Sample records for cooling load reduction

  1. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehiclemore » climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.« less

  2. Design and Implementation of a Thermal Load Reduction System in a Hyundai PHEV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreutzer, Cory J; Rugh, John P

    Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles including limited vehicle range and the elevated cost of EDVs as compared to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. In order to minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata PHEV. Technologies that impact vehicle cabin heating in cold weather conditions andmore » cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces and increased insulation demonstrated significant reductions in energy use from steady-state heating, including a 29% - 59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreutzer, Cory J.; Rugh, John; Tomerlin, Jeff

    Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabinmore » cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces demonstrated significant reductions in energy use from steady-state heating, including a 29%-59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Jon; Booten, Chuck

    Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity.more » The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.« less

  5. Small Scale Solar Cooling Unit in Climate Conditions of Latvia: Environmental and Economical Aspects

    NASA Astrophysics Data System (ADS)

    Jaunzems, Dzintars; Veidenbergs, Ivars

    2010-01-01

    The paper contributes to the analyses from the environmental and economical point of view of small scale solar cooling system in climate conditions of Latvia. Cost analyses show that buildings with a higher cooling load and full load hours have lower costs. For high internal gains, cooling costs are around 1,7 €/kWh and 2,5 €/kWh for buildings with lower internal gains. Despite the fact that solar cooling systems have significant potential to reduce CO2 emissions due to a reduction of electricity consumption, the economic feasibility and attractiveness of solar cooling system is still low.

  6. Thermal Design of Vapor Cooling of Flight Vehicle Structures Using LH2 Boil-Off

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Zoeckler, Joseph

    2015-01-01

    Using hydrogen boil-off vapor to cool the structure of a flight vehicle cryogenic upper stage can reduce heat loads to the stage and increase the usable propellant in the stage or extend the life of the stage. The hydrogen vapor can be used to absorb incoming heat as it increases in temperature before being vented overboard. In theory, the amount of heat leaking into the hydrogen tank from the structure will be reduced if the structure is cooled using the propellant boil-off vapor. However, the amount of boil-off vapor available to be used for cooling and the reduction in heat leak to the propellant tank are dependent to each other. The amount of heat leak reduction to the LH2 tank also depends on the total heat load on the stage and the vapor cooling configurations.

  7. Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, J.; Kreutzer, C.; Jeffers, M.

    Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loadsmore » during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection. Tests conducted at NREL's Vehicle Testing and Integration Facility using long-haul truck cab sections, 'test bucks,' showed a 31.1% of maximum possible reduction in rise over ambient temperature and a 20.8% reduction in daily electric air conditioning energy use by switching from black to white paint. Additionally, changing from blue to an advanced color-matched solar reflective blue paint resulted in a 7.3% reduction in daily electric air conditioning energy use for weather conditions tested in Colorado. National-level modeling results using weather data from major U.S. cities indicated that the increase in heating loads due to lighter paint colors is much smaller than the reduction in cooling loads.« less

  8. Design, fabrication and test of Load Bearing multilayer insulation to support a broad area cooled shield

    NASA Astrophysics Data System (ADS)

    Dye, S. A.; Johnson, W. L.; Plachta, D. W.; Mills, G. L.; Buchanan, L.; Kopelove, A. B.

    2014-11-01

    Improvements in cryogenic propellant storage are needed to achieve reduced or Zero Boil Off of cryopropellants, critical for long duration missions. Techniques for reducing heat leak into cryotanks include using passive multi-layer insulation (MLI) and vapor cooled or actively cooled thermal shields. Large scale shields cannot be supported by tank structural supports without heat leak through the supports. Traditional MLI also cannot support shield structural loads, and separate shield support mechanisms add significant heat leak. Quest Thermal Group and Ball Aerospace, with NASA SBIR support, have developed a novel Load Bearing multi-layer insulation (LBMLI) capable of self-supporting thermal shields and providing high thermal performance. We report on the development of LBMLI, including design, modeling and analysis, structural testing via vibe and acoustic loading, calorimeter thermal testing, and Reduced Boil-Off (RBO) testing on NASA large scale cryotanks. LBMLI uses the strength of discrete polymer spacers to control interlayer spacing and support the external load of an actively cooled shield and external MLI. Structural testing at NASA Marshall was performed to beyond maximum launch profiles without failure. LBMLI coupons were thermally tested on calorimeters, with superior performance to traditional MLI on a per layer basis. Thermal and structural tests were performed with LBMLI supporting an actively cooled shield, and comparisons are made to the performance of traditional MLI and thermal shield supports. LBMLI provided a 51% reduction in heat leak per layer over a previously tested traditional MLI with tank standoffs, a 38% reduction in mass, and was advanced to TRL5. Active thermal control using LBMLI and a broad area cooled shield offers significant advantages in total system heat flux, mass and structural robustness for future Reduced Boil-Off and Zero Boil-Off cryogenic missions with durations over a few weeks.

  9. Experiences in solar cooling systems

    NASA Astrophysics Data System (ADS)

    Ward, D. S.

    The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.

  10. Design and Implementation of a Thermal Load Reduction System for a Hyundai Sonata PHEV for Improved Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugh, John P; Kreutzer, Cory J; Scott, Matthew

    Increased adoption of electric-drive vehicles requires overcoming hurdles including limited vehicle range. Vehicle cabin heating and cooling demand for occupant climate control requires energy from the main battery and has been shown to significantly degrade vehicle range. During peak cooling and heating conditions, climate control can require as much as or more energy than propulsion. As part of an ongoing project, the National Renewable Energy Laboratory and project partners Hyundai America Technical Center, Inc., Gentherm, Pittsburgh Glass Works, PPG Industries, Sekisui, 3 M, and Hanon Systems developed a thermal load reduction system to reduce the range penalty associated with electricmore » vehicle climate control. Solar reflective paint, solar control glass, heated and cooled/ventilated seats, heated surfaces, and a heated windshield with door demisters were integrated into a Hyundai Sonata plug-in hybrid electric vehicle. Cold weather field-testing was conducted in Fairbanks, Alaska, and warm weather testing was conducted in Death Valley, California, to assess the system performance in comparison to the baseline production vehicle. In addition, environmental chamber testing at peak heating and cooling conditions was performed to assess the performance of the system in standardized conditions compared to the baseline. Experimental results are presented in this paper, providing quantitative data to automobile manufacturers on the impact of climate control thermal load reduction technologies to increase the advanced thermal technology adoption and market penetration of electric drive vehicles.« less

  11. Performance Evaluation of a Thermal Load Reduction System in a Hyundai Sonata PHEV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreutzer, Cory J; Rugh, John P; Titov, Eugene V

    Increased adoption of electric-drive vehicles (EDVs) requires overcoming hurdles including limited vehicle range. Vehicle cabin heating and cooling demand for occupant climate control requires energy from the main battery and has been shown to significantly degrade vehicle range. During peak cooling and heating conditions, climate control can require as much or more energy as propulsion. As part of an ongoing project, NREL and project partners Hyundai America Technical Center, Inc. (HATCI), Gentherm , Pittsburgh Glass Works (PGW), PPG Industries, Sekisui, 3M, and Hanon Systems developed a thermal load reduction system in order to reduce the range penalty associated with electricmore » vehicle climate control. Solar reflective paint, solar control glass, heated and cooled/ventilated seats, heated surfaces, and heated windshield with door demisters were integrated into a Hyundai Sonata plug-in hybrid electric vehicle (PHEV). Cold weather field-testing was conducted in Fairbanks, Alaska while warm weather testing was conducted in Death Valley, California to assess the system performance in comparison to the baseline production vehicle. In addition, environmental chamber testing at peak heating and cooling conditions was performed to assess the performance of the system in standardized conditions compared to the baseline. Experimental results are presented in this paper providing quantitative data to automobile manufacturers on the impact of climate control thermal load reduction technologies to increase the advanced thermal technology adoption and market penetration of electric drive vehicles.« less

  12. Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See

    2009-07-01

    The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.

  13. Comparative life cycle assessment of standard and green roofs.

    PubMed

    Saiz, Susana; Kennedy, Christopher; Bass, Brad; Pressnail, Kim

    2006-07-01

    Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.

  14. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    NASA Astrophysics Data System (ADS)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2018-02-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  15. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Zhu, Linxiao; Raman, Aaswath; Fan, Shanhui

    2016-12-01

    Radiative cooling technology utilizes the atmospheric transparency window (8-13 μm) to passively dissipate heat from Earth into outer space (3 K). This technology has attracted broad interests from both fundamental sciences and real world applications, ranging from passive building cooling, renewable energy harvesting and passive refrigeration in arid regions. However, the temperature reduction experimentally demonstrated, thus far, has been relatively modest. Here we theoretically show that ultra-large temperature reduction for as much as 60 °C from ambient is achievable by using a selective thermal emitter and by eliminating parasitic thermal load, and experimentally demonstrate a temperature reduction that far exceeds previous works. In a populous area at sea level, we have achieved an average temperature reduction of 37 °C from the ambient air temperature through a 24-h day-night cycle, with a maximal reduction of 42 °C that occurs when the experimental set-up enclosing the emitter is exposed to peak solar irradiance.

  16. Sleeper Cab Climate Control Load Reduction for Long-Haul Truck Rest Period Idling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, J. A.; Kreutzer, C.; Adelman, S.

    2015-04-29

    Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy’s National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, theirmore » effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. For this study, load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, and conductive pathways. The technologies selected for a complete-cab package of technologies were “ultra-white” paint, advanced insulation, and advanced curtains. To measure the impact of these technologies, a nationally-averaged solar-weighted reflectivity long-haul truck paint color was determined and applied to the baseline test vehicle. Using the complete-cab package of technologies, electrical energy consumption for long-haul truck daytime rest period air conditioning was reduced by at least 35% for summer weather conditions in Colorado. The National Renewable Energy Laboratory's CoolCalc model was then used to extrapolate the performance of the thermal load reduction technologies nationally for 161 major U.S. cities using typical weather conditions for each location over an entire year.« less

  17. Reduction of characteristic RL time for fast, efficient magnetic levitation

    NASA Astrophysics Data System (ADS)

    Li, Yuqing; Feng, Guosheng; Wang, Xiaofeng; Wu, Jizhou; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2017-09-01

    We demonstrate the reduction of characteristic time in resistor-inductor (RL) circuit for fast, efficient magnetic levitation according to Kirchhoff's circuit laws. The loading time is reduced by a factor of ˜4 when a high-power resistor is added in series with the coils. By using the controllable output voltage of power supply and voltage of feedback circuit, the loading time is further reduced by ˜ 3 times. The overshoot loading in advance of the scheduled magnetic field gradient is equivalent to continuously adding a resistor without heating. The magnetic field gradient with the reduced loading time is used to form the upward magnetic force against to the gravity of the cooled Cs atoms, and we obtain an effectively levitated loading of the Cs atoms to a crossed optical dipole trap.

  18. Influence of Shading on Cooling Energy Demand

    NASA Astrophysics Data System (ADS)

    Rabczak, Sławomir; Bukowska, Maria; Proszak-Miąsik, Danuta; Nowak, Krzysztof

    2017-10-01

    The article presents an analysis of the building cooling load taking into account the variability of the factors affecting the size of the heat gains. In order to minimize the demand for cooling, the effect of shading elements installed on the outside on the windows and its effect on size of the cooling capacity of air conditioning system for the building has been estimated. Multivariate building cooling load calculations to determine the size of the reduction in cooling demand has derived. Determination of heat gain from the sun is laborious, but gives a result which reflects the influence of the surface transparent partitions, devices used as sunscreen and its location on the building envelope in relation to the world, as well as to the internal heat gains has great attention in obtained calculation. In this study, included in the balance sheet of solar heat gains are defined in three different shading of windows. Calculating the total demand cooling is made for variants assuming 0% shading baffles transparent, 50% shading baffles transparent external shutters at an angle of 45 °, 100% shading baffles transparent hours 12 from the N and E and from 12 from the S and W of the outer slat blinds. The calculation of the average hourly cooling load was taken into account the option assuming the hypothetical possibility of default by up to 10% of the time assumed the cooling season temperatures in the rooms. To reduce the consumption of electricity energy in the cooling system of the smallest variant identified the need for the power supply for the operation of the cooling system. Also assessed the financial benefits of the temporary default of comfort.

  19. The effect of alcohol blends on the performance of an air cooled Rotary Trochoidal Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutman, M.; Iuster, I.

    Results obtained from tests on an air cooled Rotary Trochoidal Engine fueled with a gasoline-alcohol mixture, without modification of the carburetor, are presented in this paper. The tests were performed with one and two spark plugs. Amongst the obtained results, lower thermal load, better economy and improvement in cycling uniformity when running with two spark plugs were observed. The observed reduction in the rotor housing wall temperature and in the oil sump temperature presents particular advantages for an air cooled engine.

  20. The effect of alcohol blends on the performance of an air cooled rotary trochoidal engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutman, M.; Iuster, I.

    Results obtained from tests on an air cooled Rotary Trochoidal Engine fueled with a gasoline-alcohol mixture, without modification of the carburetor, are presented in this paper. The tests were performed with one and two spark plugs. Amongst the obtained results, lower thermal load, better economy and improvement in cycling uniformity when running with two spark plugs were observed. The observed reduction in the rotor housing wall temperature and in the oil sump temperature presents particular advantages for an air cooled engine.

  1. Integration of active and passive cool roof system for attic temperature reduction

    NASA Astrophysics Data System (ADS)

    Yew, Ming Chian; Yew, Ming Kun; Saw, Lip Huat; Durairaj, Rajkumar

    2017-04-01

    The aim of this project is to study the capability of cool roof system in the reduction of heat transmission through metal roof into an attic. The cool roof system is designed in active and passive methods to reduce the thermal loads imposed to a building. Two main features are introduced to this cool roof system, which is thermal insulation coating (TIC) and moving air cavity (MAC) that served as active and passive manner, respectively. For MAC, two designs are introduced. Normal MAC is fabricated by six aluminium tubes whereby each aluminium tube is made up by sticking up of five aluminium cans. While improved MAC is also made by six aluminium tubes whereby each aluminium tube is custom made from steel rods and aluminium foils. MAC provides ventilation and heat reflection under the metal roof before the heat transfer into attic. It also coupled with three solar powered fans to increase heat flow inside the channel. The cool roof that incorporated TIC, MAC with solar powered fans and opened attic inlet showed a significant improvement with a reduction of up to 14 °C in the attic temperature compared to conventional roof system.

  2. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, Jason Aaron; Kekelia, Bidzina; Tomerlin, Jeff

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers willmore » enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation with a reflective barrier to the thermal load reduction package resulted in a 53.3% reduction in the overall heat transfer coefficient.« less

  3. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, Jason; Kekelia, Bidzina; Tomerlin, Jeff

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers willmore » enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation with a reflective barrier to the thermal load reduction package resulted in a 53.3% reduction in the overall heat transfer coefficient.« less

  4. Thermal performance of phase change wallboard for residential cooling application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feustel, H.E.; Stetiu, C.

    1997-04-01

    Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two importantmore » advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.« less

  5. Thermal Load Considerations for Detonative Combustion-Based Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Perkins, H. Douglas

    2004-01-01

    An analysis was conducted to assess methods for, and performance implications of, cooling the passages (tubes) of a pulse detonation-based combustor conceptually installed in the core of a gas turbine engine typical of regional aircraft. Temperature-limited material stress criteria were developed from common-sense engineering practice, and available material properties. Validated, one-dimensional, numerical simulations were then used to explore a variety of cooling methods and establish whether or not they met the established criteria. Simulation output data from successful schemes were averaged and used in a cycle-deck engine simulation in order to assess the impact of the cooling method on overall performance. Results were compared to both a baseline engine equipped with a constant-pressure combustor and to one equipped with an idealized detonative combustor. Major findings indicate that thermal loads in these devices are large, but potentially manageable. However, the impact on performance can be substantial. Nearly one half of the ideally possible specific fuel consumption (SFC) reduction is lost due to cooling of the tubes. Details of the analysis are described, limitations are presented, and implications are discussed.

  6. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, Matthew A.; Chaney, Larry; Rugh, John P.

    When operated, the climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the heating, ventilating, and air conditioning system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward gridmore » connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort. Experimental evaluations of zonal heating strategies demonstrated a 5.5% to 28.5% reduction in cabin heating energy over a 20-minute warm-up. Vehicle simulations over various drive cycles show a 6.9% to 18.7% improvement in EV range over baseline heating using the most promising zonal heating strategy investigated. A national-level analysis was conducted to determine the overall national impact. If all vehicles used the best zonal strategy, the range would be improved by 7.1% over the baseline heating range. This is a 33% reduction in the range penalty for heating.« less

  7. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, Matthew; Chaney, Lawrence; Rugh, John

    When operated, the climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the heating, ventilating, and air conditioning system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward gridmore » connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort. Experimental evaluations of zonal heating strategies demonstrated a 5.5% to 28.5% reduction in cabin heating energy over a 20-minute warm-up. Vehicle simulations over various drive cycles show a 6.9% to 18.7% improvement in EV range over baseline heating using the most promising zonal heating strategy investigated. A national-level analysis was conducted to determine the overall national impact. If all vehicles used the best zonal strategy, the range would be improved by 7.1% over the baseline heating range. This is a 33% reduction in the range penalty for heating.« less

  8. The energy performance of thermochromic glazing

    NASA Astrophysics Data System (ADS)

    Diamantouros, Pavlos

    This study investigated the energy performance of thermochromic glazing. It was done by simulating the model of a small building in a highly advanced computer program (EnergyPlus - U.S. DOE). The physical attributes of the thermochromic samples examined came from actual laboratory samples fabricated in UCL's Department of Chemistry (Prof I. P. Parkin). It was found that they can substantially reduce cooling loads while requiring the same heating loads as a high end low-e double glazing. The reductions in annual cooling energy required were in the 20%-40% range depending on sample, location and building layout. A series of sensitivity analyses showed the importance of switching temperature and emissivity factor in the performance of the glazing. Finally an ideal pane was designed to explore the limits this technology has to offer.

  9. Space Cooling in North America: Market Overview and Future Impacts

    DOE PAGES

    Baxter, Van D; Khowailed, Gannate; Sikes, Karen; ...

    2015-01-01

    The North American space cooling market, particularly in the United States, is experiencing shifts in regulatory regimes, population patterns, economic conditions, and consumer preferences-all catalyzed further by rapid technological innovation. Taken together these factors may result in a slight reduction in air conditioning shipments in the short term, however the longer term trends indicate a continuing increase in the number of air conditioning systems in the U.S. markets. These increases will be greatest in the warmer and more humid (e.g. higher load demand) regions. This will result in increasing pressure on the U.S. electricity supply system to meet the energymore » peak and consumption demands for building space cooling.« less

  10. Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.

    2014-09-01

    This study investigates a combined technique of both an active flow control concept that uses counterflowing jets and an aerodisk spike as a new method to significantly modify external flowfields and heat reduction in a hypersonic flow around a nose cone. The coolant gas (Carbon Dioxide and Helium) is chosen to inject from the tip of the nose cone to cool the recirculation region. The gases are considered to be ideal, and the computational domain is axisymmetric. The analysis shows that the counterflowing jet has significant effects on the flowfield and reduces the heat load over the nose cone. The Helium jet is found to have a relatively more effective cooling performance.

  11. A novel stochastic modeling method to simulate cooling loads in residential districts

    DOE PAGES

    An, Jingjing; Yan, Da; Hong, Tianzhen; ...

    2017-09-04

    District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less

  12. A novel stochastic modeling method to simulate cooling loads in residential districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Jingjing; Yan, Da; Hong, Tianzhen

    District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less

  13. Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2010-01-01

    The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads at a high altitude, with an anchored computational methodology. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests, and deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line-jump is the peak side load physics for the round, slightly our-of-round, and more out-of-round cases, and the peak side load increases as the degree of out-of-roundness increases. For the significantly out-of-round nozzle, however, the peak side load reduces to comparable to that of the round nozzle and the separation line jump is not the peak side load physics. The counter-intuitive result of the significantly out-of-round case is found to be related to a side force reduction mechanism that splits the effect of the separation-line-jump into two parts, not only in the circumferential direction and most importantly in time.

  14. Heat dissipation in water-cooled reflectors

    NASA Technical Reports Server (NTRS)

    Kozai, Toyoki

    1994-01-01

    The energy balance of a lamp varies with the thermal and optical characteristics of the reflector. The photosynthetic radiation efficiency of lamps, defined as input power divided by photosynthetically active radiation (PAR, 400-700 nm) emitted from the lamp ranges between 0.17 and 0.26. The rest of the energy input is wasted as longwave (3000 nm and over) and non-PAR shortwave radiation (from 700 nm to 3000 nm), convective, and conductive heat from the lamp, reflector, and ballast, and simply for increasing the cooling load. Furthermore, some portion of the PAR is uselessly absorbed by the inner walls, shelves, vessels, etc. and some portion of the PAR received by the plantlets is converted into sensible and latent heat. More than 98% of the energy input is probably converted into heat, with only less than 2% of the energy input being converted into chemical energy as carbohydrates by photosynthesis. Therefore, it is essential to reduce the generation of heat in the culture room in order to reduce the cooling load. Through use of a water-cooled reflector, the generation of convective and conductive heat and longwave radiation from the reflector can be reduced, without reduction of PAR.

  15. Effects of Aerosol on Atmospheric Dynamics and Hydrologic Processes During Boreal Spring and Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.; Kim, K. M.; Chin, Mian

    2005-01-01

    Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface tempera- cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.

  16. Effects of Aerosol on Atmospheric Dynamics and Hydrologic Processes during Boreal Spring and Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.; Chin, Mian; Kim, K. M.

    2005-01-01

    Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and.black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.

  17. Design and Control of Hydronic Radiant Cooling Systems

    NASA Astrophysics Data System (ADS)

    Feng, Jingjuan

    Improving energy efficiency in the Heating Ventilation and Air conditioning (HVAC) systems in buildings is critical to achieve the energy reduction in the building sector, which consumes 41% of all primary energy produced in the United States, and was responsible for nearly half of U.S. CO2 emissions. Based on a report by the New Building Institute (NBI), when HVAC systems are used, about half of the zero net energy (ZNE) buildings report using a radiant cooling/heating system, often in conjunction with ground source heat pumps. Radiant systems differ from air systems in the main heat transfer mechanism used to remove heat from a space, and in their control characteristics when responding to changes in control signals and room thermal conditions. This dissertation investigates three related design and control topics: cooling load calculations, cooling capacity estimation, and control for the heavyweight radiant systems. These three issues are fundamental to the development of accurate design/modeling tools, relevant performance testing methods, and ultimately the realization of the potential energy benefits of radiant systems. Cooling load calculations are a crucial step in designing any HVAC system. In the current standards, cooling load is defined and calculated independent of HVAC system type. In this dissertation, I present research evidence that sensible zone cooling loads for radiant systems are different from cooling loads for traditional air systems. Energy simulations, in EnergyPlus, and laboratory experiments were conducted to investigate the heat transfer dynamics in spaces conditioned by radiant and air systems. The results show that the magnitude of the cooling load difference between the two systems ranges from 7-85%, and radiant systems remove heat faster than air systems. For the experimental tested conditions, 75-82% of total heat gain was removed by radiant system during the period when the heater (simulating the heat gain) was on, while for air system, 61-63% were removed. From a heat transfer perspective, the differences are mainly because the chilled surfaces directly remove part of the radiant heat gains from a zone, thereby bypassing the time-delay effect caused by the interaction of radiant heat gain with non-active thermal mass in air systems. The major conclusions based on these findings are: 1) there are important limitations in the definition of cooling load for a mixing air system described in Chapter 18 of ASHRAE Handbook of Fundamentals when applied to radiant systems; 2) due to the obvious mismatch between how radiant heat transfer is handled in traditional cooling load calculation methods compared to its central role in radiant cooling systems, this dissertation provides improvements for the current cooling load calculation method based on the Heat Balance procedure. The Radiant Time Series method is not appropriate for radiant system applications. The findings also directly apply to the selection of space heat transfer modeling algorithms that are part of all energy modeling software. Cooling capacity estimation is another critical step in a design project. The above mentioned findings and a review of the existing methods indicates that current radiant system cooling capacity estimation methods fail to take into account incident shortwave radiation generated by solar and lighting in the calculation process. This causes a significant underestimation (up to 150% for some instances) of floor cooling capacity when solar load is dominant. Building performance simulations were conducted to verify this hypothesis and quantify the impacts of solar for different design scenarios. A new simplified method was proposed to improve the predictability of the method described in ISO 11855 when solar radiation is present. The dissertation also compares the energy and comfort benefits of the model-based predictive control (MPC) method with a fine-tuned heuristic control method when applied to a heavyweight embedded surface system. A first order dynamic model of a radiant slab system was developed for implementation in model predictive controllers. A calibrated EnergyPlus model of a typical office building in California was used as a testbed for the comparison. The results indicated that MPC is able to reduce the cooling tower energy consumption by 55% and pumping power consumption by 26%, while maintaining equivalent or even better thermal comfort conditions. In summary, the dissertation work has: (1) provided clear evidence that the fundamental heat transfer mechanisms differ between radiant and air systems. These findings have important implications for the development of accurate and reliable design and energy simulation tools; (2) developed practical design methods and guidance to aid practicing engineers who are designing radiant systems; and (3) outlined future research and design tools need to advance the state-of-knowledge and design and operating guidelines for radiant systems.

  18. Optimization of Energy Efficiency and Conservation in Green Building Design Using Duelist, Killer-Whale and Rain-Water Algorithms

    NASA Astrophysics Data System (ADS)

    Biyanto, T. R.; Matradji; Syamsi, M. N.; Fibrianto, H. Y.; Afdanny, N.; Rahman, A. H.; Gunawan, K. S.; Pratama, J. A. D.; Malwindasari, A.; Abdillah, A. I.; Bethiana, T. N.; Putra, Y. A.

    2017-11-01

    The development of green building has been growing in both design and quality. The development of green building was limited by the issue of expensive investment. Actually, green building can reduce the energy usage inside the building especially in utilization of cooling system. External load plays major role in reducing the usage of cooling system. External load is affected by type of wall sheathing, glass and roof. The proper selection of wall, type of glass and roof material are very important to reduce external load. Hence, the optimization of energy efficiency and conservation in green building design is required. Since this optimization consist of integer and non-linear equations, this problem falls into Mixed-Integer-Non-Linear-Programming (MINLP) that required global optimization technique such as stochastic optimization algorithms. In this paper the optimized variables i.e. type of glass and roof were chosen using Duelist, Killer-Whale and Rain-Water Algorithms to obtain the optimum energy and considering the minimal investment. The optimization results exhibited the single glass Planibel-G with the 3.2 mm thickness and glass wool insulation provided maximum ROI of 36.8486%, EUI reduction of 54 kWh/m2·year, CO2 emission reduction of 486.8971 tons/year and reduce investment of 4,078,905,465 IDR.

  19. Center for the Built Environment: UFAD Cooling Load Design Tool

    Science.gov Websites

    Energy Publications Project Title: Underfloor Air Distribution (UFAD) Cooling Load Design Tool Providing . Webster, 2010. Development of a simplified cooling load design tool for underfloor air distribution Near-ZNE Buildings Setpoint Energy Savings Calculator UFAD Case Studies UFAD Cooling Design Tool UFAD

  20. Design of a low parasitic inductance SiC power module with double-sided cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fei; Liang, Zhenxian; Wang, Fei

    In this paper, a low-parasitic inductance SiC power module with double-sided cooling is designed and compared with a baseline double-sided cooled module. With the unique 3D layout utilizing vertical interconnection, the power loop inductance is effectively reduced without sacrificing the thermal performance. Both simulations and experiments are carried out to validate the design. Q3D simulation results show a power loop inductance of 1.63 nH, verified by the experiment, indicating more than 60% reduction of power loop inductance compared with the baseline module. With 0Ω external gate resistance turn-off at 600V, the voltage overshoot is less than 9% of the busmore » voltage at a load of 44.6A.« less

  1. Global warming and ocean stratification: A potential result of large extraterrestrial impacts

    NASA Astrophysics Data System (ADS)

    Joshi, Manoj; von Glasow, Roland; Smith, Robin S.; Paxton, Charles G. M.; Maycock, Amanda C.; Lunt, Daniel J.; Loptson, Claire; Markwick, Paul

    2017-04-01

    The prevailing paradigm for the climatic effects of large asteroid or comet impacts is a reduction in sunlight and significant short-term cooling caused by atmospheric aerosol loading. Here we show, using global climate model experiments, that the large increases in stratospheric water vapor that can occur upon impact with the ocean cause radiative forcings of over +20 W m-2 in the case of 10 km sized bolides. The result of such a positive forcing is rapid climatic warming, increased upper ocean stratification, and potentially disruption of upper ocean ecosystems. Since two thirds of the world's surface is ocean, we suggest that some bolide impacts may actually warm climate overall. For impacts producing both stratospheric water vapor and aerosol loading, radiative forcing by water vapor can reduce or even cancel out aerosol-induced cooling, potentially causing 1-2 decades of increased temperatures in both the upper ocean and on the land surface. Such a response, which depends on the ratio of aerosol to water vapor radiative forcing, is distinct from many previous scenarios for the climatic effects of large bolide impacts, which mostly account for cooling from aerosol loading. Finally, we discuss how water vapor forcing from bolide impacts may have contributed to two well-known phenomena: extinction across the Cretaceous/Paleogene boundary and the deglaciation of the Neoproterozoic snowball Earth.

  2. Disinfection and reduction of organic load of sewage water by electron beam radiation

    NASA Astrophysics Data System (ADS)

    Maruthi, Y. Avasn; Das, N. Lakshmana; Hossain, Kaizar; Sarma, K. S. S.; Rawat, K. P.; Sabharwal, S.

    2011-09-01

    The efficacy of electron beam radiation for the disinfection and reduction of organic load of sewage water was assessed with ILU-6 Accelerator at Radiation Technology Development Division of the Bhabha Atomic Research Centre, Mumbai India. The current problem on environmental health in relation to water pollution insists for the safe disposal of sewage water. In general, sewage water comprises heterogeneous organic based chemicals as well as pathogens. EB treatment of the wastewater has found to be very effective in reducing the pathogens as well as organic load. EB dose of 1.5 kGy was sufficient for complete elimination of total coli forms. The experimental results elucidated the reduction of biological oxygen demand—BOD (35 and 51.7%) in both inlet and outlet sewage samples. Similarly reduction of chemical oxygen demand—COD was observed (37.54 and 52.32%) in both sewage samples with respect to increase in irradiation doses (0.45-6 kGy). The present study demonstrated the potential of ionizing radiation for disinfection of sewage and to increase the water quality of the wastewater by decreasing BOD and COD. So, the irradiation sewage water can find its application either in agriculture for irrigation, in industry for cooling purpose and some selected domestic purposes.

  3. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  4. System analyses on advanced nuclear fuel cycle and waste management

    NASA Astrophysics Data System (ADS)

    Cheon, Myeongguk

    To evaluate the impacts of accelerator-driven transmutation of waste (ATW) fuel cycle on a geological repository, two mathematical models are developed: a reactor system analysis model and a high-level waste (HLW) conditioning model. With the former, fission products and residual trans-uranium (TRU) contained in HLW generated from a reference ATW plant operations are quantified and the reduction of TRU inventory included in commercial spent-nuclear fuel (CSNF) is evaluated. With the latter, an optimized waste loading and composition in solidification of HLW are determined and the volume reduction of waste packages associated with CSNF is evaluated. WACOM, a reactor system analysis code developed in this study for burnup calculation, is validated by ORIGEN2.1 and MCNP. WACOM is used to perform multicycle analysis for the reference lead-bismuth eutectic (LBE) cooled transmuter. By applying the results of this analysis to the reference ATW deployment scenario considered in the ATW roadmap, the HLW generated from the ATW fuel cycle is quantified and the reduction of TRU inventory contained in CSNF is evaluated. A linear programming (LP) model has been developed for determination of an optimized waste loading and composition in solidification of HLW. The model has been applied to a US-defense HLW. The optimum waste loading evaluated by the LP model was compared with that estimated by the Defense Waste Processing Facility (DWPF) in the US and a good agreement was observed. The LP model was then applied to the volume reduction of waste packages associated with CSNF. Based on the obtained reduction factors, the expansion of Yucca Mountain Repository (YMR) capacity is evaluated. It is found that with the reference ATW system, the TRU contained in CSNF could be reduced by a factor of ˜170 in terms of inventory and by a factor of ˜40 in terms of toxicity under the assumed scenario. The number of waste packages related to CSNF could be reduced by a factor of ˜8 in terms of volume and by factor of ˜10 on the basis of electricity generation when a sufficient cooling time for discharged spent fuel and zero process chemicals in HLW are assumed. The expansion factor of Yucca Mountain Repository capacity is estimated to be a factor of 2.4, much smaller than the reduction factor of CSNF waste packages, due to the existence of DOE-owned spent fuel and HLW. The YMR, however, could support 10 times greater electricity generation as long as the statutory capacity of DOE-owned SNF and HLW remains unchanged. This study also showed that the reduction of the number of waste packages could strongly be subject to the heat generation rate of HLW and the amount of process chemicals contained in HLW. For a greater reduction of the number of waste packages, a sufficient cooling time for discharged fuel and efforts to minimize the amount of process chemicals contained in HLW are crucial.

  5. Probing aerosol indirect effect on deep convection using idealized cloud-resolving simulations with parameterized large-scale dynamics.

    NASA Astrophysics Data System (ADS)

    Anber, U.; Wang, S.; Gentine, P.; Jensen, M. P.

    2017-12-01

    A framework is introduced to investigate the indirect impact of aerosol loading on tropical deep convection using 3-dimentional idealized cloud-system resolving simulations with coupled large-scale circulation. The large scale dynamics is parameterized using a spectral weak temperature gradient approximation that utilizes the dominant balance in the tropics between adiabatic cooling and diabatic heating. Aerosol loading effect is examined by varying the number concentration of nuclei (CCN) to form cloud droplets in the bulk microphysics scheme over a wide range from 30 to 5000 without including any radiative effect as the radiative cooling is prescribed at a constant rate, to isolate the microphysical effect. Increasing aerosol number concentration causes mean precipitation to decrease monotonically, despite the increase in cloud condensates. Such reduction in precipitation efficiency is attributed to reduction in the surface enthalpy fluxes, and not to the divergent circulation, as the gross moist stability remains unchanged. We drive a simple scaling argument based on the moist static energy budget, that enables a direct estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometers and microphysical properties is also examined and is consistent with the macro-physical picture.

  6. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.

  7. Improving prediction accuracy of cooling load using EMD, PSR and RBFNN

    NASA Astrophysics Data System (ADS)

    Shen, Limin; Wen, Yuanmei; Li, Xiaohong

    2017-08-01

    To increase the accuracy for the prediction of cooling load demand, this work presents an EMD (empirical mode decomposition)-PSR (phase space reconstruction) based RBFNN (radial basis function neural networks) method. Firstly, analyzed the chaotic nature of the real cooling load demand, transformed the non-stationary cooling load historical data into several stationary intrinsic mode functions (IMFs) by using EMD. Secondly, compared the RBFNN prediction accuracies of each IMFs and proposed an IMF combining scheme that is combine the lower-frequency components (called IMF4-IMF6 combined) while keep the higher frequency component (IMF1, IMF2, IMF3) and the residual unchanged. Thirdly, reconstruct phase space for each combined components separately, process the highest frequency component (IMF1) by differential method and predict with RBFNN in the reconstructed phase spaces. Real cooling load data of a centralized ice storage cooling systems in Guangzhou are used for simulation. The results show that the proposed hybrid method outperforms the traditional methods.

  8. On the relevance of droplet sedimentation in stratocumulus-top mixing

    NASA Astrophysics Data System (ADS)

    Mellado, Juan Pedro; de Lozar, Alberto

    2017-11-01

    The interaction between droplet sedimentation, turbulent mixing, evaporative cooling, and radiative cooling at the top of stratocumulus clouds has been studied using direct numerical simulations. This interaction is important to determine the mixing rate of the cloud and dry air above it, which eventually determines the cloud lifetime. By investigating the entrainment-rate equation, which is an analytical relationship between the contributions to cloud-top entrainment from the phenomena indicated above, we have found that the reduction of entrainment velocity by droplet sedimentation can be 2 to 3 times larger than previously conjectured. The reason is twofold. First, the reduction of evaporative cooling as droplets fall out of the inversion is stronger than previously observed in large-eddy simulations, where excessive mixing by turbulence models and numerical artifacts may have partially masked this effect of sedimentation on entrainment. Second, there is a non-negligible direct contribution from mass loading, as falling droplets leave behind more buoyant air in the inversion. This contribution is proportional to the fifth moment of the droplet-size distribution, which provides further evidence for the need to better understand the evolution of the droplet-size distribution.

  9. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    NASA Astrophysics Data System (ADS)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-01

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative "dry" cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

  10. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-08

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understandingmore » the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.« less

  11. Evaporatively cooled chiller for solar air conditioning systems design and field test

    NASA Astrophysics Data System (ADS)

    Merrick, R. H.; Murray, J. G.

    1984-06-01

    Design changes to improve reliability, part load performance, and manufacturability characteristics of the chiller are focused upon. Low heat flux was achieved by large transfer area allows scale formation without being a thermal barrier: 80 mils = 1 deg. The scaling rate is minimized by keeping surface temperatures below 100 F and a generous water recirculation flow rate. By integrating the cooling tower function into the chiller itself parasitic power consumption was reduced 35%. This system also provided the winter freeze protection without the specific manual shut down procedures required by separate water cooled units and their towers. The severe reduction in cumulative coefficient of performance (COP) due to cycling conditions has been substantially reduced using the spin down control scheme. The major disappointment was the failure to develop a satisfactory inexpensive protective coating. Hot dip galvanizing was demonstrated to be effective but costly, partially due to transportation expense.

  12. Study of thermosiphon cooling scheme for the production solenoid of the Mu2e experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhanaraj, N.; Kashikhin, V.; Peterson, T.

    2014-01-29

    A thermosiphon cooling scheme is envisioned for the Production Solenoid of the Mu2e experiment at Fermi National Accelerator Laboratory. The thermosiphon cooling is achieved by indirect cooling with helium at 4.7 K. The siphon tubes are welded to the solenoid outer structure. The anticipated heat loads in the solenoid is presented as well as the cooling scheme design. A thermal model using ANSYS to simulate the temperature gradient is presented. The thermal analysis also makes provisions for including the heat load generated in the coils and structures by the secondary radiation simulated using the MARS 15 code. The impact ofmore » the heat loads from supports on the solenoid cooling is studied. The thermosiphon cooling scheme is also validated using pertinent correlations to study flow reversals and the cooling regime.« less

  13. Solar-heated and cooled savings and loan building-1-Leavenworth, Kanasas

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes heating and cooling system which furnishes 90 percent of annual heating load, 70 percent of cooling load, and all hot water for two-story building. Roof-mounted flat-plate collectors allow three distinct flow rates and are oriented south for optimum energy collection. Building contains fully automated temperature controls is divided into five temperature-load zones, each with independent heat pump.

  14. Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2008-01-01

    The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.

  15. Effect of occupant behavior and air-conditioner controls on humidity in typical and high-efficiency homes

    DOE PAGES

    Winkler, Jon; Munk, Jeffrey; Woods, Jason

    2018-04-01

    Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less

  16. Effect of occupant behavior and air-conditioner controls on humidity in typical and high-efficiency homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Jon; Munk, Jeffrey; Woods, Jason

    Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less

  17. Split radiator design for heat rejection optimization for a waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  18. Beam Test of a Dielectric Loaded High Pressure RF Cavity for Use in Muon Cooling Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freemire, Ben; Bowring, Daniel; Kochemirovskiy, Alexey

    2016-06-01

    Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. A 99.5% aluminamore » ring was inserted in a high pressure RF test cell and subjected to an intense proton beam at the MuCool Test Area at Fermilab. The results of the performance of this dielectric loaded high pressure RF cavity will be presented.« less

  19. Past Performance analysis of HPOTP bearings

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.; Dolan, F. J.

    1982-01-01

    The past performance analysis conducted on three High Pressure Oxygen Turbopump (HPOTP) bearings from the Space Shuttle Main Engine is presented. Metallurgical analysis of failed bearing balls and races, and wear track and crack configuration analyses were carried out. In addition, one bearing was tested in laboratory at very high axial loads. The results showed that the cracks were surface initiated and propagated into subsurface locations at relatively small angles. Subsurface cracks were much more extensive than was appeared on the surface. The location of major cracks in the races corresponded to high radial loads rather than high axial loads. There was evidence to suggest that the inner races were heated to elevated temperatures. A failure scenario was developed based on the above findings. According to this scenario the HPOTP bearings are heated by a combination of high loads and high coefficient of friction (poor lubrication). Different methods of extending the HPOTP bearing life are also discussed. These include reduction of axial loads, improvements in bearing design, lubrication and cooling, and use of improved bearing materials.

  20. Experimental evaluation of cooling efficiency of the high performance cooling device

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  1. Solar thermal heating and cooling. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  2. Verification of Energy Reduction Effect through Control Optimization of Supply Air Temperature in VRF-OAP System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Je; Yoon, Hyun; Im, Piljae

    This paper developed an algorithm that controls the supply air temperature in the variable refrigerant flow (VRF), outdoor air processing unit (OAP) system, according to indoor and outdoor temperature and humidity, and verified the effects after applying the algorithm to real buildings. The VRF-OAP system refers to a heating, ventilation, and air conditioning (HVAC) system to complement a ventilation function, which is not provided in the VRF system. It is a system that supplies air indoors by heat treatment of outdoor air through the OAP, as a number of indoor units and OAPs are connected to the outdoor unit inmore » the VRF system simultaneously. This paper conducted experiments with regard to changes in efficiency and the cooling capabilities of each unit and system according to supply air temperature in the OAP using a multicalorimeter. Based on these results, an algorithm that controlled the temperature of the supply air in the OAP was developed considering indoor and outdoor temperatures and humidity. The algorithm was applied in the test building to verify the effects of energy reduction and the effects on indoor temperature and humidity. Loads were then changed by adjusting the number of conditioned rooms to verify the effect of the algorithm according to various load conditions. In the field test results, the energy reduction effect was approximately 15–17% at a 100% load, and 4–20% at a 75% load. However, no significant effects were shown at a 50% load. The indoor temperature and humidity reached a comfortable level.« less

  3. Verification of Energy Reduction Effect through Control Optimization of Supply Air Temperature in VRF-OAP System

    DOE PAGES

    Lee, Je; Yoon, Hyun; Im, Piljae; ...

    2017-12-27

    This paper developed an algorithm that controls the supply air temperature in the variable refrigerant flow (VRF), outdoor air processing unit (OAP) system, according to indoor and outdoor temperature and humidity, and verified the effects after applying the algorithm to real buildings. The VRF-OAP system refers to a heating, ventilation, and air conditioning (HVAC) system to complement a ventilation function, which is not provided in the VRF system. It is a system that supplies air indoors by heat treatment of outdoor air through the OAP, as a number of indoor units and OAPs are connected to the outdoor unit inmore » the VRF system simultaneously. This paper conducted experiments with regard to changes in efficiency and the cooling capabilities of each unit and system according to supply air temperature in the OAP using a multicalorimeter. Based on these results, an algorithm that controlled the temperature of the supply air in the OAP was developed considering indoor and outdoor temperatures and humidity. The algorithm was applied in the test building to verify the effects of energy reduction and the effects on indoor temperature and humidity. Loads were then changed by adjusting the number of conditioned rooms to verify the effect of the algorithm according to various load conditions. In the field test results, the energy reduction effect was approximately 15–17% at a 100% load, and 4–20% at a 75% load. However, no significant effects were shown at a 50% load. The indoor temperature and humidity reached a comfortable level.« less

  4. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Peng; Yin, Rongxin; Brown, Carrie

    2009-06-01

    The potential for using building thermal mass for load shifting and peak energy demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Previous Lawrence Berkeley National Laboratory research has demonstrated that the approach is very effective in cool and moderately warm climate conditions (California Climate Zones 2-4). However, this method had not been tested in hotter climate zones. This project studied the potential of pre-cooling the building early in the morning and increasing temperature setpoints during peak hours to reduce cooling-related demand in two typical office buildings in hotter California climates ? one in Visaliamore » (CEC Climate Zone 13) and the other in San Bernardino (CEC Climate Zone 10). The conclusion of the work to date is that pre-cooling in hotter climates has similar potential to that seen previously in cool and moderate climates. All other factors being equal, results to date indicate that pre-cooling increases the depth (kW) and duration (kWh) of the possible demand shed of a given building. The effectiveness of night pre-cooling in typical office building under hot weather conditions is very limited. However, night pre-cooling is helpful for office buildings with an undersized HVAC system. Further work is required to duplicate the tests in other typical buildings and in other hot climate zones and prove that pre-cooling is truly effective.« less

  5. Numerical and Experimental Investigation on the Performance of a Thermoelectric Cooling Automotive Seat

    NASA Astrophysics Data System (ADS)

    Su, Chuqi; Dong, Wenbin; Deng, Yadong; Wang, Yiping; Liu, Xun

    2017-11-01

    Heating, ventilating and air conditioning (HVAC) is the most significant auxiliary load in vehicles and largely increases extra emissions. Therefore, thermoelectric cooling automotive seat, a relatively new technology, is used in an attempt to reduce HVAC consumption and improve thermal comfort. In this study, three design schemes of the thermoelectric cooler (TEC) are proposed. Then the numerical simulation is used to analyze their heat transfer performance, and evaluate the improvement of the seat cooling in terms of the occupant back thermal comfort. Moreover, an experiment is conducted to validate the accuracy of the simulation results. The experimental results show that: (1) an average reduction in air temperature of 4°C in 60 s is obtained; (2) the temperature of the occupant's back drops from 33.5°C to 25.7°C in cooperation with the HVAC system; (3) back thermal comfort is greatly improved. As expected, the thermoelectric cooling automotive seat is able to provide an improvement in the occupant's thermal comfort at a reduced energy consumption rate, which makes it promising for vehicular application.

  6. Numerical and Experimental Investigation on the Performance of a Thermoelectric Cooling Automotive Seat

    NASA Astrophysics Data System (ADS)

    Su, Chuqi; Dong, Wenbin; Deng, Yadong; Wang, Yiping; Liu, Xun

    2018-06-01

    Heating, ventilating and air conditioning (HVAC) is the most significant auxiliary load in vehicles and largely increases extra emissions. Therefore, thermoelectric cooling automotive seat, a relatively new technology, is used in an attempt to reduce HVAC consumption and improve thermal comfort. In this study, three design schemes of the thermoelectric cooler (TEC) are proposed. Then the numerical simulation is used to analyze their heat transfer performance, and evaluate the improvement of the seat cooling in terms of the occupant back thermal comfort. Moreover, an experiment is conducted to validate the accuracy of the simulation results. The experimental results show that: (1) an average reduction in air temperature of 4°C in 60 s is obtained; (2) the temperature of the occupant's back drops from 33.5°C to 25.7°C in cooperation with the HVAC system; (3) back thermal comfort is greatly improved. As expected, the thermoelectric cooling automotive seat is able to provide an improvement in the occupant's thermal comfort at a reduced energy consumption rate, which makes it promising for vehicular application.

  7. Can storage reduce electricity consumption? A general equation for the grid-wide efficiency impact of using cooling thermal energy storage for load shifting

    NASA Astrophysics Data System (ADS)

    Deetjen, Thomas A.; Reimers, Andrew S.; Webber, Michael E.

    2018-02-01

    This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current, and baseline power plant efficiency. The results present a graphical sensitivity analysis that can be used to estimate how shifting load from cooling demand to cooling storage could affect overall, grid-wide, energy consumption. In particular, because power plants, air conditioners and transmission systems all have higher efficiencies at cooler ambient temperatures, it is possible to identify operating conditions such that CTES increases system efficiency rather than decreasing it as is typical for conventional storage approaches. A case study of the Dallas-Fort Worth metro area in Texas, USA shows that using CTES to shift daytime cooling load to nighttime cooling storage can reduce annual, system-wide, primary fuel consumption by 17.6 MWh for each MWh of installed CTES capacity. The study concludes that, under the right circumstances, cooling thermal energy storage can reduce grid-wide energy consumption, challenging the perception of energy storage as a net energy consumer.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heatmore » of electronic components in range from 250 to 740 W.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan

    An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative ofmore » the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.« less

  10. First wall structural analysis of the aqueous self-cooled blanket concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, D.A.; Steiner, D.; Embrechts, M.J.

    1986-11-01

    A recently proposed blanket concept using water coolant with dissolved lithium compounds for breeding employs water cooled first walls. Water cooled first walls for blankets have also been proposed for some solid breeder blankets. Design options for water cooled first walls are examined in this paper. Four geometries and three materials are analyzed for water coolant at 300/sup 0/C and 13.8 MPa (2000 psi). Maximum neutron wall loads (with surface heat loads being 25% of neutron wall load) are determined for each geometry and material combination. Of the materials studied, only vanadium alloy is found to be capable of withstandingmore » high wall loads (>10MW/m/sup 2/ neutron and >2.5 MW/m/sup 2/ heat).« less

  11. Analysis and Design of the NASA Langley Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.

    1999-01-01

    A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.

  12. 24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Heat loss, heat gain and cooling...

  13. 24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heat loss, heat gain and cooling...

  14. 24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Heat loss, heat gain and cooling...

  15. 24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Heat loss, heat gain and cooling...

  16. 24 CFR 3280.508 - Heat loss, heat gain and cooling load calculations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Thermal Protection § 3280.508 Heat loss, heat gain and cooling load calculations. (a) Information, values... Loads—Manufactured Homes—February 1992-PNL 8006, HUD User No. 0005945. (c) Areas where the insulation... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Heat loss, heat gain and cooling...

  17. The Effect of Tow Shearing on Reinforcement Positional Fidelity in the Manufacture of a Continuous Fiber Reinforced Thermoplastic Matrix Composite via Pultrusion-Like Processing of Commingled Feedstock

    NASA Astrophysics Data System (ADS)

    Warlick, Kent M.

    While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through microscopy in order to examine best and worst case scenarios. High quality fiber reinforced composite materials, in terms of low void content, high fiber volume fractions and homogeneity in microstructure, were manufactured in both of these scenarios. In order to improve fidelity and quality in fiber path transition regions, a forced air cooling manifold was designed, printed, and implemented into the current system. To better understand the composite performance that results from varying pertinent manufacturing parameters, the effect of feed rate, hot end temperature, forced air cooling, and deposition surface (polypropylene and previously deposited glass polypropylene commingled tow) on interply performance, microstructure, and positional fidelity were analyzed. Interply performance, in terms of average maximum load and average peel strength, was quantified through a t-peel test of the bonding quality between two surfaces. With use of forced air cooling, minor decreases in average peel strength were present due to a reduction in tow deposition temperature which was found to be the variable most indicative of performance. Average maximum load was comparable between the forced air cooled and non-air cooled samples. Microstructure was evaluated through characterization of composite area, void content, and flash percentage. Low void contents mostly between five to seven percent were attained. Further reduction of this void content to two percent is possible through higher processing temperatures; however, reduced composite area, low average peel strength performance, and the presence of smoke during manufacturing implied thermal degradation of the polypropylene matrix occurred in these samples with higher processing temperatures. Positional fidelity was measured through calculations of shear angle, shift width, and error of a predefined path. While positional fidelity variation was low with a polypropylene deposition surface, forced air cooling is necessary to achieve fidelity on top of an already deposited tow surface as evident by the fifty-six percent reduction in error tolerance profile achieved. Lastly, proof of concept articles with unique fiber paths and neat plastic elements incorporated were produced to demonstrate fiber placement along pre-planned load paths and the ability to achieve greater structural efficiency through the use of less material. The results show that high positional fidelity and high quality composites can be produced through the use of the tow shearing technique implemented in the developed mechanical system. The implementation of forced air cooling was critical in achieving fidelity and quality in transition regions. Alignment of continuous reinforcement with pre-planned load paths was demonstrated in the proof of concept article with varying fiber orientations within a layer. Combining fused deposition modeling of plastic with the placement of continuous reinforcement enabled a honeycomb composite to be produced with higher specific properties than traditional composites. Thus, the current system demonstrated a greater capability of achieving ultimate gains in structural performance than previously possible.

  18. Solar heating and cooling system installed at Leavenworth, Kansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  19. Branched GAX cycle gas fired heat pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, D.C.; Anand, G.; Papar, R.A.

    1996-12-31

    GAX absorption heat pump cycles are characterized by the Generator Absorber Heat eXchange (GAX) between the high temperature end of the absorber and the low temperature end of the generator. The improved thermodynamic performance of the basic GAX cycle coupled with its mechanical simplicity has attracted substantial interest in using this cycle for gas-cooling. However, to be competitive in a cooling dominated market, the cycle has to achieve high cooling performance and also low installed cost. The Branched GAX (BGAX) cycle promises higher cooling performance using similar components as the basic GAX cycle and an additional solution pump. By increasingmore » the solution flow rate at the hot end of the absorber, the BGAX cycle makes more complete use of the temperature overlap. As a result, less external heat is supplied and higher COPs are obtained. A breadboard prototype of the BGAX cycle has been developed and is now operating. A novel thermosyphon cooled absorber eliminates the need for the outdoor hydronic loop, and reduces cost by 10%. Other component improvements yield another 10% cost reduction. The breadboard prototype has operated for more than 200 hours. Gas cooling COP = 0.87 has been consistently achieved at 30.6 C (87 F) ambient conditions. At the 35 C (95 F) ambient capacity rating condition, a cooling load of 4.5 refrigeration tons was achieved at a cycle COP = 0.95.« less

  20. Seasonal Thermal Energy Storage Program

    NASA Technical Reports Server (NTRS)

    Minor, J. E.

    1980-01-01

    The Seasonal Thermal Energy Storage (STES) Program designed to demonstrate the storage and retrieval of energy on a seasonal basis using heat or cold available from waste or other sources during a surplus period is described. Factors considered include reduction of peak period demand and electric utility load problems and establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The initial thrust of the STES Program toward utilization of ground water systems (aquifers) for thermal energy storage is emphasized.

  1. Reduction of Trapped-Ion Anomalous Heating by in situ Surface Plasma Cleaning

    DTIC Science & Technology

    2015-04-29

    the trap chip temperature. To load ions, we initially cool 88Sr atoms into a remotely-located magneto - optical trap (MOT), then use a resonant push beam... trap heating rates [10]. Furthermore, some previous experiments have shown an improvement in the heating rates of surface-electrode ion traps after...rate when the trap chip is held at 4 K is not significantly improved by the plasma cleaning. While the observed frequency scaling is not the same in

  2. Back to the Basics: Cooling with Ice.

    ERIC Educational Resources Information Center

    Estes, R. C.

    1979-01-01

    A new high school shifts an electrical demand charge load by using an icemaker during nonoperating hours to provide chilled water for producing cool air. A review resulted in a computer being placed in the design to control the electrical demand charge load in addition to spreading the load. (Author/MLF)

  3. Evaluation of solar gain through skylights for inclusion in the SP53 residential building loads data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanford, J.W.; Huang, Y.J.

    The energy performance of skylights is similar to that of windows in admitting solar heat gain, while at the same time providing a pathway for convective and conductive heat transfer through the building envelope. Since skylights are typically installed at angles ranging from 0{degrees} to 45{degrees}, and differ from windows in both their construction and operation, their conductive and convective heat gains or losses, as well as solar heat gain, will differ for the same rough opening and thermal characteristics. The objective of this work is to quantify the impact of solar gain through skylights on building heating and coolingmore » loads in 45 climates, and to develop a method for including these data into the SP53 residential loads data base previously developed by LBL in support of DOE`s Automated Residential Energy Standard (ARES) program. The authors used the DOE-2.1C program to simulate the heating and cooling loads of a prototypical residential building while varying the size and solar characteristics of skylights and windows. The results are presented as Skylight Solar Loads, which are the contribution of solar gains through skylights to the overall building heating and cooling loads, and as Skylight Solar Load Ratios, which are the ratios of skylight solar loads to those for windows with the same orientation. The study shows that skylight solar loads are larger than those for windows in both heating and cooling. Skylight solar cooling loads are from three to four times greater than those for windows regardless of the skylight tilt, except for those facing north. These cooling loads are largest for south-facing skylights at a tilt angle of approximately 20{degrees}, and drop off at higher tilts and other orientations.« less

  4. Effectiveness of Cool Roof Coatings with Ceramic Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brehob, Ellen G; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2011-01-01

    Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using amore » portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.« less

  5. In vitro assessment of temperature change in the pulp chamber during cavity preparation.

    PubMed

    Oztürk, Bora; Uşümez, Aslihan; Oztürk, A Nilgun; Ozer, Füsun

    2004-05-01

    Tooth preparation with a high-speed handpiece may cause thermal harm to the dental pulp. This in vitro study evaluated the temperature changes in the pulp chamber during 4 different tooth preparation techniques and the effects of 3 different levels of water cooling. The tip of a thermocouple was positioned in the center of the pulp chamber of 120 extracted Shuman premolar teeth. Four different tooth preparation techniques were compared: (1) Low air pressure plus low load (LA/LL), (2) low air pressure plus high load (LA/HL), (3) high air pressure plus low load (HA/LL), and (4) high air pressure plus high load (HA/HL) in combination with 3 different water cooling rates. Control specimens were not water cooled; low water cooling consisted of 15 mL/min, and high water cooling consisted of 40 mL/min. Twelve different groups were established (n=10). An increase of 5.5 degrees C was regarded as critical value for pulpal health. The results were analyzed with a 3-factor ANOVA and Bonferroni adjusted Mann Whitney U test (alpha=.004). For all techniques without water cooling (LA/LL/0, LA/HL/0, HA/LL/0, and HA/HL/0), the average temperature rise within the pulpal chamber exceeded 5.5 degrees C during cavity preparation (7.1 degrees C; 8.9 degrees C; 11.4 degrees C, and 19.7 degrees C, respectively). When low water cooling was used with high air pressure and high load technique (HA/HL/15), the average temperature rise exceeded 5.5 degrees C limit (5.9 degrees C). However, when high water cooling (LA/LL/40, LA/HL/40, HA/LL/40, and HA/HL/40) was utilized, the critical 5.5 degrees C value was not reached with any air pressure or load (3.1 degrees C, 2.8 degrees C, 2.2 degrees C, and -1.8 degrees C, respectively). Within the limitations of this in vitro study, the results indicate that reducing the amount of water cooling or increasing air pressure and load during cavity preparation increased the temperature of the pulp chamber in extracted teeth.

  6. Effectiveness of eugenol sedation to reduce the metabolic rates of cool and warm water fish at high loading densities

    USGS Publications Warehouse

    Cupp, Aaron R.; Hartleb, Christopher F.; Fredricks, Kim T.; Gaikowski, Mark P.

    2016-01-01

    Effects of eugenol (AQUI-S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L−1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L−1, yellow perch controls (0 mg L−1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg−1 h−1, while yellow perch exposed to 20 and 30 mg L−1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg−1 h−1 respectively. Nile tilapia exposed to 30 mg L−1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg−1 h−1) relative to the 0 mg L−1 eugenol control (546.6 ± 53.5 mg O2 kg−1 h−1) at a loading density of 120 g L−1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L−1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.

  7. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herk, Anastasia; Poerschke, Andrew

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS ismore » studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).« less

  8. Distribution and Room Air Mixing Risks to Retrofitted Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdick, A.

    2014-12-01

    An energy efficiency upgrade reduces a home’s heating and cooling load. If the load reduction is great enough and the heating, ventilation, and air conditioning system warrants replacement, that system is often upgraded with a more efficient, lower capacity system that meets the load of the upgraded house. For a single-story house with floor supply air diffusers, the ducts often are removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw atmore » the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling. In this project, IBACOS performed load calculations for a two-story 1960s house and characterized duct sizes and layouts based on industry “rules of thumb” (Herk et al. 2014). The team performed duct-sizing calculations for unaltered ducts and post-retrofit airflows and examined airflow velocities and pressure changes with respect to various factors. The team then used a mocked-up duct and register setup to measure the characteristics of isothermal air—to reduce the effects of buoyancy from the observations—passing through the duct and leaving the register.« less

  9. Efficient and lightweight current leads

    NASA Astrophysics Data System (ADS)

    Bromberg, L.; Dietz, A. J.; Michael, P. C.; Gold, C.; Cheadle, M.

    2014-01-01

    Current leads generate substantial cryogenic heat loads in short length High Temperature Superconductor (HTS) distribution systems. Thermal conduction, as well as Joule losses (I2R) along the current leads, comprises the largest cryogenic loads for short distribution systems. Current leads with two temperature stages have been designed, constructed and tested, with the goal of minimizing the electrical power consumption, and to provide thermal margin for the cable. We present the design of a two-stage current lead system, operating at 140 K and 55 K. This design is very attractive when implemented with a turbo-Brayton cycle refrigerator (two-stage), with substantial power and weight reduction. A heat exchanger is used at each temperature station, with conduction-cooled stages in-between. Compact, efficient heat exchangers are challenging, because of the gaseous coolant. Design, optimization and performance of the heat exchangers used for the current leads will be presented. We have made extensive use of CFD models for optimizing hydraulic and thermal performance of the heat exchangers. The methodology and the results of the optimization process will be discussed. The use of demountable connections between the cable and the terminations allows for ease of assembly, but require means of aggressively cooling the region of the joint. We will also discuss the cooling of the joint. We have fabricated a 7 m, 5 kA cable with second generation HTS tapes. The performance of the system will be described.

  10. Design and demonstration of a storage assisted air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avril, F.; Irvine, T.F.

    1982-04-01

    The report describes the design and demonstration of a storage-assisted air conditioning system for residential central air conditioning applications. The system was designed to reduce peak air conditioning loads by storing coolness to fulfill daytime air conditioning requirements. The system design analyses, as well as performance data obtained from a residential installation on Long Island, are presented, along with an economic evaluation of the system. The results of the study indicate that such a system can reduce air conditioning peak load requirements while maintaining house temperature and humidity within prescribed limits. However, further system optimization is required, as well asmore » either equipment costs reduction or increased incentives, to make this system economically attractive for use in New York State.« less

  11. Cooling system for superconducting magnet

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  12. Cooling system for superconducting magnet

    DOEpatents

    Gamble, B.B.; Sidi-Yekhlef, A.

    1998-12-15

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

  13. Reducing Heat Gains and Cooling Loads Through Roof Structure Configurations of A House in Medan

    NASA Astrophysics Data System (ADS)

    Handayani Lubis, Irma; Donny Koerniawan, Mochamad

    2018-05-01

    Heat gains and heat losses through building surfaces are the main factors that determine the building’s cooling and heating loads. Roof as a building surface that has the most exposed area to the sun, contribute most of heat gains in the building. Therefore, the amount of solar heat gains on the roofs need to be minimized by roof structure configurations. This research aims to discover the optimization of roof structure configurations (coating material, structure material, inclination, overhang, and insulation) as one of passive design strategies that reduce heat gains and cooling loads of a house in Medan. The result showed that case four, white-painted metal roof combined with 45° roof pitched, 1.5m overhang, and addition of insulation, indicates the minimum heat gains production and the less cooling loads during clear sky day but not in the overcast sky condition. In conclusion, heat gains and cooling loads of a house in Medan could be diminished during clear sky day by the addition of roof coating with high reflectance low solar absorbtance, the slope roof, the extension of wider veranda, and the addition of insulation in the roof structure.

  14. Effects of superheated steam on Geobacillus stearothermophilus spore viability.

    PubMed

    Head, D S; Cenkowski, S; Holley, R; Blank, G

    2008-04-01

    To examine the effect of processing with superheated steam (SS) on Geobacillus stearothermophilus ATCC 10149 spores. Two inoculum levels of spores of G. stearothermophilus were mixed with sterile sand and exposed to SS at 105-175 degrees C. The decimal reduction time (D-value) and the thermal resistance constant (z-value) were calculated. The effect of cooling of spores between periods of exposure to SS was also examined. A mean z-value of 25.4 degrees C was calculated for both inoculum levels for SS processing temperatures between 130 degrees C and 175 degrees C. Spore response to SS treatment depends on inoculum size. SS treatment may be effective for reduction in viability of thermally resistant bacterial spores provided treatments are separated by intermittent cooling periods. There is a need for technologies that require short thermal processing times to eliminate bacterial spores in foods. The SS processing technique has the potential to reduce microbial load and to modify food texture with less energy in comparison to commonly used hot air treatment. This work provides information on the effect of SS processing parameters on the viability of G. stearothermophilus spores.

  15. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.

    PubMed

    Ganesh, D; Nagarajan, G; Ganesan, S

    2014-01-01

    In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission.

  16. Defining the market for gas cooling--

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodrick, J.R.; Patel, R.

    1990-01-01

    This paper looks at the market prospects for emerging gas cooling technologies. Many factors are found influence market decisions, and a number of factors have been set aside for reasons of conservatism and expediency. By considering some of these motivators, a fuller understanding of the market is made. Relative to this information, the potential success of gas cooling systems are estimated. Three gas cooling systems are evaluated as possible approaches for base-loaded and peak-loaded commercial buildings. Other system concepts may be appropriate.

  17. Wright St Univ Participation in AFRL University Engineering Design Challenge

    DTIC Science & Technology

    2014-12-23

    18 Figure 9: Loading results from 10 min. heat treatment cure on 1 square inch Kevlar Patch, air cool, and concrete...loading and Average for Three Trials of 10 min heat treatment cure, 1 square inch Kevlar Patch, air cool, and concrete...19 Figure 11: Loading results from 10 min. heat treatment cure on 1 square

  18. Solar-Energy System for a Commercial Building--Topeka, Kansas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.

  19. Performative building envelope design correlated to solar radiation and cooling energy consumption

    NASA Astrophysics Data System (ADS)

    Jacky, Thiodore; Santoni

    2017-11-01

    Climate change as an ongoing anthropogenic environmental challenge is predominantly caused by an amplification in the amount of greenhouse gases (GHGs), notably carbon dioxide (CO2) in building sector. Global CO2 emissions are emitted from HVAC (Heating, Ventilation, and Air Conditioning) occupation to provide thermal comfort in building. In fact, the amount of energy used for cooling or heating building is implication of building envelope design. Building envelope acts as interface layer of heat transfer between outdoor environment and the interior of a building. It appears as wall, window, roof and external shading device. This paper examines performance of various design strategy on building envelope to limit solar radiation and reduce cooling loads in tropical climate. The design strategies are considering orientation, window to wall ratio, material properties, and external shading device. This research applied simulation method using Autodesk Ecotect to investigate simultaneously between variations of wall and window ratio, shading device composition and the implication to the amount of solar radiation, cooling energy consumption. Comparative analysis on the data will determine logical variation between opening and shading device composition and cooling energy consumption. Optimizing the building envelope design is crucial strategy for reducing CO2 emissions and long-term energy reduction in building sector. Simulation technology as feedback loop will lead to better performative building envelope.

  20. Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Valenzuela, Juan G.; Feller, Jerr; Plachta, Dave

    2014-01-01

    The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing both thermally and structurally were performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.

  1. Tank Applied Testing of Load-Bearing Multilayer Insulation (LB-MLI)

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Valenzuela, Juan G.; Feller, Jeffrey R.; Plachta, David W.

    2014-01-01

    The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing, both thermal and structural was performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.

  2. Comfort air temperature influence on heating and cooling loads of a residential building

    NASA Astrophysics Data System (ADS)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  3. Potential benefits of solar reflective car shells: cooler cabins, fuel savings and emission reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Ronnen; Pan, Heng; Ban-Weiss, George

    Abstract: Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the ?soak? temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle?s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (?) of the car?s shell by about 0.5 lowered the soak temperature of breath-levelmore » air by about 5?6?C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25?C within 30min is 13percent less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (?=0.35) for a black shell (?=0.05) would reduce fuel consumption by 0.12L per 100km (1.1percent), increasing fuel economy by 0.10kmL?1 [0.24mpg] (1.1percent). It would also decrease carbon dioxide (CO2) emissions by 2.7gkm?1 (1.1percent), nitrogen oxide (NOx) emissions by 5.4mgkm?1 (0.44percent), carbon monoxide (CO) emissions by 17mgkm?1 (0.43percent), and hydrocarbon (HC) emissions by 4.1mgkm?1 (0.37percent). Selecting a typical white or silver shell (?=0.60) instead of a black shell would lower fuel consumption by 0.21L per 100km (1.9percent), raising fuel economy by 0.19kmL?1 [0.44mpg] (2.0percent). It would also decrease CO2 emissions by 4.9gkm?1 (1.9percent), NOx emissions by 9.9mgkm?1 (0.80percent), CO emissions by 31mgkm?1 (0.79percent), and HC emissions by 7.4mgkm?1 (0.67percent). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are typically lower than those in real-world driving.« less

  4. District heating and cooling feasibility study, Dunkirk, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The objective of this project is to perform a preliminary investigation of the technical and economic feasibility of implementing a district heating and cooling (DHC) system in the City of Dunkirk, New York. The study was conducted by first defining a heating and cooling (HC) load service area. Then, questionnaires were sent to prospective DHC customers. After reviewing the owners responses, large consumers of energy were interviewed for more detail of their HC systems, including site visits, to determine possibilities of retrofitting their systems to district heating and cooling. Peak HC loads for the buildings were estimated by Burns andmore » Roe's in-house computer programs. Based on the peak loads, certain customers were determined for suitability as anchor customers. Various options using cogeneration were investigated for possible HC sources. Equipment for HC sources and HC loads were sized and their associated costs estimated. Finally, economic analyses were performed. The conclusion is that it is technically and economically feasible to implement a district heating and cooling system in the City of Dunkirk. 14 figs., 15 tabs.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renlund, Anita Mariana; Tappan, Alexander Smith; Miller, Jill C.

    The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to predictive safety models for HMX and HMX-containing EMs. We report work on monitoring the phase transition with real-time Raman spectroscopy aimed towards obtaining a better understanding of physical properties of HMX through the phase transition. HMX samples were confined in a cell of minimal free volume in a displacement-controlled or load-controlled arrangement. The cell wasmore » heated and then cooled at controlled rates while real-time Raman spectroscopic measurements were performed. Raman spectroscopy provides a clear distinction between the phases of HMX because the vibrational transitions of the molecule change with conformational changes associated with the phase transition. Temperature of phase transition versus load data are presented for both the heating and cooling cycles in the load-controlled apparatus, and general trends are discussed. A weak dependence of the temperature of phase transition on load was discovered during the heating cycle, with higher loads causing the phase transition to occur at a higher temperature. This was especially true in the temperature of completion of phase transition data as opposed to the temperature of onset of phase transition data. A stronger dependence on load was observed in the cooling cycle, with higher loads causing the reverse phase transitions to occur at a higher cooling temperature. Also, higher loads tended to cause the phase transition to occur over a longer period of time in the heating cycle and over a shorter period of time in the cooling cycle. All three of the pure HMX phases ({alpha}, {beta} and {delta}) were detected on cooling of the heated samples, either in pure form or as a mixture.« less

  6. Lockheed Martin microcryocoolers

    NASA Astrophysics Data System (ADS)

    Olson, Jeffrey R.; Roth, Eric W.; Sanders, Lincoln-Shaun; Will, Eric; Frank, David J.

    2017-05-01

    Lockheed Martin's Advanced Technology Center, part of Lockheed Martin Space Systems Company, has developed a series of long life microcryocoolers for avionics and space sensor applications. We report the development and testing of three varieties of single-stage, compact, coaxial, pulse tube microcryocoolers. These coolers support emerging large, high operating temperature (100-150K) infrared focal plane array sensors with nominal cooling loads of 200-2000 mW, and all share long life technology attributes used in space cryocoolers, which typically provide 10 years of continuous operation on orbit without degradation. These three models of microcryocooler are the 345 gram Micro1-1, designed to provide 1 W cooling at 150 K, the 450 gram Micro1-2, designed to provide 2 W cooling at 105 K, and the 320 gram Micro1-3, designed to provide 300 mW cooling at 125 K while providing the capability to cool the IR focal plane to 125 K in less than 3 minutes. The Micro1-3 was also designed with a highly compact package that reduced the coldhead length to 55 mm, a length reduction of more than a factor of two compared with the other coldheads. This paper also describes recent design studies of 2-stage microcryocoolers capable of providing cooling at 25-100K. LMSSC is an industry leader in multiple-stage coolers, having successfully built and tested eight 2-stage coolers (typically cooling to 35-55K), and four coolers with 3 or 4 stages (for cooling to 4-10K). The 2-stage microcryocooler offers a very low mass and compact package capable of cooling HgCdTe focal planes, while providing simultaneous optics cooling at a higher temperature.

  7. Lack of effect of menthol level and type on smokers' estimated mouth level exposures to tar and nicotine and perceived sensory characteristics of cigarette smoke.

    PubMed

    Ashley, Madeleine; Dixon, Mike; Sisodiya, Ajit; Prasad, Krishna

    2012-08-01

    Menthol can reduce sensory irritation and it has been hypothesised that this could result in smokers of mentholated cigarettes taking larger puffs and deeper post-puff inhalations thereby obtaining higher exposures to smoke constituents than smokers of non-mentholated cigarettes. The aim of our study was to use part-filter analysis methodology to assess the effects of cigarette menthol loading on regular and occasional smokers of mentholated cigarettes. We measured mouth level exposure to tar and nicotine and investigated the effects of mentholation on smokers' sensory perceptions such as cooling and irritation. Test cigarettes were produced containing no menthol and different loadings of synthetic and natural l-menthol at 1 and 4mg ISO tar yields. A target of 100 smokers of menthol cigarettes and 100 smokers who predominantly smoked non-menthol cigarettes from both 1 and 4mg ISO tar yield categories were recruited in Poland and Japan. Each subject was required to smoke the test cigarette types of their usual ISO tar yield. There were positive relationships between menthol loading and the perceived 'strength of menthol taste' and 'cooling' effect. However, we did not see marked menthol-induced reductions in perceived irritation or menthol-induced increases in mouth level exposure to tar and nicotine. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Strategy Guideline: HVAC Equipment Sizing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdick, A.

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understandingmore » of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.« less

  9. Remote actuated cryocooler for superconducting generator and method of assembling the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stautner, Ernst Wolfgang; Haran, Kiruba Sivasubramaniam; Fair, Ruben Jeevanasan

    2017-02-14

    In one embodiment, a cryocooler assembly for cooling a heat load is provided. The cryocooler assembly includes a vacuum vessel surrounding the heat load and a cryocooler at least partially inserted into the vacuum vessel, the cryocooler including a coldhead. The assembly further includes an actuator coupled to the cryocooler. The actuator is configured to translate the cryocooler coldhead into thermal engagement with the heat load and to maintain constant pressure of the coldhead against the heat load to facilitate maintaining thermal engagement with the heat load as the heat load shrinks during a cool down process.

  10. Investigation of the Fermi-Hubbard model with 6Li in an optical lattice

    NASA Astrophysics Data System (ADS)

    Hart, R. A.; Duarte, P. M.; Yang, T.-L.; Hulet, R. G.

    2013-05-01

    We present our results on investigation of the physics of the Fermi-Hubbard model using an ultracold gas of 6Li loaded into an optical lattice. We use all-optical methods to efficiently cool and load the lattice beginning with laser cooling on the 2S1 / 2 --> 2P3 / 2 transition and then further cooling using the narrow 2S1 / 2 --> 3P3 / 2 transition to T ~ 59 μK. The second stage of laser cooling greatly enhances loading to an optical dipole trap where a two spin state mixture of atoms is evaporatively cooled to degeneracy. We then adiabatically load ~106 degenerate fermions into a 3D optical lattice formed by three orthogonal standing waves of 1064 nm light. Overlapped with each of the three lattice beams is a non-retroreflected beam at 532 nm. This light cancels the harmonic trapping caused by the lattice beams, which extends the number of lattice sites over which a Néel phase can exist and may allow evaporative cooling in the lattice. By using Bragg scattering of light, we investigate the possibility of observing long-range antiferromagnetic ordering of spins in the lattice. Supported by NSF, ONR, DARPA, and the Welch Foundation.

  11. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER( box model for an idealized parcel in the lower stratosphere at 70 N during winter/spring with different assumed stratospheric coolings and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  12. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K Cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  13. Refrigerated Warehouse Demand Response Strategy Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Doug; Castillo, Rafael; Larson, Kyle

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lightingmore » reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, A.

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less

  16. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by the winter-time penalty, and the net benefit from adopting white roof technology in Portland is small. That said, there are other potential benefits of white roofing such as impact on urban heat islands and roof life that must also be considered.

  17. Effects of peripheral cooling on intention tremor in multiple sclerosis

    PubMed Central

    Feys, P; Helsen, W; Liu, X; Mooren, D; Albrecht, H; Nuttin, B; Ketelaer, P

    2005-01-01

    Objective: To investigate the effect of peripheral sustained cooling on intention tremor in patients with multiple sclerosis (MS). MS induced upper limb intention tremor affects many functional activities and is extremely difficult to treat. Materials/Methods: Deep (18°C) and moderate (25°C) cooling interventions were applied for 15 minutes to 23 and 11 tremor arms of patients with MS, respectively. Deep and moderate cooling reduced skin temperature at the elbow by 13.5°C and 7°C, respectively. Evaluations of physiological variables, the finger tapping test, and a wrist step tracking task were performed before and up to 30 minutes after cooling. Results: The heart rate and the central body temperature remained unchanged throughout. Both cooling interventions reduced overall tremor amplitude and frequency proportional to cooling intensity. Tremor reduction persisted during the 30 minute post cooling evaluation period. Nerve conduction velocity was decreased after deep cooling, but this does not fully explain the reduction in tremor amplitude or the effects of moderate cooling. Cooling did not substantially hamper voluntary movement control required for accurate performance of the step tracking task. However, changes in the mechanical properties of muscles may have contributed to the tremor amplitude reduction. Conclusions: Cooling induced tremor reduction is probably caused by a combination of decreased nerve conduction velocity, changed muscle properties, and reduced muscle spindle activity. Tremor reduction is thought to relate to decreased long loop stretch reflexes, because muscle spindle discharge is temperature dependent. These findings are clinically important because applying peripheral cooling might enable patients to perform functional activities more efficiently. PMID:15716530

  18. Cryogenic system for COMET experiment at J-PARC

    NASA Astrophysics Data System (ADS)

    Ki, Taekyung; Yoshida, Makoto; Yang, Ye; Ogitsu, Toru; Iio, Masami; Makida, Yasuhiro; Okamura, Takahiro; Mihara, Satoshi; Nakamoto, Tatsushi; Sugano, Michinaka; Sasaki, Ken-ichi

    2016-07-01

    Superconducting conductors and cryogenic refrigeration are key factors in the accelerator science because they enable the production of magnets needed to control and detect the particles under study. In Japan, a system for COMET (Coherent Muon to Electron Transition), which will produce muon beam lines, is under the construction at J-PARC (Japan Proton Accelerator Research Complex). The system consists of three superconducting magnets; the first is a pion-capture solenoid, the second is a muon-transport solenoid, and the third is a detector solenoid. It is necessary to cool down the magnets efficiently using two-phase helium and maintain them securely at 4.5 K. For stable cryogenic refrigeration of the magnets, a suitable cooling method, structures, and the irradiation effect on materials should be investigated. In this paper, we focus on the development of an overall cryogenic system for cooling the capture and transport solenoids. A conduction-cooling method is considered for cooling the capture and transport solenoids because of the advantages such as the reduction of total heat load, fewer components, and simplified structure. To supply cryogenic fluids (4.5 K liquid helium and 58 K gas helium) and currents to the conduction-cooled magnets subjected to high irradiation, cryogenic components (cooling paths in the magnets, transfer tubes, and a current lead box) are developed. Based on the environment of high irradiation, the conditions (temperature and pressure) of helium in cooling paths are estimated, as well as the temperature of the capture magnet. We develop a dynamic model for quench simulation and estimate the maximum pressure in the cooling pipe when the capture magnet quenches. We conclude with a discussion of the next steps and estimated challenges for the cryogenic system.

  19. Method for thermoelectric cooler utilization using manufacturer's technical information

    NASA Astrophysics Data System (ADS)

    Ajiwiguna, Tri Ayodha; Nugroho, Rio; Ismardi, Abrar

    2018-03-01

    Thermoelectric cooler (TEC) module has been widely used for many applications. In this study, a procedure to use TEC module for specific requirement is developed based on manufacturer's technical data. For study case, the cooling system using TEC module is designed and tested to maintain 6.6 liter of water at 24 °C while surrounding temperature is 26 °C. First, cooling load estimation is performed empirically by observing the temperature change when cold water is inside the container. Second, the working temperature on hot side and cold side of TEC are determined. Third, the parameters of Seebeck coefficient, thermal resistance and electrical resistance are predicted by using information from the manufacturer. Fourth, the operating current is determined by the assumption the voltage across the TEC is 12V. Fifth, cooling capacity of TEC module is calculated by using energy balance equation of TEC. Sixth, the cooling load and cooling capacity are compared to determine the number of TEC module needed. The result of these calculations showed that one TEC module is enough for cooling system since the cooling load is 17.5 W while the cooling capacity is 18.87 W. From the experimental result, the set point temperature was achieved using one TEC module as predicted in calculations steps.

  20. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Eric; Withers, Chuck; McIlvaine, Janet

    The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. Themore » problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.« less

  1. Thermal deformation of cryogenically cooled silicon crystals under intense X-ray beams: measurement and finite-element predictions of the surface shape

    PubMed Central

    Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter

    2013-01-01

    X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298

  2. Storage peak gas-turbine power unit

    NASA Technical Reports Server (NTRS)

    Tsinkotski, B.

    1980-01-01

    A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.

  3. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Danny S.; Cummings, Jamie E.; Vieira, Robin K.

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  4. Transient Load Following and Control Analysis of Advanced S-CO2 Power Conversion with Dry Air Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, Anton; Sienicki, James J.

    2016-01-01

    Supercritical carbon dioxide (S-CO2) Brayton cycles are under development as advanced energy converters for advanced nuclear reactors, especially the Sodium-Cooled Fast Reactor (SFR). The use of dry air cooling for direct heat rejection to the atmosphere ultimate heat sink is increasingly becoming a requirement in many regions due to restrictions on water use. The transient load following and control behavior of an SFR with an S-CO2 cycle power converter utilizing dry air cooling have been investigated. With extension and adjustment of the previously existing control strategy for direct water cooling, S-CO2 cycle power converters can also be used for loadmore » following operation in regions where dry air cooling is a requirement« less

  5. Stratospheric Cooling and Arctic Ozone Recovery. Appendix L

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriguez, Jose M.; Tabazadeh, Azadeh

    1998-01-01

    We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4 - 0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  6. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salamon, Todd

    2012-12-13

    Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned phasemore » change or two-phase pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature. Results of a 100 kW prototype data center installation of the refrigerant-based modular cooling technology were dramatic in terms of energy efficiency and the ability to cool high-heat-density equipment. The prototype data center installation consisted of 10 racks each loaded with 10 kW of high-heat-density IT equipment with the racks arranged in a standard hot-aisle/cold-aisle configuration with standard cabinet spacing. A typical chilled-water CRAC unit would require approximately 16 kW to cool such a heat load. In contrast, the refrigerant-based modular cooling technology required only 2.3 kW of power for the refrigerant pump and shelf-level fans, a reduction of 85 percent. Differences in hot-aisle and cold-aisle temperature were also substantially reduced, mitigating many issues that arise in purely air-based cooling systems, such as mixing of hot and cold air streams, or from placing high-heat-density equipment in close proximity. The technology is also such that it is able to retro-fit live equipment without service interruption, which is particularly important to the large installed ICT customer base, thereby providing a means of mitigating reliability and performance concerns during the installation, training and validation phases of product integration. Moreover, the refrigerant used in our approach, R134a, is a widely-used, non-toxic dielectric liquid which, unlike water, is non-conducting and non-corrosive and will not damage electronics in the case of a leak a triple-play win over alternative water-based liquid coolant technologies. Finally, through use of a pumped refrigerant, pressures are modest (~60 psi), and toxic lubricants and oils are not required, in contrast to compressorized refrigerant systems another environmental win. Project Activities - The ARCTIC project goal was to further develop and dramatically accelerate the commercialization of this game-changing, refrigerant-based, liquid-cooling technology and achieve a revolutionary increase in energy efficiency and carbon footprint reduction for our nation's Information and Communications Technology (ICT) infrastructure. The specific objectives of the ARCTIC project focused in the following three areas: i) advanced research innovations that dramatically enhance the ability to deal with ever-increasing device heat densities and footprint reduction by bringing the liquid cooling much closer to the actual heat sources; ii) manufacturing optimization of key components; and iii) ensuring rapid market acceptance by reducing cost, thoroughly understanding system-level performance, and developing viable commercialization strategies. The project involved participants with expertise in all aspects of commercialization, including research & development, manufacturing, sales & marketing and end users. The team was lead by Alcatel-Lucent, and included subcontractors Modine and USHose.« less

  7. Examing the prospective of implementing passive house standards in providing sustainable schools

    NASA Astrophysics Data System (ADS)

    Suhaili, Wan Farhani; Shahrill, Masitah

    2018-04-01

    This study examines the potential of implementing the passive house standards to reduce energy consumption on school buildings in Brunei. Furthermore, it investigates whether sustainable school buildings make business sense to the government. To do this, conventional and Passive House primary school buildings are compared in terms of their performances using the Passive House Planning Package as well as the Ecotect environmental analysis tool. The findings indicated that by replacing lower U-values building fabrics brought a significantly reduction in the cooling demand of 54%. Whereas, Ecotect models have demonstrated that the heating and cooling loads have tremendously reduced to 75% by reorienting the location of the building to south elevation and by replacing the building fabrics with a lower U-values. These findings were then evaluated with a cost benefit analysis that proved to save cost energy annually from air-conditioning usage from a typical primary school with eight years of pay back period.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herk, Anastasia; Poerschke, Andrew

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS ismore » studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).« less

  9. Radiation detection system for portable gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S [Alamo, CA; Howard, Douglas E [Livermore, CA; Wong, James L [Dublin, CA; Jessup, James L [Tracy, CA; Bianchini, Greg M [Livermore, CA; Miller, Wayne O [Livermore, CA

    2006-06-20

    A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.

  10. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuss, M.; Markel, T.; Kramer, W.

    Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly,more » some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.« less

  11. Comparison of simulated and experimental results of temperature distribution in a closed two-phase thermosyphon cooling system

    NASA Astrophysics Data System (ADS)

    Shaanika, E.; Yamaguchi, K.; Miki, M.; Ida, T.; Izumi, M.; Murase, Y.; Oryu, T.; Yanamoto, T.

    2017-12-01

    Superconducting generators offer numerous advantages over conventional generators of the same rating. They are lighter, smaller and more efficient. Amongst a host of methods for cooling HTS machinery, thermosyphon-based cooling systems have been employed due to their high heat transfer rate and near-isothermal operating characteristics associated with them. To use them optimally, it is essential to study thermal characteristics of these cryogenic thermosyphons. To this end, a stand-alone neon thermosyphon cooling system with a topology resembling an HTS rotating machine was studied. Heat load tests were conducted on the neon thermosyphon cooling system by applying a series of heat loads to the evaporator at different filling ratios. The temperature at selected points of evaporator, adiabatic tube and condenser as well as total heat leak were measured. A further study involving a computer thermal model was conducted to gain further insight into the estimated temperature distribution of thermosyphon components and heat leak of the cooling system. The model employed boundary conditions from data of heat load tests. This work presents a comparison between estimated (by model) and experimental (measured) temperature distribution in a two-phase cryogenic thermosyphon cooling system. The simulation results of temperature distribution and heat leak compared generally well with experimental data.

  12. Overview of nanofluid application through minimum quantity lubrication (MQL) in metal cutting process

    NASA Astrophysics Data System (ADS)

    Sharif, Safian; Sadiq, Ibrahim Ogu; Suhaimi, Mohd Azlan; Rahim, Shayfull Zamree Abd

    2017-09-01

    Pollution related activities in addition to handling cost of conventional cutting fluid application in metal cutting industry has generated a lot of concern over time. The desire for a green machining environment which will preserve the environment through reduction or elimination of machining related pollution, reduction in oil consumption and safety of the machine operators without compromising an efficient machining process led to search for alternatives to conventional cutting fluid. Amongst the alternatives of dry machining, cryogenic cooling, high pressure cooling, near dry or minimum quantity lubrication (MQL), MQL have shown remarkable performance in terms of cost, machining output, safety of environment and machine operators. However, the MQL under aggressive machining or very high speed machining pose certain restriction as the lubrication media cannot perform efficiently at elevated temperature. In compensating for the shortcomings of MQL technique, high thermal conductivity nanoparticles are introduced in cutting fluids for use in the MQL lubrication process. They have indicated enhanced performance of machining process and significant reduction of loads on the environment. The present work is aimed at evaluating the application and performance of nanofluid in metal cutting process through MQL lubrication technique highlighting their impacts and prospects as lubrication strategy in metal cutting process for sustainable green manufacturing. Enhanced performance of vegetable oil based nanofluids over mineral oil-based nanofluids have been reported and thus highlighted.

  13. A Compact, Continuous Adiabatic Demagnetization Refrigerator with High Heat Sink Temperature

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Tuttle, J. G.

    2003-01-01

    In the continuous adiabatic demagnetization refrigerator (ADR), the existence of a constant temperature stage attached to the load breaks the link between the requirements of the load (usually a detector array) and the operation of the ADR. This allows the ADR to be cycled much faster, which yields more than an order of magnitude improvement in cooling power density over single-shot ADRs. Recent effort has focused on developing compact, efficient higher temperature stages. An important part of this work has been the development of passive gas-gap heat switches that transition (from conductive to insulating) at temperatures around 1 K and 4 K without the use of an actively heated getter. We have found that by carefully adjusting available surface area and the number of He-3 monolayers, gas-gap switches can be made to operate passively. Passive operation greatly reduces switching time and eliminates an important parasitic heat load. The current four stage ADR provides 6 micro W of cooling at 50 mK (21 micro W at 100 mK) and weighs less than 8 kg. It operates from a 4.2 K heat sink, which can be provided by an unpumped He bath or many commercially available mechanical cryocoolers. Reduction in critical current with temperature in our fourth stage NbTi magnet presently limits the maximum temperature of our system to approx. 5 K. We are developing compact, low-current Nb3Sn magnets that will raise the maximum heat sink temperature to over 10 K.

  14. Covering Materials Incorporating Radiation-Preventing Techniques to Meet Greenhouse Cooling Challenges in Arid Regions: A Review

    PubMed Central

    Abdel-Ghany, Ahmed M.; Al-Helal, Ibrahim M.; Alzahrani, Saeed M.; Alsadon, Abdullah A.; Ali, Ilias M.; Elleithy, Rabeh M.

    2012-01-01

    Cooling greenhouses is essential to provide a suitable environment for plant growth in arid regions characterized by brackish water resources. However, using conventional cooling methods are facing many challenges. Filtering out near infra-red radiation (NIR) at the greenhouse cover can significantly reduce the heating load and can solve the overheating problem of the greenhouse air. This paper is to review (i) the problems of using conventional cooling methods and (ii) the advantages of greenhouse covers that incorporate NIR reflectors. This survey focuses on how the cover type affects the transmittance of photosynthetically active radiation (PAR), the reflectance or absorptance of NIR and the greenhouse air temperature. NIR-reflecting plastic films seem to be the most suitable, low cost and simple cover for greenhouses under arid conditions. Therefore, this review discusses how various additives should be incorporated in plastic film to increase its mechanical properties, durability and ability to stand up to extremely harsh weather. Presently, NIR-reflecting covers are able to reduce greenhouse air temperature by no more than 5°C. This reduction is not enough in regions where the ambient temperature may exceed 45°C in summer. There is a need to develop improved NIR-reflecting plastic film covers. PMID:22629223

  15. Implications of Climate Change on the Heat Budget of Lentic Systems Used for Power Station Cooling: Case Study Clinton Lake, Illinois.

    PubMed

    Quijano, Juan C; Jackson, P Ryan; Santacruz, Santiago; Morales, Viviana M; García, Marcelo H

    2016-01-05

    We use a numerical model to analyze the impact of climate change-in particular higher air temperatures-on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.

  16. Implications of climate change on the heat budget of lentic systems used for power station cooling: Case study Clinton Lake, Illinois

    USGS Publications Warehouse

    Quijano, Juan C; Jackson, P. Ryan; Santacruz, Santiago; Morales, Viviana M; Garcia, Marcelo H.

    2016-01-01

    We use a numerical model to analyze the impact of climate change--in particular higher air temperatures--on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.

  17. Waiting time effect of a GM type orifice pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Zhu, Shaowei; Kakimi, Yasuhiro; Matsubara, Yoichi

    In a general GM type orifice pulse tube refrigerator, there are two short periods during which both the high pressure valve and the low pressure valve are closed in one cycle. We call the short period `waiting time'. The pressure differences across the high pressure valve and the low pressure valve are decreased by using long waiting time. The pressure difference loss is decreased. Thus, the cooling capacity and the efficiency are increased, and the no-load temperature is decreased. The mechanism of the waiting time is discussed with numerical analysis and verified by experiments. Experiments show that there is an optimum waiting time for the no-load temperature, the cooling capacity and the efficiency, respectively. The no-load temperature of 40.3 K was achieved with a 90° waiting time. The cooling capacity of 58 W at 80 K was achieved with a 60° waiting time. The no-load temperature of 45.1 K and the cooling capacity of 45 W at 80 K were achieved with a 1° waiting time.

  18. Optimization of cooling strategy and seeding by FBRM analysis of batch crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Dejiang; Liu, Lande; Xu, Shijie; Du, Shichao; Dong, Weibing; Gong, Junbo

    2018-03-01

    A method is presented for optimizing the cooling strategy and seed loading simultaneously. Focused beam reflectance measurement (FBRM) was used to determine the approximating optimal cooling profile. Using these results in conjunction with constant growth rate assumption, modified Mullin-Nyvlt trajectory could be calculated. This trajectory could suppress secondary nucleation and has the potential to control product's polymorph distribution. Comparing with linear and two step cooling, modified Mullin-Nyvlt trajectory have a larger size distribution and a better morphology. Based on the calculating results, the optimized seed loading policy was also developed. This policy could be useful for guiding the batch crystallization process.

  19. Effects of micro electric current load during cooling of plant tissues on intracellular ice crystal formation behavior and pH.

    PubMed

    Ninagawa, Takako; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Cryopreservation techniques are expected to evolve further to preserve biomaterials and foods in a fresh state for extended periods of time. Long-term cryopreservation of living materials such as food and biological tissue is generally achieved by freezing; thus, intracellular freezing occurs. Intracellular freezing injures the cells and leads to cell death. Therefore, a dream cryopreservation technique would preserve the living materials without internal ice crystal formation at a temperature low enough to prevent bacterial activity. This study was performed to investigate the effect of micro electrical current loading during cooling as a new cryopreservation technique. The behavior of intracellular ice crystal formation in plant tissues with or without an electric current load was evaluated using the degree of supercooling, degree of cell deformation, and grain size and growing rate of intracellular ice crystal. Moreover, the transition of intracellular pH during plant tissue cooling with or without electric current loading was also examined using the fluorescence intensity ratio to comprehend cell activity at lower temperatures. The results indicated that micro electric current load did not only decrease the degree of cell deformation and grain size of intracellular ice crystal but also reduced the decline in intracellular pH due to temperature lowering, compared with tissues subjected to the same cooling rate without an electric current load. Thus, the effect of electric current load on cryopreservation and the potential of a new cryopreservation technique using electric current load were discussed based on these results. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2010-01-01

    The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests and/or deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four degrees of ovalization of the nozzle: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The computed side load physics caused by the nozzle out-of-roundness and its effect on nozzle side load are reported and discussed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjarlais, Andre Omer; Kriner, Scott; Miller, William A

    An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool wasmore » then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.« less

  2. Design and Development of a Residential Gas-Fired Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vineyard, Edward Allan; Abu-Heiba, Ahmad; Mahderekal, Dr. Isaac

    2017-01-01

    Heating, ventilating, and air-conditioning equipment consumes 43% of the total primary energy consumption in U.S. households. Presently, conventional gas furnaces have maximum heating efficiencies of 98%. Electric air conditioners used in association with the furnace for cooling have a minimum seasonal energy efficiency ratio (SEER) of 14.0. A residential gas-fired heat pump (RGHP) was developed and tested under standard rating conditions, resulting in a significant increase in heating efficiency of over 40% versus conventional natural gas furnaces. The associated efficiency of the RGHP in cooling mode is comparable in efficiency to an electric air conditioner (14.0 SEER) when compared onmore » a primary energy basis. The RGHP is similar in nature to a conventional heat pump but with two main differences. First, the primary energy savings are higher, based on a site versus source comparison, as the result of using natural gas to supply shaft power to the compressor rather than an electric motor. Second, waste heat is recovered from the engine to supplement space heating and reduce the energy input. It can also be used to provide supplemental water heating. The system utilizes a programmable logic controller that allows variable-speed operation to achieve improved control to meet building loads. RGHPs significantly reduce peak electric use during periods of high demand, especially peak summer loads, as well as peak winter loads in regions with widespread use of electric heating. This contributes to leveling year-round gas loads, with the potential to increase annual gas demand in some regions. The widespread adoption of RGHPs will contribute to significant reductions in primary energy consumption and carbon emissions through improved efficiencies.« less

  3. New Irradiation Method with Indocyanine Green-Loaded Nanospheres for Inactivating Periodontal Pathogens

    PubMed Central

    Sasaki, Yasuyuki; Hayashi, Jun-ichiro; Fujimura, Takeki; Iwamura, Yuki; Yamamoto, Genta; Nishida, Eisaku; Ohno, Tasuku; Okada, Kosuke; Yamamoto, Hiromitsu; Kikuchi, Takeshi; Mitani, Akio; Fukuda, Mitsuo

    2017-01-01

    Antimicrobial photodynamic therapy (aPDT) has been proposed as an adjunctive strategy for periodontitis treatments. However, use of aPDT for periodontal treatment is complicated by the difficulty in accessing morphologically complex lesions such as furcation involvement, which the irradiation beam (which is targeted parallel to the tooth axis into the periodontal pocket) cannot access directly. The aim of this study was to validate a modified aPDT method that photosensitizes indocyanine green-loaded nanospheres through the gingivae from outside the pocket using a diode laser. To establish this trans-gingival irradiation method, we built an in vitro aPDT model using a substitution for gingivae. Irradiation conditions and the cooling method were optimized before the bactericidal effects on Porphyromonas gingivalis were investigated. The permeable energy through the gingival model at irradiation conditions of 2 W output power in a 50% duty cycle was comparable with the transmitted energy of conventional irradiation. Intermittent irradiation with air cooling limited the temperature increase in the gingival model to 2.75 °C. The aPDT group showed significant bactericidal effects, with reductions in colony-forming units of 99.99% after 5 min of irradiation. This effect of aPDT against a periodontal pathogen demonstrates the validity of trans-gingival irradiation for periodontal treatment. PMID:28098777

  4. New Irradiation Method with Indocyanine Green-Loaded Nanospheres for Inactivating Periodontal Pathogens.

    PubMed

    Sasaki, Yasuyuki; Hayashi, Jun-Ichiro; Fujimura, Takeki; Iwamura, Yuki; Yamamoto, Genta; Nishida, Eisaku; Ohno, Tasuku; Okada, Kosuke; Yamamoto, Hiromitsu; Kikuchi, Takeshi; Mitani, Akio; Fukuda, Mitsuo

    2017-01-13

    Antimicrobial photodynamic therapy (aPDT) has been proposed as an adjunctive strategy for periodontitis treatments. However, use of aPDT for periodontal treatment is complicated by the difficulty in accessing morphologically complex lesions such as furcation involvement, which the irradiation beam (which is targeted parallel to the tooth axis into the periodontal pocket) cannot access directly. The aim of this study was to validate a modified aPDT method that photosensitizes indocyanine green-loaded nanospheres through the gingivae from outside the pocket using a diode laser. To establish this trans-gingival irradiation method, we built an in vitro aPDT model using a substitution for gingivae. Irradiation conditions and the cooling method were optimized before the bactericidal effects on Porphyromonas gingivalis were investigated. The permeable energy through the gingival model at irradiation conditions of 2 W output power in a 50% duty cycle was comparable with the transmitted energy of conventional irradiation. Intermittent irradiation with air cooling limited the temperature increase in the gingival model to 2.75 °C. The aPDT group showed significant bactericidal effects, with reductions in colony-forming units of 99.99% after 5 min of irradiation. This effect of aPDT against a periodontal pathogen demonstrates the validity of trans-gingival irradiation for periodontal treatment.

  5. FY 17 Q1 Commercial integrated heat pump with thermal storage milestone report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Heiba, Ahmad; Baxter, Van D.; Shen, Bo

    2017-01-01

    The commercial integrated heat pump with thermal storage (AS-IHP) offers significant energy saving over a baseline heat pump with electric water heater. The saving potential is maximized when the AS-IHP serves coincident high water heating and high space cooling demands. A previous energy performance analysis showed that the AS-IHP provides the highest benefit in the hot-humid and hot-dry/mixed dry climate regions. Analysis of technical potential energy savings for these climate zones based on the BTO Market calculator indicated that the following commercial building market segments had the highest water heating loads relative to space cooling and heating loads education, foodmore » service, health care, lodging, and mercantile/service. In this study, we focused on these building types to conservatively estimate the market potential of the AS-IHP. Our analysis estimates maximum annual shipments of ~522,000 units assuming 100% of the total market is captured. An early replacement market based on replacement of systems in target buildings between 15 and 35 years old was estimated at ~136,000 units. Technical potential energy savings are estimated at ~0.27 quad based on the maximum market estimate, equivalent to ~13.9 MM Ton CO2 emissions reduction.« less

  6. Systematic optimization of laser cooling of dysprosium

    NASA Astrophysics Data System (ADS)

    Mühlbauer, Florian; Petersen, Niels; Baumgärtner, Carina; Maske, Lena; Windpassinger, Patrick

    2018-06-01

    We report on an apparatus for cooling and trapping of neutral dysprosium. We characterize and optimize the performance of our Zeeman slower and 2D molasses cooling of the atomic beam by means of Doppler spectroscopy on a 136 kHz broad transition at 626 nm. Furthermore, we demonstrate the characterization and optimization procedure for the loading phase of a magneto-optical trap (MOT) by increasing the effective laser linewidth by sideband modulation. After optimization of the MOT compression phase, we cool and trap up to 10^9 atoms within 3 seconds in the MOT at temperatures of 9 μK and phase space densities of 1.7 \\cdot 10^{-5}, which constitutes an ideal starting point for loading the atoms into an optical dipole trap and for subsequent forced evaporative cooling.

  7. Energy Performance and Optimal Control of Air-conditioned Buildings Integrated with Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Zhu, Na

    This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand reduction potentials in typical air-conditioning seasons in typical China cites as well as the impacts of operation and control strategies.

  8. The integration of liquid cryogen cooling and cryocoolers withsuperconducting electronic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Michael A.

    2003-07-09

    The need for cryogenic cooling has been a critical issuethat has kept superconducting electronic devices from reaching the marketplace. Even though the performance of many of the superconductingcircuits is superior to silicon electronics, the requirement forcryogenic cooling has put the superconducting devices at a seriousdisadvantage. This report discusses the process of refrigeratingsuperconducting devices with cryogenic liquids and small cryocoolers.Three types of cryocoolers are compared for vibration, efficiency, andreliability. The connection of a cryocooler to the load is discussed. Acomparison of using flexible copper straps to carry the heat load andusing heat pipe is shown. The type of instrumentation needed formonitoringmore » and controlling the cooling is discussed.« less

  9. Site dependent factors affecting the economic feasibility of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    A procedure was developed to evaluate the cost effectiveness of combining an absorption cycle chiller with a solar energy system. A basic assumption of the procedure is that a solar energy system exists for meeting the heating load of the building, and that the building must be cooled. The decision to be made is to either cool the building with a conventional vapor compression cycle chiller or to use the existing solar energy system to provide a heat input to the absorption chiller. Two methods of meeting the cooling load not supplied by solar energy were considered. In the first method, heat is supplied to the absorption chiller by a boiler using fossil fuel. In the second method, the load not met by solar energy is net by a conventional vapor compression chiller. In addition, the procedure can consider waste heat as another form of auxiliary energy. Commercial applications of solar cooling with an absorption chiller were found to be more cost effective than the residential applications. In general, it was found that the larger the chiller, the more economically feasible it would be. Also, it was found that a conventional vapor compression chiller is a viable alternative for the auxiliary cooling source, especially for the larger chillers. The results of the analysis gives a relative rating of the sites considered as to their economic feasibility of solar cooling.

  10. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  11. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate: Long-Term Utility and Monitoring Data (Revised)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, D.; Sherwin, J.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution,more » and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.« less

  12. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate. Long-Term Utility and Monitoring Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, D.; Sherwin, J.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution,more » and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.« less

  13. Modeling Hybrid Nuclear Systems With Chilled-Water Storage

    DOE PAGES

    Misenheimer, Corey T.; Terry, Stephen D.

    2016-06-27

    Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less

  14. Modeling Hybrid Nuclear Systems With Chilled-Water Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misenheimer, Corey T.; Terry, Stephen D.

    Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less

  15. Reduction in body temperature using hand cooling versus passive rest after exercise in the heat.

    PubMed

    Adams, William M; Hosokawa, Yuri; Adams, Elizabeth L; Belval, Luke N; Huggins, Robert A; Casa, Douglas J

    2016-11-01

    To examine the effects of hydration and hand cooling on lowering body temperature after exercise in the heat. Randomized cross-over design. Nine recreationally active male participants (mean±SD; age, 24±4; height, 177.3±9.9cm; body mass, 76.7±11.6kg; body fat, 14.7±5.8%) completed a bout of treadmill exercise in a hot environment. After completion of exercise, participants were assigned to the following trials for post-exercise cooling: (1) hydrated with passive rest (HY), (2) hydrated with hand cooling on both hands (HY+2HC), (3) dehydrated with passive rest (DY), and (4) dehydrated with hand cooling on both hands (DY+2HC). Within subject differences were assessed using a three-way (Hydration×Condition×Time) repeated measures ANOVA with Tukey's post hoc analysis if significant interactions were found. Irrespective of hydration status, hand cooling on both hands resulted in significantly greater reductions in T REC than passive cooling at minute 20 (0.27°C [0.05, 0.49], ES=2.08, p=0.017) (Fig. 1). The reduction in T REC at minute 18 trended towards statistical significance (0.21°C [.003, .42], ES=1.59, p=0.053). Hydration status alone and when differentiated among modes of cooling showed no differences on changes of T REC or heart rate across all conditions during post exercise recovery (p>0.05). Hand cooling on both hands reduced T REC more than passive cooling, however, the cooling rates observed render hand cooling a poor option for cooling. Greater reductions in T REC after exercise or between bouts of exercise may enhance recovery and subsequent performance. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  16. Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore

    NASA Astrophysics Data System (ADS)

    Yang, Song-tao; Zhou, Mi; Jiang, Tao; Guan, Shan-fei; Zhang, Wei-jun; Xue, Xiang-xin

    2016-12-01

    A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V-Ti-Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio ( η), S removal ratio ( R S), and P removal ratio ( R P) were studied and analyzed on the basis of chemical composition determined via inductively coupled plasma optical emission spectroscopy. The metallic iron particle size and the element distribution of Fe, V, Cr, and Ti in a reduced briquette after water cooling treatment at 1350°C were determined and observed via scanning electron microscopy. The results show that the water cooling treatment improved the η, R S, and R P in the coal-based reduction of V-Ti-Cr iron ore compared to those obtained with a furnace cooling treatment. Meanwhile, the particle size of metallic iron obtained via the water cooling treatment was smaller than that of metallic iron obtained via the furnace cooling treatment; however, the particle size reached 70 μm at 1350°C, which is substantially larger than the minimum particle size required (20 μm) for magnetic separation. Therefore, the water cooling treatment described in this work is a good method for improving the quality of metallic iron in coal-based reduction and it could be applied in the coal-based reduction of V-Ti-Cr iron ore followed by magnetic separation.

  17. New perspectives for advanced automobile diesel engines

    NASA Technical Reports Server (NTRS)

    Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.

    1983-01-01

    Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.

  18. Performance comparison of single-stage mixed-refrigerant Joule-Thomson cycle and reverse Brayton cycle for cooling 80 to 120 K temperature-distributed heat loads

    NASA Astrophysics Data System (ADS)

    Wang, H. C.; Chen, G. F.; Gong, M. Q.; Li, X.

    2017-12-01

    Thermodynamic performance comparison of single-stage mixed-refrigerant Joule-Thomson cycle (MJTR) and pure refrigerant reverse Brayton cycle (RBC) for cooling 80 to 120 K temperature-distributed heat loads was conducted in this paper. Nitrogen under various liquefaction pressures was employed as the heat load. The research was conducted under nonideal conditions by exergy analysis methods. Exergy efficiency and volumetric cooling capacity are two main evaluation parameters. Exergy loss distribution in each process of refrigeration cycle was also investigated. The exergy efficiency and volumetric cooling capacity of MJTR were obviously superior to RBC in 90 to 120 K temperature zone, but still inferior to RBC at 80 K. The performance degradation of MJTR was caused by two main reasons: The high fraction of neon resulted in large entropy generation and exergy loss in throttling process. Larger duty and WLMTD lead to larger exergy losses in recuperator.

  19. Zone descriptions and response characterization for CLF/CLTD calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, E.F.; Chiles, D.C.

    1985-01-01

    This paper presents the results of an extensive parametric study of the dynamic response of building cooling loads to heat gains. These results are in the form of tables that classify zones in terms of seven of their physical properties and according to their dynamic response characteristics. Weighting factors and other data are also given. The principal application of these results will be to allow calculation of tables of Cooling Load Temperature Differences (CLTDs) and Cooling Load Factors (CLFs) for a small number of representative zones that cover the wide range of zones found in practice. Additionally, they will allowmore » for adjustment to the solar CLFs in the ASHRAE Handbook -1981 Fundamentals to account for carpets, room size, ceiling and exterior wall weight.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, A. J.

    In a method of the type where petrol is recovered from a mixture of petrol vapor and air by absorption of the petrol in a cooled petroleum distillate, a petroleum distillate having a boiling point range higher than that of the petrol is used, and this petroleum distillate is in sequence cooled by heat exchange with a cold reservoir, brought into direct contact with the petrol/air mixture to absorb petrol, transferred to a buffer tank and transferred from the buffer tank to a stripping means which may be a distillation column. By combining cooling condensation and absorption of the petrolmore » vapor and controlling the amount of cooled petroleum distillate brought into contact with the petrol/air mixture so that the petrol concentration in the petroleum distillate transferred to the buffer tank is substantially constant, an unprecedented optimum control of the petrol absorbing process can be obtained both in peak load and in average load operations. A system for carrying out the method is advantageous in that only the absorption means need be dimensioned for peak load operation, while the other components, such as the distillation column or a heat exchanger with associated conduits can be dimensioned for average loads, a buffer tank being provided to temporarily receive the petroleum distillate which owing to the above-mentioned control has a substantially constant, maximum petrol concentration so that the system can cope with peak loads with a surprisingly small buffer tank.« less

  1. Solar heating and cooling: Technical data and systems analysis

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1975-01-01

    The solar energy research is reported including climatic data, architectural data, heating and cooling equipment, thermal loads, and economic data. Lists of data sources presented include: selected data sources for solar energy heating and cooling; bibliography of solar energy, and other energy sources; sources for manufacturing and sales, solar energy collectors; and solar energy heating and cooling projects.

  2. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  3. Technology Solutions Case Study: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  4. Study on load forecasting to data centers of high power density based on power usage effectiveness

    NASA Astrophysics Data System (ADS)

    Zhou, C. C.; Zhang, F.; Yuan, Z.; Zhou, L. M.; Wang, F. M.; Li, W.; Yang, J. H.

    2016-08-01

    There is usually considerable energy consumption in data centers. Load forecasting to data centers is in favor of formulating regional load density indexes and of great benefit to getting regional spatial load forecasting more accurately. The building structure and the other influential factors, i.e. equipment, geographic and climatic conditions, are considered for the data centers, and a method to forecast the load of the data centers based on power usage effectiveness is proposed. The cooling capacity of a data center and the index of the power usage effectiveness are used to forecast the power load of the data center in the method. The cooling capacity is obtained by calculating the heat load of the data center. The index is estimated using the group decision-making method of mixed language information. An example is given to prove the applicability and accuracy of this method.

  5. Influence of the cooling degree upon performances of internal combustion engine

    NASA Astrophysics Data System (ADS)

    Grǎdinariu, Andrei Cristian; Mihai, Ioan

    2016-12-01

    Up to present, air cooling systems still raise several unsolved problems due to conditions imposed by the environment in terms of temperature and pollution levels. The present paper investigates the impact of the engine cooling degree upon its performances, as important specific power is desired for as low as possible fuel consumption. A technical solution advanced by the authors[1], consists of constructing a bi-flux compressor, which can enhance the engine's performances. The bi-flux axial compressor accomplishes two major functions, that is it cools down the engine and it also turbocharges it. The present paper investigates the temperature changes corresponding to the fresh load, during the use of a bi-flux axial compressor. This compressor is economically simple, compact, and offers an optimal response at low rotational speeds of the engine, when two compression steps are used. The influence of the relative coefficient of air temperature drop upon working agent temperature at the intercooler exit is also investigated in the present work. The variation of the thermal load coefficient by report to the working agent temperature is also investigated during engine cooling. The variation of the average combustion temperature is analyzed in correlation to the thermal load coefficient and the temperatures of the working fluid at its exit from the cooling system. An exergetic analysis was conducted upon the influence of the cooling degree on the motor fluid and the gases resulted from the combustion process.

  6. Field Study of Performance, Comfort, and Sizing of Two Variable-Speed Heat Pumps Installed in a Single 2-Story Residence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munk, Jeffrey D; Odukomaiya, Adewale O; Gehl, Anthony C

    2014-01-01

    With the recent advancements in the application of variable-speed (VS) compressors to residential HVAC systems, opportunities are now available to size heat pumps (HPs) to more effectively meet heating and cooling loads in many of the climate zones in the US with limited use of inefficient resistance heat. This is in contrast to sizing guidance for traditional single-speed HPs that limits the ability to oversize with regard to cooling loads, because of risks of poor dehumidification during the cooling season and increased cycling losses. VS-drive HPs can often run at 30-40% of their rated cooling capacity to reduce cycling losses,more » and can adjust fan speed to provide better indoor humidity control. Detailed air-side performance data was collected on two VS-drive heat pumps installed in a single unoccupied research house in Knoxville, TN, a mixed-humid climate. One system provided space conditioning for the upstairs, while the other unit provided space conditioning for the downstairs. Occupancy was simulated by operating the lights, shower, appliances, other plug loads, etc. to simulate the sensible and latent loads imposed on the building space by internal electric loads and human occupants according to the Building America Research Benchmark (2008). The seasonal efficiency and energy use of the units are calculated. Annual energy use is compared to that of the single speed minimum efficiency HPs tested in the same house previously. Sizing of the units relative to the measured building load and manual J design load calculations is examined. The impact of the unit sizing with regards to indoor comfort is also evaluated.« less

  7. Daily Air Temperature and Electricity Load in Spain.

    NASA Astrophysics Data System (ADS)

    Valor, Enric; Meneu, Vicente; Caselles, Vicente

    2001-08-01

    Weather has a significant impact on different sectors of the economy. One of the most sensitive is the electricity market, because power demand is linked to several weather variables, mainly the air temperature. This work analyzes the relationship between electricity load and daily air temperature in Spain, using a population-weighted temperature index. The electricity demand shows a significant trend due to socioeconomic factors, in addition to daily and monthly seasonal effects that have been taken into account to isolate the weather influence on electricity load. The results indicate that the relationship is nonlinear, showing a `comfort interval' of ±3°C around 18°C and two saturation points beyond which the electricity load no longer increases. The analysis has also revealed that the sensitivity of electricity load to daily air temperature has increased along time, in a higher degree for summer than for winter, although the sensitivity in the cold season is always more significant than in the warm season. Two different temperature-derived variables that allow a better characterization of the observed relationship have been used: the heating and cooling degree-days. The regression of electricity data on them defines the heating and cooling demand functions, which show correlation coefficients of 0.79 and 0.87, and predicts electricity load with standard errors of estimate of ±4% and ±2%, respectively. The maximum elasticity of electricity demand is observed at 7 cooling degree-days and 9 heating degree-days, and the saturation points are reached at 11 cooling degree-days and 13 heating degree-days, respectively. These results are helpful in modeling electricity load behavior for predictive purposes.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davlin, Thomas

    The overall deliverable from the project is the design, construction and commissioning of a detention facility heating and cooling system that minimizes ownership costs and maximizes efficiency (and therefore minimizes environmental impact). The primary deliverables were the proof of concept for the application of geothermal systems for an institutional facility and the ongoing, quarterly system operating data downloads to the Department of Energy . The primary advantage of geothermal based heat pump systems is the higher efficiency of the system compared to a conventional chiller, boiler, cooling tower based system. The higher efficiency results in a smaller environmental foot printmore » and lower energy costs for the detention facility owner, Lancaster County. The higher efficiency for building cooling is primarily due to a more constant compressor condensing temperature with the geothermal well field acting as a thermal “sink” (in place of the conventional system’s cooling tower). In the heating mode, Ground Couple Heat Pump (GCHP) systems benefits from the advantage of a heat pump Coefficient of Performance (COP) of approximately 3.6, significantly better than a conventional gas boiler. The geothermal well field acting as a thermal “source” allows the heat pumps to operate efficiently in the heating mode regardless of ambient temperatures. The well field is partially located in a wetland with a high water table so, over time, the project will be able to identify the thermal loading characteristics of a well field located in a high water table location. The project demonstrated how a large geothermal well field can be installed in a wetland area in an economical and environmentally sound manner. Finally, the SW 40th Street Thermal Energy Plant project demonstrates the benefits of providing domestic hot water energy, as well as space heating, to help balance well filed thermal loading in a cooling dominated application. During the period of August 2012 thru March 2014, with the detention facility occupied for the final seven months, the well field supply water temperatures to the heat pumps dropped to a minimum of 39°F and reached a maximum temperature of 68 °F while providing 15,819 MMBtu of cooling energy and 27,467 MMBtu of heating energy. During this period the peak recorded system cooling load was 610 tons and the peak heating load was 8.4 MMBtu. The DEC is currently evaluating the most beneficial electric rate for plant operations. Total project cost of $16.9 million was approximately $3.2 million less than the estimate provided in the grant application. The reduction in project costs were primarily due to favorable construction material prices as well as strong competition in the local construction contractor market. The DEC plant reached the substantial completion milestone in December 2011 and began providing thermal service to the detention facility in January 2012 when the building’s HVAC system was ready to accept heating service. The plant reached commercial operating status on August 1, 2012. However, due to construction delays, the detention facility was not occupied until September of 2013. The detention facility construction delays also impacted the installation and commissioning of the project’s dedicated domestic hot water heat pump. Final coordination with the detention facility’s building management system vendor to establish network links for the exchange of date is currently being completed. This will allow the development of control sequences for the optimal operation of the domestic hot water system.« less

  9. Estimation of the residual bromine concentration after disinfection of cooling water by statistical evaluation.

    PubMed

    Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T

    2015-01-01

    A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions.

  10. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  11. User-Preference-Driven Model Predictive Control of Residential Building Loads and Battery Storage for Demand Response: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xin; Baker, Kyri A.; Christensen, Dane T.

    This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less

  12. User-Preference-Driven Model Predictive Control of Residential Building Loads and Battery Storage for Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xin; Baker, Kyri A; Isley, Steven C

    This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less

  13. Electrothermal fracturing of tensile specimens

    NASA Technical Reports Server (NTRS)

    Blinn, H. O.; Hanks, J. G.; Perkins, H. P.

    1970-01-01

    Pulling device consisting of structural tube, connecting rod, spring-loaded nuts, loading rod, heating element, and three bulkheads fractures tensile specimens. Alternate heating and cooling increases tensile loading by increments until fracturing occurs. Load cell or strain gage, applied to pulling rod, determines forces applied.

  14. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.; Herrmann, L.; Deru, M.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by firstmore » overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.« less

  15. Thermal Performance of Vegetative Roofing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjarlais, Andre Omer; Zaltash, Abdolreza; Atchley, Jerald Allen

    2010-01-01

    Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have helped to fuel their resurgence in industrial and urban settings. There are many environmental and economical benefits that can be realized by incorporating a vegetative roof into the design of a building. These include storm-water retention, energy conservation, reduction in the urban heat island effect, increased longevity of the roofing membrane, the ability of plants to create biodiversity and filter air contaminants, and beautification of the surroundings by incorporating green space.more » The vegetative roof research project at Oak Ridge National Laboratory (ORNL) was initiated to quantify the thermal performance of various vegetative roofing systems relative to black and white roofs. Single Ply Roofing Institute (SPRI) continued its long-term commitment to cooperative research with ORNL in this project. Low-slope roof systems for this study were constructed and instrumented for continuous monitoring in the mixed climate of East Tennessee. This report summarizes the results of the annual cooling and heating loads per unit area of three vegetative roofing systems with side-by-side comparison to black and white roofing systems as well as a test section with just the growing media without plants. Results showed vegetative roofs reduced heat gain (reduced cooling loads) compared to the white control system due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The 4-inch and tray systems reduced the heat gain by approximately 61%, while the reduction with the 8-inch vegetative roof was found to be approximately 67%. The vegetative roofing systems were more effective in reducing heat gain than in reducing heat losses (heating loads). The reduction in heat losses for the 4-inch and tray systems were found to be approximately 40% in the mixed climate of East Tennessee. It should be noted that these values are climate dependent. Vegetative roofs also reduced the temperature (heat exposure) and temperature fluctuations (thermal stress) experienced by the membrane. In the cooling season of East Tennessee, the average peak temperature of the 4-inch and tray systems was found to be approximately 94 F cooler than the control black roofing system. The average temperature fluctuations at the membrane for the 4-inch and tray systems were found to be approximately 10 F compared to 125 F for black and 64 F for white systems. As expected, the 8-inch vegetative roof had the lowest fluctuations at approximately 2 F. Future work will include modeling of the energy performance of vegetative roof panels in the test climate of East Tennessee. The validated model then will be used to predict energy use in roofs with different insulation levels and in climates different from the test climate.« less

  16. Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Rongxin; Xu, Peng; Kiliccote, Sila

    2008-11-01

    Over the several past years, Lawrence Berkeley National Laboratory (LBNL) has conducted field tests for different pre-cooling strategies in different commercial buildings within California. The test results indicated that pre-cooling strategies were effective in reducing electric demand in these buildings during peak periods. This project studied how to optimize pre-cooling strategies for eleven buildings in the Tri-City Corporate Center, San Bernardino, California with the assistance of a building energy simulation tool -- the Demand Response Quick Assessment Tool (DRQAT) developed by LBNL's Demand Response Research Center funded by the California Energy Commission's Public Interest Energy Research (PIER) Program. From themore » simulation results of these eleven buildings, optimal pre-cooling and temperature reset strategies were developed. The study shows that after refining and calibrating initial models with measured data, the accuracy of the models can be greatly improved and the models can be used to predict load reductions for automated demand response (Auto-DR) events. This study summarizes the optimization experience of the procedure to develop and calibrate building models in DRQAT. In order to confirm the actual effect of demand response strategies, the simulation results were compared to the field test data. The results indicated that the optimal demand response strategies worked well for all buildings in the Tri-City Corporate Center. This study also compares DRQAT with other building energy simulation tools (eQUEST and BEST). The comparison indicate that eQUEST and BEST underestimate the actual demand shed of the pre-cooling strategies due to a flaw in DOE2's simulation engine for treating wall thermal mass. DRQAT is a more accurate tool in predicting thermal mass effects of DR events.« less

  17. Theoretical analysis and experimental investigation on performance of the thermal shield of accelerator cryomodules by thermo-siphon cooling of liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.

    2015-12-01

    Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.

  18. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  19. Performance improvement of multi-stage pulse tube cryocoolers with a self-precooled pulse tube

    NASA Astrophysics Data System (ADS)

    Qiu, L. M.; Zhi, X. Q.; Han, L.; Cao, Q.; Gan, Z. H.

    2012-10-01

    Reducing the pulse tube losses is significant for improving the cooling performance of pulse tube cryocoolers (PTCs) in particular for multi-stage ones, although ignored to a certain extent. A simple method called self-precooled pulse tube for multi-stage PTCs is comprehensively studied in order to reduce the entropy flow inside the pulse tube. Different from the complex multi-bypass or extra cryocooler or cryogens for precooling, the key of the idea is to directly precool some part of the lower stage pulse tube by using a small amount of cooling power from the upper stage through a thermal bridge. A two-stage separate Stirling PTC was chosen to demonstrate the effects of self-precooled pulse tube. Theoretical calculation showed that both the precooling temperature and position of the pulse tube affected the performance of the cryocooler. The experiment results showed that the cooling performance of the second stage with self-precooled pulse tube was remarkably improved as the bottom temperature decreased from 26.60 K to 18.02 K. The cooling power was notably increased with minor performance reduction of the first stage. By further optimizing the operation parameters, a no-load temperature of 15.87 K was achieved, which is the lowest temperature ever obtained by a two-stage Stirling PTC with only an inertance shifter. The study proves that the precooled pulse tube can help hot end heat exchanger reject the heat inside pulse tube, reduce the heat losses of the cold end and consequently improve the cooling performance of the cryocooler.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C. Keith; Shen, Bo; Shrestha, Som S.

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirementmore » (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28% increase in delivered heating load and an ~52% increase in the estimated heating operating cost over that given in the AHRI directory (AHRI 2014).« less

  1. Loading Mode and Environment Effects on Surface Profile Characteristics of Martensite Plates in Cu-Based SMAs

    NASA Astrophysics Data System (ADS)

    Suru, Marius-Gabriel; Paraschiv, Adrian-Liviu; Lohan, Nicoleta Monica; Pricop, Bogdan; Ozkal, Burak; Bujoreanu, Leandru-Gheorghe

    2014-07-01

    The present work reports the influence of the loading mode provided during training under constant stress, in bending, applied to lamellar specimens of Cu-Zn-Al shape memory alloys (SMAs). During training, the specimens were bent by a load fastened at their free end, while being martensitic at room temperature and they lifted the load by one-way effect (1WE), during heating up to austenitic field. On cooling to martensite field, the lower concave surface of bent specimens was compressed, and during heating it was elongated, being subjected to a series of tension-compression cycles, during heating-cooling, respectively. Conversely, the upper convex surface of bent specimens was elongated during cooling and compressed during heating, being subjected to compression-tension cycles. Furthermore, 2WE-trained actuators were tested by means of a hydraulic installation where, this time heating-cooling cycles were performed in oil conditions. Considering that the lower concave surface of the specimens was kept in compressed state, while the upper convex surface was kept in elongated state, the study reveals the influence of the two loading modes and environments on the width of martensite plates of the specimens trained under various numbers of cycles. In this purpose, Cu-Zn-Al specimens, trained under 100-300-500 cycles, were prepared and analyzed by atomic force microscopy (AFM) as well as optical and scanning electron microscopy (OM and SEM, respectively). The analysis also included AFM micrographs corroborated with statistical evaluations in order to reveal the effects of loading mode (tension or compression) in different environmental conditions of the specimens, on the surface profile characteristics of martensite plates, revealed by electropolishing.

  2. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    NASA Technical Reports Server (NTRS)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  3. A study of cooling time reduction of interferometric cryogenic gravitational wave detectors using a high-emissivity coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakakibara, Y.; Yamamoto, K.; Chen, D.

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  4. Effects of a New Cooling Technology on Physical Performance in US Air Force Military Personnel.

    PubMed

    O'Hara, Reginald; Vojta, Christopher; Henry, Amy; Caldwell, Lydia; Wade, Molly; Swanton, Stacie; Linderman, Jon K; Ordway, Jason

    2016-01-01

    Heat-related illness is a critical factor for military personnel operating in hyperthermic environments. Heat illness can alter cognitive and physical performance during sustained operations missions. Therefore, the primary purpose of this investigation was to determine the effects of a novel cooling shirt on core body temperature in highly trained US Air Force personnel. Twelve trained (at least 80th percentile for aerobic fitness according to the American College of Sports Medicine, at least 90% on the US Air Force fitness test), male Air Force participants (mean values: age, 25 ± 2.8 years; height, 178 ± 7.9cm; body weight 78 ± 9.6kg; maximal oxygen uptake, 57 ± 1.9mL/kg/ min; and body fat, 10% ± 0.03%) completed this study. Subjects performed a 70-minute weighted treadmill walking test and 10-minute, 22.7kg sandbag shuttle test under two conditions: (1) "loaded" (shirt with cooling inserts) and (2) "unloaded" (shirt with no cooling inserts). Core body temperature, exercise heart rate, capillary blood lactate, and ratings of perceived exertion were recorded. Core body temperature was lower (ρ = .001) during the 70-minute treadmill walking test in the loaded condition. Peak core temperature during the 70-minute walking test was also significantly lower (ρ = .038) in the loaded condition. This lightweight (471g), passive cooling technology offers multiple hours of sustained cooling and reduced core and peak body temperature during a 70-minute, 22.7kg weighted-vest walking test. 2016.

  5. Forced convective head cooling device reduces human cross-sectional brain temperature measured by magnetic resonance: a non-randomized healthy volunteer pilot study.

    PubMed

    Harris, B A; Andrews, P J D; Marshall, I; Robinson, T M; Murray, G D

    2008-03-01

    This pilot study in five healthy adult humans forms the pre-clinical assessment of the effect of a forced convective head cooling device on intracranial temperature, measured non-invasively by magnetic resonance spectroscopy (MRS). After a 10 min baseline with no cooling, subjects received 30 min of head cooling followed by 30 min of head and neck cooling via a hood and neck collar delivering 14.5 degrees C air at 42.5 litre s(-1). Over baseline and at the end of both cooling periods, MRS was performed, using chemical shift imaging, to measure brain temperature simultaneously across a single slice of brain at the level of the basal ganglia. Oesophageal temperature was measured continuously using a fluoroptic thermometer. MRS brain temperature was calculated for baseline and the last 10 min of each cooling period. The net brain temperature reduction with head cooling was 0.45 degrees C (SD 0.23 degrees C, P=0.01, 95% CI 0.17-0.74 degrees C) and with head and neck cooling was 0.37 degrees C (SD 0.30 degrees C, P=0.049, 95% CI 0.00-0.74 degrees C). The equivalent net reductions in oesophageal temperature were 0.16 degrees C (SD 0.04 degrees C) and 0.36 degrees C (SD 0.12 degrees C). Baseline-corrected brain temperature gradients from outer through intermediate to core voxels were not significant for either head cooling (P=0.43) or head and neck cooling (P=0.07), indicating that there was not a significant reduction in cooling with progressive depth into the brain. Convective head cooling reduced MRS brain temperature and core brain was cooled.

  6. Quick connect coupling

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Webbon, Bruce (Inventor)

    1995-01-01

    A cooling apparatus includes a container filled with a quantity of coolant fluid initially cooled to a solid phase, a cooling loop disposed between a heat load and the container, a pump for circulating a quantity of the same type of coolant fluid in a liquid phase through the cooling loop, and a pair of couplings for communicating the liquid phase coolant fluid into the container in a direct interface with the solid phase coolant fluid.

  7. Numerical analysis of inertance pulse tube cryocooler with a modified reservoir

    NASA Astrophysics Data System (ADS)

    Abraham, Derick; Damu, C.; Kuzhiveli, Biju T.

    2017-12-01

    Pulse tube cryocoolers are used for cooling applications, where very high reliability is required as in space applications. These cryocoolers require a buffer volume depending on the temperature to be maintained and cooling load. A miniature single stage coaxial Inertance Pulse Tube Cryocooler is proposed which operates at 80 K to provide a cooling effect of at least 2 W. In this paper a pulse tube cryocooler, with modified reservoir is suggested, where the reverse fluctuation in compressor case is used instead of a steady pressure in the reservoir to bring about the desired phase shift between the pressure and the mass flow rate in the cold heat exchanger. Therefore, the large reservoir of the cryocooler is replaced by the crank volume of the hermetically sealed linear compressor, and hence the cryocooler is simplified and compact in size. The components of the cryocooler consist of a connecting tube, aftercooler, regenerator, cold heat exchanger, flow straightener, pulse tube, warm heat exchanger, inertance tube and the modified reservoir along with the losses were designed and analyzed. Each part of the cryocooler was analysed using SAGE v11 and verified with ANSYS Fluent. The simulation results clearly show that there is 50% reduction in the reservoir volume for the modified Inertance pulse tube cryocooler.

  8. The study on a gas-coupled two-stage stirling-type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Wu, X. L.; Chen, L. B.; Zhu, X. S.; Pan, C. Z.; Guo, J.; Wang, J. J.; Zhou, Y.

    2017-12-01

    A two-stage gas-coupled Stirling-type pulse tube cryocooler (SPTC) driven by a linear dual-opposed compressor has been designed, manufactured and tested. Both of the stages adopted coaxial structure for compactness. The effect of a cold double-inlet at the second stage on the cooling performance was investigated. The test results show that the cold double-inlet will help to achieve a lower cooling temperature, but it is not conducive to achieving a higher cooling capacity. At present, without the cold double-inlet, the second stage has achieved a no-load temperature of 11.28 K and a cooling capacity of 620 mW/20 K with an input electric power of 450 W. With the cold double-inlet, the no-load temperature is lowered to 9.4 K, but the cooling capacity is reduced to 400 mW/20 K. The structure of the developed cryocooler and the influences of charge pressure, operating frequency and hot end temperature will also be introduced in this paper.

  9. Development of a Novel Brayton-Cycle Cryocooler and Key Component Technologies

    NASA Astrophysics Data System (ADS)

    Nieczkoski, S. J.; Mohling, R. A.

    2004-06-01

    Brayton-cycle cryocoolers are being developed to provide efficient cooling in the 6 K to 70 K temperature range. The cryocoolers are being developed for use in space and in terrestrial applications where combinations of long lifetime, high efficiency, compactness, low mass, low vibration, flexible interfacing, load variability, and reliability are essential. The key enabling technologies for these systems are a mesoscale expander and an advanced oil-free scroll compressor. Both these components are nearing completion of their prototype development phase. The emphasis on the component and system development has been on invoking fabrication processes and techniques that can be evolved to further reduction in scale tending toward cryocooler miniaturization.

  10. Window performance and building energy use: Some technical options for increasing energy efficiency

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen

    1985-11-01

    Window system design and operation has a major impact on energy use in buildings as well as on occupants' thermal and visual comfort. Window performance will be a function of optical and thermal properties, window management strategies, climate and orientation, and building type and occupancy. In residences, heat loss control is a primary concern, followed by sun control in more southerly climates. In commercial buildings, the daylight provided by windows may be the major energy benefits but solar gain must be controlled so that increased cooling loads do not exceed daylighting savings. Reductions in peak electrical demand and HVAC system size may also be possible in well-designed daylighted buildings.

  11. Experimental investigation on the availability, performance, combustion and emission distinctiveness of bael oil/ diesel/ diethyl ether blends powered in a variable compression ratio diesel engine

    NASA Astrophysics Data System (ADS)

    Krishnamoorthi, M.; Malayalamurthi, R.

    2018-02-01

    The present work aims at experimental investigation on the combined effect of injection timing (IT) and injection pressure (IP) on the performance and emissions characteristics, and exergy analysis of a compression-ignition (CI) engine powered with bael oil blends. The tests were conducted using ternary blends of bael oil, diethyl ether (DEE) and neat diesel (D) at various engine loads at a constant engine speed (1500 rpm). With B2 (60%D + 30%bael oil+10%DEE) fuel, the brake thermal efficiency (BTE) of the engine is augmented by 3.5%, reduction of 4.7% of oxides of nitrogen (NOx) emission has been observed at 100% engine load with 250 bar IP. B2 fuel exhibits 7% lower scale of HC emissions compared to that of diesel fuel at 100% engine load in 23 °bTDC IT. The increment in both cooling water and exhaust gas availabilities lead to increasing exergy efficiency with increasing load. The exergy efficiency of about 62.17% has been recorded by B2 fuel at an injection pressure of 230 IP bar with 100% load. On the whole, B2 fuel displays the best performance and combustion characteristics. It also exhibits better characteristics of emissions level in terms of lower HC, smoke opacity and NOx.

  12. Thermal Management Techniques for Oil-Free Turbomachinery Systems

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; DellaCorte, Chris; Zeszotek, Michelle

    2006-01-01

    Tests were performed to evaluate three different methods of utilizing air to provide thermal management control for compliant journal foil air bearings. The effectiveness of the methods was based on bearing bulk temperature and axial thermal gradient reductions during air delivery. The first method utilized direct impingement of air on the inner surface of a hollow test journal during operation. The second, less indirect method achieved heat removal by blowing air inside the test journal to simulate air flowing axially through a hollow, rotating shaft. The third method emulated the most common approach to removing heat by forcing air axially through the bearing s support structure. Internal bearing temperatures were measured with three, type K thermocouples embedded in the bearing that measured general internal temperatures and axial thermal gradients. Testing was performed in a 1 atm, 260 C ambient environment with the bearing operating at 60 krpm and supporting a load of 222 N. Air volumetric flows of 0.06, 0.11, and 0.17 cubic meters per minute at approximately 150 to 200 C were used. The tests indicate that all three methods provide thermal management but at different levels of effectiveness. Axial cooling of the bearing support structure had a greater effect on bulk temperature for each air flow and demonstrated that the thermal gradients could be influenced by the directionality of the air flow. Direct air impingement on the journal's inside surface provided uniform reductions in both bulk temperature and thermal gradients. Similar to the direct method, indirect journal cooling had a uniform cooling effect on both bulk temperatures and thermal gradients but was the least effective of the three methods.

  13. Efficacy of Gaseous Ozone Application during Vacuum Cooling against Escherichia coli O157:H7 on Spinach Leaves as Influenced by Bacterium Population Size.

    PubMed

    Yesil, Mustafa; Kasler, David R; Huang, En; Yousef, Ahmed E

    2017-07-01

    Foodborne disease outbreaks associated with the consumption of fresh produce pose a threat to public health, decrease consumer confidence in minimally processed foods, and negatively impact the sales of these commodities. The aim of the study was to determine the influence of population size of inoculated pathogen on its inactivation by gaseous ozone treatment during vacuum cooling. Spinach leaves were spot inoculated with Escherichia coli O157:H7 at approximate initial populations of 10 8 , 10 7 , and 10 5 CFU/g. Inoculated leaves were vacuum cooled (28.5 inHg; 4°C) in a custom-made vessel and then were subjected to a gaseous ozone treatment under the following conditions: 1.5 g of ozone per kg of gas mixture, vessel pressure at 10 lb/in 2 gauge, 94 to 98% relative humidity, and 30 min of holding time at 9°C. Treatment of the leaves, having the aforementioned inocula, decreased E. coli populations by 0.2, 2.1, and 2.8 log CFU/g, respectively, compared with the inoculated untreated controls. Additionally, spinach leaves were inoculated at 1.4 × 10 3 CFU/g, which approximates natural contamination level, and the small populations remaining after ozone treatment were quantified using the most-probable-number (MPN) method. Vacuum and ozone sequential treatment decreased this E. coli O157:H7 population to <3 MPN/g (i.e., greater than 3-log reduction). Resulting log reductions were greater (P < 0.05) at the lower rather than the higher inoculum levels. In conclusion, treatment of spinach leaves with gaseous ozone is effective against pathogen loads comparable to those found in naturally contaminated fresh produce, but efficacy decreases as inoculum level increases.

  14. Development of a valved non-lubricated linear compressor for compact 2K Gifford-McMahon cryocoolers

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Y.; Bao, Q.; Xu, M.

    2017-02-01

    Recently, a new, compact Gifford-McMahon (GM) cryocooler for cooling superconducting single photon detectors (SSPD) has been developed and reported by Sumitomo Heavy Industries, Ltd. (SHI) [1]. It was reported that National Institute of Information and Communications Technology (NICT) developed a multi-channel SSPD system in which two or more channels were mounted on a GM cryocooler, and achieved a world-top-class performance [2]. However, the applications of such SSPD system were restricted due to its relatively large size and power consumption compared with a semiconductor system. Owing to the development of an SSPD system with a portable cryocooler system which can be installed in a vehicle, it is possible to apply such system to the optical communication of AdHoc [3], and to flexibly construct a large capacity optical line in a time of disaster. For such system, the size and power consumption reduction becomes indispensable. The objective is to reduce the total height of the expander by 33% relative to the existing RDK-101 GM expander and to reduce the total volume of the compressor unit by 50% relative to the existing CNA-11 compressor. In addition, considering the targeted cooling application, we set the design temperature targets of the first and the second stages to 1 W and 20 mW of heat load at 60 K and 2.3 K, respectively. In 2015, Hiratsuka reported that a new valved non-lubricated compressor was developed for a 2K GM cryocooler [4]. The cooling performance of a 2K GM expander operated by an experimental unit of the linear compressor was measured, and preliminary experiments were conducted. No-load temperature was 2.19 K, with 1 W and 14 mW heat load, the temperature was 48 K at the first stage and 2.3 K at the second stage, with an input power of about 1.2 kW. After that, the compressor efficiency has been improved by reducing losses, and the compressor input power has been reduced by 25%. The detailed experimental results are discussed in this paper.

  15. Effect of Trailing Intensive Cooling on Residual Stress and Welding Distortion of Friction Stir Welded 2060 Al-Li Alloy

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Yang, Zhanpeng; Wen, Quan; Yue, Yumei; Zhang, Liguo

    2018-04-01

    Trailing intensive cooling with liquid nitrogen has successfully applied to friction stir welding of 2 mm thick 2060 Al-Li alloy. Welding temperature, plastic strain, residual stress and distortion of 2060 Al-Li alloy butt-joint are compared and discussed between conventional cooling and trailing intensive cooling using experimental and numerical simulation methods. The results reveal that trailing intensive cooling is beneficial to shrink high temperature area, reduce peak temperature and decrease plastic strain during friction stir welding process. In addition, the reduction degree of plastic strain outside weld is smaller than that inside weld. Welding distortion presents an anti-saddle shape. Compared with conventional cooling, the reductions of welding distortion and longitudinal residual stresses of welding joint under intense cooling reach 47.7 % and 23.8 %, respectively.

  16. Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; West, David L; Mallow, Anne M

    Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems.more » Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).« less

  17. Performance estimation of an oil-free linear compressor unit for a new compact 2K Gifford-McMahon cryocooler

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Y.; Bao, Q.; Y Xu, M.

    2017-12-01

    Since 2012, a new, compact Gifford-McMahon (GM) cryocooler for cooling superconducting single photon detectors (SSPD) has been developed and reported by Sumitomo Heavy Industries, Ltd. (SHI). Also, it was reported that National Institute of Information and Communications Technology (NICT) developed a multi-channel, conduction-cooled SSPD system. However, the size and power consumption reduction becomes indispensable to apply such a system to the optical communication of AdHoc for a mobile system installed in a vehicle. The objective is to reduce the total height of the expander by 33% relative to the existing RDK-101 GM expander and to reduce the total volume of the compressor unit by 50% relative to the existing CNA-11 compressor. In addition, considering the targeted cooling application, we set the design cooling capacity targets of the first and the second stages 1 W at 60 K and 20 mW at 2.3 K respectively. In 2016, Hiratsuka et al. reported that an oil-free compressor was developed for a 2K GM cryocooler. The cooling performance of a 2K GM expander driven by an experimental unit of the linear compressor was measured. No-load temperature less than 2.1 K and the cooling capacity of 20 mW at 2.3 K were successfully achieved with an electric input power of only 1.1 kW. After that, the compressor capsule and the heat exchanger, etc. were assembled into one enclosure as a compressor unit. The total volume of the compressor unit and electrical box was significantly reduced to about 38 L, which was close to the target of 35 L. Also, the sound noise, vibration characteristics, the effect of the compressor unit inclination and the ambient temperature on the cooling performance, were evaluated. The detailed experimental results are discussed in this paper.

  18. Simultaneous trapping of rubidium-85 and rubidium-87 in a far off resonant trap

    NASA Astrophysics Data System (ADS)

    Gorges, Anthony R.

    The experiments described in this thesis were focused on the physics of simultaneous trapping of 85Rb and 87 Rb into a Far Off Resonant Trap (FORT), with a view towards the implementation of a nonevaporative cooling scheme. Atoms were first trapped in a Magneto Optical Trap (MOT) and from there loaded into the FORT. We investigated the effects of loading the FORT from a MOT vs. an optical molasses; observing that the molasses significantly improved the trapped atom number. The ultimate number of atoms trapped is determined by a balance between efficient laser cooling into the FORT and light-assisted collisional losses from the FORT. We have studied and measured the loss rates associated with light-assisted collisions for our FORT, measuring both heteronuclear and homonuclear collisions. It was discovered that induced long range dipole-dipole interactions between 85Rb and 87Rb have a significant impact on FORT loading. This interaction interferes with the loading into the trap and thus limits the number of atoms which can be trapped in the FORT under simultaneous load conditions. Despite this limitation, all required experimental parameters for our future measurements have been met. In addition to these FORT studies, we have found a technique which can successfully mitigate the effects of reabsorption in optically thick clouds, which is a limitation to the ultimate temperature an atom cloud will reach during light-based cooling. Planned future measurements for this project include the creation of a variable aspect ratio FORT; along with investigating collision assisted Zeeman cooling.

  19. Physics Features of TRU-Fueled VHTRs

    DOE PAGES

    Lewis, Tom G.; Tsvetkov, Pavel V.

    2009-01-01

    The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less

  20. Solar Heating and Cooling of Buildings (Phase O). Volume 1: Executive Summary.

    ERIC Educational Resources Information Center

    TRW Systems Group, Redondo Beach, CA.

    The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings. Five selected building types in 14 selected cities were used to determine loads for space heating, space cooling and dehumidification, and domestic service hot water heating. Relying on existing and…

  1. High performance miniature hygrometer and method thereof

    NASA Technical Reports Server (NTRS)

    VanZandt, Thomas R. (Inventor); Kaiser, William J. (Inventor); Kenny, Thomas W. (Inventor); Crisp, David (Inventor)

    1994-01-01

    An uncoated interdigitated transducer is cooled from a temperature above the dew point to a temperature below the dew point, while a parameter of a signal of the transducer is measured. The reduction in temperature causes a monotonic change in transducer signal because that signal is sensitive primarily to the water loading of the transducer surface as water forms on that surface due to the reduction in temperature. As the dew point is approached with temperature reduction, the slope of the curve of transducer signal with respect to temperature, remains relatively constant. However, as the dew point is reached the slope of that curve increases and because of changes in the structure of the water layer on the surface of the transducer, at the dew point the transducer responds with a clear shift in the rate at which the transducer signal changes. The temperature at which the second derivative of signal vs. temperature peaks can be readily used to identify with extreme accuracy, the precise dew point. The measurement technique employed by the present invention is relatively immune to surface contamination which remains significantly unchanged during the brief measurement period.

  2. Comparison Evaluations of VRF and RTU Systems Performance on Flexible Research Platform

    DOE PAGES

    Lee, Je-hyeon; Im, Piljae; Munk, Jeffrey D.; ...

    2018-04-05

    The energy performance of a variable refrigerant flow (VRF) system was evaluated using an occupancy-emulated research building in the southeastern region of the United States. Full- and part-load performance of the VRF system in heating and cooling seasons was compared with a conventional rooftop unit (RTU) variable-air-volume system with electric resistance heating. During both the heating and cooling seasons, full- and part-load conditions (i.e., 100%, 75%, and 50% thermal loads) were maintained alternately for 2 to 3 days each, and the energy use, thermal conditions, and coefficient of performance (COP) for the RTU and VRF system were measured. During themore » cooling season, the VRF system had an average COP of 4.2, 3.9, and 3.7 compared with 3.1, 3.0, and 2.5 for the RTU system under 100%, 75%, and 50% load conditions and resulted in estimated energy savings of 30%, 37%, and 47%, respectively. Finally, during the heating season, the VRF system had an average COP ranging from 1.2 to 2.0, substantially higher than the COPs of the RTU system, and resulted in estimated energy savings of 51%, 47%, and 27% under the three load conditions, respectively.« less

  3. Comparison Evaluations of VRF and RTU Systems Performance on Flexible Research Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Je-hyeon; Im, Piljae; Munk, Jeffrey D.

    The energy performance of a variable refrigerant flow (VRF) system was evaluated using an occupancy-emulated research building in the southeastern region of the United States. Full- and part-load performance of the VRF system in heating and cooling seasons was compared with a conventional rooftop unit (RTU) variable-air-volume system with electric resistance heating. During both the heating and cooling seasons, full- and part-load conditions (i.e., 100%, 75%, and 50% thermal loads) were maintained alternately for 2 to 3 days each, and the energy use, thermal conditions, and coefficient of performance (COP) for the RTU and VRF system were measured. During themore » cooling season, the VRF system had an average COP of 4.2, 3.9, and 3.7 compared with 3.1, 3.0, and 2.5 for the RTU system under 100%, 75%, and 50% load conditions and resulted in estimated energy savings of 30%, 37%, and 47%, respectively. Finally, during the heating season, the VRF system had an average COP ranging from 1.2 to 2.0, substantially higher than the COPs of the RTU system, and resulted in estimated energy savings of 51%, 47%, and 27% under the three load conditions, respectively.« less

  4. Mechanical design of experimental apparatus for FIREX cryo-target cooling

    NASA Astrophysics Data System (ADS)

    Iwamoto, A.; Norimatsu, T.; Nakai, M.; Sakagami, H.; Fujioka, S.; Shiraga, H.; Azechi, H.

    2016-05-01

    Mechanical design of an experimental apparatus for FIREX cryo-target cooling is described. Gaseous helium (GHe) sealing system at a cryogenic environment is an important issue for laser fusion experiments. The dedicated loading system was designed for a metal gasket. We take U-TIGHTSEAL® (Usui Kokusai Sangyo Kaisha. Ltd.) with an indium plated copper jacket as an example. According to its specification, a linear load of 110 N/m along its circumference is the optimum compression; however a lower load would still maintain helium (He) leak below the required level. Its sealing performance was investigated systematically. Our system demanded 27 N/mm of the load to keep He leak tightness in a cryogenic environment. Once leak tightness was obtained, it could be reduced to 9.5 N/mm.

  5. The elastocaloric effect of Ni50.8Ti49.2 shape memory alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Li, Yushuang; Zhang, Chen; Li, Shaojie; Wu, Erfu; Li, Wei; Li, Laifeng

    2018-04-01

    Solid-state cooling technologies are considered as possible alternatives for vapor compression cooling systems. The elastocaloric cooling (whose caloric effects are driven by uniaxial stress) technology, as an efficient and clean solid-state cooling technology, is receiving a great deal of attention very recently. Herein, a NiTi-based elastocaloric bulk material was reported. A large coefficient-of-performance of the material (COPmater) of 4.5 was obtained, which was even higher than that of other NiTi bulk materials. The temperature changes (ΔT) increased with increasing applied strain (ɛ), and reached 18 K upon loading and  -11 K upon unloading when the ɛ value increased to 4%. The high temperature changes were attributed to the large stress-induced entropy changes (the maximum ΔS σ value was 37 J kg-1 K-1). The temperature changes decreased with loading-unloading tensile cycles, and stabilized at 6.5 K upon loading and  -6 K upon unloading after tens of mechanical cycles. The Ni50.8Ti49.2 shape memory alloy showed great promise for application in solid-state refrigeration (or as heat pumps).

  6. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Active cooling system analysis

    NASA Technical Reports Server (NTRS)

    Stone, J. E.

    1975-01-01

    The effects of fuselage cross section and structural arrangement on the performance of actively cooled hypersonic cruise vehicles are investigated. An active cooling system which maintains the aircraft's entire surface area at temperatures below 394 K at Mach 6 is developed along with a hydrogen fuel tankage thermal protection system. Thermodynamic characteristics of the actively cooled thermal protection systems established are summarized. Design heat loads and coolant flowrate requirements are defined for each major structural section and for the total system. Cooling system weights are summarized at the major component level. Conclusions and recommendations are included.

  7. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    NASA Astrophysics Data System (ADS)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  8. Heat load studies of a water-cooled minichannel monochromator for synchrotron x-ray beams

    NASA Astrophysics Data System (ADS)

    Freund, Andreas K.; Arthur, John R.; Zhang, Lin

    1997-12-01

    We fabricated a water-cooled silicon monochromator crystal with small channels for the special case of a double-crystal fixed-exit monochromator design where the beam walks across the crystal when the x-ray energy is changed. The two parts of the cooled device were assembled using a new technique based on low melting point solder. The bending of the system produced by this technique could be perfectly compensated by mechanical counter-bending. Heat load tests of the monochromator in a synchrotron beam of 75 W total power, 3 mm high and 15 mm wide, generated by a multipole wiggler at SSRL, showed that the thermal slope error of the crystal is 1 arcsec/40 W power, in full agreement with finite element analysis. The cooling scheme is adequate for bending magnet beamlines at the ESRF and present wiggler beamlines at the SSRL.

  9. High-heat-load monochromator options for the RIXS beamline at the APS with the MBA lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zunping, E-mail: zpliu@anl.gov; Gog, Thomas, E-mail: gog@aps.anl.gov; Stoupin, Stanislav A.

    2016-07-27

    With the MBA lattice for APS-Upgrade, tuning curves of 2.6 cm period undulators meet the source requirements for the RIXS beamline. The high-heat-load monochromator (HHLM) is the first optical white beam component. There are four options for the HHLM such as diamond monochromators with refrigerant of either water or liquid nitrogen (LN{sub 2}), and silicon monochromators of either direct or indirect cooling system. Their performances are evaluated at energy 11.215 keV (Ir L-III edge). The cryo-cooled diamond monochromator has similar performance as the water-cooled diamond monochromator because GaIn of the Cu-GaIn-diamond interface becomes solid. The cryo-cooled silicon monochromators perform better,more » not only in terms of surface slope error due to thermal deformation, but also in terms of thermal capacity.« less

  10. Sustained Load Crack Growth in Inconel 718 Under Non-Isothermal Conditions.

    DTIC Science & Technology

    1983-12-01

    AD- R136 925 SUSTINED LOAD CRCK GROWTH IN INCONEL 7±8 UNDER / NON-ISOTHERM L ONDITIONS(U) IR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF...thermocouples. This unit provides pre-programmed independent control of the four heat- Iing lamps. It also turns the cooling system on and off at the appropri...relationship between them. The microcomputer controls temperature as a function of time. The system is capable of heating and cooling a specimen at a rate of 8C

  11. Optimization of thermoelectric cooling regimes for heat-loaded elements taking into account the thermal resistance of the heat-spreading system

    NASA Astrophysics Data System (ADS)

    Vasil'ev, E. N.

    2017-09-01

    A mathematical model has been proposed for analyzing and optimizing thermoelectric cooling regimes for heat-loaded elements of engineering and electronic devices. The model based on analytic relations employs the working characteristics of thermoelectric modules as the initial data and makes it possible to determine the temperature regime and the optimal values of the feed current for the modules taking into account the thermal resistance of the heat-spreading system.

  12. Non-Evaporative Cooling via Inelastic Collisions in an Optical Trap

    DTIC Science & Technology

    2013-02-28

    Simultaneous loading of 85 Rb and 87 Rb into an optical trap from a Magneto - optic Trap (MOT) As was mentioned in the previous section, when both...potential in an 85 Rb magneto - optical trap , Phys. Rev. A 83, 033419 (2011) I.D Ultracold plasma response to few-cycle rf pulses As will be detailed in...ultracold atoms of each isotope were cooled into overlapping Magneto - optic Traps (MOTs). From there, the atoms were then loaded into a Far-off

  13. Analysis and comparison of wall cooling schemes for advanced gas turbine applications

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.

    1972-01-01

    The relative performance of (1) counterflow film cooling, (2) parallel-flow film cooling, (3) convection cooling, (4) adiabatic film cooling, (5) transpiration cooling, and (6) full-coverage film cooling was investigated for heat loading conditions expected in future gas turbine engines. Assumed in the analysis were hot-gas conditions of 2200 K (3500 F) recovery temperature, 5 to 40 atmospheres total pressure, and 0.6 gas Mach number and a cooling air supply temperature of 811 K (1000 F). The first three cooling methods involve film cooling from slots. Counterflow and parallel flow describe the direction of convection cooling air along the inside surface of the wall relative to the main gas flow direction. The importance of utilizing the heat sink available in the coolant for convection cooling prior to film injection is illustrated.

  14. Field-Based Pre-Cooling for On-Court Tennis Conditioning Training in the Heat

    PubMed Central

    Duffield, Rob; Bird, Stephen P.; Ballard, Robert J.

    2011-01-01

    The present study investigated the effects of pre-cooling for on- court, tennis-specific conditioning training in the heat. Eight highly-trained tennis players performed two on-court conditioning sessions in 35°C, 55% Relative Humidity. Sessions were randomised, involved either a pre-cooling or control session, and consisted of 30-min of court- based, tennis movement drills. Pre-cooling involved 20-min of an ice-vest and cold towels to the head/neck and legs, followed by warm-up in a cold compression garment. On-court movement distance was recorded by 1Hz Global Positioning Satellite (GPS) devices, while core temperature, heart rate and perceptual exertion and thermal stress were also recorded throughout the session. Additionally, mass and lower-body peak power during repeated counter-movement jumps were measured before and after each session. No significant performance differences were evident between conditions, although a moderate-large effect (d = 0.7-1.0; p > 0.05) was evident for total (2989 ± 256 v 2870 ± 159m) and high-intensity (805 ± 340 v 629 ± 265m) distance covered following pre-cooling. Further, no significant differences were evident between conditions for rise in core temperature (1.9 ± 0.4 v 2. 2 ± 0.4°C; d > 0.9; p > 0.05), although a significantly smaller change in mass (0.9 ± 0.3 v 1. 3 ± 0.3kg; p < 0.05) was present following pre-cooling. Perceived thermal stress and exertion were significantly lower (d > 1.0; p < 0.05) during the cooling session. Finally, lower-body peak power did not differ between conditions before or after training (d < 0.3; p > 0.05). Conclusions: Despite trends for lowered physiological load and increased distances covered following cooling, the observed responses were not significantly different or as explicit as previously reported laboratory-based pre-cooling research. Key points Pre-cooling did not significantly enhance training performance or reduce physiological load for tennis training in the heat, although trends indicate some benefits for both. Pre-cooling can reduce perceptual strain of on-court tennis training in the heat to improve perceptual load of training sessions. Court-side pre-cooling may not be of sufficient volume to invoke large physiological changes. PMID:24149886

  15. Strong Electron Self-Cooling in the Cold-Electron Bolometers Designed for CMB Measurements

    NASA Astrophysics Data System (ADS)

    Kuzmin, L. S.; Pankratov, A. L.; Gordeeva, A. V.; Zbrozhek, V. O.; Revin, L. S.; Shamporov, V. A.; Masi, S.; de Bernardis, P.

    2018-03-01

    We have realized cold-electron bolometers (CEB) with direct electron self-cooling of the nanoabsorber by SIN (Superconductor-Insulator-Normal metal) tunnel junctions. This electron self-cooling acts as a strong negative electrothermal feedback, improving noise and dynamic properties. Due to this cooling the photon-noise-limited operation of CEBs was realized in array of bolometers developed for the 345 GHz channel of the OLIMPO Balloon Telescope in the power range from 10 pW to 20 pW at phonon temperature Tph =310 mK. The negative electrothermal feedback in CEB is analogous to TES but instead of artificial heating we use cooling of the absorber. The high efficiency of the electron self-cooling to Te =100 mK without power load and to Te=160 mK under power load is achieved by: - a very small volume of the nanoabsorber (0.02 μm3) and a large area of the SIN tunnel junctions, - effective removal of hot quasiparticles by arranging double stock at both sides of the junctions and close position of the normal metal traps, - self-protection of the 2D array of CEBs against interferences by dividing them between N series CEBs (for voltage interferences) and M parallel CEBs (for current interferences), - suppression of Andreev reflection by a thin layer of Fe in the AlFe absorber. As a result even under high power load the CEBs are working at electron temperature Te less than Tph . To our knowledge, there is no analogue in the bolometers technology in the world for bolometers working at electron temperature colder than phonon temperature.

  16. A Robust Cooling Platform for NIS Junction Refrigeration and sub-Kelvin Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Atlas, M.; Lowell, P.; Moyerman, S.; Stebor, N.; Ullom, J.; Keating, B.

    2014-08-01

    Recent advances in Normal metal-insulator-superconductor (NIS) tunnel junctions (Clark et al. Appl Phys Lett 86: 173508, 2005, Appl Phys Lett 84: 4, 2004) have proven these devices to be a viable technology for sub-Kelvin refrigeration. NIS junction coolers, coupled to a separate cold stage, provide a flexible platform for cooling a wide range of user-supplied payloads. Recently, a stage was cooled from 290 to 256 mK (Lowell et al. Appl Phys Lett 102: 082601 2013), but further mechanical and electrical improvements are necessary for the stage to reach its full potential. We have designed and built a new Kevlar suspended cooling platform for NIS junction refrigeration that is both lightweight and well thermally isolated; the calculated parasitic loading is pW from 300 to 100 mK. The platform is structurally rigid with a measured deflection of 25 m under a 2.5 kg load and has an integrated mechanical heat switch driven by a superconducting stepper motor with thermal conductivity G W/K at 300 mK. An integrated radiation shield limits thermal loading and a modular platform accommodates enough junctions to provide nanowatts of continuous cooling power. The compact stage size of 7.6 cm 8.6 cm 4.8 cm and overall radiation shield size of 8.9 cm 10.0 cm 7.0 cm along with minimal electrical power requirements allow easy integration into a range of cryostats. We present the design, construction, and performance of this cooling platform as well as projections for coupling to arrays of NIS junctions and other future applications.

  17. 46 CFR 154.411 - Cargo tank thermal loads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo tank thermal loads. 154.411 Section 154.411... Containment Systems § 154.411 Cargo tank thermal loads. For the calculations required under § 154.406(a)(4... thermal loads for the cooling down periods of cargo tanks for design temperatures lower than −55 °C (−67...

  18. 46 CFR 154.411 - Cargo tank thermal loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank thermal loads. 154.411 Section 154.411... Containment Systems § 154.411 Cargo tank thermal loads. For the calculations required under § 154.406(a)(4... thermal loads for the cooling down periods of cargo tanks for design temperatures lower than −55 °C (−67...

  19. GreenChill Store Certification Protocol for Sub-Cooling Contained on Racks Separate from Refrigeration Equipment

    EPA Pesticide Factsheets

    Document describes the protocol used to determine the total load and refrigerant charge of stores that have placed all sub-cooling on a rack separate from all other commercial refrigeration equipment.

  20. Cooling devices and methods for use with electric submersible pumps

    DOEpatents

    Jankowski, Todd A; Hill, Dallas D

    2014-12-02

    Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

  1. Cooling devices and methods for use with electric submersible pumps

    DOEpatents

    Jankowski, Todd A.; Hill, Dallas D.

    2016-07-19

    Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

  2. High-Performance Computing Data Center Cooling System Energy Efficiency |

    Science.gov Websites

    approaches involve a cooling distribution unit (CDU) (2), which interfaces with the facility cooling loop and to the energy recovery water (ERW) loop (5), which is a closed-loop system. There are three heat rejection options for this IT load: When possible, heat energy from the energy recovery loop is transferred

  3. Lunar Portable Life Support System Heat Rejection Study

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Sompayrac,Robert G.; Trevino, Luis A.; Bue, Grant C.

    2009-01-01

    Performing extravehicular activity (EVA) at various locations of the lunar surface presents thermal challenges that exceed those experienced in space flight to date. The lunar Portable Life Support System (PLSS) cooling unit must maintain thermal conditions within the space suit and reject heat loads generated by the crewmember and the PLSS equipment. The amount of cooling required varies based on the lunar location and terrain due to the heat transferred between the suit and its surroundings. A study has been completed which investigated the resources required to provide cooling under various lunar conditions, assuming three different thermal technology categories: 1. Spacesuit Water Membrane Evaporator (SWME) 2. Subcooled Phase Change Material (SPCM) 3. Radiators with and without heat pumps Results from the study are presented that show mass and power impacts on the cooling system as a function of the location and terrain on the lunar surface. Resources (cooling equipment mass and consumables) are greater at the equator and inside sunlit craters due to the additional heat loads on the cooling system. While radiator and SPCM technologies require minimal consumables, they come with carry-weight penalties and have limitations. A wider investigation is recommended to determine if these penalties and limitations are offset by the savings in consumables.

  4. Parametric study of the lubrication of thrust loaded 120-mm bore ball bearings to 3 million DN

    NASA Technical Reports Server (NTRS)

    Signer, H.; Bamberger, E. N.; Zaretsky, E. V.

    1973-01-01

    A parametric study was performed with 120-mm bore angular-contact ball bearings under varying thrust loads, bearing and lubricant temperatures, and cooling and lubricant flow rates. Contact angles were nominally 20 and 24 deg with bearing speeds to 3 million DN. Endurance tests were run at 3 million DN and a temperature of 492 K (425 F) with 10 bearings having a nominal 24 deg contact angle at a thrust load of 22241 N (5000 lb). Bearing operating temperature, differences in temperatures between the inner and outer races, and bearing power consumption can be tuned to any desirable operating requirement by varying 4 parameters. These parameters are outer-race cooling, inner-race cooling, lubricant flow to the inner race, and oil inlet temperature. Preliminary endurance tests at 3 million DN and 492 K (425 F) indicate that long term bearing operation can be achieved with a high degree of reliability.

  5. Calculation of the Thermal Resistance of a Heat Distributer in the Cooling System of a Heat-Loaded Element

    NASA Astrophysics Data System (ADS)

    Vasil'ev, E. N.

    2018-04-01

    Numerical simulation is performed for heat transfer in a heat distributer of a thermoelectric cooling system, which is located between the heat-loaded element and the thermoelectric module, for matching their sizes and for heat flux equalization. The dependences of the characteristic values of temperature and thermal resistance of the copper and aluminum heat distributer on its thickness and on the size of the heatloaded element. Comparative analysis is carried out for determining the effect of the thermal conductivity of the material and geometrical parameters on the heat resistance. The optimal thickness of the heat distributer depending on the size of the heat-loaded element is determined.

  6. A comparison of superconductor and manganin technology for electronic links used in space mission applications

    NASA Technical Reports Server (NTRS)

    Caton, R.; Selim, R.; Buoncristiani, A. M.

    1992-01-01

    The electronic link connecting cryogenically cooled radiation detectors to data acquisition and signal processing electronics at higher temperatures contributes significantly to the total heat load on spacecraft cooling systems that use combined mechanical and cryogenic liquid cooling. Using high transition temperature superconductors for this link has been proposed to increase the lifetime of space missions. Herein, several YBCO (YBa2Cu3O7) superconductor-substrate combinations were examined and total heat loads were compared to manganin wire technology in current use. Using numerical solutions to the heat-flow equations, it is shown that replacing manganin technology with YBCO thick film technology can extend a 7-year mission by up to 1 year.

  7. Some ideas on the choice of designs and materials for cooled mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howells, M.R.

    1994-12-01

    This paper expresses some views on the fabrication of future synchrotron beam-line optics; more particularly the metallurgical issues in high-quality metal mirrors. A simple mirror with uniform cooling channels is first analyzed theoretically, followed by the cullular-pin-post system with complex coolant flow path. Choice of mirror material is next considered. For the most challenging situations (need for intensive cooling), the present practice is to use nickel-plated glidcop or silicon; for less severe challenges, Si carbide may be used and cooling may be direct or indirect; and for the mildest heat loads, fused silica or ulf are popular. For the highestmore » performance mirrors (extreme heat load), the glidcop developments should be continued perhaps to cellular-pin-post systems. For extreme distortion, Si is indicated and invar offers both improved performance and lower price. For less extreme challenges but still with cooling, Ni-plated metals have the cost advantage and SXA and other Al alloys can be added to glidcop and invar. For mirrors with mild cooling requirements, stainless steel would have many advantages. Once the internal cooling designs are established, they will be seen as more cost-effective and reliable than clamp-on schemes. Where no cooling is needed, Si, Si carbide, and the glasses can be used. For the future, the effect of electroless Ni layers on cooling design need study, and a way to finish nickel that is compatible with multilayers should be developed.« less

  8. Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2012-01-01

    There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.

  9. Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.

    1996-01-01

    A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.

  10. Control of hydrocarbon emissions from gasoline loading by refrigeration systems. Final report Dec 80-Apr 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battye, W.; Brown, P.; Misenheimer, D.

    1981-07-01

    The report gives results of a study of the capabilities of refrigeration systems, operated at three temperatures, to control volatile organic compound (VOC) emissions from truck loading at bulk gasoline terminals. Achievable VOC emission rates were calculated for refrigeration systems cooling various gasoline/air mixtures to -62 C, -73 C, and -84 C by estimating vapor/liquid equilibrium compositions for VOC/air mixtures. Emission rates were calculated for inlet streams containing vapors from low- and high-volatility gasolines at concentrations of 15, 30, and 50% by volume (22.5, 45, and 75% measured as propane). Predicted VOC emission rates for systems cooling various inlet streamsmore » to -62 C ranged from 48 to 59 mg VOC/liter of gasoline loaded. Predicted VOC were 21 to 28 mg/l loaded for systems operating at -73 C and 8.7 to 12 mg/l loaded for systems operating at -84 C. Compressor electrical requirements and relative capital costs for systems operating at the above temperatures were estimated for model systems using the results of a computer simulation. Compressor electrical requirements ranged from 0.11 to 0.45 Whr/l loaded, depending on the inlet VOC concentration and the outlet temperature. The capital cost to build a system designed to cool vapors to -84 C is estimated to be about 9% higher than for a system designed to operate at -73 C.« less

  11. Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.

  12. Calculation of the temperature in the container unit with a modified design for the production of {sup 99}Mo at the VVR-Ts research reactor facility (IVV.10M)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazantsev, A. A., E-mail: kazantsevanatoly@gmail.com; Sergeev, V. V.; Kochnov, O. Yu.

    The temperature regime is calculated for two different designs of containers with uranium-bearing material for the upgraded VVR-Ts research reactor facility (IVV.10M). The containers are to be used in the production of {sup 99}Mo. It is demonstrated that the modification of the container design leads to a considerable temperature reduction and an increase in the near-wall boiling margin and allows one to raise the amount of material loaded into the container. The calculations were conducted using the international thermohydraulic contour code TRAC intended to analyze the technical safety of water-cooled nuclear power units.

  13. Vibration reduction of pulse tube cryocooler driven by single piston compressor

    NASA Astrophysics Data System (ADS)

    Chen, Houlei; Xu, Nana; Liang, Jingtao; Yang, Luwei

    2012-12-01

    The development of pulse tube coolers has progressed significantly during the past two decades. A single piston linear compressor is used to in order to reduce the size and mass of a high frequency pulse tube cryocooler. The pulse tube achieved a no-load temperature of 61 K and a cooling power of 1 W@80 K with an operating frequency of 80 Hz and an electrical input power of 50 W. By itself, the single piston compressor generates a large vibration, so a set of leaf springs with an additional mass is used to reduce the vibration. The equation relating the mass, the elasticity coefficient of leaf spring and the working frequency is obtained through an empirical fit of the experimental data. The vibration amplitude is reduced from 55 mm/s to lower than 5 mm/s by using a proper leaf spring. This paper demonstrates that a single piston compressor with vibration reduction provides a good choice for a PTC.

  14. 29 CFR 1919.76 - Safe working load reduction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... load reduction. (a) If the operation in which equipment is engaged never utilizes more than a fraction... physically capable of operation at the original load rating and the load reduction is not for the purpose of...

  15. Transpiring Cooling of a Scram-Jet Engine Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Scotti, Stephen J.; Song, Kyo D.; Ries,Heidi

    1997-01-01

    The peak cold-wall heating rate generated in a combustion chamber of a scram-jet engine can exceed 2000 Btu/sq ft sec (approx. 2344 W/sq cm). Therefore, a very effective heat dissipation mechanism is required to sustain such a high heating load. This research focused on the transpiration cooling mechanism that appears to be a promising approach to remove a large amount of heat from the engine wall. The transpiration cooling mechanism has two aspects. First, initial computations suggest that there is a reduction, as much as 75%, in the heat flux incident on the combustion chamber wall due to the transpirant modifying the combustor boundary layer. Secondly, the heat reaching the combustor wall is removed from the structure in a very effective manner by the transpirant. It is the second of these two mechanisms that is investigated experimentally in the subject paper. A transpiration cooling experiment using a radiant heating method, that provided a heat flux as high as 200 Btu/sq ft sec ( approx. 234 W/sq cm) on the surface of a specimen, was performed. The experiment utilized an arc-lamp facility (60-kW radiant power output) to provide a uniform heat flux to a test specimen. For safety reasons, helium gas was used as the transpirant in the experiments. The specimens were 1.9-cm diameter sintered, powdered-stainless-steel tubes of various porosities and a 2.54cm square tube with perforated multi-layered walls. A 15-cm portion of each specimen was heated. The cooling effectivenes and efficiencies by transpiration for each specimen were obtained using the experimental results. During the testing, various test specimens displayed a choking phenomenon in which the transpirant flow was limited as the heat flux was increased. The paper includes a preliminary analysis of the transpiration cooling mechanism and a scaling conversion study that translates the results from helium tests into the case when a hydrogen medium is used.

  16. Differences between emissions measured in urban driving and certification testing of heavy-duty diesel engines

    NASA Astrophysics Data System (ADS)

    Dixit, Poornima; Miller, J. Wayne; Cocker, David R.; Oshinuga, Adewale; Jiang, Yu; Durbin, Thomas D.; Johnson, Kent C.

    2017-10-01

    Emissions from eight heavy-duty diesel trucks (HDDTs) equipped with three different exhaust aftertreatment systems (ATS) for controlling nitrogen oxide (NOx) emissions were quantified on a chassis dynamometer using driving schedules representative of stop-and-go and free-flow driving in metropolitan areas. The three control technologies were: 1) cooled exhaust gas recirculation (CEGR) plus a diesel particulate filter (DPF); 2) CEGR and DPF plus advanced engine controls; and 3) CEGR and DPF plus selective catalytic reduction with ammonia (SCR). Results for all control technologies and driving conditions showed PM emission factors were less than the standard, while selected non-regulated emissions (ammonia, carbonyls, and C4-C12 hydrocarbons) and a greenhouse gas (nitrous oxide) were at measurement detection limits. However, NOx emission factors depended on the control technology, engine calibration, and driving mode. For example, emissions from engines with cooled-exhaust gas recirculation (CEGR) were 239% higher for stop-and-go driving as compared with free-flow. For CEGR plus selective catalytic reduction (SCR), the ratio was 450%. A deeper analysis was carried out with the assumption that emissions measured for a drive cycle on either the chassis or in-use driving would be similar. Applying the same NTE rules to the chassis data showed emissions during stop-and-go driving often exceeded the certification standard and >90% of the driving did not fall within the Not-To-Exceed (NTE) control area suggesting the NTE requirements do not provide sufficient emissions control under in-use conditions. On-road measurement of emissions using the same mobile lab while the vehicle followed a free-flow driving schedule verified the chassis results. These results have implications for scientists who build inventories using certification values instead of real world emission values and for metropolitan populations, who are exposed to elevated emissions. The differences in values between real world emissions and certification cycles should be narrowed. For example, one might use a different mix of cold and hot start testing to greater emphasize low temperature/load operation, a separate cycle to specifically characterize low-load operation, or broaden the in-use compliance testing requirements and associated conformity factors to incorporate a wider envelope of vehicle operation, especially at low load conditions. .

  17. Investigation of a para-ortho hydrogen reactor for application to spacecraft sensor cooling

    NASA Technical Reports Server (NTRS)

    Nast, T. C.

    1983-01-01

    The utilization of solid hydrogen in space for sensor and instrument cooling is a very efficient technique for long term cooling or for cooling at high heat rates. The solid hydrogen can provide temperatures as low as 7 to 8 K to instruments. Vapor cooling is utilized to reduce parasitic heat inputs to the 7 to 8 K stage and is effective in providing intermediate cooling for instrument components operating at higher temperatures. The use of solid hydrogen in place of helium may lead to weight reductions as large as a factor of ten and an attendent reduction in system volume. The results of an investigation of a catalytic reactor for use with a solid hydrogen cooling system is presented. Trade studies were performed on several configurations of reactor to meet the requirements of high reactor efficiency with low pressure drop. Results for the selected reactor design are presented for both liquid hydrogen systems operating at near atmospheric pressure and the solid hydrogen cooler operating as low as 1 torr.

  18. Technology Solutions Case Study: Replacement of Variable-Speed Motors for Furnaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-02-01

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) evaluated the Concept 3™ replacement motors for residential furnaces in eight homes in Syracuse, NY. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and homemore » efficiency program stakeholders. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh, with average cost savings of $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load.« less

  19. COOL AMI EU pilot trial: a multicentre, prospective, randomised controlled trial to assess cooling as an adjunctive therapy to percutaneous intervention in patients with acute myocardial infarction.

    PubMed

    Noc, Marko; Erlinge, David; Neskovic, Aleksandar N; Kafedzic, Srdjan; Merkely, Béla; Zima, Endre; Fister, Misa; Petrović, Milovan; Čanković, Milenko; Veress, Gábor; Laanmets, Peep; Pern, Teele; Vukcevic, Vladan; Dedovic, Vladimir; Średniawa, Beata; Świątkowski, Andrzej; Keeble, Thomas R; Davies, John R; Warenits, Alexandra-Maria; Olivecrona, Göran; Peruga, Jan Zbigniew; Ciszewski, Michal; Horvath, Ivan; Edes, Istvan; Nagy, Gergely Gyorgy; Aradi, Daniel; Holzer, Michael

    2017-08-04

    We aimed to investigate the rapid induction of therapeutic hypothermia using the ZOLL Proteus Intravascular Temperature Management System in patients with anterior ST-elevation myocardial infarction (STEMI) without cardiac arrest. A total of 50 patients were randomised; 22 patients (88%; 95% confidence interval [CI]: 69-97%) in the hypothermia group and 23 patients (92%; 95% CI: 74-99) in the control group completed cardiac magnetic resonance imaging at four to six days and 30-day follow-up. Intravascular temperature at coronary guidewire crossing after 20.5 minutes of endovascular cooling decreased to 33.6°C (range 31.9-35.5°C). There was a 17-minute (95% CI: 4.6-29.8 min) cooling-related delay to reperfusion. In "per protocol" analysis, median infarct size/left ventricular mass was 16.7% in the hypothermia group versus 23.8% in the control group (absolute reduction 7.1%, relative reduction 30%; p=0.31) and median left ventricular ejection fraction (LVEF) was 42% in the hypothermia group and 40% in the control group (absolute reduction 2.4%, relative reduction 6%; p=0.36). Except for self-terminating paroxysmal atrial fibrillation (32% versus 8%; p=0.074), there was no excess of adverse events in the hypothermia group. We rapidly and safely cooled patients with anterior STEMI to 33.6°C at the time of coronary guidewire crossing. This is ≥1.1°C lower than in previous cooling studies. Except for self-terminating atrial fibrillation, there was no excess of adverse events and no clinically important cooling-related delay to reperfusion. A statistically non-significant numerical 7.1% absolute and 30% relative reduction in infarct size warrants a pivotal trial powered for efficacy.

  20. Influence of the ambient temperature on the cooling efficiency of the high performance cooling device with thermosiphon effect

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2018-06-01

    This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.

  1. Radiative, actively cooled panel tests results

    NASA Technical Reports Server (NTRS)

    Shore, C. P.; Nowak, R. J.; Sharpe, E. L.

    1978-01-01

    The radiative, actively cooled panel designed to withstand a uniform incident heat flux of 136 kW/sq m to a 444 K surface temperature was evaluated. The test program consisted of preliminary static thermal mechanical loading and aerothermal flow tests. Test results are briefly discussed.

  2. Loss measurement and analysis for the prototype generator with HTS stator and permanent magnet rotor

    NASA Astrophysics Data System (ADS)

    Song, Peng; Qu, Timing; Yu, Xiaoyu; Li, Longnian; Gu, Chen; Li, Xiaohang; Wang, Dewen; Hu, Boping; Chen, Duxing; Han, Zhenghe

    2013-11-01

    A prototype HTS synchronous generator with a permanent magnet rotor and HTS armature windings was developed. The rated armature frequency is 10 Hz. The cryogenic Dewar is tightly surrounded outside the iron core. Both HTS coils and the iron core were cooled by using conduction cooling method. During the process of no-load running, the no-load loss power data were obtained through the torque measurement. The temperature evolution characteristics of the stator was measured by PT-100 temperature sensors. These results show that the no-load loss power at around 77 K are much larger than that at room temperature. The possible reason for the no-load loss increment is discussed. The ac loss power of one individual HTS coil used in this generator was also tested. Compared with the iron loss power, the ac loss power is rather small and could be neglected.

  3. Dielectric-loaded waveguide circulator for cryogenically cooled and cascaded maser waveguide structures

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.; Quinn, R. B. (Inventor)

    1980-01-01

    A dielectrically loaded four port waveguide circulator is used with a reflected wave maser connected to a second port between first and third ports to form one of a plurality of cascaded maser waveguide structures. The fourth port is connected to a waveguide loaded with microwave energy absorbing material. The third (output signal) port of one maser waveguide structure is connected by a waveguide loaded with dielectric material to the first (input) port of an adjacent maser waveguide structure, and the second port is connected to a reflected wave maser by a matching transformer which passes the signal to be amplified into and out of the reflected wavemaser and blocks pumping energy in the reflected wave maser from entering the circulator. A number of cascaded maser waveguide structures are thus housed in a relatively small volume of conductive material placed within a cryogenically cooled magnet assembly.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This appendix summarizes building characteristics used to determine heating and cooling loads for each of the five building types in each of the four regions. For the selected five buildings, the following data are attached: new and existing construction characteristics; new and existing construction thermal resistance; floor plan and elevation; people load schedule; lighting load schedule; appliance load schedule; ventilation schedule; and hot water use schedule. For the five building types (single family, apartment buildings, commercial buildings, office buildings, and schools), data are compiled in 10 appendices. These are Building Characteristics; Alternate Energy Sources and Energy Conservation Techniques Description, Costs,more » Fuel Price Scenarios; Life Cycle Cost Model; Simulation Models; Solar Heating/Cooling System; Condensed Weather; Single and Multi-Family Dwelling Characteristics and Energy Conservation Techniques; Mixed Strategies for Energy Conservation and Alternative Energy Utilization in Buildings. An extensive bibliography is given in the final appendix. (MCW)« less

  5. Site-specific investigations on aquifer thermal energy storage for space and process cooling

    NASA Astrophysics Data System (ADS)

    Brown, D. R.

    1991-08-01

    The Pacific Northwest Laboratory (PNL) has completed three preliminary site-specific feasibility studies that investigated aquifer thermal energy storage (ATES) for reducing space and process cooling costs. Chilled water stored in an ATES system could be used to meet all or part of the process and/or space cooling loads at the three facilities investigated. Seasonal or diurnal chill ATES systems could be significantly less expensive than a conventional electrically-driven, load-following chiller system at one of the three sites, depending on the cooling water loop return temperature and presumed future electricity escalation rate. For the other two sites investigated, a chill ATES system would be economically competitive with conventional chillers if onsite aquifer characteristics were improved. Well flow rates at one of the sites were adequate, but the expected thermal recovery efficiency was too low. The reverse of this situation was found at the other site, where the thermal recovery efficiency was expected to be adequate, but well flow rates were too low.

  6. Airfoil, platform, and cooling passage measurements on a rotating transonic high-pressure turbine

    NASA Astrophysics Data System (ADS)

    Nickol, Jeremy B.

    An experiment was performed at The Ohio State University Gas Turbine Laboratory for a film-cooled high-pressure turbine stage operating at design-corrected conditions, with variable rotor and aft purge cooling flow rates. Several distinct experimental programs are combined into one experiment and their results are presented. Pressure and temperature measurements in the internal cooling passages that feed the airfoil film cooling are used as boundary conditions in a model that calculates cooling flow rates and blowing ratio out of each individual film cooling hole. The cooling holes on the suction side choke at even the lowest levels of film cooling, ejecting more than twice the coolant as the holes on the pressure side. However, the blowing ratios are very close due to the freestream massflux on the suction side also being almost twice as great. The highest local blowing ratios actually occur close to the airfoil stagnation point as a result of the low freestream massflux conditions. The choking of suction side cooling holes also results in the majority of any additional coolant added to the blade flowing out through the leading edge and pressure side rows. A second focus of this dissertation is the heat transfer on the rotor airfoil, which features uncooled blades and blades with three different shapes of film cooling hole: cylindrical, diffusing fan shape, and a new advanced shape. Shaped cooling holes have previously shown immense promise on simpler geometries, but experimental results for a rotating turbine have not previously been published in the open literature. Significant improvement from the uncooled case is observed for all shapes of cooling holes, but the improvement from the round to more advanced shapes is seen to be relatively minor. The reduction in relative effectiveness is likely due to the engine-representative secondary flow field interfering with the cooling flow mechanics in the freestream, and may also be caused by shocks and other compressibility effects within the cooling holes which are not present in low speed experiments. Another major focus of this work is on the forward purge cavity and rotor and stator inner endwalls. Pressure and heat transfer measurements are taken at several locations, and compared as both forward and aft purge flow rates are varied. It is seen that increases in forward purge rates result in a flow blockage and greater pressure on the endwalls both up and downstream of the cavity. Thus, even in locations where the coolant does not directly cover the metal surface, it can have a significant impact on the local pressure loading and heat transfer rate. The heat transfer on the platform further downstream, however, is unchanged by variations in purge flow rates.

  7. Modeling nitrate-nitrogen load reduction strategies for the des moines river, iowa using SWAT

    USGS Publications Warehouse

    Schilling, K.E.; Wolter, C.F.

    2009-01-01

    The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed. ?? 2009 Springer Science+Business Media, LLC.

  8. Solar Energy system performance evaluation: El Toro, California, March 1981-November 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakkala, P.A.

    The El Toro Library is a public library facility in California with an active solar energy system designed to supply 97% of the heating load and 60% of the cooling load. The system is equipped with 1427 square feet of evacuated tube collectors, a 1500-gallon steel storage tank, and an auxiliary natural-gas-fired heating unit. During the period from March 1981 through November 1981 the system supplied only 16% of the space cooling load, far short of the 60% design value. Problems are reported related to control of a valve and of collection, low absorption chiller coefficient of performance during partmore » of the period, and small collector area. Performance data are reported for the system, including solar savings ratio, conventional fuel savings, system performance factor, system coefficient of performance, solar energy utilization, and system operation. Subsystem performance data are also given for the collector, storage, and space cooling subsystems and absorption chiller. The system is briefly described along with performance evaluation techniques and sensors, and typical data are presented for one month. Some weather data are also included. (LEW)« less

  9. The effect of heat transfer mode on heart rate responses and hysteresis during heating and cooling in the estuarine crocodile Crocodylus porosus.

    PubMed

    Franklin, Craig E; Seebacher, Frank

    2003-04-01

    The effect of heating and cooling on heart rate in the estuarine crocodile Crocodylus porosus was studied in response to different heat transfer mechanisms and heat loads. Three heating treatments were investigated. C. porosus were: (1) exposed to a radiant heat source under dry conditions; (2) heated via radiant energy while half-submerged in flowing water at 23 degrees C and (3) heated via convective transfer by increasing water temperature from 23 degrees C to 35 degrees C. Cooling was achieved in all treatments by removing the heat source and with C. porosus half-submerged in flowing water at 23 degrees C. In all treatments, the heart rate of C. porosus increased markedly in response to heating and decreased rapidly with the removal of the heat source. Heart rate during heating was significantly faster than during cooling at any given body temperature, i.e. there was a significant heart rate hysteresis. There were two identifiable responses to heating and cooling. During the initial stages of applying or removing the heat source, there was a dramatic increase or decrease in heart rate ('rapid response'), respectively, indicating a possible cardiac reflex. This rapid change in heart rate with only a small change or no change in body temperature (<0.5 degrees C) resulted in Q(10) values greater than 4000, calling into question the usefulness of this measure on heart rate during the initial stages of heating and cooling. In the later phases of heating and cooling, heart rate changed with body temperature, with Q(10) values of 2-3. The magnitude of the heart rate response differed between treatments, with radiant heating during submergence eliciting the smallest response. The heart rate of C. porosus outside of the 'rapid response' periods was found to be a function of the heat load experienced at the animal surface, as well as on the mode of heat transfer. Heart rate increased or decreased rapidly when C. porosus experienced large positive (above 25 W) or negative (below -15 W) heat loads, respectively, in all treatments. For heat loads between -15 W and 20 W, the increase in heart rate was smaller for the 'unnatural' heating by convection in water compared with either treatment using radiant heating. Our data indicate that changes in heart rate constitute a thermoregulatory mechanism that is modulated in response to the thermal environment occupied by the animal, but that heart rate during heating and cooling is, in part, controlled independently of body temperature.

  10. Solar heating and cooling demonstration project at the Florida solar energy center

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. The system was designed to supply approximately 70 percent of the annual cooling and 100 percent of the heating load. The project provides unique high temperature, nonimaging, nontracking, evacuated tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection. Information is provided on the system's acceptance test results operation, controls, hardware and installation, including detailed drawings.

  11. Cooling atomic ions with visible and infra-red light

    NASA Astrophysics Data System (ADS)

    Lindenfelser, F.; Marinelli, M.; Negnevitsky, V.; Ragg, S.; Home, J. P.

    2017-06-01

    We demonstrate the ability to load, cool and detect singly charged calcium ions in a surface electrode trap using only visible and infrared lasers for the trapped-ion control. As opposed to the standard methods of cooling using dipole-allowed transitions, we combine power broadening of a quadrupole transition at 729 nm with quenching of the upper level using a dipole allowed transition at 854 nm. By observing the resulting 393 nm fluorescence we are able to perform background-free detection of the ion. We show that this system can be used to smoothly transition between the Doppler cooling and sideband cooling regimes, and verify theoretical predictions throughout this range. We achieve scattering rates which reliably allow recooling after collision events and allow ions to be loaded from a thermal atomic beam. This work is compatible with recent advances in optical waveguides, and thus opens a path in current technologies for large-scale quantum information processing. In situations where dielectric materials are placed close to trapped ions, it carries the additional advantage of using wavelengths which do not lead to significant charging, which should facilitate high rate optical interfaces between remotely held ions.

  12. Comparison of cooling and EMLA to reduce the burning pain during capsaicin 8% patch application: a randomized, double-blind, placebo-controlled study.

    PubMed

    Knolle, Erich; Zadrazil, Markus; Kovacs, Gabor Geza; Medwed, Stephanie; Scharbert, Gisela; Schemper, Michael

    2013-12-01

    Topical capsaicin 8% was developed for the treatment of peripheral neuropathic pain. The pain reduction is associated with a reversible reduction of epidermal nerve fiber density (ENFD). During its application, topical capsaicin 8% provokes distinct pain. In a randomized, double-blind study analyzed with a block factorial analysis of variance, we tested whether cooling the skin would result in reliable prevention of the application pain without inhibiting reduction of ENFD. A capsaicin 8% patch was cut into 4 quarters and 2 each were applied for 1 hour on the anterior thighs of 12 healthy volunteers. A randomization scheme provided for 1 of the application sites of each thigh to be pretreated with EMLA and the other with placebo, whereas both application sites of 1 thigh, also randomly selected, were cooled by cool packs, resulting in a site temperature of 20°C during the entire treatment period. The maximum pain level given for the cooled sites (visual analogue scale [VAS] 1.3 ± 1.4) proved to be significantly lower than for the non-cooled sites (VAS 7.5 ± 1.9) (P < .0001). In contrast, there was no significant difference in application pain between the sites pretreated with EMLA or with placebo (VAS 4.1 ± 3.6 vs 4.8 ± 3.5, P = .1084). At all application sites, ENFD was significantly reduced by 8.0 ± 2.8 (ENF/mm ± SD, P < .0001), that is, 70%, with no significant differences between the sites with the different experimental conditions. In conclusion, cooling the skin to 20°C reliably prevents the pain from capsaicin 8% patch application, whereas EMLA does not. ENFD reduction is not inhibited by cooling. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  13. Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber with Development of an Optimized Design

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.

    1998-01-01

    An analytical investigation on the effect of high aspect ratio (height/width) cooling channels, considering different coolant channel designs, on hot-gas-side wall temperature and coolant pressure drop for a liquid hydrogen cooled rocket combustion chamber, was performed. Coolant channel design elements considered were: length of combustion chamber in which high aspect ratio cooling was applied, number of coolant channels, and coolant channel shape. Seven coolant channel designs were investigated using a coupling of the Rocket Thermal Evaluation code and the Two-Dimensional Kinetics code. Initially, each coolant channel design was developed, without consideration for fabrication, to reduce the hot-gas-side wall temperature from a given conventional cooling channel baseline. These designs produced hot-gas-side wall temperature reductions up to 22 percent, with coolant pressure drop increases as low as 7.5 percent from the baseline. Fabrication constraints for milled channels were applied to the seven designs. These produced hot-gas-side wall temperature reductions of up to 20 percent, with coolant pressure drop increases as low as 2 percent. Using high aspect ratio cooling channels for the entire length of the combustion chamber had no additional benefit on hot-gas-side wall temperature over using high aspect ratio cooling channels only in the throat region, but increased coolant pressure drop 33 percent. Independent of coolant channel shape, high aspect ratio cooling was able to reduce the hot-gas-side wall temperature by at least 8 percent, with as low as a 2 percent increase in coolant pressure drop. ne design with the highest overall benefit to hot-gas-side wall temperature and minimal coolant pressure drop increase was the design which used bifurcated cooling channels and high aspect ratio cooling in the throat region. An optimized bifurcated high aspect ratio cooling channel design was developed which reduced the hot-gas-side wall temperature by 18 percent and reduced the coolant pressure drop by 4 percent. Reductions of coolant mass flow rate of up to 50 percent were possible before the hot-gas-side wall temperature reached that of the baseline. These mass flow rate reductions produced coolant pressure drops of up to 57 percent.

  14. A Mechanistic Study of Failure of Concrete Subjected to Cyclic Thermal Loads

    DTIC Science & Technology

    1991-07-01

    After Cooling due to Shrinkage ............... 27 ix LIST OF TABLES TABLE I. Cleavage Strength of Composite Samples Prepared with Different Kinds of...microcracking - a possible fatigue mechanism - due to heating and cooling . Therefore the first part of the experimental program concentrated on obtaining...propagation of cracks (7). For temperatures up to 662F cracking happens during the cooling phase, for temperatures above 842F the majority of cracking takes

  15. Database Reorganization in Parallel Disk Arrays with I/O Service Stealing

    NASA Technical Reports Server (NTRS)

    Zabback, Peter; Onyuksel, Ibrahim; Scheuermann, Peter; Weikum, Gerhard

    1996-01-01

    We present a model for data reorganization in parallel disk systems that is geared towards load balancing in an environment with periodic access patterns. Data reorganization is performed by disk cooling, i.e. migrating files or extents from the hottest disks to the coldest ones. We develop an approximate queueing model for determining the effective arrival rates of cooling requests and discuss its use in assessing the costs versus benefits of cooling.

  16. Heat transfer optimization for air-mist cooling between a stack of parallel plates

    NASA Astrophysics Data System (ADS)

    Issa, Roy J.

    2010-06-01

    A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow. The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances, and for dilute mist conditions. Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio, and reach a limit for a critical loading. For these dilute spray conditions, complete evaporation of the droplets takes place. Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate. The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.

  17. Supercooling Preservation Of The Rat Liver For Transplantation

    PubMed Central

    Bruinsma, Bote G.; Berendsen, Tim A.; Izamis, Maria-Louisa; Yeh, Heidi; Yarmush, Martin L.; Uygun, Korkut

    2015-01-01

    The current standard for liver preservation is limited in duration. Employing a novel subzero preservation technique that includes supercooling and machine perfusion can significantly improve preservation and prolong storage times. By loading rat livers with cryoprotectants to prevent both intra- and extracellular ice formation and protect against hypothermic injury, livers can be cooled to −6 °C without freezing and kept viable for up to 96 hours. Here, we describe the procedures of loading cryoprotectants by means of subnormothermic machine perfusion (SNMP), controlled cooling to a supercooled state, followed by SNMP recovery and orthotopic liver transplantation. PMID:25692985

  18. A parametric study of the thermal performance of green roofs in different climates through energy modeling

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sananda

    In recent years, there has been great interest in the potential of green roofs as an alternative roofing option to reduce the energy consumed by individual buildings as well as mitigate large scale urban environmental problems such as the heat island effect. There is a widespread recognition and a growing literature of measured data that suggest green roofs can reduce building energy consumption. This thesis investigates the potential of green roofs in reducing the building energy loads and focuses on how the different parameters of a green roof assembly affect the thermal performance of a building. A green roof assembly is modeled in Design Builder- a 3D graphical design modeling and energy use simulation program (interface) that uses the EnergyPlus simulation engine, and the simulated data set thus obtained is compared to field experiment data to validate the roof assembly model on the basis of how accurately it simulates the behavior of a green roof. Then the software is used to evaluate the thermal performance of several green roof assemblies under three different climate types, looking at the whole building energy consumption. For the purpose of this parametric simulation study, a prototypical single story small office building is considered and one parameter of the green roof is altered for each simulation run in order to understand its effect on building's energy loads. These parameters include different insulation thicknesses, leaf area indices (LAI) and growing medium or soil depth, each of which are tested under the three different climate types. The energy use intensities (EUIs), the peak and annual heating and cooling loads resulting from the use of these green roof assemblies are compared with each other and to a cool roof base case to determine the energy load reductions, if any. The heat flux through the roof is also evaluated and compared. The simulation results are then organized and finally presented as a decision support tool that would facilitate the adoption and appropriate utilization of green roof technologies and make it possible to account for green roof benefits in energy codes and related energy efficiency standards and rating systems such as LEED.

  19. Elevated Aerosol Layers and Their Radiative Impact over Kanpur During Monsoon Onset Period

    NASA Technical Reports Server (NTRS)

    Sarangi, Chandan; Tripathi, S. N.; Mishra, A. K.; Welton, E. J.

    2016-01-01

    Accurate information about aerosol vertical distribution is needed to reduce uncertainties in aerosol radiative forcing and its effect on atmospheric dynamics. The present study deals with synergistic analyses of aerosol vertical distribution and aerosol optical depth (AOD) with meteorological variables using multisatellite and ground-based remote sensors over Kanpur in central Indo-Gangetic Plain (IGP). Micro-Pulse Lidar Network-derived aerosol vertical extinction (sigma) profiles are analyzed to quantify the interannual and daytime variations during monsoon onset period (May-June) for 2009-2011. The mean aerosol profile is broadly categorized into two layers viz., a surface layer (SL) extending up to 1.5 km (where sigma decreased exponentially with height) and an elevated aerosol layer (EAL) extending between 1.5 and 5.5 km. The increase in total columnar aerosol loading is associated with relatively higher increase in contribution from EAL loading than that from SL. The mean contributions of EALs are about 60%, 51%, and 50% to total columnar AOD during 2009, 2010, and 2011, respectively. We observe distinct parabolic EALs during early morning and late evening but uniformly mixed EALs during midday. The interannual and daytime variations of EALs are mainly influenced by long-range transport and convective capacity of the local emissions, respectively. Radiative flux analysis shows that clear-sky incoming solar radiation at surface is reduced with increase in AOD, which indicates significant cooling at surface. Collocated analysis of atmospheric temperature and aerosol loading reveals that increase in AOD not only resulted in surface dimming but also reduced the temperature (approximately 2-3 C) of lower troposphere (below 3 km altitude). Radiative transfer simulations indicate that the reduction of incoming solar radiation at surface is mainly due to increased absorption by EALs (with increase in total AOD). The observed cooling in lower troposphere in high aerosol loading scenario could be understood as a dynamical feedback of EAL-induced stratification of lower troposphere. Further, the observed radiative effect of EALs increases the stability of the lower troposphere, which could modulate the large-scale atmospheric dynamics during monsoon onset period. These findings encourage follow-up studies on the implication of EALs to the Indian summer monsoon dynamics using numerical models.

  20. Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads

    NASA Astrophysics Data System (ADS)

    Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.

    2009-12-01

    Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.

  1. Enabling the Distributed Generation Market of High Temperature Fuel Cell and Absorption Chiller Systems to Support Critical and Commercial Loads

    NASA Astrophysics Data System (ADS)

    DiMola, Ashley M.

    Buildings account for over 18% of the world's anthropogenic Greenhouse Gas (GHG) emissions. As a result, a technology that can offset GHG emissions associated with buildings has the potential to save over 9 Giga-tons of GHG emissions per year. High temperature fuel cell and absorption chiller (HTFC/AC) technology offers a relatively low-carbon option for meeting cooling and electric loads for buildings while producing almost no criteria pollutants. GHG emissions in the state of California would decrease by 7.48 million metric tons per year if every commercial building in the State used HTFC/AC technology to meet its power and cooling requirements. In order to realize the benefits of HTFC/AC technology on a wide scale, the distributed generation market needs to be exposed to the technology and informed of its economic viability and real-world potential. This work characterizes the economics associated with HTFC/AC technology using select scenarios that are representative of realistic applications. The financial impacts of various input factors are evaluated and the HTFC/AC simulations are compared to the economics of traditional building utilities. It is shown that, in addition to the emissions reductions derived from the systems, HTFC/AC technology is financially preferable in all of the scenarios evaluated. This work also presents the design of a showcase environment, centered on a beta-test application, that presents (1) system operating data gathered using a custom data acquisition module, and (2) HTFC/AC technology in a clear and approachable manner in order to serve the target audience of market stakeholders.

  2. Experimental evaluation of 150-millimeter bore ball bearing to 3 million DN using either solid or drilled balls

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Munson, H. E.

    1973-01-01

    Seven 150-mm bore ball bearings were run under 8900 Newton (2000 lb) thrust load at speeds from 6670 to 20,000 rpm (1 to 3 million DN). Four of the bearings had conventional solid balls and three bearing had drilled (cylindrically hollow) balls with 50 percent mass reduction. The bearings were under-race cooled and slot-lubricated with Type 2 ester oil at flow rates from 4.35 to 5.80 liters per minute (1.15 to 1.57 gal min). Friction torque and temperatures were measured on all bearings. No significant difference in torque was noted, between the solid and drilled ball bearings. One bearing of each type was rerun at 17,800 Newtons (4000 lb) thrust load. The solid ball bearings performed satisfactorily at 3 million DN. However, at about 2 million DN the drilled ball bearing experienced a broken ball and cracks appeared in two other balls as the result of flexure fatigue. Metallurgical examination of the cracked balls indicated a brittle structure in the bore of the drilled balls.

  3. Cooling the dark energy camera instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, R.L.; Cease, H.; /Fermilab

    2008-06-01

    DECam, camera for the Dark Energy Survey (DES), is undergoing general design and component testing. For an overview see DePoy, et al in these proceedings. For a description of the imager, see Cease, et al in these proceedings. The CCD instrument will be mounted at the prime focus of the CTIO Blanco 4m telescope. The instrument temperature will be 173K with a heat load of 113W. In similar applications, cooling CCD instruments at the prime focus has been accomplished by three general methods. Liquid nitrogen reservoirs have been constructed to operate in any orientation, pulse tube cryocoolers have been usedmore » when tilt angles are limited and Joule-Thompson or Stirling cryocoolers have been used with smaller heat loads. Gifford-MacMahon cooling has been used at the Cassegrain but not at the prime focus. For DES, the combined requirements of high heat load, temperature stability, low vibration, operation in any orientation, liquid nitrogen cost and limited space available led to the design of a pumped, closed loop, circulating nitrogen system. At zenith the instrument will be twelve meters above the pump/cryocooler station. This cooling system expected to have a 10,000 hour maintenance interval. This paper will describe the engineering basis including the thermal model, unbalanced forces, cooldown time, the single and two-phase flow model.« less

  4. A Si/Glass Bulk-Micromachined Cryogenic Heat Exchanger for High Heat Loads: Fabrication, Test, and Application Results.

    PubMed

    Zhu, Weibin; White, Michael J; Nellis, Gregory F; Klein, Sanford A; Gianchandani, Yogesh B

    2010-02-01

    This paper reports on a micromachined Si/glass stack recuperative heat exchanger with in situ temperature sensors. Numerous high-conductivity silicon plates with integrated platinum resistance temperature detectors (Pt RTDs) are stacked, alternating with low-conductivity Pyrex spacers. The device has a 1 x 1-cm(2) footprint and a length of up to 3.5 cm. It is intended for use in Joule-Thomson (J-T) coolers and can sustain pressure exceeding 1 MPa. Tests at cold-end inlet temperatures of 237 K-252 K show that the heat exchanger effectiveness is 0.9 with 0.039-g/s helium mass flow rate. The integrated Pt RTDs present a linear response of 0.26%-0.30%/K over an operational range of 205 K-296 K but remain usable at lower temperatures. In self-cooling tests with ethane as the working fluid, a J-T system with the heat exchanger drops 76.1 K below the inlet temperature, achieving 218.7 K for a pressure of 835.8 kPa. The system reaches 200 K in transient state; further cooling is limited by impurities that freeze within the flow stream. In J-T self-cooling tests with an external heat load, the system reaches 239 K while providing 1 W of cooling. In all cases, there is an additional parasitic heat load estimated at 300-500 mW.

  5. The Impact of Vocal Cool-down Exercises: A Subjective Study of Singers' and Listeners' Perceptions.

    PubMed

    Ragan, Kari

    2016-11-01

    Using subjective measures, this study investigated singers' and listeners' perceptions of changes in voice condition after vocal cool-down exercises. A single-subject crossover was designed to evaluate whether there were discernible differences in either singer or listener perceptions from pre (no vocal cool downs) to post (with cool downs) test. Subjective questionnaires were completed throughout the study. Twenty classically trained female singers documented self-ratings and perceptual judgments through the Evaluation of the Ability to Sing Easily survey, the Singing Voice Handicap Index, and Self-Perceptual Questionnaires after a 60-minute voice load. Recordings were made and assessed by four expert listeners. The assessed data from the Singing Voice Handicap Index, the Evaluation of the Ability to Sing Easily, and Daily Perceptual Questionnaires show 68%, 67%, and 74% of singers reported improvement, respectively. However, because of significant variability in the underlying scores, the amount of improvement was not deemed to be statistically significant. Expert listeners correctly identified the cool-down week 46% of the time. Singers strongly perceived positive impact from the cool-down exercises on both their speaking and singing voices. Even though the objective data were statistically insignificant, the singers' subjective data clearly indicates a perceived sense of vocal well-being after utilizing the vocal cool-down protocol. The variability in the daily life of a singer (eg, stress, menses, reflux, vocal load, and vocal hygiene) makes it difficult to objectively quantify the impact of vocal cool downs. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Turbine airfoil with an internal cooling system having vortex forming turbulators

    DOEpatents

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  7. Water for electricity in India: A multi-model study of future challenges and linkages to climate change mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasan, Shweta; Kholod, Nazar; Chaturvedi, Vaibhav

    This paper provides projections of water withdrawals and consumption for electricity generation in India through 2050. Based on the results from five energy-economic modeling teams, the paper explores the implications of economic growth, power plant cooling policies, and electricity CO2 emissions reductions on water withdrawals and consumption. To isolate modeling differences, the five teams used harmonized assumptions regarding economic and population growth, the distribution of power plants by cooling technologies, and withdrawals and consumption intensities. The results demonstrate the different but potentially complementary implications of cooling technology policies and efforts to reduce CO2 emissions. The application of closed-loop cooling technologiesmore » substantially reduces water withdrawals but increases consumption. The water implications of CO2 emissions reductions, depend critically on the approach to these reductions. Focusing on wind and solar power reduces consumption and withdrawals; a focus on nuclear power increases both; and a focus on hydroelectric power could increase consumptive losses through evaporation.« less

  8. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systemsmore » work, and describes a refrigerant free liquid desiccant based cooling system.« less

  9. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    DOE PAGES

    Vahmani, P.; Sun, F.; Hall, A.; ...

    2016-12-15

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less

  10. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G.

    2016-12-01

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling. Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using ‘cool photovoltaics’.

  11. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahmani, P.; Sun, F.; Hall, A.

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less

  12. Shock-wave initiation of heated plastified TATB detonation

    NASA Astrophysics Data System (ADS)

    Kuzmitsky, Igor; Rudenko, Vladimir; Gatilov, Leonid; Koshelev, Alexandr

    1999-06-01

    Explosive, plastified TATB, attracts attention with its weak sensitivity to shock loads and high temperature stability ( Pthreshold ? 6.5 GPa and Tcrit ? 250 0Q). However, at its cooling to T 250 0Q plastified TATB becomes as sensitive to shock load as octogen base HE: the excitation threshold reduces down to Pthreshold 2.0 GPa. The main physical reason for the HE sensitivity change is reduction in density at heating and, hence, higher porosity of the product (approximately from 2Moreover, increasing temperature increases the growth rate of uhotf spots which additionally increases the shock sensitivity [1]. Heated TATB experiments are also conducted at VNIIEF. The detonation excitation was computed within 1D program system MAG using EOS JWL for HE and EP and LLNL kinetics [1,2,3]. Early successful results of using this kinetics to predict detonation excitation in heated plastified TATB in VNIIEF experiments with short and long loading pulses are presented. Parameters of the chemical zone of the stationary detonation wave in plastified TATB (LX-17) were computed with the data from [1]. Parameters Heated In shell Cooled Unheated ?0 , g/cm3 1.70 1.81 1.84 1.905 D , km/s 7.982 7.764 7.686 7.517 PN, GPa 45.4 45.8 35.7 32.9 PJ, GPa 27.0 27.3 27.2 26.4 ?x , mm 0.504 0.843 1.041 2.912 ?t , ns 63.1 108.6 135.5 387.4 [1] Effect of Confinement and Thermal Cycling on the Shock Initiation of LX-17 P.A. Urtiew, C.M. Tarver, J.L. Maienschein, and W.C. Tao. LLNL. Combustion and Flame 105: 43-53 (1996) [2] C.M. Tarver, P.A. Urtiew and W.C. Tao (LLNL) Effects of tandem and colliding shock waves on initiation of triaminotrinitrobenzene. J.Appl. Phys. 78(5), September 1995 [3] Craig M. Tarver, John W. Kury and R. Don Breithaupt Detonation waves in triaminotrinitrobenzene J. Appl. Phys. 82(8) , 15 October 1997.

  13. Estimating the potential for industrial waste heat reutilization in urban district energy systems: method development and implementation in two Chinese provinces

    NASA Astrophysics Data System (ADS)

    Tong, Kangkang; Fang, Andrew; Yu, Huajun; Li, Yang; Shi, Lei; Wang, Yangjun; Wang, Shuxiao; Ramaswami, Anu

    2017-12-01

    Utilizing low-grade waste heat from industries to heat and cool homes and businesses through fourth generation district energy systems (DES) is a novel strategy to reduce energy use. This paper develops a generalizable methodology to estimate the energy saving potential for heating/cooling in 20 cities in two Chinese provinces, representing cold winter and hot summer regions respectively. We also conduct a life-cycle analysis of the new infrastructure required for energy exchange in DES. Results show that heating and cooling energy use reduction from this waste heat exchange strategy varies widely based on the mix of industrial, residential and commercial activities, and climate conditions in cities. Low-grade heat is found to be the dominant component of waste heat released by industries, which can be reused for both district heating and cooling in fourth generation DES, yielding energy use reductions from 12%-91% (average of 58%) for heating and 24%-100% (average of 73%) for cooling energy use in the different cities based on annual exchange potential. Incorporating seasonality and multiple energy exchange pathways resulted in energy savings reductions from 0%-87%. The life-cycle impact of added infrastructure was small (<3% for heating) and 1.9% ~ 6.5% (cooling) of the carbon emissions from fuel use in current heating or cooling systems, indicating net carbon savings. This generalizable approach to delineate waste heat potential can help determine suitable cities for the widespread application of industrial waste heat re-utilization.

  14. Macrophyte Community Response to Nitrogen Loading and ...

    EPA Pesticide Factsheets

    Empirical determination of nutrient loading thresholds that negatively impact seagrass communities have been elusive due to the multitude of factors involved. Using a mesocosm system that simulated Pacific Northwest estuaries, we evaluated macrophyte metrics across gradients of NO3 loading (0, 1.5, 3 and 6x ambient) and temperature (10 and 20 °C). Macroalgal growth, biomass, and C:N responded positively to increased NO3 load and floating algal mats developed at 20 ºC. Zostera japonica metrics, including C:N, responded more to temperature than to NO3 loading. Z. marina biomass exhibited a negative temperature effect and in some cases a negative NO3 effect, while growth rate increased with temperature. Shoot survival decreased at 20 ºC but was not influenced by NO3 loading. Wasting disease index exhibited a significant temperature by NO3 interaction consistent with increased disease susceptibility. Community shifts observed were consistent with the nutrient loading hypothesis at 20 ºC, but there was no evidence of other eutrophication symptoms due to the short residence time. The Nutrient Pollution Index tracked the NO3 gradient at 10 ºC but exhibited no response at 20 ºC. We suggest that systems characterized by cool temperatures, high NO3 loads, and short residence time may be resilient to many symptoms of eutrophication. Estuarine systems characterized by cool temperatures, high nutrient loads and rapid flushing may be resilient to some symptoms

  15. Work volume and strength training responses to resistive exercise improve with periodic heat extraction from the palm.

    PubMed

    Grahn, Dennis A; Cao, Vinh H; Nguyen, Christopher M; Liu, Mengyuan T; Heller, H Craig

    2012-09-01

    Body core cooling via the palm of a hand increases work volume during resistive exercise. We asked: (a) "Is there a correlation between elevated core temperatures and fatigue onset during resistive exercise?" and (b) "Does palm cooling between sets of resistive exercise affect strength and work volume training responses?" Core temperature was manipulated by 30-45 minutes of fixed load and duration treadmill exercise in the heat with or without palm cooling. Work volume was then assessed by 4 sets of fixed load bench press exercises. Core temperatures were reduced and work volumes increased after palm cooling (Control: Tes = 39.0 ± 0.1° C, 36 ± 7 reps vs. Cooling: Tes = 38.4 ± 0.2° C, 42 ± 7 reps, mean ± SD, n = 8, p < 0.001). In separate experiments, the impact of palm cooling on work volume and strength training responses were assessed. The participants completed biweekly bench press or pull-up exercises for multiple successive weeks. Palm cooling was applied for 3 minutes between sets of exercise. Over 3 weeks of bench press training, palm cooling increased work volume by 40% (vs. 13% with no treatment; n = 8, p < 0.05). Over 6 weeks of pull-up training, palm cooling increased work volume by 144% in pull-up experienced subjects (vs. 5% over 2 weeks with no treatment; n = 7, p < 0.001) and by 80% in pull-up naïve subjects (vs. 20% with no treatment; n = 11, p < 0.01). Strength (1 repetition maximum) increased 22% over 10 weeks of pyramid bench press training (4 weeks with no treatment followed by 6 weeks with palm cooling; n = 10, p < 0.001). These results verify previous observations about the effects of palm cooling on work volume, demonstrate a link between core temperature and fatigue onset during resistive exercise, and suggest a novel means for improving strength and work volume training responses.

  16. Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings

    DOE PAGES

    Cui, Borui; Gao, Dian-ce; Xiao, Fu; ...

    2016-12-23

    This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less

  17. Evaluation of solar thermal driven cooling system in office buildings in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Linjawi, Majid T.; Talal, Qazi; Al-Sulaiman, Fahad A.

    2017-11-01

    In this study solar driven absorption chiller is used to reduce the peak cooling load in office buildings in Saudi Arabia for different selected cities. The study is conducted for six cities of Abha, Dhahran, Hail, Jeddah, Nejran and Riyadh under three operating durations of 4, 6, and 8 hours using flat plate or evacuated tube collectors. The energy analysis concluded that flat plate collectors are better than evacuated tube collectors. However, the results from economic analysis suggest that while proposing a gas fired absorption chiller will reduce running costs, further reduction by using solar collectors is not feasible because of its high initial cost. At the best case scenario the Net Present Value of a 10 Ton Absorption chiller operated by natural gas boiler and two large flat plate collectors (12m2 each) running for 8 hours/day, 5days/week has a value of 117,000 and Internal Rate of Return (IRR) of 12%. Solar driven absorption chiller could be more feasible if the gas prices increases or the solar collector prices decreases significantly. Finally, government economic incentives and taxes are recommended to provide a boost for the feasibility of such projects.

  18. Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Borui; Gao, Dian-ce; Xiao, Fu

    This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less

  19. Ground Source Geothermal District Heating and Cooling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, James William

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reducemore » worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx« less

  20. Energy efficiency evaluation of hospital building office

    NASA Astrophysics Data System (ADS)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  1. Numerical Investigations of the Influence of Unsteady Vane Trailing Edge Shock Wave on Film Cooling Effectiveness of Rotor Blade Leading Edge

    NASA Astrophysics Data System (ADS)

    Wang, Yufeng; Cai, Le; Wang, Songtao; Zhou, Xun

    2018-04-01

    Unsteady numerical simulations of a high-load transonic turbine stage have been carried out to study the influences of vane trailing edge outer-extending shockwave on rotor blade leading edge film cooling performance. The turbine stage used in this paper is composed of a vane section and a rotor one which are both near the root section of a transonic high-load turbine stage. The Mach number is 0.94 at vane outlet, and the relative Mach number is above 1.10 at rotor outlet. Various positions and oblique angles of film cooling holes were investigated in this research. Results show that the cooling efficiency on the blade surface of rotor near leading edge is significantly affected by vane trailing edge outer-extending shockwave in some cases. In the cases that film holes are close to leading edge, cooling performance suffers more from the sweeping vane trailing edge outer-extending shockwave. In addition, coolant flow ejected from oblique film holes is harder to separate from the blade surface of rotor, and can cover more blade area even under the effects of sweeping vane trailing edge shockwave. As a result, oblique film holes can provide better film cooling performance than vertical film holes do near the leading edge on turbine blade which is swept by shockwaves.

  2. Prototype CoolCup cryolipolysis applicator with over 40% reduced treatment time demonstrates equivalent safety and efficacy with greater patient preference.

    PubMed

    Kilmer, Suzanne L

    2017-01-01

    Cryolipolysis is a safe, effective non-surgical procedure to reduce fat. For most cryolipolysis treatments, tissue is pulled between parallel cooling plates with a treatment duration of 60 minutes. A novel contoured cup, medium-sized applicator was developed to increase tissue contact with reduced skin tension and reduced treatment time. This prototype contoured cup was investigated with a standard cryolipolysis applicator to evaluate safety, efficacy, and patient preference. A prototype CoolCup medium-sized vacuum applicator (CoolSculpting System, ZELTIQ Aesthetics) was used to treat n = 19 subjects in the flanks. Randomly assigned, one flank received standard treatment with the CoolCore applicator (-10°C for 60 minutes). The contralateral flank received treatment from the CoolCup (-11°C for 35 minutes). The clinical study primary efficacy endpoint was 70% correct identification of baseline photographs by independent physician review. Incidence of adverse device effects was monitored. Fat layer reduction was measured by ultrasound and subject surveys were administered 12 weeks post-treatment. Equivalent efficacy was demonstrated between the CoolCore standard treatment and the prototype CoolCup. Independent review from three blinded physicians found 81% correct identification of baseline photographs for the standard treatment and 79% for the CoolCup. Ultrasound measurements indicated mean fat layer reduction of 4.38 mm for the standard treatment and 4.40 mm for the CoolCup; no statistically significant difference was found when comparing treatment efficacy of the two applicators (P = 0.96). Patient questionnaires revealed 85% preferred CoolCup because of shorter treatment duration and greater comfort. Procedural assessments revealed 45% lower pain scores for CoolCup. Immediate post-treatment clinical assessments revealed 82% less bruising. Typical side effects, such as numbness and erythema, were similar. There were no adverse events. This clinical study of a prototype medium-sized vacuum applicator with a cooled contoured surface indicates that the CoolCup produces equivalent safety and efficacy to the standard CoolCore cryolipolysis applicator. With a 42% reduction in treatment time, the procedure was found to be more comfortable because of lower vacuum skin tension and shorter treatment duration. Lasers Surg. Med. 49:63-68, 2017. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.

  3. An Anatomy of the 1960s Atlantic Cooling.

    NASA Astrophysics Data System (ADS)

    Hodson, Dan; Robson, Jon; Sutton, Rowan

    2014-05-01

    North Atlantic Sea Surface Temperatures (SSTs) exhibited pronounced multidecadal variability during the 20th Century. In particular, the North Atlantic SSTs exhibited a rapid warming between 1920 and 1940 followed by a rapid cooling between 1960 and 1980. SSTs outside the North Atlantic display a much smaller level of decadal variability over the 20th Century. This pattern of North Atlantic warming and cooling has been linked to subsequent changes in rainfall over the Sahel and Nordeste Brazil, Summertime North American Climate and Atlantic Hurricane Genesis. Several hypotheses for the rapid 1960s Atlantic cooling have been proposed, including a reduction in northward ocean heat transport due to a reduced Atlantic Meridional Overturning Circulation (AMOC) and the significant rise in anthropogenic sulphur dioxide emissions during the latter half of the 20th century. Here we examine the observed 1960s Atlantic cooling in more detail. We describe the evolution of the rapid cooling by constructing a detailed multivariate anatomy of the cooling period in order to illuminate the possible explanations and mechanisms involved. We show that the observed 1960s cooling began around 1964-68 in the Greenland-Iceland-Norway (GIN) seas, later spreading to the Atlantic Sub Polar Gyre and much of the subtropical Atlantic. This initial cooling of the Sub Polar Gyre is associated with a marked reduction in salinity (the Great Salinity Anomaly). The cooling peaked between 1972-76, extending into the Tropical North Atlantic. This period also saw the development of a significant Winter North-South Dipole Mean Sea Level Pressure dipole pattern reminiscent of a positive NAO (High over the Azores, Low over Iceland). The cooling then retreated back to higher latitudes during 1976:80. Our analysis demonstrates that the cooling of the North Atlantic during the 1960s cannot be understood as a simple thermodynamic response to aerosol induced reductions in shortwave radiation. Dynamical changes in the circulation of the atmosphere, and likely that of the ocean too, played an important role. We propose two possible mechanisms, both beginning with a rapid cooling of the Sub Polar Gyre and leading to a subsequent change in atmospheric circulation which pushes the cooling deeper into the Tropical North Atlantic. Further work is required to determine which mechanism was the dominant driver of the observed cooling event. Understanding such past events is essential to improve confidence in decadal predictions.

  4. A Computational Study for the Utilization of Jet Pulsations in Gas Turbine Film Cooling and Flow Control

    NASA Technical Reports Server (NTRS)

    Kartuzova, Olga V.

    2012-01-01

    This report is the second part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part is NASA/CR-2012-217415. The third part is NASA/CR-2012-217417. Jets have been utilized in various turbomachinery applications in order to improve gas turbines performance. Jet pulsation is a promising technique because of the reduction in the amount of air removed from compressor. In this work two areas of pulsed jets applications were computationally investigated using the commercial code Fluent (ANSYS, Inc.); the first one is film cooling of High Pressure Turbine (HPT) blades and second one is flow separation control over Low Pressure Turbine (LPT) airfoil using Vortex Generator Jets (VGJ). Using pulsed jets for film cooling purposes can help to improve the effectiveness and thus allow higher turbine inlet temperature. Effects of the film hole geometry, blowing ratio and density ratio of the jet, pulsation frequency and duty cycle of blowing on the film cooling effectiveness were investigated. As for the low-pressure turbine (LPT) stages, the boundary layer separation on the suction side of airfoils can occur due to strong adverse pressure gradients. The problem is exacerbated as airfoil loading is increased. Active flow control could provide a means for minimizing separation under conditions where it is most severe (low Reynolds number), without causing additional losses under other conditions (high Reynolds number). The effects of the jet geometry, blowing ratio, density ratio, pulsation frequency and duty cycle on the size of the separated region were examined in this work. The results from Reynolds Averaged Navier-Stokes and Large Eddy Simulation computational approaches were compared with the experimental data.

  5. Evaporative Cooling in a Holographic Atom Trap

    NASA Technical Reports Server (NTRS)

    Newell, Raymond

    2003-01-01

    We present progress on evaporative cooling of Rb-87 atoms in our Holographic Atom Trap (HAT). The HAT is formed by the interference of five intersecting YAG laser beams: atoms are loaded from a vapor-cell MOT into the bright fringes of the interference pattern through the dipole force. The interference pattern is composed of Talbot fringes along the direction of propagation of the YAG beams, prior to evaporative cooling each Talbot fringe contains 300,000 atoms at 50 micro-K and peak densities of 2 x 10(exp 14)/cu cm. Evaporative cooling is achieved through adiabatically decreasing the intensity of the YAG laser. We present data and calculations covering a range of HAT geometries and cooling procedures.

  6. Experimental study of hybrid interface cooling system using air ventilation and nanofluid

    NASA Astrophysics Data System (ADS)

    Rani, M. F. H.; Razlan, Z. M.; Bakar, S. A.; Desa, H.; Wan, W. K.; Ibrahim, I.; Kamarrudin, N. S.; Bin-Abdun, Nazih A.

    2017-09-01

    The hybrid interface cooling system needs to be established to chill the battery compartment of electric car and maintained its ambient temperature inside the compartment between 25°C to 35°C. The air cooling experiment has been conducted to verify the cooling capacity, compressor displacement volume, dehumidifying value and mass flow rate of refrigerant (R-410A). At the same time, liquid cooling system is analysed theoretically by comparing the performance of two types of nanofluid, i.e., CuO + Water and Al2O3 + Water, based on the heat load generated inside the compartment. In order for the result obtained to be valid and reliable, several assumptions are considered during the experimental and theoretical analysis. Results show that the efficiency of the hybrid interface cooling system is improved as compared to the individual cooling system.

  7. 75 FR 32185 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ...: Stuart R. Maudsley et al. (NIA). Patent Status: HHS Reference No. E-143-2010/0--Research Tool. Patent... grilles are moved or accessed. The canopy has an added benefit of reducing heating or cooling loss which.... Also, the canopy controls leakage of heating and cooling, reducing loads on the central building...

  8. 29 CFR 1910.254 - Arc welding and cutting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rated load with rated temperature rises where the temperature of the cooling air does not exceed 40 °C... work; magnetic work clamps shall be freed from adherent metal particles of spatter on contact surfaces... given to safety ground connections of portable machines. (4) Leaks. There shall be no leaks of cooling...

  9. 29 CFR 1910.254 - Arc welding and cutting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rated load with rated temperature rises where the temperature of the cooling air does not exceed 40 °C... work; magnetic work clamps shall be freed from adherent metal particles of spatter on contact surfaces... given to safety ground connections of portable machines. (4) Leaks. There shall be no leaks of cooling...

  10. 29 CFR 1910.254 - Arc welding and cutting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rated load with rated temperature rises where the temperature of the cooling air does not exceed 40 °C... work; magnetic work clamps shall be freed from adherent metal particles of spatter on contact surfaces... given to safety ground connections of portable machines. (4) Leaks. There shall be no leaks of cooling...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankowski, Todd Andrew; Gamboa, Jose A

    Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

  12. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    DOEpatents

    Gorman, William G.; Carberg, William George; Jones, Charles Michael

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  13. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer.

    PubMed

    Benafan, O; Padula, S A; Skorpenske, H D; An, K; Vaidyanathan, R

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel(®) 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ∼1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  14. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel® 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N.m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ˜1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  15. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.

  16. A feasibility study of reactor-based deep-burn concepts.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T. K.; Taiwo, T. A.; Hill, R. N.

    2005-09-16

    A systematic assessment of the General Atomics (GA) proposed Deep-Burn concept based on the Modular Helium-Cooled Reactor design (DB-MHR) has been performed. Preliminary benchmarking of deterministic physics codes was done by comparing code results to those from MONTEBURNS (MCNP-ORIGEN) calculations. Detailed fuel cycle analyses were performed in order to provide an independent evaluation of the physics and transmutation performance of the one-pass and two-pass concepts. Key performance parameters such as transuranic consumption, reactor performance, and spent fuel characteristics were analyzed. This effort has been undertaken in close collaborations with the General Atomics design team and Brookhaven National Laboratory evaluation team.more » The study was performed primarily for a 600 MWt reference DB-MHR design having a power density of 4.7 MW/m{sup 3}. Based on parametric and sensitivity study, it was determined that the maximum burnup (TRU consumption) can be obtained using optimum values of 200 {micro}m and 20% for the fuel kernel diameter and fuel packing fraction, respectively. These values were retained for most of the one-pass and two-pass design calculations; variation to the packing fraction was necessary for the second stage of the two-pass concept. Using a four-batch fuel management scheme for the one-pass DB-MHR core, it was possible to obtain a TRU consumption of 58% and a cycle length of 286 EFPD. By increasing the core power to 800 MWt and the power density to 6.2 MW/m{sup 3}, it was possible to increase the TRU consumption to 60%, although the cycle length decreased by {approx}64 days. The higher TRU consumption (burnup) is due to the reduction of the in-core decay of fissile Pu-241 to Am-241 relative to fission, arising from the higher power density (specific power), which made the fuel more reactivity over time. It was also found that the TRU consumption can be improved by utilizing axial fuel shuffling or by operating with lower material temperatures (colder core). Results also showed that the transmutation performance of the one-pass deep-burn concept is sensitive to the initial TRU vector, primarily because longer cooling time reduces the fissile content (Pu-241 specifically.) With a cooling time of 5 years, the TRU consumption increases to 67%, while conversely, with 20-year cooling the TRU consumption is about 58%. For the two-pass DB-MHR (TRU recycling option), a fuel packing fraction of about 30% is required in the second pass (the recycled TRU). It was found that using a heterogeneous core (homogeneous fuel element) concept, the TRU consumption is dependent on the cooling interval before the 2nd pass, again due to Pu-241 decay during the time lag between the first pass fuel discharge and the second pass fuel charge. With a cooling interval of 7 years (5 and 2 years before and after reprocessing) a TRU consumption of 55% is obtained. With an assumed ''no cooling'' interval, the TRU consumption is 63%. By using a cylindrical core to reduce neutron leakage, TRU consumption of the case with 7-year cooling interval increases to 58%. For a two-pass concept using a heterogeneous fuel element (and homogeneous core) with first and second pass volume ratio of 2:1, the TRU consumption is 62.4%. Finally, the repository loading benefits arising from the deep-burn and Inert Matrix Fuel (IMF) concepts were estimated and compared, for the same initial TRU vector. The DB-MHR concept resulted in slightly higher TRU consumption and repository loading benefit compared to the IMF concept (58.1% versus 55.1% for TRU consumption and 2.0 versus 1.6 for estimated repository loading benefit).« less

  17. Daylighting performance and thermal implications of skylights vs. south-facing roof monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenbaum, M.; Coldham, B.

    1997-12-31

    This paper reports the results of a comparison of skylights vs. south-facing roof monitors for daylighting the north wall zone of a 10,000 ft{sup 2} office building near Manchester, NH. A physical model was constructed and tested. Simultaneously, the building`s annual thermal performance was modeled with Energy-10 hourly simulation software, and its peak heating and cooling load performance was modeled with the Carrier Corp. Hourly Analysis Program (HAP). Apertures were built into the roof of the model, and several skylight and south-facing roof monitor configurations were tested in both clear and overcast conditions. A design goal was to have themore » building be daylit on overcast as well as clear days. This goal was based more on enhancement of the working environment than it was on electrical energy savings. Monitors with overhangs performed poorly in the overcast conditions--it was determined that 2.4 times as much monitor aperture was needed to yield equivalent light levels in overcast conditions. The thermal models showed that the annual heating and cooling energy cost for the building was the same for either strategy, but that peak cooling loads and peak heating loads were lower with the skylit version. The authors concluded that skylights were preferred over monitors in this application, due to similar annual energy costs, lower peak loads, and lower construction cost.« less

  18. Method of energy load management using PCM for heating and cooling of buildings

    DOEpatents

    Stovall, T.K.; Tomlinson, J.J.

    1996-03-26

    A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.

  19. Method of energy load management using PCM for heating and cooling of buildings

    DOEpatents

    Stovall, Therese K.; Tomlinson, John J.

    1996-01-01

    A method of energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt. % a phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably "fully charged". In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboard that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degree. In some applications, air circulation at a rate greater than normal convection provides additional comfort.

  20. Method of energy load management using PCM for heating and cooling of buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stovall, T.K.; Tomlinson, J.J.

    1996-03-26

    A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material ismore » preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.« less

  1. Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Blanco, Horacio; Vineyard, Edward

    This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less

  2. Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withers, Jr., Charles R.

    2016-12-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split onmore » seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.« less

  3. Building America Case Study: Energy Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates, Cocoa, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-01-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split onmore » seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.« less

  4. Algorithm and Software for Calculating Optimal Regimes of the Process Water Supply System at the Kalininskaya NPP{sup 1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murav’ev, V. P., E-mail: murval@mail.ru; Kochetkov, A. V.; Glazova, E. G.

    An algorithm and software for calculating the optimal operating regimes of the process water supply system at the Kalininskaya NPP are described. The parameters of the optimal regimes are determined for time varying meteorological conditions and condensation loads of the NPP. The optimal flow of the cooling water in the turbines is determined computationally; a regime map with the data on the optimal water consumption distribution between the coolers and displaying the regimes with an admissible heat load on the natural cooling lakes is composed. Optimizing the cooling system for a 4000-MW NPP will make it possible to conserve atmore » least 155,000 MW · h of electricity per year. The procedure developed can be used to optimize the process water supply systems of nuclear and thermal power plants.« less

  5. Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant

    DOE PAGES

    Perez-Blanco, Horacio; Vineyard, Edward

    2016-05-06

    This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less

  6. High efficiency 40 K single-stage Stirling-type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Wu, X. L.; Chen, L. B.; Pan, C. Z.; Cui, C.; Wang, J. J.; Zhou, Y.

    2017-12-01

    A high efficiency single-stage Stirling-type coaxial pulse tube cryocooler (SPTC) operating at around 40 K has been designed, built and tested. The double-inlet and the inertance tubes together with the gas reservoir were adopted as the phase shifters. Under the conditions of 2.5 MPa charging pressure and 30 Hz operating frequency, the prototype has achieved a no-load temperature of 23.8 K with 330 W of electric input power at a rejection temperature of 279 K. When the input power increases to 400 W, it can achieve a cooling capacity of 4.7 W/40 K while rejecting heat at 279 K yielding an efficiency of 7.02% relative to Carnot. It achieves a cooling capacity of 5 W/40 K with an input power of 450 W. It takes 10 minutes for the SPTC to cool to its no-load temperature of 40 K from 295 K.

  7. Experimental parametric study of servers cooling management in data centers buildings

    NASA Astrophysics Data System (ADS)

    Nada, S. A.; Elfeky, K. E.; Attia, Ali M. A.; Alshaer, W. G.

    2017-06-01

    A parametric study of air flow and cooling management of data centers servers is experimentally conducted for different design conditions. A physical scale model of data center accommodating one rack of four servers was designed and constructed for testing purposes. Front and rear rack and server's temperatures distributions and supply/return heat indices (SHI/RHI) are used to evaluate data center thermal performance. Experiments were conducted to parametrically study the effects of perforated tiles opening ratio, servers power load variation and rack power density. The results showed that (1) perforated tile of 25% opening ratio provides the best results among the other opening ratios, (2) optimum benefit of cold air in servers cooling is obtained at uniformly power loading of servers (3) increasing power density decrease air re-circulation but increase air bypass and servers temperature. The present results are compared with previous experimental and CFD results and fair agreement was found.

  8. Flow Analysis of Isobutane (R-600A) Inside AN Adiabatic Capillary Tube

    NASA Astrophysics Data System (ADS)

    Alok, Praveen; Sahu, Debjyoti

    2018-02-01

    Capillary tubes are simple narrow tubes but the phase change which occurs inside the capillary tubes is complex to analyze. In the present investigation, an attempt is made to analyze the flow of Isobutane (R-600a) inside the coiled capillary tubes for different load conditions by Homogeneous Equilibrium Model. The Length and diameter of the capillary tube not only depend on the pressure and temperature of the condenser and evaporator but also on the cooling load. The present paper investigates the change in dimensions of the coil capillary tube with respect to the change in cooling load on the system for the constant condenser and evaporator conditions. ANSYS CFX (Central Florida Expressway) software is used to study the flow characteristics of the refrigerant. Appropriate helical coil is selected for this analysis.

  9. Rectilinear six-dimensional ionization cooling channel for a muon collider: A theoretical and numerical study

    DOE PAGES

    Stratakis, Diktys; Palmer, Robert B.

    2015-03-06

    A Muon Collider requires a reduction of the six-dimensional emittance of the captured muon beam by several orders of magnitude. In this study, we describe a novel rectilinear cooling scheme that should meet this requirement. First, we present the conceptual design of our proposed scheme wherein we detail its basic features. Then, we establish the theoretical framework to predict and evaluate the performance of ionization cooling channels and discuss its application to our specific case. In conclusion, we present the first end-to-end simulation of 6D cooling for a Muon Collider and show a notable reduction of the 6D emittance bymore » five orders of magnitude. We find good agreement between simulation and theory.« less

  10. Optimation of cooled shields in insulations

    NASA Technical Reports Server (NTRS)

    Chato, J. C.; Khodadadi, J. M.; Seyed-Yagoobi, J.

    1984-01-01

    A method to optimize the location, temperature, and heat dissipation rate of each cooled shield inside an insulation layer was developed. The method is based on the minimization of the entropy production rate which is proportional to the heat leak across the insulation. It is shown that the maximum number of shields to be used in most practical applications is three. However, cooled shields are useful only at low values of the overall, cold wall to hot wall absolute temperature ratio. The performance of the insulation system is relatively insensitive to deviations from the optimum values of the temperature and location of the cooling shields. Design curves for rapid estimates of the locations and temperatures of cooling shields in various types of insulations, and an equation for calculating the cooling loads for the shields are presented.

  11. Debris trap in a turbine cooling system

    DOEpatents

    Wilson, Ian David

    2002-01-01

    In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

  12. Comparative study of control strategies for hybrid GSHP system in the cooling dominated climate

    DOE PAGES

    Wang, Shaojie; Liu, Xiaobing; Gates, Steve

    2015-01-06

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixedmore » setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7 [1]. In the end, the simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the reduced size well field.« less

  13. Simulation of cooling efficiency via miniaturised channels in multilayer LTCC for power electronics

    NASA Astrophysics Data System (ADS)

    Pietrikova, Alena; Girasek, Tomas; Lukacs, Peter; Welker, Tilo; Müller, Jens

    2017-03-01

    The aim of this paper is detailed investigation of thermal resistance, flow analysis and distribution of coolant as well as thermal distribution inside multilayer LTCC substrates with embedded channels for power electronic devices by simulation software. For this reason four various structures of internal channels in the multilayer LTCC substrates were designed and simulated. The impact of the volume flow, structures of channels, and power loss of chip was simulated, calculated and analyzed by using the simulation software Mentor Graphics FloEFDTM. The structure, size and location of channels have the significant impact on thermal resistance, pressure of coolant as well as the effectivity of cooling power components (chips) that can be placed on the top of LTCC substrate. The main contribution of this paper is thermal analyze, optimization and impact of 4 various cooling channels embedded in LTCC multilayer structure. Paper investigate, the effect of volume flow in cooling channels for achieving the least thermal resistance of LTCC substrate that is loaded by power thermal chips. Paper shows on the impact of the first chips thermal load on the second chip as well as. This possible new technology could ensure in the case of practical realization effective cooling and increasing reliability of high power modules.

  14. Modeling and Comparison of Options for the Disposal of Excess Weapons Plutonium in Russia

    DTIC Science & Technology

    2002-04-01

    fuel LWR cooling time LWR Pu load rate LWR net destruction frac ~ LWR reactors op life mox core frac Excess Separated Pu HTGR Cycle Pu in Waste LWR MOX...reflecting the cycle used in this type of reactor. For the HTGR , the entire core consists of plutonium fuel , therefore a core fraction is not specified...cooling time Time spent fuel unloaded from HTGR reactor must cool before permanently stored 3 years Mox core fraction Fraction of

  15. The effect of load reductions on repetition performance for commonly performed multijoint resistance exercises.

    PubMed

    Willardson, Jeffrey M; Simão, Roberto; Fontana, Fabio E

    2012-11-01

    The purpose of this study was to compare 4 different loading schemes for the free weight bench press, wide grip front lat pull-down, and free weight back squat to determine the extent of progressive load reductions necessary to maintain repetition performance. Thirty-two recreationally trained women (age = 29.34 ± 4.58 years, body mass = 59.61 ± 4.72 kg, height = 162.06 ± 4.04 cm) performed 4 resistance exercise sessions that involved 3 sets of the free weight bench press, wide grip front lat pull-down, and free weight back squat, performed in this exercise order during all 4 sessions. Each of the 4 sessions was conducted under different randomly ordered loading schemes, including (a) a constant 10 repetition maximum (RM) load for all 3 sets and for all 3 exercises, (b) a 5% reduction after the first and second sets for all the 3 exercises, (c) a 10% reduction after the first and second sets for all the 3 exercises, and (d) a 15% reduction after the first and second sets for all the 3 exercises. The results indicated that for the wide grip front lat pull-down and free weight back squat, a 10% load reduction was necessary after the first and second sets to accomplish 10 repetitions on all the 3 sets. For the free weight bench press, a load reduction between 10 and 15% was necessary; specifically, a 10% reduction was insufficient and a 15% reduction was excessive, as evidenced by significantly >10 repetitions on the second and third sets for this exercise (p ≤ 0.05). In conclusion, the results of this study indicate that a resistance training prescription that involves 1-minute rest intervals between multiple 10RM sets does require load reductions to maintain repetition performance. Practitioners might apply these results by considering an approximate 10% load reduction after the first and second sets for the exercises examined, when training women of similar characteristics as in this study.

  16. Method to Increase Performance of Foil Bearings Through Passive Thermal Management

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert

    2013-01-01

    This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and passive cooling mechanism. This cooling mechanism functions in such a way as to prevent used (higher temperature) lubricant from being carried over from the exit of one sector into the entry of the next sector of the foil bearing. The disclosed innovation is an improved foil bearing design that reduces or eliminates the need for force cooling of the bearing, while at the same time improving the load capacity of the bearing by at least a factor of two. These improvements are due to the elimination of lubricant carryover from the trailing edge of one sector into the leading edge of the next, and the mixing of used lubricant with the surrounding ambient fluid.

  17. Coupled Effect of Elevated Temperature and Cooling Conditions on the Properties of Ground Clay Brick Mortars

    NASA Astrophysics Data System (ADS)

    Ali Abd El Aziz, Magdy; Abdelaleem, Salh; Heikal, Mohamed

    2013-12-01

    When a concrete structure is exposed to fire and cooling, some deterioration in its chemical resistivity and mechanical properties takes place. This deterioration can reach a level at which the structure may have to be thoroughly renovated or completely replaced. In this investigation, four types of cement mortars, ground clay bricks (GCB)/sand namely 0/3, 1/2, 2/1 and 3/0, were used. Three different cement contents were used: 350, 400 and 450 kg/m3. All the mortars were prepared and cured in tap water for 3 months and then kept in laboratory atmospheric conditions up to 6 months. The specimens were subjected to elevated temperatures up to 700°C for 3h and then cooled by three different conditions: water, furnace, and air cooling. The results show that all the mortars subjected to fire, irrespective of cooling mode, suffered a significant reduction in compressive strength. However, the mortars cooled in air exhibited a relativity higher reduction in compressive strength rather than those water or furnace cooled. The mortars containing GCB/sand (3/0) and GCB/sand (1/2) exhibited a relatively higher thermal stability than the others.

  18. Effect of Thermoelectric Cooling (TEC) module and the water flow heatsink on Photovoltaic (PV) panel performance

    NASA Astrophysics Data System (ADS)

    Amelia, A. R.; Jusoh, MA; Shamira Idris, Ida

    2017-11-01

    Photovoltaic (PV) panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC) and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  19. Muscle-Cooling Intervention to Reduce Fatigue and Fatigue-Induced Tremor in Novice and Experienced Surgeons: A Preliminary Investigation.

    PubMed

    Jensen, Lauren; Dancisak, Michael; Korndorffer, James

    2016-10-01

    A localized, intermittent muscle-cooling protocol was implemented to determine cooling garment efficacy in reducing upper extremity muscular fatigue and tremor in novice ( n  = 10) and experienced surgeons ( n  = 9). Subjects wore a muscle-cooling garment while performing multiple trials of a forearm exercise and paired suturing task to induce muscular fatigue and exercise-induced tremor. A reduction in tremor amplitude and an extension in time to fatigue were expected with muscle cooling as compared with control trials. Each subject completed an intervention session (5°C cooling condition) and a control session (32°C or thermal neutral condition). A paired samples t test indicated that tremor amplitude was significantly reduced ( t [8] = 1.89458; p  < 0.05) in experienced surgeons in two dimensions (up and down, and back and forth). Tremor amplitude was reduced in novice surgeons but the effect was not significant. Time to fatigue and suture time improved in both cohorts with muscle cooling, but the effect did not reach significance. Results from the pilot work suggest muscle cooling as an intervention for reduction of fatigue and tremor is very promising, warranting further investigation. Surgical specialties that require prolonged procedures might benefit more from this intervention.

  20. Effect of residential air-to-air heat and moisture exchangers on indoor humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barringer, C.G.; McGugan, C.A.

    1989-01-01

    A project was undertaken to develop guidelines for the selection of residential heat and moisture recovery ventilation systems (HRVs) in order to maintain an acceptable indoor humidity for various climatic conditions. These guidelines were developed from reviews on ventilation requirements, HRV performance specifications, and from computer modeling. Space conditions within three house/occupancy models for several types of HRV were simulated for three climatic conditions (Lake Charles, LA; Seattle, WA; and Winnipeg, MB) in order to determine the impact of the HRVs on indoor relative humidity and space-conditioning loads. Results show that when reduction of cooling cost is the main consideration,more » exchangers with moisture recovery are preferable to sensible HRVs. For reduction of heating costs, moisture recovery should be done for ventilation rates greater than about 15 L/s and average winter temperatures less than about (minus) 10{degrees}C if internal moisture generation rates are low. For houses with higher ventilation rates and colder average winter temperatures, exchangers with moisture recovery should be used.« less

  1. Simulation of tree shade impacts on residential energy use for space conditioning in Sacramento

    NASA Astrophysics Data System (ADS)

    Simpson, J. R.; McPherson, E. G.

    Tree shade reduces summer air conditioning demand and increases winter heating load by intercepting solar energy that would otherwise heat the shaded structure. We evaluate the magnitude of these effects here for 254 residential properties participating in a utility sponsored tree planting program in Sacramento, California. Tree and building characteristics and typical weather data are used to model hourly shading and energy used for space conditioning for each building for a period of one year. There were an average of 3.1 program trees per property which reduced annual and peak (8 h average from 1 to 9 p.m. Pacific Daylight Time) cooling energy use 153 kWh (7.1%) and 0.08 kW (2.3%) per tree, respectively. Annual heating load increased 0.85 GJ (0.80 MBtu, 1.9%) per tree. Changes in cooling load were smaller, but percentage changes larger, for newer buildings. Averaged over all homes, annual cooling savings of 15.25 per tree were reduced by a heating penalty of 5.25 per tree, for net savings of 10.00 per tree from shade. We estimate an annual cooling penalty of 2.80 per tree and heating savings of 6.80 per tree from reduced wind speed, for a net savings of 4.00 per tree, and total annual savings of 14.00 per tree (43.00 per property). Results are found to be consistent with previous simulations and the limited measurements available.

  2. A Si/Glass Bulk-Micromachined Cryogenic Heat Exchanger for High Heat Loads: Fabrication, Test, and Application Results

    PubMed Central

    Zhu, Weibin; White, Michael J.; Nellis, Gregory F.; Klein, Sanford A.; Gianchandani, Yogesh B.

    2010-01-01

    This paper reports on a micromachined Si/glass stack recuperative heat exchanger with in situ temperature sensors. Numerous high-conductivity silicon plates with integrated platinum resistance temperature detectors (Pt RTDs) are stacked, alternating with low-conductivity Pyrex spacers. The device has a 1 × 1-cm2 footprint and a length of up to 3.5 cm. It is intended for use in Joule–Thomson (J–T) coolers and can sustain pressure exceeding 1 MPa. Tests at cold-end inlet temperatures of 237 K–252 K show that the heat exchanger effectiveness is 0.9 with 0.039-g/s helium mass flow rate. The integrated Pt RTDs present a linear response of 0.26%–0.30%/K over an operational range of 205 K–296 K but remain usable at lower temperatures. In self-cooling tests with ethane as the working fluid, a J–T system with the heat exchanger drops 76.1 K below the inlet temperature, achieving 218.7 K for a pressure of 835.8 kPa. The system reaches 200 K in transient state; further cooling is limited by impurities that freeze within the flow stream. In J–T self-cooling tests with an external heat load, the system reaches 239 K while providing 1 W of cooling. In all cases, there is an additional parasitic heat load estimated at 300–500 mW. PMID:20490284

  3. Cooling performance and evaluation of automotive refrigeration system for a passenger car

    NASA Astrophysics Data System (ADS)

    Prajitno, Deendarlianto, Majid, Akmal Irfan; Mardani, Mahardeka Dhias; Wicaksono, Wendi; Kamal, Samsul; Purwanto, Teguh Pudji; Fauzun

    2016-06-01

    A new design of automotive refrigeration system for a passenger car was proposed. To ensure less energy consumption and optimal thermal comfort, the performance of the system were evaluated. This current research was aimed to evaluate the refrigeration characteristics of the system for several types of cooling load. In this present study, a four-passenger wagon car with 1500 cc gasoline engine that equipped by a belt driven compressor (BDC) was used as the tested vehicle. To represent the tropical condition, a set of lamps and wind sources are installed around the vehicle. The blower capacity inside a car is varied from 0.015 m/s to 0.027 m/s and the compressor speed is varied at variable 820, 1400, and 2100 rpm at a set temperature of 22°C. A set of thermocouples that combined by data logger were used to measure the temperature distribution. The system uses R-134a as the refrigerant. In order to determine the cooling capacity of the vehicle, two conditions were presented: without passengers and full load conditions. As the results, cooling capacity from any possible heating sources and transient characteristics of temperature in both systems for the cabin, engine, compressor, and condenser are presented in this work. As the load increases, the outlet temperature of evaporator also increases due to the increase of condensed air. This phenomenon also causes the increase of compressor work and compression ratio which associated to the addition of specific volume in compressor inlet.

  4. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    DOE PAGES

    Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew; ...

    2015-05-29

    Here, as rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the US model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shadingmore » products, and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24-66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30-80% reductions in perimeter zone HVAC electricity use in Beijing and 18-38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.« less

  5. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew

    Here, as rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the US model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shadingmore » products, and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24-66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30-80% reductions in perimeter zone HVAC electricity use in Beijing and 18-38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.« less

  6. 10 CFR Appendix B to Subpart A of... - Environmental Effect of Renewing the Operating License of a Nuclear Power Plant

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., from other State or local agencies. Temperature effects on sediment transport capacity 1 SMALL. These... cooling ponds and is not expected to be a problem. Effects of cooling water discharge on dissolved oxygen... mitigated. Eutrophication (nutrient loading) and resulting effects on chemical and biological oxygen demands...

  7. Proceedings from the Workshop on Nanoscience for the Soldier

    DTIC Science & Technology

    2001-02-09

    Affordable, Durable, Flexible Enabled by Active Devices Miniature Ventilation, Cooling & Heating Multi-Functional, Hybrid Power Embedded Micro-Sensors...functional element • Rifle protection, back support & comfort, load bearing stability & interfaces with family of back packs & cooling/ heating system...Integrated physiological & medical sensors – Conductive or Fiber Optic fibers for Data & Power Distribution – Carbon Fiber Heating at wrists

  8. Ultra-low-vibration pulse-tube cryocooler system - cooling capacity and vibration

    NASA Astrophysics Data System (ADS)

    Ikushima, Yuki; Li, Rui; Tomaru, Takayuki; Sato, Nobuaki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira

    2008-09-01

    This report describes the development of low-vibration cooling systems with pulse-tube (PT) cryocoolers. Generally, PT cryocoolers have the advantage of lower vibrations in comparison to those of GM cryocoolers. However, cooling systems for the cryogenic laser interferometer observatory (CLIO), which is a gravitational wave detector, require an operational vibration that is sufficiently lower than that of a commercial PT cryocooler. The required specification for the vibration amplitude in cold stages is less than ±1 μm. Therefore, during the development of low-vibration cooling systems for the CLIO, we introduced advanced countermeasures for commercial PT cryocoolers. The cooling performance and the vibration amplitude were evaluated. The results revealed that 4 K and 80 K PT cooling systems with a vibration amplitude of less than ±1 μm and cooling performance of 4.5 K and 70 K at heat loads of 0.5 W and 50 W, respectively, were developed successfully.

  9. Water for electricity in India: A multi-model study of future challenges and linkages to climate change mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasan, Shweta; Kholod, Nazar; Chaturvedi, Vaibhav

    This paper provides projections of water withdrawals and consumption for electricity generation in India through 2050. Based on the results from five energy-economic modeling teams, the paper explores the implications of economic growth, power plant cooling policies, and electricity CO 2 emissions reductions on water withdrawals and consumption. To understand how different modeling approaches derive different results for energy-water interactions, the five teams used harmonized assumptions regarding economic and population growth, the distribution of power plants by cooling technologies, and withdrawals and consumption intensities. The multi-model study provides robust results regarding the different but potentially complementary implications of cooling technologymore » policies and efforts to reduce CO 2 emissions. The water implications of CO 2 emissions reductions depend critically on the approach to these reductions. Focusing on wind and solar power reduces consumption and withdrawals, a focus on nuclear power increases both, and a focus on hydroelectric power could increase consumptive losses through evaporation. Policies focused specifically on cooling water can have substantial and complementary impacts.« less

  10. Water for electricity in India: A multi-model study of future challenges and linkages to climate change mitigation

    DOE PAGES

    Srinivasan, Shweta; Kholod, Nazar; Chaturvedi, Vaibhav; ...

    2017-05-05

    This paper provides projections of water withdrawals and consumption for electricity generation in India through 2050. Based on the results from five energy-economic modeling teams, the paper explores the implications of economic growth, power plant cooling policies, and electricity CO 2 emissions reductions on water withdrawals and consumption. To understand how different modeling approaches derive different results for energy-water interactions, the five teams used harmonized assumptions regarding economic and population growth, the distribution of power plants by cooling technologies, and withdrawals and consumption intensities. The multi-model study provides robust results regarding the different but potentially complementary implications of cooling technologymore » policies and efforts to reduce CO 2 emissions. The water implications of CO 2 emissions reductions depend critically on the approach to these reductions. Focusing on wind and solar power reduces consumption and withdrawals, a focus on nuclear power increases both, and a focus on hydroelectric power could increase consumptive losses through evaporation. Policies focused specifically on cooling water can have substantial and complementary impacts.« less

  11. Tailoring the Employment of Offshore Wind Turbine Support Structure Load Mitigation Controllers

    NASA Astrophysics Data System (ADS)

    Shrestha, Binita; Kühn, Martin

    2016-09-01

    The currently available control concepts to mitigate aerodynamic and hydrodynamic induced support structure loads reduce either fore-aft or side-to-side damage under certain operational conditions. The load reduction is achieved together with an increase in loads in other components of the turbine e.g. pitch actuators or drive train, increasing the risk of unscheduled maintenance. The main objective of this paper is to demonstrate a methodology for reduction of support structure damage equivalent loads (DEL) in fore-aft and side-to-side directions using already available control concepts. A multi-objective optimization problem is formulated to minimize the DELs, while limiting the collateral effects of the control algorithms for load reduction. The optimization gives trigger values of sea state condition for the activation or deactivation of certain control concepts. As a result, by accepting the consumption of a small fraction of the load reserve in the design load envelope of other turbine components, a considerable reduction of the support structure loads is facilitated.

  12. Energy Integrated Lighting-Heating-Cooling System.

    ERIC Educational Resources Information Center

    Meckler, Gershon; And Others

    1964-01-01

    Energy balance problems in the design of office buildings are analyzed. Through the use of integrated systems utilizing dual purpose products, a controlled environment with minimum expenditure of energy, equipment and space can be provided. Contents include--(1) office building occupancy loads, (2) office building heating load analysis, (3) office…

  13. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion.

    PubMed

    Khoshnevis, Sepideh; Craik, Natalie K; Matthew Brothers, R; Diller, Kenneth R

    2016-03-01

    The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P < 0.001) that persisted throughout the duration of the rewarming period. In addition, there was a hysteresis effect between CVC and skin temperature during the cooling and subsequent rewarming cycle (P < 0.01). Mixed model regression (MMR) showed a significant difference in the slopes of the CVC-skin temperature curves during cooling and rewarming (P < 0.001). Piecewise regression was used to investigate the temperature thresholds for acceleration of CVC during the cooling and rewarming periods. The two thresholds were shown to be significantly different (P = 0.003). The results show that localized cooling causes significant vasoconstriction that continues beyond the active cooling period despite skin temperatures returning toward baseline values. The significant and persistent reduction in skin perfusion may contribute to nonfreezing cold injury (NFCI) associated with cryotherapy.

  14. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion

    PubMed Central

    Khoshnevis, Sepideh; Craik, Natalie K.; Matthew Brothers, R.; Diller, Kenneth R.

    2016-01-01

    The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P < 0.001) that persisted throughout the duration of the rewarming period. In addition, there was a hysteresis effect between CVC and skin temperature during the cooling and subsequent rewarming cycle (P < 0.01). Mixed model regression (MMR) showed a significant difference in the slopes of the CVC–skin temperature curves during cooling and rewarming (P < 0.001). Piecewise regression was used to investigate the temperature thresholds for acceleration of CVC during the cooling and rewarming periods. The two thresholds were shown to be significantly different (P = 0.003). The results show that localized cooling causes significant vasoconstriction that continues beyond the active cooling period despite skin temperatures returning toward baseline values. The significant and persistent reduction in skin perfusion may contribute to nonfreezing cold injury (NFCI) associated with cryotherapy. PMID:26632263

  15. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    ng, Ten-See

    2005-01-01

    Nozzle side loads are potentially detrimental to the integrity and life of almost all launch vehicles. the lack of a detailed prediction capability results in reducing life and increased weight for reusable nozzle systems. A clear understanding of the mechanism that contribute to side loads during engine startup, shutdown, and steady-state operations must be established. A CFD based predictive tool must be developed to aid the understanding of side load physics and development of future reusable engine.

  16. Transformation-Induced Diffraction Peak Broadening During Bainitic and Martensitic Transformations Under Small External Loads in a Quenched and Tempered High Strength Steel

    NASA Astrophysics Data System (ADS)

    Dutta, R. K.; Huizenga, R. M.; Amirthalingam, M.; Hermans, M. J. M.; King, A.; Richardson, I. M.

    2013-09-01

    In situ phase transformation behavior of a high strength S690QL1 steel during continuous cooling under different mechanical loading conditions has been used to investigate the effect of small external loads on the transformation-induced plasticity during bainitic and martensitic transformations. The results show that during phase transformations, the untransformed austenite undergoes plastic deformation, thereby retarding further transformation to bainite/martensite. This occurs independent of external load.

  17. Experimental evaluation of an adaptive Joule–Thomson cooling system including silicon-microfabricated heat exchanger and microvalve components

    PubMed Central

    Zhu, Weibin; Park, Jong M.; White, Michael J.; Nellis, Gregory F.; Gianchandani, Yogesh B.

    2011-01-01

    This article reports the evaluation of a Joule–Thomson (JT) cooling system that combines two custom micromachined components—a Si/glass-stack recuperative heat exchanger and a piezoelectrically actuated expansion microvalve. With the microvalve controlling the flow rate, this system can modulate cooling to accommodate varying refrigeration loads. The perforated plate Si/glass heat exchanger is fabricated with a stack of alternating silicon plates and Pyrex glass spacers. The microvalve utilizes a lead zirconate titanate actuator to push a Si micromachined valve seat against a glass plate, thus modulating the flow passing through the gap between the valve seat and the glass plate. The fabricated heat exchanger has a footprint of 1×1 cm2 and a length of 35 mm. The size of the micromachined piezoelectrically actuated valve is about 1×1×1 cm3. In JT cooling tests, the temperature of the system was successfully controlled by adjusting the input voltage of the microvalve. When the valve was fully opened (at an input voltage of −30 V), the system cooled down to a temperature as low as 254.5 K at 430 kPa pressure difference between inlet and outlet at steady state and 234 K at 710 kPa in a transient state. The system provided cooling powers of 75 mW at 255 K and 150 mW at 258 K. Parasitic heat loads at 255 K are estimated at approximately 700 mW. PMID:21552354

  18. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations.

    PubMed

    Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D

    2012-10-01

    The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague-Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = -10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers.

  19. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations

    PubMed Central

    Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D.

    2012-01-01

    The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using wavelet analysis of blood flow oscillations in rats. Twelve Sprague Dawley rats were randomly assigned into three protocols, including pressure with local cooling (Δt= −10°C), pressure with local heating (Δt= 10°C), and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 hours. Skin blood flow was measured using laser Doppler flowmetry. The 3-hour loading period was divided into non-overlapping 30 min epochs for analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased in the conditions of pressure with heating and of pressure without temperature changes, but maintained stable in the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. PMID:23010955

  20. Impacts of Climate Change on Electricity Consumption in Baden-Wuerttemberg

    NASA Astrophysics Data System (ADS)

    Mimler, S.

    2009-04-01

    Changes in electricity consumption due to changes in mean air temperatures were examined for the German federal state Baden-Wuerttemberg. Unlike in most recent studies on future electricity demand variations due to climate change, other load influencing factors like the economic, technological and demographic situation were fixed to the state of 2006. This allows isolating the climate change effect on electricity demand. The analysis was realised in two major steps. Firstly, an electricity forecast model based on multiple regressions was estimated on the region of Baden-Wuerttemberg by using historical load and temperature data. The estimation of the forecast model provides information on the temperature sensitivity of electricity demand in the given region. The overall heating and cooling gradients are estimated with -59 and 84 MW / °C respectively. These results already point out a low temperature sensitivity of demand in the region of Baden-Wuerttemberg mostly due to a low share of households equipped with electric heating and air conditioning systems. Secondly, near surface air temperature data of the regional climate model REMO [1] was used to simulate load curves for the control period 1971 to 2000 and for three future scenarios 2006 to 2035, 2036 to 2065 and 2066 to 2095. The results show that the overall load decreases throughout all future scenario periods in comparison to the control period. This is due to a higher decrease in heating than increase in cooling load. Nevertheless, the weather dependent part in Baden-Wuerttemberg loads only accounts for 0.05 % of the average load level. Within this weather dependent part, the heating load decreases are highest in June to September concentrated on the day times evening and afternoon. The cooling period broadens from May to September in the control period to April to October by 2095. The highest relative increases occur in October. Regarding day times, the increase in cooling load is concentrated on afternoons, evenings and nights. [1] Jacob, D. (2005a), "REMO A1B Scenario run, UBA project, 0.088 degree resolution, run no.006211, 1H data", World Data Center for Climate, CERA-DB "REMO_UBA_A1B_1_R006211_1H", http://cera-www.dkrz.de/WDCC/ui/Compact.jsp? acronym=REMO_UBA_A1B_1_R006211_1H Jacob, D. (2005b), "REMO climate of the 20th century run, UBA project, 0.088 degree resolution, run no. 006210, 1H data", World Data Center for Climate, CERA-DB "REMO_UBA_C20_1_R006210_1H", http://cera-www.dkrz.de/WDCC/ui/Compact. jsp?acronym=REMO_UBA_C20_1_R006210_1H

  1. Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments

    NASA Technical Reports Server (NTRS)

    Westfall, L. J.; Petrasek, D. W.

    1985-01-01

    Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760C (1400 F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.

  2. Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J.; Petrasek, Donald W.

    1988-01-01

    Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760F (1400F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.

  3. Potential benefits of farm scale measures versus landscape measures for reducing nitrate loads in a Danish catchment.

    PubMed

    Hashemi, Fatemeh; Olesen, Jørgen E; Børgesen, Christen D; Tornbjerg, Henrik; Thodsen, Hans; Dalgaard, Tommy

    2018-05-08

    To comply with the EU Water Framework Directive, Denmark must further reduce the nitrate (N)-load to marine ecosystems from agricultural areas. Under the anticipated future spatially targeted regulation, the required N-load reductions will differ between catchments, and these are expected to be mitigated by a combination of land and water management measures. Here, we explored how the expected N-load reduction target of 38% for a Danish catchment (River Odense) could be achieved through a combination of farm and landscape measures. These include: (a) N-leaching reduction through changing the crop rotation and applying cover crops, (b) enhancing N-reduction through (re)establishment of wetlands, and (c) reducing N-leaching through spatially targeting of set-aside to high N-load areas. Changes in crop rotations were effective in reducing N-leaching by growing crops with a longer growing season and by allowing a higher use of cover crops. A combination of wetlands and changes in crop rotations were needed for reaching the N-load reduction target without use of set-aside. However, not all combinations of wetlands and crop rotation changes achieved the required N-load reduction, resulting in a need for targeted set-aside, implying a need for balancing measures at farm and landscape scale to maximize N load reduction while minimizing loss of productive land. The effectiveness of farm scale measures is affected by farm and soil types as well as by N-reduction in groundwater, while the possibilities for using wetlands for decreasing the N-load depends on landscape features, allowing the establishment of wetlands connected to streams and rivers. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Climate-Specific Passive Building Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Graham S.; Klingenberg, Katrin

    2015-07-01

    Passive design principles (super insulation, airtight envelopes, elimination of thermal bridges, etc.) - pioneered in North America in the 70s and 80s and refined in Europe in the 90s have proven to be universally effective to significantly reduce heating and cooling loads. However, a single, rigid performance metric developed in Germany has led to limited uptake of passive building principles in many regions of the United States. It has also, in many cases, promoted some design decisions that had negative effects on economic feasibility and thermal comfort. This study's main objective is to validate (in a theoretical sense) verifiable, climate-specificmore » passive standards and space conditioning criteria that retain ambitious, environmentally-necessary energy reduction targets and are economically feasible, such standards provide designers an ambitious but achievable performance target on the path to zero.« less

  5. Combined wind turbine fatigue and ultimate load reduction by individual blade control

    NASA Astrophysics Data System (ADS)

    Han, Y.; Leithead, W. E.

    2014-06-01

    If each blade of the wind turbine has individual pitch actuator, there is possibility of employing the pitch system to mitigate structural loads through advanced control methods. Previously, considerable reduction of blade lifetime equivalent fatigue loads has been achieved by Individual Blade Control (IBC) and in addition, it has also been shown the potential in blade ultimate loads reduction. However, both fatigue and ultimate loads impact on the design and life of wind turbine blades. In this paper, the design and application of IBC that concurrently reduce both blade fatigue and ultimate loads is investigated. The contributions of blade load spectral components, which are 1P, 2P and edgewise mode from blade in-plane and/or out-of-plane bending moments, are firstly explored. Four different control options for reducing various combinations of these load components are compared. In response to the different spectral peaks of both fatigue and ultimate loads, the controller has been designed so that it can act on different frequency components which vary with wind speed. The performance of the IBC controller on fatigue and ultimate load reduction is assessed by simulating a 5MW exemplar wind turbine. Simulation results show that with a proper selection of controlling inputs at different wind speed, the use of a single combined IBC can achieve satisfactory reduction on both fatigue and ultimate loads.

  6. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOEpatents

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  7. Aerosol reductions could dominate regional climate responses in low GHG emission scenarios

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S.; Forster, P.; Fuglestvedt, J. S.; Osprey, S. M.; Schleussner, C. F.

    2017-12-01

    Limiting global warming to current political goals requires strong, rapid mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline sharply, due to co-emission with greenhouse gases, and future measures to improve air quality. As the net climate effect of GHG and aerosol emissions over the industrial era is poorly constrained, predicting the impact of strong aerosol emission reductions remains challenging. Here we investigate the isolated and compound climate impacts from removing present day anthropogenic emissions of black carbon (BC), organic carbon (OC) and SO2, and moderate, near term GHG dominated global warming, using four coupled climate models. As the dominating effect of aerosol emission reduction is a removal of cooling from sulphur, the resulting climate impacts amplify those of GHG induced warming. BC emissions contribute little to reducing surface warming, but have stronger regional impacts. For the major aerosol emission regions, extreme weather indices are more sensitive to aerosol removal than to GHG increases, per degree of surface warming. East Asia in particular stands out, mainly due to the high present regional aerosol emissions. We show how present climate models indicate that future regional climate change will depend strongly on changes in loading and distribution of aerosols in the atmosphere, in addition to surface temperature change.

  8. Possibilities of application of the swirling flows in cooling systems of laser mirrors

    NASA Astrophysics Data System (ADS)

    Shanin, Yu; Chernykh, A.

    2018-03-01

    The paper presents analytical investigations into advanced cooling systems of the laser mirrors with heat exchange intensification by methods of ordered vortex impact on a coolant flow structure. Advantages and effectiveness of the proposed cooling systems have been estimated to reduction displacement of an optical mirror surface due to a flexure.

  9. Does Short-Duration Heat Exposure at a Matched Cardiovascular Intensity Improve Intermittent-Running Performance in a Cool Environment?

    PubMed

    Philp, Calvin P; Buchheit, Martin; Kitic, Cecilia M; Minson, Christopher T; Fell, James W

    2017-07-01

    To investigate whether a 5-d cycling training block in the heat (35°C) in Australian Rules footballers was superior to exercising at the same relative intensity in cool conditions (15°C) for improving intermittent-running performance in a cool environment (<18°C). Using a parallel-group design, 12 semiprofessional football players performed 5 d of cycling exercise (70% heart-rate reserve [HRR] for 45 min [5 × 50-min sessions in total]) in a hot (HEAT, 35°C ± 1°C, 56% ± 9% RH) or cool environment (COOL, 15°C ± 3°C, 81% ± 10% RH). A 30-15 Intermittent Fitness Test to assess intermittent running performance (V IFT ) was conducted in a cool environment (17°C ± 2°C, 58 ± 5% RH) before and twice after (1 and 3 d) the intervention. There was a likely small increase in V IFT in each group (HEAT, 0.5 ± 0.3 km/h, 1.5 ± 0.8 × smallest worthwhile change [SWC]; COOL, 0.4 ± 0.4 km/h, 1.6 ± 1.2 × SWC) 3 d postintervention, with no difference in change between the groups (0.5% ± 1.9%, 0.4 ± 1.4 × SWC). Cycle power output during the intervention was almost certainly lower in the HEAT group (HEAT 1.8 ± 0.2 W/kg vs COOL 2.5 ± 0.3 W/kg, -21.7 ± 3.2 × SWC, 100/0/0). When cardiovascularexercise intensity is matched (ie, 70% HRR) between environmental conditions, there is no additional performance benefit from short-duration moderate-intensity heat exposure (5 × 50 min) for semiprofessional footballers exercising in cool conditions. However, the similar positive adaptations may occur in HEAT with 30% lower mechanical load, which may be of interest for load management during intense training or rehabilitation phases.

  10. Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1

    NASA Technical Reports Server (NTRS)

    Rigby, David L.

    2000-01-01

    Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number turbulence model to accurately predict details of heat transfer.

  11. Air cooling of disk of a solid integrally cast turbine rotor for an automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.

    1977-01-01

    A thermal analysis is made of surface cooling of a solid, integrally cast turbine rotor disk for an automotive gas turbine engine. Air purge and impingement cooling schemes are considered and compared with an uncooled reference case. Substantial reductions in blade temperature are predicted with each of the cooling schemes studied. It is shown that air cooling can result in a substantial gain in the stress-rupture life of the blade. Alternatively, increases in the turbine inlet temperature are possible.

  12. Acoustic and Thermal Testing of an Integrated Multilayer Insulation and Broad Area Cooling Shield System

    NASA Technical Reports Server (NTRS)

    Wood, Jessica J.; Foster, Lee W.

    2013-01-01

    A Multilayer Insulation (MLI) and Broad Area Cooling (BAC) shield thermal control system shows promise for long-duration storage of cryogenic propellant. The NASA Cryogenic Propellant Storage and Transfer (CPST) project is investigating the thermal and structural performance of this tank-applied integrated system. The MLI/BAC Shield Acoustic and Thermal Test was performed to evaluate the MLI/BAC shield's structural performance by subjecting it to worst-case launch acoustic loads. Identical thermal tests using Liquid Nitrogen (LN2) were performed before and after the acoustic test. The data from these tests was compared to determine if any degradation occurred in the thermal performance of the system as a result of exposure to the acoustic loads. The thermal test series consisted of two primary components: a passive boil-off test to evaluate the MLI performance and an active cooling test to evaluate the integrated MLI/BAC shield system with chilled vapor circulating through the BAC shield tubes. The acoustic test used loads closely matching the worst-case envelope of all launch vehicles currently under consideration for CPST. Acoustic test results yielded reasonable responses for the given load. The thermal test matrix was completed prior to the acoustic test and successfully repeated after the acoustic test. Data was compared and yielded near identical results, indicating that the MLI/BAC shield configuration tested in this series is an option for structurally implementing this thermal control system concept.

  13. A miniature Joule-Thomson cooler for optical detectors in space.

    PubMed

    Derking, J H; Holland, H J; Tirolien, T; ter Brake, H J M

    2012-04-01

    The utilization of single-stage micromachined Joule-Thomson (JT) coolers for cooling small optical detectors is investigated. A design of a micromachined JT cold stage-detector system is made that focuses on the interface between a JT cold stage and detector, and on the wiring of the detector. Among various techniques, adhesive bonding is selected as most suitable technique for integrating the detector with the JT cold stage. Also, the optimum wiring of the detector is discussed. In this respect, it is important to minimize the heat conduction through the wiring. Therefore, each wire should be optimized in terms of acceptable impedance and thermal heat load. It is shown that, given a certain impedance, the conductive heat load of electrically bad conducting materials is about twice as high as that of electrically good conducting materials. A micromachined JT cold stage is designed and integrated with a dummy detector. The JT cold stage is operated at 100 K with nitrogen as the working fluid and at 140 K with methane. Net cooling powers of 143 mW and 117 mW are measured, respectively. Taking into account a radiative heat load of 40 mW, these measured values make the JT cold stage suitable for cooling a photon detector with a power dissipation up to 50 mW, allowing for another 27 to 53 mW heat load arising from the electrical leads. © 2012 American Institute of Physics

  14. N and P as ultimate and proximate limiting nutrients in the northern Gulf of Mexico: implications for hypoxia reduction strategies

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Laurent, Arnaud

    2018-05-01

    The occurrence of hypoxia in coastal oceans is a long-standing and growing problem worldwide and is clearly linked to anthropogenic nutrient inputs. While the need for reducing anthropogenic nutrient loads is generally accepted, it is costly and thus requires scientifically sound nutrient-reduction strategies. Issues under debate include the relative importance of nitrogen (N) and phosphorus (P) as well as the magnitude of the reduction requirements. The largest anthropogenically induced hypoxic area in North American coastal waters (of 15 000 ± 5000 km2) forms every summer in the northern Gulf of Mexico where the Mississippi and Atchafalaya rivers deliver large amounts of freshwater and nutrients to the shelf. A 2001 plan for reducing this hypoxic area by nutrient management in the watershed called for a reduction of N loads. Since then evidence of P limitation during the time of hypoxia formation has arisen, and a dual nutrient-reduction strategy for this system has been endorsed. Here we report the first systematic analysis of the effects of single and dual nutrient load reductions from a spatially explicit physical-biogeochemical model for the northern Gulf of Mexico. The model has been shown previously to skillfully represent the processes important for hypoxic formation. Our analysis of an ensemble of simulations with stepwise reductions in N, P, and N and P loads provides insight into the effects of both nutrients on primary production and hypoxia, and it allows us to estimate what nutrient reductions would be required for single and dual nutrient-reduction strategies to reach the hypoxia target. Our results show that, despite temporary P limitation, N is the ultimate limiting nutrient for primary production in this system. Nevertheless, a reduction in P load would reduce hypoxia because primary production is P limited in the region where density stratification is conducive to hypoxia development, but reductions in N load have a bigger effect. Our simulations show that, at present loads, the system is almost saturated with N, in the sense that the sensitivity of primary production and hypoxia to N load is much lower than it would be at lower N loads. We estimate that reductions of 63±18 % in total N load or 48±21 % in total N and P load are necessary to reach a hypoxic area of 5000 km2, which is consistent with previous estimates from statistical regression models and highly simplified mechanistic models.

  15. High-power closed-cycle 4He cryostat with top-loading sample exchange

    NASA Astrophysics Data System (ADS)

    Piegsa, F. M.; van den Brandt, B.; Kirch, K.

    2017-10-01

    We report on the development of a versatile cryogen-free laboratory cryostat based upon a commercial pulse tube cryocooler. It provides enough cooling power for continuous recondensation of circulating 4He gas at a condensation pressure of approximately 250 mbar. Moreover, the cryostat allows for exchange of different cryostat-inserts as well as fast and easy ;wet; top-loading of samples directly into the 1 K pot with a turn-over time of less than 75 min. Starting from room temperature and using a 4He cryostat-insert, a base temperature of 1.0 K is reached within approximately seven hours and a cooling power of 250 mW is established at 1.24 K.

  16. The updated algorithm of the Energy Consumption Program (ECP): A computer model simulating heating and cooling energy loads in buildings

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.

    1979-01-01

    The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.

  17. Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling

    NASA Technical Reports Server (NTRS)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-01-01

    Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.

  18. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated thatmore » typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.« less

  19. Three Dimensional Constraint Effects on the Estimated (Delta)CTOD during the Numerical Simulation of Different Fatigue Threshold Testing Techniques

    NASA Technical Reports Server (NTRS)

    Seshadri, Banavara R.; Smith, Stephen W.

    2007-01-01

    Variation in constraint through the thickness of a specimen effects the cyclic crack-tip-opening displacement (DELTA CTOD). DELTA CTOD is a valuable measure of crack growth behavior, indicating closure development, constraint variations and load history effects. Fatigue loading with a continual load reduction was used to simulate the load history associated with fatigue crack growth threshold measurements. The constraint effect on the estimated DELTA CTOD is studied by carrying out three-dimensional elastic-plastic finite element simulations. The analysis involves numerical simulation of different standard fatigue threshold test schemes to determine how each test scheme affects DELTA CTOD. The American Society for Testing and Materials (ASTM) prescribes standard load reduction procedures for threshold testing using either the constant stress ratio (R) or constant maximum stress intensity (K(sub max)) methods. Different specimen types defined in the standard, namely the compact tension, C(T), and middle cracked tension, M(T), specimens were used in this simulation. The threshold simulations were conducted with different initial K(sub max) values to study its effect on estimated DELTA CTOD. During each simulation, the DELTA CTOD was estimated at every load increment during the load reduction procedure. Previous numerical simulation results indicate that the constant R load reduction method generates a plastic wake resulting in remote crack closure during unloading. Upon reloading, this remote contact location was observed to remain in contact well after the crack tip was fully open. The final region to open is located at the point at which the load reduction was initiated and at the free surface of the specimen. However, simulations carried out using the constant Kmax load reduction procedure did not indicate remote crack closure. Previous analysis results using various starting K(sub max) values and different load reduction rates have indicated DELTA CTOD is independent of specimen size. A study of the effect of specimen thickness and geometry on the measured DELTA CTOD for various load reduction procedures and its implication in the estimation of fatigue crack growth threshold values is discussed.

  20. Reciprocating and Screw Compressor semi-empirical models for establishing minimum energy performance standards

    NASA Astrophysics Data System (ADS)

    Javed, Hassan; Armstrong, Peter

    2015-08-01

    The efficiency bar for a Minimum Equipment Performance Standard (MEPS) generally aims to minimize energy consumption and life cycle cost of a given chiller type and size category serving a typical load profile. Compressor type has a significant chiller performance impact. Performance of screw and reciprocating compressors is expressed in terms of pressure ratio and speed for a given refrigerant and suction density. Isentropic efficiency for a screw compressor is strongly affected by under- and over-compression (UOC) processes. The theoretical simple physical UOC model involves a compressor-specific (but sometimes unknown) volume index parameter and the real gas properties of the refrigerant used. Isentropic efficiency is estimated by the UOC model and a bi-cubic, used to account for flow, friction and electrical losses. The unknown volume index, a smoothing parameter (to flatten the UOC model peak) and bi-cubic coefficients are identified by curve fitting to minimize an appropriate residual norm. Chiller performance maps are produced for each compressor type by selecting optimized sub-cooling and condenser fan speed options in a generic component-based chiller model. SEER is the sum of hourly load (from a typical building in the climate of interest) and specific power for the same hourly conditions. An empirical UAE cooling load model, scalable to any equipment capacity, is used to establish proposed UAE MEPS. Annual electricity use and cost, determined from SEER and annual cooling load, and chiller component cost data are used to find optimal chiller designs and perform life-cycle cost comparison between screw and reciprocating compressor-based chillers. This process may be applied to any climate/load model in order to establish optimized MEPS for any country and/or region.

  1. Next-Generation Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2012-01-01

    The development of the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is currently underway at NASA Johnson Space Center. The AEMU PLSS features two new evaporative cooling systems, the Reduced Volume Prototype Spacesuit Water Membrane Evaporator (RVP SWME), and the Auxiliary Cooling Loop (ACL). The RVP SWME is the third generation of hollow fiber SWME hardware, and like its predecessors, RVP SWME provides nominal crewmember and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crewmember and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and more flight like back-pressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. In addition to the RVP SWME, the Auxiliary Cooling Loop (ACL), was developed for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feed-water assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the RVP SWME, but is only 25% of the size of RVP SWME, providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a SOV reduction in size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  2. Flexibility of CCS Power Plants and Transport Systems

    NASA Astrophysics Data System (ADS)

    Nimtz, Michael; Krautz, Hans-Joachim

    2013-04-01

    Growing shares of renewable energy in the German power grid urge fossil fuelled power plants to reduce load or to shut down completely with increasing frequency and amplitude. Shut down, load changes and the following restart or ramp-up often have to be carried out as fast as possible. To realize such fast transitions is already complicated and expensive for conventional power plants - if further measures for CO2 reduction are applied, the task is even harder. Capture equipment and transport systems will add further process steps as well as additional masses of fluids and construction material. This will result in a change of time constants and a generally slower system reaction on changes in parameters like load, temperature and pressure in the power plant components and capture units. On the other hand there is only limited time to earn money by selling electricity - if there is a chance to sell more electricity in a short term, efficiencies should be as high as possible. Any capture unit that would reduce the efficiency causes economic conflicts. Therefore measures are analysed to offset the power generation from the capture process in time or to reduce the capture load temporarily. The poster will present a case study for different CCS power plant configurations and load scenarios representing typical grid load from renewable energies. Approaches to balance the load and/or the CO2 output of these power plants will be presented. These approaches comprise: bypassing of flue gas, intermediate storage of heat and/or fluids. Amounts of additional steam, electrical energy and other process fluids (e.g. scrubbing fluids like MEA) and size of auxiliary equipment will be shown .Finally, effects on the transport system (e.g. cooling down of CO2 in the pipeline and changes in mass and volume flow) will be presented and discussed.

  3. Core-melt source reduction system

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-04-25

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results. 4 figs.

  4. Core-melt source reduction system

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results.

  5. Refurbishment of a Victorian terraced house for energy efficiency

    NASA Astrophysics Data System (ADS)

    Dimitriou, Angeliki

    The impacts of global warming are now obvious. The international community has committed itself to reduce CO2 emissions, the main contributor to the greenhouse effect, both at international and national levels. In the Kyoto Protocol signed in 1997, countries have committed to reduce their greenhouse gases emissions below their 1990 levels by the period 2008-2012. The UK specifically should reduce those emissions by 12.5%. Format reason, the UK has introduced a package of policies, which promote not only the use of renewable energy resources, but most importantly the reduction in energy use, with energy efficiency. Refurbishment of existing houses has and will contribute to the reduction of energy consumption. A Victorian mid-terraced house was studied in this report, and different refurbishment measures were tested, using two software programmes: TAS and SAP. The targets were to achieve certain levels of thermal comfort, to comply with the Building Regulation for building thermal elements and to achieve a high SAP rating. Then, the cost of each measure was calculated and its CO2 emissions were compared. Heat losses were mainly through the walls and roof. Roof and mainly wall refurbishment measures reduce the heating loads the most. Ground floor insulation does not contribute to the reduction of the heating loads, on the contrary it has detrimental effect in summer, where the cooling effect coming from the ground is being reduced. Window replacement achieves a very good performance in summer resulting in the reduction of overheating. Wall and roof insulation increase the SAP rating the most, between the building elements, but boiler replacement and upgrading of heating controls increase it more. According to the SAP rating, CO2 annual emissions are reduced the most by boiler replacement and then by wall and roof. The results given by the two softwares concerning which measure is more leads more to energy efficiency, are the same. Finally, if the measures which lead to the best energy performance are combined together, then the house could cut its energy bills by half, and could have 70% reduction in CO2 emissions.

  6. 77 FR 9204 - Large Power Transformers From the Republic of Korea: Preliminary Determination of Sales at Less...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ...; (12) low voltage winding basic insulation level; (13) load loss at maximum MVA rating; (14) no-load loss; (15) cooling class designation; (16) overload requirement; (17) decibel rating; and (18... Transformers from Korea: Investigation No. 731-TA-1189 (Preliminary).'' On September 16, 2011, we selected...

  7. The seasonal performance of a liquid-desiccant air conditioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowenstein, A.; Novosel, D.

    1995-08-01

    Prior reports on liquid-desiccant systems have focused on their steady-state operation at ARI design conditions. By studying their performance during an entire cooling season, the computer modeling presented here shows that liquid-desiccant systems can have a very high seasonal coefficient of performance (COP). For a liquid-desiccant system that uses a double-effect boiler, COPs ranging from 1.44 in a humid location (Houston) to 2.24 in a dry location (Phoenix) are achieved by fully exploiting indirect evaporative cooling and providing only the minimum latent cooling needed to meet the loads on the building. This minimizes the amount of water absorbed by themore » desiccant and, hence, the amount of thermal energy needed to regenerate it. In applications where latent loads are very high, such as processing the high volumes of ventilation air required to maintain good indoor air quality, the liquid-desiccant air conditioner again has an advantage over vapor-compression equipment. In this study, a liquid-desiccant system is modeled that cools and dehumidifies only the ventilation air of an office building in Atlanta. Although processing an airstream that is only 25% of the total air delivered to the building, the liquid-desiccant system is able to meet 52% of the building`s seasonal cooling requirements and reduce the building`s peak electrical demand by about 47%.« less

  8. MEMS Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  9. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  10. Effect of two inner-ring oil-flow distribution schemes on the operating characteristics of a 35 millimeter bore ball bearing to 2.5 million DN

    NASA Technical Reports Server (NTRS)

    Schuller, F. T.; Pinel, S. I.; Signer, H. R.

    1985-01-01

    Parametric tests were conducted with a 35-mm-bore, split-inner-ring ball bearing with a double-inner-land-guided cage. Provisions were made for through-the-inner-ring lubrication. Test condictions were either a thrust load of 667 N (150 lb) or a combined load of 667 N (150 lb) thrust and 222 N (50 lb) radial, shaft speeds from 32000 to 72000 rpm, and an oil-inlet temperature of 394 K (250 deg F). Outer ring cooling was used in some tests. Tests were run with either 50 or 75 percent of the total oil flow distributed to the inner-ring raceway. Successful operation was experienced with both 50% and 75% flow patterns to 2.5 million DN. Cooling the outer ring had little effect on inner-ring temperature; however, the outer-ring temperature decreased as much as 7% at 2.5 million DN. Maximum recorded power loss was 3.1 kW (4.2 hp), and maximum cage slip was 8.7 percent. Both occurred at a shaft speed of 72000 rpm, a lubricant flow rate of 1900 cu/min (0.50 gal/min), a combined load, and no outer-ring cooling.

  11. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    NASA Technical Reports Server (NTRS)

    Martin, R. A.; Merrigan, M. A.; Elder, M. G.; Sena, J. T.; Keddy, E. S.; Silverstein, C. C.

    1992-01-01

    Analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, it is found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700 F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90,000 ft lowers the peak hot-section temperatures to around 2800 F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature.

  12. Role of aerosols on the Indian Summer Monsoon variability, as simulated by state-of-the-art global climate models

    NASA Astrophysics Data System (ADS)

    Cagnazzo, Chiara; Biondi, Riccardo; D'Errico, Miriam; Cherchi, Annalisa; Fierli, Federico; Lau, William K. M.

    2016-04-01

    Recent observational and modeling analyses have explored the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. By using global scale climate model simulations, we show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump (EHP) mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface that may also be amplified through solar dimming (SD) by more cloudiness and aerosol loading with subsequent reduction in monsoon rainfall over India. We extend this analyses to a subset of CMIP5 climate model simulations. Our results suggest that 1) absorbing aerosols, by influencing the seasonal variability of the Indian summer monsoon with the discussed time-lag, may act as a source of predictability for the Indian Summer Monsoon and 2) if the EHP and SD effects are operating also in a number of state-of-the-art climate models, their inclusion could potentially improve seasonal forecasts.

  13. Thermal protection performance of opposing jet generating with solid fuel

    NASA Astrophysics Data System (ADS)

    Shen, Binxian; Liu, Weiqiang

    2018-03-01

    A light and small gas supply device, which uses fuel gas generating with solid fuel as coolant gas, is introduced for opposing jet thermal protection in hypersonic vehicles. A numerical study on heat flux reduction in hypersonic flow with opposing jet is conducted to investigate the cooling efficiency of fuel gas. Flow field and cooling efficiency at different jet temperatures, as well as the effect of fuel gas, are determined. Detailed results show that shock stand-off distance changes with an increase in jet pressure ratio and remains constant with an increase in jet temperature. Cooling efficiency weakens with an increase in jet temperature and can be strengthened by enhancing jet pressure. Lastly, a remarkable heat flux reduction is observed with fuel gas injection with respect to no fuel gas injection when jet temperature reaches 900 K, thereby proving the positive cooling efficiency of fuel gas.

  14. The influence of minimalist footwear and stride length reduction on lower-extremity running mechanics and cumulative loading.

    PubMed

    Firminger, Colin R; Edwards, W Brent

    2016-12-01

    To examine the effects of shoe type and stride length reduction on lower-extremity running mechanics and cumulative loading. Within-subject with four conditions: (1) control shoe at preferred stride length; (2) control shoe at 90% preferred stride length; (3) minimalist shoe at preferred stride length; (4) minimalist shoe at 90% preferred stride length. Fourteen young healthy males ran overground at their preferred speed while motion capture, force platform, and plantar pressure data were collected. Peak moments, impulse, mechanical work, and cumulative impulse were calculated at the metatarsophalangeal, ankle, and knee joint, and compared between conditions using a 2×2 factor repeated measures ANOVA. In general, running in minimalist footwear increased measures of loading at the metatarsophalangeal joint and ankle joint (mean increases of 7.3% and 5.9%, respectively), but decreased measures of loading at the knee (mean decrease of 7.3%). Conversely, running with reduced stride length decreased single-stance measures of loading at the ankle and knee joint (ranging from -0.9% to -20.5%), though cumulative impulse was higher at the ankle and lower at the knee. Running in minimalist shoes increased loads at the metatarsophalangeal and ankle joint, which may explain some of the incidence of overuse injuries observed in minimalist shoe users. Decreased ankle loads at 90% preferred stride length were not necessarily sufficient to reduce cumulative loads when impulse and loading cycles were weighted equally. Knee loads decreased more when running at 90% preferred stride length (16.2% mean reduction) versus running in a minimalist shoe (7.3% mean reduction), but both load reduction mechanisms appeared to have an additive effect (22.2% mean reduction). Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Expressions for the evaporation of sessile liquid droplets incorporating the evaporative cooling effect.

    PubMed

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2016-12-15

    The evaporation along the surface of pinned, sessile droplets is investigated numerically by using the combined field approach. In the present model, the evaporative cooling at the droplet surface which leads to a reduction in the evaporation is taken into account. Simple, yet accurate analytical expressions for the local evaporation flux and for the total evaporation rate of sessile droplets are obtained. The theoretical analyses indicate that the reduction in the evaporation becomes more pronounced as the evaporative cooling number Ec increases. The results also reveal that the variation of total evaporation rate with contact angle will change its trend as the intensity of the evaporative cooling changes. For small values of Ec, the total evaporation rate increases with the contact angle, the same as predicted by Deegan et al. and by Hu and Larson in their isothermal models in which the evaporative cooling is neglected. Contrarily, when the evaporative cooling effect is strong enough, the total evaporation rate will decrease as the contact angle increases. The present theory is corroborated experimentally, and found in good agreement with the expressions proposed by Hu and Larson in the limiting isothermal case. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Design Evaluation Using Finite Element Analysis of Cooled Silicon Nitride Plates for a Turbine Blade Application

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2001-01-01

    Two- and three-dimensional finite element analyses were performed on uncoated and thermal barrier coated (TBC) silicon nitride plates with and without internal cooling by air. Steady-state heat-transfer analyses were done to optimize the size and the geometry of the cooling channels to reduce thermal stresses, and to evaluate the thermal environment experienced by the plate during burner rig testing. The limited experimental data available were used to model the thermal profile exerted by the flame on the plate. Thermal stress analyses were performed to assess the stress response due to thermal loading. Contours for the temperature and the representative stresses for the plates were generated and presented for different cooling hole sizes and shapes. Analysis indicates that the TBC experienced higher stresses, and the temperature gradient was much reduced when the plate was internally cooled by air. The advantages and disadvantages of several cooling channel layouts were evaluated.

  17. Magnetic suspension using high temperature superconducting cores

    NASA Technical Reports Server (NTRS)

    Scurlock, R. G.

    1992-01-01

    The development of YBCO high temperature superconductors, in wire and tape forms, is rapidly approaching the point where the bulk transport current density j vs magnetic field H characteristics with liquid nitrogen cooling will enable its use in model cores. On the other hand, BSCCO high temperature superconductor in wire form has poor j-H characteristics at 77 K today, although with liquid helium or hydrogen cooling, it appears to be superior to NbTi superconductor. Since liquid nitrogen cooling is approx. 100 times cheaper than liquid helium cooling, the use of YBCO is very attractive for use in magnetic suspension. The design is discussed of a model core to accommodate lift and drag loads up to 6000 and 3000 N respectively. A comparison is made between the design performance of a liquid helium cooled NbTi (or BSCCO) superconducting core and a liquid nitrogen cooled YBCO superconducting core.

  18. The coolest extremely low-mass white dwarfs

    NASA Astrophysics Data System (ADS)

    Calcaferro, Leila M.; Althaus, Leandro G.; Córsico, Alejandro H.

    2018-06-01

    Context. Extremely low-mass white dwarf (ELM WD; M⋆ ≲ 0.18-0.20 M⊙) stars are thought to be formed in binary systems via stable or unstable mass transfer. Although stable mass transfer predicts the formation of ELM WDs with thick hydrogen (H) envelopes that are characterized by dominant residual nuclear burning along the cooling branch, the formation of ELM WDs with thinner H envelopes from unstable mass loss cannot be discarded. Aims: We compute new evolutionary sequences for helium (He) core WD stars with thin H envelopes with the main aim of assessing the lowest Teff that could be reached by this type of stars. Methods: We generate a new grid of evolutionary sequences of He-core WD stars with thin H envelopes in the mass range from 0.1554 to 0.2025 M⊙, and assess the changes in both the cooling times and surface gravity induced by a reduction of the H envelope. We also determine, taking into account the predictions of progenitor evolution, the lowest Teff reached by the resulting ELM WDs. Results: We find that a slight reduction in the H envelope yields a significant increase in the cooling rate of ELM WDs. Because of this, ELM WDs with thin H envelopes could cool down to 2500 K, in contrast to their canonical counterparts that cool down to 7000 K. In addition, we find that a reduction of the thickness of the H envelope markedly increases the surface gravity (g) of these stars. Conclusions: If ELM WDs are formed with thin H envelopes, they could be detected at very low Teff. The detection of such cool ELM WDs would be indicative that they were formed with thin H envelopes, thus opening the possibility of placing constraints on the possible mechanisms of formation of this type of star. Last but not least, the increase in g due to the reduction of the H envelope leads to consequences in the spectroscopic determinations of these stars.

  19. Instrumentation, control and data management for the MIST (Modular Integrated Utility System) Facility

    NASA Technical Reports Server (NTRS)

    Celino, V. A.

    1977-01-01

    An appendix providing the technical data required for computerized control and/or monitoring of selected MIST subsystems is presented. Specific computerized functions to be performed are as follows: (1) Control of the MIST heating load simulator and monitoring of the diesel engine generators' cooling system; (2) Control of the MIST heating load simulator and MIST heating subsystem including the heating load simulator; and (3) Control of the MIST air conditioning load simulator subsystem and the MIST air conditioning subsystem, including cold thermal storage and condenser water flows.

  20. Evaluation of Retrofit Variable-Speed Furnace Fan Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrich, R.; Williamson, J.

    2014-01-01

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. Themore » project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.« less

  1. Chilled water study EEAP program for Walter Reed Army Medical Center: Book 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The Energy Engineering Analysis Program (EEAP) Study for Walter Reed Army Medical Center (WRAMC) was to provide a thorough examination of the central chilled water plants on site. WRAMC is comprised of seventy-one (71) buildings located on a 113-acre site in Washington, D.C. There are two (2) central chilled water plants (Buildings 48 and 49) each with a primary chilled water distribution system. In addition to the two (2) central plants, three (3) buildings utilize their own independent chillers. Two (2) of the independent chillers (Buildings 7 and T-2), one of which is inoperative (T-2), are smaller air-cooled units, whilemore » the third (Building 54) has a 1,900-ton chilled water plant comprised of three (3) centrifugal chillers. Of the two (2) central chilled water plants, Building 48 houses six (6) chillers totalling 7,080 tons of cooling and Building 49 houses one (1) chiller with 660 tons of cooling. The total chiller cooling capacity available on site is 9,840 tons. The chilled water systems were reviewed for alternative ways of conserving energy on site and reducing the peak-cooling load. Distribution systems were reviewed to determine which buildings were served by each of the chilled water plants and to determine chilled water usage on site. Evaluations were made of building exterior and interior composition in order to estimate cooling loads. Interviews with site personnel helped Entech better understand the chilled water plants, the distribution systems, and how each system was utilized.« less

  2. Serial cooling of a combustor for a gas turbine engine

    DOEpatents

    Abreu, Mario E.; Kielczyk, Janusz J.

    2001-01-01

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  3. Combustor concepts for aircraft gas turbine low-power emissions reduction

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Gleason, C. C.; Dodds, W. J.

    1978-01-01

    Several combustor concepts were designed and tested to demonstrate significant reductions in aircraft engine idle pollutant emissions. Each concept used a different approach for pollutant reductions: the hot wall combustor employs a thermal barrier coating and impingement cooled liners; the recuperative cooling combustor preheats the air before entering the combustion chamber; and the catalytic converter combustor is composed of a conventional primary zone followed by a catalytic bed for pollutant cleanup. The designs are discussed in detail and test results are presented for a range of aircraft engine idle conditions. The results indicate that ultralow levels of unburned hydrocarbons and carbon monoxide emissions can be achieved.

  4. Cycle Design of Reverse Brayton Cryocooler for HTS Cable Cooling Using Exergy Analysis

    NASA Astrophysics Data System (ADS)

    Gupta, Sudeep Kumar; Ghosh, Parthasarathi

    2017-02-01

    The reliability and price of cryogenic refrigeration play an important role in the successful commercialization of High Temperature Superconducting (HTS) cables. For cooling HTS cable, sub-cooled liquid nitrogen (LN2) circulation system is used. One of the options to maintain LN2 in its sub-cooled state is by providing refrigeration with the help of Reverse Brayton Cryo-cooler (RBC). The refrigeration requirement is 10 kW for continuously sub-cooling LN2 from 72 K to 65 K for cooling 1 km length of HTS cable [1]. In this paper, a parametric evaluation of RBC for sub-cooling LN2 has been performed using helium as a process fluid. Exergy approach has been adopted for this analysis. A commercial process simulator, Aspen HYSYS® V8.6 has been used for this purpose. The critical components have been identified and their exergy destruction and exergy efficiency have been obtained for a given heat load condition.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freemire, Ben; Bowring, Daniel; Kochemirovskiy, Alexey

    Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. Alumina of puritiesmore » ranging from 96 to 99.8% was tested in a high pressure RF test cell at the MuCool Test Area at Fermilab. The results of breakdown studies with pure nitrogen gas, and oxygen-doped nitrogen gas indicate the peak surface electric field on the alumina ranges between 10 and 15 MV/m. How these results affect the design of a prototype cooling channel cavity will be discussed.« less

  6. The Significance of Temperature Based Approach Over the Energy Based Approaches in the Buildings Thermal Assessment

    NASA Astrophysics Data System (ADS)

    Albatayneh, Aiman; Alterman, Dariusz; Page, Adrian; Moghtaderi, Behdad

    2017-05-01

    The design of low energy buildings requires accurate thermal simulation software to assess the heating and cooling loads. Such designs should sustain thermal comfort for occupants and promote less energy usage over the life time of any building. One of the house energy rating used in Australia is AccuRate, star rating tool to assess and compare the thermal performance of various buildings where the heating and cooling loads are calculated based on fixed operational temperatures between 20 °C to 25 °C to sustain thermal comfort for the occupants. However, these fixed settings for the time and temperatures considerably increase the heating and cooling loads. On the other hand the adaptive thermal model applies a broader range of weather conditions, interacts with the occupants and promotes low energy solutions to maintain thermal comfort. This can be achieved by natural ventilation (opening window/doors), suitable clothes, shading and low energy heating/cooling solutions for the occupied spaces (rooms). These activities will save significant amount of operating energy what can to be taken into account to predict energy consumption for a building. Most of the buildings thermal assessment tools depend on energy-based approaches to predict the thermal performance of any building e.g. AccuRate in Australia. This approach encourages the use of energy to maintain thermal comfort. This paper describes the advantages of a temperature-based approach to assess the building's thermal performance (using an adaptive thermal comfort model) over energy based approach (AccuRate Software used in Australia). The temperature-based approach was validated and compared with the energy-based approach using four full scale housing test modules located in Newcastle, Australia (Cavity Brick (CB), Insulated Cavity Brick (InsCB), Insulated Brick Veneer (InsBV) and Insulated Reverse Brick Veneer (InsRBV)) subjected to a range of seasonal conditions in a moderate climate. The time required for heating and/or cooling using the adaptive thermal comfort approach and AccuRate predictions were estimated. Significant savings (of about 50 %) in energy consumption in minimising the time required for heating and cooling were achieved by using the adaptive thermal comfort model.

  7. Novel Application of Density Estimation Techniques in Muon Ionization Cooling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohayai, Tanaz Angelina; Snopok, Pavel; Neuffer, David

    The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam ionization cooling for the first time and constitutes a key part of the R&D towards a future neutrino factory or muon collider. Beam cooling reduces the size of the phase space volume occupied by the beam. Non-parametric density estimation techniques allow very precise calculation of the muon beam phase-space density and its increase as a result of cooling. These density estimation techniques are investigated in this paper and applied in order to estimate the reduction in muon beam size in MICE under various conditions.

  8. Ensemble modeling informs hypoxia management in the northern Gulf of Mexico.

    PubMed

    Scavia, Donald; Bertani, Isabella; Obenour, Daniel R; Turner, R Eugene; Forrest, David R; Katin, Alexey

    2017-08-15

    A large region of low-dissolved-oxygen bottom waters (hypoxia) forms nearly every summer in the northern Gulf of Mexico because of nutrient inputs from the Mississippi River Basin and water column stratification. Policymakers developed goals to reduce the area of hypoxic extent because of its ecological, economic, and commercial fisheries impacts. However, the goals remain elusive after 30 y of research and monitoring and 15 y of goal-setting and assessment because there has been little change in river nitrogen concentrations. An intergovernmental Task Force recently extended to 2035 the deadline for achieving the goal of a 5,000-km 2 5-y average hypoxic zone and set an interim load target of a 20% reduction of the spring nitrogen loading from the Mississippi River by 2025 as part of their adaptive management process. The Task Force has asked modelers to reassess the loading reduction required to achieve the 2035 goal and to determine the effect of the 20% interim load reduction. Here, we address both questions using a probabilistic ensemble of four substantially different hypoxia models. Our results indicate that, under typical weather conditions, a 59% reduction in Mississippi River nitrogen load is required to reduce hypoxic area to 5,000 km 2 The interim goal of a 20% load reduction is expected to produce an 18% reduction in hypoxic area over the long term. However, due to substantial interannual variability, a 25% load reduction is required before there is 95% certainty of observing any hypoxic area reduction between consecutive 5-y assessment periods.

  9. Ensemble modeling informs hypoxia management in the northern Gulf of Mexico

    PubMed Central

    Bertani, Isabella; Obenour, Daniel R.; Turner, R. Eugene; Forrest, David R.; Katin, Alexey

    2017-01-01

    A large region of low-dissolved-oxygen bottom waters (hypoxia) forms nearly every summer in the northern Gulf of Mexico because of nutrient inputs from the Mississippi River Basin and water column stratification. Policymakers developed goals to reduce the area of hypoxic extent because of its ecological, economic, and commercial fisheries impacts. However, the goals remain elusive after 30 y of research and monitoring and 15 y of goal-setting and assessment because there has been little change in river nitrogen concentrations. An intergovernmental Task Force recently extended to 2035 the deadline for achieving the goal of a 5,000-km2 5-y average hypoxic zone and set an interim load target of a 20% reduction of the spring nitrogen loading from the Mississippi River by 2025 as part of their adaptive management process. The Task Force has asked modelers to reassess the loading reduction required to achieve the 2035 goal and to determine the effect of the 20% interim load reduction. Here, we address both questions using a probabilistic ensemble of four substantially different hypoxia models. Our results indicate that, under typical weather conditions, a 59% reduction in Mississippi River nitrogen load is required to reduce hypoxic area to 5,000 km2. The interim goal of a 20% load reduction is expected to produce an 18% reduction in hypoxic area over the long term. However, due to substantial interannual variability, a 25% load reduction is required before there is 95% certainty of observing any hypoxic area reduction between consecutive 5-y assessment periods. PMID:28760996

  10. Pathogen reduction co-benefits of nutrient best management practices

    PubMed Central

    Wainger, Lisa A.; Barber, Mary C.

    2016-01-01

    Background Many of the practices currently underway to reduce nitrogen, phosphorus, and sediment loads entering the Chesapeake Bay have also been observed to support reduction of disease-causing pathogen loadings. We quantify how implementation of these practices, proposed to meet the nutrient and sediment caps prescribed by the Total Maximum Daily Load (TMDL), could reduce pathogen loadings and provide public health co-benefits within the Chesapeake Bay system. Methods We used published data on the pathogen reduction potential of management practices and baseline fecal coliform loadings estimated as part of prior modeling to estimate the reduction in pathogen loadings to the mainstem Potomac River and Chesapeake Bay attributable to practices implemented as part of the TMDL. We then compare the estimates with the baseline loadings of fecal coliform loadings to estimate the total pathogen reduction potential of the TMDL. Results We estimate that the TMDL practices have the potential to decrease disease-causing pathogen loads from all point and non-point sources to the mainstem Potomac River and the entire Chesapeake Bay watershed by 19% and 27%, respectively. These numbers are likely to be underestimates due to data limitations that forced us to omit some practices from analysis. Discussion Based on known impairments and disease incidence rates, we conclude that efforts to reduce nutrients may create substantial health co-benefits by improving the safety of water-contact recreation and seafood consumption. PMID:27904807

  11. Pathogen reduction co-benefits of nutrient best management practices.

    PubMed

    Richkus, Jennifer; Wainger, Lisa A; Barber, Mary C

    2016-01-01

    Many of the practices currently underway to reduce nitrogen, phosphorus, and sediment loads entering the Chesapeake Bay have also been observed to support reduction of disease-causing pathogen loadings. We quantify how implementation of these practices, proposed to meet the nutrient and sediment caps prescribed by the Total Maximum Daily Load (TMDL), could reduce pathogen loadings and provide public health co-benefits within the Chesapeake Bay system. We used published data on the pathogen reduction potential of management practices and baseline fecal coliform loadings estimated as part of prior modeling to estimate the reduction in pathogen loadings to the mainstem Potomac River and Chesapeake Bay attributable to practices implemented as part of the TMDL. We then compare the estimates with the baseline loadings of fecal coliform loadings to estimate the total pathogen reduction potential of the TMDL. We estimate that the TMDL practices have the potential to decrease disease-causing pathogen loads from all point and non-point sources to the mainstem Potomac River and the entire Chesapeake Bay watershed by 19% and 27%, respectively. These numbers are likely to be underestimates due to data limitations that forced us to omit some practices from analysis. Based on known impairments and disease incidence rates, we conclude that efforts to reduce nutrients may create substantial health co-benefits by improving the safety of water-contact recreation and seafood consumption.

  12. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    NASA Astrophysics Data System (ADS)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and condenser and outlet chilled water temperatures of the evaporator.

  13. A SURVEY OF CONVENTIONAL STEAM BOILER EXPERIENCE APPLICABLE TO THE HTGR STEAM GENERATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paget, J.A.

    1959-10-01

    BS>The steam generator of a high temperature gas-cooled reactor consists of tubular heating surface inside a shell which forms part of the primary He circuit of the reactor. When a tube fails in such a steam generator, moisture in the form of steam is released into the He steam and is carried through the reactor where it will cause corrosion and mass transfer of C in the core. A paramount consideration in the design of a steam generator for a high temperature gas-cooled reactor is the prevention of tube failures. Preference, therefore, should be given to a forced circulation design.more » The Loeffler Boiler would be the best from this standpoint alone since only steam enters the tubes, and its circulation rate can be maintained at an adequate value to insure cool tubes regardless of load fluctuations. The next type in the order of preference would be the forced recirculation boiler, since at least the boiier tubes always have an adequate cooling flow regardless of output. The third type in order of preference would be a Sulzer Type boiler since it has a separator to remove dissolved material from the water which is comparible in efficiency to a standard boiler drum and although the flow through evaporator and superheater fluctuates with load, the Sulzer Boiler can be operated as a forced recirculation boiler at low loads. The least desirable type would be a Benson or supercritical boiler which is completely dependent on input water purity for its survival. It is not claimed that Benson or supercritical boilers should not or will not be used in the future for gas-cooled reactors, but only that their use would be the least conservative choice from a tube failure standpoint at the present time. (auth)« less

  14. Plug Load Behavioral Change Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, I.; Kandt, A.; VanGeet, O.

    2011-08-01

    This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

  15. Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations

    NASA Technical Reports Server (NTRS)

    Gilligan, Patrick; Tomsik, Thomas

    2016-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  16. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    NASA Technical Reports Server (NTRS)

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  17. Vineyard floor management and cluster thinning inconsistently affect ‘Pinot noir’ crop load, berry composition, and wine quality

    USDA-ARS?s Scientific Manuscript database

    A 3-year field study was developed to determine relationships between crop load metrics and berry composition for ‘Pinot noir’ in a cool-climate through the manipulation of vegetative growth and fruit yield using competitive cover cropping and cluster thinning, respectively. To alter vine vigor, per...

  18. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.

    Full Paper Submission for: Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electric power and, heating and cooling capability to commercial and industrial facilities directly onsite, while increasing energy efficiency, security of energy supply, grid independence and enhancing the environmental and economic situation for the site. Food processing industries often have simultaneous requirements for heat, steam, chilling and electricity making them well suited for the use of such systems to supply base-load or as peak reducing generators enabling reduction of overall energy use intensity. This paper documents analysis from a project evaluating opportunities enabled bymore » CCHPDG for emission and cost reductions and energy storage systems installed onsite at food processing facilities. In addition, this distributed generation coupled with energy storage demonstrates a non-wires solution to delay or eliminate the need for upgrades to electric distribution systems. It was found that a dairy processing plant in the Pacific Northwest currently purchasing 15,000 MWh/yr of electricity and 190,000 MMBtu/yr of gas could be provided with a 1.1 MW CCHP system reducing the amount of electric power purchased to 450 MWh/yr while increasing the gas demand to 255,000 MMBtu/yr. The high percentage of hydro-power in this region resulted in CO2 emissions from CCHP to be higher than that attributed to the electric utility/regional energy mix. The value of this work is in documenting a real-world example demonstrating the value of CCHP to facility owners and financial decision makers to encourage them to more seriously consider CCHP systems when building or upgrading facilities.« less

  19. Mouse Embryo Cryopreservation by Rapid Cooling.

    PubMed

    Shaw, Jillian

    2018-05-01

    Embryo cryopreservation has been used to archive mouse strains. Protocols have evolved over this time and now vary considerably in terms of cryoprotectant solution, cooling and warming rates, methods to add and remove cryoprotectant, container or carrier type, volume of cryoprotectant, the stage of preimplantation development, and the use of additional treatments such as blastocyst puncture and microinjection. The rapid cooling methods use concentrated solutions of cryoprotectants to reduce the water content of the cell before cooling commences, thus preventing the formation of ice crystals. Embryos are equilibrated with the cryoprotectants, loaded into a carrier, and then rapidly cooled (e.g., by being plunged directly into LN 2 or onto a surface cooled in LN 2 ). The rapid cooling methods eliminate the need for controlled-rate freezers and seeding procedures. However, they are much more sensitive to minor variations when performing the steps. The rapid-cooling protocol described here is suitable for use with plastic insemination straws. Because it uses relatively large volumes, it is less technically demanding than some other methods that use minivolume devices. © 2018 Cold Spring Harbor Laboratory Press.

  20. Building and environmental factors that influence bacterial and fungal loading on air conditioning cooling coils.

    PubMed

    Bakker, A; Siegel, J A; Mendell, M J; Peccia, J

    2018-05-30

    We investigated bacterial and fungal concentrations on cooling coils of commercial AC units and quantified associations between microbial loads and AC unit or building operational parameters. A field campaign was conducted to sample 25 AC units in the humid, subtropical climate of Southern CT, USA and 15 AC units in the hot-summer Mediterranean climate of Sacramento, CA, USA. Median concentrations (with interquartile range) of bacteria and fungi on the cooling coils were 1.2 × 10 7 (5.1 × 10 6 -3.9 × 10 7 ) cells/m 2 and 7.6 × 10 5 (5.6 × 10 4 -4.4 × 10 6 ) spore equivalents (SE)/m 2 , respectively. Concentrations varied among units with median unit concentrations ranging three orders of magnitude for bacteria and seven orders of magnitude for fungi. Controlled comparisons and multivariable regressions indicate that dominant factors associated with AC coil loading include the nominal efficiency of upstream filters (P = .008 for bacteria and P < .001 for fungi) and coil moisture, which was reflected in fungal loading differences between top and bottom halves of the AC coils in Southern CT (P = .05) and the dew points of the two climates considered (P = .04). Environmental and building characteristics explained 42% (P < .001) of bacterial concentration variability and 66% (P < .001) of fungal concentration variability among samples. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Thirty Years of Near Room Temperature Magnetic Cooling: Where we are Today and Future Prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.A. Gschneidner, Jr; V.K. Pecharsky'

    2008-05-01

    The seminal study by Brown in 1976 showed that it was possible to use the magnetocaloric effect to produce a substantial cooling effect near room temperature. About 15 years later Green et al. built a device which actually cooled a load other than the magnetocaloric material itself and the heat exchange fluid. The major breakthrough, however, occurred in 1997 when the Ames Laboratory/Astronautics proof-of-principle refrigerator showed that magnetic refrigeration was competitive with conventional gas compression cooling. Since then, over 25 magnetic cooling units have been built and tested throughout the world. The current status of near room temperature magnetic coolingmore » is reviewed, including a discussion of the major problems facing commercialization and potential solutions thereof. The future outlook for this revolutionary technology is discussed.« less

  2. Measurement of He neutral temperature in detached plasmas using laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Aramaki, M.; Tsujihara, T.; Kajita, S.; Tanaka, H.; Ohno, N.

    2018-01-01

    The reduction of the heat load onto plasma-facing components by plasma detachment is an inevitable scheme in future nuclear fusion reactors. Since the control of the plasma and neutral temperatures is a key issue to the detached plasma generation, we have developed a laser absorption spectroscopy system for the metastable helium temperature measurements and used together with a previously developed laser Thomson scattering system for the electron temperature and density measurements. The thermal relaxation process between the neutral and the electron in the detached plasma generated in the linear plasma device, NAGDIS-II was studied. It is shown that the electron temperature gets close to the neutral temperature by increasing the electron density. On the other hand, the pressure dependence of electron and neutral temperatures shows the cooling effect by the neutrals. The possibility of the plasma fluctuation measurement using the fluctuation in the absorption signal is also shown.

  3. Controller design for wind turbine load reduction via multiobjective parameter synthesis

    NASA Astrophysics Data System (ADS)

    Hoffmann, A. F.; Weiβ, F. A.

    2016-09-01

    During the design process for a wind turbine load reduction controller many different, sometimes conflicting requirements must be fulfilled simultaneously. If the requirements can be expressed as mathematical criteria, such a design problem can be solved by a criterion-vector and multi-objective design optimization. The software environment MOPS (Multi-Objective Parameter Synthesis) supports the engineer for such a design optimization. In this paper MOPS is applied to design a multi-objective load reduction controller for the well-known DTU 10 MW reference wind turbine. A significant reduction in the fatigue criteria especially the blade damage can be reached by the use of an additional Individual Pitch Controller (IPC) and an additional tower damper. This reduction is reached as a trade-off with an increase of actuator load.

  4. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development ofmore » a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste stream options in terms of waste loading and/or decay time required before treatment. For Option 1, glass ceramics show an increase in waste loading of 15 mass % and reduction in decay time of 24 years. Decay times of {approx}50 years or longer are close to the expected age of the fuel that will be reprocessed when the modified open or closed fuel cycle is expected to be put into action. Option 2 shows a 2x to 2.5x increase in waste loading with decay times of only 45 years. Note that for Option 2 glass, the required decay time before treatment is only 35 years because of the waste loading limits related to the solubility of MoO{sub 3} in glass. If glass was evaluated for similar waste loadings as those achieved in Option 2 glass ceramics, the decay time would be significantly longer than 45 years. These glass ceramics are not optimized, but already they show the potential to dramatically reduce the amount of waste generated while still utilizing the proven processing technology used for glass production.« less

  5. Pressure Available for Cooling with Cowling Flaps

    NASA Technical Reports Server (NTRS)

    Stickle, George W; Naiman, Irven; Crigler, John L

    1941-01-01

    Report presents the results of a full-scale investigation conducted in the NACA 20-foot tunnel to determine the pressure difference available for cooling with cowling flaps. The flaps were applied to an exit slot of smooth contour at 0 degree flap angle. Flap angles of 0 degree, 15 degrees, and 30 degrees were tested. Two propellers were used; propeller c which has conventional round blade shanks and propeller f which has airfoil sections extending closer to the hub. The pressure available for cooling is shown to be a direct function of the thrust disk-loading coefficient of the propeller.

  6. Study of fail-safe abort system for an actively cooled hypersonic aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Herring, R. L.

    1976-01-01

    Conceptual designs of a fail-safe abort system for hydrogen fueled actively cooled high speed aircraft are examined. The fail-safe concept depends on basically three factors: (1) a reliable method of detecting a failure or malfunction in the active cooling system, (2) the optimization of abort trajectories which minimize the descent heat load to the aircraft, and (3) fail-safe thermostructural concepts to minimize both the weight and the maximum temperature the structure will reach during descent. These factors are examined and promising approaches are evaluated based on weight, reliability, ease of manufacture and cost.

  7. Drought Vulnerability of Thermoelectric Generation using Texas as a Case Study

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Duncan, I.; Reedy, R. C.

    2013-12-01

    Increasing extent, frequency, and intensity of droughts raises concerns about the vulnerability of thermoelectricity generation to water-shortages. In this study we evaluated the impact of the 2011 flash drought in Texas on electricity demand and water supply for power plants. The impacts of the drought were greater in sub-humid east Texas than in semiarid west Texas because most power plants are pre-adapted to low water availability in west Texas. This comparison between sub-humid and semiarid regions in Texas serves as a proxy for climatic differences between the eastern and western US. High temperatures with ≥100 days of triple digit temperatures raised annual electricity demands/generation by 6% and peak demands in August by 4% relative to 2010. The corresponding water demands/consumption for 2011 for thermoelectric generation was increased by ~10% relative to 2010. While electricity demand only increased slightly during the drought, water supply decreased markedly with statewide reservoir storage at record lows (58% of capacity). Reductions in reservoir storage would suggest that power plants should be vulnerable to water shortages; however, data show that power plants subjected to water shortages were flexible enough to adapt by switching to less water-intensive technologies. Some power plants switched from once-through cooling to cooling towers with more than an order of magnitude reduction in water withdrawals whereas others switched from steam turbines to combustion turbines (no cooling water requirements) when both were available. Recent increases in natural gas production by an order of magnitude and use in combined cycle plants enhances the robustness of the power-plant fleet to drought by reducing water consumption (~1/3rd of that for steam turbines), allowing plants to operate with (combined cycle generator) or without (combustion turbine generator) water, and as base-load or peaking plants to complement increasing wind generation. Drought vulnerability of the power plant fleet can be further enhanced by reducing demand and/or increasing supplies of water (e.g. use of nontraditional water sources: municipal waste water or brackish water) and increasing supplies of electricity. Our ability to cope with projected increases in droughts would be greatly improved by joint management of water and electricity.

  8. Evolution of the plasma-sprayed microstructure in 7 wt% yttria-stabilized zirconia thermal barrier coatings during uniaxial stress relaxation and the concomitant changes in material properties

    NASA Astrophysics Data System (ADS)

    Petorak, Christopher

    The understanding of failure mechanisms in plasma sprayed 7 wt% yttria stabilized zirconia (YSZ) is a key step toward optimizing thermal barrier coating (TBC) usage, design, and life prediction. The purpose of the present work is to characterize and understand the stress relaxation behavior occurring in plasma-sprayed YSZ coatings, so that the correlating magnitude of unfavorable tensile stress, which coatings experienced upon cooling, may be reduced through microstructural design. The microstructure and properties of as-sprayed coatings changes immensely during service at high temperature, and therefore the effects of long heat-treatment times, and the concomitant change within the microstructure, on the time-dependent mechanical behavior of stand-alone YSZ coatings was studied in parallel with the as-sprayed coating condition. Aside from influencing the mechanical properties, stress relaxation also affects the insulating efficiency of plasma-sprayed 7wt% YSZ coatings. Directionally dependent changes in microstructure due to stress relaxation of a uniaxially applied stress at 1200°C were observed in plasma-sprayed coatings. Small angle neutron scattering (SANS) investigation of coatings after stress relaxation displayed a 46% reduction in the specific surface area connected to the load-orientation dependent closure of void surface area perpendicular to the applied load when compared to coatings sintered in air, i.e. no applied load. These anisotropic microstructural changes were linked to the thermal properties of the coating. For example, a coating stress relaxed from 60 MPa for 5-min at 1200°C exhibited a thermal conductivity of 2.1 W/m-K. A coating that was only heat-treated for 5-min at 1200°C (i.e. no stress applied) exhibited a thermal conductivity of 1.7 W/m·K. In the current study, uniaxial stress relaxation in plasma-sprayed 7wt% YSZ coatings was determined the result of: (1) A more uniform distribution of the applied load with time, (2) A reduction in the SSA associated with void systems due to sintering, specifically the closing and healing of intralamellar cracks perpendicular to the applied stress, and (3) A compaction and closure of void systems under the applied load. These anisotropic changes in microstructure result in distinguishable changes in thermo-mechanical properties, with very minute changes to the overall bulk density.

  9. Developing a passive load reduction blade for the DTU 10 MW reference turbine

    NASA Astrophysics Data System (ADS)

    de Vaal, J. B.; Nygaard, T. A.; Stenbro, R.

    2016-09-01

    This paper presents the development of a passive load reduction blade for the DTU 10 MW reference wind turbine, using the aero-hydro-servo-elastic analysis tool 3DFloat. Passive load reduction is achieved by introducing sweep to the path of the blade elastic axis, so that out-of-plane bending deflections result in load alleviating torsional deformations of the blade. Swept blades are designed to yield similar annual energy production as a rotor with a reference straight blade. This is achieved by modifying the aerodynamic twist distribution for swept blades based on non-linear blade deflection under steady state loads. The passive load reduction capability of a blade design is evaluated by running a selection of fatigue- and extreme load cases with the analysis tool 3DFloat and determining equivalent fatigue loads, fatigue damage and extreme loads at the blade root and tower base. The influence of sweep on the flutter speed of a blade design is also investigated. A large number of blade designs are evaluated by varying the parameters defining the sweep path of a blade's elastic axis. Results show that a moderate amount of sweep can effectively reduce equivalent fatigue damage and extreme loads, without significantly reducing the flutter speed, or compromising annual energy production.

  10. High temperature cooling system and method

    DOEpatents

    Loewen, Eric P.

    2006-12-12

    A method for cooling a heat source, a method for preventing chemical interaction between a vessel and a cooling composition therein, and a cooling system. The method for cooling employs a containment vessel with an oxidizable interior wall. The interior wall is oxidized to form an oxide barrier layer thereon, the cooling composition is monitored for excess oxidizing agent, and a reducing agent is provided to eliminate excess oxidation. The method for preventing chemical interaction between a vessel and a cooling composition involves introducing a sufficient quantity of a reactant which is reactive with the vessel in order to produce a barrier layer therein that is non-reactive with the cooling composition. The cooling system includes a containment vessel with oxidizing agent and reducing agent delivery conveyances and a monitor of oxidation and reduction states so that proper maintenance of a vessel wall oxidation layer occurs.

  11. Study of active cooling for supersonic transports

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  12. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    USGS Publications Warehouse

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  13. Further Examination of the Vibratory Loads Reduction Results from the NASA/ARMY/MIT Active Twist Rotor Test

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Sekula, Martin K.

    2002-01-01

    The vibration reduction capabilities of a model rotor system utilizing controlled, strain-induced blade twisting are examined. The model rotor blades, which utilize piezoelectric active fiber composite actuators, were tested in the NASA Langley Transonic Dynamics Tunnel using open-loop control to determine the effect of active-twist on rotor vibratory loads. The results of this testing have been encouraging, and have demonstrated that active-twist rotor designs offer the potential for significant load reductions in future helicopter rotor systems. Active twist control was found to use less than 1% of the power necessary to operate the rotor system and had a pronounced effect on both rotating- and fixed-system loads, offering reductions in individual harmonic loads of up to 100%. A review of the vibration reduction results obtained is presented, which includes a limited set of comparisons with results generated using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) rotorcraft comprehensive analysis.

  14. Effects of Thermal Barrier Coatings on Approaches to Turbine Blade Cooling

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.

    2007-01-01

    Reliance on Thermal Barrier Coatings (TBC) to reduce the amount of air used for turbine vane cooling is beneficial both from the standpoint of reduced NOx production, and as a means of improving cycle efficiency through improved component efficiency. It is shown that reducing vane cooling from 10 to 5 percent of mainstream air can lead to NOx reductions of nearly 25 percent while maintaining the same rotor inlet temperature. An analysis is given which shows that, when a TBC is relied upon in the vane thermal design process, significantly less coolant is required using internal cooling alone compared to film cooling. This is especially true for small turbines where internal cooling without film cooling permits the surface boundary layer to remain laminar over a significant fraction of the vane surface.

  15. Hypothermic manipulation of bone cement can extend the handling time during vertebroplasty.

    PubMed

    Lai, Po-Liang; Tai, Ching-Lung; Chu, I-Ming; Fu, Tsai-Sheng; Chen, Lih-Huei; Chen, Wen-Jer

    2012-10-16

    Polymethylmethacrylate (PMMA) is commonly used for clinical applications. However, the short handling time increases the probability of a surgeon missing the crucial period in which the cement maintains its ideal viscosity for a successful injection. The aim of this article was to illustrate the effects a reduction in temperature would have on the cement handling time during percutaneous vertebroplasty. The injectability of bone cement was assessed using a cement compressor. By twisting the compressor, the piston transmits its axial load to the plunger, which then pumps the bone cement out. The experiments were categorized based on the different types of hypothermic manipulation that were used. In group I (room temperature, sham group), the syringes were kept at 22°C after mixing the bone cement. In group 2 (precooling the bone cement and the container), the PMMA powder and liquid, as well as the beaker, spatula, and syringe, were stored in the refrigerator (4°C) overnight before mixing. In group 3 (ice bath cooling), the syringes were immediately submerged in ice water after mixing the bone cement at room temperature. The average liquid time, paste time, and handling time were 5.1 ± 0.7, 3.4 ± 0.3, and 8.5 ± 0.8 min, respectively, for group 1; 9.4 ± 1.1, 5.8 ± 0.5, and 15.2 ± 1.2 min, respectively, for group 2; and 83.8 ± 5.2, 28.8 ± 6.9, and 112.5 ± 11.3 min, respectively, for group 3. The liquid and paste times could be increased through different cooling methods. In addition, the liquid time (i.e. waiting time) for ice bath cooling was longer than for that of the precooling method (p < 0.05). Both precooling (i.e. lowering the initial temperature) and ice bath cooling (i.e. lowering the surrounding temperature) can effectively slow polymerization. Precooling is easy for clinical applications, while ice bath cooling might be more suitable for multiple-level vertebroplasty. Clinicians can take advantage of the improved injectability without any increased cost.

  16. Hypothermic manipulation of bone cement can extend the handling time during vertebroplasty

    PubMed Central

    2012-01-01

    Background Polymethylmethacrylate (PMMA) is commonly used for clinical applications. However, the short handling time increases the probability of a surgeon missing the crucial period in which the cement maintains its ideal viscosity for a successful injection. The aim of this article was to illustrate the effects a reduction in temperature would have on the cement handling time during percutaneous vertebroplasty. Methods The injectability of bone cement was assessed using a cement compressor. By twisting the compressor, the piston transmits its axial load to the plunger, which then pumps the bone cement out. The experiments were categorized based on the different types of hypothermic manipulation that were used. In group I (room temperature, sham group), the syringes were kept at 22°C after mixing the bone cement. In group 2 (precooling the bone cement and the container), the PMMA powder and liquid, as well as the beaker, spatula, and syringe, were stored in the refrigerator (4°C) overnight before mixing. In group 3 (ice bath cooling), the syringes were immediately submerged in ice water after mixing the bone cement at room temperature. Results The average liquid time, paste time, and handling time were 5.1 ± 0.7, 3.4 ± 0.3, and 8.5 ± 0.8 min, respectively, for group 1; 9.4 ± 1.1, 5.8 ± 0.5, and 15.2 ± 1.2 min, respectively, for group 2; and 83.8 ± 5.2, 28.8 ± 6.9, and 112.5 ± 11.3 min, respectively, for group 3. The liquid and paste times could be increased through different cooling methods. In addition, the liquid time (i.e. waiting time) for ice bath cooling was longer than for that of the precooling method (p < 0.05). Conclusions Both precooling (i.e. lowering the initial temperature) and ice bath cooling (i.e. lowering the surrounding temperature) can effectively slow polymerization. Precooling is easy for clinical applications, while ice bath cooling might be more suitable for multiple-level vertebroplasty. Clinicians can take advantage of the improved injectability without any increased cost. PMID:23072273

  17. Thermal performance of the CrIS passive cryocooler

    NASA Astrophysics Data System (ADS)

    Ghaffarian, B.; Kohrman, R.; Magner, A.

    2006-02-01

    The configuration, performance, and test validation of a passive radiant cooler for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Crosstrack Infrared Sounder (CrIS) Instrument are presented. The cooler is required to provide cryogenic operation of IR focal planes. The 11 kg device, based on prior ITT Industries Space Systems Division coolers, requires virtually no power. It uses multiple thermally isolated cooling stages, each with an independent cryoradiator, operating at successively colder temperatures. The coldest stage, with a controlled set point at 81 K, cools a longwave IR (LWIR) focal plane. An intermediate stage, with a 98 K control point, cools detectors operating in MWIR and SWIR spectral regions. The warmest stage includes a fixed, integral earth shield that limits the thermal load from the earth in the NPOESS Operational Low-earth Orbiting (LEO) orbit. A study of the thermal balance and loads analysis used to evaluate the predicted cooler performance is discussed. High performance margins have been retained throughout the cooler development, fabrication and test phases of the program. The achievable in-orbit temperatures for this cooler are anticipated to be 73 K for the LWIR cooling stage and 91 K for the midwave IR (MWIR)/shortwave IR (SWIR) stage. Test results from two iterations of thermal vacuum verification testing are presented. Lessons learned from the first test, which failed to produce the predicted performance are included. The thermal model of the cooler and test configuration was used to identify deficiencies in the test targets resulting in unexpected heat loads. Corrective action was implemented to remove the heat leaks and a second test verified both the cooler performance and the correlation of the detailed thermal model.

  18. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel; Mines, Greg; Turchi, Craig

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods ofmore » high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing production fluid temperature, flow rate, or both during the life span of the associated power generation project. The impacts of geothermal production fluid temperature decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant efficiency. The impact of resource productivity decline on power generation project economics can be equally detrimental. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below a specified default level. While the magnitude of PPA penalties varies on a case-by-case basis, it is not unrealistic for these penalties to be on the order of the value of the deficit power sales such that the utility may purchase the power elsewhere. This report evaluates the use of geothermal/solar-thermal hybrid plant technology for mitigation of resource productivity decline, which has not been a primary topic of investigation in previous analyses in the open literature.« less

  19. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  20. Fuel Cell Thermal Management Through Conductive Cooling Plates

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Burke, Kenneth A.

    2008-01-01

    An analysis was performed to evaluate the concept of utilizing conductive cooling plates to remove heat from a fuel cell stack, as opposed to a conventional internal cooling loop. The potential advantages of this type of cooling system are reduced stack complexity and weight and increased reliability through the reduction of the number of internal fluid seals. The conductive cooling plates would extract heat from the stack transferring it to an external coolant loop. The analysis was performed to determine the required thickness of these plates. The analysis was based on an energy balance between the thermal energy produced within the stack and the heat removal from the cooling plates. To accomplish the energy balance, the heat flow into and along the plates to the cooling fluid was modeled. Results were generated for various numbers of cells being cooled by a single cooling plate. The results provided cooling plate thickness, mass, and operating temperature of the plates. It was determined that utilizing high-conductivity pyrolitic graphite cooling plates can provide a specific cooling capacity (W/kg) equivalent to or potentially greater than a conventional internal cooling loop system.

  1. Thermal Analysis for Ion-Exchange Column System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models weremore » used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.« less

  2. Thermostructural analysis of a scramjet fuel-injection strut

    NASA Technical Reports Server (NTRS)

    Wieting, A. R.; Thornton, E. A.

    1978-01-01

    Results of a thermal/structural design analysis study of a fuel injection strut for an airframe integrated hydrogen cooled scramjet are presented. It is indicated that a feasible thermal/structural concept has been identified for the static load conditions and that thermal stresses dominate the response. It is suggested that the response of the concept to dynamic loads be investigated.

  3. Direct measurements and analysis of skin friction and cooling downstream of multiple flush-slot injection into a turbulent Mach 6 boundary layer

    NASA Technical Reports Server (NTRS)

    Howard, F. G.; Strokowski, A. J.

    1978-01-01

    Experiments were conducted to determine the reduction in surface skin friction and the effectiveness of surface cooling downstream of one to four successive flush slots injecting cold air at an angle of 10 deg into a turbulent Mach 6 boundary layer. Data were obtained by direct measurement of surface shear and equilibrium temperatures, respectively. Increasing the number of slots decreased the skin friction, but the incremental improvement in skin-friction reduction decreased as the number of slots was increased. Cooling effectiveness was found to improve, for a given total mass injection, as the number of slots was increased from one to four. Comparison with previously reported step-slot data, however, indicated that step slots with tangential injection are more effective for both reducing skin friction and cooling than the present flush-slot configuration. Finite-difference predictions are in reasonable agreement with skin-friction data and with boundary-layer profile data.

  4. Response in the water quality of the Salton Sea, California, to changes in phosphorus loading: An empirical modeling approach

    USGS Publications Warehouse

    Robertson, Dale M.; Schladow, S.G.

    2008-01-01

    Salton Sea, California, like many other lakes, has become eutrophic because of excessive nutrient loading, primarily phosphorus (P). A Total Maximum Daily Load (TMDL) is being prepared for P to reduce the input of P to the Sea. In order to better understand how P-load reductions should affect the average annual water quality of this terminal saline lake, three different eutrophication programs (BATHTUB, WiLMS, and the Seepage Lake Model) were applied. After verifying that specific empirical models within these programs were applicable to this saline lake, each model was calibrated using water-quality and nutrient-loading data for 1999 and then used to simulate the effects of specific P-load reductions. Model simulations indicate that a 50% decrease in external P loading would decrease near-surface total phosphorus concentrations (TP) by 25-50%. Application of other empirical models demonstrated that this decrease in loading should decrease near-surface chlorophyll a concentrations (Chl a) by 17-63% and increase Secchi depths (SD) by 38-97%. The wide range in estimated responses in Chl a and SD were primarily caused by uncertainty in how non-algal turbidity would respond to P-load reductions. If only the models most applicable to the Salton Sea are considered, a 70-90% P-load reduction is required for the Sea to be classified as moderately eutrophic (trophic state index of 55). These models simulate steady-state conditions in the Sea; therefore, it is difficult to ascertain how long it would take for the simulated changes to occur after load reductions. ?? 2008 Springer Science+Business Media B.V.

  5. Single Crystal Casting with Fluidized Carbon Bed Cooling: A Process Innovation for Quality Improvement and Cost Reduction

    NASA Astrophysics Data System (ADS)

    Hofmeister, M.; Franke, M. M.; Koerner, C.; Singer, R. F.

    2017-12-01

    Superalloy gas turbine blades are being produced by investment casting and directional solidification. A new process, Fluidized Carbon Bed Cooling (FCBC), has been developed and is now being optimized in a prototype casting unit with 10 kg pouring weight. In early test runs with still rather simple mold cluster geometries, a reduction of the primary dendrite arm spacing of around 40 pct compared to the standard radiation cooling process (HRS) could be demonstrated. The improvement is mainly attributed to higher temperature gradients driving solidification, made possible by a functioning Dynamic Baffle. Compared to earlier development efforts in the literature, contamination of the melt and damage to the equipment are avoided using carbon-based fluidized bed materials and the so-called "counter pressure concept."

  6. Adaption of the LHC cold mass cooling system to the requirements of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Kotnig, C.; Tavian, L.; Brenn, G.

    2017-12-01

    The cooling of the superconducting magnet cold masses with superfluid helium (He II) is a well-established concept successfully in operation for years in the LHC. Consequently, its application for the cooling of FCC magnets is an obvious option. The 12-kW heat loads distributed over 10-km long sectors not only require an adaption of the magnet bayonet heat exchangers but also present new challenges to the cryogenic plants, the distribution system and the control strategy. This paper recalls the basic LHC cooling concept with superfluid helium and defines the main parameters for the adaption to the FCC requirements. Pressure drop and hydrostatic head are developed in the distribution and pumping systems; their impact on the magnet temperature profile and the corresponding cooling efficiency is presented and compared for different distribution and pumping schemes.

  7. A pump driving liquid cooling circuit method for the aperture of an infrared cold optical system

    NASA Astrophysics Data System (ADS)

    Xie, RongJian

    2017-06-01

    To enhance the optical recognition and wavelength filtering of an infrared cold optical system, some lens need to be maintained within a certain temperature range, which requires specific thermal management of the aperture. A 250K liquid cooling circuit designed for this purpose is introduced, and the experimental results established and operated in a vacuum environmental simulation chamber is carried out and analyzed. A practical cooling power source of radiation cooling equipment is adopted and the sun exposure heat load is imitated by array of planar membrane heaters attached on the specific designed structure of the aperture. Controlling the aperture temperature and improving the optical system performance are proved effective. Numerical optimization of the cooling circuit and simulation of the aperture are performed , and the factors affect the optical system performance in the mean time are also investigated.

  8. The experimental program for high pressure gas filled radio frequency cavities for muon cooling channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freemire, B.; Chung, M.; Hanlet, P. M.

    An intense beam of muons is needed to provide a luminosity on the order of 10 34 cm -2s -1 for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling—the only cooling method that works within the lifetime of the muon—and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam.more » Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized.« less

  9. The experimental program for high pressure gas filled radio frequency cavities for muon cooling channels

    DOE PAGES

    Freemire, B.; Chung, M.; Hanlet, P. M.; ...

    2018-01-30

    An intense beam of muons is needed to provide a luminosity on the order of 10 34 cm -2s -1 for a multi-TeV collider. Because muons produced by colliding a multi-MW proton beam with a target made of carbon or mercury have a large phase space, significant six dimensional cooling is required. Through ionization cooling—the only cooling method that works within the lifetime of the muon—and emittance exchange, the desired emittances for a Higgs Factory or higher energy collider are attainable. A cooling channel utilizing gas filled radio frequency cavities has been designed to deliver the requisite cool muon beam.more » Technology development of these RF cavities has progressed from breakdown studies, through beam tests, to dielectric loaded and reentrant cavity designs. The results of these experiments are summarized.« less

  10. Active cooling of microvascular composites for battery packaging

    NASA Astrophysics Data System (ADS)

    Pety, Stephen J.; Chia, Patrick X. L.; Carrington, Stephen M.; White, Scott R.

    2017-10-01

    Batteries in electric vehicles (EVs) require a packaging system that provides both thermal regulation and crash protection. A novel packaging scheme is presented that uses active cooling of microvascular carbon fiber reinforced composites to accomplish this multifunctional objective. Microvascular carbon fiber/epoxy composite panels were fabricated and their cooling performance assessed over a range of thermal loads and experimental conditions. Tests were performed for different values of coolant flow rate, channel spacing, panel thermal conductivity, and applied heat flux. More efficient cooling occurs when the coolant flow rate is increased, channel spacing is reduced, and thermal conductivity of the host composite is increased. Computational fluid dynamics (CFD) simulations were also performed and correlate well with the experimental data. CFD simulations of a typical EV battery pack confirm that microvascular composite panels can adequately cool battery cells generating 500 W m-2 heat flux below 40 °C.

  11. Comparison of ground-coupled solar-heat-pump systems to conventional systems for residential heating, cooling and water heating

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.; Hughes, P. J.

    1981-07-01

    An analysis is performed of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating is determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, DC; Fort Worth, Texas; and Madison, Wisconsin. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Fort Worth. Though the ground-coupled stand-alone heat pump provides 51 percent of the heating and cooling load with non-purchased energy in Fort Worth, its thermal performance in Washington and Madison is poor.

  12. A 1.8K refrigeration cryostat with 100 hours continuous cooling

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Li, Jian; Huang, Rongjin; Li, Laifeng

    2017-02-01

    A refrigeration cryostat has been developed to produce continuous cooling to a sample below 1.8 K over 100 hours by using a cryocooler. A two-stage 4K G-M cryocooler is used to liquefy helium gas from evacuated vapor and cylinder helium bottle which can be replaced during the cooling process. The liquid helium transfer into superfluid helium in a Joule-Thomson valve in connection with a 1000 m3/h pumping unit. The pressure of evacuated helium vapor is controlled by air bag and valves. A copper decompression chamber, which is designed as a cooling station to control the superfluid helium, is used to cool the sample attached on it uniformly. The sample connects to the copper chamber in cryostat with screw thread. The cryostat can reach the temperature of 1.7 K without load and the continuous working time is more than 100 hours.

  13. Ground Source Heat Pump Computational Results

    DOE Data Explorer

    James Menart

    2013-07-31

    This data submission includes simulation results for ground loop heat pump systems located in 6 different cities across the United States. The cities are Boston, MA, Dayton, OH, Omaha, NE, Orlando, FL, Sacramento, CA, and St. Paul, MN. These results were obtained from the two-dimensional geothermal computer code called GEO2D. GEO2D was written as part of this DOE funded grant. The results included in this submission for each of the 6 cities listed above are: 1) specific information on the building being heated or cooled by the ground loop geothermal system, 2) some extreme values for the building heating and cooling loads during the year, 3) the inputs required to carry out the simulation, 4) a plot of the hourly building heating and cooling loads throughout the year, 5) a plot of the fluid temperature exiting the ground loop for a 20 year period, 6) a plot of the heat exchange between the ground loop and the ground for a 20 year period, and 7) ground and ground loop temperature contour plots at different times of the year for the 20 year period.

  14. Simulation of a 3D MOT-Optical Molasses Hybrid for Potassium-41 Atoms

    NASA Astrophysics Data System (ADS)

    Peterson, W. A.; Wrubel, Jonathan

    2017-04-01

    We report a design and numerical model for a 3D magneto-optical trap (MOT)-optical molasses hybrid for potassium-41 atoms. In this arrangement, the usual quadrupole magnetic field is replaced by an octupole field. The octupole field has a central region of very low magnetic field where our simulations show that the atoms experience an optical molasses, resulting in sub-doppler cooling not possible in a quadrupole MOT. The simulations also show that the presence of the magneto-optical trapping force at the edge of the cooling beams provides a restoring force which cycles atoms through the molasses region. We plan to use this hybrid trap to directly load a far off-resonance optical dipole trap. Because the atoms are recycled for multiple passes through the molasses, we expect a higher phase-space density of atoms loaded into the dipole trap. Similar hybrid cooling schemes should be relevant for lithium-6 and lithium-7, which also have poorly resolved D2 hyperfine structure. Research Corporation for Science Advancement, Cottrell College Science Award.

  15. Reduction of date microbial load with ozone

    PubMed Central

    Farajzadeh, Davood; Qorbanpoor, Ali; Rafati, Hasan; Isfeedvajani, Mohsen Saberi

    2013-01-01

    Background: Date is one of the foodstuffs that are produced in tropical areas and used worldwide. Conventionally, methyl bromide and phosphine are used for date disinfection. The toxic side effects of these usual disinfectants have led food scientists to consider safer agents such as ozone for disinfection, because food safety is a top priority. The present study was performed to investigate the possibility of replacing common conventional disinfectants with ozone for date disinfection and microbial load reduction. Materials and Methods: In this experimental study, date samples were ozonized for 3 and 5 hours with 5 and 10 g/h concentrations and packed. Ozonized samples were divided into two groups and kept in an incubator which was maintained at 25°C and 40°C for 9 months. During this period, every 3 month, microbial load (bacteria, mold, and yeast) were examined in ozonized and non-ozonized samples. Results: This study showed that ozonization with 5 g/h for 3 hours, 5 g/h for 5 hours, 10 g/h for 3 hours, and 10 g/h for 5 hours leads to about 25%, 25%, 53%, and 46% reduction in date mold and yeast load and about 6%, 9%, 76%, and 74.7% reduction in date bacterial load at baseline phase, respectively. Appropriate concentration and duration of ozonization for microbial load reduction were 10 g/h and 3 hours. Conclusion: Date ozonization is an appropriate method for microbial load reduction and leads to an increase in the shelf life of dates. PMID:24124432

  16. Modeling of a solar-assisted hybrid absorption/desiccant system for applications in Puerto Rico and the Caribbean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, H.R.; Gonzalez, J.E.; Khan, A.Y.

    1996-11-01

    This study is concerned with the feasibility of different arrangements of solar-assisted air conditioning systems for applications in Puerto Rico. The thermodynamic performance of an absorption system alone and coupled to a liquid or a solid desiccant dehumidification system was investigated under variable cooling load conditions. The dynamic modeling was based on heat and mass balances for the systems components. Simulations for climatic conditions in Puerto Rico show that average solar fractions of more than 85% can be achieved with both the absorption system and the hybrid systems for medium size cooling loads. Results indicate that higher coefficients of performancemore » are obtained when the solar assisted absorption system is not coupled to a desiccant dehumidification system.« less

  17. Apparatus for consolidating a pre-impregnated, filament-reinforced polymeric prepreg material

    NASA Technical Reports Server (NTRS)

    Sandusky, Donald A. (Inventor)

    1995-01-01

    An apparatus and method were developed for providing a uniform, consolidated, unidirectional, continuous, fiber-reinforced polymeric material. The apparatus comprises a supply means, a forming means, a shaping means, and a take-up means. The forming means further comprises a pre-melting chamber and a stationary bar assembly. The shaping means is a loaded cooled nip-roller apparatus. Forming takes place by heating a polymeric prepreg material to a temperature where the polymer becomes viscous and applying pressure gradients at separate locations along the prepreg material. Upon exiting the forming means, the polymeric prepreg material is malleable, consolidated, and flattened. Shaping takes place by passing the malleable, consolidated, flattened prepreg material through a shaped, matched groove in a loaded, cooled nip-roller apparatus to provide the final solid product.

  18. Noninvasive investigation of skin local hypothermia influence upon local oxygenation and hemoglobin concentration

    NASA Astrophysics Data System (ADS)

    Douplik, Alexandre Y.; Kessler, Manfred D.; Kakihana, Yasuyuki; Krug, Alfons

    1997-08-01

    Functional evaluation of local hemoglobin concentration and hemoglobin oxygenation based on back scattering spectra from human skin in vivo have been obtained in visible range (502 - 628 nm) by a rapid microlightguide spectrometer (EMPHO II) with step 250 micrometer. Analysis of received results has shown that during local cooling there is two nearly simultaneous reactions: reduction of hemoglobin concentration and increase of hemoglobin oxygenation level. In a case when one has used previous heating of planning place for cooling, reduction of hemoglobin concentration is expressed higher by 22 - 33%.

  19. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.

  20. Effects of processing parameters on immersion vacuum cooling time and physico-chemical properties of pork hams.

    PubMed

    Feng, Chao-Hui; Drummond, Liana; Zhang, Zhi-Hang; Sun, Da-Wen

    2013-10-01

    The effects of agitation (1002 rpm), different pressure reduction rates (60 and 100 mbar/min), as well as employing cold water with different initial temperatures (IWT: 7 and 20°C) on immersion vacuum cooling (IVC) of cooked pork hams were experimentally investigated. Final pork ham core temperature, cooling time, cooling loss, texture properties, colour and chemical composition were evaluated. The application for the first time of agitation during IVC substantially reduced the cooling time (47.39%) to 4.6°C, compared to IVC without agitation. For the different pressure drop rates, there was a trend that shorter IVC cooling times were achieved with lower cooling rate, although results were not statistically significant (P>0.05). For both IWTs tested, the same trend was observed: shorter cooling time and lower cooling loss were obtained under lower linear pressure drop rate of 60 mbar/min (not statistically significant, P>0.05). Compared to the reference cooling method (air blast cooling), IVC achieved higher cooling rates and better meat quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Accceleration of Fatigue Tests of Polymer Composite Materials by Using High-Frequency Loadings

    NASA Astrophysics Data System (ADS)

    Apinis, R.

    2004-03-01

    The possibility of using high-frequency loading in fatigue tests of polymer composite materials is discussed. A review of studies on the use of high-frequency loading of organic-, carbon-, and glass-fiber-reinforced plastics is presented. The results obtained are compared with those found in conventional low-frequency loadings. A rig for fatigue tests of rigid materials at loading frequencies to 500 Hz is described, and results for an LM-L1 unidirectional glass-fiber plastic in loadings with frequencies of 17 and 400 Hz are given. These results confirm that it is possible to accelerate the fatigue testing of polymer composite materials by considerably increasing the loading frequency. The necessary condition for using this method is an intense cooling of specimens to prevent them from vibration heating.

  2. Hybrid Geothermal Heat Pumps for Cooling Telecommunications Data Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckers, Koenraad J; Zurmuhl, David P.; Lukawski, Maciej Z.

    The technical and economic performance of geothermal heat pump (GHP) systems supplying year-round cooling to representative small data centers with cooling loads less than 500 kWth were analyzed and compared to air-source heat pumps (ASHPs). A numerical model was developed in TRNSYS software to simulate the operation of air-source and geothermal heat pumps with and without supplementary air cooled heat exchangers - dry coolers (DCs). The model was validated using data measured at an experimental geothermal system installed in Ithaca, NY, USA. The coefficient of performance (COP) and cooling capacity of the GHPs were calculated over a 20-year lifetime andmore » compared to the performance of ASHPs. The total cost of ownership (TCO) of each of the cooling systems was calculated to assess its economic performance. Both the length of the geothermal borehole heat exchangers (BHEs) and the dry cooler temperature set point were optimized to minimize the TCO of the geothermal systems. Lastly, a preliminary analysis of the performance of geothermal heat pumps for cooling dominated systems was performed for other locations including Dallas, TX, Sacramento, CA, and Minneapolis, MN.« less

  3. High Efficiency Variable Speed Versatile Power Air Conditioning System

    DTIC Science & Technology

    2013-08-08

    Design concept applicable for wide range of HVAC and refrigeration systems • One TXV size can be used for a wide range of cooling capacity...versatility, can run from AC and DC sources Cooling load adaptive, variable Speed Fully operable up to 140 degrees Fahrenheit 15. SUBJECT TERMS 16. SECURITY...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 High Efficiency HVAC &R Technology

  4. Overland Mobility of the Forces in the Canadian Environment,

    DTIC Science & Technology

    1977-01-14

    to refer to prior kowledge and this is typified by the I examples of data bank Input In Fig 1. The data ublch Is used may be broadly classifiled as...I tics, suspension as a mobility limiting factor. k. The Enzine Compartment - selection of engines, power require- Seats, load factors, fuel...consumption, specific bulk, specific weight, cooling requirements, parasitic power losses. cooling - system design, fan types and applications, air flow in 3

  5. Estimated Metabolic Heat Production of Helicopter Aircrew Members during Operations in Iraq and Afghanistan

    DTIC Science & Technology

    2012-04-01

    3.1 % RH. The microclimate within helicopters can be extreme, with elevated air temperatures, relative humidity, and solar load, with the greenhouse...experienced by helicopter pilots. Katz et al. (11) reported that an Air Warrior Chemical Protective ensemble with microclimate cooling was effective...study showed that a microclimate cooling system worn next to the skin could alleviate some of the thermal burden experienced (10). Banta and Braun

  6. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  7. Wind Loads on Flat Plate Photovoltaic Array Fields

    NASA Technical Reports Server (NTRS)

    Miller, R.; Zimmerman, D.

    1979-01-01

    The aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays were investigated. Local pressure distributions and total aerodynamic forces on the arrays are shown. Design loads are presented to cover the conditions of array angles relative to the ground from 20 deg to 60 deg, variable array spacings, a ground clearance gap up to 1.2 m (4 ft) and array slant heights of 2.4 m (8 ft) and 4.8 m (16 ft). Several means of alleviating the wind loads on the arrays are detailed. The expected reduction of the steady state wind velocity with the use of fences as a load alleviation device are indicated to be in excess of a factor of three for some conditions. This yields steady state wind load reductions as much as a factor of ten compared to the load incurred if no fence is used to protect the arrays. This steady state wind load reduction is offset by the increase in turbulence due to the fence but still an overall load reduction of 2.5 can be realized. Other load alleviation devices suggested are the installation of air gaps in the arrays, blocking the flow under the arrays and rounding the edges of the array. A wind tunnel test plan to supplement the theoretical study and to evaluate the load alleviation devices is outlined.

  8. Direct and semi-direct effects of aerosol climatologies on long-term climate simulations over Europe

    NASA Astrophysics Data System (ADS)

    Schultze, Markus; Rockel, Burkhardt

    2017-08-01

    This study compares the direct and semi-direct aerosol effects of different annual cycles of tropospheric aerosol loads for Europe from 1950 to 2009 using the regional climate model COSMO-CLM, which is laterally forced by reanalysis data and run using prescribed, climatological aerosol optical properties. These properties differ with respect to the analysis strategy and the time window, and are then used for the same multi-decadal period. Five simulations with different aerosol loads and one control simulation without any tropospheric aerosols are integrated and compared. Two common limitations of our simulation strategy, to fully assess direct and semi-direct aerosol effects, are the applied observed sea surface temperatures and sea ice conditions, and the lack of short-term variations in the aerosol load. Nevertheless, the impact of different aerosol climatologies on common regional climate model simulations can be assessed. The results of all aerosol-including simulations show a distinct reduction in solar irradiance at the surface compared with that in the control simulation. This reduction is strongest in the summer season and is balanced primarily by a weakening of turbulent heat fluxes and to a lesser extent by a decrease in longwave emissions. Consequently, the seasonal mean surface cooling is modest. The temperature profile responses are characterized by a shallow near-surface cooling and a dominant warming up to the mid-troposphere caused by aerosol absorption. The resulting stabilization of stratification leads to reduced cloud cover and less precipitation. A decrease in cloud water and ice content over Central Europe in summer possibly reinforce aerosol absorption and thus strengthen the vertical warming. The resulting radiative forcings are positive. The robustness of the results was demonstrated by performing a simulation with very strong aerosol forcing, which lead to qualitatively similar results. A distinct added value over the default aerosol setup of Tanré et al. (1984) was found in the simulations with more recent aerosol data sets for solar irradiance. The improvements are largest under low cloud conditions, while overestimated cloud cover in all setups causes a common underestimation of low and medium values of solar irradiance. In addition, the prevalent cold bias in the COSMO-CLM is reduced in winter and spring when using updated aerosol data. Our results emphasize the importance of semi-direct aerosol effects, especially over Central Europe in terms of changes in turbulent fluxes and changes in cloud properties. We also suggest to replace the default Tanré et al. (1984) aerosol climatology with more recent and realistic data sets. Thereby, a better model performance in comparison to observations can be achieved, or the masking of model shortcomings due to a too strong direct aerosol forcing thus far is prevented.

  9. Changes made on a 2.7-m long superconducting solenoid magnet cryogenic system that allowed the magnet to be kept cold using 4 K pulse tube coolers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, M. A.; Pan, H.; Preece, R. M.

    2014-01-29

    Two 2.7-m long solenoid magnets with a cold mass of 1400 kg were fabricated in between 2007 and 2010. The magnet cryostat outside diameter is ∼1.4 meters and the cryostat length is ∼2.73 meters. The magnet warm bore is 0.4 meters. The magnet was designed to be cooled using three 1.5 W two-stage coolers. In both magnets, three coolers could not keep the cryostat filled with liquid helium. The temperatures of the shield and the tops of the HTS leads were too warm. A 140 W single stage cooler was added to magnet 2 to cool the HTS leads, themore » shield and the cold mass support intercepts. When the magnet 2 was retested in 2010, the net cooling at 4.2 K was −1.5 W with first-stage temperatures of the four coolers at ∼42 K. The tops of the HTS leads were <50 K, but the shield and cold mass support intercepts remained too warm. The solenoid cryostat and shield were modified during 2011 and 2012 to reduce the 4.2 K heat load and increase the cooling. This magnet was tested in 2012, with five 1.5 W two-stage coolers and the single stage cooler. The changes made in the magnet are described in this report. As a result of the cryostat and shield changes, and adding 3.0 W of cooling at 4.2 K, the net 4.2 K cooling changed from −1.6 W to +5.0 W. About half of the change in net cooling to this magnet was due changes that reduced the shield temperature. This report demonstrates the importance of running the shield cold (∼40 K) and reducing the heat loads from all sources on both the shield and the cold mass.« less

  10. Total Thermal Management of Battery Electric Vehicles (BEVs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, Jason A; Rugh, John P; Winkler, Jonathan M

    The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal subsystem loads can reduce the drive range by as much as 45% under ambient temperatures below -10 degrees C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this rangemore » loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs. Demonstrated on a 2015 Fiat 500e BEV, this system integrates a semi-hermetic refrigeration loop with a coolant network and serves three functions: (1) heating and/or cooling vehicle traction components (battery, power electronics, and motor) (2) heating and cooling of the cabin, and (3) waste energy harvesting and re-use. The modes of operation allow a heat pump and air conditioning system to function without reversing the refrigeration cycle to improve thermal efficiency. The refrigeration loop consists of an electric compressor, a thermal expansion valve, a coolant-cooled condenser, and a chiller, the latter two exchanging heat with hot and cold coolant streams that may be directed to various components of the thermal system. The coolant-based heat distribution is adaptable and saves significant amounts of refrigerant per vehicle. Also, a coolant-based system reduces refrigerant emissions by requiring fewer refrigerant pipe joints. The authors present bench-level test data and simulation analysis and describe a preliminary control scheme for this system.« less

  11. Study of a fail-safe abort system for an actively cooled hypersonic aircraft. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    Pirello, C. J.; Herring, R. L.

    1976-01-01

    Conceptual designs of a fail-safe abort system for hydrogen fueled actively cooled high speed aircraft are examined. The fail-safe concept depends on basically three factors: (1) a reliable method of detecting a failure or malfunction in the active cooling system, (2) the optimization of abort trajectories which minimize the descent heat load to the aircraft, and (3) fail-safe thermostructural concepts to minimize both the weight and the maximum temperature the structure will reach during descent. These factors are examined and promising approaches are evaluated based on weight, reliability, ease of manufacture and cost.

  12. Developments in TurboBrayton Technology for Low Temperature Applications

    NASA Technical Reports Server (NTRS)

    Swift, W. L.; Zagarola, M. V.; Nellis, G. F.; McCormick, J. A.; Gibbon, Judy

    1999-01-01

    A single stage reverse Brayton cryocooler using miniature high-speed turbomachines recently completed a successful space shuttle test flight demonstrating its capabilities for use in cooling the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope (HST). The NICMOS CryoCooler (NCC) is designed for a cooling load of about 8 W at 65 K, and comprises a closed loop cryocooler coupled to an independent cryogenic circulating loop. Future space applications involve instruments that will require 5 mW to 200 mW of cooling at temperatures between 4 K and 10 K. This paper discusses the extension of Turbo-Brayton technology to meet these requirements.

  13. An investigation of the accuracy of the Merkel equation for evaporative cooling tower calculations. Waste heat management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadigaroglu, G.; Pastor, E.J.

    1974-01-01

    The exact differential equations governing heat and mass transfer and air flow in an evaporative, natural-draft cooling tower are presented. The Merkel equation is then derived starting from this exact formulation and showing all the approximations involved. The Merkel formulation lumps the sensible and the latent heat transfer together and considers a single enthalpy-difference driving force for the total heat transfer. The effect of the approximations inherent in the Merkel equation is investigated and analyzed by a series of parametric numerical calculations of cooling tower performance under various ambient conditions and load conditions.

  14. Subcontracted activities related to TES for building heating and cooling

    NASA Technical Reports Server (NTRS)

    Martin, J.

    1980-01-01

    The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.

  15. Structural characterization and low-temperature properties of Ru/C multilayer monochromators with different periodic thicknesses.

    PubMed

    Jiang, Hui; He, Yan; He, Yumei; Li, Aiguo; Wang, Hua; Zheng, Yi; Dong, Zhaohui

    2015-11-01

    Ru/C multilayer monochromators with different periodic thicknesses were investigated using X-ray grazing-incidence reflectivity, diffuse scattering, Bragg imaging, morphology testing, etc. before and after cryogenic cooling. Quantitative analyses enabled the determination of the key multilayer structural parameters for samples with different periodic thicknesses, especially the influence from the ruthenium crystallization. The results also reveal that the basic structures and reflection performance keep stable after cryogenic cooling. The low-temperature treatment smoothed the surfaces and interfaces and changed the growth characteristic to a low-frequency surface figure. This study helps with the understanding of the structure evolution of multilayer monochromators during cryogenic cooling and presents sufficient experimental proof for using cryogenically cooled multilayer monochromators in a high-thermal-load undulator beamline.

  16. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    DOE PAGES

    Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor; ...

    2018-05-08

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less

  17. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less

  18. Thermoregulatory consequences of salt loading in the lizard Pogona vitticeps.

    PubMed

    Scarpellini, Carolina da Silveira; Bícego, Kênia C; Tattersall, Glenn J

    2015-04-15

    Previous research has demonstrated that dehydration increases the threshold temperature for panting and decreases the thermal preference of lizards. Conversely, it is unknown whether thermoregulatory responses such as shuttling and gaping are similarly influenced. Shuttling, as an active behavioural response, is considered one of the most effective thermoregulatory behaviours, whereas gaping has been proposed to be involved in preventing brain over-heating in lizards. In this study we examined the effect of salt loading, a proxy for increased plasma osmolality, on shuttling and gaping in Pogona vitticeps. Then, we determined the upper and lower escape ambient temperatures (UETa and LETa), the percentage of time spent gaping, the metabolic rate (V̇O2 ), the evaporative water loss (EWL) during gaping and non-gaping intervals and the evaporative effectiveness (EWL/V̇O2 ) of gaping. All experiments were performed under isotonic (154 mmol l(-1)) and hypertonic saline injections (625, 1250 or 2500 mmol l(-1)). Only the highest concentration of hypertonic saline altered the UETa and LETa, but this effect appeared to be the result of diminishing the animal's propensity to move, instead of any direct reduction in thermoregulatory set-points. Nevertheless, the percentage of time spent gaping was proportionally reduced according to the saline concentration; V̇O2 was also decreased after salt loading. Thermographic images revealed lower head than body surface temperatures during gaping; however this difference was inhibited after salt loading. Our data suggest that EWL/V̇O2 is raised during gaping, possibly contributing to an increase in heat transfer away from the lizard, and playing a role in head or brain cooling. © 2015. Published by The Company of Biologists Ltd.

  19. Surface runoff and tile drainage transport of phosphorus in the midwestern United States.

    PubMed

    Smith, Douglas R; King, Kevin W; Johnson, Laura; Francesconi, Wendy; Richards, Pete; Baker, Dave; Sharpley, Andrew N

    2015-03-01

    The midwestern United States offers some of the most productive agricultural soils in the world. Given the cool humid climate, much of the region would not be able to support agriculture without subsurface (tile) drainage because high water tables may damage crops and prevent machinery usage in fields at critical times. Although drainage is designed to remove excess soil water as quickly as possible, it can also rapidly transport agrochemicals, including phosphorus (P). This paper illustrates the potential importance of tile drainage for P transport throughout the midwestern United States. Surface runoff and tile drainage from fields in the St. Joseph River Watershed in northeastern Indiana have been monitored since 2008. Although the traditional concept of tile drainage has been that it slowly removes soil matrix flow, peak tile discharge occurred at the same time as peak surface runoff, which demonstrates a strong surface connection through macropore flow. On our research fields, 49% of soluble P and 48% of total P losses occurred via tile discharge. Edge-of-field soluble P and total P areal loads often exceeded watershed-scale areal loadings from the Maumee River, the primary source of nutrients to the western basin of Lake Erie, where algal blooms have been a pervasive problem for the last 10 yr. As farmers, researchers, and policymakers search for treatments to reduce P loading to surface waters, the present work demonstrates that treating only surface runoff may not be sufficient to reach the goal of 41% reduction in P loading for the Lake Erie Basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Research: Testing of a Novel Portable Body Temperature Conditioner Using a Thermal Manikin.

    PubMed

    Heller, Daniel; Heller, Alex; Moujaes, Samir; Williams, Shelley J; Hoffmann, Ryan; Sarkisian, Paul; Khalili, Kaveh; Rockenfeller, Uwe; Browder, Timothy D; Kuhls, Deborah A; Fildes, John J

    2016-01-01

    A battery-operated active cooling/heating device was developed to maintain thermoregulation of trauma victims in austere environments while awaiting evacuation to a hospital for further treatment. The use of a thermal manikin was adopted for this study in order to simulate load testing and evaluate the performance of this novel portable active cooling/heating device for both continuous (external power source) and battery power. The performance of the portable body temperature conditioner (PBTC) was evaluated through cooling/heating fraction tests to analyze the heat transfer between a thermal manikin and circulating water blanket to show consistent performance while operating under battery power. For the cooling/heating fraction tests, the ambient temperature was set to 15°C ± 1°C (heating) and 30°C ± 1°C (cooling). The PBTC water temperature was set to 37°C for the heating mode tests and 15°C for the cooling mode tests. The results showed consistent performance of the PBTC in terms of cooling/heating capacity while operating under both continuous and battery power. The PBTC functioned as intended and shows promise as a portable warming/cooling device for operation in the field.

  1. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    PubMed

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  2. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    PubMed Central

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-01-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492

  3. Revisiting the climate impacts of cool roofs around the globe using an Earth system model

    NASA Astrophysics Data System (ADS)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George

    2016-08-01

    Solar reflective ‘cool roofs’ absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11 ± 0.10 K) and the United States (-0.14 ± 0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.

  4. Revisiting the Climate Impacts of Cool Roofs around the Globe Using an Earth System Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ban-Weiss, G. A.; Zhang, K.; Liu, J.

    2016-12-01

    Solar reflective "cool roofs" absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11±0.10 K) and the United States (-0.14±0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.

  5. Design and develop speed/pressure regulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanul Basher, A.M.

    1993-09-01

    The Physics Division at Oak Ridge National Laboratory has several recirculating water cooling systems. One of them supplies deionized water at 150 psi, which is mainly used for cooling magnet windings at the Oak Ridge Isochronous Cyclotron (ORIC). The system has three 125-hp water pumps, each of which is capable of supplying water at the rate of 1000 gpm. One of the major requirements of this water supply system is that the supply pressure must be kept constant. An adjustable-frequency speed controller was recently installed to control the speed of one of the pump motors. A servo-system was provided withmore » the adjustable-frequency controller for regulating motor speed and, subsequently, the water pressure. After unsuccessful attempts to operate the servo, it was concluded that the regulator may not work for the existing system. Prior to installation of the variable-frequency controller, pressure regulation was accomplished with a pneumatically controlled load by-pass valve. To maintain constant pressure in the system, it is necessary to run always at full load, even if full load is not on the system. Hence, there is a waste of energy when full load is not connected to the system. So, designing and implementing one regulator that works at any load condition has become necessary. This report discusses the design of such a pressure regulator.« less

  6. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    NASA Astrophysics Data System (ADS)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko

    2010-06-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  7. 40 CFR 467.33 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1.25 Aluminum 13.10 6.52 Subpart C Solution Heat Treatment Contact Cooling Water Pollutant or....24 Cyanide 0.39 0.16 Zinc 1.94 0.81 Aluminum 8.55 4.26 Subpart C Press Heat Treatment Contact Cooling...

  8. 40 CFR 467.33 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1.25 Aluminum 13.10 6.52 Subpart C Solution Heat Treatment Contact Cooling Water Pollutant or....24 Cyanide 0.39 0.16 Zinc 1.94 0.81 Aluminum 8.55 4.26 Subpart C Press Heat Treatment Contact Cooling...

  9. 40 CFR 467.33 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1.25 Aluminum 13.10 6.52 Subpart C Solution Heat Treatment Contact Cooling Water Pollutant or....24 Cyanide 0.39 0.16 Zinc 1.94 0.81 Aluminum 8.55 4.26 Subpart C Press Heat Treatment Contact Cooling...

  10. Use of NARCCAP Model Projections to Develop a Future Typical Meteorological Year and Estimate the Impact of a Changing Climate on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Patton, S. L.; Takle, E. S.; Passe, U.; Kalvelage, K.

    2013-12-01

    Current simulations of building energy consumption use weather input files based on the past thirty years of climate observations. These 20th century climate conditions may be inadequate when designing buildings meant to function well into the 21st century. An alternative is using model projections of climate change to estimate future risk to the built environment. In this study, model-projected changes in climate were combined with existing typical meteorological year data to create future typical meteorological year data. These data were then formatted for use in EnergyPlus simulation software to evaluate their potential impact on commercial building energy consumption. The modeled climate data were taken from the North American Regional Climate Change Assessment Program (NARCCAP). NARCCAP uses results of global climate models to drive regional climate models, also known as dynamical downscaling. This downscaling gives higher resolution results over specific locations, and the multiple global/regional climate model combinations provide a unique opportunity to quantify the uncertainty of climate change projections and their impacts. Our results show a projected decrease in heating energy consumption and a projected increase in cooling energy consumption for nine locations across the United States for all model combinations. Warmer locations may expect a decrease in heating load of around 30% to 45% and an increase in cooling load of around 25% to 35%. Colder locations may expect a decrease in heating load of around 15% to 25% and an increase in cooling load of around 40% to 70%. The change in net energy consumption is determined by the balance between the magnitudes of heating change and cooling change. Net energy consumption is projected to increase by an average of 5% for lower-latitude locations and decrease by an average of 5% for higher-latitude locations. With these projected annual and seasonal changes presenting strong evidence for the unsuitable nature of current building practices holding up under future climate change, we recommend using our methods and results to make modifications and adaptations to existing buildings and to aid in the design of future buildings.

  11. Evidence and mechanism of Hurricane Fran-Induced ocean cooling in the Charleston Trough

    NASA Astrophysics Data System (ADS)

    Xie, Lian; Pietrafesa, L. J.; Bohm, E.; Zhang, C.; Li, X.

    Evidence of enhanced sea surface cooling during and following the passage of Hurricane Fran in September 1996 over an oceanic depression located on the ocean margin offshore of Charleston, South Carolina (referred to as the Charleston Trough), [Pietrafesa, 1983] is documented. Approximately 4C° of sea surface temperature (SST) reduction within the Charleston Trough following the passage of Hurricane Fran was estimated based on SST imagery from Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 polar orbiting satellite. Simulations using a three-dimensional coastal ocean model indicate that the largest SST reduction occurred within the Charleston Trough. This SST reduction can be explained by oceanic mixing due to storm-induced internal inertia-gravity waves.

  12. Experimental studies of transpiration cooling with shock interaction in hypersonic flow, part B

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.

    1994-01-01

    This report describes the result of experimental studies conducted to examine the effects of the impingement of an oblique shock on the flowfield and surface characteristics of a transpiration-cooled wall in turbulent hypersonic flow. The principal objective of this work was to determine whether the interaction between the oblique shock and the low-momentum region of the transpiration-cooled boundary layer created a highly distorted flowfield and resulted in a significant reduction in the cooling effectiveness of the transpiration-cooled surface. As a part of this program, we also sought to determine the effectiveness of transpiration cooling with nitrogen and helium injectants for a wide range of blowing rates under constant-pressure conditions in the absence of shock interaction. This experimental program was conducted in the Calspan 48-Inch Shock Tunnel at nominal Mach numbers of 6 and 8, for a Reynolds number of 7.5 x 10(exp 6). For these test conditions, we obtained fully turbulent boundary layers upstream of the interaction regions over the transpiration-cooled segment of the flat plate. The experimental program was conducted in two phases. In the first phase, we examined the effects of mass-addition level and coolant properties on the cooling effectiveness of transpiration-cooled surfaces in the absence of shock interaction. In the second phase of the program, we examined the effects of oblique shock impingement on the flowfield and surface characteristics of a transpiration-cooled surface. The studies were conducted for a range of shock strengths with nitrogen and helium coolants to examine how the distribution of heat transfer and pressure and the characteristics of the flowfield in the interaction region varied with shock strength and the level of mass addition from the transpiration-cooled section of the model. The effects of the distribution of the blowing rate along the interaction regions were also examined for a range of blowing rates through the transpiration-cooled panels. The regions of shockwave/boundary layer interaction examined in these studies were induced by oblique shocks generated with a sharp, flat plate, inclined to the freestream at angles of 5 degrees, 7.5 degrees, and 10 degrees. It was found that, in the absence of an incident shock, transpiration cooling was a very effective method for reducing both the heat transfer and the skin friction loads on the surface. The helium coolant was found to be significantly more effective than nitrogen, because of its low molecular weight and high specific heat. The studies of shock-wave/transpiration-cooled surface interaction demonstrated that the interaction region between the incident shock and the low-momentum transpiration-cooled boundary layer did not result in a significant increase in the size of attached or separated interaction regions, and did not result in significant flowfield distortions above the interaction region. The increase in heating downstream of the shock-impingement point could easily be reduced to the values without shock impingement by a relatively small increase in the transpiration cooling in this region. Surprisingly, this increase in cooling rate did not result in a significant increase in size of the region ahead of the incident shock or create a significantly enlarged interaction region with a resultant increase in the distortion level in the inviscid flow. Thus, transpiration cooling appears to be a very effective technique to cool the internal surfaces of scramjet engines, where shocks in the engine would induce large local increases in wall heating and create viscous/inviscid interactions that could significantly disturb the smooth flow through the combustor. However, if hydrogen is used as the coolant, burning upstream of shock impingement might result in localized hot spots. Clearly, further research is needed in this area.

  13. Characterisation and reduction of the EEG artefact caused by the helium cooling pump in the MR environment: validation in epilepsy patient data.

    PubMed

    Rothlübbers, Sven; Relvas, Vânia; Leal, Alberto; Murta, Teresa; Lemieux, Louis; Figueiredo, Patrícia

    2015-03-01

    The EEG acquired simultaneously with fMRI is distorted by a number of artefacts related to the presence of strong magnetic fields, which must be reduced in order to allow for a useful interpretation and quantification of the EEG data. For the two most prominent artefacts, associated with magnetic field gradient switching and the heart beat, reduction methods have been developed and applied successfully. However, a number of artefacts related to the MR-environment can be found to distort the EEG data acquired even without ongoing fMRI acquisition. In this paper, we investigate the most prominent of those artefacts, caused by the Helium cooling pump, and propose a method for its reduction and respective validation in data collected from epilepsy patients. Since the Helium cooling pump artefact was found to be repetitive, an average template subtraction method was developed for its reduction with appropriate adjustments for minimizing the degradation of the physiological part of the signal. The new methodology was validated in a group of 15 EEG-fMRI datasets collected from six consecutive epilepsy patients, where it successfully reduced the amplitude of the artefact spectral peaks by 95 ± 2 % while the background spectral amplitude within those peaks was reduced by only -5 ± 4 %. Although the Helium cooling pump should ideally be switched off during simultaneous EEG-fMRI acquisitions, we have shown here that in cases where this is not possible the associated artefact can be effectively reduced in post processing.

  14. Comparison of experimental and predicted performance of 150-millimeter-bore solid and drilled ball bearings to 3 million DN

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Munson, H. E.

    1974-01-01

    Seven 150-millimeter-bore ball bearings were run under 8900-newton (2000-lbf) thrust load at speeds from 6670 to 20,000 rpm (1 million to 3 million DN). Four of the bearings had conventional solid balls, and three bearings had drilled (cylindrically hollow) balls with 50-percent mass reduction. The bearings were under-race cooled and slot lubricated with a type 2 ester oil at flow rates from 4.35 x 0.001 to 5.94 x 0.001 cubic meter/min (1.15 to 1.57 gal/min). Friction torque and temperature were measured on all bearings. While there was considerable spread in the temperature data, the drilled ball bearings tended to run slightly cooler than the solid ball bearings at higher speeds. No significant difference in torque was noted, however, between the solid and drilled ball bearings. One bearing of each type was rerun at 17,800-newton (4000-lbf) thrust load. The solid ball bearings performed satisfactorily at 3 million DN. However, at about 2 million DN the drilled ball bearing experienced a broken ball, and cracks appeared in other balls as a result of flexure fatigue. Metallurgical examination of the cracked balls indicated a brittle structure in the bore of the drilled balls.

  15. Breaking Barriers to Low-Cost Modular Inverter Production & Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdan Borowy; Leo Casey; Jerry Foshage

    2005-05-31

    The goal of this cost share contract is to advance key technologies to reduce size, weight and cost while enhancing performance and reliability of Modular Inverter Product for Distributed Energy Resources (DER). Efforts address technology development to meet technical needs of DER market protection, isolation, reliability, and quality. Program activities build on SatCon Technology Corporation inverter experience (e.g., AIPM, Starsine, PowerGate) for Photovoltaic, Fuel Cell, Energy Storage applications. Efforts focused four technical areas, Capacitors, Cooling, Voltage Sensing and Control of Parallel Inverters. Capacitor efforts developed a hybrid capacitor approach for conditioning SatCon's AIPM unit supply voltages by incorporating several typesmore » and sizes to store energy and filter at high, medium and low frequencies while minimizing parasitics (ESR and ESL). Cooling efforts converted the liquid cooled AIPM module to an air-cooled unit using augmented fin, impingement flow cooling. Voltage sensing efforts successfully modified the existing AIPM sensor board to allow several, application dependent configurations and enabling voltage sensor galvanic isolation. Parallel inverter control efforts realized a reliable technique to control individual inverters, connected in a parallel configuration, without a communication link. Individual inverter currents, AC and DC, were balanced in the paralleled modules by introducing a delay to the individual PWM gate pulses. The load current sharing is robust and independent of load types (i.e., linear and nonlinear, resistive and/or inductive). It is a simple yet powerful method for paralleling both individual devices dramatically improves reliability and fault tolerance of parallel inverter power systems. A patent application has been made based on this control technology.« less

  16. Cryogenic performance of a conduction-cooling splittable quadrupole magnet for ILC cryomodules

    NASA Astrophysics Data System (ADS)

    Kimura, N.; Andreev, N.; Kashikhin, V. S.; Kerby, J.; Takahashi, M.; Tartaglia, M. A.; Tosaka, T.; Yamamoto, A.

    2014-01-01

    A conduction-cooled splittable superconducting quadrupole magnet was designed and fabricated at Fermilab for use in cryomodules of the International Linear Collider (ILC) type, in which the magnet was to be assembled around the beam tube to avoid contaminating the ultraclean superconducting radio frequency cavity volume. This quadrupole was first tested in a liquid helium bath environment at Fermilab, where its quench and magnetic properties were characterized. Because the device is to be cooled by conduction when installed in cryomodules, a separate test with a conduction-cooled configuration was planned at KEK and Fermilab. The magnet was converted to a conduction-cooled configuration by adding conduction-cooling passages made of high-purity aluminum. Efforts to convert and refabricate the magnet into a cryostat equipped with a double-stage pulse-tube-type cryocooler began in 2011, and a thermal performance test, including a magnet excitation test of up to 30 A, was conducted at KEK. In this test, the magnet with the conduction-cooled configuration was successfully cooled to 4 K within 190 h, with an acceptable heat load of less than 1 W at 4 K. It was also confirmed that the conduction-cooled splittable superconducting quadrupole magnet was practical for use in ILC-type cryomodules.

  17. Cooling improves the writing performance of patients with writer's cramp.

    PubMed

    Pohl, Christoph; Happe, Jörg; Klockgether, Thomas

    2002-11-01

    Cooling of hand and forearm muscles by immersion in 15 degrees C cold water for 5 minutes improved the writing performance of patients with writer's cramp. Since abnormal processing of muscle spindle afferent discharges contributes to the pathology of writer's cramp, this effect might result from a reduction in muscle spindle activity by lowering muscle temperature. Cooling is a simple, cheap, and safe procedure, providing temporary relief for patients with writer's cramp. Copyright 2002 Movement Disorder Society

  18. Reduction of greenhouse gases by fiber-loaded lightweight, high-opacity newsprint production

    Treesearch

    John H. Klungness; Matthew L. Stroika; Said M. Abubakr

    1999-01-01

    We estimated the effectiveness of fiber loading in reducing greenhouse gas emissions for producing lightweight high-opacity newsprint. Fiber loading enhances fiber bonding at increased precipitated calcium carbonate levels without significant loss in Canadian Standard Freeness or additional energy use. We investigated the reduction of greenhouse gas emissions for a...

  19. Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.

    2017-02-01

    Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.

  20. Small Business Voucher CRADA Report: Natural Gas Powered HVAC System for Commercial and Residential Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betts, Daniel; Ally, Moonis Raza; Mudiraj, Shyam

    Be Power Tech is commercializing BeCool, the first integrated electricity-producing heating, ventilation, and air conditioning (HVAC) system using a non-vapor compression cycle (VCC), packaged rooftop HVAC unit that also produces base-load electricity, heating, ventilation, and air conditioning. BeCool is a distributed energy resource with energy storage that eliminates the tremendous peak electricity demand associated with commonly used electricity-powered vapor compression air conditioning systems.

  1. Significance of aerosol radiative effect in energy balance control on global precipitation change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kentaroh; Stephens, Graeme L.; Golaz, Jean-Christophe

    Historical changes of global precipitation in the 20th century simulated by a climate model are investigated. The results simulated with alternate configurations of cloud microphysics are analyzed in the context of energy balance controls on global precipitation, where the latent heat changes associated with the precipitation change is nearly balanced with changes to atmospheric radiative cooling. The atmospheric radiative cooling is dominated by its clear-sky component, which is found to correlate with changes to both column water vapor and aerosol optical depth (AOD). The water vapor-dependent component of the clear-sky radiative cooling is then found to scale with global temperaturemore » change through the Clausius–Clapeyron relationship. This component results in a tendency of global precipitation increase with increasing temperature at a rate of approximately 2%K -1. Another component of the clear-sky radiative cooling, which is well correlated with changes to AOD, is also found to vary in magnitude among different scenarios with alternate configurations of cloud microphysics that controls the precipitation efficiency, a major factor influencing the aerosol scavenging process that can lead to different aerosol loadings. These results propose how different characteristics of cloud microphysics can cause different aerosol loadings that in turn perturb global energy balance to significantly change global precipitation. This implies a possible coupling of aerosol–cloud interaction with aerosol–radiation interaction in the context of global energy balance.« less

  2. Significance of aerosol radiative effect in energy balance control on global precipitation change

    DOE PAGES

    Suzuki, Kentaroh; Stephens, Graeme L.; Golaz, Jean-Christophe

    2017-10-17

    Historical changes of global precipitation in the 20th century simulated by a climate model are investigated. The results simulated with alternate configurations of cloud microphysics are analyzed in the context of energy balance controls on global precipitation, where the latent heat changes associated with the precipitation change is nearly balanced with changes to atmospheric radiative cooling. The atmospheric radiative cooling is dominated by its clear-sky component, which is found to correlate with changes to both column water vapor and aerosol optical depth (AOD). The water vapor-dependent component of the clear-sky radiative cooling is then found to scale with global temperaturemore » change through the Clausius–Clapeyron relationship. This component results in a tendency of global precipitation increase with increasing temperature at a rate of approximately 2%K -1. Another component of the clear-sky radiative cooling, which is well correlated with changes to AOD, is also found to vary in magnitude among different scenarios with alternate configurations of cloud microphysics that controls the precipitation efficiency, a major factor influencing the aerosol scavenging process that can lead to different aerosol loadings. These results propose how different characteristics of cloud microphysics can cause different aerosol loadings that in turn perturb global energy balance to significantly change global precipitation. This implies a possible coupling of aerosol–cloud interaction with aerosol–radiation interaction in the context of global energy balance.« less

  3. Improvement of the efficiency of a space oxygen-hydrogen electrochemical generator

    NASA Astrophysics Data System (ADS)

    Glukhikh, I. N.; Shcherbakov, A. N.; Chelyaev, V. F.

    2014-12-01

    This paper describes the method used for cooling of an on-board oxygen-hydrogen electrochemical generator (ECG). Apart from electric power, such a unit produces water of reaction and heat; the latter is an additional load on the thermal control system of a space vehicle. This load is undesirable in long-duration space flights, when specific energy characteristics of on-board systems are the determining factors. It is suggested to partially compensate the energy consumption by the thermal control system of a space vehicle required for cooling of the electrochemical generator through evaporation of water of reaction from the generator into a vacuum (or through ice sublimation if the pressure in the ambient space is lower than that in the triple point of water.) Such method of cooling of an electrochemical generator improves specific energy parameters of an on-board electric power supply system, and, due to the presence of the negative feedback, it makes the operation of this system more stable. Estimates suggest that it is possible to compensate approximately one half of heat released from the generator through evaporation of its water of reaction at the electrical efficiency of the electrochemical generator equal to 60%. In this case, even minor increase in the efficiency of the generator would result in a considerable increase in the efficiency of the evaporative system intended for its cooling.

  4. Experimental Study of a Hot Structure for a Reentry Vehicle

    NASA Technical Reports Server (NTRS)

    Pride, Richard A.; Royster, Dick M.; Helms, Bobbie F.

    1960-01-01

    A large structural model of a reentry vehicle has been built incorporating design concepts applicable to a radiation-cooled vehicle. Thermal-stress alleviating features of the model are discussed. Environmental tests on the model include approximately 100 cycles of loading at room temperature and 33 cycles of combined loading and-heating up to temperatures of 1,6000 F. Measured temperatures are shown for typical parts of the model. Comparisons are made between experimental and calculated deflections and strains. The structure successfully survived the heating and loading environments.

  5. Sources and potential application of waste heat utilization at a gas processing facility

    NASA Astrophysics Data System (ADS)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat recovery steam generators (WHRSGs), leaving 116 MW unutilized. The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0. To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively. In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.

  6. Differential temperature sensitivity of synaptic and firing processes in a neural mass model of epileptic discharges explains heterogeneous response of experimental epilepsy to focal brain cooling.

    PubMed

    Soriano, Jaymar; Kubo, Takatomi; Inoue, Takao; Kida, Hiroyuki; Yamakawa, Toshitaka; Suzuki, Michiyasu; Ikeda, Kazushi

    2017-10-01

    Experiments with drug-induced epilepsy in rat brains and epileptic human brain region reveal that focal cooling can suppress epileptic discharges without affecting the brain's normal neurological function. Findings suggest a viable treatment for intractable epilepsy cases via an implantable cooling device. However, precise mechanisms by which cooling suppresses epileptic discharges are still not clearly understood. Cooling experiments in vitro presented evidence of reduction in neurotransmitter release from presynaptic terminals and loss of dendritic spines at post-synaptic terminals offering a possible synaptic mechanism. We show that termination of epileptic discharges is possible by introducing a homogeneous temperature factor in a neural mass model which attenuates the post-synaptic impulse responses of the neuronal populations. This result however may be expected since such attenuation leads to reduced post-synaptic potential and when the effect on inhibitory interneurons is less than on excitatory interneurons, frequency of firing of pyramidal cells is consequently reduced. While this is observed in cooling experiments in vitro, experiments in vivo exhibit persistent discharges during cooling but suppressed in magnitude. This leads us to conjecture that reduction in the frequency of discharges may be compensated through intrinsic excitability mechanisms. Such compensatory mechanism is modelled using a reciprocal temperature factor in the firing response function in the neural mass model. We demonstrate that the complete model can reproduce attenuation of both magnitude and frequency of epileptic discharges during cooling. The compensatory mechanism suggests that cooling lowers the average and the variance of the distribution of threshold potential of firing across the population. Bifurcation study with respect to the temperature parameters of the model reveals how heterogeneous response of epileptic discharges to cooling (termination or suppression only) is exhibited. Possibility of differential temperature effects on post-synaptic potential generation of different populations is also explored.

  7. Differential temperature sensitivity of synaptic and firing processes in a neural mass model of epileptic discharges explains heterogeneous response of experimental epilepsy to focal brain cooling

    PubMed Central

    Inoue, Takao; Kida, Hiroyuki; Yamakawa, Toshitaka; Suzuki, Michiyasu

    2017-01-01

    Experiments with drug-induced epilepsy in rat brains and epileptic human brain region reveal that focal cooling can suppress epileptic discharges without affecting the brain’s normal neurological function. Findings suggest a viable treatment for intractable epilepsy cases via an implantable cooling device. However, precise mechanisms by which cooling suppresses epileptic discharges are still not clearly understood. Cooling experiments in vitro presented evidence of reduction in neurotransmitter release from presynaptic terminals and loss of dendritic spines at post-synaptic terminals offering a possible synaptic mechanism. We show that termination of epileptic discharges is possible by introducing a homogeneous temperature factor in a neural mass model which attenuates the post-synaptic impulse responses of the neuronal populations. This result however may be expected since such attenuation leads to reduced post-synaptic potential and when the effect on inhibitory interneurons is less than on excitatory interneurons, frequency of firing of pyramidal cells is consequently reduced. While this is observed in cooling experiments in vitro, experiments in vivo exhibit persistent discharges during cooling but suppressed in magnitude. This leads us to conjecture that reduction in the frequency of discharges may be compensated through intrinsic excitability mechanisms. Such compensatory mechanism is modelled using a reciprocal temperature factor in the firing response function in the neural mass model. We demonstrate that the complete model can reproduce attenuation of both magnitude and frequency of epileptic discharges during cooling. The compensatory mechanism suggests that cooling lowers the average and the variance of the distribution of threshold potential of firing across the population. Bifurcation study with respect to the temperature parameters of the model reveals how heterogeneous response of epileptic discharges to cooling (termination or suppression only) is exhibited. Possibility of differential temperature effects on post-synaptic potential generation of different populations is also explored. PMID:28981509

  8. Optimisation of multi-layer rotationally moulded foamed structures

    NASA Astrophysics Data System (ADS)

    Pritchard, A. J.; McCourt, M. P.; Kearns, M. P.; Martin, P. J.; Cunningham, E.

    2018-05-01

    Multi-layer skin-foam and skin-foam-skin sandwich constructions are of increasing interest in the rotational moulding process for two reasons. Firstly, multi-layer constructions can improve the thermal insulation properties of a part. Secondly, foamed polyethylene sandwiched between solid polyethylene skins can increase the mechanical properties of rotationally moulded structural components, in particular increasing flexural properties and impact strength (IS). The processing of multiple layers of polyethylene and polyethylene foam presents unique challenges such as the control of chemical blowing agent decomposition temperature, and the optimisation of cooling rates to prevent destruction of the foam core; therefore, precise temperature control is paramount to success. Long cooling cycle times are associated with the creation of multi-layer foam parts due to their insulative nature; consequently, often making the costs of production prohibitive. Devices such as Rotocooler®, a rapid internal mould water spray cooling system, have been shown to have the potential to significantly decrease cooling times in rotational moulding. It is essential to monitor and control such devices to minimise the warpage associated with the rapid cooling of a moulding from only one side. The work presented here demonstrates the use of threaded thermocouples to monitor the polymer melt in multi-layer sandwich constructions, in order to analyse the cooling cycle of multi-layer foamed structures. A series of polyethylene skin-foam test mouldings were produced, and the effect of cooling medium on foam characteristics, mechanical properties, and process cycle time were investigated. Cooling cycle time reductions of 45%, 26%, and 29% were found for increasing (1%, 2%, and 3%) chemical blowing agent (CBA) amount when using internal water cooling technology from ˜123°C compared with forced air cooling (FAC). Subsequently, a reduction of IS for the same skin-foam parts was found to be 1%, 4%, and 16% compared with FAC.

  9. Near term application of water cooling

    NASA Astrophysics Data System (ADS)

    Horner, M. W.; Caruvana, A.; Cohn, A.; Smith, D. P.

    1980-03-01

    The paper presents studies of combined gas and steam-turbine cycles related to the near term application of water cooling technology to the commercial gas turbine operating on heavy residual oil or coal derived liquid fuels. Water cooling promises significant reduction of hot corrosion and ash deposition at the turbine first-stage nozzle. It was found that: (1) corrosion of some alloys in the presence of alkali contaminant was less as metal temperatures were lowered to the 800-1000 F range, (2) the rate of ash deposition is increased for air-cooled and water-cooled nozzles at the 2060 F turbine firing temperature compared to 1850 F, (3) the ash deposit for the water cooled nozzle was lighter and more easily removed at both 1850 and 2050 F, (4) on-line nutshelling was effective on the water-cooled nozzles even at 2050 F, and (5) the data indicates that the rate of ash deposition may be sensitive to surface wall temperatures.

  10. 40 CFR 1066.410 - Dynamometer test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... configuration that allows for proper simulation of vehicle cooling during in-use operation, subject to our... simulation of the actual normal forces that the tire and dynamometer roll interface would see if a loaded...

  11. 40 CFR 1066.410 - Dynamometer test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... configuration that allows for proper simulation of vehicle cooling during in-use operation, subject to our... simulation of the actual normal forces that the tire and dynamometer roll interface would see if a loaded...

  12. Impacts of Lowered Urban Air Temperatures on Precursor Emission and Ozone Air Quality.

    PubMed

    Taha, Haider; Konopacki, Steven; Akbari, Hashem

    1998-09-01

    Meteorological, photochemical, building-energy, and power plant simulations were performed to assess the possible precursor emission and ozone air quality impacts of decreased air temperatures that could result from implementing the "cool communities" concept in California's South Coast Air Basin (SoCAB). Two pathways are considered. In the direct pathway, a reduction in cooling energy use translates into reduced demand for generation capacity and, thus, reduced precursor emissions from electric utility power plants. In the indirect pathway, reduced air temperatures can slow the atmospheric production of ozone as well as precursor emission from anthropogenic and biogenic sources. The simulations suggest small impacts on emissions following implementation of cool communities in the SoCAB. In summer, for example, there can be reductions of up to 3% in NO x emissions from in-basin power plants. The photochemical simulations suggest that the air quality impacts of these direct emission reductions are small. However, the indirect atmospheric effects of cool communities can be significant. For example, ozone peak concentrations can decrease by up to 11% in summer and population-weighted exceedance exposure to ozone above the California and National Ambient Air Quality Standards can decrease by up to 11 and 17%, respectively. The modeling suggests that if these strategies are combined with others, such as mobile-source emission control, the improvements in ozone air quality can be substantial.

  13. On the influence of the americium isotopic vector on the cooling time of minor actinides bearing blankets in fast reactors

    NASA Astrophysics Data System (ADS)

    Kooyman, Timothée; Buiron, Laurent; Rimpault, Gerald

    2018-05-01

    In the heterogeneous minor actinides transmutation approach, the nuclei to be transmuted are loaded in dedicated targets often located at the core periphery, so that long-lived heavy nuclides are turned into shorter-lived fission products by fission. To compensate for low flux level at the core periphery, the minor actinides content in the targets is set relatively high (around 20 at.%), which has a negative impact on the reprocessing of the targets due to their important decay heat level. After a complete analysis of the main contributors to the heat load of the irradiated targets, it is shown here that the choice of the reprocessing order of the various feeds of americium from the fuel cycle depends on the actual limit for fuel reprocessing. If reprocessing of hot targets is possible, it is more interesting to reprocess first the americium feed with a high 243Am content in order to limit the total cooling time of the targets, while if reprocessing of targets is limited by their decay heat, it is more interesting to wait for an increase in the 241Am content before loading the americium in the core. An optimization of the reprocessing order appears to lead to a decrease of the total cooling time by 15 years compared to a situation where all the americium feeds are mixed together when two feeds from SFR are considered with a high reprocessing limit.

  14. Design of energy efficient building with radiant slab cooling

    NASA Astrophysics Data System (ADS)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The analysis showed that integrated architectural and mechanical design is required to achieve the potential benefits of radiant slab cooling, including: (1) reduction of peak solar gain via windows through (a) avoiding large window-to-wall ratios and/or (b) exterior shading of windows, (2) use of low-quality cooling sources such as cooling towers and ground water, especially in cold, dry climates, and (3) coordination of system control to avoid simultaneous heating and cooling.

  15. Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

    NASA Astrophysics Data System (ADS)

    Deepak, SHARMA; Paritosh, CHAUDHURI

    2018-04-01

    The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.

  16. Habituation of the metabolic and ventilatory responses to cold-water immersion in humans.

    PubMed

    Tipton, Michael J; Wakabayashi, Hitoshi; Barwood, Martin J; Eglin, Clare M; Mekjavic, Igor B; Taylor, Nigel A S

    2013-01-01

    An experiment was undertaken to answer long-standing questions concerning the nature of metabolic habituation in repeatedly cooled humans. It was hypothesised that repeated skin and deep-body cooling would produce such a habituation that would be specific to the magnitude of the cooling experienced, and that skin cooling alone would dampen the cold-shock but not the metabolic response to cold-water immersion. Twenty-one male participants were divided into three groups, each of which completed two experimental immersions in 12°C water, lasting until either rectal temperature fell to 35°C or 90min had elapsed. Between these two immersions, the control group avoided cold exposures, whilst two experimental groups completed five additional immersions (12°C). One experimental group repeatedly immersed for 45min in average, resulting in deep-body (1.18°C) and skin temperature reductions. The immersions in the second experimental group were designed to result only in skin temperature reductions, and lasted only 5min. Only the deep-body cooling group displayed a significantly blunted metabolic response during the second experimental immersion until rectal temperature decreased by 1.18°C, but no habituation was observed when they were cooled further. The skin cooling group showed a significant habituation in the ventilatory response during the initial 5min of the second experimental immersion, but no alteration in the metabolic response. It is concluded that repeated falls of skin and deep-body temperature can habituate the metabolic response, which shows tissue temperature specificity. However, skin temperature cooling only will lower the cold-shock response, but appears not to elicit an alteration in the metabolic response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effect of local cooling on short-term, intense exercise.

    PubMed

    Kwon, Young S; Robergs, Robert A; Schneider, Suzanne M

    2013-07-01

    The widespread belief that local cooling impairs short-term, strenuous exercise performance is controversial. Eighteen original investigations involving cooling before and intermittent cooling during short-term, intensive exercise are summarized in this review. Previous literature examining short-term intensive exercise and local cooling primarily has been limited to the effects on muscle performance immediately or within minutes following cold application. Most previous cooling studies used equal and longer than 10 minutes of pre-cooling, and found that cooling reduced strength, performance and endurance. Because short duration, high intensity exercise requires adequate warm-up to prepare for optimal performance, prolonged pre-cooling is not an effective method to prepare for this type of exercise. The literature related to the effect of acute local cooling immediately before short duration, high intensity isotonic exercise such as weight lifting is limited. However, local intermittent cooling during short-term, high intense exercise may provide possible beneficial effects; first, by pain reduction, caused by an "irritation effect" from hand thermal receptors which block pain sensation, or second, by a cooling effect, whereby stimulation of hand thermal receptors or a slight lowering of blood temperature might alter central fatigue.

  18. Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, J.; Hsieh, Y.P.

    1998-07-01

    Elevated sulfate and organic C loadings in freshwater wetlands could stimulate dissimilatory sulfate reduction that oxidizes organic C, produces hydrogen sulfide and alkalinity, and sequesters trace metals. The authors determined the extent of sulfate reduction in two freshwater wetland soils, that is black gum (Nyssa biflona) swamp soils and titi (Cliftonia monophylla) swamp soils, in northern Florida. They also investigated the potential of sulfate reduction in the wetland soils by adding sulfate, organic substrate, and lime. Sulfate reduction was found to be an active process in both swamp soils without any amendment, where the pore water pH was as lowmore » as 3.6 and sulfate concentration was as low as 5 mg L{sup {minus}1}. Without amendment, 11 to 14% of organic C was oxidized through sulfate reduction in the swamp soils. Sulfate loading, liming, and substrate addition significantly increased sulfate reduction in the black gum swamp soil, but none of those treatments increase sulfate reduction in the titi swamp soil. The limiting factor for sulfate reduction in the titi swamp soil were likely texture and soil aggregate related properties. The results suggested that wastewater loading may increase sulfate reduction in some freshwater wetlands such as the black swamps while it has no stimulating effect on other wetlands such as the titi swamps.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squires, Leah N.; Lessing, Paul

    A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can easily removed upon cooling. Furthermore, the direct reduction technique consistently produces high purity (98%–99% pure) neptunium metal.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posch, M.; Kaemaeri, J.; Forsius, M.

    The main objectives of this study were to identify the regions in Fennoscandia where the critical loads of sulfur (S) and acidifying nitrogen (N) for lakes are exceeded and to investigate the consequences for deposition reductions, with special emphasis on the possible trade-offs between S and N deposition in order to achieve nonexceedance. In the steady-state model for calculating critical loads and their exceedances, all relevant processes acting as sinks for N and S are considered. The critical loads of N and S are interrelated (defining the so-called critical load function), and therefore a single critical load for one pollutantmore » cannot be defined without making assumptions about the other. Comparing the present N and S deposition with the critical function for each lake allows determination of the percentage of lakes in the different regions of Fennoscandia where: (1) S reductions alone can achieve nonexceedance. (2) N reductions alone are sufficient, and (3) both N and S reductions are required but to a certain degree interchangeable. Secondly, deposition reduction requirements were assessed by fixing the N deposition to the present level, in this way analyzing the reductions required for S, and by computing the percentage of lakes exceeded in Finland, Norway and Sweden for every possible percent deposition reduction in S and N, in this way showing the (relative) effectiveness of reducing S and/or N deposition. The results showed clear regional patterns in the S and N reduction requirements. In practically the whole of Finland and the northern parts of Scandinavia man-made acidification of surface waters could be avoided by reducing S deposition alone. In the southern parts of Sweden some reductions in N deposition are clearly needed in addition to those for S. In southern Norway strong reductions are required for both N and S deposition. 55 refs., 5 figs.« less

Top