eight periglacial talus slopes, at contrasting elevations, aspects, and substrates, in the Sierra Nevada, California, had complex microclimatic patterns partially decoupled from external conditions. Over three years, warm seasons showed mean talus matrix temperatures and daily variances lower than surfaces and cooler than free-air; talus surface and...
Stirling Cooler Designed for Venus Exploration
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Mellott, Kenneth D.
2004-01-01
Venus having an average surface temperature of 460 degrees Celsius (about 860 degrees Fahrenheit) and an atmosphere 150 times denser than the Earth's atmosphere, designing a robot to merely survive on the surface to do planetary exploration is an extremely difficult task. This temperature is hundreds of degrees higher than the maximum operating temperature of currently existing microcontrollers, electronic devices, and circuit boards. To meet the challenge of Venus exploration, researchers at the NASA Glenn Research Center studied methods to keep a pressurized electronics package cooled, so that the operating temperature within the electronics enclosure would be cool enough for electronics to run, to allow a mission to operate on the surface of Venus for extended periods.
NASA Astrophysics Data System (ADS)
Stoy, P. C.; Katul, G. G.; Juang, J.; Siqueira, M. B.; Novick, K. A.; Essery, R.; Dore, S.; Kolb, T. E.; Montes-Helu, M. C.; Scott, R. L.
2010-12-01
Vegetation is an important control on the surface energy balance and thereby surface temperature. Boreal forests and arctic shrubs are thought to warm the land surface by absorbing more radiation than the vegetation they replace. The surface temperatures of tropical forests tend to be cooler than deforested landscapes due to enhanced evapotranspiration. The effects of reforestation on surface temperature change in the temperate zone is less-certain, but recent modeling efforts suggest forests have a global warming effect. We quantified the mechanisms driving radiometric surface changes following landcover changes using paired ecosystem case studies from the Ameriflux database with energy balance models of varying complexity. Results confirm previous findings that deciduous and coniferous forests in the southeastern U.S. are ca. 1 °C cooler than an adjacent field on an annual basis because aerodynamic/ecophysiological cooling of 2-3 °C outweighs an albedo-related warming of <1 °C. A 50-70% reduction in the aerodynamic resistance to sensible and latent heat exchange in the forests dominated the cooling effect. A grassland ecosystem that succeeded a stand-replacing ponderosa pine fire was ca. 1 °C warmer than unburned stands because a 1.5 °C aerodynamic warming offset a slight surface cooling due to greater albedo and soil heat flux. An ecosystem dominated by mesquite shrub encroachment was nearly 2 °C warmer than a native grassland ecosystem as aerodynamic and albedo-related warming outweighed a small cooling effect due to changes in soil heat flux. The forested ecosystems in these case studies are documented to have higher carbon uptake than the non-forested systems. Results suggest that temperate forests tend to cool the land surface and suggest that previous model-based findings that forests warm the Earth’s surface globally should be reconsidered.Changes to radiometric surface temperature (K) following changes in vegetation using paired ecosystem case studies C4 grassland and shrub ecosystem surface temperatures were adjusted for differences in air temperature across sites.
Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures
Siminovitch, Michael J.
1992-01-01
In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface.
Low Temperature Regenerators for Zero Boil-Off Liquid Hydrogen Pulse Tube Cryocoolers
NASA Technical Reports Server (NTRS)
Salerno, Louis J.; Kashani, Ali; Helvensteijn, Ben; Kittel, Peter; Arnoldm James O. (Technical Monitor)
2002-01-01
Recently, a great deal of attention has been focused on zero boil-off (ZBO) propellant storage as a means of minimizing the launch mass required for long-term exploration missions. A key component of ZBO systems is the cooler. Pulse tube coolers offer the advantage of zero moving mass at the cold head, and recent advances in lightweight, high efficiency cooler technology have paved the way for reliable liquid oxygen (LOx) temperature coolers to be developed which are suitable for flight ZBO systems. Liquid hydrogen (LH2) systems, however, are another matter. For ZBO liquid hydrogen systems, cooling powers of 1-5 watts are required at 20 K. The final development from tier for these coolers is to achieve high efficiency and reliability at lower operating temperatures. Most of the life-limiting issues of flight Stirling and pulse tube coolers are associated with contamination, drive mechanisms, and drive electronics. These problems are well in hand in the present generation coolers. The remaining efficiency and reliability issues reside with the low temperature regenerators. This paper will discuss advances to be made in regenerators for pulse tube LH2 ZBO coolers, present some historical background, and discuss recent progress in regenerator technology development using alloys of erbium.
Crepeau, Kathryn L.; Miller, Robin L.
2014-01-01
Rates of carbon storage in wetlands are determined by the balance of its inputs and losses, both of which are affected by environmental factors such as water temperature and depth. In the autumn of 1997, the U.S. Geological Survey re-established two wetlands with different shallow water depths—about 25 and 55 centimeters deep—to investigate the potential to reverse subsidence of delta islands by preserving and accumulating organic substrates derived from plant biomass inputs over time. Because cooler water temperatures can slow decomposition rates and increase accretion of plant biomass, water temperature was recorded from July 2005 to February 2008 in the deeper of the two wetlands, where areas of emergent and submerged vegetation persisted throughout the study, to assess differences in water temperature between the two vegetation types. Water temperature was compared at three depths in the water column between areas of emergent and submerged vegetation and between areas near the water inflow and in the wetland interior in both vegetation types. The latter comparison was a way of evaluating the effect of the length of time water had resided in the wetland on water temperatures. There were statistically significant differences in water temperature at all depths between the two vegetation types. Overall, in areas of emergent marsh vegetation, the mean water temperature at the surface was 1.4 degrees Celsius (°C) less than it was in areas of submerged vegetation; however, when analyses accounted for the changes in temperature due to seasonal and diurnal cycles, differences in the mean water temperature between the vegetation types were even greater than this. For example, in the spring, the mean temperatures in areas of emergent marsh vegetation at the surface, mid-point, and near the sediment in the water column were 2.0, 2.3, and 2.1 °C less, respectively, than water temperatures in areas of submerged vegetation. When diurnal changes in temperature were accounted for by comparing temperatures in mid-afternoon (at 3 p.m.), water-temperature differences were even greater than the seasonal means indicated. In areas of emergent vegetation, the mean temperatures were cooler than temperatures in areas of submerged vegetation at the surface, the mid-point, and near the sediment in the water column by 3.9, 3.6, and 2.3 °C, respectively. Furthermore, from July 2005 through December 2006, water temperatures at the surface in the interior of the wetland were significantly cooler than in areas near the inflow supplying water from the San Joaquin River by 1.0 °C in areas of submerged vegetation and by 1.1 °C in areas of emergent vegetation.
7 CFR 58.128 - Equipment and utensils.
Code of Federal Regulations, 2012 CFR
2012-01-01
... contact surfaces of all utensils and equipment such as holding tanks, pasteurizers, coolers, vats... discharge a clean dry can and cover and shall be kept properly timed in accordance with the instructions of..., signature or initials of operator. (i) Surface coolers. Surface coolers shall be equipped with hinged or...
7 CFR 58.128 - Equipment and utensils.
Code of Federal Regulations, 2014 CFR
2014-01-01
... contact surfaces of all utensils and equipment such as holding tanks, pasteurizers, coolers, vats... discharge a clean dry can and cover and shall be kept properly timed in accordance with the instructions of..., signature or initials of operator. (i) Surface coolers. Surface coolers shall be equipped with hinged or...
Davey, C.A.; Pielke, R.A.; Gallo, K.P.
2006-01-01
There is currently much attention being given to the observed increase in near-surface air temperatures during the last century. The proper investigation of heating trends, however, requires that we include surface heat content to monitor this aspect of the climate system. Changes in heat content of the Earth's climate are not fully described by temperature alone. Moist enthalpy or, alternatively, equivalent temperature, is more sensitive to surface vegetation properties than is air temperature and therefore more accurately depicts surface heating trends. The microclimates evident at many surface observation sites highlight the influence of land surface characteristics on local surface heating trends. Temperature and equivalent temperature trend differences from 1982-1997 are examined for surface sites in the Eastern U.S. Overall trend differences at the surface indicate equivalent temperature trends are relatively warmer than temperature trends in the Eastern U.S. Seasonally, equivalent temperature trends are relatively warmer than temperature trends in winter and are relatively cooler in the fall. These patterns, however, vary widely from site to site, so local microclimate is very important. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fang, En; Wu, Xiaojie; Yu, Yuesen; Xiu, Junrui
2017-03-01
In this paper, a numerical model is developed by combining thermodynamics with heat transfer theory. Taking inner and external multi-irreversibility into account, it is with a complementary equation for heat circulation in air gaps of a steady cooling system with commercial thermoelectric modules operating in refrigeration mode. With two modes concerned, the equation presents the heat flowing through air gaps which forms heat circulations between both sides of thermoelectric coolers (TECs). In numerical modelling, a TEC is separated as two temperature controlled constant heat flux reservoirs in a thermal resistance network. In order to obtain the parameter values, an experimental apparatus with a commercial thermoelectric cooler was built to characterize the performance of a TEC with heat source and sink assembly. At constant power dissipation, steady temperatures of heat source and both sides of the thermoelectric cooler were compared with those in a standard numerical model. The method displayed that the relationship between Φf and the ratio Φ_{c}'/Φ_{c} was linear as expected. Then, for verifying the accuracy of proposed numerical model, the data in another system were recorded. It is evident that the experimental results are in good agreement with simulation(proposed model) data at different heat transfer rates. The error is small and mainly results from the instabilities of thermal resistances with temperature change and heat flux, heat loss of the device vertical surfaces and measurements.
Ngas Multi-Stage Coaxial High Efficiency Cooler (hec)
NASA Astrophysics Data System (ADS)
Nguyen, T.; Toma, G.; Jaco, C.; Raab, J.
2010-04-01
This paper presents the performance data of the single and two-stage High Efficiency Cooler (HEC) tested with coaxial cold heads. The single stage coaxial cold head has been optimized to operate at temperatures of 40 K and above. The two-stage parallel cold head configuration has been optimized to operate at 30 K and above and provides a long-life, low mass and efficient two-stage version of the Northrop Grumman Aerospace Systems (NGAS) flight qualified single stage HEC cooler. The HEC pulse tube cryocoolers are the latest generation of flight coolers with heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years. This paper presents the performance data of the one and two-stage versions of this cooler under a wide range of heat rejection temperature, cold head temperature and input power.
Unexpected and Unexplained Surface Temperature Variations on Mimas
NASA Astrophysics Data System (ADS)
Howett, C.; Spencer, J. R.; Pearl, J. C.; Hurford, T. A.; Segura, M.; Cassini Cirs Team
2010-12-01
Until recently it was thought one of the most interesting things about Mimas, Saturn’s innermost classical icy moon, was its resemblance to Star Wars’ Death Star. However, a bizarre pattern of daytime surface temperatures was observed on Mimas using data obtained by Cassini’s Composite Infrared Spectrometer (CIRS) in February 2010. The observations were taken during Cassini’s closest ever encounter with Mimas (<10,000 km) and cover the daytime anti-Saturn hemisphere centered on longitude ~145° W. Instead of surface temperatures smoothly increasing throughout the morning and early afternoon, then cooling in the evening, as expected, a sharp V-shaped boundary is observed separating cooler midday and afternoon temperatures (~77 K) on the leading side from warmer morning temperatures (~92 K) on the trailing side. The boundary’s apex is centered at equatorial latitudes near the anti-Saturn point and extends to low north and south latitudes on the trailing side. Subtle differences in the surface colors have been observed that are roughly spatially correlated with the observed extent of the temperature anomaly, with the cooler regions tending to be bluer (Schenk et al., Submitted). However, visible-wavelength albedo is similar in the two regions, so albedo variations are probably not directly responsible for the thermal anomaly. It is more likely that thermal inertia variations produce the anomaly, with thermal inertia being unusually high in the region with anomalously low daytime temperatures. Comparison of the February 2010 CIRS data to previous lower spatial resolution data taken at different local times tentatively confirm that the cooler regions do indeed display higher thermal inertias. Bombardment of the surface by high energy electrons from Saturn’s radiation belts has been proposed to explain the observed color variations (Schenk et al., Submitted). Electrons above ~1 MeV preferentially impact Mimas’ leading hemisphere at low latitudes where they could cause surface defects. For this process to also explain the observed temperature differences it would have to affect the surface’s thermal inertia to a depth comparable to the diurnal thermal skin-depth (~0.5 cm). However, whether the formation of the giant Herschel crater (which lies in the middle of the observed portion of the cold region) contributed to the observed temperature anomaly or if electron bombardment alone is able to explain the thermal anomaly is currently unknown. Future CIRS observations should be able to map the full spatial extent of the thermal anomaly and clarify whether it is centered on (and thus likely related to) Herschel, or is centered on the trailing hemisphere and thus likely to be related to the observed color anomaly.
Refurbishment of the cryogenic coolers for the Skylab earth resources experiment package
NASA Technical Reports Server (NTRS)
Smithson, J. C.; Luksa, N. C.
1975-01-01
Skylab Earth Resources Experiment Package (EREP) experiments, S191 and S192, required a cold temperature reference for operation of a spectrometer. This cold temperature reference was provided by a subminiature Stirling cycle cooler. However, the failure of the cooler to pass the qualification test made it necessary for additional cooler development, refurbishment, and qualification. A description of the failures and the cause of these failures for each of the coolers is presented. The solutions to the various failure modes are discussed along with problems which arose during the refurbishment program. The rationale and results of various tests are presented. The successful completion of the cryogenic cooler refurbishment program resulted in four of these coolers being flown on Skylab. The system operation during the flight is presented.
Michie, Laura; Taylor, Ben W.
2014-01-01
Substantial amounts of dead wood in the intertidal zone of mature mangrove forests are tunnelled by teredinid bivalves. When the tunnels are exposed, animals are able to use tunnels as refuges. In this study, the effect of teredinid tunnelling upon mangrove forest faunal diversity was investigated. Mangrove forests exposed to long emersion times had fewer teredinid tunnels in wood and wood not containing teredinid tunnels had very few species and abundance of animals. However, with a greater cross-sectional percentage surface area of teredinid tunnels, the numbers of species and abundance of animals was significantly higher. Temperatures within teredinid-attacked wood were significantly cooler compared with air temperatures, and animal abundance was greater in wood with cooler temperatures. Animals inside the tunnels within the wood may avoid desiccation by escaping the higher temperatures. Animals co-existing in teredinid tunnelled wood ranged from animals found in terrestrial ecosystems including centipedes, crickets and spiders, and animals found in subtidal marine ecosystems such as fish, octopods and polychaetes. There was also evidence of breeding within teredinid-attacked wood, as many juvenile individuals were found, and they may also benefit from the cooler wood temperatures. Teredinid tunnelled wood is a key low-tide refuge for cryptic animals, which would otherwise be exposed to fishes and birds, and higher external temperatures. This study provides evidence that teredinids are ecosystem engineers and also provides an example of a mechanism whereby mangrove forests support intertidal biodiversity and nurseries through the wood-boring activity of teredinids. PMID:25276505
Amarello, Melissa; Nowak, Erica M.; Taylor, Emily N.; Schuett, Gordon W.; Repp, Roger A.; Rosen, Philip C.; Hardy, David L.
2010-01-01
Differences in resource availability and quality along environmental gradients are important influences contributing to intraspecific variation in body size, which influences numerous life-history traits. Here, we examined variation in body size and sexual size dimorphism (SSD) in relation to temperature, seasonality, and precipitation among 10 populations located throughout Arizona of the western diamond-backed rattlesnake (Crotalus atrox). Specifically, in our analyses we addressed the following questions: (i) Are adult males larger in cooler, wetter areas? (ii) Does female body size respond differently to environmental variation? (iii) Is seasonality a better predictor of body size variation? (iv) Is SSD positively correlated with increased resources? We demonstrate that male and female C. atrox are larger in body size in cooler (i.e., lower average annual maximum, minimum, and mean temperature) and wetter areas (i.e., higher average annual precipitation, more variable precipitation, and available surface water). Although SSD in C. atrox appeared to be more pronounced in cooler, wetter areas, this relationship did not achieve statistical significance.
Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures
Siminovitch, M.J.
1992-11-10
In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface. 12 figs.
COLD WATER PATCHES IN WARM STREAMS: PHYSICOCHEMICAL CHARACTERISTICS AND THE INFLUENCE OF SHADING
Discrete coldwater patches within the surface waters of summer-warm streams afford potential thermal refuge for coldwater fishes during periods of heat stress. This analysis focused on reach-scale heterogeneity in water temperatures as influenced by local influx of cooler subsur...
Control methods and systems for indirect evaporative coolers
Woods, Jason; Kozubal, Erik
2015-09-22
A control method for operating an indirect evaporative cooler to control temperature and humidity. The method includes operating an airflow control device to provide supply air at a flow rate to a liquid desiccant dehumidifier. The supply air flows through the dehumidifier and an indirect evaporative cooler prior to exiting an outlet into a space. The method includes operating a pump to provide liquid desiccant to the liquid desiccant dehumidifier and sensing a temperature of an airstream at the outlet of the indirect evaporative cooler. The method includes comparing the temperature of the airstream at the outlet to a setpoint temperature at the outlet and controlling the pump to set the flow rate of the liquid desiccant. The method includes sensing space temperature, comparing the space temperature with a setpoint temperature, and controlling the airflow control device to set the flow rate of the supply air based on the comparison.
NASA Astrophysics Data System (ADS)
Wickham, J.; Wade, T. G.; Riitters, K. H.
2014-09-01
Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that forests tend to be warmer than grasslands and croplands because forest albedos tend to be lower than non-forest albedos. A lower forest albedo results in higher absorption of solar radiation and increased sensible warming that is not offset by the cooling effects of carbon uptake in extra-tropical regions. However, comparison of forest warming potential in the context of climate models is based on a coarse classification system of tropical, temperate, and boreal. There is considerable variation in climate within the broad latitudinal zonation of tropical, temperate, and boreal, and the relationship between biophysical (albedo) and biogeochemical (carbon uptake) mechanisms may not be constant within these broad zones. We compared wintertime forest and non-forest surface temperatures for the southeastern United States and found that forest surface temperatures shifted from being warmer than non-forest surface temperatures north of approximately 36°N to cooler south of 36°N. Our results suggest that the biophysical aspects of forests' influence on climate reinforce the biogeochemical aspects of forests' influence on climate south of 36°N. South of 36°N, both biophysical and biogeochemical properties of forests appear to support forestation as a climate mitigation policy. We also provide some quantitative evidence that evergreen forests tend to have cooler wintertime surface temperatures than deciduous forests that may be attributable to greater evapotranspiration rates.
NASA Astrophysics Data System (ADS)
Mora, Germán; Pratt, Lisa M.
2001-06-01
Documentation of paleoclimatic conditions during the last glacial stage in the tropical Andes is sparse despite the importance of understanding past climate changes in the tropics. To reconstruct paleoenvironmental conditions in the alpine neotropics, we measured the oxygen (δ18O) and hydrogen (δD) isotopic composition of authigenic kaolinite within weathering profiles of the Bogota basin (Colombia) because of the strong dependence of isotopic values on both surface temperature and rainfall. While kaolinite isotope data from Holocene soils in the basin reflect modern mean annual temperature and mean weighted rainwater isotopic composition of the basin, kaolinite isotope data from paleosols developed during the last glacial stage suggest 6 ± 2 °C cooler temperatures. Moreover, the isotope data indicate higher isotopic values of paleorainwater, interpreted to reflect drier conditions. The combination of reduced rainfall, temperature, and pCO2 significantly affected the distribution of tropical montane flora during the last glacial stage.
Surface Tension Confines Cryogenic Liquid
NASA Technical Reports Server (NTRS)
Castles, Stephen H.; Schein, Michael E.
1989-01-01
New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.
Power System for Venus Surface Exploration
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Mellott, Kenneth
2002-01-01
A radioisotope power and cooling system is designed to provide electrical power for a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep electronic components at a temperature below ambient. The fundamental cooling parameters are the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density (90 bar CO2) atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus, with a small contribution of heat generation from electronics and sensors. Both thermoelectric (RTG) and dynamic power conversion systems were analyzed, based on use of a standard isotope (General-purpose heat source, or GPHS) brick. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500-watt power class, laboratory-tested Stirling engines. The overall efficiency is calculated to be 23.36 %. The mass of the power converter is estimated at approximately 21.6 kg. Additional information is included in the original extended abstract.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
1999-01-01
There was a thermal anomaly of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) radiative cooler cold stage during the cooler outgas phase in flight. With the cooler door in the outgas position and the outgas heaters enabled, the cold stage temperature increased to a maximum of 323 K when the spacecraft was in the sunlight, which was warmer than the 316.3 K upper set point of the outgas heater controller on the cold stage. Also, the outgas heater cycled off when the cold stage was warming up to 323 K. A corrective action was taken before the attitude of the spacecraft was changed during the first week in flight. One orbit before the attitude was changed, the outgas heaters were disabled to cool off the cold stage. The cold stage temperature increase was strongly dependent on the spacecraft roll and yaw. It provided evidence that direct solar radiation entered the gap between the cooler door and cooler shroud. There was a concern that the direct solar radiation could cause polymerization of hydrocarbons, which could contaminate the cooler and lead to a thermal short. After outgas with the cooler door in the outgas position for seven days, the cooler door was changed to the fully open position. With the cooler door fully open, the maximum cold stage temperature was 316.3 K when the spacecraft was in the sunlight, and the duty cycle of the outgas heater in the eclipse was the same as that in the sunlight. It provided more evidence that direct solar radiation had entered the gap between the cooler door and cooler shroud. Cooler outgas continued for seven more days, with the cooler door fully open. The corrective actions had prevented overheating of the cold stage and cold focal plane array (CFPA), which could damage these two components. They also minimized the risk of contamination on the cold stage, which could lead to a thermal short.
Introduction:
Paraffins are naturally-occurring components of crude oils, but often form solids within oil reservoirs and on oil production equipment when oil is harvested from hot subsurface temperatures to the cooler surface environments. Microbial t...
Towards a new paleotemperature proxy from reef coral occurrences.
Lauchstedt, Andreas; Pandolfi, John M; Kiessling, Wolfgang
2017-09-05
Global mean temperature is thought to have exceeded that of today during the last interglacial episode (LIG, ~ 125,000 yrs b.p.) but robust paleoclimate data are still rare in low latitudes. Occurrence data of tropical reef corals may provide new proxies of low latitude sea-surface temperatures. Using modern reef coral distributions we developed a geographically explicit model of sea surface temperatures. Applying this model to coral occurrence data of the LIG provides a latitudinal U-shaped pattern of temperature anomalies with cooler than modern temperatures around the equator and warmer subtropical climes. Our results agree with previously published estimates of LIG temperatures and suggest a poleward broadening of the habitable zone for reef corals during the LIG.
7 CFR 58.510 - Rooms and compartments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...
7 CFR 58.510 - Rooms and compartments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...
7 CFR 58.510 - Rooms and compartments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...
7 CFR 58.510 - Rooms and compartments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...
7 CFR 58.510 - Rooms and compartments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...
Characterization of a Two-Stage Pulse Tube Cooler for Space Applications
NASA Astrophysics Data System (ADS)
Orsini, R.; Nguyen, T.; Colbert, R.; Raab, J.
2010-04-01
A two-stage long-life, low mass and efficient pulse tube cooler for space applications has been developed and acceptance tested for flight applications. This paper presents the data collected on four flight coolers during acceptance testing. Flight acceptance test of these cryocoolers includes thermal performance mapping over a range of reject temperatures, launch vibration testing and thermal cycling testing. Designed conservatively for a 10-year life, the coolers are required to provide simultaneous cooling powers at 95 K and 180 K while rejecting to 300 K with less than 187 W input power to the electronics. The total mass of each cooler and electronics system is 8.7 kg. The radiation-hardened and software driven control electronics provides cooler control functions which are fully re-configurable in orbit. These functions include precision temperature control to better than 100 mK p-p. This 2 stage cooler has heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years.
Johnston, J D; Kruman, B A; Nelson, M C; Merrill, R M; Graul, R J; Hoybjerg, T G; Tuttle, S C; Myers, S J; Cook, R B; Weber, K S
2017-09-01
Residential endotoxin exposure is associated with protective and pathogenic health outcomes. Evaporative coolers, an energy-efficient type of air conditioner used in dry climates, are a potential source of indoor endotoxins; however, this association is largely unstudied. We collected settled dust biannually from four locations in homes with evaporative coolers (n=18) and central air conditioners (n=22) in Utah County, Utah (USA), during winter (Jan-Apr) and summer (Aug-Sept), 2014. Dust samples (n=281) were analyzed by the Limulus amebocyte lysate test. Housing factors were measured by survey, and indoor temperature and relative humidity measures were collected during both seasons. Endotoxin concentrations (EU/mg) were significantly higher in homes with evaporative coolers from mattress and bedroom floor samples during both seasons. Endotoxin surface loads (EU/m 2 ) were significantly higher in homes with evaporative coolers from mattress and bedroom floor samples during both seasons and in upholstered furniture during winter. For the nine significant season-by-location comparisons, EU/mg and EU/m 2 were approximately three to six times greater in homes using evaporative coolers. A plausible explanation for these findings is that evaporative coolers serve as a reservoir and distribution system for Gram-negative bacteria or their cell wall components in homes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Air Liquide's pulse tube cryocooler systems for space applications
NASA Astrophysics Data System (ADS)
Trollier, T.; Tanchon, J.; Rey, J. C.; Ravex, A.; Buquet, J.
2009-05-01
Thanks to important development efforts completed internally and with the European Space Agency (ESA) funding, Air Liquide Advanced Technology Division (AL/DTA) is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as Meteosat Third Generation (MTG), SIFTI, etc... The Miniature Pulse Tube Cooler (MPTC) is lifting up to 2.47W@80K with 50W maximal compressor input power and 10°C rejection temperature. The weight is 2.8 kg. The Large Pulse Tube Cooler (LPTC) is providing 2.3W@50K for 160W input power and 10°C rejection temperature. This product is weighing 5.1 kg. The two pulse tube coolers thermo-mechanical units are qualified against environmental constraints as per ESA ECSS-E-30. They are both using dual opposed pistons flexure bearing compressor with moving magnet linear motors in order to ensure very high lifetime. The associated Cooler Drive Electronics is also an important aspect specifically regarding the active control of the cooler thermo-mechanical unit during the launch phase and the active reduction of the vibrations induced by the compressor (partly supported by the French Agency CNES). This paper details the presentation of the two Pulse Tube Coolers together with the Cooler Drive Electronics aspects.
Air liquide's space pulse tube cryocooler systems
NASA Astrophysics Data System (ADS)
Trollier, T.; Tanchon, J.; Buquet, J.; Ravex, A.
2017-11-01
Thanks to important development efforts completed with ESA funding, Air Liquide Advanced Technology Division (AL/DTA), is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as Meteosat Third Generation (MTG), SIFTI, etc… The Miniature Pulse Tube Cooler (MPTC) is lifting up to 2.47W@80K with 50W compressor input power and 10°C rejection temperature. The weight is 2.8 kg. The Large Pulse Tube Cooler (LPTC) is providing 2.3W@50K for 160W input power and 10°C rejection temperature. This product is weighing 5.1 kg. The two pulse tube coolers thermo-mechanical units are qualified against environmental constraints as per ECSS-E-30. They are both using dual opposed pistons flexure bearing compressor with moving magnet linear motors in order to ensure very high lifetime. The associated Cooler Drive Electronics is also an important aspect specifically regarding the active control of the cooler thermo-mechanical unit during the launch phase and the active reduction of the vibrations induced by the compressor (partly supported by the French Agency CNES). This paper details the presentation of the two Pulse Tube Coolers together with the Cooler Drive Electronics aspects.
Development of a para-orthohydrogen catalytic converter for a solid hydrogen cooler
NASA Technical Reports Server (NTRS)
Nast, T. C.; Hsu, I. C.
1984-01-01
Design features of a tested catalytic converter for altering vented cryogenic parahydrogen used as a coolant on spacecraft into a para-ortho equilibrium for channeling to other cooling functions are described. The hydrogen is expected to be stored in either liquid or solid form. A high surface area Ni-on-Si catalyst was selected for tests at an operating pressure of 2 torr at a ratio of 1000 gr catalyst for a gr/sec hydrogen flow. Cylindrical and radial flow geometries were tried and measurements centered on the converter efficiencies at different operating temperatures when the converter was placed in the vent line of the H2 cooler. Efficiencies ranging from 10-100 percent were obtained for varying flow rates. Further testing is necessary to characterize the converter performance under a wider range of operating temperatures and environments.
Kinmonth-Schultz, Hannah A; Tong, Xinran; Lee, Jae; Song, Young Hun; Ito, Shogo; Kim, Soo-Hyung; Imaizumi, Takato
2016-07-01
Day length and ambient temperature are major stimuli controlling flowering time. To understand flowering mechanisms in more natural conditions, we explored the effect of daily light and temperature changes on Arabidopsis thaliana. Seedlings were exposed to different day/night temperature and day-length treatments to assess expression changes in flowering genes. Cooler temperature treatments increased CONSTANS (CO) transcript levels at night. Night-time CO induction was diminished in flowering bhlh (fbh)-quadruple mutants. FLOWERING LOCUS T (FT) transcript levels were reduced at dusk, but increased at the end of cooler nights. The dusk suppression, which was alleviated in short vegetative phase (svp) mutants, occurred particularly in younger seedlings, whereas the increase during the night continued over 2 wk. Cooler temperature treatments altered the levels of FLOWERING LOCUS M-β (FLM-β) and FLM-δ splice variants. FT levels correlated strongly with flowering time across treatments. Day/night temperature changes modulate photoperiodic flowering by changing FT accumulation patterns. Cooler night-time temperatures enhance FLOWERING BHLH (FBH)-dependent induction of CO and consequently increase CO protein. When plants are young, cooler temperatures suppress FT at dusk through SHORT VEGETATIVE PHASE (SVP) function, perhaps to suppress precocious flowering. Our results suggest day length and diurnal temperature changes combine to modulate FT and flowering time. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Characterization of the High-Albedo NEA 3691 Bede
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Rozitis, Benjamin; Jefferson, Jeffrey D.; Nelson, Tyler W.; Dotson, Jessie L.; Ryan, Erin L.; Howell, Ellen S.; Fernandez, Yanga R.;
2016-01-01
Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important - high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter. Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011). Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv˜0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface roughness, which in turn affect diameter and pv. Surface composition can be related to pv. This study focuses on understanding and characterizing the dependency of parameters with the aim of constraining diameter, pv and thermal inertia for 3691 Bede.
Characterization of the high-albedo NEA 3691 Bede
NASA Astrophysics Data System (ADS)
Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Rozitis, Benjamin; Jefferson, Jeffrey D.; Nelson, Tyler W.; Dotson, Jessie L.; Ryan, Erin L.; Howell, Ellen S.; Fernandez, Yanga R.; Lovell, Amy J.; Woodward, Charles E.; Harker, David Emerson
2016-10-01
Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important - high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter.Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011).Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv≈0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface roughness, which in turn affect diameter and pv. Surface composition can be related to pv. This study focuses on understanding and characterizing the dependency of parameters with the aim of constraining diameter, pv and thermal inertia for 3691 Bede.
Electronics and Sensor Cooling with a Stirling Cycle for Venus Surface Mission
NASA Technical Reports Server (NTRS)
Mellott, Ken
2004-01-01
The inhospitable ambient surface conditions of Venus, with a 450 C temperature and 92 bar pressure, may likely require any extended-duration surface exploratory mission to incorporate some type of cooling for probe electronics and sensor devices. A multiple-region Venus mission study was completed at NASA GRC in December of 2003 that resulted in the preliminary design of a kinematically-driven, helium charged, Stirling cooling cycle with an estimated over-all COP of 0.376 to lift 100 watts of heat from a 200 C cold sink temperature and reject it at a hot sink temperature of 500 C. This paper briefly describes the design process and also describes and summarizes key features of the kinematic, Stirling cooler preliminary design concept.
The impact of changing the land surface scheme in ACCESS(v1.0/1.1) on the surface climatology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalczyk, Eva A.; Stevens, Lauren E.; Law, Rachel M.
The Community Atmosphere Biosphere Land Exchange (CABLE) model has been coupled to the UK Met Office Unified Model (UM) within the existing framework of the Australian Community Climate and Earth System Simulator (ACCESS), replacing the Met Office Surface Exchange Scheme (MOSES). Here we investigate how features of the CABLE model impact on present-day surface climate using ACCESS atmosphere-only simulations. The main differences attributed to CABLE include a warmer winter and a cooler summer in the Northern Hemisphere (NH), earlier NH spring runoff from snowmelt, and smaller seasonal and diurnal temperature ranges. The cooler NH summer temperatures in canopy-covered regions aremore » more consistent with observations and are attributed to two factors. Firstly, CABLE accounts for aerodynamic and radiative interactions between the canopy and the ground below; this placement of the canopy above the ground eliminates the need for a separate bare ground tile in canopy-covered areas. Secondly, CABLE simulates larger evapotranspiration fluxes and a slightly larger daytime cloud cover fraction. Warmer NH winter temperatures result from the parameterization of cold climate processes in CABLE in snow-covered areas. In particular, prognostic snow density increases through the winter and lowers the diurnally resolved snow albedo; variable snow thermal conductivity prevents early winter heat loss but allows more heat to enter the ground as the snow season progresses; liquid precipitation freezing within the snowpack delays the building of the snowpack in autumn and accelerates snow melting in spring. Altogether we find that the ACCESS simulation of surface air temperature benefits from the specific representation of the turbulent transport within and just above the canopy in the roughness sublayer as well as the more complex snow scheme in CABLE relative to MOSES.« less
The impact of changing the land surface scheme in ACCESS(v1.0/1.1) on the surface climatology
Kowalczyk, Eva A.; Stevens, Lauren E.; Law, Rachel M.; ...
2016-08-23
The Community Atmosphere Biosphere Land Exchange (CABLE) model has been coupled to the UK Met Office Unified Model (UM) within the existing framework of the Australian Community Climate and Earth System Simulator (ACCESS), replacing the Met Office Surface Exchange Scheme (MOSES). Here we investigate how features of the CABLE model impact on present-day surface climate using ACCESS atmosphere-only simulations. The main differences attributed to CABLE include a warmer winter and a cooler summer in the Northern Hemisphere (NH), earlier NH spring runoff from snowmelt, and smaller seasonal and diurnal temperature ranges. The cooler NH summer temperatures in canopy-covered regions aremore » more consistent with observations and are attributed to two factors. Firstly, CABLE accounts for aerodynamic and radiative interactions between the canopy and the ground below; this placement of the canopy above the ground eliminates the need for a separate bare ground tile in canopy-covered areas. Secondly, CABLE simulates larger evapotranspiration fluxes and a slightly larger daytime cloud cover fraction. Warmer NH winter temperatures result from the parameterization of cold climate processes in CABLE in snow-covered areas. In particular, prognostic snow density increases through the winter and lowers the diurnally resolved snow albedo; variable snow thermal conductivity prevents early winter heat loss but allows more heat to enter the ground as the snow season progresses; liquid precipitation freezing within the snowpack delays the building of the snowpack in autumn and accelerates snow melting in spring. Altogether we find that the ACCESS simulation of surface air temperature benefits from the specific representation of the turbulent transport within and just above the canopy in the roughness sublayer as well as the more complex snow scheme in CABLE relative to MOSES.« less
Improvements to the Whoosh Bottle Rocket Car Demonstration
ERIC Educational Resources Information Center
Campbell, Dean J.; Staiger, Felicia A.; Jujjavarapu, Chaitanya N.
2015-01-01
The whoosh bottle rocket car has been redesigned to be more reusable and more robust, making it even easier to use as a demonstration. Enhancements of this demonstration, including the use of heat sensitive ink and electronic temperature probes, enable users to find warmer and cooler regions on the surface of the whoosh bottle.
Nonlinear Meridional Moisture Advection and the ENSO-Southern China Rainfall Teleconnection
NASA Astrophysics Data System (ADS)
Wang, Qiang; Cai, Wenju; Zeng, Lili; Wang, Dongxiao
2018-05-01
In the boreal cooler months of 2015, southern China (SC) experienced the largest rainfall since 1950, exceeding 4 times the standard deviation of SC rainfall. Although an El Niño typically induces a positive SC rainfall anomaly during these months, the unprecedented rainfall increase cannot be explained by the strong El Niño of 2015/2016, and the dynamics is unclear. Here we show that a nonlinear meridional moisture advection contributes substantially to the unprecedented rainfall increase. During cooler months of 2015, the meridional flow anomaly over the South China Sea region, which acts on an El Niño-induced anomalous meridional moisture gradient, is particularly large and is supported by an anomalous zonal sea surface temperature gradient over the northwestern Pacific, which recorded its largest value in 2015 since 1950. Our study highlights, for the first time, the importance of the nonlinear process associated with the combined impact of a regional sea surface temperature gradient and large-scale El Niño anomalies in forcing El Niño rainfall teleconnection.
Modeling green infrastructure land use changes on future air ...
Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). These land use datasets were incorporated into the WRF-CMAQ modeling system allowing the modeling system to propagate the changes in vegetation and impervious surface coverage on meteoro
Modeling of Hydrate Formation Mode in Raw Natural Gas Air Coolers
NASA Astrophysics Data System (ADS)
Scherbinin, S. V.; Prakhova, M. Yu; Krasnov, A. N.; Khoroshavina, E. A.
2018-05-01
Air cooling units (ACU) are used at all the gas fields for cooling natural gas after compressing. When using ACUs on raw (wet) gas in a low temperature condition, there is a danger of hydrate plug formation in the heat exchanging tubes of the ACU. To predict possible hydrate formation, a mathematical model of the air cooler thermal behavior used in the control system shall adequately calculate not only gas temperature at the cooler's outlet, but also a dew point value, a temperature at which condensation, as well as the gas hydrate formation point, onsets. This paper proposes a mathematical model allowing one to determine the pressure in the air cooler which makes hydrate formation for a given gas composition possible.
Split Stirling linear cryogenic cooler for a new generation of high temperature infrared imagers
NASA Astrophysics Data System (ADS)
Veprik, A.; Zechtzer, S.; Pundak, N.
2010-04-01
Split linear cryocoolers find use in a variety of infrared equipment installed in airborne, heliborne, marine and vehicular platforms along with hand held and ground fixed applications. An upcoming generation of portable, high-definition night vision imagers will rely on the high-temperature infrared detectors, operating at elevated temperatures, ranging from 95K to 200K, while being able to show the performance indices comparable with these of their traditional 77K competitors. Recent technological advances in industrial development of such high-temperature detectors initialized attempts for developing compact split Stirling linear cryogenic coolers. Their known advantages, as compared to the rotary integral coolers, are superior flexibility in the system packaging, constant and relatively high driving frequency, lower wideband vibration export, unsurpassed reliability and aural stealth. Unfortunately, such off-the-shelf available linear cryogenic coolers still cannot compete with rotary integral rivals in terms of size, weight and power consumption. Ricor developed the smallest in the range, 1W@95K, linear split Stirling cryogenic cooler for demanding infrared applications, where power consumption, compactness, vibration, aural noise and ownership costs are of concern.
Targets for producing high purity I-123
NASA Technical Reports Server (NTRS)
Blue, J. W. (Inventor)
1978-01-01
Tellurium powder in improved targets is bombarded with a cyclotron beam to produce Xe-123. Flowing gas streams carry the Xe-123 through one cold trap which removes Xe-123 that subsequently decays to I-123. During this bombardment energy is deposited in the target material causing its temperature to rise. Some of the tellurium vaporizes and subsequently condenses on surfaces that are cooler than the vaporization temperature. Provision is made for the repeated bombardment of this condensed tellurium.
Cryogenic Eyesafer Laser Optimization for Use Without Liquid Nitrogen
2014-02-01
liquid cryogens. This calls for optimal performance around 125–150 K—high enough for reasonably efficient operation of a Stirling cooler. We...state laser system with an optimum operating temperature somewhat higher—ideally 125–150 K—can be identified, then a Stirling cooler can be used to...needed to optimize laser performance in the desired temperature range. This did not include actual use of Stirling coolers, but rather involved both
Calcium silicate insulation structure
Kollie, Thomas G.; Lauf, Robert J.
1995-01-01
An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.
Venus Surface Power and Cooling System Design
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Mellott, Kenneth D.
2004-01-01
A radioisotope power and cooling system is designed to provide electrical power for the a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors simply cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep certain components at a temperature below ambient. The fundamental cooling requirements are comprised of the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus. Assuming 5 cm radial thickness of ceramic blanket insulation, the ambient heat load was estimated at approximately 77 watts. With an estimated quantity of 10 watts of heat generation from electronics and sensors, and to accommodate some level of uncertainty, the total heat load requirement was rounded up to an even 100 watts. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. The maximum theoretically obtainable efficiency is 47.52 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500 watt power class, laboratory-tested Stirling engines at GRC. The overall efficiency is calculated to be 23.36 %. The mass of the power converter is estimated at approximately 21.6 kg.
Infrared thermography in newborns: the first hour after birth.
Christidis, Iris; Zotter, Heinz; Rosegger, Hellfried; Engele, Heidi; Kurz, Ronald; Kerbl, Reinhold
2003-01-01
It was the aim of this study to investigate the surface temperature in newborns within the first hour after delivery. Furthermore, the influence of different environmental conditions with regard to surface temperature was documented. Body surface temperature was recorded under several environmental conditions by use of infrared thermography. 42 newborns, all delivered at term and with weight appropriate for date, were investigated under controlled conditions. The surface temperature immediately after birth shows a uniform picture of the whole body; however, it is significantly lower than the core temperature. Soon after birth, peripheral sites become cooler whereas a constant temperature is maintained at the trunk. Bathing in warm water again leads to a more even temperature profile. Radiant heaters and skin-to-skin contact with the mother are both effective methods to prevent heat loss in neonates. Infrared thermography is a simple and reliable tool for the measurement of skin temperature profiles in neonates. Without the need of direct skin contact, it may be helpful for optimizing environmental conditions at delivery suites and neonatal intensive-care units. Copyright 2003 S. Karger AG, Basel
SW-MW infrared spectrometer for lunar mission
NASA Astrophysics Data System (ADS)
Banerjee, Arup; Biswas, Amiya; Joshi, Shaunak; Kumar, Ankush; Rehman, Sami; Sharma, Satish; Somani, Sandip; Bhati, Sunil; Karelia, Jitendra; Saxena, Anish; Chowdhury, Arup R.
2016-04-01
SW-MW Imaging Infrared Spectrometer, the Hyperspectral optical imaging instrument is envisaged to map geomorphology and mineralogy of lunar surface. The instrument is designed to image the electro-magnetic energy emanating from moon's surface with high spectral and spatial resolution for the mission duration from an altitude of 100 km. It is designed to cover 0.8 to 5 μm in 250 spectral bands with GSD 80m and swath 20km. Primarily, there are three basic optical segments in the spectrometer. They are fore optics, dispersing element and focusing elements. The payload is designed around a custom developed multi-blaze convex grating optimized for system throughput. The considerations for optimization are lunar radiation, instrument background, optical throughput, and detector sensitivity. HgCdTe (cooled using a rotary stirling cooler) based detector array (500x256 elements, 30μm) is being custom developed for the spectrometer. Stray light background flux is minimized using a multi-band filter cooled to cryogenic temperature. Mechanical system realization is being performed considering requirements such as structural, opto-mechanical, thermal, and alignment. The entire EOM is planned to be maintained at 240K to reduce and control instrument background. Al based mirror, grating, and EOM housing is being developed to maintain structural requirements along with opto- mechanical and thermal. Multi-tier radiative isolation and multi-stage radiative cooling approach is selected for maintaining the EOM temperature. EOM along with precision electronics packages are planned to be placed on the outer and inner side of Anti-sun side (ASS) deck. Power and Cooler drive electronics packages are planned to be placed on bottom side of ASS panel. Cooler drive electronics is being custom developed to maintain the detector temperature within 100mK during the imaging phase. Low noise detector electronics development is critical for maintaining the NETD requirements at different target temperatures. Subsequent segments of the paper bring out system design aspects and trade-off analyses.
Caribbean mesophotic coral ecosystems are unlikely climate change refugia.
Smith, Tyler B; Gyory, Joanna; Brandt, Marilyn E; Miller, William J; Jossart, Jonathan; Nemeth, Richard S
2016-08-01
Deeper coral reefs experience reduced temperatures and light and are often shielded from localized anthropogenic stressors such as pollution and fishing. The deep reef refugia hypothesis posits that light-dependent stony coral species at deeper depths are buffered from thermal stress and will avoid bleaching-related mass mortalities caused by increasing sea surface temperatures under climate change. This hypothesis has not been tested because data collection on deeper coral reefs is difficult. Here we show that deeper (mesophotic) reefs, 30-75 m depth, in the Caribbean are not refugia because they have lower bleaching threshold temperatures than shallow reefs. Over two thermal stress events, mesophotic reef bleaching was driven by a bleaching threshold that declines 0.26 °C every +10 m depth. Thus, the main premise of the deep reef refugia hypothesis that cooler environments are protective is incorrect; any increase in temperatures above the local mean warmest conditions can lead to thermal stress and bleaching. Thus, relatively cooler temperatures can no longer be considered a de facto refugium for corals and it is likely that many deeper coral reefs are as vulnerable to climate change as shallow water reefs. © 2015 John Wiley & Sons Ltd.
Ball Aerospace Long Life, Low Temperature Space Cryocoolers
NASA Astrophysics Data System (ADS)
Glaister, D. S.; Gully, W.; Marquardt, E.; Stack, R.
2004-06-01
This paper describes the development, qualification, characterization testing and performance at Ball Aerospace of long life, low temperature (from 4 to 35 K) space cryocoolers. For over a decade, Ball has built long life (>10 year), multi-stage Stirling and Joule-Thomson (J-T) cryocoolers for space applications, with specific performance and design features for low temperature operation. As infrared space missions have continually pushed for operation at longer wavelengths, the applications for these low temperature cryocoolers have increased. The Ball cryocooler technologies have culminated in the flight qualified SB235 Cryocooler and the in-development 6 K NASA/JPL ACTDP (Advanced Cryocooler Technology Development Program) Cryocooler. The SB235 and its model derivative SB235E are 2-stage coolers designed to provide simultaneous cooling at 35 K (typically, for Mercury Cadmium Telluride or MCT detectors) and 100 K (typically, for the optics) and were baselined for the Raytheon SBIRS Low Track Sensor. The Ball ACTDP cooler is a hybrid Stirling/J-T cooler that has completed its preliminary design with an Engineering Model to be tested in 2005. The ACTDP cooler provides simultaneous cooling at 6 K (typically, for either doped Si detectors or as a sub-Kelvin precooler) and 18 K (typically, for optics or shielding). The ACTDP cooler is under development for the NASA JWST (James Webb Space Telescope), TPF (Terrestrial Planet Finder), and Con-X (Constellation X-Ray) missions. Both the SB235 and ACTDP Coolers are highly leveraged off previous Ball space coolers including multiple life test and flight units.
Chua, T H
2012-03-01
According to the report of the Intergovernmental Panel on Climate Change (IPCC), Malaysia will experience an increase of 3-5°C in the future. As the development of the malaria parasite, Plasmodium falciparum, is sensitive to temperature, we investigated, using computer models, the effect of increase of 3º and 5ºC on the possible changes in the epidemiology of malaria transmission of P. falciparum in Malaysia. Four environmentally different locations were selected: Kuala Lumpur (KL), Cameron Highlands (CH), Kota Kinabalu (KK) and Kinabalu Park (KP). The extrinsic incubation period (EIP) was estimated using hourly temperatures and the mean daily temperatures. The EIP values estimated using the mean daily temperature were lower than those computed from hourly temperatures in warmer areas (KL, KK), but higher in the cooler areas (CH, KP). The computer simulations also indicated that the EIP will be decreased if the temperature was raised by 3º or 5ºC, with the effect more pronounced for the greater temperature increase, and for the cooler places. The vector cohort that is still alive at a time to transmit malaria (s(EIP)) also increased when the temperature was raised, with the increase more pronounced in the cooler areas. This study indicates an increase in temperature will have more significant effect in shortening the EIP in a cooler place (eg CH, KP), resulting in a greater s(EIP), and consequently increasing the transmission intensity and malaria risk. A temperature increase arising from the global climate change will likely affect the epidemiology of malaria in Malaysia, especially in the cooler areas.
Coral-Derived Western Pacific Tropical Sea Surface Temperatures During the Last Millennium
NASA Astrophysics Data System (ADS)
Chen, Tianran; Cobb, Kim M.; Roff, George; Zhao, Jianxin; Yang, Hongqiang; Hu, Minhang; Zhao, Kuan
2018-04-01
Reconstructions of ocean temperatures prior to the industrial era serve to constrain natural climate variability on decadal to centennial timescales, yet relatively few such observations are available from the west Pacific Warm Pool. Here we present multiple coral-based sea surface temperature reconstructions from Yongle Atoll, in the South China Sea over the last 1,250 years (762-2013 Common Era [CE]). Reconstructed coral Sr/Ca-sea surface temperatures indicate that the "Little Ice Age (1711-1817 CE)" period was 0.7°C cooler than the "Medieval Climate Anomaly (913-1132 CE)" and that late 20th century warming of the western Pacific is likely unprecedented over the past millennium. Our findings suggest that the Western Pacific Warm Pool may have expanded (contracted) during the Medieval Climate Anomaly (Little Ice Age), leading to a strengthening (weakening) of the Asian summer monsoon, as recorded in Chinese stalagmites.
NASA Technical Reports Server (NTRS)
Kwok, Ron; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)
2002-01-01
The 17-year (1982-1998) trend in surface temperature shows a general cooling over the Antarctic continent, warming of the sea ice zone, with moderate changes over the oceans. Warming of the peripheral seas is associated with negative trends in the regional sea ice extent. Effects of the Southern Hemisphere Annular Mode (SAM) and the extrapolar Southern Oscillation (SO) on surface temperature are quantified through regression analysis. Positive polarities of the SAM are associated with cold anomalies over most of Antarctica, with the most notable exception of the Antarctic Peninsula. Positive temperature anomalies and ice edge retreat in the Pacific sector are associated with El Nino episodes. Over the past two decades, the drift towards high polarity in the SAM and negative polarity in the SO indices couple to produce a spatial pattern with warmer temperatures in the Antarctic Peninsula and peripheral seas, and cooler temperatures over much of East Antarctica.
Using Thermoelectric Coolers to Enhance Loop Heat Pipe Performance
NASA Technical Reports Server (NTRS)
Ku, Jentung; Butler, Dan; Ottenstein, Laura; Birur, Gajanana
2005-01-01
Contents include the following: Loop Heat Pipe (LHP) operating temperature. LHP start-up issues. How Thermoelectric Cooler (TECs) can enhance LHP performance: start-up; operating temperature control. Experimental studies: LHP with one evaporator and one condenser; LHP with two evaporators and two condensers. Conclusion.
Buccola, Norman L.
2017-05-31
Green Peter and Foster Dams on the Middle and South Santiam Rivers, Oregon, have altered the annual downstream water temperature profile (cycle). Operation of the dams has resulted in cooler summer releases and warmer autumn releases relative to pre-dam conditions, and that alteration can hinder recovery of various life stages of threatened spring-run Chinook salmon (Oncorhyncus tshawytscha) and winter steelhead (O. mykiss). Lake level management and the use of multiple outlets from varying depths at the dams can enable the maintenance of a temperature regime more closely resembling that in which the fish evolved by releasing warm surface water during summer and cooler, deeper water in the autumn. At Green Peter and Foster Dams, the outlet configuration is such that temperature control is often limited by hydropower production at the dams. Previously calibrated CE-QUAL-W2 water temperature models of Green Peter and Foster Lakes were used to simulate the downstream thermal effects from hypothetical structures and modified operations at the dams. Scenarios with no minimum power production requirements allowed some releases through shallower and deeper outlets (summer and autumn) to achieve better temperature control throughout the year and less year-to-year variability in autumn release temperatures. Scenarios including a hypothetical outlet floating 1 meter below the lake surface resulted in greater ability to release warm water during summer compared to existing structures. Later in Autumn (October 15–December 31), a limited amount of temperature control was realized downstream from Foster Dam by scenarios limited to operational changes with existing structures, resulting in 15-day averages within 1.0 degree Celsius of current operations.
Simpson, James J.; Hufford, Gary L.; Fleming, Michael D.; Berg, Jared S.; Ashton, J.B.
2002-01-01
Mean monthly climate maps of Alaskan surface temperature and precipitation produced by the parameter-elevation regression on independent slopes model (PRISM) were analyzed. Alaska is divided into interior and coastal zones with consistent but different climatic variability separated by a transition region; it has maximum interannual variability but low long-term mean variability. Pacific decadal oscillation (PDO)- and El Nino Southern Oscillation (ENSO)-type events influence Alaska surface temperatures weakly (1-2/spl deg/C) statewide. PDO has a stronger influence than ENSO on precipitation but its influence is largely localized to coastal central Alaska. The strongest influence of Arctic oscillation (AO) occurs in northern and interior Alaskan precipitation. Four major ecosystems are defined. A major eco-transition zone occurs between the interior boreal forest and the coastal rainforest. Variability in insolation, surface temperature, precipitation, continentality, and seasonal changes in storm track direction explain the mapped ecosystems. Lack of westward expansion of the interior boreal forest into the western shrub tundra is influenced by the coastal marine boundary layer (enhanced cloud cover, reduced insolation, cooler surface and soil temperatures).
High temperature desulfurization of synthesis gas
Najjar, Mitri S.; Robin, Allen M.
1989-01-01
The hot process gas stream from the partial oxidation of sulfur-containing heavy liquid hydrocarbonaceous fuel and/or sulfur-containing solid carbonaceous fuel comprising gaseous mixtures of H.sub.2 +CO, sulfur-containing gases, entrained particulate carbon, and molten slag is passed through the unobstructed central passage of a radiant cooler where the temperature is reduced to a temperature in the range of about 1800.degree. F. to 1200.degree. F. From about 0 to 95 wt. % of the molten slag and/or entrained material may be removed from the hot process gas stream prior to the radiant cooler with substantially no reduction in temperature of the process gas stream. In the radiant cooler, after substantially all of the molten slag has solidified, the sulfur-containing gases are contacted with a calcium-containing material to produce calcium sulfide. A partially cooled stream of synthesis gas, reducing gas, or fuel gas containing entrained calcium sulfide particulate matter, particulate carbon, and solidified slag leaves the radiant cooler containing a greatly reduced amount of sulfur-containing gases.
A Coating That Cools and Cuts Costs
NASA Technical Reports Server (NTRS)
2004-01-01
To enable low-cost space access for advanced exploration vehicles, researchers from NASA's Ames Research Center invented and patented a protective coating for ceramic materials (PCCM) in 1994. The technology, originally intended to coat the heat shields of the X-33 and X-34 next-generation vehicles for optimum protection during atmospheric reentry, greatly reduces surface temperature of a thermal control structure while it reradiates absorbed energy to a cooler surface or body, thus preventing degradation of the underlying ceramic material.
NASA Astrophysics Data System (ADS)
Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.
2015-12-01
High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Cohen, Charles; Kirkpatrick, Cody
2004-01-01
Prior parameter space studies of simulated deep convection are extended to embrace variations in the ambient temperature at the Lifted Condensation Level (LCL). Within the context of the parameter space study design, changes in LCL temperature are roughly equivalent to changes in the ambient precipitable water. Two series of simulations are conducted, one with a warm LCL that is associated with approximately 60 mm of precipitable water, and another with LCL temperatures 8 C cooler, so that PW is reduced to roughly 30 mm. The sets of simulations include tests of the impact of changes in the buoyancy and shear profile shapes and of changes in mixed and moist layer depths, all of which have been shown to be important in prior work. Simulations discussed here feature values of bulk convective available potential energy (CAPE) of 800, 2000, or 3200 Joules per kilogram, and a single semicircular hodograph having radius of 12 meters per second, but with variable vertical shear. The simulations reveal a consistent trend toward stronger peak updraft speeds for the cooler LCL temperature (reduced PW) cases, if all other environmental parameters are held constant. Roughly comparable increases in updraft speeds are noted for all combinations of LCL and level of free convection heights. These increases in updraft strength are evidently the result of both the reduction of condensate loading aloft and the lower altitudes at which the latent heat release by freezing and deposition commences in the cooler, low-PW environments. Because the latent heat of fusion adds relatively more energy to the updrafts at low CAPE, those storms show more strengthening at low PW than do the larger CAPE storms. As expected, maximum storm precipitation rates tend to diminish as PW is decreased, but only slightly, and by amounts not proportionate to the decrease in PW. The low-PW cases thus actually feature larger environment-relative precipitation efficiency than do the high-PW cases. In addition, more hail reaches the surface in the low-PW cases because of reduced melting in the cooler environments.
Thermal energy storage evaluation and life testing
NASA Astrophysics Data System (ADS)
Richter, R.
1983-01-01
Two thermal energy storage (TES) units which were built under a previous contract were tested with a Hi-Cap Vuilleumier cryogenic cooler in the facility of the Hughes Aircraft Corporation. The objective of the program was the evaluation of the behavior of the TES units as well as the determination of the temperature history of the three cold stages of the Vuilleumier cryogenic cooler during cyclic charging and discharging of the TES units. The test results have confirmed that thermal energy storage can provide the necessary thermal power to the hot cylinders of the Vuilleumier cryogenic cooler at the required operating temperatures. Thereby the continuous cooling capability of the cooler during an eclipse when no electrical power is available is being assured. The cold stage temperature amplitudes during a complete charge discharge cycle of the TES units were only about 10% of the amplitudes which were observed when the Hi-Cap Vuilleumier cryogenic cooler was operating without thermal energy storage backup in a simulated orbit of 54 minutes sun exposure and 18 minutes eclipse time. The themal conductivity of the molten thermal energy storage salt was apparently only a fraction of the thermal conductivity which had been assumed for the prediction of the upper heater temperatures. A redesign of the heater temperatures below 1480 degrees F which is now required for full charging of the TES units within 54 minutes with the present heater design.
150K - 200K miniature pulse tube cooler for micro satellites
NASA Astrophysics Data System (ADS)
Chassaing, Clément; Butterworth, James; Aigouy, Gérald; Daniel, Christophe; Crespin, Maurice; Duvivier, Eric
2014-01-01
Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 μm and 2.0 μm. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention is therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.
NASA Technical Reports Server (NTRS)
Kittel, Peter; Feller, Jeff; Roach, Pat; Kashani, Ali; Helvensteijn, Ben
2004-01-01
Many planetary and Earth science missions require cooling to increase sensitivity and reduce thermal noise of detectors, for preserving high Isp propellants, or for protecting instruments from hostile environments. For space applications, such cooling requires reliable, efficient, long-life coolers that are relatively compact, lightweight, and have low vibration. We have developed and are developing coolers that meet these requirements over a wide range of temperatures. These include pulse tube coolers cooling from 300 K to below 6 K, a magnetic cooler cooling from 10 K to 2 K, a 3He sorption cooler cooling from 2 K to 0.3 K and a helium dilution cooler cooling from 0.3 K to 0.05 K. Details of these coolers and their advantages are presented.
Water and sediment temperatures at mussel beds in the upper Mississippi River basin
Newton, Teresa J.; Sauer, Jennifer; Karns, Byron
2013-01-01
Native freshwater mussels are in global decline and urgently need protection and conservation. Declines in the abundance and diversity of North American mussels have been attributed to human activities that cause pollution, waterquality degradation, and habitat destruction. Recent studies suggest that effects of climate change may also endanger native mussel assemblages, as many mussel species are living close to their upper thermal tolerances. Adult and juvenile mussels spend a large fraction of their lives burrowed into sediments of rivers and lakes. Our objective was to measure surface water and sediment temperatures at known mussel beds in the Upper Mississippi (UMR) and St. Croix (SCR) rivers to estimate the potential for sediments to serve as thermal refugia. Across four mussel beds in the UMR and SCR, surface waters were generally warmer than sediments in summer, and were cooler than sediments in winter. This suggests that sediments may act as a thermal buffer for mussels in these large rivers. Although the magnitude of this effect was usually <3.0°C, sediments were up to 7.5°C cooler at one site in May, suggesting site-specific variation in the ability of sediments to act as thermal buffers. Sediment temperatures in the UMR exceeded those shown to cause mortality in laboratory studies. These data suggest that elevated water temperatures resulting from global warming, thermal discharges, water extraction, and/or droughts have the potential to adversely affect native mussel assemblages.
2015-10-26
On October 17, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image of a thick haze hanging over eastern China. In the north, the large city of Beijing is completely obscured from view, as is much of the landscape. The haze thins slightly over the Bohai Sea. Further south, sediment pours into the East China Sea near the city of Shanghai. Heavy haze is common in this region, and tends to worsen in October through January, when cold, heavy air traps pollutants near the surface of the Earth. It is likely that this scene was caused by such a temperature inversion. Normally, air is warmest near the surface of the Earth. But sometimes a mass of warm air will move the cooler air, so the atmosphere actually warms with the altitude. Cool air does not have energy to rise through the warm air, vertical circulation slows and air becomes trapped near the surface. Any pollution that is emitted into the cooler air will also get trapped, increasing low-level air pollution and haze. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team
Small high cooling power space cooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, T. V.; Raab, J.; Durand, D.
The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the adventmore » of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.« less
An implantable nerve cooler for the exercising dog.
Borgdorff, P; Versteeg, P G
1984-01-01
An implantable nerve cooler has been constructed to block cervical vago-sympathetic activity in the exercising dog reversibly. An insulated gilt brass container implanted around the nerve is perfused with cooled alcohol via silicone tubes. The flow of alcohol is controlled by an electromagnetic valve to keep nerve temperature at the required value. Nerve temperature is measured by a thermistor attached to the housing and in contact with the nerve. It is shown that, during cooling, temperature at this location differs less than 2 degrees C from nerve core temperature. Measurement of changes in heart rate revealed that complete vagal block in the conscious animal is obtained at a nerve temperature of 2 degrees C and can be achieved within 50 s. During steady-state cooling in the exercising animal nerve temperature varied less than 0.5 degree C. When the coolers after 2 weeks of implantation were removed they showed no oxydation and could be used again.
Initial observation of upwelling along east coast of Peninsular Malaysia musica gratis
NASA Astrophysics Data System (ADS)
Akhir, M.; Tanggang, F.
2013-12-01
There is no published evidence of upwelling in coastal area along the east coast of Peninsular Malaysia. However numbers of recent cruise data collected during the southwest monsoon found features of thermocline lifting and isolated cooler temperature water along the coast, These sign was observed along the 104°E from numbers of parallel transects. To confirm the presence of upwelling, satellite remote sensing data was used, and numerical model experiments were conducted. Cooler sea-surface temperature along the coast was observed from both in-situ and satellite data, while upward movement in the vertical profiles agreed with the location of upwelling from both in-situ and satellite data. Moreover, these data also show that the upwelled water band along the 104°E longitude stretch approximately 650 km long. Initially, southwesterly wind during this season is believed to be the important mechanism that contributed to this wind-induced Ekman upwelling. musica gratis
Transient Air Infiltration/Exfiltration in Walk-In Coolers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faramarzi, Ramin; Navaz, H. K.; Kamensky, K.
Walk-in coolers are room-sized, insulated, and refrigerated compartments for food product storage. Walk-ins have areas equal or below 280 m2 (3,000 ft2), and are classified either as coolers operating above 0 degrees C (32 degrees F) (medium-temperature) to store fresh fruit, vegetables, and dairy products, or freezers that operate below 0 degrees C (32 degrees F) (low-temperature) to meet health and safety standards of frozen food products. Walk-ins are typically found in restaurants as well as small- and medium-to-large grocery stores or supermarkets.
Micro-Scale Avionics Thermal Management
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2001-01-01
Trends in the thermal management of avionics and commercial ground-based microelectronics are converging, and facing the same dilemma: a shortfall in technology to meet near-term maximum junction temperature and package power projections. Micro-scale devices hold the key to significant advances in thermal management, particularly micro-refrigerators/coolers that can drive cooling temperatures below ambient. A microelectromechanical system (MEMS) Stirling cooler is currently under development at the NASA Glenn Research Center to meet this challenge with predicted efficiencies that are an order of magnitude better than current and future thermoelectric coolers.
IKEA Geothermal System Could Inform Others | News | NREL
less energy and money to make the IKEA store opening next year in suburban Denver feel pleasant when the sun bakes or when the snow drifts, thanks to 130 holes dug into the Earth, where the temperature the winter. When warm air at the surface is passed over the cool pipes, the air gets cooler. When the
NASA Astrophysics Data System (ADS)
Shaffer, James; Dunmire, Howard; Samuels, Raemon; Trively, Martin
1989-12-01
The U.S. Army CECOM Center for Night Vision and Electro-Optics (C2NVEO) is responsible for developing cryogenic coolers for all infrared imaging systems for the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers in fielded Army weapon systems such as: M60A3 and M1 Tanks, Bradley Fighting Vehicle (BFV) System, tube-launched, optically tracked, wire-guided (TOW) Missile System, and Army Attack Helicopters. Currently, there are over 30,000 coolers in fielded systems and several thousand more are added each year. C2NVEO conducts development programs and monitors contractor internal research and development efforts to improve cooler performance such as reliability, audio noise, power consumption, and output vibration. The HD-1045 1/4-Watt Split Stirling Cooler was originally designed and developed by the C2NVEO in the early 1970s as a replacement for the gas bottle/cryostat used on the Manportable Common Thermal Night Sights. To date, however, the HD-1045 cooler has been used in the field in the Integrated Sight Unit (ISU) of the BFV System and is currently being used in the Driver Thermal Viewer (DTV) full scale development program. This document describes and reports the results of reliability testing done on Hughes Temperature Controlled 1/4 Watt split Cycle Cryogenic Coolers (HD-1045 (V)/UA), referred to herein as the coolers.
The variability of California summertime marine stratus: impacts on surface air temperatures
Iacobellis, Sam F.; Cayan, Daniel R.
2013-01-01
This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.
Stohlgren, T.J.; Chase, T.N.; Pielke, R.A.; Kittel, T.G.F.; Baron, Jill S.
1998-01-01
We present evidence that land use practices in the plains of Colorado influence regional climate and vegetation in adjacent natural areas in the Rocky Mountains in predictable ways. Mesoscale climate model simulations using the Colorado State University Regional Atmospheric Modelling System (RAMS) projected that modifications to natural vegetation in the plains, primarily due to agriculture and urbanization, could produce lower summer temperatures in the mountains. We corroborate the RAMS simulations with three independent sets of data: (i) climate records from 16 weather stations, which showed significant trends of decreasing July temperatures in recent decades; (ii) the distribution of seedlings of five dominant conifer species in Rocky Mountain National Park, Colorado, which suggested that cooler, wetter conditions occurred over roughly the same time period; and (iii) increased stream flow, normalized for changes in precipitation, during the summer months in four river basins, which also indicates cooler summer temperatures and lower transpiration at landscape scales. Combined, the mesoscale atmospheric/land-surface model, short-term in regional temperatures, forest distribution changes, and hydrology data indicate that the effects of land use practices on regional climate may overshadow larger-scale temperature changes commonly associated with observed increases in CO2 and other greenhouse gases.
Rapid thermal processing by stamping
Stradins, Pauls; Wang, Qi
2013-03-05
A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.
Development of the mechanical cryocooler system for the Sea Land Surface Temperature Radiometer
NASA Astrophysics Data System (ADS)
Camilletti, Adam; Burgess, Christopher; Donchev, Anton; Watson, Stuart; Weatherstone Akbar, Shane; Gamo-Albero, Victoria; Romero-Largacha, Victor; Caballero-Olmo, Gema
2014-11-01
The Sea Land Surface Temperature Radiometer is a dual view Earth observing instrument developed as part of the European Global Monitoring for Environment and Security programme. It is scheduled for launch on two satellites, Sentinel 3A and 3B in 2014. The instrument detectors are cooled to below 85 K by two split Stirling Cryocoolers running in hot redundancy. These coolers form part of a cryocooler system that includes a support structure and drive electronics. Aspects of the system design, including control and reduction of exported vibration are discussed; and results, including thermal performance and exported vibration from the Engineering Model Cryooler System test campaign are presented.
CFD study of a simple orifice pulse tube cooler
NASA Astrophysics Data System (ADS)
Zhang, X. B.; Qiu, L. M.; Gan, Z. H.; He, Y. L.
2007-05-01
Pulse tube cooler (PTC) has the advantages of long-life and low vibration over the conventional cryocoolers, such as G-M and Stirling coolers because of the absence of moving parts in low temperature. This paper performs a two-dimensional axis-symmetric computational fluid dynamic (CFD) simulation of a GM-type simple orifice PTC (OPTC). The detailed modeling process and the general results such as the phase difference between velocity and pressure at cold end, the temperature profiles along the wall as well as the temperature oscillations at cold end with different heat loads are presented. Emphases are put on analyzing the complicated phenomena of multi-dimensional flow and heat transfer in the pulse tube under conditions of oscillating pressure. Swirling flow pattern in the pulse tube is observed and the mechanism of formation is analyzed in details, which is further validated by modeling a basic PTC. The swirl causes undesirable mixing in the thermally stratified fluid and is partially responsible for the poor overall performance of the cooler, such as unsteady cold-end temperature.
Qualification campaign of the 50 mK hybrid sorption-ADR cooler for SPICA/SAFARI
NASA Astrophysics Data System (ADS)
Duval, J.-M.; Duband, L.; Attard, A.
2015-12-01
SAFARI (SpicA FAR-infrared Instrument) is an infrared instrument planned to be part of the SPICA (SPace Infrared telescope for Cosmology and Astrophysics) Satellite. It will offer high spectral resolution in the 30 - 210 μm frequency range. SAFARI will benefit from the cold telescope of SPICA and to obtain the required detectors sensitivity, a temperature of 50 mK is required. This temperature is reached thanks to the use of a hybrid sorption - ADR (Adiabatic Demagnetization Refrigerator) cooler presented here. This cooler provides respectively 14 μW and 0.4 μW of cooling power at 300 mK and 50 mK. The cooler is planned to advantageously use two thermal interfaces of the instrument at 1.8 and 4.9 K. One of the challenges discussed in this paper is the low power available at each intercept. A dedicated laboratory electronic is being designed based on previous development with a particular focus on the 50 mK readout. Temperature regulation at 50 mK is also discussed. This cooler has been designed following flight constraints and will reach a high TRL, including mechanical and environmental tests at the end of the on-going qualification campaign.
Design and Operation of the RHIC 80-K Cooler
NASA Astrophysics Data System (ADS)
Nicoletti, A.; Reuter, A.; Sidi-Yekhlef, A.; Talty, P.; Quimby, E.
2004-06-01
A stand-alone cryogenic system designed to maintain the magnets of the Relativistic Heavy Ion Collider (RHIC) at between 80 and 100 K during accelerator shutdown periods has been conceived and designed at Brookhaven National Laboratory and built by PHPK Technologies of Columbus, Ohio. Since most thermal contraction occurs above this temperature, this unit, referred to as the 80-K Cooler, will eliminate the stresses associated with thermal cycling. The cooling system will provide the necessary refrigeration by circulating cooled helium gas at approximately 1500 kPA through the RHIC heat shields and magnets. This helium is cooled by heat exchange with liquid nitrogen and circulated via three cold centrifugal pumps. The nominal delivered cooling capacity required to maintain the magnets at temperature is approximately 36 kW, primarily intercepted at the heat shield. The system also has separate heat exchangers for use as a pre-cooler from room temperature to 82 K. Selection of sextant or sextants for pre-cooling is designed into the RHIC cryogenic distribution system. Topics covered include Cooler design decisions, details of the Cooler as built, integration into the existing RHIC cryogenic system and initial operating experience.
150K - 200K miniature pulse tube cooler for micro satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassaing, Clément; Butterworth, James; Aigouy, Gérald
Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 μm and 2.0 μm. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention ismore » therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.« less
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine.... (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and contamination correction. (v) NOX humidity...
Integrated exhaust gas recirculation and charge cooling system
Wu, Ko-Jen
2013-12-10
An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.
On-Orbit Performance of the TES Pulse Tube Cryocooler System and the Instrument - Six Years in Space
NASA Technical Reports Server (NTRS)
Rodriguez, J. I.; Na-Nakornpanom, A.
2011-01-01
The Tropospheric Emission Spectrometer (TES) instrument pulse tube cryocoolers began operation 36 days after launch of the NASA Earth Observing System (EOS) Aura spacecraft on July 15, 2004. TES is designed with four infrared Mercury Cadmium Telluride focal plane arrays in two separate housings cooled by a pair of Northrup Grumman Aerospace Systems (NGAS) single-stage pulse tube cryocoolers. The instrument also makes use of a two-stage passive cooler to cool the optical bench. The instrument is a high-resolution infrared imaging Fourier transform spectrometer with 3.3-15.4 micron spectral coverage. After four weeks of outgassing, the instrument optical bench and focal planes were cooled to their operating temperatures to begin science operations. During the early months of the mission, ice contamination of the cryogenic surfaces including the focal planes led to increased cryocooler loads and the need for periodic decontamination cycles. After a highly successful 5 years of continuous in-space operations, TES was granted a 2 year extension. This paper reports on the TES cryogenic system performance including the two-stage passive cooler. After a brief overview of the cryogenic design, the paper presents detailed data on the highly successful space operation of the pulse tube cryocoolers and instrument thermal design over the past six years since the original turn-on in 2004. The data shows the cryogenic contamination decreased substantially to where decontamination cycles are now performed every six months. The cooler stroke required for constant-temperature operation has not increased indicating near-constant cooler efficiency and the instrument's thermal design has also provided a nearly constant heat rejection sink. At this time TES continues to operate in space providing important Earth science data.
Preliminary design trade-offs for a multi-mission stored cryogen cooler
NASA Technical Reports Server (NTRS)
Sherman, A.
1978-01-01
Preliminary design studies were performed for a multi-mission solid cryogen cooler having a wide range of application for both the shuttle sortie and free flyer missions. This multi-mission cooler (MMC) is designed to be utilized with various solid cryogens to meet a wide range of instrument cooling from 10 K (with solid hydrogen) to 90 K. The baseline cooler utilizes two stages of solid cryogen and incorporates an optional, higher temperature third stage which is cooled by either a passive radiator or a thermoelectric cooler. The MMC has an interface which can accommodate a wide variety of instrument configurations. A shrink fit adapter is incorporated which allows a drop-in instrument integration. The baseline design provides cooling of approximately 1 watt over a 60 to 100 K temperature range and about 0.5 watts from 15 to 60 K for a one year lifetime. For low cooling loads and with use of the optional radiator shield, cooling lifetimes as great as 8 years are predicted.
Performance of the natural cooler to keep the freshness of vegetables and fruits in Medan City
NASA Astrophysics Data System (ADS)
Sitorus, T. B.; Ambarita, H.; Ariani, F.; Sitepu, T.
2018-02-01
One application in a direct evaporative cooling system was a natural cooler. The advantages of this system were not using the electrical energy and so far also environmentally. This research aims to obtain a performance analysis of the natural cooler as a store for vegetables and fruits in Medan city. The materials for natural cooler consists of teak wood and gunny. This study makes experiments during seven days in the open air. The parameter measurement on the weather was using HOBO devices and to record the temperature changes for vegetables or even fruits is using its acquisition data. The results showed that the maximum efficiency of the natural cooler could be obtained for 43.79% in the average air temperature of 30.51°C, the air humidity average is 85.12% with average solar radiation of 183.98 W/m2. Experimental data were showing that the condition of freshness on vegetables or even on fruits was heavily influenced by weather conditions.
2015-12-12
This side-by-side rendering of the Sun at the same time in two different wavelengths of extreme ultraviolet light helps to visualize the differing features visible in each wavelength (Dec. 10-11, 2015). Most prominently, we can see much finer strands of plasma looping above the surface in the 171 Angstrom wavelength (gold) than in the 304 Angstrom wavelength (red), which captures cooler plasma closer to the Sun's surface. SDO observes the Sun in 10 different wavelengths with each one capturing somewhat different features at various temperatures and elevations above the Sun. http://photojournal.jpl.nasa.gov/catalog/PIA20214
Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A.
The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed onmore » a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.« less
High-reliable linear cryocoolers and miniaturization developments at Thales Cryogenics
NASA Astrophysics Data System (ADS)
van der Weijden, H.; Benschop, A.; v. D. Groep, W.; Willems, D.; Mullie, J.
2010-04-01
Thales Cryogenics (TCBV) has an extensive background in delivering long life cryogenic coolers for military, civil and space programs. This cooler range is based on two main compressor concepts: close tolerance contact seals (UP) and flexure bearing (LSF/LPT) coolers. Main difference between these products is the Mean Time To Failure (MTTF). In this paper an overview of lifetime parameters will be listed versus the impact in the different cooler types. Also test results from both the installed base and the Thales Cryogenics test lab will be presented. New developments at Thales Cryogenics regarding compact long lifetime coolers will be outlined. In addition new developments for miniature linear cooler drive electronics with high temperature stability and power density will be described.
3. DETAIL OF RACKS AND TEMPERATURE/HUMIDITY CONTROL SYSTEM IN CURING ...
3. DETAIL OF RACKS AND TEMPERATURE/HUMIDITY CONTROL SYSTEM IN CURING ROOM ON LEVEL 6; LOOKING SOUTHEAST; ENVIRONMENT INSIDE THE CURING ROOM WAS CONTROLLED BY NIAGARA MODEL 87007 SPRAY COOLER AND BUFFALO FORGE CENTRIFUGAL FAN IN BACKGROUND - Rath Packing Company, Cooler Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
The biomechanics of the kidney: the isothermal function of the capsule adipose renis.
Rados, N; Keros, P; Trnski, D; Muftić, O
1993-01-01
The paper describes the research in the field of thermodynamics. It deals with the function of capsule adipose renis. This homogenous tissue of low temperature acts as an independent thermal conductor. In fact, by encapsulating the kidney, it acts as a vacuum-flask, providing insulation for the kidney from two surrounding thermal areas, the warmer being on the interperitoneum and the cooler on the skin surface.
A Subambient Open Roof Surface under the Mid-Summer Sun.
Gentle, Angus R; Smith, Geoff B
2015-09-01
A novel material open to warm air stays below ambient temperature under maximum solar intensities of mid-summer. It is found to be 11 °C cooler than a commercial white cool roof nearby. A combination of specially chosen polymers and a silver thin film yields values near 100% for both solar reflectance, and thermal emittance at infrared wavelengths from 7.9 to 13 μm.
The Along Track Scanning Radiometer (ATSR) for ERS1
NASA Astrophysics Data System (ADS)
Delderfield, J.; Llewellyn-Jones, D. T.; Bernard, R.; de Javel, Y.; Williamson, E. J.
1986-01-01
The ATSR is an infrared imaging radiometer which has been selected to fly aboard the ESA Remote Sensing Satellite No. 1 (ERS1) with the specific objective of accurately determining global Sea Surface Temperature (SST). Novel features, including the technique of 'along track' scanning, a closed Stirling cycle cooler, and the precision on-board blackbodies are described. Instrument subsystems are identified and their design trade-offs discussed.
SPICA sub-Kelvin cryogenic chains
NASA Astrophysics Data System (ADS)
Duband, L.; Duval, J. M.; Luchier, N.; Prouve, T.
2012-04-01
SPICA, a Japanese led mission, is part of the JAXA future science program and is planned for launch in 2018. SPICA will perform imaging and spectroscopic observations in the mid- and far-IR waveband, and is developing instrumentation spanning the 5-400 μm range. The SPICA payload features several candidate instruments, some of them requiring temperature down to 50 mK. This is currently the case for SAFARI, a core instrument developed by a European-based consortium, and BLISS proposed by CALTECH/JPL in the US. SPICA's distinctive feature is to actively cool its telescope to below 6 K. In addition, SPICA is a liquid cryogen free satellite and all the cooling will be provided by radiative cooling (L2 orbit) down to 30 K and by mechanical coolers for lower temperatures. The satellite will launch warm and slowly equilibrate to its operating temperatures once in orbit. This warm launch approach makes it possible to eliminate a large liquid cryogen tank and to use the mass saved to launch a large diameter telescope (3.2 m). This 4 K cooled telescope significantly reduces its own thermal radiation, offering superior sensitivity in the infrared region. The cryogenic system that enables this warm launch/cooled telescope concept is a key issue of the mission. This cryogenic chain features a number of cooling stages comprising passive radiators, Stirling coolers and several Joule Thomson loops, offering cooling powers at typically 20, 4.5, 2.5 and 1.7 K. The SAFARI and BLISS detectors require cooling to temperatures as low as 50 mK. The instrument coolers will be operated from these heat sinks. They are composed of a small demagnetization refrigerator (ADR) pre cooled by either a single or a double sorption cooler, respectively for SAFARI and BLISS. The BLISS cooler maintains continuous cooling at 300 mK and thus suppresses the thermal equilibrium time constant of the large focal plane. These hybrid architectures allow designing low weight coolers able to reach 50 mK. Because the sorption cooler has extremely low mass for a sub-Kelvin cooler, it allows the stringent mass budget to be met. These concepts are discussed in this paper.
NASA Technical Reports Server (NTRS)
1975-01-01
The design, fabrication, and testing of a radiative cooler are described. This cooler is an engineering model suitable for bench testing in the laboratory as a part of the 10-micrometer wavelength engineering model receiver, and conforms to the standard radiative cooler configuration, except that the inner stage and its support system were redesigned to accommodate the larger, heavier SAT detector. This radiative cooler will cool the detector to cryogenic temperature levels when the receiver is in a space environment or in a suitable thermal vacuum chamber. Equipment specifications are given along with the results of thermal tests, vibration tests, and electrical integrity tests.
NASA Astrophysics Data System (ADS)
Tward, E.; Nguyen, T.; Godden, J.; Toma, G.
2004-06-01
A high capacity miniature pulse tube cooler for space that is scaled from the High Efficiency Cryocooler (HEC) is being developed. The low mass (1.5 kg) integral pulse tube cryocooler can provide large cooling power over a wide temperature range (e.g., 5 W at 95 K). The cooler is designed to be compatible with the existing HEC flight electronics. A small back-to-back flexure compressor drives a pulse tube cold head which is integrated with the compressor. The cooler has been tested with both linear and coaxial cold heads. A description of the cooler and its performance in both linear and coaxial cold head versions is presented.
[Growth inhibition of Vibrio parahaemolyticus in seafood by tabletop dry ice cooler].
Maruyama, Yumi; Kimura, Bon; Fujii, Tateo; Tokunaga, Yoshinori; Matsubayashi, Megumi; Aikawa, Yasushi
2005-10-01
Tabletop dry ice coolers (three types; dome model, cap model and tripod model), which are used in kitchens and hotel banquet halls to refrigerate fresh seafood, were investigated to determine whether growth of Vibrio parahaemolyticus was inhibited by their use. On TSA plates containing 1.8% NaCl and fresh seafood (fillets of squid, pink shrimp and yellowtail), V. parahaemolyticus (O3:K6, TDH+) inoculated at 4 to 5 log CFU/sample and left at ambient temperature (25 degrees C) grew by 1.0 to 2.8 orders in 4 hours. In contrast, with tabletop coolers no significant increase in viable count occurred in 3 to 4 hours, confirming that tabletop coolers inhibited the growth of V. parahaemolyticus. The temperature in each tabletop cooler was kept below 10 degrees C for 80 to 135 min, though the CO2 gas concentration in them remained high for only a short time (0 to 75 min). It was presumed that the refrigeration function mainly contributed to growth inhibition. Our results indicate that tabletop dry ice coolers are helpful for prevention of food-borne disease due to V. parahaemolyticus in food-service locations, such as kitchens and banquet halls.
Hunt, A.J.
1983-09-13
The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.
Hunt, Arlon J.
1983-01-01
The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.
Radiant energy collection and conversion apparatus and method
Hunt, Arlon J.
1982-01-01
The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.
Radiant energy collection and conversion apparatus and method
Hunt, A.J.
The apparatus for collecting radiant energy and converting to alternate energy forms includes a housing having an interior space and a radiation transparent window allowing solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past the window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.
Simulating future water temperatures in the North Santiam River, Oregon
NASA Astrophysics Data System (ADS)
Buccola, Norman L.; Risley, John C.; Rounds, Stewart A.
2016-04-01
A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990-1999) and future (2059-2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam's spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake's surface with cooler water from deep in the lake, and the spillway is an important release point near the lake's surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A hypothetical floating surface withdrawal at Detroit Dam improved temperature control in summer and autumn (0.6 °C warmer in summer, 0.6 °C cooler in autumn compared to existing structures) without altering release rates or lake level management rules.
NASA Astrophysics Data System (ADS)
Webster, Clare; Rutter, Nick; Jonas, Tobias
2017-09-01
A comprehensive analysis of canopy surface temperatures was conducted around a small and large gap at a forested alpine site in the Swiss Alps during the 2015 and 2016 snowmelt seasons (March-April). Canopy surface temperatures within the small gap were within 2-3°C of measured reference air temperature. Vertical and horizontal variations in canopy surface temperatures were greatest around the large gap, varying up to 18°C above measured reference air temperature during clear-sky days. Nighttime canopy surface temperatures around the study site were up to 3°C cooler than reference air temperature. These measurements were used to develop a simple parameterization for correcting reference air temperature for elevated canopy surface temperatures during (1) nighttime conditions (subcanopy shortwave radiation is 0 W m-2) and (2) periods of increased subcanopy shortwave radiation >400 W m-2 representing penetration of shortwave radiation through the canopy. Subcanopy shortwave and longwave radiation collected at a single point in the subcanopy over a 24 h clear-sky period was used to calculate a nighttime bulk offset of 3°C for scenario 1 and develop a multiple linear regression model for scenario 2 using reference air temperature and subcanopy shortwave radiation to predict canopy surface temperature with a root-mean-square error (RMSE) of 0.7°C. Outside of these two scenarios, reference air temperature was used to predict subcanopy incoming longwave radiation. Modeling at 20 radiometer locations throughout two snowmelt seasons using these parameterizations reduced the mean bias and RMSE to below 10 W m s-2 at all locations.
Characterization testing of Lockheed Martin high-power micro pulse tube cryocooler
NASA Astrophysics Data System (ADS)
McKinley, I. M.; Hummel, C. D.; Johnson, D. L.; Rodriguez, J. I.
2017-12-01
This paper describes the thermal vacuum, microphonics, magnetics, and radiation testing and results of a Lockheed Martin high-power micro pulse tube cryocooler. The thermal performance of the microcooler was measured in vacuum for heat reject temperatures between 185 and 300 K. The cooler was driven with a Chroma 61602 AC power source for input powers ranging from 10 to 60 W and drive frequency between 115 and 140 Hz during thermal performance testing. The optimal drive frequency was dependent on both input power and heat reject temperature. In addition, the microphonics of the cooler were measured with the cooler driven by Iris Technologies LCCE-2 and HP-LCCE drive electronics for input powers ranging from 10 to 60 W and drive frequency between 135 and 145 Hz. The exported forces were strongly dependent on input power while only weakly dependent on the drive frequency. Moreover, the exported force in the compressor axis was minimized by closed loop control with the HP-LCCE. The cooler also survived a 500 krad radiation dose while being continuously operated with 30 W of input power at 220 K heat rejection temperature in vacuum. Finally, the DC and AC magnetic fields around the cooler were measured at various locations.
Preliminary thermal architecture of the X-IFU instrument dewar
NASA Astrophysics Data System (ADS)
Charles, Ivan; Daniel, Christophe; André, Jérome; Duband, Lionel; Duval, Jean-Marc; den Hartog, Roland; Mitsuda, Kazuhisa; Shinozaki, Keisuke; van Weers, Henk; Yamasaki, Noriko Y.
2016-07-01
The ESA Athena mission will implement 2 instruments to study the hot and energetic universe. The X-ray Integral Field Unit (X-IFU) will provide spatially resolved high resolution spectroscopy. This high energy resolution of 2.5 eV at 7 keV could be achieved thanks to TES (Transition Edge Sensor) detectors that need to be cooled to very low temperature. To obtain the required 50 mK temperature level, a careful design of the cryostat and of the cooling chain including different technologies in cascade is needed. The preliminary cryogenic architecture of the X-IFU instrument that fulfils the TES detector thermal requirements is described. In particular, the thermal design of the detector focal plane assembly (FPA), that uses three temperature stages (from 2 K to 50 mK) to limit the thermal loads on the lowest temperature stage, is described. The baseline cooling chain is based on European and Japanese mechanical coolers (Stirling, Pulse tube and Joule Thomson coolers) that precool a sub Kelvin cooler made of a 3He sorption cooler coupled with a small ADR (Adiabatic Demagnetization Refrigerator). Preliminary thermal budgets of the X-IFU cryostat are presented and discussed regarding cooling chain performances.
Update on Thales flexure bearing coolers and drive electronics
NASA Astrophysics Data System (ADS)
Willems, D.; Benschop, T.; v. d. Groep, W.; Mullié, J.; v. d. Weijden, H.; Tops, M.
2009-05-01
Thales Cryogenics has a long background in delivering cryogenic coolers with an MTTF far above 20.000 hrs for military, civil and space programs. Developments in these markets required continuous update of the flexure bearing cooler portfolio for new and emerging applications. The cooling requirements of new application have not only their influence on the size of the compressor, cold finger and cooling technology used but also on the integration and control of the cooler in the application. Thales Cryogenics developed a compact Cooler Drive Electronics based on DSP technology that could be used for driving linear flexure bearing coolers with extreme temperature stability and with additional diagnostics inside the CDE. This CDE has a wide application and can be modified to specific customer requirements. During the presentation the latest developments in flexure bearing cooler technology will be presented both for Stirling and Pulse Tube coolers. Also the relation between the most important recent detector requirements and possible available solutions on cryocooler level will be presented.
Heat recirculating cooler for fluid stream pollutant removal
Richards, George A.; Berry, David A.
2008-10-28
A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.
Wind reduction by aerosol particles
NASA Astrophysics Data System (ADS)
Jacobson, Mark Z.; Kaufman, Yoram J.
2006-12-01
Aerosol particles are known to affect radiation, temperatures, stability, clouds, and precipitation, but their effects on spatially-distributed wind speed have not been examined to date. Here, it is found that aerosol particles, directly and through their enhancement of clouds, may reduce near-surface wind speeds below them by up to 8% locally. This reduction may explain a portion of observed ``disappearing winds'' in China, and it decreases the energy available for wind-turbine electricity. In California, slower winds reduce emissions of wind-driven soil dust and sea spray. Slower winds and cooler surface temperatures also reduce moisture advection and evaporation. These factors, along with the second indirect aerosol effect, may reduce California precipitation by 2-5%, contributing to a strain on water supply.
Exposed water ice discovered near the south pole of Mars
Titus, T.N.; Kieffer, H.H.; Christensen, P.R.
2003-01-01
The Mars Odyssey Thermal Emission Imaging System (THEMIS) has discovered water ice exposed near the edge of Mars' southern perennial polar cap. The surface H2O ice was first observed by THEMIS as a region that was cooler than expected for dry soil at that latitude during the summer season. Diurnal and seasonal temperature trends derived from Mars Global Surveyor Thermal Emission Spectrometer observations indicate that there is H2O ice at the surface. Viking observations, and the few other relevant THEMIS observations, indicate that surface H2O ice may be widespread around and under the perennial CO2 cap.
NASA Technical Reports Server (NTRS)
1986-01-01
Composite Consulation Concepts, Inc.'s Chemo-cooler, a scalp cooling system based on NASA space suit technology, prevents hair loss in patients undergoing chemotherapy. A head covering is placed over plastic tubing through which cold water is circulated from a cylinder. A controller monitors time and temperature. With chemo-cooler, 63% of patients lost almost no hair; 9% suffered only moderate hair loss. The technique was commercialized by an ex-NASA employee.
The development of a cryogenic integrated system with the working temperature of 100K
NASA Astrophysics Data System (ADS)
Liu, En'guang; Wu, Yi'nong; Wang, Yueming; Wen, Jiajia; Lv, Gang; Li, Chunlai; Hou, Jia; Yuan, Liyin
2016-05-01
In the infrared system, cooling down the optic components' temperature is a better choice to decrease the background radiation and maximize the sensitivity. This paper presented a 100K cryogenic optical system, for which an integrated designation of mechanical cooler, flexible thermal link and optical bench was developed. The whole infrared optic components which were assembled in a vacuum box were cooled down to 100K by two mechanical coolers. Low thermal conductivity supports and low emissivity multi-layers were used to reduce the cryogenic optical system's heat loss. The experiment results showed that in about eight hours, the temperature of the optical components reached 100K from room temperature, and the vibration from the mechanical coolers nearly have no affection to the imaging process by using of thermal links. Some experimental results of this cryogenic system will be discussed in this paper.
Low exchange element for nuclear reactor
Brogli, Rudolf H.; Shamasunder, Bangalore I.; Seth, Shivaji S.
1985-01-01
A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.
Kwon, Young; Shen, Wei L; Shim, Hye-Seok; Montell, Craig
2010-08-04
Animals select their optimal environmental temperature, even when faced with alternatives that differ only slightly. This behavior is critical as small differences in temperature of only several degrees can have a profound effect on the survival and rate of development of poikilothermic animals, such as the fruit fly. Here, we demonstrate that Drosophila larvae choose their preferred temperature of 17.5 degrees C over slightly cooler temperatures (14-16 degrees C) through activation of chordotonal neurons. Mutations affecting a transient receptor potential (TRP) vanilloid channel, Inactive (Iav), which is expressed specifically in chordotonal neurons, eliminated the ability to choose 17.5 degrees C over 14-16 degrees C. The impairment in selecting 17.5 degrees C resulted from absence of an avoidance response, which is normally mediated by an increase in turns at the lower temperatures. We conclude that the decision to select the preferred over slightly cooler temperatures requires iav and is achieved by activating chordotonal neurons, which in turn induces repulsive behaviors, due to an increase in high angle turns.
Kwon, Young; Shen, Wei L.; Shim, Hye-Seok; Montell, Craig
2012-01-01
Animals select their optimal environmental temperature, even when faced with alternatives that differ only slightly. This behavior is critical as small differences in temperature of only several degrees can have a profound effect on the survival and rate of development of poikilothermic animals, such as the fruit fly. Here, we demonstrate that Drosophila larvae choose their preferred temperature of 17.5°C over slightly cooler temperatures (14–16°C) through activation of chordotonal neurons. Mutations affecting a transient receptor potential (TRP) vanilloid channel, Inactive (Iav), which is expressed specifically in chordotonal neurons, eliminated the ability to choose 17.5°C over 14–16°C. The impairment in selecting 17.5°C resulted from absence of an avoidance response, which is normally mediated by an increase in turns at the lower temperatures. We conclude that the decision to select the preferred over slightly cooler temperatures requires iav and is achieved by activating chordotonal neurons, which in turn induces repulsive behaviors, due to an increase in high angle turns. PMID:20685989
Impact of wildfire and slope aspect on soil temperature in a mountainous environment
Ebel, Brian A.
2012-01-01
Soil temperature changes after landscape disturbance impact hydrology, ecology, and geomorphology. This study used field measurements to examine wildfire and aspect effects on soil temperatures. Combustion of the litter and duff layers on north-facing slopes removed pre-fire aspect-driven soil temperature controls.Wildfire is one of the most significant disturbances in mountainous landscapes and can affect soil temperature, which can in turn impact ecologic and geomorphologic processes. This study measured the temperature in near-surface soil (i.e., top 30 cm) during the first summer after a wildfire. In mountainous environments, aspect can also affect soil temperature, so north- vs. south-facing aspects were compared using a fully factorial experimental design to explore the effects of both wildfire and aspect on soil temperature. The data showed major wildfire impacts on soil temperatures on north-facing aspects (unburned ∼4–5°C cooler, on average) but little impact on south-facing aspects. Differences in soil temperatures between north-facing and south-facing unburned aspects (north ∼5°C cooler, on average) were also observed. The data led to the conclusion that, for this field site during the summer period, the forest canopy and litter and duff layers on north-facing slopes (when unburned) substantially decreased mean soil temperatures and temperature variability. The sparse trees on south-facing slopes caused little to no difference in soil temperatures following wildfire in south-facing soils for unburned compared with burned conditions. The results indicate that wildfire can reduce or even remove aspect impacts on soil temperature by combusting the forest canopy and litter and duff layers, which then homogenizes soil temperatures across the landscape.
Warming and Inhibition of Salinization at the Ocean's Surface by Cyanobacteria
NASA Astrophysics Data System (ADS)
Wurl, O.; Bird, K.; Cunliffe, M.; Landing, W. M.; Miller, U.; Mustaffa, N. I. H.; Ribas-Ribas, M.; Witte, C.; Zappa, C. J.
2018-05-01
This paper describes high-resolution in situ observations of temperature and, for the first time, of salinity in the uppermost skin layer of the ocean, including the influence of large surface blooms of cyanobacteria on those skin properties. In the presence of the blooms, large anomalies of skin temperature and salinity of 0.95°C and -0.49 practical salinity unit were found, but a substantially cooler (-0.22°C) and saltier skin layer (0.19 practical salinity unit) was found in the absence of surface blooms. The results suggest that biologically controlled warming and inhibition of salinization of the ocean's surface occur. Less saline skin layers form during precipitation, but our observations also show that surface blooms of Trichodesmium sp. inhibit evaporation decreasing the salinity at the ocean's surface. This study has important implications in the assessment of precipitation over the ocean using remotely sensed salinity, but also for a better understanding of heat exchange and the hydrologic cycle on a regional scale.
Muto, A.; Scambos, T.A.; Steffen, K.; Slater, A.G.; Clow, G.D.
2011-01-01
We use measured firn temperatures down to depths of 80 to 90 m at four locations in the interior of Dronning Maud Land, East Antarctica to derive surface temperature histories spanning the past few decades using two different inverse methods. We find that the mean surface temperatures near the ice divide (the highest-elevation ridge of East Antarctic Ice Sheet) have increased approximately 1 to 1.5 K within the past ???50 years, although the onset and rate of this warming vary by site. Histories at two locations, NUS07-5 (78.65S, 35.64E) and NUS07-7 (82.07S, 54.89E), suggest that the majority of this warming took place in the past one or two decades. Slight cooling to no change was indicated at one location, NUS08-5 (82.63S, 17.87E), off the divide near the Recovery Lakes region. In the most recent decade, inversion results indicate both cooler and warmer periods at different sites due to high interannual variability and relatively high resolution of the inverted surface temperature histories. The overall results of our analysis fit a pattern of recent climate trends emerging from several sources of the Antarctic temperature reconstructions: there is a contrast in surface temperature trends possibly related to altitude in this part of East Antarctica. Copyright 2011 by the American Geophysical Union.
Solar Powered Automobile Interior Climate Control System
NASA Technical Reports Server (NTRS)
Howard, Richard T. (Inventor)
2003-01-01
There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.
ERIC Educational Resources Information Center
Firth, Ian
1971-01-01
Presents experiments, models, and interpretations of reports that hot water begins to freeze faster than cooler water. Preliminary conclusions show that the surface area, side wall cooling, evaporation, and environment are the most important parameters. (DS)
Sources of glacial moisture in Mesoamerica
Bradbury, J.P.
1997-01-01
Paleoclimatic records from Mesoamerica document the interplay between Atlantic and Pacific sources of precipitation during the last glacial stage and Holocene. Today, and throughout much of the Holocene, the entire region receives its principal moisture in the summer from an interaction of easterly trade winds with the equatorial calms. Glacial records from sites east of 95?? W in Guatemala, Florida, northern Venezuela and Colombia record dry conditions before 12 ka, however. West of 95?? W, glacial conditions were moister than in the Holocene. For example, pollen and diatom data show that Lake Pa??tzcuaro in the central Mexican highlands was cool, deep and fresh during this time and fossil pinyon needles in packrat middens in Chihuahua, Sonora, Arizona, and Texas indicate cooler glacial climates with increased winter precipitation. Cold Gulf of Mexico sea-surface temperatures and reduced strength of the equatorial calms can explain arid full and late glacial environments east of 95?? W whereas an intensified pattern of winter, westerly air flow dominated hydrologic balances as far south as 20?? N. Overall cooler temperatures may have increased effective moisture levels during dry summer months in both areas. ?? 1997 INQUA/ Elsevier Science Ltd.
A Theoretical Study of Remobilizing Surfactant Retarded Fluid Particle Interfaces
NASA Technical Reports Server (NTRS)
Wang, Yanping; Papageorgiou, Dimitri; Maldarelli, Charles
1996-01-01
Microgravity processes must rely on mechanisms other than bouyancy to move bubbles or droplets from one region to another in a continuous liquid phase. One suggested method is thermocapillary migration in which a temperature gradient is applied to the continuous phase. When a fluid particle contacts this gradient, one pole of the particle becomes warmer than the opposing pole. The interfacial tension between the drop or bubble phase and the continuous phase usually decreases with temperature. Thus the cooler pole is of higher interfacial tension than the warmer pole, and the interface is tugged in the direction of the cooler end. This thermocapillary or thermally induced Marangoni surface stress causes a fluid streaming in the continuous phase from which develops a viscous shear traction and pressure gradient which together propel the particle in the direction of the warmer fluid. In this paper, we provide a theoretical basis for remobilizing surfactant retarded fluid particle interfaces in an effort to make viable the use of thermocapillary migrations for the management of bubbles and drops in microgravity,
The Barnes-Evans color-surface brightness relation: A preliminary theoretical interpretation
NASA Technical Reports Server (NTRS)
Shipman, H. L.
1980-01-01
Model atmosphere calculations are used to assess whether an empirically derived relation between V-R and surface brightness is independent of a variety of stellar paramters, including surface gravity. This relationship is used in a variety of applications, including the determination of the distances of Cepheid variables using a method based on the Beade-Wesselink method. It is concluded that the use of a main sequence relation between V-R color and surface brightness in determining radii of giant stars is subject to systematic errors that are smaller than 10% in the determination of a radius or distance for temperature cooler than 12,000 K. The error in white dwarf radii determined from a main sequence color surface brightness relation is roughly 10%.
NASA Astrophysics Data System (ADS)
Burakowski, E. A.; Tawfik, A. B.; Ouimette, A.; Lepine, L. C.; Ollinger, S. V.; Bonan, G. B.; Zarzycki, C. M.; Novick, K. A.
2016-12-01
Changes in land use, land cover, or both promote changes in surface temperature that can amplify or dampen long-term trends driven by natural and anthropogenic climate change by modifying the surface energy budget, primarily through differences in albedo, evapotranspiration, and aerodynamic roughness. Recent advances in variable resolution global models provide the tools necessary to investigate local and global impacts of land use and land cover change by embedding a high-resolution grid over areas of interest in a seamless and computationally efficient manner. Here, we used two eddy covariance tower clusters in the Eastern US (University of New Hampshire UNH and Duke Forest) to validate simulation of surface energy fluxes and properties by the uncoupled Community Land Model (PTCLM4.5) and coupled land-atmosphere Variable-Resolution Community Earth System Model (VR-CESM1.3). Surface energy fluxes and properties are generally well captured by the models for grassland sites, however forested sites tend to underestimate latent heat and overestimate sensible heat flux. Surface roughness emerged as the dominant biophysical forcing factor affecting surface temperature in the eastern United States, generally leading to warmer nighttime temperatures and cooler daytime temperatures. However, the sign and magnitude of the roughness effect on surface temperature was highly sensitive to the calculation of aerodynamic resistance to heat transfer.
Note: Wide-operating-range control for thermoelectric coolers.
Peronio, P; Labanca, I; Ghioni, M; Rech, I
2017-11-01
A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.
Note: Wide-operating-range control for thermoelectric coolers
NASA Astrophysics Data System (ADS)
Peronio, P.; Labanca, I.; Ghioni, M.; Rech, I.
2017-11-01
A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.
Vegetation placement for summer built surface temperature moderation in an urban microclimate.
Millward, Andrew A; Torchia, Melissa; Laursen, Andrew E; Rothman, Lorne D
2014-06-01
Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.
Vegetation Placement for Summer Built Surface Temperature Moderation in an Urban Microclimate
NASA Astrophysics Data System (ADS)
Millward, Andrew A.; Torchia, Melissa; Laursen, Andrew E.; Rothman, Lorne D.
2014-06-01
Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.
NASA Astrophysics Data System (ADS)
Hsiang, Solomon M.; Sobel, Adam H.
2016-06-01
Evidence increasingly suggests that as climate warms, some plant, animal, and human populations may move to preserve their environmental temperature. The distances they must travel to do this depends on how much cooler nearby surfaces temperatures are. Because large-scale atmospheric dynamics constrain surface temperatures to be nearly uniform near the equator, these displacements can grow to extreme distances in the tropics, even under relatively mild warming scenarios. Here we show that in order to preserve their annual mean temperatures, tropical populations would have to travel distances greater than 1000 km over less than a century if global mean temperature rises by 2 °C over the same period. The disproportionately rapid evacuation of the tropics under such a scenario would cause migrants to concentrate in tropical margins and the subtropics, where population densities would increase 300% or more. These results may have critical consequences for ecosystem and human wellbeing in tropical contexts where alternatives to geographic displacement are limited.
NASA Astrophysics Data System (ADS)
Chang, Song-Lin
There are only a few solid state humidity sensors available today. Most of those sensors use a porous oxide material as a principal part of the device. The devices work on the basis of a change in resistance as the moisture in the air varies. In this experiment, two solid state humidity sensors have been developed for use under practical conditions. One is a Polymer Oxide Semiconductor device with a POLYOX film that absorbs the moisture from the air. The amount of water dipoles absorbed by the polymer is a function of relative humidity. This sensor can measure relative humidity from 20% to 90%. The other is a Dew Point sensor. The sensor is in contact with the upper surface of a miniature Peltier cooler. Water molecules deposited on the sensor surface cause the electrical current through the sensor to increase. The operator adjusts the temperature of the Peltier cooler until a saturated current through the sensor is reached. About one min. is required to measure low relative humidities. The Dew Point sensor can measure a range of relative humidities of 30% to 80%.
Evaluation of BAUER K220 High Pressure Breathing Air Compressor
1990-03-01
switch , intermediate 6 Inter-cooler lstf2nd stage pressure lst/2nd stage 7 Inter-cooler 2nd/3rd stage 25 Pressure switch , intermediate 8 Inter-cooler...3rd/4th stage pressure 2nd/3rd stage 9 After-cooler 26 Pressure switch , intermediate 10 Inter-filter 2nd/3rd stage pressure 3rd/4th stage 11 Inter...filter 3rd/4th stage 27 Temperature switch 4th stage 12 Oil and water separator 28 Final pressure switch . 13 Safety valve 1st stage 29 3/2-way solenoid
Further two-dimensional code development for Stirling space engine components
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.
1990-01-01
The development of multidimensional models of Stirling engine components is described. Two-dimensional parallel plate models of an engine regenerator and a cooler were used to study heat transfer under conditions of laminar, incompressible oscillating flow. Substantial differences in the nature of the temperature variations in time over the cycle were observed for the cooler as contrasted with the regenerator. When the two-dimensional cooler model was used to calculate a heat transfer coefficient, it yields a very different result from that calculated using steady-flow correlations. Simulation results for the regenerator and the cooler are presented.
The Effect of Magnetic Field on HTS Leads What Happens when thePower Fails at RAL?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Michael A.
2007-02-14
The key to being able to operate the MICE superconducting solenoids on small coolers is the use of high temperature superconducting (HTS) leads between the first stage of the cooler and the magnet, which operates at around 4.2 K. Because MICE magnets are not shielded, all of the MICE magnets have a stray magnetic field in the region where the coolers and the HTS leads are located. The behavior of the HTS leads in a magnetic field depends strongly on the HTS material used for the leads and the temperature of the cooler first stage temperature. The HTS leads canmore » be specified to operate at the maximum current for the magnet. This report shows how the HTS leads can be specified for use the MICE magnets. MICE magnets take from 1.3 hours (the tracker solenoids) to 3.7 hours (the coupling magnet) to charge to the highest projected operating currents. If the power fails, the cooler and the upper ends of the HTS leads warm up. The question is how one can discharge the magnet to protect the HTS leads without quenching the MICE magnets. This report describes a method that one can use to protect the HTS leads in the event of a power failure at the Rutherford Appleton Laboratory (RAL).« less
Forecasting Weather on Distant Worlds
NASA Technical Reports Server (NTRS)
2007-01-01
An artist's conception shows a gas-giant planet orbiting very close to its parent star, creating searingly hot conditions on the planet's surface. New research suggests that for three such planets lying from 50 to 150 light-years from Earth, strong winds thousands of miles per hour mix the atmosphere so that the temperature is relatively uniform from the permanently light side to the permanently dark side. This illustration represents an infrared view of a planetary system, in which brightness indicates warmer temperatures. For example, the bright band around the equator of the planet denotes warmer temperatures on both the dark and sunlit sides. The planet's poles, shown in darker colors, would be cooler.Development of miniature moving magnet cryocooler SX040
NASA Astrophysics Data System (ADS)
Rühlich, I.; Mai, M.; Rosenhagen, C.; Schreiter, A.; Möhl, C.
2011-06-01
State of the art high performance cooled IR systems need to have more than just excellent E/O performance. Minimum size weight and power (SWaP) are the design goals to meet our forces' mission requirements. Key enabler for minimum SWaP of IR imagers is the operation temperature of the focal plane array (FPA) employed. State of the art MCT or InAsSb nBn technology has the potential to rise the FPA temperature from 77 K to 130-150 K (high operation temperature HOT) depending on the specific cut-off wavelength. Using a HOT FPA will significantly lower SWaP and keep those parameters finally dominated by the employed cryocooler. Therefore compact high performance cryocoolers are mandatory. For highest MTTF life AIM developed its Flexure Bearing Moving Magnet product family "SF". Such coolers achieve more than 20000 h MTTF with Stirling type expander and more than 5 years MTTF life with Pulse Tube coldfinger (like for Space applications). To keep the high lifetime potential but to significantly improve SWaP AIM is developing its "SX" type cooler family. The new SX040 cooler incorporates a highly efficient dual piston Moving Magnet driving mechanism resulting in very compact compressor of less than 100mm length. The cooler's high lifetime is also achieved by placing the coils outside the helium vessel as usual for moving magnet motors. The mating ¼" expander is extremely compact with less than 63 mm length. This allows a total dewar length from optical window to expander warm end of less than 100 mm even for large cold shields. The cooler is optimized for HOT detectors with operating temperatures exceeding 95 K. While this kind of cooler is the perfect match for many applications, handheld sights or targeting devices for the dismounted soldier are even more challenging with respect to SWaP. AIM therefore started to develop an even smaller cooler type with single piston and balancer. This paper gives an overview on the development of this new compact cryocooler. Technical details and performance data will be shown.
RICOR K527 highly reliable linear cooler: applications and model overview
NASA Astrophysics Data System (ADS)
Riabzev, Sergey; Nachman, Ilan; Levin, Eli; Perach, Adam; Vainshtein, Igor; Gover, Dan
2017-05-01
The K527 linear cooler was developed in order to meet the requirements of reliability, cooling power needs and versatility for a wide range of applications such as hand held, 24/7 and MWS. During the recent years the cooler was incorporated in variety of systems. Some of these systems can be sensitive to vibrations which are induced from the cooler. In order to reduce those vibrations significantly, a Tuned Dynamic Absorber (TDA) was added to the cooler. Other systems, such as the MWS type, are not sensitive to vibrations, but require a robust cooler in order to meet the high demand for environmental vibration and temperature. Therefore various mounting interfaces are designed to meet system requirements. The latest K527 version was designed to be integrated with the K508 cold finger, in order to give it versatility to standard detectors that are already designed and available for the K508 cooler type. The reliability of the cooler is of a high priority. In order to meet the 30,000 working hours target, special design features were implemented. Eight K527 coolers have passed the 19,360 working hours without degradations, and are still running according to our expectations.
Development trends in IR detector coolers
NASA Astrophysics Data System (ADS)
Mai, M.; Rühlich, I.; Wiedmann, Th.; Rosenhagen, C.
2009-05-01
For different IR application specific cooler requirements are needed to achieve best performance on system level. Handheld applications require coolers with highest efficiency and lowest weight. For application with continuous operation, i.e. border surveillance or homeland security, a very high MTTF is mandatory. Space applications additionally require extremely high reliability. In other application like fighter aircraft sufficient cooling capacity even at extreme high reject temperatures has to be provided. Meeting all this requirements within one cooler design is technically not feasible. Therefore, different coolers designs like integral rotary, split rotary or split linear are being employed. The use of flexure bearings supporting the driving mechanism has generated a new sub-group for the linear coolers; also, the coolers may either use a motor with moving magnet or with moving coil. AIM has mainly focussed on long life linear cooler technology and therefore developed a series of moving magnet flexure bearing compressors which meets MTTF's exceeding 20,000h (up to 50,000h with a Pulse-Tube coldfinger). These compressors have a full flexure bearing support on both sides of the driving mechanism. Cooler designs are being compared in regard to characteristic figures as described above.
Thales Cryogenics rotary cryocoolers for HOT applications
NASA Astrophysics Data System (ADS)
Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Freche, Sébastien
2012-06-01
Thales Cryogenics has an extensive background in delivering reliable linear and rotary coolers for military, civil and space programs. Recent work carried out at detector level enable to consider a higher operation temperature for the cooled detectors. This has a direct impact on the cooling power required to the cryocooler. In continuation of the work presented last year, Thales cryogenics has studied the operation and optimization of the rotary cryocoolers at high cold regulation temperature. In this paper, the performances of the Thales Cryogenics rotary cryocoolers at elevated cold regulation temperature will be presented. From these results, some trade-offs can be made to combine correct operation of the cryocooler on all the ambient operational range and maximum efficiency of the cryocooler. These trade-offs and the impact on MTTF of elevated cold regulation temperature will be presented and discussed. In correlation with the increase of the cold operation temperature, the cryocooler input power is significantly decreased. As a consequence, the cooler drive electronics own consumption becomes relatively important and must be reduced in order to minimize global input power to the cooling function (cryocooler and cooler drive electronics). Thales Cryogenics has developed a new drive electronics optimized for low input power requirements. In parallel, improvements on RM1 and RM2 cryocoolers have been defined and implemented. The main impacts on performances of these new designs will be presented. Thales cryogenics is now able to propose an efficient cooling function for application requiring a high cold regulation temperature including a range of tuned rotary coolers.
Reliability Testing on the CTI-Cryogenic 1 Watt Integral Cooler (HD- 1033C/UA)
1989-09-01
SUBJECT TERMS (Continue on reverse if necessary and identify by block numbe) FIELD GROUP SUB- GROUP Cryocooler, Stirling Cycle, Cryogenics 19, ABSTRCT...the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers... controlled high/low temperature chamber. * A microprocessor which was programmed to automatically cycle the temperature in the chamber in accordance
Baffles Promote Wider, Thinner Silicon Ribbons
NASA Technical Reports Server (NTRS)
Seidensticker, Raymond G.; Mchugh, James P.; Hundal, Rolv; Sprecace, Richard P.
1989-01-01
Set of baffles just below exit duct of silicon-ribbon-growing furnace reduces thermal stresses in ribbons so wider ribbons grown. Productivity of furnace increased. Diverts plume of hot gas from ribbon and allows cooler gas from top of furnace to flow around. Also shields ribbon from thermal radiation from hot growth assembly. Ribbon cooled to lower temperature before reaching cooler exit duct, avoiding abrupt drop in temperature as entering duct.
Spatial-temporal analysis of building surface temperatures in Hung Hom
NASA Astrophysics Data System (ADS)
Zeng, Ying; Shen, Yueqian
2015-12-01
This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.
Miniature Long-life Space Cryocoolers
NASA Technical Reports Server (NTRS)
Tward, E.
1993-01-01
TRW has designed, built, and tested a miniature integral Stirling cooler and a miniature pulse tube cooler intended for long-life space application. Both efficient, low-vibration coolers were developed for cooling IR sensors to temperatures as low as 50 K on lightsats. The vibrationally balanced nonwearing design Stirling cooler incorporates clearance seals maintained by flexure springs for both the compressor and the drive displacer. The design achieved its performance goal of 0.25 W at 65 K for an input power to the compressor of 12 W. The cooler recently passed launch vibration tests prior to its entry into an extended life test and its first scheduled flight in 1995. The vibrationally balanced, miniature pulse tube cooler intended for a 10-year long-life space application incorporates a flexure bearing compressor vibrationally balanced by a motor-controlled balancer and a completely passive pulse tube cold head.
Thermal performance of the CrIS passive cryocooler
NASA Astrophysics Data System (ADS)
Ghaffarian, B.; Kohrman, R.; Magner, A.
2006-02-01
The configuration, performance, and test validation of a passive radiant cooler for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Crosstrack Infrared Sounder (CrIS) Instrument are presented. The cooler is required to provide cryogenic operation of IR focal planes. The 11 kg device, based on prior ITT Industries Space Systems Division coolers, requires virtually no power. It uses multiple thermally isolated cooling stages, each with an independent cryoradiator, operating at successively colder temperatures. The coldest stage, with a controlled set point at 81 K, cools a longwave IR (LWIR) focal plane. An intermediate stage, with a 98 K control point, cools detectors operating in MWIR and SWIR spectral regions. The warmest stage includes a fixed, integral earth shield that limits the thermal load from the earth in the NPOESS Operational Low-earth Orbiting (LEO) orbit. A study of the thermal balance and loads analysis used to evaluate the predicted cooler performance is discussed. High performance margins have been retained throughout the cooler development, fabrication and test phases of the program. The achievable in-orbit temperatures for this cooler are anticipated to be 73 K for the LWIR cooling stage and 91 K for the midwave IR (MWIR)/shortwave IR (SWIR) stage. Test results from two iterations of thermal vacuum verification testing are presented. Lessons learned from the first test, which failed to produce the predicted performance are included. The thermal model of the cooler and test configuration was used to identify deficiencies in the test targets resulting in unexpected heat loads. Corrective action was implemented to remove the heat leaks and a second test verified both the cooler performance and the correlation of the detailed thermal model.
Observed modes of sea surface temperature variability in the South Pacific region
NASA Astrophysics Data System (ADS)
Saurral, Ramiro I.; Doblas-Reyes, Francisco J.; García-Serrano, Javier
2018-02-01
The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.
The Surface-Tension Method of Visually Inspecting Honeycomb-Core Sandwich Plates
NASA Technical Reports Server (NTRS)
Katzoff, Samuel
1960-01-01
When one face of a metal-honeycomb-core sandwich plate is heated or cooled relative to the other, heat transfer through the core causes the temperature on each face at the lines of contact with the core to be slightly different from that on the rest of the face. If a thin liquid film is applied to the face, the variation of surface tension with temperature causes the liquid to move from warmer to cooler areas and thus to develop a pattern corresponding to the temperature pattern on the face. Irregularities in the pattern identify the locations where the core is not adequately bonded to the face sheet. The pattern is easily observed when a fluorescent liquid is used and illumination is by means of ultraviolet light. Observation in ordinary light is also possible when a very deeply colored liquid is used. A method based on the use of a thermographic phosphor to observe the temperature pattern was found to be less sensitive than the surface-tension method. A sublimation method was found to be not only less sensitive but also far more troublesome.
Sea surface temperature of the coastal zones of France. Heat Capacity Mapping Mission (HCMM)
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Frouin, R.; Cassanet, G.; Verger, F. (Principal Investigator)
1979-01-01
The author has identified the following significant results. HCMM data analysis shows some mesoscale features which were previously expected to occur: summer coastal upwellings in the Gulf of Lions, tidal fronts bordering the English Channel, and cooler surface waters at the continental shelf break. The analysis of the spectral variance density spectra show that the interpretation of the data usually is limited by the HCMM radiometric performance (noise levels) at wavenumbers below 5 km in the oceanic areas; from this analysis it may also be concluded that a decrease of the radiometric noise level down to 0.1 k against an increase of the ground resolution up to 2 km would give a better optimum of the radiometric performances in the oceanic areas. HCMM data appear to be useful for analysis of the sea surface temperature field, particularly in the very coastal area by profiting from the ground resolution of 500 m.
Hydrological Process of Martian Surface in Hesperian epoch
NASA Astrophysics Data System (ADS)
Yamashiki, Y. A.; Sato, H.; Kuroki, R.; Miyamoto, H.; Hemmi, R.
2017-12-01
It is considered that the Mars in Noachian ecoch was much warmer temperature than current condition, with atmosphere and ocean supported by its magnetic actiity. Several valley which seems to be developed by ancient hydrological processes are obsered in Martian surface, is being considered to be built long time before. Some fluvial fun was formed during the following Hesperian epoch, which is considered as much cooler and drier than Noachian epoch. In this study, we applied Hydro-debris 2D model into Martian surface in Hesperian epoch in order to try develping surface vallay formation throughout hydrological processes. Sediment transport and associated small-scale debris-flow occurrence may be the key for valley formation, where might be the micro-habitable zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, M. A.; Pan, H.; Preece, R. M.
2014-01-29
Two 2.7-m long solenoid magnets with a cold mass of 1400 kg were fabricated in between 2007 and 2010. The magnet cryostat outside diameter is ∼1.4 meters and the cryostat length is ∼2.73 meters. The magnet warm bore is 0.4 meters. The magnet was designed to be cooled using three 1.5 W two-stage coolers. In both magnets, three coolers could not keep the cryostat filled with liquid helium. The temperatures of the shield and the tops of the HTS leads were too warm. A 140 W single stage cooler was added to magnet 2 to cool the HTS leads, themore » shield and the cold mass support intercepts. When the magnet 2 was retested in 2010, the net cooling at 4.2 K was −1.5 W with first-stage temperatures of the four coolers at ∼42 K. The tops of the HTS leads were <50 K, but the shield and cold mass support intercepts remained too warm. The solenoid cryostat and shield were modified during 2011 and 2012 to reduce the 4.2 K heat load and increase the cooling. This magnet was tested in 2012, with five 1.5 W two-stage coolers and the single stage cooler. The changes made in the magnet are described in this report. As a result of the cryostat and shield changes, and adding 3.0 W of cooling at 4.2 K, the net 4.2 K cooling changed from −1.6 W to +5.0 W. About half of the change in net cooling to this magnet was due changes that reduced the shield temperature. This report demonstrates the importance of running the shield cold (∼40 K) and reducing the heat loads from all sources on both the shield and the cold mass.« less
Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation.
NASA Astrophysics Data System (ADS)
Kwok, R.; Comiso, J. C.
2002-03-01
The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-yr dataset from 1982 to 1998. The polar climate anomalies are correlated with the Southern Oscillation index (SOI) and the composites of these anomalies are examined under the positive (SOI > 0), neutral (0 > SOI > 1), and negative (SOI < 1) phases of SOI. The climate dataset consists of sea level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice dataset describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables with the SOI. The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen, and Ross Seas. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillations that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are evident. Recent anomalies in the sea ice cover that are clearly associated with the SOI include the following: the record decrease in the sea ice extent in the Bellingshausen Sea from mid-1988 to early 1991; the relationship between Ross Sea SST and the ENSO signal, and reduced sea ice concentration in the Ross Sea; and the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea and lengthening of the ice season in the western Ross Sea, Bellinghausen Sea, and central Weddell Sea gyre during the period 1988-94. Four ENSO episodes over the last 17 years contributed to a negative mean in the SOI (0.5). In each of these episodes, significant retreats in ice cover of the Bellingshausen and Amundsen Seas were observed showing a unique association of this region of the Antarctic with the Southern Oscillation.
Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation
NASA Technical Reports Server (NTRS)
Kwok, R.; Comiso, J. C.
2001-01-01
The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-year of data set from 1982 through 1998. We correlate the polar climate anomalies with the Southern Oscillation index (SOI) and examine the composites of these anomalies under the positive (SOI > 0), neutral (0 > SOI > -1), and negative (SOI < -1) phases of SOL The climate data set consists of sea-level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice data set describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables and the SOL The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen and Ross sea sectors. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillating climate anomalies that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea-level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are clearly evident. Recent anomalies in the sea ice cover that are apparently associated with the SOI include: the record decrease in the sea ice extent in the Bellingshausen Sea from mid- 1988 through early 199 1; the relationship between Ross Sea SST and ENSO signal, and reduced sea ice concentration in the Ross Sea; and, the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea, and the lengthening of the ice season in the western Ross Sea, Bellingshausen Sea and central Weddell Sea gyre over the period 1988-1994. Four ENSO episodes over the last 17 years contributed to a negative mean in the SOI (-0.5). In each of these episodes, significant retreats in the Bellingshausen/Amundsen Sea were observed providing direct confirmation of the impact of SO on the Antarctic sea ice cover.
Urban vegetation and thermal patterns following city growth in different socio-economic contexts
NASA Astrophysics Data System (ADS)
Dronova, I.; Clinton, N.; Yang, J.; Radke, J.; Marx, S. S.; Gong, P.
2015-12-01
Urban expansion accompanied by losses of vegetated spaces and their ecological services raises significant concerns about the future of humans in metropolitan "habitats". Despite recent growth of urban studies globally, it is still not well understood how environmental effects of urbanization vary with the rate and socioeconomic context of development. Our study hypothesized that with urban development, spatial patterns of surface thermal properties and green plant cover would shift towards higher occurrence of relatively warmer and less vegetated spaces such as built-up areas, followed by losses of greener and cooler areas such as urban forests, and that these shifts would be more pronounced with higher rate of economic and/or population growth. To test these ideas, we compared 1992-2011 changes in remotely sensed patterns of green vegetation and surface temperature in three example cities that experienced peripheral growth under contrasting socio-economic context - Dallas, TX, USA, Beijing, China and Kyiv, Ukraine. To assess their transformation, we proposed a metric of thermal-vegetation angle (TVA) estimated from per-pixel proxies of vegetation greenness and surface temperature from Landsat satellite data and examined changes in TVA distributions within each city's core and two decadal zones of peripheral sprawl delineated from nighttime satellite data. We found that higher economic and population growth were coupled with more pronounced changes in TVA distributions, and more urbanized zones often exhibited higher frequencies of warmer, less green than average TVA values with novel patterns such as "cooler" clusters of building shadows. Although greener and cooler spaces generally diminished with development, they remained relatively prevalent in low-density residential areas of Dallas and peripheral zones of Kyiv with exurban subsistence farming. Overall, results indicate that the effects of modified green space and thermal patterns within growing cities highly vary depending on economy, population trends and historical legacies of planned green spaces. Remote sensing-based metrics such as TVA facilitate their comparisons and offer useful strategies to cost-effectively monitor urban transformation and inform more explicit environmental modeling of cities in the future.
Wilkes, G; Edge, T A; Gannon, V P J; Jokinen, C; Lyautey, E; Neumann, N F; Ruecker, N; Scott, A; Sunohara, M; Topp, E; Lapen, D R
2011-11-15
Over a five year period (2004-08), 1171 surface water samples were collected from up to 24 sampling locations representing a wide range of stream orders, in a river basin in eastern Ontario, Canada. Water was analyzed for Cryptosporidium oocysts and Giardia cyst densities, the presence of Salmonella enterica subspecies enterica, Campylobacter spp., Listeria monocytogenes, and Escherichia coli O157:H7. The study objective was to explore associations among pathogen densities/occurrence and objectively defined land use, weather, hydrologic, and water quality variables using CART (Classification and Regression Tree) and binary logistical regression techniques. E. coli O157:H7 detections were infrequent, but detections were related to upstream livestock pasture density; 20% of the detections were located where cattle have access to the watercourses. The ratio of detections:non-detections for Campylobacter spp. was relatively higher (>1) when mean air temperatures were 6% below mean study period temperature values (relatively cooler periods). Cooler water temperatures, which can promote bacteria survival and represent times when land applications of manure typically occur (spring and fall), may have promoted increased frequency of Campylobacter spp. Fifty-nine percent of all Salmonella spp. detections occurred when river discharge on a branch of the river system of Shreve stream order = 9550 was >83 percentile. Hydrological events that promote off farm/off field/in stream transport must manifest themselves in order for detection of Salmonella spp. to occur in surface water in this region. Fifty seven percent of L. monocytogenes detections occurred in spring, relative to other seasons. It was speculated that a combination of winter livestock housing, silage feeding during winter, and spring application of manure that accrued during winter, contributed to elevated occurrences of this pathogen in spring. Cryptosporidium and Giardia oocyst and cyst densities were, overall, positively associated with surface water discharge, and negatively associated with air/water temperature during spring-summer-fall. Yet, some of the highest Cryptosporidium oocyst densities were associated with low discharge conditions on smaller order streams, suggesting wildlife as a contributing fecal source. Fifty six percent of all detections of ≥ 2 bacteria pathogens (including Campylobacter spp., Salmonella spp., and E. coli O157:H7) in water was associated with lower water temperatures (<∼ 14 °C; primarily spring and fall) and when total rainfall the week prior to sampling was >∼ 27 mm (62 percentile). During higher water temperatures (>∼ 14 °C), a higher amount of weekly rainfall was necessary to promote detection of ≥ 2 pathogens (primarily summer; weekly rainfall ∼>42 mm (>77 percentile); 15% of all ≥ 2 detections). Less rainfall may have been necessary to mobilize pathogens from adjacent land, and/or in stream sediments, during cooler water conditions; as these are times when manures are applied to fields in the area, and soil water contents and water table depths are relatively higher. Season, stream order, turbidity, mean daily temperature, surface water discharge, cropland coverage, and nearest upstream distance to a barn and pasture were variables that were relatively strong and recurrent with regard to discriminating pathogen presence and absence, and parasite densities in surface water in the region. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Temperature Behavior of Possible Cave Skylight on Mars
NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] Figure 1 Each of the three images in this set covers the same patch of Martian ground, centered on a possible cave skylight informally called 'Annie,' which has a diameter about double the length of a football field. The Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter took all three, gathering information that the hole is cooler than surrounding surface in the afternoon and warmer than the surrounding surface at night. This is thermal behavior that would be expected from an opening into an underground space. The left image was taken in visible-wavelength light (figure 1). The other two were taken in thermal infrared wavelengths, indicating the relative temperatures of features in the image. The center image is from mid-afternoon. The hole is warmer than the shadows of nearby pits to the north and south, while cooler than sunlit surfaces. The thermal image at right was taken in the pre-dawn morning, about 4 a.m. local time. At that hour, the hole is warmer than all nearby surfaces. Annie and six other features with similar thermal behavior are on the northern slope of a high Martian volcano named Arsia Mons, which is at 9 degrees south latitude, 239 degrees east longitude. Mars Odyssey is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The orbiter's Thermal Emission Imaging System was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing, Santa Barbara, Calif., and is operated by Arizona State University.2011-11-01
Cleaning of High Temperature Salt Water Heat Exchangers ESTCP WP-200302 Subtitle: Redesigned Pre-production Full-Scale Heat Pipe Bleed Air Cooler For...FINAL 3. DATES COVERED (From - To) 1-Jan-2003 – 1-Oct-2009 4. TITLE AND SUBTITLE Elimination of Acid Cleaning of High Temperature Salt Water Heat...6-5 Figure 6- 6 HP-BAC Tube Sheet Being Immersed in Ultrasonic Cleaning Tank ..................................... 6-6 Figure 6- 7 Heat Pipe
NASA Astrophysics Data System (ADS)
Jang, Sang-Hoon; Hwang, Se-Joon; Park, Sang-Ki; Choi, Kap-Seung; Kim, Hyung-Man
2012-06-01
Developing an effective method of reducing nitrogen oxide emissions is an important goal in diesel engine research. The use of cooled exhaust gas recirculation has been considered one of the most effective techniques of reducing nitrogen oxide. However, since the combustion characteristics in a diesel engine involves high temperature and load, the amount of particulate matter emission tends to increase, and there is a trade-off between the amount of nitrogen oxide and particulate matter emissions. In the present study, engine dynamometer experiments are performed to investigate the effects of particulate matter fouling on the heat exchange characteristics of wave fin type exhaust gas recirculation coolers that have four cases of two wave pitch and three fin pitch lengths. To optimize the fin and wave pitches of the EGR cooler, the exhaust gas temperature, pressure drop and heat exchange effectiveness are compared. The experimental results show that the exhaust gas recirculation cooler with a fin pitch of 3.6 mm and a wave pitch of 8.8 mm exhibits better heat exchange characteristics and smaller particulate matter fouling effect than the other coolers.
Life test result of Ricor K529N 1watt linear cryocooler
NASA Astrophysics Data System (ADS)
Nachman, Ilan; Veprik, Alexander; Pundak, Nachman
2007-04-01
The authors summarize the results of the accelerated life testing of the Ricor type K529N 1 Watt linear split Stirling cooler. The test was conducted in the period 2003-2006, during which the cooler accumulated in excess of 27,500 working hours at an elevated ambient temperature, which is equivalent to 45,000 hours at normal ambient conditions, and performed about 7,500 operational cycles including cooldown and steady-state phases. The cryocooler performances were assessed through the cooldown time and power consumption; no visible degradation in performances was observed. After the cooler failure and the compressor disassembling, an electrical short was discovered in the driving coil. The analysis has shown that the wire insulating varnish was not suitable for such elevated temperatures. It is important to note that the cooler under test was taken from the earliest engineering series; in the later manufacturing line military grade wire with high temperature insulation was used, no customer complaints have been recorded in this instance Special attention was paid to the thorough examination of the technical condition of the critical components of the cooler interior. In particular, dynamic piston-cylinder seal, flying leads, internal O-rings and driving coil were examined in the compressor. As to the cold head, we focused on studying the conditions of the dynamic bushing-plunger seal, O-rings and displacer-regenerator. In addition, a leak test was performed to assess the condition of the metallic crushed seals. From the analysis, the authors draw the conclusion that the cooler design is adequate for long life performance (in excess of 20,000 working hours) applications.
Out on a limb: Thermal microenvironments in the tropical forest canopy and their relevance to ants.
Stark, Alyssa Y; Adams, Benjamin J; Fredley, Jennifer L; Yanoviak, Stephen P
2017-10-01
Small, cursorial ectotherms like ants often are immersed in the superheated air layers that develop millimeters above exposed, insolated surfaces (i.e., the thermal boundary layer). We quantified the thermal microenvironments around tree branches in the tropical rainforest canopy, and explored the effects of substrate color on the internal body temperature and species composition of arboreal ants. Branch temperatures during the day (09:00-16:00) were hottest (often > 50°C) and most variable on the upper surface, while the lowest and least variable temperatures occurred on the underside. Temperatures on black substrates declined with increasing distance above the surface in both the field and the laboratory. By contrast, a micro-scale temperature inversion occurred above white substrates. Wind events (ca. 2ms -1 ) eliminated these patterns. Internal temperatures of bodies of Cephalotes atratus workers experimentally heated in the laboratory were 6°C warmer on white vs. black substrates, and 6°C cooler than ambient in windy conditions. The composition of ant species foraging at baits differed between black-painted and unpainted tree branches, with a tendency for smaller ants to avoid the significantly hotter black surfaces. Collectively, these outcomes show that ants traversing canopy branches experience very heterogeneous thermal microenvironments that are partly influenced in predictable ways by branch surface coloration and breezy conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S. S., E-mail: sukti@iigs.iigm.res.in; Sekar Iyengar, A. N.
It is observed that the presence of a minority component of cooler electrons in a three component plasma plays a deterministic role in the evolution of solitary waves, double layers, or the newly discovered structures called supersolitons. The inclusion of the cooler component of electrons in a single electron plasma produces sharp increase in nonlinearity in spite of a decrease in the overall energy of the system. The effect maximizes at certain critical value of the number density of the cooler component (typically 15%–20%) giving rise to a hump in the amplitude variation profile. For larger amplitudes, the hump leadsmore » to a forbidden region in the ambient cooler electron concentration which dissociates the overall existence domain of solitary wave solutions in two distinct parameter regime. It is observed that an inclusion of the cooler component of electrons as low as < 1% affects the plasma system significantly resulting in compressive double layers. The solution is further affected by the cold to hot electron temperature ratio. In an adequately hotter bulk plasma (i.e., moderately low cold to hot electron temperature ratio), the parameter domain of compressive double layers is bounded by a sharp discontinuity in the corresponding amplitude variation profile which may lead to supersolitons.« less
Recirculating 1-K-Pot for Pulse-Tube Cryostats
NASA Technical Reports Server (NTRS)
Paine, Christopher T.; Naylor, Bret J.; Prouve, Thomas
2013-01-01
A paper describes a 1-K-pot that works with a commercial pulse tube cooler for astrophysics instrumentation testbeds that require temperatures <1.7 K. Pumped liquid helium-4 cryostats were commonly used to achieve this temperature. However, liquid helium-4 cryostats are being replaced with cryostats using pulse tube coolers. The closed-cycle 1K-pot system for the pulse tube cooler requires a heat exchanger on the pulse tube, a flow restriction, pump-out line, and pump system that recirculates helium-4. The heat exchanger precools and liquefies helium- 4 gas at the 2.5 to 3.5 K pulse tube cold head. This closed-cycle 1-K-pot system was designed to work with commercially available laboratory pulse tube coolers. It was built using common laboratory equipment such as stainless steel tubing and a mechanical pump. The system is self-contained and requires only common wall power to operate. The lift of 15 mW at 1.1 K and base temperature of 0.97 K are provided continuously. The system can be scaled to higher heat lifts of .30 to 50 mW if desired. Ground-based telescopes could use this innovation to improve the efficiency of existing cryo
Optimal leveling of flow over one-dimensional topography by Marangoni stresses
NASA Astrophysics Data System (ADS)
Gramlich, C. M.; Kalliadasis, Serafim; Homsy, G. M.; Messer, C.
2002-06-01
A thin viscous film flowing over a step down in topography exhibits a capillary ridge preceding the step. In applications, a planar liquid surface is often desired and hence there is a need to level the ridge. This paper investigates optimal leveling of the ridge by means of a Marangoni stress such as might be produced by a localized heater creating temperature variations at the film surface. The differential equation for the free surface based on lubrication theory and incorporating the effects of topography and temperature gradients is solved numerically for steps down in topography with different temperature profiles. Both rectangular "top-hat" and parabolic profiles, chosen to model physically realizable heaters, were found to be effective in reducing the height of the capillary ridge. Leveling the ridge is formulated as an optimization problem to minimize the maximum free-surface height by varying the heater strength, position, and width. With the optimized heaters, the variation in surface height is reduced by more than 50% compared to the original isothermal ridge. For more effective leveling, we consider an asymmetric n-step temperature distribution. The optimal n-step heater in this case results in (n+1) ridges of equal size; 2- and 3-step heaters reduce the variation in surface height by about 70% and 77%, respectively. Finally, we explore the potential of coolers and step temperature profiles for still more effective leveling.
Salerian, Alen J; Saleri, Nansen G
2006-01-01
Scientific evidence suggests the critical role of temperature in regulating three mechanisms contributing to cellular damage: Oxidative stress, oxygen demand overload and inflammation. In this article, we propose that the Arrhenius rate law has a profound impact on aging and a variety of neurodegenerative disorders including Alzheimer's disease, and we review the supporting evidence. Published studies suggest empirical correlations between temperature and lifespan of various organisms, bolstering the hypothesis that variations in lifespan may stem from differences in the mitochondrial production rates of radicals - a process also influenced by temperature. Given the exponential temperature dependency of all biochemical factors, cooler body temperatures may promote longevity and combat neurodegenerative disorders. This promises to offer extraordinary yet unexplored weapons against two formidable enemies of the human body: aging and neurodegenerative disorders. Stated in the form of a thesis referred to as Salerian and Saleri Temperature Thesis (SSTT): "Cooler biologically compatible core body temperatures prolong lifespan and are of value to combat illness". Double blind studies of SSTT in therapeutic strategies against amyotrophic lateral sclerosis (ALS) or early-stage Alzheimer's disease may offer a reasonable first stage to validate SSTT. In view of the known rapid progressive neurodegeneration associated with ALS, minute variations in core body temperature may, in fact, demonstrate statistically significant differences in disease progression.
Thermoelectric Coolers with Sintered Silver Interconnects
NASA Astrophysics Data System (ADS)
Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin
2014-06-01
The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.
NASA Astrophysics Data System (ADS)
Haug, M.; Haussmann, F.; Kellner, S.; Kern, L.; Eisenhauer, F.; Lizon, J.-L.; Dietrich, M.; Thummes, G.
2014-07-01
GRAVITY is a second generation VLTI instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band. The cryostat of the beam combiner instrument provides the required temperatures for the various subunits ranging from 40K to 290K with a milli-Kelvin temperature stability for some selected units. The bath cryostat is cooled with liquid nitrogen and makes use of the exhaust gas to cool the main optical bench to an intermediate temperature of 240K. The fringe tracking detector will be cooled separately by a single-stage pulse tube cooler to a temperature of 40K. The pulse tube cooler is optimized for minimum vibrations. In particular its warm side is connected to the 80K reservoir of the LN2 cryostat to minimize the required input power. All temperature levels are actively stabilized by electric heaters. The cold bench is supported separately from the vacuum vessel and the liquid nitrogen reservoir to minimize the transfer of acoustic noise onto the instrument.
Development of thermal energy storage units for spacecraft cryogenic coolers
NASA Technical Reports Server (NTRS)
Richter, R.; Mahefkey, E. T.
1980-01-01
Thermal Energy Storage Units were developed for storing thermal energy required for operating Vuilleumier cryogenic space coolers. In the course of the development work the thermal characteristics of thermal energy storage material was investigated. By three distinctly different methods it was established that ternary salts did not release fusion energy as determined by ideality at the melting point of the eutectic salt. Phase change energy was released over a relatively wide range of temperature with a large change in volume. This strongly affects the amount of thermal energy that is available to the Vuilleumier cryogenic cooler at its operating temperature range and the amount of thermal energy that can be stored and released during a single storage cycle.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., manufactured, handled, packaged or stored (except dry storage of packaged finished products and supplies) or in... materials not regularly used. (1) Coolers and freezers. Coolers and freezers where dairy products are stored shall be clean, reasonably dry and maintained at the proper uniform temperature and humidity to...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., manufactured, handled, packaged or stored (except dry storage of packaged finished products and supplies) or in... materials not regularly used. (1) Coolers and freezers. Coolers and freezers where dairy products are stored shall be clean, reasonably dry and maintained at the proper uniform temperature and humidity to...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., manufactured, handled, packaged or stored (except dry storage of packaged finished products and supplies) or in... materials not regularly used. (1) Coolers and freezers. Coolers and freezers where dairy products are stored shall be clean, reasonably dry and maintained at the proper uniform temperature and humidity to...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., manufactured, handled, packaged or stored (except dry storage of packaged finished products and supplies) or in... materials not regularly used. (1) Coolers and freezers. Coolers and freezers where dairy products are stored shall be clean, reasonably dry and maintained at the proper uniform temperature and humidity to...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., manufactured, handled, packaged or stored (except dry storage of packaged finished products and supplies) or in... materials not regularly used. (1) Coolers and freezers. Coolers and freezers where dairy products are stored shall be clean, reasonably dry and maintained at the proper uniform temperature and humidity to...
Liao, Yanfen; Cao, Yawen; Chen, Tuo; Ma, Xiaoqian
2015-10-01
Bagasse is utilized as fuel in the biggest biomass power plant of China, however, alkalis in the fuel created severe agglomeration and slagging problems. Alkalis transfer characteristic, agglomeration causes in engineering practice, additive improvement effects and mechanism during bagasse combustion were investigated via experiments and simulations. Only slight agglomeration occurs in ash higher than 800°C. Serious agglomeration in practical operation should be attributed to the gaseous alkalis evaporating at high temperature and condensing on the cooler grain surfaces in CFB. It can be speculated that ash caking can be avoided with temperature lower than 750°C and heating surface corrosion caused by alkali metal vapor can be alleviated with temperature lower than 850°C. Kaolin added into the bagasse has an apparent advantage over CaO additive both in enhancing ash fusion point and relieving alkali-chloride corrosion by locking alkalis in dystectic solid compounds over the whole temperature range. Copyright © 2015 Elsevier Ltd. All rights reserved.
Far-ultraviolet spectrophotometry of two very hot O type subdwarfs
NASA Technical Reports Server (NTRS)
Drilling, J. S.; Holberg, J. B.; Schoenberner, D.
1984-01-01
As a result of a spectroscopic survey of stars classified as nonemission OB+, Drilling (1983) has detected 12 new subluminous O stars. It was found that these stars are the hottest known O type subdwarfs. The effective temperatures of the stars are 60,000 K or higher. It has been possible to observe two of these stars with Voyager 1, taking into account LSE 21 and LS IV +10.9 deg. LSE 21 is one of the hottest of the new subdwarfs, with an effective temperature of at least 100,000 K. The optical spectrum indicates a hydrogen-rich atmosphere of high surface gravity. LX IV +10.9 deg is one of the cooler objects with an effective temperature of 65,000 K. The optical spectrum indicates an extremely helium-rich atmosphere and a somewhat lower surface gravity than LSE 21. The Voyager 1 observations confirm the temperature scale set up by Schoenberger and Drilling (1984) for the hottest O type subdwarfs.
Compact high-efficiency linear cryocooler in single-piston moving magnet design for HOT detectors
NASA Astrophysics Data System (ADS)
Rühlich, I.; Mai, M.; Rosenhagen, C.; Withopf, A.; Zehner, S.
2012-06-01
State of the art Mid Wave IR-technology has the potential to rise the FPA temperature from 77K to 130-150K (High Operation Temperature, HOT). Using a HOT FPA will significantly lower SWaP and keep those parameters finally dominated by the employed cryocooler. Therefore, compact high performance cryocoolers are mandatory. AIM has developed the SX040 cooler, optimized for FPA temperatures of about 95K (presented at SPIE 2010). The SX040 cooler incorporates a high efficient dual piston driving mechanism resulting in a very compact compressor of less than 100mm length. Higher compactness - especially shorter compressors - can be achieved by change from dual to single piston design. The new SX030 compressor has such a single piston Moving Magnet driving mechanism resulting in a compressor length of about 60mm. Common for SX040 and SX030 family is a Moving Magnet driving mechanism with coils placed outside the helium vessel. In combination with high performance plastics for the piston surfaces this design enables lifetimes in excess of 20,000h MTTF. Because of the higher FPA temperature and a higher operating frequency also a new displacer needs to be developed. Based on the existing 1/4" coldfinger interface AIM developed a new displacer optimized for an FPA temperature of 140K and above. This paper gives an overview on the development of this new compact single piston cryocooler. Technical details and performance data will be shown.
NASA Technical Reports Server (NTRS)
Salazar, R.; Evans, N.
1981-01-01
A study was performed of cooling methods for a space-borne, earth observing infrared optical instrument, AMTS. Major requirements on the thermal design are an optics temperature below 200 K, a detector array temperature below 75 K, orbital lifetime of 3 to 5 years, a near polar, sun synchronous orbit with altitude near 800 km. Power dissipation of the detectors is 38 mW, in the optics compartment 1.4 W. Large radiative coolers positioned so as to be shielded from sun, spacecraft and earth result in predicted optics temperature of 156 K and detector temperature of 63 K.
Condensation on Highly Superheated Surfaces: Unstable Thin Films in a Wickless Heat Pipe
NASA Astrophysics Data System (ADS)
Kundan, Akshay; Nguyen, Thao T. T.; Plawsky, Joel L.; Wayner, Peter C.; Chao, David F.; Sicker, Ronald J.
2017-03-01
A wickless heat pipe was operated on the International Space Station to provide a better understanding of how the microgravity environment might alter the physical and interfacial forces driving evaporation and condensation. Traditional heat pipes are divided into three zones: evaporation at the heated end, condensation at the cooled end, and intermediate or adiabatic in between. The microgravity experiments reported herein show that the situation may be dramatically more complicated. Beyond a threshold heat input, there was a transition from evaporation at the heated end to large-scale condensation, even as surface temperatures exceeded the boiling point by 160 K. The hotter the surface, the more vapor was condensed onto it. The condensation process at the heated end is initiated by thickness and temperature disturbances in the thin liquid film that wet the solid surface. Those disturbances effectively leave the vapor "superheated" in that region. Condensation is amplified and sustained by the high Marangoni stresses that exist near the heater and that drive liquid to cooler regions of the device.
Microsystem Cooler Concept Developed and Being Fabricated
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2005-01-01
A patented microsystem cooler concept has been developed by the NASA Glenn Research Center. It incorporates diaphragm actuators to produce the Stirling refrigeration cycle within a planar configuration compatible with the thermal management of electronics, sensors, optical and radiofrequency systems, microarrays, and other microsystems. The microsystem cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Johns Hopkins University Applied Physics Laboratory is conducting development testing and fabrication of a prototype under a grant from Glenn.
Simulating future water temperatures in the North Santiam River, Oregon
Buccola, Norman; Risley, John C.; Rounds, Stewart A.
2016-01-01
A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990–1999) and future (2059–2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam’s spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake’s surface with cooler water from deep in the lake, and the spillway is an important release point near the lake’s surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A hypothetical floating surface withdrawal at Detroit Dam improved temperature control in summer and autumn (0.6 °C warmer in summer, 0.6 °C cooler in autumn compared to existing structures) without altering release rates or lake level management rules.
NASA Astrophysics Data System (ADS)
Zhou, Wenyu; Xie, Shang-Ping
2017-08-01
Global climate models (GCMs) have long suffered from biases of excessive tropical precipitation in the Southern Hemisphere (SH). The severity of the double-Intertropical Convergence Zone (ITCZ) bias, defined here as the interhemispheric difference in zonal mean tropical precipitation, varies strongly among models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble. Models with a more severe double-ITCZ bias feature warmer tropical sea surface temperature (SST) in the SH, coupled with weaker southeast trades. While previous studies focus on coupled ocean-atmosphere interactions, here we show that the intermodel spread in the severity of the double-ITCZ bias is closely related to land surface temperature biases, which can be further traced back to those in the Atmosphere Model Intercomparison Project (AMIP) simulations. By perturbing land temperature in models, we demonstrate that cooler land can indeed lead to a more severe double-ITCZ bias by inducing the above coupled SST-trade wind pattern in the tropics. The response to land temperature can be consistently explained from both the dynamic and energetic perspectives. Although this intermodel spread from the land temperature variation does not account for the ensemble model mean double-ITCZ bias, identifying the land temperature effect provides insights into simulating a realistic ITCZ for the right reasons.
Mid Infrared Instrument cooler subsystem test facility overview
NASA Astrophysics Data System (ADS)
Moore, B.; Zan, J.; Hannah, B.; Chui, T.; Penanen, K.; Weilert, M.
2017-12-01
The Cryocooler for the Mid Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) provides cooling at 6.2K on the instrument interface. The cooler system design has been incrementally documented in previous publications [1][2][3][4][5]. It has components that traverse three primary thermal regions on JWST: Region 1, approximated by 40K; Region 2, approximated by 100K; and Region 3, which is at the allowable flight temperatures for the spacecraft bus. However, there are several sub-regions that exist in the transition between primary regions and at the heat reject interfaces of the Cooler Compressor Assembly (CCA) and Cooler Control Electronics Assembly (CCEA). The design and performance of the test facility to provide a flight representative thermal environment for acceptance testing and characterization of the complete MIRI cooler subsystem are presented.
EVALUATION OF PERSONAL COOLING DEVICES FOR A ...
The study investigated the use of personal coolers to increase worker productivity and safety while working at elevated, ambient temperatures cleaning up dioxin contaminated soil.^The study included laboratory tests to measure the thermal characteristics of the chemical protective clothing worn and the performance of ice vest and vortex personal coolers.^In addition, field tests were conducted at a dioxin clean-up site to evaluate the performance of these two types of personal coolers.^The use of personal coolers was found to be an effective method of reducing the risk of heat stress.^In addition, workers were able to work continuously in hot weather without following the procedure normally used to decrease heat stress, i.e., working one hour followed by one hour of resting.^Both types of personal coolers were acceptable for the task being performed. information
NASA Astrophysics Data System (ADS)
Alpert, A.; Cohen, A. L.; Oppo, D.; Gaetani, G. A.
2016-12-01
Proxy records of the Little Ice Age (LIA; 1450-1850CE) at high latitude Northern Hemisphere indicate temperatures 1-2°C cooler relative to the mid-20th century. However, estimates of sea surface temperatures (SSTs) from the western tropical Atlantic (WTA) range widely, indicating SSTs from 0- 4°C cooler than the mid-20th century. The largest of these cooling estimates indicate that the LIA tropics were more sensitive than the high latitudes, inconsistent with model predictions. Here we apply a novel coral thermometer, Sr-U, that has been demonstrated to accurately capture spatial and temporal variability across coral genera in both the Pacific and Atlantic Oceans. A continuous section of reconstructed SSTs in the WTA (Puerto Rico) during the LIA (1465-1560CE) reveals a modest cooling relative to the late 20th century but no significant difference from the early 20th century prior. At this site sensitive to the modern Atlantic Multidecadal Oscillation (AMO) multidecadal variability was present during the LIA with amplitude comparable to the 20th century. Our record is consistent with weaker tropical sensitivity to external forcing than at higher latitudes during the LIA.
Low Temperature Reflectance Spectra of Titan Tholins
NASA Technical Reports Server (NTRS)
Roush, T. L.; Dalton, J. B.; Fonda, Mark (Technical Monitor)
2001-01-01
Compositional interpretation of remotely obtained reflectance spectra of outer solar system surfaces is achieved by a variety of methods. These include matching spectral curves, matching spectral features, quantitative spectral interpretation, and theoretical modeling of spectra. All of these approaches rely upon laboratory measurements of one kind or another. The bulk of these laboratory measurements are obtained with the sample of interest at ambient temperatures and pressures. However, surface temperatures of planets, satellites, and asteroids in the outer solar system are significantly cooler than ambient laboratory conditions on Earth. The infrared spectra of many materials change as a function of temperature. As has been recently demonstrated it is important to assess what effects colder temperatures have on spectral properties and hence, compositional interpretations. Titan tholin is a solid residue created by energetic processing of H-, C-, and N-bearing gases. Such residues can also be created by energetic processing if the gases are condensed into ices. Titan tholin has been suggested as a coloring agent for several surfaces in the outer solar system. Here we report laboratory measurements of Titan tholin at a temperature of 100 K and compare these to measurements of the same sample near room temperature. At low temperature the absorption features beyond 1 micrometer narrow slightly. At wavelengths greater than approx. 0.8 micrometer the overall reflectance of the sample decreases slightly making the sample less red at low temperatures. We will discuss the implications of the laboratory measurements for interpretation of cold outer solar system surfaces.
NASA Astrophysics Data System (ADS)
Du, H.; Wang, Y. P.; Yuan, X. H.; Deng, Y. D.; Su, C. Q.
2016-03-01
To improve the riding comfort and rational utilization of the electrical energy captured by an automotive thermoelectric generator (ATEG), a temperature-controlled car seat was constructed to adjust the temperature of the car seat surface. Powered by the ATEG and the battery, the seat-embedded air conditioner can improve the riding comfort using a thermoelectric device to adjust the surface temperature of the seat, with an air duct to regulate the cold side and hot side of the thermoelectric device. The performance of the thermoelectric cooler (TEC) and theoretical analysis on the optimum state of the TEC device are put forward. To verify the rationality of the air duct design and to ensure sufficient air supply, the velocity field of the air duct system was obtained by means of the finite element method. To validate the reliability of the numerical simulation, the air velocity around the thermoelectric device was measured by a wind speed transmitter. The performance of the temperature-controlled car seat has been validated and is in good agreement with bench tests and real vehicle tests.
Design, construction, and measurement of a large solar powered thermoacoustic cooler
NASA Astrophysics Data System (ADS)
Chen, Reh-Lin
2001-07-01
A device based on harnessing concentrated solar power in combination with using thermoacoustic principles has been built, instrumented, and tested. Its acoustic power is generated by solar radiation and is subsequently used to pump heat from external loads. The direct conversion between thermal and mechanical energy without going through any electronic stage makes the mechanism simple. Construction of the solar collector is also rather unsophisticated. It was converted from a 10-ft satellite dish with aluminized Mylar glued on the surface. The thermoacoustic device was mounted on the dish with its engine's hot side positioned near the focus of the parabolic dish, about 1 meter above the center of the dish. A 2-dimensional solar tracking system was built, using two servo motors to position the dish at pre-calculated coordinates. The solar powered thermoacoustic cooler is intended to be used where solar power is abundant and electricity may not be available or reliable. The cooler provides cooling during solar availability. Cooling can be maintained by the latent heat of ice when solar power is unattainable. The device has achieved cooling although compromised by gas leakage and thermal losses and was not able to provide temperatures low enough to freeze water. Improvements of the device are expected through modifications suggested herein.
Microminiature linear split Stirling cryogenic cooler for portable infrared imagers
NASA Astrophysics Data System (ADS)
Veprik, A.; Vilenchik, H.; Riabzev, S.; Pundak, N.
2007-04-01
Novel tactics employed in carrying out military and antiterrorist operations call for the development of a new generation of warfare, among which sophisticated portable infrared (IR) imagers for surveillance, reconnaissance, targeting and navigation play an important role. The superior performance of such imagers relies on novel optronic technologies and maintaining the infrared focal plane arrays at cryogenic temperatures using closed cycle refrigerators. Traditionally, rotary driven Stirling cryogenic engines are used for this purpose. As compared to their military off-theshelf linear rivals, they are lighter, more compact and normally consume less electrical power. Latest technological advances in industrial development of high-temperature (100K) infrared detectors initialized R&D activity towards developing microminiature cryogenic coolers, both of rotary and linear types. On this occasion, split linearly driven cryogenic coolers appear to be more suitable for the above applications. Their known advantages include flexibility in the system design, inherently longer life time, low vibration export and superior aural stealth. Moreover, recent progress in designing highly efficient "moving magnet" resonant linear drives and driving electronics enable further essential reduction of the cooler size, weight and power consumption. The authors report on the development and project status of a novel Ricor model K527 microminiature split Stirling linear cryogenic cooler designed especially for the portable infrared imagers.
Evaluation of personal cooling devices for dioxin clean-up operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, W.T.; Goldman, R.F.
1988-09-07
The study investigated the use of personal coolers to increase worker productivity and safety while working at elevated, ambient temperatures cleaning up dioxin contaminated soil. The study included laboratory tests to measure the thermal characteristics of the chemical protective clothing worn and the performance of ice vest and vortex personal coolers. In addition, field tests were conducted at a dioxin clean-up site to evaluate the performance of these two types of personal coolers. The use of personal coolers was found to be an effective method of reducing the risk of heat stress. In addition, workers were able to work continuouslymore » in hot weather without following the procedure normally used to decrease heat stress, i.e., working one hour followed by one hour of resting. Both types of personal coolers were acceptable for the task being performed.« less
Innovative phase shifter for pulse tube operating below 10 K
NASA Astrophysics Data System (ADS)
Duval, Jean-Marc; Charles, Ivan; Daniel, Christophe; André, Jérôme
2016-09-01
Stirling type pulse tubes are classically based on the use of an inertance phase shifter to optimize their cooling power. The limitations of the phase shifting capabilities of these inertances have been pointed out in various studies. These limitations are particularly critical for low temperature operation, typically below about 50 K. An innovative phase shifter using an inertance tube filled with liquid, or fluid with high density or low viscosity, and separated by a sealed metallic diaphragm has been conceived and tested. This device has been characterized and validated on a dedicated test bench. Operation on a 50-80 K pulse tube cooler and on a low temperature (below 8 K) pulse tube cooler have been demonstrated and have validated the device in operation. These developments open the door for efficient and compact low temperature Stirling type pulse tube coolers. The possibility of long life operation has been experimentally verified and a design for space applications is proposed.
10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...
10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...
10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... walk-in cooler or walk-in freezer that are not part of its refrigeration system. K-factor means the... consumption, including, but not limited to, refrigeration, doors, lights, windows, or walls; or (2... temperature at or below 55 degrees Fahrenheit using a refrigeration system. Refrigeration system means the...
Performance of a 260 Hz pulse tube cooler with metal fiber as the regenerator material
NASA Astrophysics Data System (ADS)
Wang, Xiaotao; Zhang, Shuang; Yu, Guoyao; Dai, Wei; Luo, Ercang
2014-01-01
Pulse tube coolers operating at higher frequency lead to a high energy density and result in a more compact system. This paper describes the performance of a 300 Hz pulse tube cooler driven by a linear compressor. Such high frequency operation leads to decreased thermal penetration, which requires a smaller hydraulic diameter and smaller wire diameter in the regenerator. In our previous experiments, the stainless steel mesh with a mesh number of 635 was used as the regenerator material, and a no-load temperature of 63 K was obtained. Both the numerical and experimental results indicate this material causes a large loss in the regenerator. A stainless steel fiber regenerator is introduced and studied in this article. Because this fiber has a wide range of wire diameter and porosity, such material might be more suitable for higher frequency pulse tube coolers. With the fiber as the regenerator material and after a series of optimizations, a no-load temperature of 45 K is acquired in the experiment. Influences of various parameters such as frequency and inertance tube length have been investigated experimentally.
Northrop Grumman HEC flight coaxial cryocoolers performance
NASA Astrophysics Data System (ADS)
Nguyen, T.; Russo, J.; Basel, G.; Chi, D.; Abelson, L.
2018-05-01
The Northrop Grumman Aerospace Systems (NGAS) has expanded the cryocooler product line to include a single stage High Efficiency Cryocooler (HEC) cooler with a coaxial pulse tube cold head that operates at temperatures down to 45K. The HEC coaxial pulse tube cooler has been adopted by several customers, and has completed acceptance testing to meet program flight requirements. The NGAS TRL 9 HEC is a pulse tube cryocooler with a flexure bearing compressor which has been delivered for a number of flight payloads that are currently operating in space. To date, NGAS has delivered space cryocoolers in several configurations including single stage with a linear cold head and two stage with both linear and coaxial cold heads. The new HEC coaxial cooler uses the same TRL9 HEC compressor with a passive pulse tube cold head, to maintain the flight heritage of the HEC linear cooler. In this paper, we present the flight acceptance test data of the HEC coaxial cryocooler, which includes thermal performance, launch vibration and thermal cycling. The HEC coaxial cooler has demonstrated excellent performance in family with the flight qualified HEC linear cooler. The HEC coaxial cooler provides users with additional flexibility in selecting the cold head configuration to meet their particular applications.
Recurring slope lineae in equatorial regions of Mars
McEwen, Alfred S.; Dundas, Colin M.; Mattson, Sarah S.; Toigo, Anthony D.; Ojha, Lujendra; Wray, James J.; Chojnacki, Matthew; Byrne, Shane; Murchie, Scott L.; Thomas, Nicolas
2014-01-01
The presence of liquid water is a requirement of habitability on a planet. Possible indicators of liquid surface water on Mars include intermittent flow-like features observed on sloping terrains. These recurring slope lineae are narrow, dark markings on steep slopes that appear and incrementally lengthen during warm seasons on low-albedo surfaces. The lineae fade in cooler seasons and recur over multiple Mars years. Recurring slope lineae were initially reported to appear and lengthen at mid-latitudes in the late southern spring and summer and are more common on equator-facing slopes where and when the peak surface temperatures are higher. Here we report extensive activity of recurring slope lineae in equatorial regions of Mars, particularly in the deep canyons of Valles Marineris, from analysis of data acquired by the Mars Reconnaissance Orbiter. We observe the lineae to be most active in seasons when the slopes often face the sun. Expected peak temperatures suggest that activity may not depend solely on temperature. Although the origin of the recurring slope lineae remains an open question, our observations are consistent with intermittent flow of briny water. Such an origin suggests surprisingly abundant liquid water in some near-surface equatorial regions of Mars.
2004-08-30
This image shows Hurricane Frances in August 2004 as captured by instruments onboard two different NASA satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central "eye." The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA00435
Post impact behavior of mobile reactor core containment systems
NASA Technical Reports Server (NTRS)
Puthoff, R. L.; Parker, W. G.; Vanbibber, L. E.
1972-01-01
The reactor core containment vessel temperatures after impact, and the design variables that affect the post impact survival of the system are analyzed. The heat transfer analysis includes conduction, radiation, and convection in addition to the core material heats of fusion and vaporization under partially burial conditions. Also, included is the fact that fission products vaporize and transport radially outward and condense outward and condense on cooler surfaces, resulting in a moving heat source. A computer program entitled Executive Subroutines for Afterheat Temperature Analysis (ESATA) was written to consider this complex heat transfer analysis. Seven cases were calculated of a reactor power system capable of delivering up to 300 MW of thermal power to a nuclear airplane.
Computer program for analysis of split-Stirling-cycle cryogenic coolers
NASA Technical Reports Server (NTRS)
Brown, M. T.; Russo, S. C.
1983-01-01
A computer program for predicting the detailed thermodynamic performance of split-Stirling-cycle refrigerators has been developed. The mathematical model includes the refrigerator cold head, free-displacer/regenerator, gas transfer line, and provision for modeling a mechanical or thermal compressor. To allow for dynamic processes (such as aerodynamic friction and heat transfer) temperature, pressure, and mass flow rate are varied by sub-dividing the refrigerator into an appropriate number of fluid and structural control volumes. Of special importance to modeling of cryogenic coolers is the inclusion of real gas properties, and allowance for variation of thermo-physical properties such as thermal conductivities, specific heats and viscosities, with temperature and/or pressure. The resulting model, therefore, comprehensively simulates the split-cycle cooler both spatially and temporally by reflecting the effects of dynamic processes and real material properties.
2017-01-01
The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years. PMID:28178351
Zhao, Xia; Yang, Guang
2017-01-01
The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.
MEMS Device Being Developed for Active Cooling and Temperature Control
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2001-01-01
High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.
NASA Astrophysics Data System (ADS)
Lemckert, C. J.; Reinke, J.; Meynecke, O.
2016-02-01
Humpback whales, Megaptera novaeangliae, migrate annually from polar feeding grounds in summer to tropical breeding grounds in winter. Large scale migration patterns are quite well known; however, small scale distribution patterns and relationships with environmental conditions have received less attention. Protection from a range of threats, as well as predicting the effects of climate change, requires knowledge of preferred habitat and the reasons behind the preferences. East Australian humpback whales travel from the Southern Ocean, along the East Coast of Australia, to the Great Barrier Reef (or further) to breed. The East Australian coastal environment is dominated by the East Australian Current. This current carries warm water poleward from the tropics and is responsible for generating upwelling conditions on the coast and providing the majority of nutrients available for primary production. Sharp temperature changes develop at the border of the warm current and the cooler coastal and upwelled waters. This study investigates relationships between humpback whale distribution and environmental conditions (including bathymetry and remotely sensed sea surface temperature, as well as their gradients) on the Gold Coast and Hervey Bay, Australia. The Gold Coast is used primarily a migration route, but also provides a rest stop for mothers and calves on the return journey. Hervey Bay is used on the southern (return) migration for resting and socialising. Environmental preferences for these two will provide a comparison of the requirements for different habitat types. Initial outcomes of the study on the Gold Coast suggest a preference for cooler waters and in areas with a strong temperature gradient. The higher productivity in cooler upwelled water and fronts may provide the whales with a chance of opportunistic feeding, a rare occurrence on their prolonged journey. Following particular hydrodynamic features such as these, which generally run parallel to the shore, may also serve as a tool for navigation.
1965-08-17
Viewed from the front the #1 XB-70A (62-0001) is shown climbing out during take-off. Most flights were scheduled during the morning hours to take advantage of the cooler ambient air temperatures for improved propulsion efficiencies. The wing tips are extended straight out to provide a maximum lifting wing surface. The XB-70A, capable of flying three times the speed of sound, was the world's largest experimental aircraft in the 1960s. Two XB-70A aircraft were built. Ship #1 was flown by NASA in a high speed flight research program.
Assessment of Drinking Water Quality from Bottled Water Coolers
FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar
2014-01-01
Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769
NASA Astrophysics Data System (ADS)
Alsih, Abdulkareem; Flavel, Richard; McGrath, Gavan
2017-04-01
This study presents experimental results investigating spatial patterns of infiltration and evaporation in heterogeneous water repellent media. Infrared camera measurements and 3D X-ray computed tomography imaging was performed across wet-dry cycles on glass beads with engineered patches of water repellence. The imaging revealed spatial variability in infiltration and the redistribution of water in the media resulting in differences in relative evaporation rates during drying. It appears that the spatial organization of the heterogeneity play a role in the breakdown of water repellence at the interface of the two media. This suggests a potential mechanism for self-organization of repellency spatial patterns in field soils. At the interface between wettable and water repellent beads a lateral drying front propagates towards the wettable beads from the repellent beads. During this drying the relative surface temperatures change from a relatively cooler repellent media surface to a relatively cooler wettable media surface indicating the changes in evaporative water loss between the beads of varying water repellence. The lateral drying front was confirmed using thermography in a small-scale model of glass beads with chemically induced repellence and then subjected to 3D X-ray imaging. Pore-scale imaging identified the hydrology at the interface of the two media and at the drying front giving insights into the physics of water flow in water repellent soil.
Experimental evidence that stripes do not cool zebras.
Horváth, Gábor; Pereszlényi, Ádám; Száz, Dénes; Barta, András; Jánosi, Imre M; Gerics, Balázs; Åkesson, Susanne
2018-06-19
There are as many as 18 theories for the possible functions of the stripes of zebras, one of which is to cool the animal. We performed field experiments and thermographic measurements to investigate whether thermoregulation might work for zebra-striped bodies. A zebra body was modelled by water-filled metal barrels covered with horse, cattle and zebra hides and with various black, white, grey and striped patterns. The barrels were installed in the open air for four months while their core temperature was measured continuously. Using thermography, the temperature distributions of the barrel surfaces were compared to those of living zebras. The sunlit zebra-striped barrels reproduced well the surface temperature characteristics of sunlit zebras. We found that there were no significant core temperature differences between the striped and grey barrels, even on many hot days, independent of the air temperature and wind speed. The average core temperature of the barrels increased as follows: white cattle, grey cattle, real zebra, artificial zebra, grey horse, black cattle. Consequently, we demonstrate that zebra-striped coats do not keep the body cooler than grey coats challenging the hypothesis of a thermoregulatory role of zebra stripes.
Astrobiological Effects of Stellar Radiation in Circumstellar Environments
NASA Astrophysics Data System (ADS)
Cuntz, Manfred; Gurdemir, Levent; Guinan, Edward F.; Kurucz, Robert L.
2006-10-01
The centerpiece of all life on Earth is carbon-based biochemistry. Previous scientific research has suggested that biochemistry based on carbon may also play a decisive role in extraterrestrial life forms, i.e., alien life outside of Earth, if existent. In the following, we explore if carbon-based macromolecules (such as DNA) in the environments of stars other than the Sun are able to survive the effects of energetic stellar radiation, such as UV-C in the wavelength band between 200 and 290 nm. We focus on main-sequence stars akin to the Sun, but of hotter (F-type stars) and cooler (K- and M-type stars) surface temperature. Emphasis is placed on investigating the radiative environment in stellar habitable zones (HZs). Stellar habitable zones have an important relevance in astrobiology because they constitute circumstellar regions in which a planet of suitable size can have surface temperatures for water to exist in liquid form.
Cryocooler based test setup for high current applications
NASA Astrophysics Data System (ADS)
Pradhan, Jedidiah; Das, Nisith Kr.; Roy, Anindya; Duttagupta, Anjan
2018-04-01
A cryo-cooler based cryogenic test setup has been designed, fabricated, and tested. The setup incorporates two numbers of cryo-coolers, one for sample cooling and the other one for cooling the large magnet coil. The performance and versatility of the setup has been tested using large samples of high-temperature superconductor magnet coil as well as short samples with high current. Several un-calibrated temperature sensors have been calibrated using this system. This paper presents the details of the system along with results of different performance tests.
Farthing, William Earl [Pinson, AL; Felix, Larry Gordon [Pelham, AL; Snyder, Todd Robert [Birmingham, AL
2008-02-12
An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.
Farthing, William Earl; Felix, Larry Gordon; Snyder, Todd Robert
2009-12-15
An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.D. LeCain; N. lu; M. Kurzmack
Temperature and air-pressure monitoring in a vertical borehole located in Pagany Wash, a normally dry stream-carved channel northeast of Yucca Mountain, Nevada, indicated that the annual temperature wave was measurable to a depth of 11.1 m. Temperature depressions were measured at depths of 3.1, 6.1, 9.2, and 11.1 m below ground surface. The temperature depressions were interpreted to be the result of infiltration associated with the 1997-1998 El Nino precipitation. A pressure differential, of approximately 2 kiloPascals, between stations located 11.1 and 24.5 m below ground surface was interpreted to be the result of compressed air ahead of the wettingmore » front. The pressure differences between stations indicated that the wetting front migrated deeper than 35.2 m and that the Yucca Mountain Tuff retarded the downward movement of the wetting front. An analytical method indicated that the infiltration flux through the Pagany Wash alluvium due to the 1997-1998 El Nino precipitation was approximately 940 mm. A one-dimensional numerical model indicated that the infiltration flux was approximately 1000 mm. Sensitivity analysis indicated that the potential temperature decrease due to conduction was minimal and that cooler surface temperatures could not account for the measured subsurface temperature depressions.« less
Climate model studies of synchronously rotating planets.
Joshi, Manoj
2003-01-01
M stars constitute 75% of main sequence stars though, until recently, their star systems have not been considered suitable places for habitable planets to exist. In this study the climate of a synchronously rotating planet around an M dwarf star is evaluated using a three-dimensional global atmospheric circulation model. The presence of clouds and evaporative cooling at the surface of the planet result in a cooler surface temperature at the subsolar point. Water ice forms at the polar regions and on the dark side, where the minimum temperature lies between -30 degrees C and 0 degrees C. As expected, rainfall is extremely high on the starlit side and extremely low on the dark side. The presence of a dry continent causes higher temperatures on the dayside, and allows accumulation of snow on the nightside. The absence of any oceans leads to higher day-night temperature differences, consistent with previous work. The present study reinforces recent conclusions that synchronously rotating planets within the circumstellar habitable zones of M dwarf stars should be habitable, and therefore M dwarf systems should not be excluded in future searches for exoplanets.
NASA Astrophysics Data System (ADS)
Salazar, William
2003-01-01
The Standard Advanced Dewar Assembly (SADA) is the critical module in the Department of Defense (DoD) standardization effort of scanning second-generation thermal imaging systems. DoD has established a family of SADA's to address requirements for high performance (SADA I), mid-to-high performance (SADA II), and compact class (SADA III) systems. SADA's consist of the Infrared Focal Plane Array (IRFPA), Dewar, Command and Control Electronics (C&CE), and the cryogenic cooler. SADA's are used in weapons systems such as Comanche and Apache helicopters, the M1 Abrams Tank, the M2 Bradley Fighting Vehicle, the Line of Sight Antitank (LOSAT) system, the Improved Target Acquisition System (ITAS), and Javelin's Command Launch Unit (CLU). DOD has defined a family of tactical linear drive coolers in support of the family of SADA's. The Stirling linear drive cryo-coolers are utilized to cool the SADA's Infrared Focal Plane Arrays (IRFPAs) to their operating cryogenic temperatures. These linear drive coolers are required to meet strict cool-down time requirements along with lower vibration output, lower audible noise, and higher reliability than currently fielded rotary coolers. This paper will (1) outline the characteristics of each cooler, (2) present the status and results of qualification tests, and (3) present the status and test results of efforts to increase linear drive cooler reliability.
Bell, Kris; Blomberg, Simon; Schwarzkopf, Lin
2013-01-01
Global temperatures have risen over the last century, and are forecast to continue rising. Ectotherms may be particularly sensitive to changes in thermal regimes, and tropical ectotherms are more likely than temperate species to be influenced by changes in environmental temperature, because they may have evolved narrow thermal tolerances. Keelback snakes (Tropidonophis mairii) are tropical, oviparous reptiles. To quantify the effects of temperature on the morphology and physiology of hatchling keelbacks, clutches laid by wild-caught females were split and incubated at three temperatures, reflecting the average minimum, overall average and average maximum temperatures recorded at our study site. Upon hatching, the performance of neonates was examined at all three incubation temperatures in a randomized order over consecutive days. Hatchlings from the 'hot' treatment had slower burst swim speeds and swam fewer laps than hatchlings from the cooler incubation temperatures in all three test temperatures, indicating a low thermal optimum for incubation of this tropical species. There were no significant interactions between test temperature and incubation temperature across performance variables, suggesting phenotypic differences caused by incubation temperature did not acclimate this species to post-hatching conditions. Thus, keelback embryos appear evolutionarily adapted to development at cooler temperatures (relative to what is available in their habitat). The considerable reduction in hatchling viability and performance associated with a 3.5 °C increase in incubation temperature, suggests climate change may have significant population-level effects on this species. However, the offspring of three mothers exposed to the hottest incubation temperature were apparently resilient to high temperature, suggesting that this species may respond to selection imposed by thermal regime.
Modeling Green Infrastructure Land Use Changes on Future Air Quality—Case Study in Kansas City
NASA Astrophysics Data System (ADS)
Zhang, Y.; Bash, J. O.; Roselle, S. J.; Gilliland, A. B.; Shatas, A.; DeYoung, R.; Piziali, J.
2016-12-01
Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). We found that the average 2-meter temperatures (T2) during summer (June, July and August) are projected to slightly decrease over the downtown of KC and slightly increase over the newly developed regions surrounding the urban core. The planetary boundary layer (PBL) height changes are consistent with the T2 changes: the PBL height is somewhat lowered over the downtown and raised over the newly developed areas. We also saw relatively small decreases in O3 in the downtown area for the mean of all hours as well as for the maximum 8 hour average (MDA8), corresponding with the changes in T2 and PBL height. However, we also found relatively small PM2.5 concentration increases over KC, especially over the downtown areas, with the largest contribution from components of organic carbon, elementary carbon, non-anion dust, and unspeciated PM. More diagnostic analysis is needed to further investigate how these land use changes affect different processes (such as the dry deposition).
Integral finned heater and cooler for stirling engines
Corey, John A.
1984-01-01
A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.
Conduction cooling systems for linear accelerator cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kephart, Robert
A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.
Condensation on Highly Superheated Surfaces: Unstable Thin Films in a Wickless Heat Pipe.
Kundan, Akshay; Nguyen, Thao T T; Plawsky, Joel L; Wayner, Peter C; Chao, David F; Sicker, Ronald J
2017-03-03
A wickless heat pipe was operated on the International Space Station to provide a better understanding of how the microgravity environment might alter the physical and interfacial forces driving evaporation and condensation. Traditional heat pipes are divided into three zones: evaporation at the heated end, condensation at the cooled end, and intermediate or adiabatic in between. The microgravity experiments reported herein show that the situation may be dramatically more complicated. Beyond a threshold heat input, there was a transition from evaporation at the heated end to large-scale condensation, even as surface temperatures exceeded the boiling point by 160 K. The hotter the surface, the more vapor was condensed onto it. The condensation process at the heated end is initiated by thickness and temperature disturbances in the thin liquid film that wet the solid surface. Those disturbances effectively leave the vapor "superheated" in that region. Condensation is amplified and sustained by the high Marangoni stresses that exist near the heater and that drive liquid to cooler regions of the device.
Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification
Kozubal, Eric Joseph
2016-12-13
An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.
Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification
Kozubal, Eric Joseph; Slayzak, Steven Joseph
2014-07-08
An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.
Evaluation of two cooling systems under a firefighter coverall.
Teunissen, Lennart P J; Wang, Li-Chu; Chou, Shih-Nung; Huang, Chin-Hsien; Jou, Gwo-Tsuen; Daanen, Hein A M
2014-11-01
Firemen often suffer from heat strain. This study investigated two chest cooling systems for use under a firefighting suit. In nine male subjects, a vest with water soaked cooling pads and a vest with water perfused tubes were compared to a control condition. Subjects performed 30 min walking and 10 min recovery in hot conditions, while physiological and perceptual parameters were measured. No differences were observed in heart rate and rectal temperature, but scapular skin temperature and fluid loss were lower using the perfused vest. Thermal sensation was cooler for the perfused vest than for the other conditions, while the cool pad vest felt initially cooler than control. However, comfort and RPE scores were similar. We conclude that the cooling effect of both tested systems, mainly providing a (temporally) cooler thermal sensation, was limited and did not meet the expectations. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Multistage Passive Cooler for Spaceborne Instruments
NASA Technical Reports Server (NTRS)
Rodriquez, Jose I.
2007-01-01
A document describes a three-stage passive radiative cooler for a cryogenic spectrometer to be launched into a low orbit around the Moon. This cooler is relatively lightweight and compact, and its basic design is scalable and otherwise adaptable to other applications in which there are requirements for cooling instrumentation in orbit about planets. The cooler includes multiple lightweight flat radiator blades alternating with cylindrical parabolic infrared reflectors. The radiator blades are oriented at an angle chosen to prevent infrared loading from the Moon limb at the intended orbital altitude and attitude. The reflectors are shaped and oriented to position their foci outside the radiator surfaces. There are six radiator-blade/reflector pairs - two pairs for each stage of cooling. The radiator blades and reflectors are coated on their front and back surfaces with materials having various infrared emissivities, infrared reflectivities, and solar reflectivities so as to maximize infrared radiation to cold outer space and minimize inadvertent solar heating. The radiator blades and reflectors are held in place by a lightweight support structure, the components of which are designed to satisfy a complex combination of thermal and mechanical requirements.
Pollen record from Ka'au Crater, Oahu, Hawaii: Evidence for a dry glacial maximum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hotchkiss, S.C.; Juvik, J.O.
Fossil pollen from a 3.5 m-long core from Ka'au Crater, Hawaii (elev. 460 m), yields a ca. 23,000-year record of regional vegetation history. Results indicate a full-glacial period drier and possibly cooler than present, a warmer and wetter early Holocene, and a somewhat drier late Holocene; this sequence agrees with earlier work by Selling (1948) on other islands. The oldest zone is donated by pollen of Chenopodium oahuense, Acacia koa, and Dodonaea viscosa; post-glacial pollen assemblages feature high percentages of Myrsine and Coprosma, followed by increases in Lycopodium cernuum Ilex anomala. Freycinetia arborea and Pritchardia. After about 8000 years ago,more » Chenopodium, Acacia, and Dodonaea increase, suggesting a return to drier conditions. Abundant pollen of Chenopodium oahuense, a plant of dry regions, during the last glacial maximum implies that neither the trade winds nor cyclonic storms were delivering as much moisture to the regional vegetation as they presently do. This suggests that the ocean surface temperature during the last glacial maximum may have been cooler than present, a finding contradictory to the reconstructions of the CLIMAP (1981) group, which show temperatures near Hawaii equal to or even warmer than present.« less
Contamination in Orbit of GOES-8
NASA Technical Reports Server (NTRS)
Sanders, Jack T.
2002-01-01
The GOES-8 satellite has lost some of its ability to dissipate heat over time. This is shown by the temperature increases over time of spacecraft and instrument components that are cooled with optical solar reflector (OSR) radiators. Contamination has a significant, well-documented effect on the solar absorptance (a(sub s)) of OSRs. This document attempts to discern how much molecular contamination has collected on the Imager and Sounder radiant coolers by analyzing the increase in temperature of the vacuum cooler housing. In the first part, temperature change is transformed into solar absorptance units by a method devised by ITT. The second part transfomis the solar absorptance gain into a molecular film thickness.
Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment
NASA Astrophysics Data System (ADS)
Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.
2014-01-01
We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.
10 K high frequency pulse tube cryocooler with precooling
NASA Astrophysics Data System (ADS)
Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie
2016-07-01
A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.
Toward the Active Control of Heat Transfer in the Hot Gas Path of Gas Turbines
NASA Technical Reports Server (NTRS)
Oertling, Jeremiah E.
2003-01-01
The work at NASA this summer has focused on assisting the Professor's project, namely "Toward the Active Control of Heat Transfer in the Hot Gas Path of Gas Turbines." The mode of controlling the Heat Transfer that the project focuses on is film cooling. Film cooling is used in high temperature regions of a gas turbine and extends the life of the components exposed to these extreme temperatures. A "cool" jet of air is injected along the surface of the blade and this layer of cool air shields the blade from the high temperatures. Cool is a relative term. The hot gas path temperatures reach on the order of 1500 to 2000 K. The "coo" air is on the order of 700 to 1000 K. This cooler air is bled off of an appropriate compressor stage. The next parameter of interest is the jet s position and orientation in the flow-field.
18.6 K single-stage high frequency multi-bypass coaxial pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Chen, Liubiao; Jin, Hai; Wang, Junjie; Zhou, Yuan; Zhu, Wenxiu; Zhou, Qiang
2013-02-01
A single-stage high frequency multi-bypass coaxial pulse tube cryocooler (PTC) has been developed for physical experiments. The performance characteristics are presented. At present, the cooler has reached the lowest temperature of 18.6 K with an electric input power of 268 W, which is the reported lowest temperature for single-stage high frequency PTC. The cooler typically provides 0.2 W at 20.6 K and 0.5 W at 24.1 K with the input power of 260 W at 300 K ambient temperature. The cooperation phase adjustment method of multi-bypass and double-inlet shows its advantages in experiments, they might be the best way to get temperature below 20 K for single-stage high frequency PTC. The temperature stability of the developed PTC is also observed.
NASA Technical Reports Server (NTRS)
Otterman, J.; Ardizzone, J.; Atlas, R.; Hu, H.; Jusem, J. C.; Starr, D.
1999-01-01
As established in previous studies, and analyzed further herein for the years 1988-1998, warm advection from the North Atlantic is the predominant control of the surface-air temperature in northern-latitude Europe in late winter. This thesis is supported by the substantial correlation Cti between the speed of the southwesterly surface winds over the eastern North Atlantic, as quantified by a specific Index Ina, and the 2-meter level temperature Ts over central Europe (48-54 deg N; 5-25 deg E), for January, February and early March. In mid-March and subsequently, the correlation Cti drops drastically (quite often it is negative). The change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature. As (a) the sun rises higher in the sky, (b) the snows melt (the surface absorptivity can increase by a factor of 3.0), (c) the ocean-surface winds weaken, and (d) the temperature difference between land and ocean (which we analyze) becomes small, absorption of insolation replaces the warm advection as the dominant control of the continental temperature. We define the onset of spring by this transition, which evaluated for the period of our study occurs at pentad 16 (Julian Date 76, that is, March 16). The control by insolation means that the surface is cooler under cloudy conditions than under clear skies. This control produces a much smaller interannual variability of the surface temperature and of the lapse rate than prevailing in winter, when the control is by advection. Regional climatic data would be of greatest value for agriculture and forestry if compiled for well-defined seasons. For continental northern latitudes, analysis presented here of factors controlling the surface temperature appears an appropriate tool for this task.
Recovery of temperature records from slow-growing corals by fine scale sampling of skeletons
NASA Astrophysics Data System (ADS)
Cohen, Anne L.; Thorrold, Simon R.
2007-09-01
We used laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) to analyze Sr/Ca ratios in 5 colonies of the Atlantic corals, Diploria labyrinthiformis and Montastrea franski, each growing less than 5 mm yr-1. By targeting the centers of septa we avoided thickening deposits to achieve an analytical sampling resolution of 5-10 days. The sensitivity of Sr/Ca to temperature (-0.096 mmol/mol/°C) is ˜3 times higher than previously reported for these species and equivalent to that exhibited by fast-growing Porites corals from the Indo-Pacific. The Sr/Ca-sea surface temperature (SST) calibrations derived from these corals were not statistically different and were independent of colony growth rate over the period studied. Data from 4 D. labyrinthiformis colonies were pooled to produce a single Sr/Ca-SST calibration with a calculated standard error on the predicted ocean temperature of ±0.51°C. Applying our calibration to Sr/Ca analyses of D. labyrinthiformis skeleton deposited in the late 18th century indicated that average annual sea surface temperatures around Bermuda were ˜1°C cooler than today.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Mahanama, P. P.
2012-01-01
Key to translating soil moisture memory into subseasonal precipitation and air temperature forecast skill is a realistic treatment of evaporation in the forecast system used - in particular, a realistic treatment of how evaporation responds to variations in soil moisture. The inherent soil moisture-evaporation relationships used in today's land surface models (LSMs), however, arguably reflect little more than guesswork given the lack of evaporation and soil moisture data at the spatial scales represented by regional and global models. Here we present a new approach for evaluating this critical aspect of LSMs. Seasonally averaged precipitation is used as a proxy for seasonally-averaged soil moisture, and seasonally-averaged air temperature is used as a proxy for seasonally-averaged evaporation (e.g., more evaporative cooling leads to cooler temperatures) the relationship between historical precipitation and temperature measurements accordingly mimics in certain important ways nature's relationship between soil moisture and evaporation. Additional information on the relationship is gleaned from joint analysis of precipitation and streamflow measurements. An experimental framework that utilizes these ideas to guide the development of an improved soil moisture-evaporation relationship is described and demonstrated.
Growth trajectory influences temperature preference in fish through an effect on metabolic rate
Killen, Shaun S
2014-01-01
Most animals experience temperature variations as they move through the environment. For ectotherms, in particular, temperature has a strong influence on habitat choice. While well studied at the species level, less is known about factors affecting the preferred temperature of individuals; especially lacking is information on how physiological traits are linked to thermal preference and whether such relationships are affected by factors such feeding history and growth trajectory. This study examined these issues in the common minnow Phoxinus phoxinus, to determine the extent to which feeding history, standard metabolic rate (SMR) and aerobic scope (AS), interact to affect temperature preference. Individuals were either: 1) food deprived (FD) for 21 days, then fed ad libitum for the next 74 days; or 2) fed ad libitum throughout the entire period. All animals were then allowed to select preferred temperatures using a shuttle-box, and then measured for SMR and AS at 10 °C, estimated by rates of oxygen uptake. Activity within the shuttle-box under a constant temperature regime was also measured. In both FD and control fish, SMR was negatively correlated with preferred temperature. The SMR of the FD fish was increased compared with the controls, probably due to the effects of compensatory growth, and so these growth-compensated fish preferred temperatures that were on average 2·85 °C cooler than controls fed a maintenance ration throughout the study. Fish experiencing compensatory growth also displayed a large reduction in activity. In growth-compensated fish and controls, activity measured at 10 °C was positively correlated with preferred temperature. Individual fish prefer temperatures that vary predictably with SMR and activity level, which are both plastic in response to feeding history and growth trajectories. Cooler temperatures probably allow individuals to reduce maintenance costs and divert more energy towards growth. A reduction in SMR at cooler temperatures, coupled with a decrease in spontaneous activity, could also allow individuals to increase surplus AS for coping with environmental stressors. In warming climates, however, aquatic ectotherms could experience frequent fluctuations in food supply with long-lasting effects on metabolic rate due to compensatory growth, while simultaneously having limited access to preferred cooler habitats. PMID:24806155
Remarks on the thermal stability of an Ohmic-heated nanowire
NASA Astrophysics Data System (ADS)
Timsit, Roland S.
2018-05-01
The rise in temperature of a wire made from specific materials, due to ohmic heating by a DC electrical current, may lead to uncontrollable thermal runaway with ensuing melting. Thermal runaway stems from a steep decrease with increasing temperature of the thermal conductivity of the conducting material and subsequent trapping of the ohmic heat in the wire, i.e., from the inability of the wire to dissipate the heat sufficiently quickly by conduction to the cooler ends of the wire. In this paper, we show that the theory used to evaluate the temperature of contacting surfaces in a bulk electrical contact may be applied to calculate the conditions for thermal runaway in a nanowire. Implications of this effect for electrical contacts are addressed. A possible implication for memory devices using ohmic-heated nanofilms or nanowires is also discussed.
Local Versus Remote Contributions of Soil Moisture to Near-Surface Temperature Variability
NASA Technical Reports Server (NTRS)
Koster, R.; Schubert, S.; Wang, H.; Chang, Y.
2018-01-01
Soil moisture variations have a straightforward impact on overlying air temperatures, wetter soils can induce higher evaporative cooling of the soil and thus, locally, cooler temperatures overall. Not known, however, is the degree to which soil moisture variations can affect remote air temperatures through their impact on the atmospheric circulation. In this talk we describe a two-pronged analysis that addresses this question. In the first segment, an extensive ensemble of NASA/GSFC GEOS-5 atmospheric model simulations is analyzed statistically to isolate and quantify the contributions of various soil moisture states, both local and remote, to the variability of air temperature at a given local site. In the second segment, the relevance of the derived statistical relationships is evaluated by applying them to observations-based data. Results from the second segment suggest that the GEOS-5-based relationships do, at least to first order, hold in nature and thus may provide some skill to forecasts of air temperature at subseasonal time scales, at least in certain regions.
Ceramic 3D printed Joule Thomson mini cryocooler intended for HOT IR detectors
NASA Astrophysics Data System (ADS)
Shapiro, A.; Fraiman, L.; Parahovnik, A.
2017-05-01
Joule Thomson (JT) Cryocooler is a well-known technology which is widely used in research and industry. The cooling effect is achieved by isenthalpic expansion of the cooling gas in an orifice. A JT cooler has two basic components: a counter flow heat exchanger and an orifice. Due to the fact that the cooler has no moving parts and contains relatively simple components it is a great candidate for miniaturization, and realization with the new additive manufacturing technologies. In the current work we discuss the implementation of 3D ceramic printing as a possible fabrication technology for a JT cooler intended for cooling IR detectors operated at temperature of about 150K. In this paper we present a comprehensive analysis including coolant considerations, heat transfer calculations and realization of the cooler.
Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures
NASA Astrophysics Data System (ADS)
Piotrowska, A.; Chorowski, M.; Dorosz, P.
2017-02-01
Joule-Thomson (J-T) cryo-coolers working in closed cycles and supplied with gas mixtures are the subject of intensive research in different laboratories. The replacement of pure nitrogen by nitrogen-hydrocarbon mixtures allows to improve both thermodynamic parameters and economy of the refrigerators. It is possible to avoid high pressures in the heat exchanger and to use standard refrigeration compressor instead of gas bottles or high-pressure oil free compressor. Closed cycle and mixture filled Joule-Thomson cryogenic refrigerator providing 10-20 W of cooling power at temperature range 90-100 K has been designed and manufactured. Thermodynamic analysis including the optimization of the cryo-cooler mixture has been performed with ASPEN HYSYS software. The paper describes the design of the cryo-cooler and provides thermodynamic analysis of the system. The test results are presented and discussed.
NASA Technical Reports Server (NTRS)
Colvocoresses, A. P. (Principal Investigator)
1980-01-01
Graphics are presented which show HCMM mapped water-surface temperature in Lake Anna, a 13,000 dendrically-shaped lake which provides cooling for a nuclear power plant in Virginia. The HCMM digital data, produced by NASA were processed by NOAA/NESS into image and line-printer form. A LANDSAT image of the lake illustrates the relationship between MSS band 7 data and the HCMM data as processed by the NASA image processing facility which transforms the data to the same distortion-free hotline oblique Mercator projection. Spatial correlation of the two images is relatively simple by either digital or analog means and the HCMM image has a potential accuracy approaching the 80 m of the original LANDSAT data. While it is difficult to get readings that are not diluted by radiation from cooler adjacent land areas in narrow portions of the lake, digital data indicated by the line-printer display five different temperatures for open-water areas. Where the water surface response was not diluted by land areas, the temperature difference recorded by HCMM corresponds to in situ readings with rsme on the order of 1 C.
Contamination of the GOES-K filter wheel cooler
NASA Astrophysics Data System (ADS)
Sanders, Jack T., Jr.; Rosecrans, Glenn P.
1998-10-01
The Geostationary Operational Environmental Satellite (GOES) Sounder instrument uses radiant coolers to reduce the operating temperature of the detectors and filter wheel. GOES resides in an equatorial orbit 36,000 kilometers above the earth, and is stationary with respect to it. During the year, all sides of the spacecraft are exposed to the sun; the filter wheel emitter and detector radiators must be shielded form it to adequately cooled these components for nominal operations.Mirror Optical Solar Reflectors are used too reject sunlight before it can strike the radiators. Molecular outgassing from the Sounder instrument cavity, the filter wheel module, and the Sounder vacuum cooler housing have been demonstrated through mass transport modeling to contaminate the filter wheel sunshield panels during the in- orbit Radiant Cooler bakeout. Excessive molecular and particulate contamination can increase solar energy scatter, increase thermal emittance, and increase solar absorptance; all of which can increase the temperature of the components they serve, thus degrading nominal operations. After the GOES-K spacecraft thermal vacuum test, a haze was observed on and around the entrance aperture, and on the inside faces the filter wheel cooler sunshield. This paper documents the inspections, testing, and analysis used to: a) locate the likely sources for the contaminants, b) predict molecular contaminant accumulation on the filter wheel sunshields during the in-orbit bakeout, c) estimate the thermal effects from molecular build-up, and d) assess proposed hardware modifications and show the selection rationale used to maintain functionality for the GOES-K Sounder instrument.
Modeling Io's Sublimation-Driven Atmosphere: Gas Dynamics and Radiation Emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Andrew C.; Goldstein, David B.; Varghese, Philip L.
2008-12-31
Io's sublimation-driven atmosphere is modeled using the direct simulation Monte Carlo method. These rarefied gas dynamics simulations improve upon earlier models by using a three-dimensional domain encompassing the entire planet computed in parallel. The effects of plasma impact heating, planetary rotation, and inhomogeneous surface frost are investigated. Circumplanetary flow is predicted to develop from the warm subsolar region toward the colder night-side. The non-equilibrium thermal structure of the atmosphere, including vibrational and rotational temperatures, is also presented. Io's rotation leads to an asymmetric surface temperature distribution which is found to strengthen circumplanetary flow near the dusk terminator. Plasma heating ismore » found to significantly inflate the atmosphere on both day- and night-sides. The plasma energy flux also causes high temperatures at high altitudes but permits relatively cooler temperatures at low altitudes near the dense subsolar point due to plasma energy depletion. To validate the atmospheric model, a radiative transfer model was developed utilizing the backward Monte Carlo method. The model allows the calculation of the atmospheric radiation from emitting/absorbing and scattering gas using an arbitrary scattering law and an arbitrary surface reflectivity. The model calculates the spectra in the {nu}{sub 2} vibrational band of SO{sub 2} which are then compared to the observational data.« less
Regional Impacts of Urbanization in the United States
NASA Technical Reports Server (NTRS)
Bounoua, Lahouari; Zhang, Ping; Nigro, Joseph; Lachir, Asia; Thome, Kurtis
2017-01-01
We simulate the impact of impervious surface areas (ISA) on the U.S. local and regional climate. At a local scale, we find the urban area warmer than the surrounding vegetation in most cities, except in arid climate cities where urban temperature is cooler for much of the daytime. For all 9 regions studied, simulated results show that the growing season maximum surface temperature difference between urban and the dominant vegetation occurs around mid-day and is strongest in the northern regions. Regional temperature differences of 3.0 C, 3.4 C, and 3.9 C were simulated in the Northeast, Midwest, and Northwest, respectively. In these regions evaporative cooling, during the growing season, creates a stronger urban heat island (UHI). The UHI is less pronounced during winter when vegetation is dormant. Our results suggest that the ISA temperature is set by building material's characteristics and its departure from that of the surrounding vegetation is essentially driven by evaporative cooling. Except when rainfall is small, the highest surface runoff to precipitation ratios are simulated in most cities, especially when precipitation events occur as heavy downpours. In terms of photosynthesis, we provide a detailed distribution of maximum production in the U.S., a needed product for policy and urban planners.
2008-01-01
Additional information on AIP Conf. Proc. Journal Homepage: http://proceedings.aip.org/ Journal Information: http://proceedings.aip.org/about...coolers would make comparing temperature and load data virtually meaningless. One solution as presented by Razani [4] is to compare exergy vs...P Q ,=η (2) Where exercoolingQ , is the total exergy delivered to all refrigerated reservoirs and
Helium stars: Towards an understanding of Wolf-Rayet evolution
NASA Astrophysics Data System (ADS)
McClelland, Liam A. S.; Eldridge, J. J.
2017-11-01
Recent observational modelling of the atmospheres of hydrogen-free Wolf-Rayet stars have indicated that their stellar surfaces are cooler than those predicted by the latest stellar evolution models. We have created a large grid of pure helium star models to investigate the dependence of the surface temperatures on factors such as the rate of mass loss and the amount of clumping in the outer convection zone. Upon comparing our results with Galactic and LMC WR observations, we find that the outer convection zones should be clumped and that the mass-loss rates need to be slightly reduced. We discuss the implications of these findings in terms of the detectability of Type Ibc supernovae progenitors, and in terms of refining the Conti scenario.
Blagrove, Marcus S C; Caminade, Cyril; Waldmann, Elisabeth; Sutton, Elizabeth R; Wardeh, Maya; Baylis, Matthew
2017-06-01
Mosquito-borne viruses have been estimated to cause over 100 million cases of human disease annually. Many methodologies have been developed to help identify areas most at risk from transmission of these viruses. However, generally, these methodologies focus predominantly on the effects of climate on either the vectors or the pathogens they spread, and do not consider the dynamic interaction between the optimal conditions for both vector and virus. Here, we use a new approach that considers the complex interplay between the optimal temperature for virus transmission, and the optimal climate for the mosquito vectors. Using published geolocated data we identified temperature and rainfall ranges in which a number of mosquito vectors have been observed to co-occur with West Nile virus, dengue virus or chikungunya virus. We then investigated whether the optimal climate for co-occurrence of vector and virus varies between "warmer" and "cooler" adapted vectors for the same virus. We found that different mosquito vectors co-occur with the same virus at different temperatures, despite significant overlap in vector temperature ranges. Specifically, we found that co-occurrence correlates with the optimal climatic conditions for the respective vector; cooler-adapted mosquitoes tend to co-occur with the same virus in cooler conditions than their warmer-adapted counterparts. We conclude that mosquitoes appear to be most able to transmit virus in the mosquitoes' optimal climate range, and hypothesise that this may be due to proportionally over-extended vector longevity, and other increased fitness attributes, within this optimal range. These results suggest that the threat posed by vector-competent mosquito species indigenous to temperate regions may have been underestimated, whilst the threat arising from invasive tropical vectors moving to cooler temperate regions may be overestimated.
Interaction of the sea breeze with a river breeze in an area of complex coastal heating
NASA Technical Reports Server (NTRS)
Zhong, Shiyuan; Takle, Eugene S.; Leone, John M., Jr.
1991-01-01
The interaction of the sea-breeze circulation with a river-breeze circulation in an area of complex coastal heating (east coast of Florida) was studied using a 3D finite-element mesoscale model. The model simulations are compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment. The results from numerical experiments designed to isolate the effect of the river breeze indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.
The Along Track Scanning Radiometer (ATSR) - Orbital performance and future developments
NASA Astrophysics Data System (ADS)
Sandford, M. C. W.; Edwards, T.; Mutlow, C. T.; Delderfield, J.; Llewellyn-Jones, D. T.
1992-08-01
The Along-Track Scanning Radiometer (ATSR), a new kind of infrared radiometer which is intended to make sea surface temperature measurements with an absolute accuracy of +/- 0.5 K averaged over cells of 0.5 deg in latitude, is discussed. The ATSR employs four detectors centered at 12, 11, 3.7, and 1.6 microns. The noise performance thermal performance, and Stirling cycle cooler performance of the ATSR on ERS-1 are examined along with 3.7 micron channel results. The calibration, structure, and data handling of the ATSRs planned for ERS-2 and for the POEM mission are examined.
Egg size variation among tropical and temperate songbirds: An embryonic temperature hypothesis
Martin, Thomas E.
2008-01-01
Species with “slow” life history strategies (long life, low fecundity) are thought to produce high-quality offspring by investing in larger, but fewer, young. Larger eggs are indeed associated with fewer eggs across taxa and can yield higher-quality offspring. Tropical passerines appear to follow theory because they commonly exhibit slow life history strategies and produce larger, but fewer, eggs compared with northern species. Yet, I show here that relative egg mass (corrected for adult mass) varies extensively in the tropics and subtropics for the same clutch size, and this variation is unexplained. I propose a hypothesis to explain egg size variation both within the tropics and between latitudes: Relative egg mass increases in species with cooler egg temperatures and longer embryonic periods to offset associated increases in energetic requirements of embryos. Egg temperatures of birds are determined by parental incubation behavior and are often cooler among tropical passerines because of reduced parental attentiveness of eggs. Here, I show that cooler egg temperatures and longer embryonic periods explained the enigmatic variation in egg mass within and among regions, based on field studies in tropical Venezuela (36 species), subtropical Argentina (16 species), and north temperate Arizona (20 species). Alternative explanations are not supported. Thus, large egg sizes may reflect compensation for increased energetic requirements of cool egg temperatures and long embryonic periods that result from reduced parental attentiveness in tropical birds. PMID:18591674
Cryocoolers developments at Thales Cryogenics enabling compact remote sensing
NASA Astrophysics Data System (ADS)
Benschop, A.; van de Groep, W.; Mullié, J.; Willems, D.; Clesca, O.; Griot, R.; Martin, J.-Y.
2010-10-01
Thales Cryogenics (TCBV) has an extensive background in developing and delivering long-life cryogenic coolers for military, civil and space programs. This cooler range is based on three main compressor concepts: rotary compressors (RM), linear close tolerance contact seals (UP), and linear flexure bearing (LSF/LPT) compressors. The main differences - next to the different conceptual designs - between these products are their masses and Mean Time To Failure (MTTF) and the availability prediction of a single unit. New developments at Thales Cryogenics enabling compact long lifetime coolers - with an MTTF up to 50.000 hrs - will be outlined. In addition new developments for miniature cooler drive electronics with high temperature stability and power density will be described. These new cooler developments could be of particular interest for space missions where lower costs and mass are identified as important selection criteria. The developed compressors are originally connected to Stirling cold fingers that can directly be interfaced to different sizes of available dewars. Next to linear coolers, Thales Cryogenics has compact rotary coolers in its product portfolio. Though having a higher exported vibration level and a more limited MTTF of around 8.000 to 10.000 hours, their compactness and high efficiency could provide a good alternative for compact cooling of sensors in specific space missions. In this paper an overview of lifetime parameters will be listed versus the impact in the different cooler types. Tests results from both the installed base and the Thales Cryogenics test lab will be presented as well. Next to this differences in operational use for the different types of coolers as well as the outlook for further developments will be discussed.
Seaweeds in cold seas: evolution and carbon acquisition.
Raven, John A; Johnston, Andrew M; Kübler, Janet E; Korb, Rebecca; McInroy, Shona G; Handley, Linda L; Scrimgeour, Charlie M; Walker, Diana I; Beardall, John; Clayton, Margaret N; Vanderklift, Mathew; Fredriksen, Stein; Dunton, Kenneth H
2002-10-01
Much evidence suggests that life originated in hydrothermal habitats, and for much of the time since the origin of cyanobacteria (at least 2.5 Ga ago) and of eukaryotic algae (at least 2.1 Ga ago) the average sea surface and land surface temperatures were higher than they are today. However, there have been at least four significant glacial episodes prior to the Pleistocene glaciations. Two of these (approx. 2.1 and 0.7 Ga ago) may have involved a 'Snowball Earth' with a very great impact on the algae (sensu lato) of the time (cyanobacteria, Chlorophyta and Rhodophyta) and especially those that were adapted to warm habitats. By contrast, it is possible that heterokont, dinophyte and haptophyte phototrophs only evolved after the Carboniferous-Permian ice age (approx. 250 Ma ago) and so did not encounter low (=5 degrees C) sea surface temperatures until the Antarctic cooled some 15 Ma ago. Despite this, many of the dominant macroalgae in cooler seas today are (heterokont) brown algae, and many laminarians cannot reproduce at temperatures above 18-25 degrees C. By contrast to plants in the aerial environment, photosynthetic structures in water are at essentially the same temperature as the fluid medium. The impact of low temperatures on photosynthesis by marine macrophytes is predicted to favour diffusive CO(2) entry rather than a CO(2)-concentrating mechanism. Some evidence favours this suggestion, but more data are needed.
2017-12-08
On October 17, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image of a thick haze hanging over eastern China. In the north, the large city of Beijing is completely obscured from view, as is much of the landscape. The haze thins slightly over the Bohai Sea. Further south, sediment pours into the East China Sea near the city of Shanghai. Heavy haze is common in this region, and tends to worsen in October through January, when cold, heavy air traps pollutants near the surface of the Earth. It is likely that this scene was caused by such a temperature inversion. Normally, air is warmest near the surface of the Earth. But sometimes a mass of warm air will move the cooler air, so the atmosphere actually warms with the altitude. Cool air does not have energy to rise through the warm air, vertical circulation slows and air becomes trapped near the surface. Any pollution that is emitted into the cooler air will also get trapped, increasing low-level air pollution and haze. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
A novel coupled VM-PT cryocooler operating at liquid helium temperature
NASA Astrophysics Data System (ADS)
Pan, Changzhao; Zhang, Tong; Zhou, Yuan; Wang, Junjie
2016-07-01
This paper presents experimental results on a novel two-stage gas-coupled VM-PT cryocooler, which is a one-stage VM cooler coupled a pulse tube cooler. In order to reach temperatures below the critical point of helium-4, a one-stage coaxial pulse tube cryocooler was gas-coupled on the cold end of the former VM cryocooler. The low temperature inertance tube and room temperature gas reservoir were used as phase shifters. The influence of room temperature double-inlet was first investigated, and the results showed that it added excessive heat loss. Then the inertance tube, regenerator and the length of the pulse tube were researched experimentally. Especially, the DC flow, whose function is similar to the double-orifice, was experimentally studied, and shown to contribute about 0.2 K for the no-load temperature. The minimum no-load temperature of 4.4 K was obtained with a pressure ratio near 1.5, working frequency of 2.2 Hz, and average pressure of 1.73 MPa.
Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography
Chang, Ki Soo; Yang, Sun Choel; Kim, Jae-Young; Kook, Myung Ho; Ryu, Seon Young; Choi, Hae Young; Kim, Geon Hee
2012-01-01
A method of measuring the precise temperature distribution of GaN-based light-emitting diodes (LEDs) by quantitative infrared micro-thermography is reported. To reduce the calibration error, the same measuring conditions were used for both calibration and thermal imaging; calibration was conducted on a highly emissive black-painted area on a dummy sapphire wafer loaded near the LED wafer on a thermoelectric cooler mount. We used infrared thermal radiation images of the black-painted area on the dummy wafer and an unbiased LED wafer at two different temperatures to determine the factors that degrade the accuracy of temperature measurement, i.e., the non-uniform response of the instrument, superimposed offset radiation, reflected radiation, and emissivity map of the LED surface. By correcting these factors from the measured infrared thermal radiation images of biased LEDs, we determined a precise absolute temperature image. Consequently, we could observe from where the local self-heat emerges and how it distributes on the emitting area of the LEDs. The experimental results demonstrated that highly localized self-heating and a remarkable temperature gradient, which are detrimental to LED performance and reliability, arise near the p-contact edge of the LED surface at high injection levels owing to the current crowding effect. PMID:22666050
NASA Astrophysics Data System (ADS)
Kagawa, Noboru
A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.
Note: Sub-Kelvin refrigeration with dry-coolers on a rotating system.
Oguri, S; Ishitsuka, H; Choi, J; Kawai, M; Tajima, O
2014-08-01
We developed a cryogenic system on a rotating table that achieves sub-Kelvin conditions. The cryogenic system consists of a helium sorption cooler and a pulse tube cooler in a cryostat mounted on a rotating table. Two rotary-joint connectors for electricity and helium gas circulation enable the coolers to be operated and maintained with ease. We performed cool-down tests under a condition of continuous rotation at 20 rpm. We obtained a temperature of 0.23 K with a holding time of more than 24 h, thus complying with catalog specifications. We monitored the system's performance for four weeks; two weeks with and without rotation. A few-percent difference in conditions was observed between these two states. Most applications can tolerate such a slight difference. The technology developed is useful for various scientific applications requiring sub-Kelvin conditions on rotating platforms.
Felis, Thomas; McGregor, Helen V; Linsley, Braddock K; Tudhope, Alexander W; Gagan, Michael K; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L; Esat, Tezer M; Thompson, William G; Tiwari, Manish; Potts, Donald C; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M
2014-06-17
Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ(18)O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, R. N.; Bapat, S. L.; Atrey, M. D.
The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of themore » desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.« less
NASA Astrophysics Data System (ADS)
Mehta, R. N.; Bapat, S. L.; Atrey, M. D.
2014-01-01
The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.
A Peltier-based variable temperature source
NASA Astrophysics Data System (ADS)
Molki, Arman; Roof Baba, Abdul
2014-11-01
In this paper we propose a simple and cost-effective variable temperature source based on the Peltier effect using a commercially purchased thermoelectric cooler. The proposed setup can be used to quickly establish relatively accurate dry temperature reference points, which are necessary for many temperature applications such as thermocouple calibration.
Experimental progress of a 4K VM/PT hybrid cryocooler for pre-cooling 1K sorption cooler
NASA Astrophysics Data System (ADS)
Pan, Changzhao; Zhang, Tong; Wang, Jue; Chen, Liubiao; Guo, Jia; Zhou, Yuan; Wang, Junjie
2017-12-01
Sub-kelvin refrigerator has many applications in space detector and manned space station, such as for the transition-edge superconducting (TES) bolometers operated in the 50 mK range. In order to meet the requirement of space applications, the high efficient, vibration free and high stability refrigerator need to be designed. VM/PT hybrid cryocooler is a new type cryocooler capable of attaining temperature below 4K. As a low frequency Stirling type cryocooler, it has the advantages of high stability and high efficiency. Combined with the vibration free sorption cooler and ADR refrigerator, a novel sub-kelvin cooling chain can be designed for the TES bolometer. This paper presents the recent experimental progress of the 4K VM/PT hybrid cryocooler in our laboratory. By optimizing of regenerators, phase shifters and heat exchangers, a lowest temperature of 2.6K was attained. Based on this cryocooler, a preliminary sorption cooler could be designed.
Initial comparison of single cylinder Stirling engine computer model predictions with test results
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.; Thieme, L. G.; Miao, D.
1979-01-01
A NASA developed digital computer code for a Stirling engine, modelling the performance of a single cylinder rhombic drive ground performance unit (GPU), is presented and its predictions are compared to test results. The GPU engine incorporates eight regenerator/cooler units and the engine working space is modelled by thirteen control volumes. The model calculates indicated power and efficiency for a given engine speed, mean pressure, heater and expansion space metal temperatures and cooler water inlet temperature and flow rate. Comparison of predicted and observed powers implies that the reference pressure drop calculations underestimate actual pressure drop, possibly due to oil contamination in the regenerator/cooler units, methane contamination in the working gas or the underestimation of mechanical loss. For a working gas of hydrogen, the predicted values of brake power are from 0 to 6% higher than experimental values, and brake efficiency is 6 to 16% higher, while for helium the predicted brake power and efficiency are 2 to 15% higher than the experimental.
Sea surface temperature 1871-2099 in 14 cells around the United Kingdom.
Sheppard, Charles
2004-07-01
Monthly sea surface temperature is provided for 14 locations around the UK for a 230 year period. These series are derived from the HadISST1 data set for historical time (1871-1999) and from the HadCM3 climate model for predicted SST (1950-2099). Two adjustments of the forecast data sets are needed to produce confluent SST series: the 50 year overlap is used for a gross adjustment, and a statistical scaling on the forecast data ensures that annual variations in forecast data match those of historical data. These monthly SST series are available on request. The overall rise in SST over time is clear for all sites, commencing in the last quarter of the 20th century. Apart from expected trends of overall warmer mean SST with more southerly latitudes and overall cooler mean SST towards the East, more interesting statistically significant general trends include a greater decadal rate of rise from warmer starting conditions. Annual temperature variation is not affected by absolute temperature, but is markedly greater towards the East. There is no correlation of annual range of SST with latitude, or with present SST values.
Daily temperature variations on Mars
NASA Technical Reports Server (NTRS)
Ditteon, R.
1982-01-01
It is noted that for approximately 32% of the Martian surface area no values of thermal inertia or albedo can fit the thermal observations. These temperature anomalies do not correlate with elevation, geologic units, morphology, or atmospheric dust content. All regions having a Lambert albedo less than 0.18 can be well fit with the standard thermal model, but all areas with albedo greater than 0.28 are anomalous. A strong inverse correlation is seen between the magnitude of the anomaly and the thermal inertia. This correlation is seen as indicating that some surface property is responsible for the anomaly. In the anomalous region the temperatures are observed to be warmer in the morning and cooler late in the afternoon and to decrease more slowly during the night than the Viking model temperatures. It is believed that of all the physical processes likely to occur on Mars but not included in the Viking thermal model, only a layered soil can explain the observations. A possible explanation of the layering deduced from the infrared thermal mapper observations is a layer of aeolian deposited dust about one thermal skin depth thick (1 to 4 cm), covering a duricrust.
Estimation of the Thermodynamic Efficiency of a Solid-State Cooler Based on the Multicaloric Effect
NASA Astrophysics Data System (ADS)
Starkov, A. S.; Pakhomov, O. V.; Rodionov, V. V.; Amirov, A. A.; Starkov, I. A.
2018-03-01
The thermodynamic efficiency of using the multicaloric effect (μCE) in solid-state cooler systems has been studied in comparison to single-component caloric effects. This approach is illustrated by example of the Brayton cycle for μCE and magnetocaloric effect (MCE). Based on the results of experiments with Fe48Rh52-PbZr0.53Ti0.47O3 two-layer ferroic composite, the temperature dependence of the relative efficiency is determined and the temperature range is estimated in which the μCE is advantageous to MCE. The proposed theory of μCE is compared to experimental data.
CFD analysis of turboprop engine oil cooler duct for best rate of climb condition
NASA Astrophysics Data System (ADS)
Kalia, Saurabh; CA, Vinay; Hegde, Suresh M.
2016-09-01
Turboprop engines are widely used in commuter category airplanes. Aircraft Design bureaus routinely conduct the flight tests to confirm the performance of the system. The lubrication system of the engine is designed to provide a constant supply of clean lubrication oil to the engine bearings, the reduction gears, the torque-meter, the propeller and the accessory gearbox. The oil lubricates, cools and also conducts foreign material to the oil filter where it is removed from further circulation. Thus a means of cooling the engine oil must be provided and a suitable oil cooler (OC) and ducting system was selected and designed for this purpose. In this context, it is relevant to study and analyse behaviour of the engine oil cooler system before commencing actual flight tests. In this paper, the performance of the oil cooler duct with twin flush NACA inlet housed inside the nacelle has been studied for aircraft best rate of climb (ROC) condition using RANS based SST K-omega model by commercial software ANSYS Fluent 13.0. From the CFD analysis results, it is found that the mass flow rate captured and pressure drop across the oil cooler for the best ROC condition is meeting the oil cooler manufacturer requirements thus, the engine oil temperature is maintained within prescribed limits.
Velocity Measurements for a Solar Active Region Fan Loop from Hinode/EIS Observations
NASA Astrophysics Data System (ADS)
Young, P. R.; O'Dwyer, B.; Mason, H. E.
2012-01-01
The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s-1 up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physically disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of "strands"—one cooler and downflowing, the other hotter and stationary—is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 × 109 cm-3 at the loop base, to 5.0 × 108 cm-3 at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s-1 in Fe XII λ195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s-1 at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.
VELOCITY MEASUREMENTS FOR A SOLAR ACTIVE REGION FAN LOOP FROM HINODE/EIS OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, P. R.; O'Dwyer, B.; Mason, H. E.
2012-01-01
The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s{sup -1} up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physicallymore » disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of 'strands'-one cooler and downflowing, the other hotter and stationary-is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 Multiplication-Sign 10{sup 9} cm{sup -3} at the loop base, to 5.0 Multiplication-Sign 10{sup 8} cm{sup -3} at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s{sup -1} in Fe XII {lambda}195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s{sup -1} at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.« less
Two-year solid hydrogen cooler for the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument
NASA Technical Reports Server (NTRS)
Naes, L. G.; Nast, T. C.; Roche, A. E.; Forney, P. B.
1983-01-01
The Cryogenic Limb Array Etalon Spectrometer (CLAES) will be one of thirteen instruments on board the Upper Atmospheric Research Satellite (UARS) in late 1988. CLAES is to be employed for the measurement of stratospheric trace species concentrations affecting the ozone layer balance. It is an earth-limb viewing instrument which requires cryogenic cooling in order to obtain the necessary performance sensitivity. The present investigation is concerned with the solid hydrogen cryogen subsystem which provides the instrument temperature needed. Attention is given to the studies which led to the selection of solid hydrogen as cooling agent, the baseline cooler system, aspects of baseline performance sensitivity, and nominal cooler operations.
Liquid Water Oceans in Ice Giants
NASA Technical Reports Server (NTRS)
Wiktorowicz, Sloane J.; Ingersoll, Andrew P.
2007-01-01
Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. In our model, Neptune s water cloud base occurs around 660 K and 11 kbar, and the density there is consistent with Voyager gravitational data. As Neptune cools, the probability of a liquid ocean increases. Extrasolar "hot Neptunes," which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.
Advances in a high efficiency commercial pulse tube cooler
NASA Astrophysics Data System (ADS)
Zhang, Yibing; Li, Haibing; Wang, Xiaotao; Dai, Wei; Yang, Zhaohui; Luo, Ercang
2017-12-01
The pulse tube cryocooler has the advantage of no moving part at the cold end and offers a high reliability. To further extend its use in commercial applications, efforts are still needed to improve efficiency, reliability and cost effectiveness. This paper generalizes several key innovations in our newest cooler. The cooler consists of a moving magnet compressor with dual-opposed pistons, and a co-axial cold finger. Ambient displacers are employed to recover the expansion work to increase cooling efficiency. Inside the cold finger, the conventional flow straightener screens are replaced by a tapered throat between the cold heat exchanger and the pulse tube to strengthen its immunity to the working gas contamination as well as to simplify the manufacturing processes. The cold heat exchanger is made by copper forging process which further reduces the cost. Inside the compressor, a new gas bearing design has brought in assembling simplicity and running reliability. Besides the cooler itself, electronic controller is also important for actual application. A dual channel and dual driving mode control mechanism has been selected, which reduces the vibration to a minimum, meanwhile the cool-down speed becomes faster and run-time efficiency is higher. With these innovations, the cooler TC4189 reached a no-load temperature of 44 K and provided 15 W cooling power at 80K, with an input electric power of 244 W and a cooling water temperature of 23 ℃. The efficiency reached 16.9% of Carnot at 80 K. The whole system has a total mass of 4.3 kg.
Altitude-Wind-Tunnel Investigation of Oil-System Performance of XR-4360-8 Engine in XTB2D-1 Airplane
NASA Technical Reports Server (NTRS)
Conrad, E. William
1946-01-01
An investigation was conducted in the Cleveland altitude wind tunnel to determine the aerodynamic characteristics and the oil delivery critical altitude of the oil-cooler installation of an XTB2D-1 airplane. The investigation was made with the propeller removed end with the engine operating at 1800 brake horsepower, an altitude of 15,000 feet (except for tests of oil-delivery critical altitude), oil-cooler flap deflections from -20 degrees to 20 degrees and inclinations of the thrust axis of 0 degrees, 1.5 degrees, and 6 degrees. At an inclination of the thrust axis of 0 degrees and with the propeller operating, the total-pressure recovery coefficient at the face of the oil cooler varied from 0.84 to 1.10 depending on the flap deflection. With the propeller removed, the best pressure recovery at the face of the oil cooler was obtained at an inclination of the thrust axis of 1.5 degrees. Air-flow separation occurred on the inner surface of the upper lip of the oil-cooler duct inlet at an inclination of the thrust axis of 0 degrees and on the inner surface of the lower lip at 6 degrees. Static pressure coefficients over the duct lips were sufficiently low that no trouble from compressibility would be encountered in level flight. The oil-delivery critical altitude at cruising power (2230 rpm, 1675 bhp) was approximately 18,500 feet for the oil system tested.
NASA Astrophysics Data System (ADS)
Mutterlose, Jörg; Malkoc, Matthias; Schouten, Stefan; Sinninghe Damsté, Jaap S.; Forster, Astrid
2010-10-01
Recent studies have cast doubt on the unadjusted usage of Jurassic and Cretaceous δ 18O paleotemperature data derived from belemnites, since the latter data often reflect cooler paleotemperature estimates than would be expected. In this study we address this problem by analysing rocks of Barremian to early Aptian age from two outcrops in northern Germany using TEX 86 paleothermometry, along with 142 belemnite guards studied for their stable isotope (δ 13C, δ 18O) and trace element composition (magnesium, strontium, iron, and manganese). Both TEX 86 and δ 18O Bel indicate very warm water temperatures for a distinctive black shale sequence of late early Barremian age ("Hauptblätterton") with temperatures of up to 29 °C and 23 °C, respectively. We observe a constant offset of TEX 86 temperatures versus the 4 to 5 °C cooler δ 18O belemnite signal for this interval. The late Barremian sequence shows an increase of the δ 18O Bel values from - 1‰ to 0‰ reflecting temperatures around 16 to 12 °C, while the contemporaneous TEX 86 temperatures vary between 26 and 32 °C. The common occurrence of belemnites in the anoxic sediments of the early Barremian implies, however, clearly a nektonic way of life similar to that of recent teuthids, rather than a nektobenthic one like Sepia. This in turn suggests that the belemnites investigated here (genera Praeoxyteuthis, Aulacoteuthis, Oxyteuthis, and Neohibolites) were active swimmers, which inhabited a deeper habitat below the thermocline in an epicontinental sea of perhaps 100 to 250 m water depth. The offset of the TEX 86 and δ 18O Bel data is therefore interpreted to reflect temperature signals from two different depth habitats, i.e. the TEX 86 is selectively derived from warm sea-surface waters, and the belemnites likely occupied deeper and cooler waters with relative increasing salinities in the late Barremian. This study stresses the importance that the taxonomy, paleobiology and ecology of the belemnite taxa (genera, species) used for paleotemperature reconstructions must be considered before the δ 18O Bel signal can be further interpreted. The variation of the δ 18O signature gained from one belemnite population of 22 specimens by 1.1‰ suggests that the δ 18O data of individual belemnites should be used with caution for reconstructing long termed paleotemperature trends.
Eronen, Jussi T.; Janis, Christine M.; Chamberlain, C. Page; Mulch, Andreas
2015-01-01
Patterns of late Palaeogene mammalian evolution appear to be very different between Eurasia and North America. Around the Eocene–Oligocene (EO) transition global temperatures in the Northern Hemisphere plummet: following this, European mammal faunas undergo a profound extinction event (the Grande Coupure), while in North America they appear to pass through this temperature event unscathed. Here, we investigate the role of surface uplift to environmental change and mammalian evolution through the Palaeogene (66–23 Ma). Palaeogene regional surface uplift in North America caused large-scale reorganization of precipitation patterns, particularly in the continental interior, in accord with our combined stable isotope and ecometric data. Changes in mammalian faunas reflect that these were dry and high-elevation palaeoenvironments. The scenario of Middle to Late Eocene (50–37 Ma) surface uplift, together with decreasing precipitation in higher-altitude regions of western North America, explains the enigma of the apparent lack of the large-scale mammal faunal change around the EO transition that characterized western Europe. We suggest that North American mammalian faunas were already pre-adapted to cooler and drier conditions preceding the EO boundary, resulting from the effects of a protracted history of surface uplift. PMID:26041349
Numerical study of a cryogen-free vuilleumier type pulse tube cryocooler operating below 10 K
NASA Astrophysics Data System (ADS)
Wang, Y. N.; Wang, X. T.; Dai, W.; Luo, E. C.
2017-12-01
This paper presents a numerical investigation on a Vuilleumier (VM) type pulse tube cooler. Different from previous systems that use liquid nitrogen, Stirling type pre-coolers are used to provide the cooling power for the thermal compressor, which leads to a convenient cryogen-free system and offers the flexibility of changing working temperature range of the thermal compressor to obtain an optimum efficiency. Firstly, main component dimensions were optimized with lowest no-load temperature as the target. Then the dependence of system performance on average pressure, frequency, displacer displacement amplitude and thermal compressor pre-cooling temperature were studied. Finally, the effect of pre-cooling temperature on overall cooling efficiency at 5 K was studied. A highest relative Carnot efficiency of 0.82 % was predicted with an average pressure of 2.5 MPa, a frequency of 3 Hz, a displacer displacement amplitude of 6.5 mm, ambient end temperature 300 K and pre-cooling temperature 65 K, respectively.
NASA Astrophysics Data System (ADS)
Linsley, Braddock K.; Wu, Henry C.; Dassié, Emilie P.; Schrag, Daniel P.
2015-04-01
Decadal changes in Pacific sea surface temperatures (SSTs) and upper ocean heat content (OHC) remain poorly understood. We present an annual average composite coral Sr/Ca-derived SST time series extending back to 1791 from Fiji, Tonga, and Rarotonga (FTR) in the Pacific Decadal Oscillation (PDO) sensitive region of the southwest Pacific. Decadal SST maxima between 1805 and 1830 Common Era (C.E.) indicate unexplained elevated SSTs near the end of the Little Ice Age. The mean period of decadal SST variability in this region has a period near 25 years. Decades of warmer (cooler) FTR SST co-occur with PDO negative (positive) phases since at least ~1930 C.E. and positively correlate with South Pacific OHC (0-700 m). FTR SST is also inversely correlated with decadal changes in equatorial Pacific SST as measured by coral Sr/Ca. Collectively, these results support the fluctuating trade wind-shallow meridional overturning cell mechanism for decadal modulation of Pacific SSTs and OHC.
Optical and Chemical Characterization of Aerosols Produced from Cooked Meats
NASA Astrophysics Data System (ADS)
Niedziela, R. F.; Foreman, E.; Blanc, L. E.
2011-12-01
Cooking processes can release a variety compounds into the air immediately above a cooking surface. The distribution of compounds will largely depend on the type of food that is being processed and the temperatures at which the food is prepared. High temperatures release compounds from foods like meats and carry them away from the preparation surface into cooler regions where condensation into particles can occur. Aerosols formed in this manner can impact air quality, particularly in urban areas where the amount of food preparation is high. Reported here are the results of laboratory experiments designed to optically and chemically characterize aerosols derived from cooking several types of meats including ground beef, salmon, chicken, and pork both in an inert atmosphere and in synthetic air. The laboratory-generated aerosols are studied using a laminar flow cell that is configured to accommodate simultaneous optical characterization in the mid-infrared and collection of particles for subsequent chemical analysis by gas chromatography. Preliminary optical results in the visible and ultra-violet will also be presented.
Island wake produced by Antipodes Islands south of New Zealand
1973-12-16
SL4-137-3655 (16 Dec. 1973) --- An island wake produced by the Antipodes Islands in the ocean current south of New Zealand is seen in this photograph taken from the Skylab space station in Earth orbit. A Skylab 4 crewmen took the picture with a hand-held 70mm Hasselblad camera. The bow wave pattern is quite evident and can be used to determine the current speed from the angle of the bow wave if the propagation speed of the surface wave is known. Also, evident is the darker band extending downstream from the island tens of miles. This is the actual wake of the island. The existence of water color differences from within to outside a turbulent island wake may indicate a temperature difference, with cooler water being stirred to the surface in the wake. This temperature difference could be used to drive a thermo-electric type generator to reduce small islands' dependence on imported oil for power generation. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Mitbavkar, Smita; Anil, Arga Chandrashekar
2018-07-01
We investigated the responses of the picophytoplankton (< 3 μm) community to a temperature filament and front through high resolution spatial ( 1 NM) sampling (November-23 to December-11, 2012) in the northeastern Arabian Sea (69°E, 18.85°N to 20.25°N). Samples were collected at discrete depths within the 100 m water column. Synechococcus dominated the picophytoplankton community numerically and in terms of biomass along the entire transect. To investigate the patterns of variability in picophytoplankton distribution, depending on the water mass characteristics, the entire transect was divided into four zones (1) south of filament (SFIL) with warm oligotrophic waters, (2) filament (FIL) with cooler and low saline waters, (3) north of filament (NFIL) with relatively cooler waters than the SFIL and (4) front (FRO) with relatively cooler and less saline waters than the FIL. Depth-integrated abundance and biomass of Synechococcus were relatively higher within the FIL and FRO whereas Prochlorococcus and picoeukaryotes were abundant in SFIL and NFIL. Redundancy analysis of environmental variables and picophytoplankton abundance showed that lower saline water mass within the mesoscale features harbored relatively higher Synechococcus abundance and biomass. Two Synechococcus ecotypes were distinguished based on the fluorescence intensity of the accessory pigment, phycoerythrin; the one with higher intensity (open ocean ecotype) dominating in the FIL and the other with lower intensity in the FRO (coastal ecotype). The relatively lower saline surface water mass at the FRO, probably a result of coastal advection, could have introduced the latter ecotype. Vertically, a positive correlation of Prochlorococcus with nutrients and Synechococcus with temperature corroborates their higher and lower abundance and biomass, respectively in the deeper waters. The positive correlation of Synechococcus with the total chlorophyll biomass indicates a similar response to environmental variables within the mesoscale features. This study shows that picophytoplankton contribution (16-24%) to the total phytoplankton carbon biomass in tropical mesoscale features is likely to have important consequences on the planktonic food web function.
Large format 15μm pitch XBn detector
NASA Astrophysics Data System (ADS)
Karni, Yoram; Avnon, Eran; Ben Ezra, Michael; Berkowitz, Eyal; Cohen, Omer; Cohen, Yossef; Dobromislin, Roman; Hirsh, Itay; Klin, Olga; Klipstein, Philip; Lukomsky, Inna; Nitzani, Michal; Pivnik, Igor; Rozenberg, Omer; Shtrichman, Itay; Singer, Michael; Sulimani, Shay; Tuito, Avi; Weiss, Eliezer
2014-06-01
Over the past few years, a new type of High Operating Temperature (HOT) photon detector has been developed at SCD, which operates in the blue part of the MWIR atmospheric window (3.4 - 4.2 μm). This window is generally more transparent than the red part of the MWIR window (4.4 - 4.9 μm), and thus is especially useful for mid and long range applications. The detector has an InAsSb active layer and is based on the new "XBn" device concept, which eliminates Generation-Recombination dark current and enables operation at temperatures of 150K or higher, while maintaining excellent image quality. Such high operating temperatures reduce the cooling requirements of Focal Plane Array (FPA) detectors dramatically, and allow the use of a smaller closed-cycle Stirling cooler. As a result, the complete Integrated Detector Cooler Assembly (IDCA) has about 60% lower power consumption and a much longer lifetime compared with IDCAs based on standard InSb detectors and coolers operating at 77K. In this work we present a new large format IDCA designed for 150K operation. The 15 μm pitch 1280×1024 FPA is based on SCD's XBn technology and digital Hercules ROIC. The FPA is housed in a robust Dewar and is integrated with Ricor's K508N Stirling cryo-cooler. The IDCA has a weight of ~750 gram and its power consumption is ~ 5.5 W at a frame rate of 100Hz. The Mean Time to Failure (MTTF) of the IDCA is more than 20,000 hours, greatly facilitating 24/7 operation.
What Controls the Temperature of the Arctic Stratosphere during the Spring?
NASA Technical Reports Server (NTRS)
Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)
2000-01-01
Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.
Heat waves and urban heat islands in Europe: A review of relevant drivers.
Ward, Kathrin; Lauf, Steffen; Kleinschmit, Birgit; Endlicher, Wilfried
2016-11-01
The climate change and the proceeding urbanization create future health challenges. Consequently, more people around the globe will be impaired by extreme weather events, such as heat waves. This study investigates the causes for the emergence of surface urban heat islands and its change during heat waves in 70 European cities. A newly created climate class indicator, a set of meaningful landscape metrics, and two population-related parameters were applied to describe the Surface Urban Heat Island Magnitude (SUHIM) - the mean temperature increase within the urban heat island compared to its surrounding, as well as the Heat Magnitude (HM) - the extra heat load added to the average summer SUHIM during heat waves. We evaluated the relevance of varying urban parameters within linear models. The exemplary European-wide heat wave in July 2006 was chosen and compared to the average summer conditions using MODIS land surface temperature with an improved spatial resolution of 250m. The results revealed that the initial size of the urban heat island had significant influence on SUHIM. For the explanation of HM the size of the heat island, the regional climate and the share of central urban green spaces showed to be critical. Interestingly, cities of cooler climates and cities with higher shares of urban green spaces were more affected by additional heat during heat waves. Accordingly, cooler northern European cities seem to be more vulnerable to heat waves, whereas southern European cities appear to be better adapted. Within the ascertained population and climate clusters more detailed explanations were found. Our findings improve the understanding of the urban heat island effect across European cities and its behavior under heat waves. Also, they provide some indications for urban planners on case-specific adaptation strategies to adverse urban heat caused by heat waves. Copyright © 2016 Elsevier B.V. All rights reserved.
McElroy, Matthew T
2014-01-01
Physiological function in ectotherms is tightly linked to body temperature. As a result, the thermal sensitivity of physiological function may evolve to optimize fitness across different thermal environments. One hypothesis for the evolution of thermal sensitivity, coadaptation, predicts that optimal temperatures for performance should evolve to match the temperatures that an organism experiences in nature. Another hypothesis, countergradient variation, posits that genetic variation can compensate for decreased performance in cool environments, leading to physiological phenotypes that do not track environmental temperatures. On Mo'orea, French Polynesia, thermal ecology and physiology were studied in two morphologically similar skinks that differ in habitat use. Previous studies show that Emoia impar tends to inhabit closed-canopy and interior habitats that are cooler compared to those inhabited by Emoia cyanura, but these differences had not been quantified on Mo'orea. The goal of this study was to determine whether this pattern of habitat partitioning exists on Mo'orea and relates to interspecific differences in thermal physiology and to evaluate whether the evolution of thermal sensitivity supports coadaptation or countergradient variation. I found that E. impar inhabits closed-canopy habitats with cooler substrates and with higher altitudes compared to habitats of E. cyanura. Although the two species do not differ significantly in critical thermal minimum, E. impar has a significantly lower preferred body temperature and critical thermal maximum than does E. cyanura. Despite a preference for cooler habitats and temperatures, E. impar has a warmer optimal temperature for sprint speed and sprints faster than E. cyanura at all temperatures, which supports the countergradient model of thermal adaptation. These results are robust to three different curve-fitting functions and support the view that generalist/specialist trade-offs do not universally constrain the evolution of performance curves.
66. INTERIOR VIEW OF THE COOLING BUILDING, LOOKING AM DAMPERS, ...
66. INTERIOR VIEW OF THE COOLING BUILDING, LOOKING AM DAMPERS, HIGH TEMPERATURE AND LOW TEMPERATURE COOLERS. APRIL 11, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL
The research on thermal adaptability reinforcement technology for photovoltaic modules
NASA Astrophysics Data System (ADS)
Su, Nana; Zhou, Guozhong
2015-10-01
Nowadays, Photovoltaic module contains more high-performance components in smaller space. It is also demanded to work in severe temperature condition for special use, such as aerospace. As temperature rises, the failure rate will increase exponentially which makes reliability significantly reduce. In order to improve thermal adaptability of photovoltaic module, this paper makes a research on reinforcement technologies. Thermoelectric cooler is widely used in aerospace which has harsh working environment. So, theoretical formulas for computing refrigerating efficiency, refrigerating capacity and temperature difference are described in detail. The optimum operating current of three classical working condition is obtained which can be used to guide the design of driven circuit. Taken some equipment enclosure for example, we use thermoelectric cooler to reinforce its thermal adaptability. By building physical model and thermal model with the aid of physical dimension and constraint condition, the model is simulated by Flotherm. The temperature field cloud is shown to verify the effectiveness of reinforcement.
Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis
NASA Astrophysics Data System (ADS)
Kürkçü, Burak; Kasnakoğlu, Coşku
2018-02-01
In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.
Egg size variation among tropical and temperate songbirds: An embryonic temperature hypothesis
Martin, T.E.
2008-01-01
Species with 'slow' life history strategies (long life, low fecundity) are thought to produce high-quality offspring by investing in larger, but fewer, young. Larger eggs are indeed associated with fewer eggs across taxa and can yield higher-quality offspring. Tropical passerines appear to follow theory because they commonly exhibit slow life history strategies and produce larger, but fewer, eggs compared with northern species. Yet, I show here that relative egg mass (corrected for adult mass) varies extensively in the tropics and subtropics for the same clutch size, and this variation is unexplained. I propose a hypothesis to explain egg size variation both within the tropics and between latitudes: Relative egg mass increases in species with cooler egg temperatures and longer embryonic periods to offset associated increases in energetic requirements of embryos. Egg temperatures of birds are determined by parental incubation behavior and are often cooler among tropical passerines because of reduced parental attentiveness of eggs. Here, I show that cooler egg temperatures and longer embryonic periods explained the enigmatic variation in egg mass within and among regions, based on field studies in tropical Venezuela (36 species), subtropical Argentina (16 species), and north temperate Arizona (20 species). Alternative explanations are not supported. Thus, large egg sizes may reflect compensation for increased energetic requirements of cool egg temperatures and long embryonic periods that result from reduced parental attentiveness in tropical birds. ?? 2008 by The National Academy of Sciences of the USA.
Wichansky, P.S.; Steyaert, L.T.; Walko, R.L.; Waever, C.P.
2008-01-01
The 19th-century agrarian landscape of New Jersey (NJ) and the surrounding region has been extensively transformed to the present-day land cover by urbanization, reforestation, and localized areas of deforestation. This study used a mesoscale atmospheric numerical model to investigate the sensitivity of the warm season climate of NJ to these land cover changes. Reconstructed 1880s-era and present-day land cover data sets were used as surface boundary conditions for a set of simulations performed with the Regional Atmospheric Modeling System (RAMS). Three-member ensembles with historical and present-day land cover were compared to examine the sensitivity of surface air and dew point temperatures, rainfall, and the individual components of the surface energy budget to these land cover changes. Mean temperatures for the present-day landscape were 0.3-0.6??C warmer than for the historical landscape over a considerable portion of NJ and the surrounding region, with daily maximum temperatures at least 1.0??C warmer over some of the highly urbanized locations. Reforested regions, however, were slightly cooler. Dew point temperatures decreased by 0.3-0.6??C, suggesting drier, less humid near-surface air for the present-day landscape. Surface warming was generally associated with repartitioning of net radiation from latent to sensible heat flux, and conversely for cooling. While urbanization was accompanied by strong surface albedo decreases and increases in net shortwave radiation, reforestation and potential changes in forest composition have generally increased albedos and also enhanced landscape heterogeneity. The increased deciduousness of forests may have further reduced net downward longwave radiation. Copyright 2008 by the American Geophysical Union.
Phenophysiological variation of a bee that regulates hive humidity, but not hive temperature.
Ayton, Sasha; Tomlinson, Sean; Phillips, Ryan D; Dixon, Kingsley W; Withers, Philip C
2016-05-15
Seasonal acclimatisation of thermal tolerance, evaporative water loss and metabolic rate, along with regulation of the hive environment, are key ways whereby hive-based social insects mediate climatic challenges throughout the year, but the relative importance of these traits remains poorly understood. Here, we examined seasonal variation in metabolic rate and evaporative water loss of worker bees, and seasonal variation of hive temperature and relative humidity (RH), for the stingless bee Austroplebeia essingtoni (Apidae: Meliponini) in arid tropical Australia. Both water loss and metabolic rate were lower in the cooler, dry winter than in the hot, wet summer at most ambient temperatures between 20°C and 45°C. Contrary to expectation, thermal tolerance thresholds were higher in the winter than in the summer. Hives were cooler in the cooler, dry winter than in the hot, wet summer, linked to an apparent lack of hive thermoregulation. The RH of hives was regulated at approximately 65% in both seasons, which is higher than unoccupied control hives in the dry season, but less than unoccupied control hives in the wet season. Although adaptations to promote water balance appear more important for survival of A. essingtoni than traits related to temperature regulation, their capacity for water conservation is coincident with increased thermal tolerance. For these small, eusocial stingless bees in the arid tropics, where air temperatures are relatively high and stable compared with temperate areas, regulation of hive humidity appears to be of more importance than temperature for maintaining hive health. © 2016. Published by The Company of Biologists Ltd.
Energy transfer simulation for radiantly heated and cooled enclosures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, K.S.; Zhang, P.
1996-11-01
This paper presents the development of a three-dimensional mathematical model to compute heat transfer within a radiantly heated or cooled room, which then calculates the mass-averaged room air temperature and the wall surface temperature distributions. The radiation formulation used in the model accommodates arbitrary placement of walls and objects within the room. The convection model utilizes Nusselt number correlations published in the open literature. The complete energy transfer model is validated by comparing calculated room temperatures to temperatures measured in a radiantly heated room. This three-dimensional model may be applied to a building to assist the heating/cooling system design engineermore » in sizing a radiant heating/cooling system. By coupling this model with a thermal comfort model, the comfort levels throughout the room can be easily and efficiently mapped for a given radiant heater/cooler location. In addition, obstacles such as airplanes, trucks, furniture, and partitions can be easily incorporated to determine their effect on the radiant heating system performance.« less
Evaluation of T-111 forced-convection loop tested with lithium at 1370 C. [free convection
NASA Technical Reports Server (NTRS)
Devan, J. H.; Long, E. L., Jr.
1975-01-01
A T-111 alloy (Ta-8% W-2% Hf) forced-convection loop containing molten lithium was operated 3000 hr at a maximum temperature of 1370 C. Flow velocities up to 6.3 m/sec were used, and the results of this forced-convection loop are very similar to those observed in lower velocity thermal-convection loops of T-111 containing lithium. Weight changes were determined at 93 positions around the loop. The maximum dissolution rate occurred at the maximum wall temperature of the loop and was less than 1.3 microns/year. Mass transfer of hafnium, nitrogen, and, to a lesser extent, carbon occurred from the hotter to cooler regions. Exposed surfaces in the highest temperature region were found to be depleted in hafnium to a depth of 60 microns with no detectable change in tungsten content. There was some loss in room-temperature tensile strength for specimens exposed to lithium at 1370 C, attributable to depletion of hafnium and nitrogen and to attendant grain growth.
Hruschka, Daniel J.; Hadley, Craig; Brewis, Alexandra A.; Stojanowski, Christopher M.
2015-01-01
Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments. PMID:25816235
Solifluction rates and environmental controls at local and regional scales in central Austria
Kellerer-Pirklbauer, Andreas
2018-01-01
ABSTRACT Solifluction is a widespread periglacial phenomenon. Little is known about present solifluction rates in Austria. The author monitored five solifluction lobes during a four-year period. Annual rates of surface velocity, vertical velocity profiles, depths of movement, and volumetric velocities were quantified using near-surface markers and painted lines. Environmental conditions were assessed using air temperature, soil texture, and ground temperature-derived parameters. The latter were used to estimate the relevance of needle-ice creep, diurnal frost creep, annual frost creep, and gelifluction. The mean surface velocity rates were 3.5–6.1 cm yr−1 (near-surface markers) and 6.2–8.9 cm yr−1 (painted lines), respectively, indicating a high relevance of needle-ice creep. The mean depth of movement was 32.5–40 cm. The mean volumetric velocities were 71–102 cm3 cm−1 yr−1. Solifluction rates at the five sites did not correlate with each other due to site-specific controls. No statistically significant correlations were quantified between solifluction rates and different environmental parameters due to data gaps and short time series, thus highlighting the importance of long-term monitoring. Nevertheless, the results suggest that longer zero curtain periods, longer seasonal ground thawing periods, later start of the seasonal snow cover, more freeze-thaw cycles, and cooler early summer temperatures promote solifluction. PMID:29479580
Hruschka, Daniel J; Hadley, Craig; Brewis, Alexandra A; Stojanowski, Christopher M
2015-01-01
Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.
Comparison of land-surface humidity between observations and CMIP5 models
NASA Astrophysics Data System (ADS)
Dunn, Robert; Willett, Kate; Ciavarella, Andrew; Stott, Peter; Jones, Gareth
2017-04-01
We compare the latest observational land-surface humidity dataset, HadISDH, with the CMIP5 model archive spatially and temporally over the period 1973-2015. None of the CMIP5 models or experiments capture the observed temporal behaviour of the globally averaged relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea-surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed and historical model climatologies show that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends are relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the Tropics, and very little at high atitudes. The observed temporal behaviour appears to be a robust climate feature rather than observational error. It has been previously documented and is theoretically consistent with faster warming rates over land compared to oceans. Thus, the poor replication in the models, especially in the atmosphere only model, leads to questions over future projections of impacts related to changes in surface relative humidity.
Miniature cryocooler developments for high operating temperatures at Thales Cryogenics
NASA Astrophysics Data System (ADS)
Arts, R.; Martin, J.-Y.; Willems, D.; Seguineau, C.; Van Acker, S.; Mullié, J. C.; Göbel, A.; Tops, M.; Le Bordays, J.; Etchanchu, T.; Benschop, A. A. J.
2015-05-01
In recent years there has been a drive towards miniaturized cooled IDCA solutions for low-power, low-mass, low-size products (SWaP). To support this drive, coolers are developed optimized for high-temperature, low heat load dewar-detector assemblies. In this paper, Thales Cryogenics development activities supporting SWaP are presented. Design choices are discussed and compared to various key requirements. Trade-off analysis results are presented on drive voltage, cold finger definition (length, material, diameter and sealing concept), and other interface considerations, including cold finger definition. In parallel with linear and rotary cooler options, designs for small-size high-efficiency drive electronics based on state-of-the-art architectures are presented.
Regeneration experiments below 10K in a regenerative-cycle cryocooler
NASA Technical Reports Server (NTRS)
Sager, R. E.; Paulson, D. N.
1983-01-01
At temperatures below 10K, regenerative cycle cryocoolers are limited by regeneration losses in the helium working fluid which result from the decreasing heat capacity of the regenerating material and the increasing density of helium. Experiments examining several approaches to improving the low-temperature regeneration in a four-stage regenerative cycle cooler constructed primarily of fiberglass materials are discussed. Using an interchangeable fourth stage, the experiments included configurations with multiple regeneration passages, and a static helium volume for increased heat capacity. Experiments using helium-3 as the working fluid and a Malone stage are planned. Results indicate that, using these techniques, it should be possible to construct a regenerative cycle cooler which will operate below 6K.
Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir
NASA Technical Reports Server (NTRS)
Gedeon, David R. (Inventor)
2008-01-01
An improved pulse tube cooler having a resonator tube connected in place of a compliance volume or reservoir. The resonator tube has a length substantially equal to an integer multiple of 1/4 wavelength of an acoustic wave in the working gas within the resonator tube at its operating frequency, temperature and pressure. Preferably, the resonator tube is formed integrally with the inertance tube as a single, integral tube with a length approximately 1/2 of that wavelength. Also preferably, the integral tube is spaced outwardly from and coiled around the connection of the regenerator to the pulse tube at a cold region of the cooler and the turns of the coil are thermally bonded together to improve heat conduction through the coil.
Heat transfer and evaporative cooling in the function of pot-in-pot coolers
NASA Astrophysics Data System (ADS)
Chemin, Arsène; Levy Dit Vehel, Victor; Caussarieu, Aude; Plihon, Nicolas; Taberlet, Nicolas
2018-03-01
A pot-in-pot cooler is an affordable electricity-free refrigerator which uses the latent heat of vaporization of water to maintain a low temperature inside an inner compartment. In this article, we experimentally investigate the influence of the main physical parameters in model pot-in-pot coolers. The effect of the wind on the evaporation rate of the cooling fluid is studied in model experiments while the influence of the fluid properties (thermal conductivity, specific heat, and latent heat) is elucidated using a variety of cooling fluids (water, ethanol, and ether). A model based on a simplified heat conduction equation is proposed and is shown to be in good quantitative agreement with the experimental measurements.
Testing of a Miniature Loop Heat Pipe Using a Thermal Electrical Cooler for Temperature Control
NASA Technical Reports Server (NTRS)
Ku, Jentung; Jeong, Soeng-II; Butler, Dan
2004-01-01
This paper describes the design and testing of a miniature LHP having a 7 mm O.D. evaporator with an integral CC. The vapor line and liquid line are made of 1.6mm stainless steel tubing. The evaporator and the CC are connected on the outer surface by a copper strap and a thermoelectric (TEC) is installed on the strap. The TEC is used to control the CC temperature by applying an electrical current for heating or cooling. Tests performed in ambient included start-up, power cycle, sink temperature cycle, and CC temperature control using TEC. The LHP demonstrated very robust operation in all tests where the heat load varied between 0.5W and 1OOW, and the sink temperature varied between 243K and 293K. The heat leak from the evaporator to the CC was extremely small. The TEC was able to control the CC temperature within +/-0.3K under all test conditions, and the required control heater power was less than 1W.
Cascade pulse-tube cryocooler using a displacer for efficient work recovery
NASA Astrophysics Data System (ADS)
Xu, Jingyuan; Hu, Jianying; Hu, Jiangfeng; Luo, Ercang; Zhang, Limin; Gao, Bo
2017-09-01
Expansion work is generally wasted as heat in a pulse-tube cryocooler and thus represents an obstacle to obtaining higher Carnot efficiency. Recovery of this dissipated power is crucial to improvement of these cooling systems, particularly when the cooling temperature is not very low. In this paper, an efficient cascade cryocooler that is capable of recovering acoustic power is introduced. The cryocooler is composed of two coolers and a displacer unit. The displacer, which fulfills both phase modulation and power transmission roles, is sandwiched in the structure by the two coolers. This means that the expansion work from the first stage cooler can then be used by the second stage cooler. The expansion work of the second stage cooler is much lower than the total input work and it is thus not necessary to recover it. Analyses and experiments were conducted to verify the proposed configuration. At an input power of 1249 W, the cascade cryocooler achieved its highest overall relative Carnot efficiency of 37.2% and a cooling power of 371 W at 130 K. When compared with the performance of a traditional pulse-tube cryocooler, the cooling efficiency was improved by 32%.
Indirect evaporative coolers with enhanced heat transfer
Kozubal, Eric; Woods, Jason; Judkoff, Ron
2015-09-22
A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.
2011-01-01
we propose that hot-spot mitigation using thermoelectric coolers can be used as a power management mechanism to allow global coolers to be provi...sioned for a better worst case temperature leading to substan- tial savings in cooling power. In order to quantify the potential power savings from us- ing...energy density inside a processor to maximally tolerable levels, modern microprocessors make ex- tensive use of hardware structures such as the load
Coupled atmosphere-ocean models of Titan's past
NASA Technical Reports Server (NTRS)
Mckay, Christopher P.; Pollack, James B.; Lunine, Jonathan I.; Courtin, Regis
1993-01-01
The behavior and possible past evolution of fully coupled atmosphere and ocean model of Titan are investigated. It is found that Titan's surface temperature was about 20 K cooler at 4 Gyr ago and will be about 5 K warmer 0.5 Gyr in the future. The change in solar luminosity and the conversion of oceanic CH4 to C2H6 drive the evolution of the ocean and atmosphere over time. Titan appears to have experienced a frozen epoch about 3 Gyr ago independent of whether an ocean is present or not. This finding may have important implications for understanding the inventory of Titan's volatile compounds.
Method for Qualification of Coatings Applied to Wet Surfaces
DOT National Transportation Integrated Search
2009-12-16
The field application of a pipeline repair or rehabilitation coating usually cannot wait until ambient conditions become optimal. In a humid environment, water can condense on the pipe surface because the pipe surface is usually cooler than the ambie...
Superconducting cable cooling system by helium gas at two pressures
Dean, John W.
1977-01-01
Thermally contacting, oppositely streaming, cryogenic fluid streams in the same enclosure in a closed cycle that changes the fluid from a cool high pressure helium gas to a cooler reduced pressure helium gas in an expander so as to be at different temperature ranges and pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid from a refrigerator at one end of the line as a cool gas at a temperature range T.sub.2 to T.sub.3 in the go leg, then circulating the gas through an expander at the other end of the line where the gas becomes a cooler gas at a reduced pressure and at a reduced temperature T.sub.4 and finally by circulating the cooler gas back again to the refrigerator in a return leg at a temperature range T.sub.4 to T.sub.5, while in thermal contact with the gas in the go leg, and in the same enclosure therewith for compression into a higher pressure gas at T.sub.2 in a closed cycle, where T.sub.2 >T.sub.3 and T.sub.5 >T.sub.4, the fluid leaves the enclosure in the go leg as a gas at its coldest point in the go leg, and the temperature distribution is such that the line temperature decreases along its length from the refrigerator due to the cooling from the gas in the return leg.
Esquerré, Damien; Keogh, J Scott; Schwanz, Lisa E
2014-07-01
Incubation temperature is one of the most studied factors driving phenotypic plasticity in oviparous reptiles. We examined how incubation temperature influenced hatchling morphology, thermal preference and temperature-dependent running speed in the small Australian agamid lizard Amphibolurus muricatus. Hatchlings incubated at 32 °C grew more slowly than those incubated at 25 and 28 °C during their first month after hatching, and tended to be smaller at one month. These differences were no longer significant by three months of age due to selective mortality of the smallest hatchlings. The cooler incubation treatments (25 °C and 28 °C) produced lizards that had deeper and wider heads. Hatchlings from 28 °C had cooler and more stable temperature preferences, and also had lower body temperatures during a 2-h thermoregulatory behaviour trial. Locomotor performance was enhanced at higher body temperatures, but incubation temperature had no measurable effect either independently or in interaction with body temperature. Our study demonstrates that incubation temperature has direct effects on morphology and thermoregulatory behaviour that appears to be independent of any size-dependent effects. We postulate a mechanistic link between these two effects. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kimball, Mark O.; Shirron, Peter J.
2011-01-01
An adiabatic demagnetization refrigerator (ADR) is a solid-state cooler capable of achieving sub-Kelvin temperatures. It neither requires moving parts nor a density gradient in a working fluid making it ideal for use in space-based instruments. The flow of energy through the cooler is controlled by heat switches that allow heat transfer when on and isolate portions of the cooler when off. One type of switch uses helium gas as the switching medium. In the off state the gas is adsorbed in a getter thus breaking the thermal path through the switch. To activate the switch, the getter is heated to release helium into the switch body allowing it to complete the thermal path. A getter that has a small heat capacity and low thermal conductance to the body of the switch requires low-activation power. The cooler benefits from this in two ways: shorter recycle times and higher efficiency. We describe such a design here.
NASA Technical Reports Server (NTRS)
Kimball, Mark O.; Shirron, Peter J.
2011-01-01
An adiabatic demagnetization refrigerator (ADR) is a solid-state cooler capable of achieving sub-Kelvin temperatures. It neither requires moving parts nor a density gradient in a working fluid making it ideal for use in space-based instruments. The flow of energy through the cooler is controlled by heat switches that allow heat transfer when on and isolate portions of the cooler when off. One type of switch uses helium gas as the switching medium. In the off state the gas is adsorbed in a getter thus breaking the thermal path through the switch. To activate the switch, the getter is heated to release helium into the switch body allowing it to complete the thermal path. A getter that has a small heat capacity and low thermal conductance to the body of the switch requires low-activation power. The cooler benefits from this in two ways: shorter recycle times and higher efficiency. We describe such a design here.
Simulation of Cooling and Pressure Effects on Inflated Pahoehoe Lava Flows
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Baloga, Stephen M.
2016-01-01
Pahoehoe lobes are often emplaced by the advance of discrete toes accompanied by inflation of the lobe surface. Many random effects complicate modeling lobe emplacement, such as the location and orientation of toe breakouts, their dimensions, mechanical strength of the crust, micro-topography and a host of other factors. Models that treat the movement of lava parcels as a random walk have explained some of the overall features of emplacement. However, cooling of the surface and internal pressurization of the fluid interior has not been modeled. This work reports lobe simulations that explicitly incorporate 1) cooling of surface lava parcels, 2) the propensity of breakouts to occur at warmer margins that are mechanically weaker than cooler ones, and 3) the influence of internal pressurization associated with inflation. The surface temperature is interpreted as a surrogate for the mechanic strength of the crust at each location and is used to determine the probability of a lava parcel transfer from that location. When only surface temperature is considered, the morphology and dimensions of simulated lobes are indistinguishable from equiprobable simulations. However, inflation within a lobe transmits pressure to all connected fluid locations with the warmer margins being most susceptible to breakouts and expansion. Simulations accounting for internal pressurization feature morphologies and dimensions that are dramatically different from the equiprobable and temperature-dependent models. Even on flat subsurfaces the pressure-dependent model produces elongate lobes with distinct directionality. Observables such as topographic profiles, aspect ratios, and maximum extents should be readily distinguishable in the field.
Flight Test Results for the NICMOS Cryocooler
NASA Technical Reports Server (NTRS)
Dolan, F. X.; McCormick, J. A.; Nellis, G. F.; Sixsmith, H.; Swift, W. L.
1999-01-01
In October 1998 a mechanical cryocooler and cryogenic circulator loop were flown on NASA's STS-95 as part of the Hubble Orbital System Test (HOST). The system will be installed on the Hubble Space Telescope (HST) during Service Mission #3 in 2000 and will provide cooling to the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). It will extend the useful life of that instrument by 5 to 10 years. This was the first successful space demonstration of a turbobrayton cryocooler. The cooler is a single stage reverse Brayton type, using low-vibration high-speed miniature turbomachines for the compression and expansion functions. A miniature centrifugal cryogenic circulator is used to deliver refrigerated neon to the instrument. During the mission, the cooler operated without anomalies for approximately 185 hours over a range of conditions to verify its mechanical, thermodynamic and control functions. The cryocooler satisfied all mission objectives including maximum cooldown to near-design operating conditions, warm and cold starts and stops, operation at near-design temperatures, and demonstration of long-term temperature stability. This paper presents a description of the cooler and its operation during the HOST flight.
Nelson, Jacob A; Bugbee, Bruce
2015-01-01
The use of LED technology is commonly assumed to result in significantly cooler leaf temperatures than high pressure sodium technology. To evaluate the magnitude of this effect, we measured radiation incident to and absorbed by a leaf under four radiation sources: clear sky sunlight in the field, sunlight in a glass greenhouse, and indoor plants under either high pressure sodium or light emitting diodes. We then applied a common mechanistic energy-balance model to compare leaf to air temperature difference among the radiation sources and environments. At equal photosynthetic photon flux, our results indicate that the effect of plant water status and leaf evaporative cooling is much larger than the effect of radiation source. If plants are not water stressed, leaves in all four radiation sources were typically within 2°C of air temperature. Under clear sky conditions, cool sky temperatures mean that leaves in the field are always cooler than greenhouse or indoor plants-when photosynthetic photon flux, stomatal conductance, wind speed, vapor pressure deficit, and leaf size are equivalent. As water stress increases and cooling via transpiration decreases, leaf temperatures can increase well above air temperature. In a near-worst case scenario of water stress and low wind, our model indicates that leaves would increase 6°, 8°, 10°, and 12°C above air temperature under field, LED, greenhouse, and HPS scenarios, respectively. Because LED fixtures emit much of their heat through convection rather than radiative cooling, they result in slightly cooler leaf temperatures than leaves in greenhouses and under HPS fixtures, but the effect of LED technology on leaf temperature is smaller than is often assumed. Quantifying the thermodynamic outputs of these lamps, and their physiological consequences, will allow both researchers and the horticulture industry to make informed decisions when employing these technologies.
Thompson, Cynthia L; Powell, Brianna L; Williams, Susan H; Hanya, Goro; Glander, Kenneth E; Vinyard, Christopher J
2017-11-01
Thyroid hormones boost animals' basal metabolic rate and represent an important thermoregulatory pathway for mammals that face cold temperatures. Whereas the cold thermal pressures experienced by primates in seasonal habitats at high latitudes and elevations are often apparent, tropical habitats also display distinct wet and dry seasons with modest changes in thermal environment. We assessed seasonal and temperature-related changes in thyroid hormone levels for two primate species in disparate thermal environments, tropical mantled howlers (Alouatta palliata), and seasonally cold-habitat Japanese macaques (Macaca fuscata). We collected urine and feces from animals and used ELISA to quantify levels of the thyroid hormone triiodothyronine (fT 3 ). For both species, fT 3 levels were significantly higher during the cooler season (wet/winter), consistent with a thermoregulatory role. Likewise, both species displayed greater temperature deficits (i.e., the degree to which animals warm their body temperature relative to ambient) during the cooler season, indicating greater thermoregulatory pressures during this time. Independently of season, Japanese macaques displayed increasing fT 3 levels with decreasing recently experienced maximum temperatures, but no relationship between fT 3 and recently experienced minimum temperatures. Howlers increased fT 3 levels as recently experienced minimum temperatures decreased, although demonstrated the opposite relationship with maximum temperatures. This may reflect natural thermal variation in howlers' habitat: wet seasons had cooler minimum and mean temperatures than the dry season, but similar maximum temperatures. Overall, our findings support the hypothesis that both tropical howlers and seasonally cold-habitat Japanese macaques utilize thyroid hormones as a mechanism to boost metabolism in response to thermoregulatory pressures. This implies that cool thermal pressures faced by tropical primates are sufficient to invoke an energetically costly and relatively longer-term thermoregulatory pathway. The well-established relationship between thyroid hormones and energetics suggests that the seasonal hormonal changes we observed could influence many commonly studied behaviors including food choice, range use, and activity patterns. © 2017 Wiley Periodicals, Inc.
Nelson, Jacob A.; Bugbee, Bruce
2015-01-01
The use of LED technology is commonly assumed to result in significantly cooler leaf temperatures than high pressure sodium technology. To evaluate the magnitude of this effect, we measured radiation incident to and absorbed by a leaf under four radiation sources: clear sky sunlight in the field, sunlight in a glass greenhouse, and indoor plants under either high pressure sodium or light emitting diodes. We then applied a common mechanistic energy-balance model to compare leaf to air temperature difference among the radiation sources and environments. At equal photosynthetic photon flux, our results indicate that the effect of plant water status and leaf evaporative cooling is much larger than the effect of radiation source. If plants are not water stressed, leaves in all four radiation sources were typically within 2°C of air temperature. Under clear sky conditions, cool sky temperatures mean that leaves in the field are always cooler than greenhouse or indoor plants-when photosynthetic photon flux, stomatal conductance, wind speed, vapor pressure deficit, and leaf size are equivalent. As water stress increases and cooling via transpiration decreases, leaf temperatures can increase well above air temperature. In a near-worst case scenario of water stress and low wind, our model indicates that leaves would increase 6°, 8°, 10°, and 12°C above air temperature under field, LED, greenhouse, and HPS scenarios, respectively. Because LED fixtures emit much of their heat through convection rather than radiative cooling, they result in slightly cooler leaf temperatures than leaves in greenhouses and under HPS fixtures, but the effect of LED technology on leaf temperature is smaller than is often assumed. Quantifying the thermodynamic outputs of these lamps, and their physiological consequences, will allow both researchers and the horticulture industry to make informed decisions when employing these technologies. PMID:26448613
NASA Astrophysics Data System (ADS)
McCarthy, J. A.; Schoenbohm, L. M.; Bierman, P. R.; Rood, D. H.
2013-12-01
The eastern margin of the Puna Plateau has been the focus of many studies seeking to link climatically-moderated surface processes and tectonism through dynamic feedbacks. However, evaluating any theories regarding climatic-tectonic feedbacks requires the determination of tectonic, climatic, and geomorphic chronologies across a wide region, from plateau to wedge-top to foreland. In this study, we contribute to that effort by examining Quaternary landscape evolution of a single intermontane basin of spatially uniform climate, adjacent to the plateau margin. The semi-arid Pucará Valley contains eight abandoned and incised geomorphic surfaces, most of which are deformed by active structures. These geomorphic surfaces - thin alluvial fans and strath terraces - dominate the landscape and record multiple pulses of incision in the late Quaternary. We find no evidence for significant depositional intervals and valley incision continues currently. Substantial accumulations of pedogenic carbonate and pedogenic gypsum within abandoned surfaces indicate that arid or semi-arid conditions are long lived in this valley. Conversely, relict periglacial morphology in adjacent ranges supports cooler temperatures in the past. River incision is enhanced across active structures, but preliminary observations suggest that the magnitude of deformation cannot fully explain the magnitude of incision. As a result, we argue that extrabasinal base-level lowering is the primary driver of incision in the Pucará Valley, but Quaternary deformation is significant enough to spatially influence erosion. Cooler climatic intervals may influence the sedimentology of alluvial and fluvial deposits, but we find no evidence for significant climatic changes that could change rates or styles of landscape evolution over this time frame. Pending cosmogenic nuclide analysis of fan deposits and river sediments will permit the derivation of fault slip rates, surface ages, modern and paleo-erosion rates, and sediment transport histories. These results will further refine our understanding of tectonic and climatic forcing of surface processes in the Quaternary.
Armstrong, Jonathan B.; Ward, Eric J.; Schindler, Daniel E.; Lisi, Peter J.
2016-01-01
As climate change increases maximal water temperatures, behavioural thermoregulation may be crucial for the persistence of coldwater fishes, such as salmonids. Although myriad studies have documented behavioural thermoregulation in southern populations of salmonids, few if any have explored this phenomenon in northern populations, which are less likely to have an evolutionary history of heat stress, yet are predicted to experience substantial warming. Here, we treated a rare heat wave as a natural experiment to test whether wild sockeye salmon (Oncorhynchus nerka) at the northern extent of their primary range (60° latitude) can thermoregulate in response to abnormally high thermal conditions. We tagged adult sockeye salmon with temperature loggers as they staged in a lake epilimnion prior to spawning in small cold streams (n = 40 recovered loggers). As lake surface temperatures warmed to physiologically suboptimal levels (15–20°C), sockeye salmon thermoregulated by moving to tributary plumes or the lake metalimnion. A regression of fish body temperature against lake surface temperature indicated that fish moved to cooler waters when the epilimnion temperature exceeded ~12°C. A bioenergetics model suggested that the observed behaviour reduced daily metabolic costs by as much as ~50% during the warmest conditions (18–20°C). These results provide rare evidence of cool-seeking thermoregulation at the poleward extent of a species range, emphasizing the potential ubiquity of maximal temperature constraints and the functional significance of thermal heterogeneity for buffering poikilotherms from climate change. PMID:27729980
Modeling Thermal Contact Resistance
NASA Technical Reports Server (NTRS)
Kittel, Peter; Sperans, Joel (Technical Monitor)
1994-01-01
One difficulty in using cryocoolers is making good thermal contact between the cooler and the instrument being cooled. The connection is often made through a bolted joint. The temperature drop associated with this joint has been the subject of many experimental and theoretical studies. The low temperature behavior of dry joints have shown some anomalous dependence on the surface condition of the mating parts. There is also some doubts on how well one can extrapolate from the test samples to predicting the performance of a real system. Both finite element and analytic models of a simple contact system have been developed. The model assumes (a) the contact is dry (contact limited to a small portion of the total available area and the spaces in-between the actual contact patches are perfect insulators), (b) contacts are clean (conductivity of the actual contact is the same as the bulk), (c) small temperature gradients (the bulk conductance may be assumed to be temperature independent), (d) the absolute temperature is low (thermal radiation effects are ignored), and (e) the dimensions of the nominal contact area are small compared to the thickness of the bulk material (the contact effects are localized near the contact). The models show that in the limit of actual contact area much less than the nominal area (a much less than A), that the excess temperature drop due to a single point of contact scales as a(exp -1/2). This disturbance only extends a distance approx. A(exp 1/2) into the bulk material. A group of identical contacts will result in an excess temperature drop that scales as n(exp -1/2), where n is the number of contacts and n dot a is constant. This implies that flat rough surfaces will have a lower excess temperature drop than flat polished surfaces.
ATHENA X-IFU 300 K-50 mK cryochain demonstrator cryostat
NASA Astrophysics Data System (ADS)
Prouvé, T.; Duval, J. M.; Charles, I.; Yamasaki, N. Y.; Mitsuda, K.; Nakagawa, T.; Shinozaki, K.; Tokoku, C.; Yamamoto, R.; Minami, Y.; Le Du, M.; Andre, J.; Daniel, C.; Linder, M.
2018-01-01
In the framework of the ESA X-ray mission ATHENA, scheduled for launch in 2028, an ESA Core Technology Program (CTP) was started in 2016 to build a flight like cryostat demonstrator in parallel with the phase A studies of the ATHENA/X-IFU instrument [1,2]. As part of this CTP, called the Detector Cooling System (DCS), design, manufacturing and test of a cryostat including existing space coolers will be done. In addition to the validation of thermal performance, a Focal Plan Assembly (FPA) demonstrator using Transition Edge Sensors (TES) detector technology will be also integrated and its performance characterized versus the environment provided by the cryostat. This is a unique opportunity to validate many crucial issues of the cryogenic part of such a sensitive instrument. A dedicated activity within this CTP-DCS is the demonstration of the 300 K-50 mK cooling chain in a Ground System Equipment (GSE) cryostat. The studies are focused on the operation of the space coolers, which is made possible by the use of a ground cooler for cooling cryogenic shields and mechanical supports. Thanks to the modularity of the cryostat, several cooling chains could be tested. In the base line configuration described here, the low temperature stage is the CEA hybrid sorption/ADR 50 mK cooler with thermal interfaces at 4 K and 2 K. 4 K cooling is accomplished by a 4 K Joule-Thomson (JT) cryocooler and its Stirling precooler provided by JAXA. Regarding the 2 K stage, at first a 2 K JT from JAXA will be used. Alternatively, a 2 K JT cooler from RAL could replace the JAXA 2 K JT. In both cases new prototype(s) of a 2 K JT will be implemented, precooled by the EM 15 K pule tube cooler from Air Liquide. This test program is also the opportunity to validate the operation of the cryochain with respect to various requirements, such as time constant and temperature stabilities. This would bring us valuable inputs to integrate the cryochain in DCS cryostat or for the X-IFU phase A studies. This cryochain demonstration is also a critical milestone for the SPICA mission [3]. The design of the cryostat and first thermal validations both before and after integration of the JAXA JT coolers are presented in this paper.
Performance degradation of space Stirling cryocoolers due to gas contamination
NASA Astrophysics Data System (ADS)
Liu, Xin-guang; Wu, Yi-nong; Yang, Shao-hua; Zhang, Xiao-ming; Lu, Guo-hua; Zhang, Li
2011-08-01
With extensive application of infrared detective techniques, Stirling cryocoolers, used as an active cooling source, have been developed vigorously in China. After the cooler's cooling performance can satisfy the mission's request, its reliability level is crucial for its application. Among all the possible failure mechanisms, gas contamination has been found to be the most notorious cause of cooler's performance degradation by failure analyses. To analyze the characteristic of gas contamination, some experiments were designed and carried out to quantitatively analyze the relationship between failure and performance. Combined with the test results and the outgassing characteristic of non-metal materials in the cryocooler, a degradation model of cooling performance was given by T(t)=T0+A[1-exp(-t/B)] under some assumptions, where t is the running time, T is the Kelvin cooling temperature, and T0, A, B are model parameters, which can be given by the least square method. Here T0 is the fitting initial cooling temperature, A is the maximum range of performance degradation, and B is the time dependent constant of degradation. But the model parameters vary when a cryocooler is running at different cooling temperature ranges, or it is treated by different cleaning process. In order to verify the applicability of the degradation model, data fit analysis on eight groups of cooler's lifetime test was carried out. The final work indicated this model fit well with the performance degradation of space Stirling cryocoolers due to gas contamination and this model could be used to predict or evaluation the cooler's lifetime. Gaseous contamination will not arouse severe performance degradation until the contaminants accumulate to a certain amount, but it could be fatal when it works. So it is more serious to the coolers whose lifetime is more than 10,000 h. The measures taken to control or minimize its damage were discussed as well. To the long-life cryocooler, internal materials must be baked and organic/epoxy materials should be used as few as possible. Further more, pipeline for filling working fluid must have purifying facilities.
Radiation detection system for portable gamma-ray spectroscopy
Rowland, Mark S [Alamo, CA; Howard, Douglas E [Livermore, CA; Wong, James L [Dublin, CA; Jessup, James L [Tracy, CA; Bianchini, Greg M [Livermore, CA; Miller, Wayne O [Livermore, CA
2006-06-20
A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.
Cold-tip off-state conduction loss of miniature Stirling cycle cryocoolers
NASA Technical Reports Server (NTRS)
Kotsubo, V.; Johnson, D. L.; Ross, R. G., Jr.
1991-01-01
For redundant miniature Stirling-cycle cryocoolers in space applications, the off-state heat conduction down the coldfinger of one cooler is a parasitic heat load on the other coolers. At JPL, a heat flow transducer specifically designed to measure this load has been developed, and measurements have been performed on the coldfinger of a British Aerospace 80 K Stirling cooler with the tip temperature ranging between 40 and 170 K. Measurements have also been made using a transient warmup technique, where the warmup rates of the coldtip under various applied heat loads are used to determine the static conduction load. There is a difference between the results of these two methods, and these differences are discussed with regard to the applicability of the transient warmup method to a nonoperating coldfinger.
NASA Astrophysics Data System (ADS)
Gao, Youtang; Ding, Huan; Xue, Xiao; Xu, Yuan; Chang, Benkang
2010-10-01
Testing device TST-05B, which is suitable for adaptability test of semiconductor devices, electronic products and other military equipment under the condition of the surrounding air temperature rapidly changing, is used here for temperature shock test.Thermal stability technology of thermoelectric cooler control circuit infrared sight under temperature shock is studied in this paper. Model parameters and geometry is configured for ADI devices (ADN8830), welding material and PCB which are used in system. Thermoelectric cooler control circuit packaged by CSP32 distribution are simulated and analyzed by thermal shock and waveform through engineering finite element analysis software ANSYYS. Because solders of the whole model have much stronger stress along X direction than that of other directions, initial stress constraints along X direction are primarily considered when the partial model of single solder is imposed by thermal load. When absolute thermal loads stresses of diagonal nodes with maximum strains are separated from the whole model, interpolation is processed according to thermal loads circulation. Plastic strains and thermal stresses of nodes in both sides of partial model are obtained. The analysis results indicates that with thermal load circulation, maximum forces of each circulation along X direction are increasingly enlarged and with the accumulation of plastic strains of danger point, at the same time structural deformation and the location of maximum equivalent plastic strain in the solder joints at the first and eighth, the composition will become invalid in the end.
Investigation on Two-Stage 300 HZ Pulse Tube Cryocooler
NASA Astrophysics Data System (ADS)
Cai, H. K.; Yang, L. W.; Hong, G. T.; Luo, E. C.; Zhou, Y.
2010-04-01
In the past few years, ultra-high frequency pulse tube cryocoolers are becoming a research hotspot for their portability and compactness in aerospace and aviation applications. For preliminary research, a two-stage pulse tube cryocooler working at 300 Hz driven by a thermoacoustic engine is established to investigate the problems due to ultra high frequency, and several results have been derived in our early reports. In order to study the effect of thermal penetration depth, this paper presents the cooler adopting copper mesh as the regenerator, and comparison with stainless steel mesh is given. In addition, the influence of inertance tube on the lowest possible cooler temperature is also tested. Finally, we discuss the improvement for getting a lower temperature.
Optimal Integration of Cascade Thermoelectric Cooler into Electronic Housing: Experimental Approach
NASA Astrophysics Data System (ADS)
Semeniuk, V.; Protsenko, D.
2018-06-01
The problem of the optimal integration of thermoelectrically cooled optoelectronic components into an electronic housing is studied with the emphasis on practical implementation. The lines of 2-stage and 3-stage thermoelectric coolers (TECs) compatible with TO8 housing have been developed, and their parameters are measured in a wide range of heat sink temperatures. The TECs are optimized to receive a temperature difference of 100-110 K under a heat load from 70 mW to 100 mW with minimal power consumption. To fit into a standard housing interior, all the TECs have the same overall dimensions, regardless of the number of stages. Details of the TEC configurations and their performance characteristics are presented and discussed.
Optimal Integration of Cascade Thermoelectric Cooler into Electronic Housing: Experimental Approach
NASA Astrophysics Data System (ADS)
Semeniuk, V.; Protsenko, D.
2018-03-01
The problem of the optimal integration of thermoelectrically cooled optoelectronic components into an electronic housing is studied with the emphasis on practical implementation. The lines of 2-stage and 3-stage thermoelectric coolers (TECs) compatible with TO8 housing have been developed, and their parameters are measured in a wide range of heat sink temperatures. The TECs are optimized to receive a temperature difference of 100-110 K under a heat load from 70 mW to 100 mW with minimal power consumption. To fit into a standard housing interior, all the TECs have the same overall dimensions, regardless of the number of stages. Details of the TEC configurations and their performance characteristics are presented and discussed.
The Little Ice Age was 1.0-1.5 °C cooler than current warm period according to LOD and NAO
NASA Astrophysics Data System (ADS)
Mazzarella, Adriano; Scafetta, Nicola
2018-02-01
We study the yearly values of the length of day (LOD, 1623-2016) and its link to the zonal index (ZI, 1873-2003), the Northern Atlantic oscillation index (NAO, 1659-2000) and the global sea surface temperature (SST, 1850-2016). LOD is herein assumed to be mostly the result of the overall circulations occurring within the ocean-atmospheric system. We find that LOD is negatively correlated with the global SST and with both the integral function of ZI and NAO, which are labeled as IZI and INAO. A first result is that LOD must be driven by a climatic change induced by an external (e.g. solar/astronomical) forcing since internal variability alone would have likely induced a positive correlation among the same variables because of the conservation of the Earth's angular momentum. A second result is that the high correlation among the variables implies that the LOD and INAO records can be adopted as global proxies to reconstruct past climate change. Tentative global SST reconstructions since the seventeenth century suggest that around 1700, that is during the coolest period of the Little Ice Age (LIA), SST could have been about 1.0-1.5 °C cooler than the 1950-1980 period. This estimated LIA cooling is greater than what some multiproxy global climate reconstructions suggested, but it is in good agreement with other more recent climate reconstructions including those based on borehole temperature data.
Barron, J.A.; Bukry, D.; Field, D.
2010-01-01
Santa Barbara Basin (SBB) diatom and silicoflagellate assemblages are quantified from a box core record spanning AD 1940-2001 and an Ocean Drilling Program Hole 893A record from ???220 BC to AD 1880. The combined relative abundance of the diatoms Fragilariopsis doliolus and Nitzschia interrupteseriata from continuous two-year sampling intervals in the box core varies with sea surface temperature (SST), suggesting its utility in SST reconstruction. The assemblage data from the ODP 893A record indicate a broad interval of generally cooler SSTs between ???AD 800 and 1350, which corresponds to the Medieval Climate Anomaly (MCA), a period of generally warmer temperatures across other regions of the northern hemisphere. The assemblages also indicate an interval of generally warmer SSTs between ???AD 1400 and 1800, a period of otherwise global cooling referred to as the Little Ice Age (LIA). The changes in assemblages of diatoms and silicoflagellates support the hypothesis that the widespread droughts of the Medieval Climate Anomaly in the Western US were associated with cooler eastern North Pacific SST. The box core assemblages have higher percentages of tropical and subtropical compared to temperate and subpolar species than the ODP samples, reflecting a response of phytoplankton communities to an unusual 20th century warming. Pseudonitzschia australis, a diatom linked with domoic acid production, begins to become more common (>3% of the diatom assemblage) in the box core only after AD 1985, suggesting a link to anthropogenic activity. ?? 2008 Elsevier Ltd and INQUA.
Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces
NASA Astrophysics Data System (ADS)
Zutz, Amelia Marie
Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.
Eronen, Jussi T; Janis, Christine M; Chamberlain, C Page; Mulch, Andreas
2015-06-22
Patterns of late Palaeogene mammalian evolution appear to be very different between Eurasia and North America. Around the Eocene-Oligocene (EO) transition global temperatures in the Northern Hemisphere plummet: following this, European mammal faunas undergo a profound extinction event (the Grande Coupure), while in North America they appear to pass through this temperature event unscathed. Here, we investigate the role of surface uplift to environmental change and mammalian evolution through the Palaeogene (66-23 Ma). Palaeogene regional surface uplift in North America caused large-scale reorganization of precipitation patterns, particularly in the continental interior, in accord with our combined stable isotope and ecometric data. Changes in mammalian faunas reflect that these were dry and high-elevation palaeoenvironments. The scenario of Middle to Late Eocene (50-37 Ma) surface uplift, together with decreasing precipitation in higher-altitude regions of western North America, explains the enigma of the apparent lack of the large-scale mammal faunal change around the EO transition that characterized western Europe. We suggest that North American mammalian faunas were already pre-adapted to cooler and drier conditions preceding the EO boundary, resulting from the effects of a protracted history of surface uplift. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
System and method for conditioning intake air to an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellnau, Mark C.
A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. Themore » valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.« less
Temperature stabilization in dispersed flows of frameless heat removal systems in space
NASA Astrophysics Data System (ADS)
Safronov, A. A.; Filatov, N. I.; Koroteev, A. A.; Bondareva, N. V.
2017-11-01
The temperature profile stabilization is studied at radiation cooling of a dispersed veil of droplet coolers-radiators. The stabilization is shown to be nonmonotonic. The influence of the studied process regularities on the characteristics of the radiating systems is analyzed.
Snider, John L; Choinski, John S; Wise, Robert R
2009-05-01
We sought to test the hypothesis that stomatal development determines the timing of gas exchange competency, which then influences leaf temperature through transpirationally driven leaf cooling. To test this idea, daily patterns of gas exchange and leaflet temperature were obtained from leaves of two distinctively different developmental stages of smooth sumac (Rhus glabra) grown in its native habitat. Juvenile and mature leaves were also sampled for ultrastructural studies of stomatal development. When plants were sampled in May-June, the hypothesis was supported: juvenile leaflets were (for part of the day) from 1.4 to 6.0 degrees C warmer than mature leaflets and as much as 2.0 degrees C above ambient air temperature with lower stomatal conductance and photosynthetic rates than mature leaflets. When measurements were taken from July to October, no significant differences were observed, although mature leaflet gas exchange rates declined to the levels of the juvenile leaves. The gas exchange data were supported by the observations that juvenile leaves had approximately half the number of functional stomata on a leaf surface area basis as did mature leaves. It was concluded that leaf temperature and stage of leaf development in sumac are strongly linked with the higher surface temperatures observed in juvenile leaflets in the early spring possibly being involved in promoting photosynthesis and leaf expansion when air temperatures are cooler.
Gasification of high ash, high ash fusion temperature bituminous coals
Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang
2015-11-13
This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.
Micro-Scalable Thermal Control Device
NASA Technical Reports Server (NTRS)
Moran, Matthew E. (Inventor)
2002-01-01
A microscalable thermal control module consists of a Stirling cycle cooler that can be manipulated to operate at a selected temperature within the heating and cooling range of the module. The microscalable thermal control module is particularly suited for controlling the temperature of devices that must be maintained at precise temperatures. It is particularly suited for controlling the temperature of devices that need to be alternately heated or cooled. The module contains upper and lower opposing diaphragms, with a regenerator region containing a plurality of regenerators interposed between the diaphragms. Gaps exist on each side of each diaphragm to permit it to oscillate freely. The gap on the interior side one diaphragm is in fluid connection with the gap on the interior side of the other diaphragm through regenerators. As the diaphragms oscillate working gas is forced through the regenerators. The surface area of each regenerator is sufficiently large to effectively transfer thermal energy to and from the working gas as it is passed through them. The phase and amplitude of the oscillations can be manipulated electronically to control the steady state temperature of the active thermal control surface, and to switch the operation of the module from cooling to heating, or vice versa. The ability of the microscalable thermal control module to heat and cool may be enhanced by operating a plurality of modules in series, in parallel, or in connection through a shared bottom layer.
Rapid Temperature Changes and the Early Activity on Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Alí-Lagoa, V.; Delbo', M.; Libourel, G.
2015-09-01
The so-called “early activity” of comet 67P/Churyumov-Gerasimenko has been observed to originate mostly in parts of the concave region or “neck” between its two lobes. Since activity is driven by the sublimation of volatiles, this is a puzzling result because this area is less exposed to the Sun and is therefore expected to be cooler on average. We used a thermophysical model that takes into account thermal inertia, global self-heating, and shadowing, to compute surface temperatures of the comet. We found that, for every rotation in the 2014 August-December period, some parts of the neck region undergo the fastest temperature variations of the comet’s surface precisely because they are shadowed by their surrounding terrains. Our work suggests that these fast temperature changes are correlated to the early activity of the comet, and we put forward the hypothesis that erosion related to thermal cracking is operating at a high rate on the neck region due to these rapid temperature variations. This may explain why the neck contains some ice—as opposed to most other parts of the surface—and why it is the main source of the comet’s early activity. In a broader context, these results indicate that thermal cracking can operate faster on atmosphereless bodies with significant concavities than implied by currently available estimates.
AIM cryocooler developments for HOT detectors
NASA Astrophysics Data System (ADS)
Rühlich, I.; Mai, M.; Withopf, A.; Rosenhagen, C.
2014-06-01
Significantly increased FPA temperatures for both Mid Wave and Long Wave IR detectors, i.e. HOT detectors, which have been developed in recent years are now leaving the development phase and are entering real application. HOT detectors allowing to push size weight and power (SWaP) of Integrated Detectors Cooler Assemblies (IDCA's) to a new level. Key component mainly driving achievable weight, volume and power consumption is the cryocooler. AIM cryocooler developments are focused on compact, lightweight linear cryocoolers driven by compact and high efficient digital cooler drive electronics (DCE) to also achieve highest MTTF targets. This technology is using moving magnet driving mechanisms and dual or single piston compressors. Whereas SX030 which was presented at SPIE in 2012 consuming less 3 WDC to operate a typical IDCA at 140K, next smaller cooler SX020 is designed to provide sufficient cooling power at detector temperature above 160K. The cooler weight of less than 200g and a total compressor length of 60mm makes it an ideal solution for all applications with limited weight and power budget, like in handheld applications. For operating a typical 640x512, 15μm MW IR detector the power consumption will be less than 1.5WDC. MTTF for the cooler will be in excess of 30,000h and thus achieving low maintenance cost also in 24/7 applications. The SX020 compressor is based on a single piston design with integrated passive balancer in a new design achieves very low exported vibration in the order of 100mN in the compressor axis. AIM is using a modular approach, allowing the chose between 5 different compressor types for one common Stirling expander. The 6mm expander with a total length of 74mm is now available in a new design that fits into standard dewar bores originally designed for rotary coolers. Also available is a 9mm coldfinger in both versions. In development is an ultra-short expander with around 35mm total length to achieve highest compactness. Technical solutions and key performance data for AIM's HOT cryocoolers will be presented.
Using thermal-infrared imagery to delineate ground-water discharge
Banks, W.S.L.; Paylor, R.L.; Hughes, W.B.
1996-01-01
On March 8 and 9, 1992, a thermal-infrared-multispectral scanner (TIMS) was flown over two military ordnance disposal facilities at the Edgewood Area of Aberdeen Proving Ground, Maryland. The data, collected bythe National Aeronautics and Space Administration, in cooperation with the U.S. Army and the U.S. Geological Survey, were used to locate ground-water discharge zones in surface water. The images from the flight show areas where ground-water discharge is concentrated, as well as areas of diffuse discharge. Concentrated discharge is predominant in isolated or nearly isolated ponds and creeks in the study area. Diffuse dicharge is found near parts of the shoreline where the study area meets the surrounding estuaries of the Chesapeake Bay and the Gunpowder River. The average temperature for surface water, measured directly in the field, and the average temperature, calculated from atmospherically corrected TIMS images, was 10.6??C (Celsius) at the first of two sites. Potentiometric surface maps of both field sites show discharge toward the nontidal marshes, the estuaries which surround the field sites, and creeks which drain into the estuaries. The average measured temperature of ground water at both sites was 10.7??C. The calculated temperature from the TIMS imagery at both sites where ground-water discharge is concentrated within a surface-water body is 10.4??C. In the estuaries which surround the field sites, field measurements of temperature were made resulting in an average temperature of 9.0??C. The average calculated TIMS temperature from the estuaries was 9.3??C. Along the shoreline at the first site and within 40 to 80 meters of the western and southern shores of the second site, water was 1?? to 2??C warmer than water more than 80 meters away. The pattern of warmer water grading to cooler water in an offshore direction could result from diffuse ground-water discharge. Tonal differences in the TIMS imagery could indicate changes in surface-water temperatures. These tonal differences can be interpreted to delineate the location and extent of ground-water discharge to bodies of surface water.
Turbo-Brayton cryocooler technology for low-temperature space applications
NASA Astrophysics Data System (ADS)
Zagarola, Mark V.; Breedlove, Jeffrey F.; McCormick, John A.; Swift, Walter L.
2003-03-01
High performance, low temperature cryocoolers are being developed for future space-borne telescopes and instruments. To meet mission objectives, these coolers must be compact, lightweight, have low input power, operate reliably for 5-10 years, and produce no disturbances that would affect the pointing accuracy of the instruments. This paper describes progress in the development of turbo-Brayton cryocoolers addressing cooling in the 5 K to 20 K temperature range for loads of up to 300 mW. The key components for these cryocoolers are the miniature, high-speed turbomachines and the high performance recuperative heat exchangers. The turbomachines use gas-bearings to support the low mass, high speed rotors, resulting in negligible vibration and long life. Precision fabrication techniques are used to produce the necessary micro-scale geometric features that provide for high cycle efficiencies at these reduced sizes. Turbo-Brayton cryocoolers for higher temperatures and loads have been successfully developed for space applications. For efficient operation at low temperatures and capacities, advances in the core technologies have been pursued. Performance test results of a new, low poer compressor will be presented, and early cryogenic test results on a low temperature expansion turbine will be discussed. Projections for several low temperature cooler configurations are summarized.
Optimized autonomous operations of a 20 K space hydrogen sorption cryocooler
NASA Astrophysics Data System (ADS)
Borders, J.; Morgante, G.; Prina, M.; Pearson, D.; Bhandari, P.
2004-06-01
A fully redundant hydrogen sorption cryocooler is being developed for the European Space Agency Planck mission, dedicated to the measurement of the temperature anisotropies of the cosmic microwave background radiation with unprecedented sensitivity and resolution [Advances in Cryogenic Engineering 45A (2000) 499]. In order to achieve this ambitious scientific task, this cooler is required to provide a stable temperature reference (˜20 K) and appropriate cooling (˜1 W) to the two instruments on-board, with a flight operational lifetime of 18 months. During mission operations, communication with the spacecraft will be possible in a restricted time-window, not longer than 2 h/day. This implies the need for an operations control structure with the required robustness to safely perform autonomous procedures. The cooler performance depends on many operating parameters (such as the temperatures of the pre-cooling stages and the warm radiator), therefore the operation control system needs the capability to adapt to variations of these boundary conditions, while maintaining safe operating procedures. An engineering bread board (EBB) cooler was assembled and tested to evaluate the behavior of the system under conditions simulating flight operations and the test data were used to refine and improve the operation control software. In order to minimize scientific data loss, the cooler is required to detect all possible failure modes and to autonomously react to them by taking the appropriate action in a rapid fashion. Various procedures and schemes both general and specific in nature were developed, tested and implemented to achieve these goals. In general, the robustness to malfunctions was increased by implementing an automatic classification of anomalies in different levels relative to the seriousness of the error. The response is therefore proportional to the failure level. Specifically, the start-up sequence duration was significantly reduced, allowing a much faster activation of the system, particularly useful in case of restarts after inadvertent shutdowns arising from malfunctions in the spacecraft. The capacity of the system to detect J-T plugs was increased to the point that the cooler is able to autonomously identify actual contaminants clogging from gas flow reductions due to off-nominal operating conditions. Once a plug is confirmed, the software autonomously energizes, and subsequently turns off, a J-T defrost heater until the clog is removed, bringing the system back to normal operating conditions. In this paper, all the cooler Operational Modes are presented, together with the description of the logic structure of the procedures and the advantages they produce for the operations.
NASA Astrophysics Data System (ADS)
Wahr, John; Smeed, David A.; Leuliette, Eric; Swenson, Sean
2014-08-01
Seasonal variations of sea surface height (SSH) and mass within the Red Sea are caused mostly by exchange of heat with the atmosphere and by flow through the strait opening into the Gulf of Aden to the south. That flow involves a net mass transfer into the Red Sea during fall and out during spring, though in summer there is an influx of cool water at intermediate depths. Thus, summer water in the south is warmer near the surface due to higher air temperatures, but cooler at intermediate depths. Summer water in the north experiences warming by air-sea exchange only. The temperature affects water density, which impacts SSH but has no effect on mass. We study this seasonal cycle by combining GRACE mass estimates, altimeter SSH measurements, and steric contributions derived from the World Ocean Atlas temperature climatology. Among our conclusions are: mass contributions are much larger than steric contributions; the mass is largest in winter, consistent with winds pushing water into the Red Sea in fall and out during spring; the steric signal is largest in summer, consistent with surface warming; and the cool, intermediate-depth water flowing into the Red Sea in spring has little impact on the steric signal, because contributions from the lowered temperature are offset by effects of decreased salinity. The results suggest that the combined use of altimeter and GRACE measurements can provide a useful alternative to in situ data for monitoring the steric signal.
Numerical thermal analyses of heat exchangers for the stirling engine application
NASA Technical Reports Server (NTRS)
Kannapareddy, Mohan Raj
1995-01-01
The Regenerator, Cooler and Heater for the NASA Space Power Research Engine (SPRE) have been analyzed in detail for laminar, incompressible and oscillatory flow conditions. Each component has been analyzed independently and in detail with the regenerator being modeled as two-parallel-plates channel with a solid wall. The ends of the channel are exposed to two reservoir maintained at different temperature thus providing an axial temperature gradient along the channel. The cooler and heater components have been modeled as circular pipes with isothermal walls. Two different types of thermal boundary conditions have been investigated for the cooler and heater, namely, symmetric and asymmetric temperature inflow. In symmetric temperature inflow the flow enters the channel with the same temperature in throughout the velocity cycle whereas, in asymmetric temperature inflow the flow enters with a different temperature in each half cycle. The study was conducted over a wide range of Maximum Reynolds number (RE(max) varying from 75 to 60000, Valensi number (Va) from 2.5 to 800, and relative amplitude of fluid displacement (A(sub r) from 0.357 to 1.34. A two dimensional Finite volume method based on the SIMPLE algorithm was used to solve the governing partial differential equations. Post processing programs were developed to effectively describe the heat transfer mechanism under oscillatory flows. The computer code was validated by comparing with existing analytical solutions for oscillating flows. The thermal field have been studied with the help of temperature contour and three dimensional plots. The instantaneous friction factor, wall heat flux and heat transfer coefficient have been examined. It has been concluded that in general, the frictional factor and heat transfer coefficient are higher under oscillatory flow conditions when the Valensi number is high. Also, the thermal efficiency decreases for lower A(r) values. Further, the usual steady state definition for the heat transfer coefficient does not seem to be valid.
High frequency two-stage pulse tube cryocooler with base temperature below 20 K
NASA Astrophysics Data System (ADS)
Yang, L. W.; Thummes, G.
2005-02-01
High frequency (30-50 Hz) multi-stage pulse tube coolers that are capable of reaching temperatures close to 20 K or even lower are a subject of recent research and development activities. This paper reports on the design and test of a two-stage pulse tube cooler which is driven by a linear compressor with nominal input power of 200 W at an operating frequency of 30-45 Hz. A parallel configuration of the two pulse tubes is used with the warm ends of the pulse tubes located at ambient temperature. For both stages, the regenerator matrix consists of a stack of stainless steel screen. At an operating frequency of 35 Hz and with the first stage at 73 K a lowest stationary temperature of 19.6 K has been achieved at the second stage. The effects of input power, frequency, average pressure, and cold head orientation on the cooling performance are also reported. An even lower no-load temperature can be expected from the use of lead or other regenerator materials of high heat capacity in the second stage.
An On-Site Thermoelectric Cooling Device for Cryotherapy and Control of Skin Blood Flow
Mejia, Natalia; Dedow, Karl; Nguy, Lindsey; Sullivan, Patrick; Khoshnevis, Sepideh; Diller, Kenneth R.
2015-01-01
Cryotherapy involves the surface application of low temperatures to enhance the healing of soft tissue injuries. Typical devices embody a remote source of chilled water that is pumped through a circulation bladder placed on the treatment site. In contrast, the present device uses thermoelectric refrigeration modules to bring the cooling source directly to the tissue to be treated, thereby achieving significant improvements in control of therapeutic temperature while having a reduced size and weight. A prototype system was applied to test an oscillating cooling and heating protocol for efficacy in regulating skin blood perfusion in the treatment area. Data on 12 human subjects indicate that thermoelectric coolers (TECs) delivered significant and sustainable changes in perfusion for both heating (increase by (±SE) 173.0 ± 66.0%, P < 0.005) and cooling (decrease by (±SE) 57.7 ± 4.2%, P < 0.0005), thus supporting the feasibility of a TEC-based device for cryotherapy with local temperature regulation. PMID:26421089
Siphon flows in isolated magnetic flux tubes. V - Radiative flows with variable ionization
NASA Technical Reports Server (NTRS)
Montesinos, Benjamin; Thomas, John H.
1993-01-01
Steady siphon flows in arched isolated magnetic flux tubes in the solar atmosphere are calculated here including radiative transfer between the flux tube and its surrounding and variable ionization of the flowing gas. It is shown that the behavior of a siphon flow is strongly determined by the degree of radiative coupling between the flux tube and its surroundings in the superadiabatic layer just below the solar surface. Critical siphon flows with adiabatic tube shocks in the downstream leg are calculated, illustrating the radiative relaxation of the temperature jump downstream of the shock. For flows in arched flux tubes reaching up to the temperature minimum, where the opacity is low, the gas inside the flux tube is much cooler than the surrounding atmosphere at the top of the arch. It is suggested that gas cooled by siphon flows contribute to the cool component of the solar atmosphere at the height of the temperature minimum implied by observations of the infrared CO bands at 4.6 and 2.3 microns.
An On-Site Thermoelectric Cooling Device for Cryotherapy and Control of Skin Blood Flow.
Mejia, Natalia; Dedow, Karl; Nguy, Lindsey; Sullivan, Patrick; Khoshnevis, Sepideh; Diller, Kenneth R
2015-12-01
Cryotherapy involves the surface application of low temperatures to enhance the healing of soft tissue injuries. Typical devices embody a remote source of chilled water that is pumped through a circulation bladder placed on the treatment site. In contrast, the present device uses thermoelectric refrigeration modules to bring the cooling source directly to the tissue to be treated, thereby achieving significant improvements in control of therapeutic temperature while having a reduced size and weight. A prototype system was applied to test an oscillating cooling and heating protocol for efficacy in regulating skin blood perfusion in the treatment area. Data on 12 human subjects indicate that thermoelectric coolers (TECs) delivered significant and sustainable changes in perfusion for both heating (increase by (±SE) 173.0 ± 66.0%, P < 0.005) and cooling (decrease by (±SE) 57.7 ± 4.2%, P < 0.0005), thus supporting the feasibility of a TEC-based device for cryotherapy with local temperature regulation.
Development of a CE-QUAL-W2 temperature model for Crystal Springs Lake, Portland, Oregon
Buccola, Norman L.; Stonewall, Adam J.
2016-05-19
Model simulations (scenarios) were run with lower water surface elevations in Crystal Springs Lake and increased shading to the lake to assess the relative effect the lake and pond characteristics have on water temperature. The Golf Pond was unaltered in all scenarios. The models estimated that lower lake elevations would result in cooler water downstream of the Golf Pond and shorter residence times in the lake. Increased shading to the lake would also provide substantial cooling. Most management scenarios resulted in a decrease in 7-day average of daily maximum values by about 2.0– 4.7 °F (1.1 –2.6 °C) for outflow from Crystal Springs Lake during the period of interest. Outflows from the Golf Pond showed a net temperature reduction of 0.5–2.7 °F (0.3–1.5 °C) compared to measured values in 2014 because of solar heating and downstream warming in the Golf Pond resulting from mixing with inflow from Reed Lake.
Jatana, Gurneesh S; Magee, Mark; Fain, David; Naik, Sameer V; Shaver, Gregory M; Lucht, Robert P
2015-02-10
A diode-laser-absorption-spectroscopy-based sensor system was used to perform high-speed (100 Hz to 5 kHz) measurements of gas properties (temperature, pressure, and H(2)O vapor concentration) at the turbocharger inlet and at the exhaust gas recirculation (EGR) cooler exit of a diesel engine. An earlier version of this system was previously used for high-speed measurements of gas temperature and H(2)O vapor concentration in the intake manifold of the diesel engine. A 1387.2 N m tunable distributed feedback diode laser was used to scan across multiple H(2)O absorption transitions, and the direct absorption signal was recorded using a high-speed data acquisition system. Compact optical connectors were designed to conduct simultaneous measurements in the intake manifold, the EGR cooler exit, and the turbocharger inlet of the engine. For measurements at the turbocharger inlet, these custom optical connectors survived gas temperatures as high as 800 K using a simple and passive arrangement in which the temperature-sensitive components were protected from high temperatures using ceramic insulators. This arrangement reduced system cost and complexity by eliminating the need for any active water or oil cooling. Diode-laser measurements performed during steady-state engine operation were within 5% of the thermocouple and pressure sensor measurements, and within 10% of the H(2)O concentration values derived from the CO(2) gas analyzer measurements. Measurements were also performed in the engine during transient events. In one such transient event, where a step change in fueling was introduced, the diode-laser sensor was able to capture the 30 ms change in the gas properties; the thermocouple, on the other hand, required 7.4 s to accurately reflect the change in gas conditions, while the gas analyzer required nearly 600 ms. To the best of our knowledge, this is the first implementation of such a simple and passive arrangement of high-temperature optical connectors as well as the first documented application of diode-laser absorption for high-speed gas dynamics measurements in the turbocharger inlet and EGR cooler exit of a diesel engine.
Performance of a miniature mechanically cooled HPGe gamma-spectrometer for space applications
NASA Astrophysics Data System (ADS)
Kondratjev, V.; Pchelintsev, A.; Jakovlevs, O.; Sokolov, A.; Gostilo, V.; Owens, A.
2018-01-01
We report on the development of a miniaturized HPGe gamma-spectrometer for space applications. The instrument is designed around a 158 cm3 intrinsically pure Ge crystal in the closed-end coaxial configuration, cooled by a Thales RM3 miniature Stirling cycle electric cooler. To compensate the noise induced by the mechanical cooler the digital procession of the spectrometric signals with low frequency reject filter (LFR) is applied. The complete spectrometer assembly has a mass of 3.1 kg and consumes less than 10 W under working operation. The spectrometer was tested under a number of operating conditions in a specially designed chamber, which simulates the space environment. With the mechanical cooler switched off, FWHM energy resolutions of 1.5 keV and 2.2 keV were obtained at 122 keV and 1333 keV, respectively, at the nominal operating temperature of 90 K. When the cooler was switched on the energy resolutions degraded to 2.5 keV and 4 keV respectively. However, with the LFR filter switched in, the resolutions improved significantly to 1.8 keV and 2.4 keV.
Interfacing Issues in Microcooling of Optical Detectors in Space Applications
NASA Astrophysics Data System (ADS)
Derking, J. H.; ter Brake, H. J. M.; Linder, M.; Rogalla, H.
2010-04-01
Miniature Joule-Thomson coolers were developed at the University of Twente and are able to cool to 100 K with a typical cooling power of 10 to 20 mW. These coolers have a high potential for space applications in cooling small optical detectors for future earth observation and science missions. Under contract of the European Space Agency, we investigate on-chip detector cooling for the temperature range 70 K-250 K. To identify the detectors that can be cooled by a JT microcooler, a literature survey was performed. Following this survey, we selected a micro digital CMOS image sensor. A conceptual design of this cooler-sensor system is made. Among various techniques, indium soldering and silver paint are chosen for the bonding of the silicon sensor to the glass microcooler. Electrical connections from the sensor to the outside will be realized by structuring them in a thin layer of gold that is sputtered on the outside of the cooler to minimize the radiative heat load. For the electrical connections between the sensor and the structured leads, aluminum or gold bond wires will be used.
NASA Astrophysics Data System (ADS)
Li, H.; Harvey, J. T.; Holland, T. J.; Kayhanian, M.
2013-03-01
To help address the built environmental issues of both heat island and stormwater runoff, strategies that make pavements cooler and permeable have been investigated through measurements and modeling of a set of pavement test sections. The investigation included the hydraulic and thermal performance of the pavements. The permeability results showed that permeable interlocking concrete pavers have the highest permeability (or infiltration rate, ˜0.5 cm s-1). The two permeable asphalt pavements showed the lowest permeability, but still had an infiltration rate of ˜0.1 cm s-1, which is adequate to drain rainwater without generating surface runoff during most typical rain events in central California. An increase in albedo can significantly reduce the daytime high surface temperature in summer. Permeable pavements under wet conditions could give lower surface temperatures than impermeable pavements. The cooling effect highly depends on the availability of moisture near the surface layer and the evaporation rate. The peak cooling effect of watering for the test sections was approximately 15-35 °C on the pavement surface temperature in the early afternoon during summer in central California. The evaporative cooling effect on the pavement surface temperature at 4:00 pm on the third day (25 h after watering) was still 2-7 °C lower compared to that on the second day, without considering the higher air temperature on the third day. A separate and related simulation study performed by UCPRC showed that full depth permeable pavements, if designed properly, can carry both light-duty traffic and certain heavy-duty vehicles while retaining the runoff volume captured from an average California storm event. These preliminarily results indicated the technical feasibility of combined reflective and permeable pavements for addressing the built environment issues related to both heat island mitigation and stormwater runoff management.
NASA Astrophysics Data System (ADS)
Tota, J.; Santos, R.; Fisch, G.; Querino, C.; Silva Dias, M.; Artaxo, P.; Guenther, A.; Martin, S.; Manzi, A.
2008-12-01
To characterize the Nocturnal Boundary Layer (NBL) hourly profiles of wind, pressure, temperature, humidity and 5 sizes particles concentration, were made by using tethered balloon at INPA tropical Amazon rainforest Reserve (Cuieiras) 100 km northwest from Manaus city. The measurements were made during the wet season March/2008. The NBL height was 100 to 150m, with a very well mixed layer close to surface associate with temperature inversion. The wind profiles shows a very clear low level in two nights, about 500 to 900 m, and, in general, all nights show an stable and cooler air layer close the surface uncoupled with outer residual boundary layer above. At the site a very clear drainage flow from north quadrant down slope eastward quadrant during very the stable cases. This findings is correlates with particles profiles where was commonly trapped by stable layer presenting high concentrations, for all 5 sizes measured, close to the surface at vegetation level and just above it. All nights presents high humidity with fog formation in three cases, associates with temperature below the 23°C. The wind speed were very low about 0.5 to calm, in generally associate with drainage flow down hill. The NBL dynamics is a discussion issue associate to the aerosol nocturnal mixing in complex terrain with tall vegetation, the currently AMAZE site case.
NASA Astrophysics Data System (ADS)
Tota, J.; Fisch, G.; Santos, R.; Silva Dias, M.
2009-05-01
To characterize the Nocturnal Boundary Layer (NBL) hourly profiles of wind, pressure, temperature, humidity and 5 sizes particles concentration, were made by using tethered balloon at INPA tropical Amazon rainforest Reserve (Cuieiras) 100 km northwest from Manaus city. The measurements were made during the wet season March/2008. The NBL height was 100 to 150m, with a very well mixed layer close to surface associate with temperature inversion. The wind profiles shows a very clear low level in two nights, about 500 to 900 m, and, in general, all nights show an stable and cooler air layer close the surface uncoupled with outer residual boundary layer above. At the site a very clear drainage flow from north quadrant down slope eastward quadrant during very the stable cases. This findings is correlates with particles profiles where was commonly trapped by stable layer presenting high concentrations, for all 5 sizes measured, close to the surface at vegetation level and just above it. All nights presents high humidity with fog formation in three cases, associates with temperature below the 23C. The wind speed were very low about 0.5 to calm, in generally associate with drainage flow down hill. The NBL dynamics is a discussion issue associate to the aerosol nocturnal mixing in complex terrain with tall vegetation, the currently AMAZE site case.
Integrated CMOS dew point sensors for relative humidity measurement
NASA Astrophysics Data System (ADS)
Savalli, Nicolo; Baglio, Salvatore; Castorina, Salvatore; Sacco, Vincenzo; Tringali, Cristina
2004-07-01
This work deals with the development of integrated relative humidity dew point sensors realized by adopting standard CMOS technology for applications in various fields. The proposed system is composed by a suspended plate that is cooled by exploiting integrated Peltier cells. The cold junctions of the cells have been spread over the plate surface to improve the homogeneity of the temperature distribution over its surface, where cooling will cause the water condensation. The temperature at which water drops occur, named dew point temperature, is a function of the air humidity. Measurement of such dew point temperature and the ambient temperature allows to know the relative humidity. The detection of water drops is achieved by adopting a capacitive sensing strategy realized by interdigited fixed combs, composed by the upper layer of the adopted process. Such a capacitive sensor, together with its conditioning circuit, drives a trigger that stops the cooling of the plate and enables the reading of the dew point temperature. Temperature measurements are achieved by means of suitably integrated thermocouples. The analytical model of the proposed system has been developed and has been used to design a prototype device and to estimate its performances. In such a prototype, the thermoelectric cooler is composed by 56 Peltier cells, made by metal 1/poly 1 junctions. The plate has a square shape with 200 μm side, and it is realized by exploiting the oxide layers. Starting from the ambient temperature a temperature variation of ΔT = 15 K can be reached in 10 ms thus allowing to measure a relative humidity greater than 40%.
Microwave Imager Measures Sea Surface Temperature Through Clouds
NASA Technical Reports Server (NTRS)
2002-01-01
This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake which might last as long as two weeks. Forecasters can quantify the difference in surface temperatures between this footprint and the surrounding temperatures and use that information to better predict storm intensity. If another storm intersects with this cold water trail, it is likely to lose significant strength due to the fact that the colder water does not contain as much potential energy as warm water. TRMM Fact Sheet Predicting Hurricane Intensity Far from Land Remote Sensing Systems Image courtesy TRMM Project, Remote Sensing Systems, and Scientific Visualization Studio, NASA Goddard Space Flight Center
Regenerable non-venting cooler for protective suit
NASA Technical Reports Server (NTRS)
Roebelen, Jr., George J. (Inventor); Bayes, Stephen A. (Inventor)
1992-01-01
A life support back pack 14 for use during extravehicular activity in space incorporates a cooling apparatus 20 comprised of five panels 22 each of which include in layered fashion a LCG coolant heat exchange coil 32, a heat distribution plate 42, and a heat dissipation module 50A or 50B having an outer radiator surface 52. Each module 50A houses a first phase change material 55A, for example hexadecane paraffin, and each module 50B houses a second phase change material 55B, for example tetradecane paraffin, which has a phase change temperature which is less than the phase change temperature of the first phase change material 55A. The cooling apparatus 20 is equipped with a coolant heat exchange circuit provided with mode selection valves 84 and 86 which are operated by a controller 88 to selectively direct the LCG coolant to be cooled through the cooling apparatus in one of three operating modes.
NASA Astrophysics Data System (ADS)
Chao, Yi; Farrara, John D.; Zhang, Hongchun; Zhang, Yinglong J.; Ateljevich, Eli; Chai, Fei; Davis, Curtiss O.; Dugdale, Richard; Wilkerson, Frances
2017-07-01
A three-dimensional numerical modeling system for the San Francisco Bay is presented. The system is based on an unstructured grid numerical model known as Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM). The lateral boundary condition is provided by a regional coastal ocean model. The surface forcing is provided by a regional atmospheric model. The SCHISM results from a decadal hindcast run are compared with available tide gauge data, as well as a collection of temperature and salinity profiles. An examination of the observed climatological annual mean salinities at the United States Geological Survey (USGS) stations shows the highest salinities to be in the open ocean and the lowest well north (upstream) of the Central Bay, a pattern that does not change substantially with season. The corresponding mean SCHISM salinities reproduced the observed variations with location quite well, though with a fresh bias. The lowest values within the Bay occur during spring and the highest values during autumn, mirroring the seasonal variations in river discharge. The corresponding observed mean temperatures within the Bay were 2 to 3° C cooler in the Central Bay than to either the north or south. This observed pattern of a cooler Central Bay was not particularly well reproduced in the SCHISM results, which also showed a cold bias. Examination of the seasonal means revealed that the cool Central Bay pattern is found only during summer in the SCHISM results. The persistent cold and fresh biases in the model control run were nearly eliminated in a sensitivity run with modifications to the surface heat flux and river discharge. The surface atmospheric forcing and the heat flux at the western boundary are found to be the two major terms in a SCHISM-based heat budget analysis of the mean seasonal temperature cycle for the Central Bay. In the Central Bay salt budget, freshwater discharged by rivers into upstream portions of the Bay to the north balanced by the influx of salt from the west are the primary drivers of the mean seasonal salinity cycle. Concerning the interannual variability in temperatures, the warm anomalies during the period 2014-16 were the strongest and most persistent departures from normal during the period analyzed and were realistically reproduced by SCHISM. The most prominent salinity anomalies in both the observations and SCHISM results were the salty anomalies that persisted for most of the four-year California drought of 2012-2015.
Ramsay, Douglas S; Woods, Stephen C; Kaiyala, Karl J
2014-01-01
Initial administration of 60% nitrous oxide (N2O) to rats at an ambient temperature of 21°C decreases core temperature (Tc), primarily via increased heat loss (HL). Over repeated N2O administrations, rats first develop tolerance to this hypothermia and subsequently exhibit hyperthermia (a sign-reversal) due primarily to progressive increases in heat production (HP). When rats initially receive 60% N2O in a thermal gradient, they become hypothermic while selecting cooler ambient temperatures that facilitate HL. This study investigated whether rats repeatedly administered 60% N2O in a thermal gradient would use the gradient to behaviorally facilitate, or oppose, the development of chronic tolerance and a hyperthermic sign-reversal. Male Long-Evans rats (N = 16) received twelve 3-h administrations of 60% N2O in a gas-tight, live-in thermal gradient. Hypothermia (Sessions 1–3), complete chronic tolerance (Sessions 4–6), and a subsequent transient hyperthermic sign-reversal (Sessions 7–12) sequentially developed. Despite the progressive recovery and eventual hyperthermic sign-reversal of Tc, rats consistently selected cooler ambient temperatures during all N2O administrations. A final 60% N2O administration in a total calorimeter indicated that the hyperthermic sign-reversal resulted primarily from increased HP. Thus, rats did not facilitate chronic tolerance development by moving to warmer locations in the gradient, and instead selected cooler ambient temperatures while simultaneously increasing autonomic HP. The inefficient concurrent activation of opposing effectors and the development of a sign-reversal are incompatible with homeostatic models of drug-adaptation and may be better interpreted using a model of drug-induced allostasis. PMID:25938127
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goreau, T.J.; Hayes, R.L.; Strong, A.
Global spatio-temporal patterns of mass coral reef bleaching during the first half of the 1990s continued to show the strong temperature correlations which first became established in the 1980s. Satellite sea surface temperature data and field observations were used to track thermal bleaching events in real time. Most bleaching events followed warm season sea surface temperature anomalies of around +1 degree celsius above historical means. Global bleaching patterns appear to have been strongly affected by worldwide cooling which followed eruption of Mount Pinatubo in June 1991. High water temperatures and mass coral reef bleaching took place in the Caribbean, Indianmore » Ocean, and South Pacific in 1991, but there were few thermal anomalies or bleaching events in 1992 and 1993, years which were markedly cooler worldwide. Following the settling of Mount Pinatubo aerosols and resumption of global warming trends, extensive ocean thermal hot spots and bleaching events resumed in the South Pacific, South Atlantic, and Indian Oceans in 1994. Bleaching again took place in hot spots in the Indian Ocean and Caribbean in 1995, and in the South Atlantic, Caribbean, South Pacific, North Pacific, and Persian Gulf in 1996. Coral reefs worldwide are now very close to their upper temperature tolerance limits. This sensitivity, and the fact that the warmest ecosystems have no source of immigrant species pre-adapted to warmer conditions, may make coral reef ecosystems the first to be severely impacted if global temperatures and sea levels remain at current values or increase further.« less
NASA Astrophysics Data System (ADS)
Raitzsch, Markus; Bijma, Jelle; Benthien, Albert; Richter, Klaus-Uwe; Steinhoefel, Grit; Kučera, Michal
2018-04-01
The boron isotopic composition of planktonic foraminiferal shell calcite (δ11BCc) provides valuable information on the pH of ambient water at the time of calcification. Hence, δ11BCc of fossil surface-dwelling planktonic foraminifera can be used to reconstruct ancient aqueous pCO2 if information on a second carbonate system parameter, temperature and salinity is available. However, pH and pCO2 of surface waters may vary seasonally, largely due to changes in temperature, DIC, and alkalinity. As also the shell fluxes of planktonic foraminifera show species-specific seasonal patterns that are linked to intra-annual changes in temperature, it is obvious that δ11BCc of a certain species reflects the pH and thus pCO2 biased towards a specific time period within a year. This is important to consider for the interpretation of fossil δ11BCc records that may mirror seasonal pH signals. Here we present new Multi-Collector Inductively Coupled Mass Spectrometry (MC-ICPMS) δ11BCc coretop data for the planktonic foraminifera species Globigerina bulloides, Globigerinoides ruber, Trilobatus sacculifer and Orbulina universa and compare them with δ11Bborate derived from seasonally resolved carbonate system parameters. We show that the inferred season-adjusted δ11BCc /δ11Bborate relationships are similar to existing calibrations and can be combined with published δ11BCc field and culture data to augment paleo-pH calibrations. To test the applicability of these calibrations, we used a core drilled on the Walvis Ridge in the Southeast Atlantic spanning the last 330,000 years to reconstruct changes in surface-water pCO2. The reconstruction based on G. bulloides, which reflects the austral spring season, was shown to yield values that closely resemble the Vostok ice-core data indicating that surface-water pCO2 was close to equilibrium with the atmosphere during the cooler spring season. In contrast, pCO2 estimated from δ11BCc of O. universa, T. sacculifer and G. ruber that predominantly lived during the warmer seasons, exhibits up to ∼50 ppmv higher values than the Vostok ice-core data. This is probably due to the higher austral summer and fall temperatures, as shown by Mg/Ca to be on average ∼4 °C higher than during the cooler spring season, accounting for an increase in pCO2 of ∼4% per 1 °C. Our results demonstrate that paleo-pH estimates based on δ11BCc contain a significant seasonal signal reflecting the habitat preference of the recording foraminifera species.
A global cloud map of the nearest known brown dwarf.
Crossfield, I J M; Biller, B; Schlieder, J E; Deacon, N R; Bonnefoy, M; Homeier, D; Allard, F; Buenzli, E; Henning, Th; Brandner, W; Goldman, B; Kopytova, T
2014-01-30
Brown dwarfs--substellar bodies more massive than planets but not massive enough to initiate the sustained hydrogen fusion that powers self-luminous stars--are born hot and slowly cool as they age. As they cool below about 2,300 kelvin, liquid or crystalline particles composed of calcium aluminates, silicates and iron condense into atmospheric 'dust', which disappears at still cooler temperatures (around 1,300 kelvin). Models to explain this dust dispersal include both an abrupt sinking of the entire cloud deck into the deep, unobservable atmosphere and breakup of the cloud into scattered patches (as seen on Jupiter and Saturn). However, hitherto observations of brown dwarfs have been limited to globally integrated measurements, which can reveal surface inhomogeneities but cannot unambiguously resolve surface features. Here we report a two-dimensional map of a brown dwarf's surface that allows identification of large-scale bright and dark features, indicative of patchy clouds. Monitoring suggests that the characteristic timescale for the evolution of global weather patterns is approximately one day.
Calibrator tests of heat flux gauges mounted in SSME blades
NASA Technical Reports Server (NTRS)
Liebert, Curt H.
1989-01-01
Measurements of heat flux to space shuttle main engine (SSME) turbine blade surfaces are being made in the Lewis heat flux calibration facility. Surface heat flux information is obtained from transient temperature measurements taken at points within the gauge. A 100-kW Vortek arc lamp is used as a source of thermal radiant energy. Thermoplugs, with diameters of about 0.190 cm and lengths varying from about 0.190 to 0.320 cm, are being investigated. The thermoplug is surrounded on all surfaces except the active surface by a pocket of air located in the circular annulus and under the back cover. Since the thermoplug is insulated, it is assumed that heat is conducted in a one-dimensional manner from the hot active surface to the cooler back side of the thermoplug. It is concluded that the miniature plug-type gauge concept is feasible for measurement of blade surface heat flux. It is suggested that it is important to measure heat flux near the hub on the suction surface and at the throat on SSME blades rotating in engines because stress and heat transfer coefficients are high in this region.
Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling
2014-09-30
warmer profile through greater latent heat release. Resulting temperature profiles all follow essentially moist adiabats in the upper troposphere ...default RRTM ozone concentration profile). Greater convective mixing deepens the tropopause for cases with stronger moisture flux convergence. Case...with tropospheric temperatures about 4 degrees cooler than the original temperature profile. This case represents conditions during the suppressed
NASA Astrophysics Data System (ADS)
Sharma, Som; Kumar, Prashant; Jethva, Chintan; Vaishnav, Rajesh; Bencherif, Hassan
2017-06-01
The temperature retrieved from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite during January 2002 to September 2015 are used in this study to delineate the differences of middle atmospheric thermal structure in the Northern Hemisphere (NH) and Southern Hemisphere (SH). Two stations namely Mt. Abu (24.59°N, 72.70°E) in NH and Reunion Island (21.11°S, 55.53°E) in SH are chosen over sub-tropical regions. Temperature climatology from SABER observations suggests that stratopause is warmer, and upper mesosphere is cooler in NH as compared to SH. Three atmospheric models are used to understand the monthly thermal structure differences for different altitudes. Moreover, semi-annual, annual and quasi-biennial oscillations are studied using Lomb Scargle Periodogram and Wavelet transform techniques. Over NH, summer and winter season are warmer ( 4 K) and cooler ( 3 K) respectively in stratosphere as compared to SH. It is important to note here that Mt. Abu temperature is warmer ( 9 K) than Reunion Island in winter but in summer season Mt. Abu temperature is cooler in upper mesosphere and above mesosphere NH shows warming. Results show that annual oscillations are dominated in both hemisphere as compared to semi-annual and quasi-biennial oscillations. In upper mesosphere, strength of annual oscillations is substantial in NH, while semi-annual oscillations are stronger in SH. Wavelet analyses found that annual oscillations are significant in NH near mesopause, while semi-annual oscillations are strengthening in SH.
Vibration-free stirling cryocooler for high definition microscopy
NASA Astrophysics Data System (ADS)
Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.
2009-12-01
The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi-axes suppression of the residual wideband vibration, thermo-conductive vibration isolation struts and soft vibration mounts. The attainable performance of the resulting vibration free linear Stirling cryocooler (Ricor model K535-ULV) is evaluated through a full-scale experimentation.
Thermal structure of the Kanto region, Japan
NASA Astrophysics Data System (ADS)
Wada, Ikuko; He, Jiangheng
2017-07-01
Using a 3-D numerical thermal model, we investigate the thermal structure of the Kanto region of Japan where two oceanic plates subduct. In a typical subduction setting with one subducting slab, the motion of the slab drives solid-state mantle flow in the overlying mantle wedge, bringing in hot mantle from the back-arc toward the forearc. Beneath Kanto, however, the presence of the subducting Philippine Sea plate between the overlying North American plate and the subducting Pacific plate prevents a typical mantle wedge flow pattern, resulting in a cooler condition. Further, frictional heating and the along-margin variation in the maximum depth of slab-mantle decoupling along the Pacific slab surface affect the thermal structure significantly. The model provides quantitative estimates of spatial variations in the temperature condition that are consistent with the observed surface heat flow pattern and distributions of interplate seismicity and arc volcanoes in Kanto.
2014-06-16
The Sun sported a very long filament that stretched out over 500,000 miles (800,000 km) and was visible for several days (June 3-4, 2014). It broke apart and dissipated soon after the end of the video clip. Filaments are tenuous strands of plasma held above the Sun's surface by magnetic forces. They appear darker because their temperature is somewhat cooler than that of the Sun's surface. The still image, shown in a combination of two wavelengths of extreme ultraviolet light, was taken at 11:33 UT on June 4. Credit: NASA/Goddard/Solar Dynamics Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Viehmann, W.; Eubanks, A. G.
1972-01-01
A technique is described for the simultaneous in situ measurement of film thickness, refractive index, total normal emissivity, visible-light scattering, and reflectance of contaminant films on a highly reflective liquid-nitrogen cooled, stainless steel substrate. Emissivities and scattering data are obtained for films of water, carbon dioxide, silicone oil, and a number of aromatic and aliphatic hydrocarbons as a function of film thickness between zero and 20 microns. Of the contaminants investigated, water has by far the greatest effect on emissivity, followed by silicone oil, aliphatic hydrocarbons, aromatic hydrocarbons, and carbon dioxide. The emissivity increases more rapidly with film thickness between zero and 2.5 microns than at thicknesses greater than 2.5 microns. Scattering of visible light changes very little below 2 microns thickness but increases rapidly with thickness beyond 2 to 3 microns. The effect of contaminant films on passive radiation coolers is discussed.
Bansal, Sheel; St Clair, J Bradley; Harrington, Constance A; Gould, Peter J
2015-10-01
The success of conifers over much of the world's terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer-dominated forests. The expression of cold hardiness is a product of environmental cues (E), genetic differentiation (G), and their interaction (G × E), although few studies have considered all components together. To better understand and manage for the impacts of climate change on conifer cold hardiness, we conducted a common garden experiment replicated in three test environments (cool, moderate, and warm) using 35 populations of coast Douglas-fir (Pseudotsuga menziesii var. menziesii) to test the hypotheses: (i) cool-temperature cues in fall are necessary to trigger cold hardening, (ii) there is large genetic variation among populations in cold hardiness that can be predicted from seed-source climate variables, (iii) observed differences among populations in cold hardiness in situ are dependent on effective environmental cues, and (iv) movement of seed sources from warmer to cooler climates will increase risk to cold injury. During fall 2012, we visually assessed cold damage of bud, needle, and stem tissues following artificial freeze tests. Cool-temperature cues (e.g., degree hours below 2 °C) at the test sites were associated with cold hardening, which were minimal at the moderate test site owing to mild fall temperatures. Populations differed 3-fold in cold hardiness, with winter minimum temperatures and fall frost dates as strong seed-source climate predictors of cold hardiness, and with summer temperatures and aridity as secondary predictors. Seed-source movement resulted in only modest increases in cold damage. Our findings indicate that increased fall temperatures delay cold hardening, warmer/drier summers confer a degree of cold hardiness, and seed-source movement from warmer to cooler climates may be a viable option for adapting coniferous forest to future climate. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Surge, D. M.; Barrett, J. H.
2013-12-01
Proxy records reconstructing marine climatic conditions across the transition between the Medieval Climate Anomaly (MCA; ~900-1350 AD) and Little Ice Age (LIA; ~1350-1850) are strongly biased towards decadal to annual resolution and summer/growing seasons. Here we present new archives of seasonal variability in North Atlantic sea surface temperature (SST) from shells of the European limpet, Patella vulgata, which accumulated in Viking and medieval shell and fish middens at Quoygrew on Westray, Orkney. SST was reconstructed at submonthly resolution using oxygen isotope ratios preserved in shells from the 12th and mid 15th centuries (MCA and LIA, respectively). MCA shells recorded warmer summers and colder winters by ~2 degrees C relative to the late 20th Century (1961-1990). Therefore, seasonality was higher during the MCA relative to the late 20th century. Without the benefit of seasonal resolution, SST averaged from shell time series would be weighted toward the fast-growing summer season, resulting in the conclusion that the early MCA was warmer than the late 20th century by ~1°C. This conclusion is broadly true for the summer season, but not true for the winter season. Higher seasonality and cooler winters during early medieval times may result from a weakened North Atlantic Oscillation index. In contrast, the LIA shells have a more a variable inter-annual pattern. Some years record cooler summers and winters relative to the MCA shells and late 20th century, whereas other years record warmer summers and cooler winters similar to the MCA shells. Our findings provide a new test for the accuracy of seasonal amplitudes resulting from paleoclimate model experiments.
Linear-drive cryocoolers for the Department of Defense standard advanced dewar assembly (SADA)
NASA Astrophysics Data System (ADS)
Tate, Garin S.
2005-05-01
The Standard Advanced Dewar Assembly (SADA) is the critical module in the Department of Defense (DoD) standardization of scanning second-generation thermal imaging systems. The DoD has established a family of SADAs to fulfill a range of performance requirements for various platforms. The SADA consists of the Infrared Focal Plane Array (IRFPA), Dewar, Command & Control Electronics (C&CE), and the cryogenic cooler, and is used in platforms such as the Apache helicopter, the M1A2 Abrams main battle tank, the M2 Bradley Infantry Fighting Vehicle, and the Javelin Command Launch Unit (CLU). In support of the family of SADAs, the DoD defined a complementary family of tactical linear drive cryocoolers. The Stirling cycle linear drive cryocoolers are utilized to cool the Infrared Focal Plane Arrays (IRFPAs) in the SADAs. These coolers are required to have low input power, a quick cool-down time, low vibration output, low audible noise, and a higher reliability than currently fielded rotary coolers. These coolers must also operate in a military environment with its inherent high vibration level and temperature extremes. This paper will (1) outline the characteristics of each cryocooler, (2) present the status and results of qualification tests, (3) present the status of production efforts, and (4) present the status of efforts to increase linear drive cooler reliability.
40 CFR 89.6 - Reference materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
... November 89: Recommended Practice for Engine Testing with Low Temperature Charge Air Cooler Systems in a Dynamometer Test Cell 89.327-96 SAE Paper 770141: Optimization of a Flame Ionization Detector for...
Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic
Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen
2016-01-01
The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800–1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048
Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.
Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen
2016-01-01
The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years.
Biological plasticity in penguin heat-retention structures.
Thomas, Daniel B; Fordyce, R Ewan
2012-02-01
Insulation and vascular heat-retention mechanisms allow penguins to forage for a prolonged time in water that is much cooler than core body temperature. Wing-based heat retention involves a plexus of humeral arteries and veins, which redirect heat to the body core rather than to the wing periphery. The humeral arterial plexus is described here for Eudyptes and Megadyptes, the only extant penguin genera for which wing vascular anatomy had not previously been reported. The erect-crested (Eudyptes sclateri) and yellow-eyed (Megadyptes antipodes) penguins both have a plexus of three humeral arteries on the ventral surface of the humerus. The wing vascular system shows little variation between erect-crested and yellow-eyed penguins, and is generally conserved across the six extant genera of penguins, with the exception of the humeral arterial plexus. The number of humeral arteries within the plexus demonstrates substantial variation and correlates well with wing surface area. Little penguins (Eudyptula minor) have two humeral arteries and a wing surface area of ∼ 75 cm(2) , whereas emperor penguins (Aptenodytes forsteri) have up to 15 humeral arteries and a wing surface area of ∼ 203 cm(2) . Further, the number of humeral arteries has a stronger correlation with wing surface area than with sea water temperature. We propose that thermoregulation has placed the humeral arterial plexus under a strong selection pressure, driving penguins with larger wing surface areas to compensate for heat loss by developing additional humeral arteries. Copyright © 2011 Wiley Periodicals, Inc.
Limitations of using a thermal imager for snow pit temperatures
NASA Astrophysics Data System (ADS)
Schirmer, M.; Jamieson, B.
2013-10-01
Driven by temperature gradients, kinetic snow metamorphism is important for avalanche formation. Even when gradients appear to be insufficient for kinetic metamorphism, based on temperatures measured 10 cm apart, faceting close to a~crust can still be observed. Recent studies that visualized small scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large scale gradient direction. However, an important assumption within the studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and at artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or a shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which is only observed at times with large temperature differences between air and snow. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed slower compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative transfer or convection by air at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of the use of a thermal camera for measuring pit-wall temperatures, particularly in scenarios where large gradients exist between air and snow and the interaction of snow pit and atmospheric temperatures are enhanced. At crusts or other heterogeneities, we were unable to create a sufficiently homogenous snow pit surface and non-internal gradients appeared at the exposed surface. The immediate adjustment of snow pit temperature as it reacts with the atmosphere complicates the capture of the internal thermal structure of a snowpack even with thermal videos. Instead, the shown structural dependency of the IR signal may be used to detect structural changes of snow caused by kinetic metamorphism. The IR signal can also be used to measure near surface temperatures in a homogenous new snow layer.
Electronic cooling using thermoelectric devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu; Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854
2015-05-18
Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, andmore » one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.« less
NASA Technical Reports Server (NTRS)
Cygnarowicz, Thomas A.; Schein, Michael E.; Lindauer, David A.; Scarlotti, Roger; Pederson, Robert
1990-01-01
A solid argon cooler (SAC) for attached Shuttle payloads has been developed and qualified to meet the need for low cost cooling of flight instruments to the temperature range of 60-120 K. The SACs have been designed and tested with the intent of flying them up to five times. Two coolers, as part of the Broad Band X-ray Telescope (BBXRT) instrument on the ASTRO-1 payload, are awaiting launch on Space Shuttle mission STS-35. This paper describes the design, testing and performance of the SAC and its vacuum maintenance system (VMS), used to maintain the argon as a solid during launch delays of up to 5 days. BBXRT cryogen system design features used to satisfy Shuttle safety requirements are discussed, along with SAC ground servicing equipment (GSE) and procedures used to fill, freeze and subcool the argon.
Cryogen free cooling of ASTRO-H SXS Helium Dewar from 300 K to 4 K
NASA Astrophysics Data System (ADS)
Kanao, Ken'ichi; Yoshida, Seiji; Miyaoka, Mikio; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Narasaki, Katsuhiro; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuji; Sato, Yoichi; Okamoto, Atsushi; Noda, Hirofumi; DiPirro, Michel J.; Shirron, Peter J.
2017-12-01
Soft X-ray Spectrometer instrument (SXS) is one of the primary scientific instruments of ASTRO-H. SXS has a cold detector that is cooled to 50 mK by using a multi-stage Adiabatic Demagnetization Refrigerator (ADR). SXS Dewar containing ADR provides 1.3 K heat sink by using liquid helium in nominal operation. After liquid helium is dried up, 4 K heat sink is provided by using mechanical coolers. Both nominal operation and cryogen free operation were successfully demonstrated. This paper describes the test result of cryogen free operation and cool-down performance from room temperature by using only mechanical coolers without liquid helium. The coolers on the Dewar cooled down cold mass from around 300 K to 4 K with 260 W electric power in 40 days. Cold mass is 35 kg in 4 K area including the helium tank, ADR and detector assembly.
The Pluto system after the New Horizons flyby
NASA Astrophysics Data System (ADS)
Olkin, Catherine B.; Ennico, Kimberly; Spencer, John
2017-10-01
In July 2015, NASA's New Horizons mission performed a flyby of Pluto, revealing details about the geology, surface composition and atmospheres of this world and its moons that are unobtainable from Earth. With a resolution as small as 80 metres per pixel, New Horizons' images identified a large number of surface features, including a large basin filled with glacial ices that appear to be undergoing convection. Maps of surface composition show latitudinal banding, with non-volatile material dominating the equatorial region and volatile ices at mid- and polar latitudes. This pattern is driven by the seasonal cycle of solar insolation. New Horizons' atmospheric investigation found the temperature of Pluto's upper atmosphere to be much cooler than previously modelled. Images of forward-scattered sunlight revealed numerous haze layers extending up to 200 km from the surface. These discoveries have transformed our understanding of icy worlds in the outer Solar System, demonstrating that even at great distances from the Sun, worlds can have active geologic processes. This Review addresses our current understanding of the Pluto system and places it in context with previous investigations.
Naftz, D.L.; Schuster, P.F.; Reddy, M.M.
1994-01-01
One hundred samples were collected from the surface of the Upper Fremont Glacier at equally spaced intervals defined by an 8100m2 snow grid to asesss the significance of lateral variability in major-ion concentrations and del oxygen-18 values. Comparison of the observed variability of each chemical constituent to the variability expected by measurement error indicated substantial lateral variability with the surface-snow layer. Results of the nested ANOVA indicate most of the variance for every constituent is in the values grouped at the two smaller geographic scales (between 506m2 and within 506m2 sections). The variance data from the snow grid were used to develop equations to evaluate the significance of both positive and negative concentration/value peaks of nitrate and del oxygen-18 with depth, in a 160m ice core. Values of del oxygen-18 in the section from 110-150m below the surface consistently vary outside the expected limits and possibly represents cooler temperatures during the Little Ice Age from about 1810 to 1725 A.D. -from Authors
Mitigation of Syngas Cooler Plugging and Fouling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bockelie, Michael J.
This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling ofmore » the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better understanding of deposit formation mechanisms; • performing Techno-Economic-Analysis for a representative IGCC plant to investigate the impact on plant economics, in particular the impacts on the Cost of Electricity (COE), due to plant shutdowns caused by syngas cooler plugging and fouling and potential benefits to plant economics of developing strategies to mitigate syngas cooler fouling; and • performing modeling and pilot scale tests to investigate the potential benefits of using a sorbent (fuel additive) to capture the vaporized metals that result in syngas cooler fouling. All project milestones for BP 1 and BP 2 were achieved. DOE was provided a briefing on our accomplishments in BP1 and BP2 and our proposed plans for Budget Period 3 (BP 3). Based on our research the mitigation technology selected to investigate in BP 3 was the use of a sorbent that can be injected into the gasifier with the fuel slurry to capture vaporized metals that lead to the deposit formation in the syngas cooler. The work effort proposed for BP 3 would have focused on addressing concerns raised by gasification industry personnel for the impacts on gasifier performance of sorbent injection, so that at the end of BP 3 the use of sorbent injection would be at “pre-commercial” stage and ready for use in a Field Demonstration that could be funded by industry or DOE. A Budget Continuation Application (BCA) was submitted to obtain funding for BP3 DOE but DOE chose to not fund the proposed BP3 effort.« less
Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element
NASA Technical Reports Server (NTRS)
Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.
2013-01-01
In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis
Climatic Impact of a Change in North Atlantic Deep Water Formation
NASA Technical Reports Server (NTRS)
Rind, D.
1984-01-01
The response of the ocean to climate changes is one of the most uncertain questions regarding the impact of increasing CO2 on climate and society. North Atlantic deep water (NADW) formation apparently depends on a complex confluence of different water masses originating in different areas, all of which will presumably be affected by changes in wind, evaporation, etc., as the atmosphere warms. To analyze from first principles what the effect will be on NADW formation is a task which requires an ocean modeling capability not yet available. As a substitute, past climates can be investigated to see if there is any evidence for alterations in NADW formation. In addition, the possible impact of such changes on climate can be explored. An estimate of NADW sensitivity (at least in the past) and of the climate consequences can be studied. The North Atlantic surface water temperatures can be reconstructed to indicate a substantial cooling between 11,000 and 10,000 years B.P. Were NADW formation to have ceased, it would have resulted in cooler surface waters; whether the reconstructed temperatures were due to this or some other effect cannot be determined at this time. Nevertheless, it was decided that it would be useful to see what the effect these colder temperatures would have had on the climate.
Efremov, A A; Bratseva, I I
1985-01-01
New method for optimized computing thermoelectric coolers is proposed for the case of variable temperatures within heat-transfer media. The operation of the device is analyzed when the temperature of the cooled medium is greater than the temperature of the heated one, i. e. under conditions of the negative temperature difference. The comparative analysis of the computed and experimental data in values of the cooling and electric power demonstrates fully satisfactory results.
21 CFR 1250.42 - Water systems; constant temperature bottles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... reconstructed conveyances, water coolers shall be an integral part of the closed system. (d) Water filters if... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water systems; constant temperature bottles. 1250... INTERSTATE CONVEYANCE SANITATION Equipment and Operation of Land and Air Conveyances § 1250.42 Water systems...
21 CFR 1250.42 - Water systems; constant temperature bottles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... reconstructed conveyances, water coolers shall be an integral part of the closed system. (d) Water filters if... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water systems; constant temperature bottles. 1250... INTERSTATE CONVEYANCE SANITATION Equipment and Operation of Land and Air Conveyances § 1250.42 Water systems...
Maggot development during morgue storage and its effect on estimating the post-mortem interval.
Huntington, Timothy E; Higley, Leon G; Baxendale, Frederick P
2007-03-01
When insect evidence is obtained during autopsy, forensic entomologists make decisions regarding the effects of low-temperature (-1 degrees C to 4 degrees C) storage of the body and associated insects when estimating the post-mortem interval (PMI). To determine the effects of storage in a morgue cooler on the temperature of maggot masses, temperatures inside and outside of body bags containing a human cadaver and porcine cadavers (seven replicates) were measured during storage. Temperatures remained significantly higher (p<0.05) inside of the body bags relative to the cooler, and remained at levels sufficient for maggot feeding and development. If the assumption that no insect development takes place during preautopsy refrigeration is made, potential error rates in PMI estimation of 8.6-12.8% occur. The potential for blow fly larvae to undergo significant development while being stored in the morgue is a possibility that forensic entomologists should consider during an investigation involving samples collected from autopsy. Case and experimental evidence also demonstrate that substantial tissue loss can occur from maggot feeding during morgue storage.
NASA Space Cryocooler Programs: A 2003 Overview
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.; Boyle, R. F.; Kittel, P.
2004-01-01
Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science missions. An overview is presented of ongoing cryocooler activities within NASA in support of current flight projects, near-term flight instruments, and long-term technology development. NASA programs in Earth and space science observe a wide range of phenomena, from crop dynamics to stellar birth. Many of the instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, and enable the use of advanced detectors. Although, the largest utilization of coolers over the last decade has been for instruments operating at medium to high cryogenic temperatures (55 to 150 K), reflecting the relative maturity of the technology at these temperatures, important new developments are now focusing at the lower temperature range from 4 to 20 K in support of studies of the origin of the universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and its new Advanced Cryocooler Technology Development Program (ACTDP) for 6-18 K coolers are examples of the thrust to provide low temperature cooling for this class of missions.
Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary
NASA Astrophysics Data System (ADS)
Ivany, Linda C.; Patterson, William P.; Lohmann, Kyger C.
2000-10-01
The Eocene/Oligocene boundary, at about 33.7Myr ago, marks one of the largest extinctions of marine invertebrates in the Cenozoic period. For example, turnover of mollusc species in the US Gulf coastal plain was over 90% at this time. A temperature change across this boundary-from warm Eocene climates to cooler conditions in the Oligocene-has been suggested as a cause of this extinction event, but climate reconstructions have not provided support for this hypothesis. Here we report stable oxygen isotope measurements of aragonite in fish otoliths-ear stones-collected across the Eocene/Oligocene boundary. Palaeotemperatures reconstructed from mean otolith oxygen isotope values show little change through this interval, in agreement with previous studies. From incremental microsampling of otoliths, however, we can resolve the seasonal variation in temperature, recorded as the otoliths continue to accrete new material over the life of the fish. These seasonal data suggest that winters became about 4°C colder across the Eocene/Oligocene boundary. We suggest that temperature variability, rather than change in mean annual temperature, helped to cause faunal turnover during this transition.
Shen, Zi-Ling; Yang, Yong-Lu; Sun, Bing; Tang, Yu; Wang, Nian
2012-03-01
To investigate the role of oxotremorine in arginine vasopressin (AVP)-induced hypothermia and its effects on the behavioral thermoregulatory response. Core temperature (Tc), brown adipose tissue (BAT) temperature and motor activities were monitored in undisturbed female SD rats using radiotelemetry. The behavioral thermoregulatory response was monitored in rats using radiotelemetric temperature gradient apparatus. Effect of AVP (10 microg/kg) and oxotremorine (0.25 mg/kg) on Tc, motor activities, BAT temperature (T(BAT)), grooming activities and the behavioral thermoregulatory response were observed in rats. Administration of AVP and oxotremorine caused a significant drop in Tc, T(BAT), and an increases in grooming activities, respectively. The hypothermic responses were accompanied with a preference for cooler ambient temperature. Oxotremorine augmented the reduction of Tc, T(BAT), and the elevation of grooming activities resulting from AVP, and lasting a longer time. Administration of oxotremorine followed immediately by AVP injection in rats was also shown to induce a preference for cooler ambient temperature, but there was no significant difference compared with AVP. AVP-induced hypothermia was related with the set point temperature reduction, inhibiton of BAT thermogenesis and an increases in grooming activities. Oxotremorine could participate in peripheral AVP-induced hypothermia by affecting BAT thermogenesis and behavioral thermoregulation.
Global thermal analysis of air-air cooled motor based on thermal network
NASA Astrophysics Data System (ADS)
Hu, Tian; Leng, Xue; Shen, Li; Liu, Haidong
2018-02-01
The air-air cooled motors with high efficiency, large starting torque, strong overload capacity, low noise, small vibration and other characteristics, are widely used in different department of national industry, but its cooling structure is complex, it requires the motor thermal management technology should be high. The thermal network method is a common method to calculate the temperature field of the motor, it has the advantages of small computation time and short time consuming, it can save a lot of time in the initial design phase of the motor. The domain analysis of air-air cooled motor and its cooler was based on thermal network method, the combined thermal network model was based, the main components of motor internal and external cooler temperature were calculated and analyzed, and the temperature rise test results were compared to verify the correctness of the combined thermal network model, the calculation method can satisfy the need of engineering design, and provide a reference for the initial and optimum design of the motor.
Devonian climate and reef evolution: Insights from oxygen isotopes in apatite
NASA Astrophysics Data System (ADS)
Joachimski, M. M.; Breisig, S.; Buggisch, W.; Talent, J. A.; Mawson, R.; Gereke, M.; Morrow, J. R.; Day, J.; Weddige, K.
2009-07-01
Conodonts, microfossils composed of carbonate-fluor apatite, are abundant in Palaeozoic-Triassic sediments and have a high potential to preserve primary oxygen isotope signals. In order to reconstruct the palaeotemperature history of the Devonian, the oxygen isotope composition of apatite phosphate was measured on 639 conodont samples from sequences in Europe, North America and Australia. The Early Devonian (Lochkovian; 416-411 Myr) was characterized by warm tropical temperatures of around 30 °C. A cooling trend started in the Pragian (410 Myr) with intermediate temperatures around 23 to 25 °C reconstructed for the Middle Devonian (397-385 Myr). During the Frasnian (383-375 Myr), temperatures increased again with temperatures to 30 °C calculated for the Frasnian-Famennian transition (375 Myr). During the Famennian (375-359 Myr), surface water temperatures slightly decreased. Reconstructed Devonian palaeotemperatures do not support earlier views suggesting the Middle Devonian was a supergreenhouse interval, an interpretation based partly on the development of extensive tropical coral-stromatoporoid communities during the Middle Devonian. Instead, the Devonian palaeotemperature record suggests that Middle Devonian coral-stromatoporoid reefs flourished during cooler time intervals whereas microbial reefs dominated during the warm to very warm Early and Late Devonian.
29 CFR 1926.803 - Compressed air.
Code of Federal Regulations, 2014 CFR
2014-07-01
... shall, by means of after-coolers or other suitable devices, be maintained at a temperature not to exceed... man lock. The portable fire extinguisher shall be the dry chemical type. (10) Equipment, fixtures, and...
29 CFR 1926.803 - Compressed air.
Code of Federal Regulations, 2013 CFR
2013-07-01
... shall, by means of after-coolers or other suitable devices, be maintained at a temperature not to exceed... man lock. The portable fire extinguisher shall be the dry chemical type. (10) Equipment, fixtures, and...
29 CFR 1926.803 - Compressed air.
Code of Federal Regulations, 2012 CFR
2012-07-01
... shall, by means of after-coolers or other suitable devices, be maintained at a temperature not to exceed... man lock. The portable fire extinguisher shall be the dry chemical type. (10) Equipment, fixtures, and...
NASA Astrophysics Data System (ADS)
Jochum, M.; Peacock, S.; Moore, J. K.; Lindsay, K. T.
2009-12-01
A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes, but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea-ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net carbon fluxes are insignificant. This surprising result is due to several effects, two of which stand out: Firstly, colder sea surface temperature leads to a more effective solubility pump but also to increased sea-ice concentration which blocks air-sea exchange; and secondly, the weakening of Southern Ocean winds, which is predicted by some idealized studies, is small compared to its interannual variability.
Clogging in micromachined Joule-Thomson coolers: Mechanism and preventive measures
NASA Astrophysics Data System (ADS)
Cao, H. S.; Vanapalli, S.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.
2013-07-01
Micromachined Joule-Thomson coolers can be used for cooling small electronic devices. However, a critical issue for long-term operation of these microcoolers is the clogging caused by the deposition of water that is present as impurity in the working fluid. We present a model that describes the deposition process considering diffusion and kinetics of water molecules. In addition, the deposition and sublimation process was imaged, and the experimental observation fits well to the modeling predictions. By changing the temperature profile along the microcooler, the operating time of the microcooler under test at 105 K extends from 11 to 52 h.
NASA Astrophysics Data System (ADS)
Premkumar, P. S.; Chakravarthy, S. Bhaskar; Jayagopal, S.; Radhakrishnan, P.; Pillai, S. Nadaraja; Senthil Kumar, C.
2017-11-01
Aircraft engines need a cooling system to keep the engine oil well within the temperature limits for continuous operation. The aircraft selected for this study is a typical pusher type Light Transport Aircraft (LTA) having twin turbo prop engines mounted at the aft end of the fuselage. Due to the pusher propeller configuration, effective oil cooling is a critical issue, especially during low-speed ground operations like engine idling and also in taxiing and initial climb. However, the possibility of utilizing the inflow induced by the propeller for oil cooling is the subject matter of investigation in this work. The oil cooler duct was designed to accommodate the required mass flow, estimated using the oil cooler performance graph. A series of experiments were carried out with and without oil cooler duct attached to the nacelle, in order to investigate the mass flow induced by the propeller and its adequacy to cool the engine oil. Experimental results show that the oil cooler positioned at roughly 25 % of the propeller radius from the nacelle center line leads to adequate cooling, without incorporating additional means. Furthermore, it is suggested to install a NACA scoop to minimize spillage drag by increasing pressure recovery.
Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream
NASA Astrophysics Data System (ADS)
Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.
2015-01-01
Beaver dams affect hydrologic processes, channel complexity, and stream temperature by increasing inundated areas and influencing groundwater-surface water interactions. We explored the impacts of beaver dams on hydrologic and temperature regimes at different spatial and temporal scales within a mountain stream in northern Utah over a three-year period spanning pre- and post-beaver colonization. Using continuous stream discharge, stream temperature, synoptic tracer experiments, and groundwater elevation measurements we documented pre-beaver conditions in the first year of the study. In the second year, we captured the initial effects of three beaver dams, while the third year included the effects of ten dams. After beaver colonization, reach scale discharge observations showed a shift from slightly losing to gaining. However, at the smaller sub-reach scale, the discharge gains and losses increased in variability due to more complex flow pathways with beaver dams forcing overland flow and increasing surface and subsurface storage. At the reach scale, temperatures were found to increase by 0.38 °C (3.8%), which in part is explained by a 230% increase in mean reach residence time. At the smallest, beaver dam scale, there were notable increases in the thermal heterogeneity where warmer and cooler niches were created. Through the quantification of hydrologic and thermal changes at different spatial and temporal scales, we document increased variability during post-beaver colonization and highlight the need to understand the impacts of beaver dams on stream ecosystems and their potential role in stream restoration.
A Low Temperature, Reverse Brayton Cryocooler
NASA Technical Reports Server (NTRS)
Swift, Walter L.
2001-01-01
This status report covers the fifty-second month of a project to develop a low temperature, reverse-Brayton cryocooler using turbomachines. This program consists of a Basic Phase and four Option Phases. Each of the Phases is directed to a particular load/temperature combination. The technology and fundamental design features of the components used in these systems are related but differ somewhat in size, speed, and some details in physical geometry. Each of the Phases can be carried out independently of the others, except that all of the Phases rely on the technology developed and demonstrated during the Basic Phase. The Basic Phase includes the demonstration of a critical component and the production of a prototype model cryocooler. The critical technology demonstration will be the test of a small turboalternator over a range of conditions at temperatures down to 6 K. These tests will provide design verification data useful for the further design of the other coolers. The prototype model cooler will be designed to provide at least 5 mW of cooling at 6 K. The heat rejection temperature for this requirement is 220 K or greater. The input power to the system at these conditions is to be less than 60 W.
A Continuous Adiabatic Demagnetization Refrigerator for Use with Mechanical Coolers
NASA Technical Reports Server (NTRS)
Shirron, P.; Abbondante, N.; Canavan, E.; DiPirro, M.; Grabowski, M.; Hirsch, M.; Jackson, M.; Tuttle, J.
2000-01-01
We have begun developing an adiabatic demagnetization refrigerator (ADR) which can produce continuous cooling at temperatures of 50 mK or lower, with high cooling power (goal of 10 PW). The design uses multiple stages to cascade heat from a continuously-cooled stage up to a heat sink. The serial arrangement makes it possible to add stages to extend the operating range to lower temperature, or to raise the heat rejection temperature. Compared to conventional single-shot ADRS, this system achieves higher cooling power per unit mass and is able to reject its heat at a more uniform rate. For operation with a mechanical cryocooler, this latter feature stabilizes the heat sink temperature and allows both the ADR and cryocooler to operate more efficiently. The ADR is being designed to operate with a heat sink as warm as 10-12 K to make it compatible with a wide variety of mechanical coolers as part of a versatile, cryogen-free low temperature cooling system. A two-stage system has been constructed and a proof-of-principle demonstration was conducted at 100 mK. Details of the design and test results, as well as the direction of future work, are discussed.
Limitations of using a thermal imager for snow pit temperatures
NASA Astrophysics Data System (ADS)
Schirmer, M.; Jamieson, B.
2014-03-01
Driven by temperature gradients, kinetic snow metamorphism plays an import role in avalanche formation. When gradients based on temperatures measured 10 cm apart appear to be insufficient for kinetic metamorphism, faceting close to a crust can be observed. Recent studies that visualised small-scale (< 10 cm) thermal structures in a profile of snow layers with an infrared (IR) camera produced interesting results. The studies found melt-freeze crusts to be warmer or cooler than the surrounding snow depending on the large-scale gradient direction. However, an important assumption within these studies was that a thermal photo of a freshly exposed snow pit was similar enough to the internal temperature of the snow. In this study, we tested this assumption by recording thermal videos during the exposure of the snow pit wall. In the first minute, the results showed increasing gradients with time, both at melt-freeze crusts and artificial surface structures such as shovel scours. Cutting through a crust with a cutting blade or shovel produced small concavities (holes) even when the objective was to cut a planar surface. Our findings suggest there is a surface structure dependency of the thermal image, which was only observed at times during a strong cooling/warming of the exposed pit wall. We were able to reproduce the hot-crust/cold-crust phenomenon and relate it entirely to surface structure in a temperature-controlled cold laboratory. Concave areas cooled or warmed more slowly compared with convex areas (bumps) when applying temperature differences between snow and air. This can be explained by increased radiative and/or turbulent energy transfer at convex areas. Thermal videos suggest that such processes influence the snow temperature within seconds. Our findings show the limitations of using a thermal camera for measuring pit-wall temperatures, particularly during windy conditions, clear skies and large temperature differences between air and snow. At crusts or other heterogeneities, we were unable to create a sufficiently planar snow pit surface and non-internal gradients appeared at the exposed surface. The immediate adjustment of snow pit temperature as it reacts with the atmosphere complicates the capture of the internal thermal structure of a snowpack with thermal videos. Instead, the shown structural dependency of the IR signal may be used to detect structural changes of snow caused by kinetic metamorphism. The IR signal can also be used to measure near surface temperatures in a homogenous new snow layer.
Simulations of Eurasian winter temperature trends in coupled and uncoupled CFSv2
NASA Astrophysics Data System (ADS)
Collow, Thomas W.; Wang, Wanqiu; Kumar, Arun
2018-01-01
Conflicting results have been presented regarding the link between Arctic sea-ice loss and midlatitude cooling, particularly over Eurasia. This study analyzes uncoupled (atmosphere-only) and coupled (ocean-atmosphere) simulations by the Climate Forecast System, version 2 (CFSv2), to examine this linkage during the Northern Hemisphere winter, focusing on the simulation of the observed surface cooling trend over Eurasia during the last three decades. The uncoupled simulations are Atmospheric Model Intercomparison Project (AMIP) runs forced with mean seasonal cycles of sea surface temperature (SST) and sea ice, using combinations of SST and sea ice from different time periods to assess the role that each plays individually, and to assess the role of atmospheric internal variability. Coupled runs are used to further investigate the role of internal variability via the analysis of initialized predictions and the evolution of the forecast with lead time. The AMIP simulations show a mean warming response over Eurasia due to SST changes, but little response to changes in sea ice. Individual runs simulate cooler periods over Eurasia, and this is shown to be concurrent with a stronger Siberian high and warming over Greenland. No substantial differences in the variability of Eurasian surface temperatures are found between the different model configurations. In the coupled runs, the region of significant warming over Eurasia is small at short leads, but increases at longer leads. It is concluded that, although the models have some capability in highlighting the temperature variability over Eurasia, the observed cooling may still be a consequence of internal variability.
The little ice age and medieval warm period in the Sargasso Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keigwin, L.D.
1996-11-29
Sea surface temperature (SST), salinity, and flux of terrigenous material oscillated on millennial time scales in the Pleistocene North Atlantic, but there are few records of Holocene variability. Because of high rates of sediment accumulation, Holocene oscillations are well documented in the northern Sargasso Sea. Results from a radiocarbondated box core show that SST was {approximately} 1{degree}C cooler than today {approximately} 400 years ago (the Little Ice Age) and 1700 years ago, and {approximately} 1{degree}C warmer than today 1000 years ago (the Medieval Warm Period). Thus, at least some of the warming since the Little Ice Age appears to bemore » part of a natural oscillation. 39 refs., 4 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
1999-01-01
During the contemporaneous interval of 1796-1882 a number of significant decreases in temperature are found in the records of Central England and Northern Ireland. These decreases appear to be related to the occurrences of El Nino and/or cataclysmic volcanic eruptions. For example, a composite of residual temperatures of the Central England dataset, centering temperatures on the yearly onsets of 20 El Nino of moderate to stronger strength, shows that, on average, the change in temperature varied by about +/- 0.3 C from normal being warmer during the boreal fall-winter leading up to the El Nino year and cooler during the spring-summer of the El Nino year. Also, the influence of El Nino on Central England temperatures appears to last about 1-2 years. Similarly, a composite of residual temperatures of the Central England dataset, centering temperatures on the month of eruption for 26 cataclysmic volcanic eruptions, shows that, on average, the change in temperature decreased by about 0.1 - 0.2 C, typically, 1-2 years after the eruption, although for specific events, like Tambora, the decrease was considerably greater. Additionally, tropical eruptions appear to produce greater changes in temperature than extratropical eruptions, and eruptions occurring in boreal spring-summer appear to produce greater changes in temperature than those occurring in fall-winter.
Subsurface temperature distribution in a tropical alluvial fan
NASA Astrophysics Data System (ADS)
Chen, Wenfu; Chang, Minhsiang; Chen, Juier; Lu, Wanchung; Huang, Chihc; Wang, Yunshuen
2017-04-01
As a groundwater intensive use country, Taiwan's 1/3 water supplies are derived from groundwater. The major aquifers consist of sand and gravel formed in alluvial fans which border the fronts of central mountains. Thanks to high density of monitoring wells which provide a window to see the details of the subsurface temperature distribution and the thermal regime in an alluvial fan system. Our study area, the Choshui Alluvial Fan, is the largest groundwater basin in Taiwan and, located within an area of 2,000 km2, has a population of over 1.5 million. For this work, we investigated temperature-depth profiles using 70 groundwater monitoring wells during 2000 to 2015. Our results show that the distribution of subsurface temperature is influenced by various factors such as groundwater recharge, groundwater flow field, air temperature and land use. The groundwater recharge zone, hills to the upper fan, contains disturbed and smaller geothermal gradients. The lack of clay layers within the upper fan aquifers and fractures that developed in the hills should cause the convection and mixing of cooler recharge water to groundwater, resulting in smaller geothermal gradients. The groundwater temperatures at a depth to 300 m within the upper fan and hill were approximately only 23-24 °C while the current mean ground surface temperature is approximately 26 °C.
Improvement of cooldown time of LSF9599 flexure-bearing SADA cooler
NASA Astrophysics Data System (ADS)
Mullié, Jeroen; vd Groep, Willem; Bruins, Peter; Benschop, Tonny; de Koning, Arjan; Dam, Jacques
2006-05-01
Thales Cryogenics has presented the LSF 9599 SADA II flexure cooler in 2005. Based on Thales' well-known moving magnet flexure technology, the LSF 9599 complies with the SADA II specification with respect to performance, envelope and mass. Being the first manufacturer offering a full flexure-bearing supported cooler that fits within the SADA II envelope, Thales Cryogenics has been selected in several new (military) programs with their LSF coolers. For many of these new programs, the cooldown time requirements are more stringent than in the past, whereas at the same time size, complexity and thus thermal mass of the infrared sensor tends to increase. In order to respond to the need created by the combination of these trends, Thales Cryogenics started a development program to optimize cryogenic performance of the LSF 9599 cooler. The main goal for the development program is to reduce the cooldown time, while maintaining the SADA II compatible interface, and maintaining the robustness and proven reliability of the cooler. Within these constraints, the regenerator was further optimized using among others the experience with mixed-gauze regenerators obtained from our pulse tube research. Using the mixed gauze approach, the heat storage capacity of the regenerator is adapted as a function of the temperature profile over the regenerator, thus giving the optimum balance between heat storage capacity and pressure drop. A novel way of constructing the regenerator further decreases shuttle heat losses and other thermal losses in the regenerator. This paper describes the first results of the trade-offs and gives an overview of impact on cooldown times and efficiency figures achieved after the regenerator and displacer optimization.
Impact of Urban Growth on Surface Climate: A Case Study in Oran, Algeria
NASA Technical Reports Server (NTRS)
Bounoua, Lahouari; Safia, Abdelmounaine; Masek, Jeffrey; Peters-Lidars, Christaq; Imhoff, Marc L.
2008-01-01
We develop a land use map discriminating urban surfaces from other cover types over a semiarid region in North Africa and use it in a land surface model to assess the impact of urbanized land on surface energy, water and carbon balances. Unlike in temperate climates where urbanization creates a marked heat island effect, this effect is not strongly marked in semiarid regions. During summer, the urban class results in an additional warming of 1.45 C during daytime and 0.81 C at night compared to that simulated for needleleaf trees under similar climate conditions. Seasonal temperatures show urban areas warmer than their surrounding during summer and slightly cooler in winter. The hydrological cycle is practically "shut down" during summer and characterized by relatively large amount of runoff in winter. We estimate the annual amount of carbon uptake to 1.94 million metric tons with only 11.9% assimilated during the rainy season. However, if urbanization expands to reach 50% of the total area excluding forests, the annual total carbon uptake will decline by 35% and the July mean temperature would increase only 0.10 C, compared to current situation. In contrast, if urbanization expands to 50% of the total land excluding forests and croplands but all short vegetation is replaced by native broadleaf deciduous trees, the annual carbon uptake would increase 39% and the July mean temperature would decrease by 0.9 C, compared to current configuration. These results provide guidelines for urban planners and land use managers and indicate possibilities for mitigating the urban heat.
Urban warming trumps natural enemy regulation of herbivorous pests.
Dale, Adam G; Frank, Steven D
Trees provide ecosystem services that counter negative effects of urban habitats on human and environmental health. Unfortunately, herbivorous arthropod pests are often more abundant on urban than rural trees, reducing tree growth, survival, and ecosystem services. Previous research where vegetation complexity was reduced has attributed elevated urban pest abundance to decreased regulation by natural enemies. However, reducing vegetation complexity, particularly the density of overstory trees, also makes cities hotter than natural habitats. We ask how urban habitat characteristics influence an abiotic factor, temperature, and a biotic factor, natural enemy abundance, in regulating the abundance of an urban forest pest, the gloomy scale, (Melanaspis tenebricosa). We used a map of surface temperature to select red maple trees (Acer rubrum) at warmer and cooler sites in Raleigh, North Carolina, USA. We quantified habitat complexity by measuring impervious surface cover, local vegetation structural complexity, and landscape scale vegetation cover around each tree. Using path analysis, we determined that impervious surface (the most important habitat variable) increased scale insect abundance by increasing tree canopy temperature, rather than by reducing natural enemy abundance or percent parasitism. As a mechanism for this response, we found that increasing temperature significantly increases scale insect fecundity and contributes to greater population increase. Specifically, adult female M. tenebricosa egg sets increased by approximately 14 eggs for every 1°C increase in temperature. Climate change models predict that the global climate will increase by 2–3°C in the next 50–100 years, which we found would increase scale insect abundance by three orders of magnitude. This result supports predictions that urban and natural forests will face greater herbivory in the future, and suggests that a primary cause could be direct, positive effects of warming on herbivore fitness rather than altered trophic interactions.
NASA Astrophysics Data System (ADS)
Gulevsky, V. A.; Shatsky, V. P.; Osipov, E. I.; Menzhulova, A. S.
2018-03-01
For cooling the air environment of industrial premises water-evaporating air, conditioners are being increasingly applied. The simplicity of their construction, ecological safety and low power consumption distinguish them from the coolers of other types. Cooling the processed air is due to the loss of energy for the evaporation of moisture from the surface of the water-wetted plates that form air channels. As a result of this process, cooled air is often saturated with moisture, which limits the possibilities for the operation of the coolers of this type. In these cases, more complex coolers of indirect principle without such drawback should be applied. The most effective modification of indirect cooling is the installation of recuperative principle units. The paper presents a mathematical model of heat-mass transfer in such water-evaporating coolers. The scheme of realization of this model based on an iterative algorithm of solution of the system of finite–difference linear equations that takes into account longitudinal and transverse thermal conductivity of the heat transfer plates is suggested. The possibility of obtaining the optimal values of the redistribution of the main and auxiliary air flows through the substantiation of the aerodynamic resistance of the output grid is proved. This allows refusing the inclusion in the additional system cooling fan unit for discharging an auxiliary stream of air.
CFD modeling of thermoelectric generators in automotive EGR-coolers
NASA Astrophysics Data System (ADS)
Högblom, Olle; Andersson, Ronnie
2012-06-01
A large amount of the waste heat in the exhaust gases from diesel engines is removed in the exhaust gas recirculation (EGR) cooler. Introducing a thermoelectric generator (TEG) in an EGR cooler requires a completely new design of the heat exchanger. To accomplish that a model of the TEG-EGR system is required. In this work, a transient 3D CFD model for simulation of gas flow, heat transfer and power generation has been developed. This model allows critical design parameters in the TEG-EGR to be identified and design requirements for the systems to be specified. Besides the prediction of Seebeck, Peltier, Thomson and Joule effects, the simulations also give detailed insight to the temperature gradients in the gas-phase and inside the thermoelectric (TE) elements. The model is a very valuable tool to identify bottlenecks, improve design, select optimal TE materials and operating conditions. The results show that the greatest heat transfer resistance is located in the gas phase and it is critical to reduce this in order to achieve a large temperature difference over the thermoelectric elements without compromising on the maximum allowable pressure drop in the system. Further results from an investigation of the thermoelectric performance during a vehicle test cycle is presented.
Microsystem Cooler Development
NASA Technical Reports Server (NTRS)
Moran, Matthew E.; Wesolek, Danielle M.; Berhane, Bruk T.; Rebello, Keith J.
2004-01-01
A patented microsystem Stirling cooler is under development with potential application to electronics, sensors, optical and radio frequency (RF) systems, microarrays, and other microsystems. The microsystem Stirling cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include: two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines; and a micro-regenerator that stores and releases thermal energy to the working gas during the Stirling cycle. The use of diaphragms eliminates frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were custom fabricated for initial evaluation: two constructed of porous ceramic, and one made of multiple layers of nickel and photoresist in an offset grating pattern. An additional regenerator was prepared with a random stainless steel fiber matrix commonly used in existing Stirling machines for comparison to the custom fabricated regenerators. The candidate regenerators were tested in a piezoelectric-actuated test apparatus designed to simulate the Stirling refrigeration cycle. In parallel with the regenerator testing, electrostatically-driven comb-drive diaphragm actuators for the prototype device have been designed for deep reactive ion etching (DRIE) fabrication.
NASA Astrophysics Data System (ADS)
Dang, Haizheng; Tan, Jun; Zha, Rui; Li, Jiaqi; Zhang, Lei; Zhao, Yibo; Gao, Zhiqian; Bao, Dingli; Li, Ning; Zhang, Tao; Zhao, Yongjiang; Zhao, Bangjian
2017-12-01
This paper presents a review of recent advances in single- and multi-stage Stirling-type pulse tube cryocoolers (SPTCs) for space applications developed at the National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (NLIP/SITP/CAS). A variety of single-stage SPTCs operating at 25-150 K have been developed, including several mid-sized ones operating at 80-110 K. Significant progress has been achieved in coolers operating at 30-40 K which use common stainless steel meshes as regenerator matrices. Another important advance is the micro SPTCs with an overall mass of 300-800 g operating at high frequencies varying from 100 Hz to 400 Hz. The main purpose of developing two-stage SPTCs is to simultaneously acquire cooling capacities at both stages, obviating the need for auxiliary precooling in various applications. The three-stage SPTCs are developed mainly for applications at around 10 K, which are also used for precooling the J-T coolers to achieve further lower temperatures. The four-stage SPTCs are developed to directly achieve the liquid helium temperature for cooling space low-Tc superconducting devices and for the deep space exploration as well. Several typical development programs are described and an overview of the cooler performances is presented.
Bailey, John D; Harrington, Constance A
2006-04-01
Past research has established that terminal buds of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings from many seed sources have a chilling requirement of about 1200 h at 0-5 degrees C; once chilled, temperatures > 5 degrees C force bud burst via accumulation of heat units. We tested this sequential bud-burst model in the field to determine whether terminal buds of trees in cooler microsites, which receive less heat forcing, develop more slowly than those in warmer microsites. For three years we monitored terminal bud development in young saplings as well as soil and air temperatures on large, replicated plots in a harvest unit; plots differed in microclimate based on amount of harvest residue and shade from neighboring stands. In two of three years, trees on cooler microsites broke bud 2 to 4 days earlier than those on warmer microsites, despite receiving less heat forcing from March to May each year. A simple sequential model did not predict cooler sites having earlier bud burst nor did it correctly predict the order of bud burst across the three years. We modified the basic heat-forcing model to initialize, or reset to zero, the accumulation of heat units whenever significant freezing temperature events (> or = 3 degree-hours day(-1) < 0 degrees C) occurred; this modified model correctly predicted the sequence of bud burst across years. Soil temperature alone or in combination with air temperature did not improve our predictions of bud burst. Past models of bud burst have relied heavily on data from controlled experiments with simple temperature patterns; analysis of more variable temperature patterns from our 3-year field trial, however, indicated that simple models of bud burst are inaccurate. More complex models that incorporate chilling hours, heat forcing, photoperiod and the occurrence of freeze events in the spring may be needed to predict effects of future silvicultural treatments as well to interpret the implications of climate-change scenarios. Developing and testing new models will require data from both field and controlled-environment experiments.
An analysis of surface air temperature trends and variability along the Andes
NASA Astrophysics Data System (ADS)
Franquist, Eric S.
Climate change is difficult to study in mountainous regions such as the Andes since steep changes in elevation cannot always be resolved by climate models. However, it is important to examine temperature trends in this region as rises in surface air temperature are leading to the melting of tropical glaciers. Local communities rely on the glacier-fed streamflow to get their water for drinking, irrigation, and livestock. Moreover, communities also rely on the tourism of hikers who come to the region to view the glaciers. As the temperatures increase, these glaciers are no longer in equilibrium with their current climate and are receding rapidly and decreasing the streamflow. This thesis examines surface air temperature from 858 weather stations across Ecuador, Peru, and Chile in order to analyze changes in trends and variability. Three time periods were studied: 1961--1990, 1971--2000, and 1981--2010. The greatest warming occurred during the period of 1971--2000 with 92% of the stations experiencing positive trends with a mean of 0.24°C/decade. There was a clear shift toward cooler temperatures at all latitudes and below elevations of 500 m during the most recent time period studied (1981--2010). Station temperatures were more strongly correlated with the El Nino Southern Oscillation (ENSO), than the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM). A principal component analysis confirmed ENSO as the main contributor of variability with the most influence in the lower latitudes. There were clear multidecadal changes in correlation strength for the PDO. The PDO contributed the most to the increases in station temperature trends during the 1961--1990 period, consistent with the PDO shift to the positive phase in the middle of this period. There were many strong positive trends at individual stations during the 1971--2000 period; however, these trends could not fully be attributed to ENSO, PDO, or SAM, indicating anthropogenic effects of greenhouse gas emissions as the most likely cause.
Temperature trends and Urban Heat Island intensity mapping of the Las Vegas valley area
NASA Astrophysics Data System (ADS)
Black, Adam Leland
Modified urban climate regions that are warmer than rural areas at night are referred to as Urban Heat Islands or UHI. Islands of warmer air over a city can be 12 degrees Celsius greater than the surrounding cooler air. The exponential growth in Las Vegas for the last two decades provides an opportunity to detect gradual temperature changes influenced by an increasing presence of urban materials. This thesis compares ground based thermometric observations and satellite based remote sensing temperature observations to identify temperature trends and UHI areas caused by urban development. Analysis of temperature trends between 2000 and 2010 at ground weather stations has revealed a general cooling trend in the Las Vegas region. Results show that urban development accompanied by increased vegetation has a cooling effect in arid climates. Analysis of long term temperature trends at McCarran and Nellis weather stations show 2.4 K and 1.2 K rise in temperature over the last 60 years. The ground weather station temperature data is related to the land surface temperature images from the Landsat Thematic Mapper to estimate and evaluate urban heat island intensity for Las Vegas. Results show that spatial and temporal trends of temperature are related to the gradual change in urban landcover. UHI are mainly observed at the airport and in the industrial areas. This research provides useful insight into the temporal behavior of the Las Vegas area.
USDA-ARS?s Scientific Manuscript database
In plants, the endoplasmic reticulum (ER)-localized omega-3 fatty acid desaturases (Fad3s) increase the production of polyunsaturated fatty acids at cooler temperatures, but the FAD3 genes themselves are typically not upregulated during this adaptive response. Here, we expressed two closely related ...
Superconducting Technology Assessment
2005-08-01
designing a single compressor pulse tube between the high pump frequency which produces good efficiency at the higher...noise models must be extended to sub-micron JJs. Transmission line models must be extended to the high frequency regime. VHDL models and methods ...temperatures and the low frequencies needed at low temperatures. Hybrid Sterling- pulse tube coolers allow the higher efficiency of a Sterling high
Comparison of injury incidences between football teams playing in different climatic regions
Orchard, John W; Waldén, Markus; Hägglund, Martin; Orchard, Jessica J; Chivers, Ian; Seward, Hugh; Ekstrand, Jan
2013-01-01
Australian Football League (AFL) teams in northern (warmer) areas generally have higher rates of injury than those in southern (cooler) areas. Conversely, in soccer (football) in Europe, teams in northern (cooler) areas have higher rates of injury than those in southern (warmer) areas, with an exception being knee anterior cruciate ligament (ACL) injuries, which are more common in the southern (warmer) parts of Europe. This study examined relative injury incidence in the AFL comparing 9,477 injuries over 229,827 player-weeks from 1999–2012. There was a slightly higher injury incidence for teams from warmer parts of Australia (relative risk [RR] 1.05, 95% confidence interval [CI] 1.01–1.10) with quadriceps strains (RR 1.32, 95% CI 1.10–1.58), knee cartilage injuries (RR 1.42, 95% CI 1.16–1.74), and ankle sprains (RR 1.17, 95% CI 1.00–1.37) all being more likely in warmer region teams. Achilles injuries followed a reverse pattern, tending to be more common in cooler region teams (RR 0.70, 95% CI 0.47–1.03). In conclusion, common findings from the AFL and European soccer are that ankle sprains and ACL injuries are generally more likely in teams playing in warmer climate zones, whereas Achilles tendinopathy may be more likely in teams playing in cooler zones. These injuries may have climate or surface risk factors (possibly related to types and structure of grass and shoe-surface traction) that are universal across different football codes. PMID:24379731
Lockheed Martin microcryocoolers
NASA Astrophysics Data System (ADS)
Olson, Jeffrey R.; Roth, Eric W.; Sanders, Lincoln-Shaun; Will, Eric; Frank, David J.
2017-05-01
Lockheed Martin's Advanced Technology Center, part of Lockheed Martin Space Systems Company, has developed a series of long life microcryocoolers for avionics and space sensor applications. We report the development and testing of three varieties of single-stage, compact, coaxial, pulse tube microcryocoolers. These coolers support emerging large, high operating temperature (100-150K) infrared focal plane array sensors with nominal cooling loads of 200-2000 mW, and all share long life technology attributes used in space cryocoolers, which typically provide 10 years of continuous operation on orbit without degradation. These three models of microcryocooler are the 345 gram Micro1-1, designed to provide 1 W cooling at 150 K, the 450 gram Micro1-2, designed to provide 2 W cooling at 105 K, and the 320 gram Micro1-3, designed to provide 300 mW cooling at 125 K while providing the capability to cool the IR focal plane to 125 K in less than 3 minutes. The Micro1-3 was also designed with a highly compact package that reduced the coldhead length to 55 mm, a length reduction of more than a factor of two compared with the other coldheads. This paper also describes recent design studies of 2-stage microcryocoolers capable of providing cooling at 25-100K. LMSSC is an industry leader in multiple-stage coolers, having successfully built and tested eight 2-stage coolers (typically cooling to 35-55K), and four coolers with 3 or 4 stages (for cooling to 4-10K). The 2-stage microcryocooler offers a very low mass and compact package capable of cooling HgCdTe focal planes, while providing simultaneous optics cooling at a higher temperature.
Buccola, Norman L.; Turner, Daniel F.; Rounds, Stewart A.
2016-09-14
Significant FindingsStreamflow and water temperature in the Middle Fork Willamette River (MFWR), western Oregon, have been regulated and altered since the construction of Lookout Point, Dexter, and Hills Creek Dams in 1954 and 1961, respectively. Each year, summer releases from the dams typically are cooler than pre-dam conditions, with the reverse (warmer than pre-dam conditions) occurring in autumn. This pattern has been detrimental to habitat of endangered Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR winter steelhead (O. mykiss) throughout multiple life stages. In this study, scenarios testing different dam-operation strategies and hypothetical dam-outlet structures were simulated using CE-QUAL-W2 hydrodynamic/temperature models of the MFWR system from Hills Creek Lake (HCR) to Lookout Point (LOP) and Dexter (DEX) Lakes to explore and understand the efficacy of potential flow and temperature mitigation options.Model scenarios were run in constructed wet, normal, and dry hydrologic calendar years, and designed to minimize the effects of Hills Creek and Lookout Point Dams on river temperature by prioritizing warmer lake surface releases in May–August and cooler, deep releases in September–December. Operational scenarios consisted of a range of modified release rate rules, relaxation of power-generation constraints, variations in the timing of refill and drawdown, and maintenance of different summer maximum lake levels at HCR and LOP. Structural scenarios included various combinations of hypothetical floating outlets near the lake surface and hypothetical new outlets at depth. Scenario results were compared to scenarios using existing operational rules that give temperature management some priority (Base), scenarios using pre-2012 operational rules that prioritized power generation over temperature management (NoBlend), and estimated temperatures from a without-dams condition (WoDams).Results of the tested model scenarios led to the following conclusions:The existing outlets at Lookout Point Dam, because of the range of depths, allow for greater temperature control than the two existing outlets at Hills Creek Dam that are relatively deep.Temperature control at HCR through operational scenarios generally was minimal near Hills Creek Dam, but improved downstream toward the head of LOP when decreased release rates held HCR at a low lake elevation year-round.Inflows from unregulated streams between HCR and LOP helped to dilute the effects of HCR and achieve more natural stream temperatures before the MFWR entered LOP.The relative benefit of any particular scenario depended on the location in the MFWR system used to assess the potential change, with most scenarios involving changes to Hills Creek Dam being less effective with increasing downstream distance, such as downstream of DEX.To achieve as much temperature control as the most successful structural scenarios, which were able to resemble without-dam conditions for part of the year, most operational scenarios had to be free of any power-generation requirements at Lookout Point Dam.Downstream of DEX, scenarios incorporating a hypothetical floating outlet at either HCR or LOP resulted in similar temperatures, with both scenarios causing a delay in the estimated spring Chinook egg emergence by about 9–10 days compared to base-case temperature-management scenarios.
Kurtz, Bruce E
2014-01-01
The Atlantic meridional overturning circulation (AMOC) is the northward flow of surface water to subpolar latitudes where deepwater is formed, balanced by southward abyssal flow and upwelling in the vicinity of the Southern Ocean. It is generally accepted that AMOC flow oscillates with a period of 60-80 years, creating a regular variation in North Atlantic sea surface temperature known as the Atlantic multidecadal oscillation (AMO). This article attempts to answer two questions: how is the AMOC driven and why does it oscillate? Using methods commonly employed by chemical engineers for analyzing processes involving flowing liquids, apparently not previously applied to trying to understand the AMOC, an equation is developed for AMOC flow as a function of the meridional density gradient or the corresponding temperature gradient. The equation is based on the similarity between the AMOC and an industrial thermosyphon loop cooler, which circulates a heat transfer liquid without using a mechanical pump. Extending this equation with an analogy between the flow of heat and electricity explains why the AMOC flow oscillates and what determines its period. Calculated values for AMOC flow and AMO oscillation period are in good agreement with measured values.
Kurtz, Bruce E.
2014-01-01
The Atlantic meridional overturning circulation (AMOC) is the northward flow of surface water to subpolar latitudes where deepwater is formed, balanced by southward abyssal flow and upwelling in the vicinity of the Southern Ocean. It is generally accepted that AMOC flow oscillates with a period of 60–80 years, creating a regular variation in North Atlantic sea surface temperature known as the Atlantic multidecadal oscillation (AMO). This article attempts to answer two questions: how is the AMOC driven and why does it oscillate? Using methods commonly employed by chemical engineers for analyzing processes involving flowing liquids, apparently not previously applied to trying to understand the AMOC, an equation is developed for AMOC flow as a function of the meridional density gradient or the corresponding temperature gradient. The equation is based on the similarity between the AMOC and an industrial thermosyphon loop cooler, which circulates a heat transfer liquid without using a mechanical pump. Extending this equation with an analogy between the flow of heat and electricity explains why the AMOC flow oscillates and what determines its period. Calculated values for AMOC flow and AMO oscillation period are in good agreement with measured values. PMID:24940739
Planar digital nanoliter dispensing system based on thermocapillary actuation.
Darhuber, Anton A; Valentino, Joseph P; Troian, Sandra M
2010-04-21
We provide guidelines for the design and operation of a planar digital nanodispensing system based on thermocapillary actuation. Thin metallic microheaters embedded within a chemically patterned glass substrate are electronically activated to generate and control 2D surface temperature distributions which either arrest or trigger liquid flow and droplet formation on demand. This flow control is a consequence of the variation of a liquid's surface tension with temperature, which is used to draw liquid toward cooler regions of the supporting substrate. A liquid sample consisting of several microliters is placed on a flat rectangular supply cell defined by chemical patterning. Thermocapillary switches are then activated to extract a slender fluid filament from the cell and to divide the filament into an array of droplets whose position and volume are digitally controlled. Experimental results for the power required to extract a filament and to divide it into two or more droplets as a function of geometric and operating parameters are in excellent agreement with hydrodynamic simulations. The capability to dispense ultralow volumes onto a 2D substrate extends the functionality of microfluidic devices based on thermocapillary actuation previously shown effective in routing and mixing nanoliter liquid samples on glass or silicon substrates.
Evaporative cooler including one or more rotating cooler louvers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, David W
An evaporative cooler may include an evaporative cooler housing with a duct extending therethrough, a plurality of cooler louvers with respective porous evaporative cooler pads, and a working fluid source conduit. The cooler louvers are arranged within the duct and rotatably connected to the cooler housing along respective louver axes. The source conduit provides an evaporative cooler working fluid to the cooler pads during at least one mode of operation.
Optical power of VCSELs stabilized to 35 ppm/°C without a TEC
NASA Astrophysics Data System (ADS)
Downing, John
2015-03-01
This paper reports a method and system comprising a light source, an electronic method, and a calibration procedure for stabilizing the optical power of vertical-cavity surface-emitting lasers (VCSELs) and laser diodes (LDs) without the use thermoelectric coolers (TECs). The system eliminates the needs for custom interference coatings, polarization adjustments, and the exact alignment required by the optical method reported in 2013 [1]. It can precisely compensate for the effects of temperature and wavelength drift on photodiode responsivity as well as changes in VCSEL beam quality and polarization angle over a 50°C temperature range. Data obtained from light sources built with single-mode polarization-locked VCSELs demonstrate that 30 ppm/°C stability can be readily obtained. The system has advantages over TECstabilized laser modules that include: 1) 90% lower relative RMS optical power and temperature sensitivity, 2) a five-fold enhancement of wall-plug efficiency, 3) less component testing and sorting, 4) lower manufacturing costs, and 5) automated calibration in batches at time of manufacture is practical. The system is ideally suited for battery-powered environmental and in-home medical monitoring applications.
Houser, J.N.
2006-01-01
The effects of water color on lake stratification, mean epilimnetic irradiance, and lake temperature dynamics were examined in small, north-temperate lakes that differed widely in water color (1.5-19.8 m -1). Among these lakes, colored lakes differed from clear lakes in the following ways: (i) the epilimnia were shallower and colder, and mean epilimnetic irradiance was reduced; (ii) the diel temperature cycles were more pronounced; (iii) whole-lake heat accumulation during stratification was reduced. The depth of the epilimnion ranged from 2.5 m in the clearest lake to 0.75 m in the most colored lake, and 91% of the variation in epilimnetic depth was explained by water color. Summer mean morning epilimnetic temperature was ???2??C cooler in the most colored lake compared with the clearest lake. In clear lakes, the diel temperature range (1.4 ?? 0.7??C) was significantly (p = 0.01) less than that in the most colored lake (2.1 ?? 1.0??C). Change in whole-lake heat content was negatively correlated with water color. Increasing water color decreased light penetration more than thermocline depth, leading to reduced mean epilimnetic irradiance in the colored lakes. Thus, in these small lakes, water color significantly affected temperature, thermocline depth, and light climate. ?? 2006 NRC.
Kastelic, J P; Rizzoto, G; Thundathil, J
2018-06-01
Several structural and functional features keep bull testes 2°C to 6°C below body temperature, essential for the production of morphologically normal, motile and fertile sperm. The testicular vascular cone (TVC), located above the testis, consists of a highly coiled testicular artery surrounded by a complex network of small veins (pampiniform plexus). The TVC functions as a counter-current heat exchanger to transfer heat from the testicular artery to the testicular vein, cooling blood before it enters the testis. Bulls with increased TVC diameter or decreased distance between arterial and venous blood, have a greater percentage of morphologically normal sperm. Both the scrotum and testes are warmest at the origin of their blood supply (top of scrotum and bottom of testis), but they are cooler distal to that point. In situ, these opposing temperature gradients result in a nearly uniform testicular temperature (top to bottom), cooler than body temperature. The major source of testicular heat is blood flow, not testicular metabolism. High ambient temperatures have less deleterious effects on spermatogenesis in Bos indicus v. Bos taurus bulls; differences in TVC morphology in B. indicus bulls confer a better testicular blood supply and promote heat transfer. There is a long-standing paradigm that testes operate on the brink of hypoxia, increased testicular temperature does not increase blood flow, and the resulting hypoxia reduces morphologically normal and motile sperm following testicular hyperthermia. However, in recent studies in rams, either systemic hypoxia or increased testicular temperature increased testicular blood flow and there were sufficient increases in oxygen uptake to prevent tissue hypoxia. Therefore, effects of increased testicular temperature were attributed to testicular temperature per se and not to secondary hypoxia. There are many causes of increased testicular temperature, including high ambient temperatures, fever, increased recumbency, high-energy diets, or experimental insulation of the scrotum or the scrotal neck. It is well known that increased testicular temperatures have adverse effects on spermatogenesis. Heat affects all germ cells and all stages of spermatogenesis, with substantial increases in temperature and/or extended intervals of increased testicular temperature having the most profound effects. Increased testicular temperature has adverse effects on percentages of motile, live and morphologically normal sperm. In particular, increased testicular temperature increases the percentage of sperm with abnormal morphology, particularly head defects. Despite differences among bulls in the kind and percentage of abnormal sperm, the interval from increased testicular temperature to the emergence of specific sperm defects is consistent and predictable. Scrotal surface temperatures and structural characteristics of the testis and TVC can be assessed with IR thermography and ultrasonography, respectively.
NASA Astrophysics Data System (ADS)
Shia, R.
2012-12-01
The haze layer in Titan's upper atmosphere absorbs 90% of the solar radiation, but is inefficient for trapping infrared radiation generated by the surface. Its existence partially compensates for the greenhouse warming and keeps the surface approximately 9°C cooler than would otherwise be expected from the greenhouse effect alone. This is the so called anti-greenhouse effect (McKay et al., 1991). This effect can be used to alleviate the warming caused by the increasing level of greenhouse gases in the Earth's atmosphere. A one-dimensional radiative convective model (Kasting et al., 2009 and references listed there) is used to investigate the anti-greenhouse effect in the Earth atmosphere. Increasing of solar absorbers, e.g. aerosols and ozone, in the stratosphere reduces the surface solar flux and cool the surface. However, the absorption of the solar flux also increases the temperature in the upper atmosphere, while reduces the temperature at the surface. Thus, the temperature profile of the atmosphere changes and the regions with positive vertical temperature gradient are expanded. According to Shia (2010) the radiative forcing of greenhouse gases is directly related to the vertical temperature gradient. Under the new temperature profile increases of greenhouse gases should have less warming effect. When the solar absorbers keep increasing, eventually most of the atmosphere has positive temperature gradient and increasing greenhouse gases would cool the surface (Shia, 2011). The doubling CO2 scenario in the Earth atmosphere is simulated for different levels of solar absorbers using the 1-D RC model. The model results show that if the solar absorber increases to a certain level that less than 50% solar flux reaching the surface, doubling CO2 cools the surface by about 2 C. This means if the snowball Earth is generated by solar absorbers in the stratosphere, increasing greenhouse gases would make it freeze even more (Shia, 2011). References: Kasting, J. et al. 2009, http://vpl.astro.washington.edu/sci/AntiModels/models09.html McKay, C.P. et al. 1991, Titan: Greenhouse and Anti-greenhouse Effects on Titan. Science 253 (5024), 1118-21 Shia, R. 2011, Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient, American Geophysical Union, Fall Meeting 2012, abstract #A51A-0274 Shia, R. 2010, Mechanism of Radiative Forcing of Greenhouse Gas and its Implication to the Global Warming, American Geophysical Union, Fall Meeting 2010, abstract #A11J-02
Dry coolers and air-condensing units (Review)
NASA Astrophysics Data System (ADS)
Milman, O. O.; Anan'ev, P. A.
2016-03-01
The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that global trends have a significant influence on the application of dry coolers in Russia, in view of the fact that some TPP have a surface condensers arrangement. The reasons that these systems are currently less efficient than the direct steam condensation in an air-cooled condenser are explained. It is shown that, in some cases, it is more reasonable to use mixing-type condensers in combination with a dry cooler. Measures for a full import substitution of steam exhaust heat removal systems are mentioned.
NASA Astrophysics Data System (ADS)
Waltham, Nathan J.; Sheaves, Marcus
2017-09-01
Understanding acute hyperthermic exposure risk to animals, including fish in tropical estuaries, is increasingly necessary under future climate change. To examine this hypothesis, fish (upper water column species - glassfish, Ambassis vachellii; river mullet, Chelon subviridis; diamond scale mullet, Ellochelon vaigiensis; and ponyfish, Leiognathus equulus; and lower water bottom dwelling species - whiting Sillago analis) were caught in an artificial tidal lake in tropical north Queensland (Australia), and transported to a laboratory tank to acclimate (3wks). After acclimation, fish (between 10 and 17 individuals each time) were transferred to a temperature ramping experimental tank, where a thermoline increased (2.5 °C/hr; which is the average summer water temperature increasing rate measured in the urban lakes) tank water temperature to establish threshold points where each fish species lost equilibrium (defined here as Acute Effect Temperature; AET). The coolest AET among all species was 33.1 °C (S. analis), while the highest was 39.9 °C (A. vachellii). High frequency loggers were deployed (November and March representing Austral summer) in the same urban lake where fish were sourced, to measure continuous (20min) surface (0.15 m) and bottom (0.1 m) temperature to derive thermal frequency curves to examine how often lake temperatures exceed AET thresholds. For most fish species examined, water temperature that could be lethal were exceeded at the surface, but rarely, if ever, at the bottom waters suggesting deep, cooler, water provides thermal refugia for fish. An energy-balance model was used to estimate daily mean lake water temperature with good accuracy (±1 °C; R2 = 0.91, modelled vs lake measured temperature). The model was used to predict climate change effects on lake water temperature, and the exceedance of thermal threshold change. A 2.3 °C climate warming (based on 2100 local climate prediction) raised lake water temperature by 1.3 °C. However, small as this increase might seem, it led to a doubling of time that water temperatures were in excess of AET thresholds at the surface, but also the bottom waters that presently provide thermal refugia for fish.
The X-ray ribs within the cocoon shock of Cygnus A
NASA Astrophysics Data System (ADS)
Duffy, R. T.; Worrall, D. M.; Birkinshaw, M.; Nulsen, P. E. J.; Wise, M. W.; de Vries, M. N.; Snios, B.; Mathews, W. G.; Perley, R. A.; Hardcastle, M. J.; Rafferty, D. A.; McNamara, B. R.; Edge, A. C.; McKean, J. P.; Carilli, C. L.; Croston, J. H.; Godfrey, L. E. H.; Laing, R. A.
2018-06-01
We use new and archival Chandra observations of Cygnus A, totalling ˜1.9 Ms, to investigate the distribution and temperature structure of gas lying within the projected extent of the cocoon shock and exhibiting a rib-like structure. We confirm that the X-rays are dominated by thermal emission with an average temperature of around 4 keV, and have discovered an asymmetry in the temperature gradient, with the southwestern part of the gas cooler than the rest by up to 2 keV. Pressure estimates suggest that the gas is a coherent structure of single origin located inside the cocoon, with a mass of roughly 2 × 1010 M⊙. We conclude that the gas is debris resulting from disintegration of the cool core of the Cygnus A cluster after the passage of the jet during the early stages of the current epoch of activity. The 4 keV gas now lies on the central inside surface of the hotter cocoon rim. The temperature gradient could result from an offset between the centre of the cluster core and the Cygnus A host galaxy at the switch-on of current radio activity.
Actively driven thermal radiation shield
Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.
2002-01-01
A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.
Simulated-Altitude Investigations of Performance of Tubular Aircraft Oil Coolers
1948-04-01
lb/see W. oil flow, lb/rein AP static-~ essure drop, in. water AT temperature change of air across oil cooler, OF v viscosity of air, lb/(ft)(sec) p...K67 17 APEENDIX B PRESSURE-RROP-CORRELATION2JWMXERS IN FLOW TEIKKE3 TU8ES Inasmuch as the air p? essure hop is a function of the wei~ht flow, the...that PO = PI and PL = P2. Cl’ LWa 1.8 () w 2.0 ‘1 PI APO-L =~ () —+1+C2’.Q—. —— - 1 PI P2 P1 P2 (3) Upon entr~oe into the passage, the static ~ essure
Effects of Solar Photovoltaic Panels on Roof Heat Transfer
NASA Technical Reports Server (NTRS)
Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.
2010-01-01
Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than under the tilted PV array. The maximum downward heat flux was 18.7 Watts per square meters for the exposed roof and 7.0 Watts per square meters under the tilted PV array, a 63% reduction due to the PV array. This study is unique as the impact of tilted and flush PV arrays could be compared against a typical exposed roof at the same roof for a commercial uninhabited building with exposed ceiling and consisting only of the building envelope. Our results indicate a more comfortable indoor environment in PV covered buildings without HVAC both in hotter and cooler seasons.
Ramos, Jorge E; Pecl, Gretta T; Moltschaniwskyj, Natalie A; Strugnell, Jan M; León, Rafael I; Semmens, Jayson M
2014-01-01
Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E) throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters.
Ramos, Jorge E.; Pecl, Gretta T.; Moltschaniwskyj, Natalie A.; Strugnell, Jan M.; León, Rafael I.; Semmens, Jayson M.
2014-01-01
Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E) throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters. PMID:25090250
Maulana, Frank; Weerasooriya, Dilooshi; Tesso, Tesfaye
2017-01-01
Cold temperature is an important abiotic stress affecting sorghum production in temperate regions. It reduces seed germination, seedling emergence and seedling vigor thus limiting the production of the crop both temporally and spatially. The objectives of this study were (1) to assess early season cold temperature stress response of sorghum germplasm from cooler environments and identify sources of tolerance for use in breeding programs, (2) to determine population structure and marker-trait association among these germplasms for eventual development of marker tools for improving cold tolerance. A total of 136 sorghum accessions from cooler regions of the world were phenotyped for seedling growth characteristics under cold temperature imposed through early planting. The accessions were genotyped using 67 simple sequence repeats markers spanning all ten linkage groups of sorghum, of which 50 highly polymorphic markers were used in the analysis. Genetic diversity and population structure analyses sorted the population into four subpopulations. Several accessions distributed in all subpopulations showed either better or comparable level of tolerance to the standard cold tolerance source, Shan qui red. Association analysis between the markers and seedling traits identified markers Xtxp 34, Xtxp 88, and Xtxp 319 as associated with seedling emergence, Xtxp 211 and Xtxp 304 with seedling dry weight, and Xtxp 20 with seedling height. The markers were detected on chromosomes previously found to harbor QTLs associated with cold tolerance in sorghum. Once validated these may serve as genomic tools in marker-assisted breeding or for screening larger pool of genotypes to identify additional sources of cold tolerance.
Maulana, Frank; Weerasooriya, Dilooshi; Tesso, Tesfaye
2017-01-01
Cold temperature is an important abiotic stress affecting sorghum production in temperate regions. It reduces seed germination, seedling emergence and seedling vigor thus limiting the production of the crop both temporally and spatially. The objectives of this study were (1) to assess early season cold temperature stress response of sorghum germplasm from cooler environments and identify sources of tolerance for use in breeding programs, (2) to determine population structure and marker-trait association among these germplasms for eventual development of marker tools for improving cold tolerance. A total of 136 sorghum accessions from cooler regions of the world were phenotyped for seedling growth characteristics under cold temperature imposed through early planting. The accessions were genotyped using 67 simple sequence repeats markers spanning all ten linkage groups of sorghum, of which 50 highly polymorphic markers were used in the analysis. Genetic diversity and population structure analyses sorted the population into four subpopulations. Several accessions distributed in all subpopulations showed either better or comparable level of tolerance to the standard cold tolerance source, Shan qui red. Association analysis between the markers and seedling traits identified markers Xtxp34, Xtxp88, and Xtxp319 as associated with seedling emergence, Xtxp211 and Xtxp304 with seedling dry weight, and Xtxp20 with seedling height. The markers were detected on chromosomes previously found to harbor QTLs associated with cold tolerance in sorghum. Once validated these may serve as genomic tools in marker-assisted breeding or for screening larger pool of genotypes to identify additional sources of cold tolerance. PMID:28536596
U. S. (United States) Air Force Fuel Cell Application Analysis.
1982-01-01
Desulfurizer and shift cata- lyst temperatures are maintained by controlling the amount of gas entering or by-passing the external water vaporizer. If...rich gas . The sul- fur content of the desulfurized fuel gas must be less than 1 ppm. Reforming takes place in a nickel catalyst bed, operating at... Control Supplemental Firing Fuel Cell Temperature Recirculation Air Temperature Control via Cooler Fan Speed Exhaust Gas Water Load Following damper
Ectotherm thermal stress and specialization across altitude and latitude.
Buckley, Lauren B; Miller, Ethan F; Kingsolver, Joel G
2013-10-01
Gradients of air temperature, radiation, and other climatic factors change systematically but differently with altitude and latitude. We explore how these factors combine to produce altitudinal and latitudinal patterns of body temperature, thermal stress, and seasonal overlap that differ markedly from patterns based solely on air temperature. We use biophysical models to estimate body temperature as a function of an organism's phenotype and environmental conditions (air and surface temperatures and radiation). Using grasshoppers as a case study, we compare mean body temperatures and the incidence of thermal extremes along altitudinal gradients both under past and current climates. Organisms at high elevation can experience frequent thermal stress despite generally cooler air temperatures due to high levels of solar radiation. Incidences of thermal stress have increased more rapidly than have increases in mean conditions due to recent climate change. Increases in air temperature have coincided with shifts in cloudiness and solar radiation, which can exacerbate shifts in body temperature. We compare altitudinal thermal gradients and their seasonality between tropical and temperate mountains to ask whether mountain passes pose a greater physiological barrier in the tropics (Janzen's hypothesis). We find that considering body temperature rather than air temperature generally increases the amount of overlap in thermal conditions along gradients in elevation and thus decreases the physiological barrier posed by tropical mountains. Our analysis highlights the limitations of predicting thermal stress based solely on air temperatures, and the importance of considering how phenotypes influence body temperatures.
Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect
NASA Astrophysics Data System (ADS)
Feng, Yuanli; Chen, Lingen; Meng, Fankai; Sun, Fengrui
2018-01-01
A thermodynamic model of a thermoelectric cooler driven by thermoelectric generator (TEG-TEC) device is established considering Thomson effect. The performance is analyzed and optimized using numerical calculation based on non-equilibrium thermodynamic theory. The influence characteristics of Thomson effect on the optimal performance and variable selection are investigated by comparing the condition with and without Thomson effect. The results show that Thomson effect degrades the performance of TEG-TEC device, it decreases the cooling capacity by 27 %, decreases the coefficient of performance (COP) by 19 %, decreases the maximum cooling temperature difference by 11 % when the ratio of thermoelectric elements number is 0.6, the cold junction temperature of thermoelectric cooler (TEC) is 285 K and the hot junction temperature of thermoelectric generator (TEG) is 450 K. Thomson effect degrades the optimal performance of TEG-TEC device, it decreases the maximum cooling capacity by 28 % and decreases the maximum COP by 28 % under the same junction temperatures. Thomson effect narrows the optimal variable range and optimal working range. In the design of the devices, limited-number thermoelectric elements should be more allocated appropriately to TEG when consider Thomson effect. The results may provide some guidelines for the design of TEG-TEC devices.
Improving Control in a Joule-Thomson Refrigerator
NASA Technical Reports Server (NTRS)
Borders, James; Pearson, David; Prina, Mauro
2005-01-01
A report discusses a modified design of a Joule-Thomson (JT) refrigerator under development to be incorporated into scientific instrumentation aboard a spacecraft. In most other JT refrigerators (including common household refrigerators), the temperature of the evaporator (the cold stage) is kept within a desired narrow range by turning a compressor on and off as needed. This mode of control is inadequate for the present refrigerator because a JT-refrigerator compressor performs poorly when the flow from its evaporator varies substantially, and this refrigerator is required to maintain adequate cooling power. The proposed design modifications include changes in the arrangement of heat exchangers, addition of a clamp that would afford a controlled heat leak from a warmer to a cooler stage to smooth out temperature fluctuations in the cooler stage, and incorporation of a proportional + integral + derivative (PID) control system that would regulate the heat leak to maintain the temperature of the evaporator within a desired narrow range while keeping the amount of liquid in the evaporator within a very narrow range in order to optimize the performance of the compressor. Novelty lies in combining the temperature- and cooling-power-regulating controls into a single control system.
NASA Astrophysics Data System (ADS)
Aziz, Azridjal; Mainil, Rahmat Iman; Mainil, Afdhal Kurniawan; Listiono, Hendra
2017-01-01
The aim of this work was to determine the effects of water temperature and air stream velocity on the performance of direct evaporative air cooler (DEAC) for thermal comfort. DEAC system requires the lower cost than using vapor compression refrigeration system (VCRS), because VCRS use a compressor to circulate refrigerant while DEAC uses a pump for circulating water in the cooling process to achieve thermal comfort. The study was conducted by varying the water temperature (10°C, 20°C, 30°C, 40°C, and 50°C) at different air stream velocity (2,93 m/s, 3.9 m/s and 4,57 m/s). The results show that the relative humidity (RH) in test room tends to increase with the increasing of water temperature, while on the variation of air stream velocity, RH remains constant at the same water temperature, because the amount of water that evaporates increase with the increasing water temperature. The cooling effectiveness (CE) increase with the increasing of air stream velocity where the higher CE was obtained at lower water temperature (10°C) with high air velocity (4,57m/s). The lower room temperature (26°C) was achieved at water temperature 10°C and air stream velocity 4.57 m/s with the relative humidity 85,87%. DEAC can be successfully used in rooms that have smoothly air circulation to fulfill the indoor thermal comfort.
NASA Astrophysics Data System (ADS)
Drobinski, P.; Alonzo, B.; Bastin, S.; Silva, N. Da; Muller, C.
2016-04-01
Expected changes to future extreme precipitation remain a key uncertainty associated with anthropogenic climate change. Extreme precipitation has been proposed to scale with the precipitable water content in the atmosphere. Assuming constant relative humidity, this implies an increase of precipitation extremes at a rate of about 7% °C-1 globally as indicated by the Clausius-Clapeyron relationship. Increases faster and slower than Clausius-Clapeyron have also been reported. In this work, we examine the scaling between precipitation extremes and temperature in the present climate using simulations and measurements from surface weather stations collected in the frame of the HyMeX and MED-CORDEX programs in Southern France. Of particular interest are departures from the Clausius-Clapeyron thermodynamic expectation, their spatial and temporal distribution, and their origin. Looking at the scaling of precipitation extreme with temperature, two regimes emerge which form a hook shape: one at low temperatures (cooler than around 15°C) with rates of increase close to the Clausius-Clapeyron rate and one at high temperatures (warmer than about 15°C) with sub-Clausius-Clapeyron rates and most often negative rates. On average, the region of focus does not seem to exhibit super Clausius-Clapeyron behavior except at some stations, in contrast to earlier studies. Many factors can contribute to departure from Clausius-Clapeyron scaling: time and spatial averaging, choice of scaling temperature (surface versus condensation level), and precipitation efficiency and vertical velocity in updrafts that are not necessarily constant with temperature. But most importantly, the dynamical contribution of orography to precipitation in the fall over this area during the so-called "Cevenoles" events, explains the hook shape of the scaling of precipitation extremes.
The next generation Ball 35 K cryocooler
NASA Astrophysics Data System (ADS)
Marquardt, E. D.; Gully, W. J.; Glaister, D. S.; Wright, G. P.
2002-05-01
This paper describes the development and performance of the Ball Aerospace (BATC) next generation cryocooler, also known as the SB235. Significant improvements in mass, power efficiency, and producibility have been incorporated into the SB235 design and development. The SB235 has twice the capacity of the current cryocoolers but with nearly the same mass and volume. It is over 25% more power efficient than BATC's current cryocoolers, which are industry leaders at temperatures below 60 K. The cooler has been redesigned at a component and subassembly level with an emphasis on producibility and repeatability. The cooler has 30% fewer parts than our current coolers. This, combined with significant improvements in procedures such as alignment, has resulted in a 50% reduction in production schedule. The SB235 has nominally been designed for 2-stage cooling with a design point of 1.0 W at 35 K while simultaneously cooling 2.0 W at 85 K. The cooler is ideally suited for long wavelength, MCT infrared sensor applications such as the Air Force SBIRS Low program. The performance of the SB235 cold head has been verified and integration with the SB235 compressor is nearly complete. Environmental testing will be completed by September 2001, and the proto-flight level cryocooler will enter life testing in October 2001.
Haze production rates in super-Earth and mini-Neptune atmosphere experiments
NASA Astrophysics Data System (ADS)
Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique
2018-04-01
Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (<800 K), smaller (<0.3× Jupiter's mass) exoplanets. It remains unclear whether the aerosols muting the spectroscopic features of exoplanet atmospheres are condensate clouds or photochemical hazes1-3, which is difficult to predict from theory alone4. Here, we present laboratory haze simulation experiments that probe a broad range of atmospheric parameters relevant to super-Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.
Haze production rates in super-Earth and mini-Neptune atmosphere experiments
NASA Astrophysics Data System (ADS)
Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique
2018-03-01
Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (<800 K), smaller (<0.3× Jupiter's mass) exoplanets. It remains unclear whether the aerosols muting the spectroscopic features of exoplanet atmospheres are condensate clouds or photochemical hazes1-3, which is difficult to predict from theory alone4. Here, we present laboratory haze simulation experiments that probe a broad range of atmospheric parameters relevant to super-Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.
NASA Astrophysics Data System (ADS)
Price, J.; Lakshmi, V.
2013-12-01
The advancement of remote sensing technology has led to better understanding of the spatial and temporal variation in many physical and biological parameters, such as, temperature, salinity, soil moisture, vegetation cover, and community composition. This research takes a novel approach in understanding the temporal and spatial variability of mussel body growth using remotely sensed surface temperatures and chlorophyll-a concentration. Within marine rocky intertidal ecosystems, temperature and food availability influence species abundance, physiological performance, and distribution of mussel species. Current methods to determine the temperature mussel species experience range from in-situ field observations, temperature loggers, temperature models, and using other temperature variables. However, since the temperature that mussel species experience is different from the air temperature due to physical and biological characteristics (size, color, gaping, etc.), it is difficult to accurately predict the thermal stresses they experience. Methods to determine food availability (chlorophyll-a concentration used as a proxy) for mussel species are mostly done at specific study sites using water sampling. This implies that analysis of temperature and food availability across large spatial scales and long temporal scales is not a trivial task given spatial heterogeneity. However, this is an essential step in determination of the impact of changing climate on vulnerable ecosystems such as the marine rocky intertidal system. The purpose of this study was to investigate the potential of using remotely sensed surface temperatures and chlorophyll-a concentration to better understand the temporal and spatial variability of the body growth of the ecologically and economically important rocky intertidal mussel species, Mytilus californianus. Remotely sensed sea surface temperature (SST), land surface temperature (LST), intertidal surface temperature (IST), chlorophyll-a concentration, and mussel body growth were collected for eight study sites along the coast of Oregon, USA for a 12 year period from 2000 through 2011. Differences in surface temperatures, chlorophyll-a concentration, and mussel body growth were seen across study sites. The northernmost study site, Cape Meares, had the highest average SST and the lowest average chlorophyll-a concentration. Interestingly, it also had high average mussel growth. Whereas, Cape Arago and Cape Blanco, the two southernmost study sites, had the lowest average SST and lowest average mussel growth, but had higher average chlorophyll-a concentrations. Furthermore, some study sites showed that mussel growth was related to temperature and at other study sites chlorophyll-a concentration was related to mussel growth. The strongest relationship between either temperature or chlorophyll-a concentration, was found at Boiler Bay, Oregon. Approximately 81% of the variations in mean size-specific mussel growth was explained by mean annual LST anomalies. This means that at Boiler Bay, cooler LST years resulted in less mussel growth and warmer years resulted in higher mussel growth. Results suggest that SST may influence mussel body growth more than chlorophyll-a concentration.
NASA Astrophysics Data System (ADS)
Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean
2014-05-01
Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.
Sub-to super-ambient temperature programmable microfabricated gas chromatography column
Robinson, Alex L.; Anderson, Lawrence F.
2004-03-16
A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.
Hower, J.C.; Trimble, A.S.; Eble, C.F.; Palmer, C.A.; Kolker, A.
1999-01-01
Fly ash samples were collected in November and December of 1994, from generating units at a Kentucky power station using high- and low-sulfur feed coals. The samples are part of a two-year study of the coal and coal combustion byproducts from the power station. The ashes were wet screened at 100, 200, 325, and 500 mesh (150, 75, 42, and 25 ??m, respectively). The size fractions were then dried, weighed, split for petrographic and chemical analysis, and analyzed for ash yield and carbon content. The low-sulfur "heavy side" and "light side" ashes each have a similar size distribution in the November samples. In contrast, the December fly ashes showed the trend observed in later months, the light-side ash being finer (over 20 % more ash in the -500 mesh [-25 ??m] fraction) than the heavy-side ash. Carbon tended to be concentrated in the coarse fractions in the December samples. The dominance of the -325 mesh (-42 ??m) fractions in the overall size analysis implies, though, that carbon in the fine sizes may be an important consideration in the utilization of the fly ash. Element partitioning follows several patterns. Volatile elements, such as Zn and As, are enriched in the finer sizes, particularly in fly ashes collected at cooler, light-side electrostatic precipitator (ESP) temperatures. The latter trend is a function of precipitation at the cooler-ESP temperatures and of increasing concentration with the increased surface area of the finest fraction. Mercury concentrations are higher in high-carbon fly ashes, suggesting Hg adsorption on the fly ash carbon. Ni and Cr are associated, in part, with the spinel minerals in the fly ash. Copyright ?? 1999 Taylor & Francis.
Evans, Michelle V.; McClanahan, Taylor D.; Miazgowicz, Kerri L.; Tesla, Blanka
2017-01-01
Most statistical and mechanistic models used to predict mosquito-borne disease transmission incorporate climate drivers of disease transmission by utilizing environmental data collected at geographic scales that are potentially coarser than what mosquito populations may actually experience. Temperature and relative humidity can vary greatly between indoor and outdoor environments, and can be influenced strongly by variation in landscape features. In the Aedes albopictus system, we conducted a proof-of-concept study in the vicinity of the University of Georgia to explore the effects of fine-scale microclimate variation on mosquito life history and vectorial capacity (VC). We placed Ae. albopictus larvae in artificial pots distributed across three replicate sites within three different land uses–urban, suburban, and rural, which were characterized by high, intermediate, and low proportions of impervious surfaces. Data loggers were placed into each larval environment and in nearby vegetation to record daily variation in water and ambient temperature and relative humidity. The number of adults emerging from each pot and their body size and sex were recorded daily. We found mosquito microclimate to significantly vary across the season as well as with land use. Urban sites were in general warmer and less humid than suburban and rural sites, translating into decreased larval survival, smaller body sizes, and lower per capita growth rates of mosquitoes on urban sites. Dengue transmission potential was predicted to be higher in the summer than the fall. Additionally, the effects of land use on dengue transmission potential varied by season. Warm summers resulted in a higher predicted VC on the cooler, rural sites, while warmer, urban sites had a higher predicted VC during the cooler fall season. PMID:28558030
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, A.
1994-03-01
The history of the earth's sea-surface temperature (SST) in equatorial regions during the Tertiary is unsettled because of uncertainty as to the presence and extent of glaciers during the Paleogene. The [sup 16]O trapped in glaciers and subsequently released back to the ocean basins as meltwater during interglacials affects the [sup 18]O/[sup 16]O ratio of sea water, one of the variables that must be known for oxygen isotope paleotemperature analysis of calcareous fossils. Estimates of SST range from [approximately]18 to 20 C, assuming an ice-free earth, to [approximately]28 C assuming glaciers were present in the Paleogene. Low latitude SST presentlymore » averages 28C, so the former estimate gives a value 8 to 10 C cooler than present, while the latter gives a value as warm or slightly warmer than present. The figures are important for interpreting terrestrial vegetational history because the temperature differential between low and high latitudes is a major factor in determining global climates through the control of poleward transfer of heat. The middle( ) to late Eocene Gatuncillo Formation palynoflora of Panama was deposited at the ocean-continental interface at [approximately]9[degrees]N latitude. The individual components and paleocommunities are distinctly tropical and similar to the present vegetation along the Atlantic coast of southern Central America. This is consistent with data emerging from other recently studied tropical coastal biotas and represents a contribution from paleobiology toward eventually resolving the problem of Eocene equatorial marine environments. Collectively, the evidence is beginning to favor a model of Eocene SST near present values. 50 refs., 1 fig., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline
We combine optical, near-infrared, and mid-infrared spectra and photometry to construct expanded spectral energy distributions for 145 field age (>500 Myr) and 53 young (lower age estimate <500 Myr) ultracool dwarfs (M6-T9). This range of spectral types includes very low mass stars, brown dwarfs, and planetary mass objects, providing fundamental parameters across both the hydrogen and deuterium burning minimum masses for the largest sample assembled to date. A subsample of 29 objects have well constrained ages as probable members of a nearby young moving group. We use 182 parallaxes and 16 kinematic distances to determine precise bolometric luminosities (L{sub bol})more » and radius estimates from evolutionary models give semi-empirical effective temperatures (T{sub eff}) for the full range of young and field age late-M, L, and T dwarfs. We construct age-sensitive relationships of luminosity, temperature, and absolute magnitude as functions of spectral type and absolute magnitude to disentangle the effects of degenerate physical parameters such as T{sub eff}, surface gravity, and clouds on spectral morphology. We report bolometric corrections in J for both field age and young objects and find differences of up to a magnitude for late-L dwarfs. Our correction in Ks shows a larger dispersion but not necessarily a different relationship for young and field age sequences. We also characterize the NIR–MIR reddening of low gravity L dwarfs and identify a systematically cooler T{sub eff} of up to 300 K from field age objects of the same spectral type and 400 K cooler from field age objects of the same M{sub H} magnitude.« less
Murdock, Courtney C; Evans, Michelle V; McClanahan, Taylor D; Miazgowicz, Kerri L; Tesla, Blanka
2017-05-01
Most statistical and mechanistic models used to predict mosquito-borne disease transmission incorporate climate drivers of disease transmission by utilizing environmental data collected at geographic scales that are potentially coarser than what mosquito populations may actually experience. Temperature and relative humidity can vary greatly between indoor and outdoor environments, and can be influenced strongly by variation in landscape features. In the Aedes albopictus system, we conducted a proof-of-concept study in the vicinity of the University of Georgia to explore the effects of fine-scale microclimate variation on mosquito life history and vectorial capacity (VC). We placed Ae. albopictus larvae in artificial pots distributed across three replicate sites within three different land uses-urban, suburban, and rural, which were characterized by high, intermediate, and low proportions of impervious surfaces. Data loggers were placed into each larval environment and in nearby vegetation to record daily variation in water and ambient temperature and relative humidity. The number of adults emerging from each pot and their body size and sex were recorded daily. We found mosquito microclimate to significantly vary across the season as well as with land use. Urban sites were in general warmer and less humid than suburban and rural sites, translating into decreased larval survival, smaller body sizes, and lower per capita growth rates of mosquitoes on urban sites. Dengue transmission potential was predicted to be higher in the summer than the fall. Additionally, the effects of land use on dengue transmission potential varied by season. Warm summers resulted in a higher predicted VC on the cooler, rural sites, while warmer, urban sites had a higher predicted VC during the cooler fall season.
Thermal architecture of the SPICA/SAFARI instrument
NASA Astrophysics Data System (ADS)
Charles, Ivan; Duband, Lionel; Duval, Jean-Marc; Jackson, Brian; Jellema, Willem; Kooijman, Peter Paul; Luchier, Nicolas; Tirolien, Thierry; van Weers, Henk
2012-09-01
The SAFARI instrument is a far infrared imaging spectrometer that is a core instrument of the SPICA mission. Thanks to the large (3 meter) SPICA cold telescope, the ultra sensitive detectors and a powerful Fourier Transform Spectrometer, this instrument will give access to the faintest light never observed in the 34 μm - 210 μm bandwidth with a high spectral resolution. To achieve this goal, TES detectors, that need to be cooled at a temperature as low as 50 mK, have been chosen. The thermal architecture of the SAFARI focal plane unit (FPU) which fulfils the TES detector thermal requirements is presented. In particular, an original 50 mK cooler concept based on a sorption cooler in series with an adiabatic demagnetization refrigerator will be used. The thermal design of the detector focal plane array (FPA) that uses three temperature stages to limit the loads on the lowest temperature stage, will be also described. The current SAFARI thermal budget estimations are presented and discussed regarding the limited SPICA allocations. Finally, preliminary thermal sensitivity analysis dealing with thermal stability requirements is presented.