Turbine stator vane segment having internal cooling circuits
Jones, Raymond Joseph; Burns, James Lee; Bojappa, Parvangada Ganapathy; Jones, Schotsch Margaret
2003-01-01
A turbine stator vane includes outer and inner walls each having outer and inner chambers and a vane extending between the outer and inner walls. The vane includes first, second, third, fourth and fifth cavities for flowing a cooling medium. The cooling medium enters the outer chamber of the outer wall, flows through an impingement plate for impingement cooling of the outer band wall defining in part the hot gas path and through openings in the first, second and fourth cavities for flow radially inwardly, cooling the vane. The spent cooling medium flows into the inner wall and inner chamber for flow through an impingement plate radially outwardly to cool the inner wall. The spent cooling medium flows through the third cavity for egress from the turbine vane segment from the outer wall. The first, second or third cavities contain inserts having impingement openings for impingement cooling of the vane walls. The fifth cavity provides air cooling for the trailing edge.
NASA Astrophysics Data System (ADS)
Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.
2017-10-01
The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.
Numerical models of jet disruption in cluster cooling flows
NASA Technical Reports Server (NTRS)
Loken, Chris; Burns, Jack O.; Roettiger, Kurt; Norman, Mike
1993-01-01
We present a coherent picture for the formation of the observed diverse radio morphological structures in dominant cluster galaxies based on the jet Mach number. Realistic, supersonic, steady-state cooling flow atmospheres are evolved numerically and then used as the ambient medium through which jets of various properties are propagated. Low Mach number jets effectively stagnate due to the ram pressure of the cooling flow atmosphere while medium Mach number jets become unstable and disrupt in the cooling flow to form amorphous structures. High Mach number jets manage to avoid disruption and are able to propagate through the cooling flow.
Method and apparatus for high-efficiency direct contact condensation
Bharathan, D.; Parent, Y.; Hassani, A.V.
1999-07-20
A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.
Method and apparatus for high-efficiency direct contact condensation
Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab
1999-01-01
A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.
Turbine inter-disk cavity cooling air compressor
Little, David Allen
2001-01-01
A combustion turbine may have a cooling circuit for directing a cooling medium through the combustion turbine to cool various components of the combustion turbine. This cooling circuit may include a compressor, a combustor shell and a component of the combustion turbine to be cooled. This component may be a rotating blade of the combustion turbine. A pressure changing mechanism is disposed in the combustion turbine between the component to be cooled and the combustor shell. The cooling medium preferably flows from the compressor to the combustor shell, through a cooler, the component to the cooled and the pressure changing mechanism. After flowing through the pressure changing mechanism, the cooling medium is returned to the combustor shell. The pressure changing mechanism preferably changes the pressure of the cooling medium from a pressure at which it is exhausted from the component to be cooled to approximately that of the combustor shell.
Staub, F.W.; Willett, F.T.
1999-07-20
A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.
Staub, Fred Wolf; Willett, Fred Thomas
1999-07-20
A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.
Staub, Fred Wolf; Willett, Fred Thomas
2000-01-01
A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.
Schmidt, Mark Christopher
2000-01-01
In a turbine rotor, a thermal mismatch between various component parts of the rotor occurs particularly during transient operations such as shutdown and startup. A thermal medium flows past and heats or cools one part of the turbine which may have a deleterious thermal mismatch with another part. By passively controlling the flow of cooling medium past the one part in response to relative movement of thermally responsive parts of the turbine, the flow of thermal medium along the flow path can be regulated to increase or reduce the flow, thereby to regulate the temperature of the one part to maintain the thermal mismatch within predetermined limits.
Liquid metal cooled nuclear reactors with passive cooling system
Hunsbedt, Anstein; Fanning, Alan W.
1991-01-01
A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.
NASA Astrophysics Data System (ADS)
Raikovskiy, N. A.; Tretyakov, A. V.; Abramov, S. A.; Nazmeev, F. G.; Pavlichev, S. V.
2017-08-01
The paper presents a numerical study method of the cooling medium flowing in the water jacket of self-lubricating sliding bearing based on ANSYS CFX. The results of numerical calculations have satisfactory convergence with the empirical data obtained on the testbed. Verification data confirm the possibility of applying this numerical technique for the analysis of coolant flowings in the self-lubricating bearing containing the water jacket.
Side wall cooling for nozzle segments for a gas turbine
Burdgick, Steven Sebastian
2002-01-01
A nozzle vane segment includes outer and inner band portions with a vane extending therebetween and defining first and second cavities separated by an impingement plate for flowing cooling medium for impingement cooling of nozzle side walls. The side wall of each nozzle segment has an undercut region. The impingement plate has an inturned flange with a plurality of openings. Cooling inserts or receptacles having an open end are received in the openings and the base and side walls of the receptacles have apertures for receiving cooling medium from the first cavity and directing the cooling medium for impingement cooling of the side wall of the nozzle segment and a portion of the nozzle wall.
Hot gas path component cooling system
Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael
2014-02-18
A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.
Nozzle cavity impingement/area reduction insert
Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane
2002-01-01
A turbine vane segment is provided that has inner and outer walls spaced from one another, a vane extending between the inner and outer walls and having leading and trailing edges and pressure and suction sides, the vane including discrete leading edge, intermediate, aft and trailing edge cavities between the leading and trailing edges and extending lengthwise of the vane for flowing a cooling medium; and an insert sleeve within at least one of the cavities and spaced from interior wall surfaces thereof. The insert sleeve has an inlet for flowing the cooling medium into the insert sleeve and has impingement holes defined in first and second walls thereof that respectively face the pressure and suction sides of the vane. The impingement holes of at least one of those first and second walls are defined along substantially only a first, upstream portion thereof, whereby the cooling flow is predominantly impingement cooling along a first region of the insert wall corresponding to the first, upstream portion and the cooling flow is predominantly convective cooling along a second region corresponding to a second, downstream portion of the at least one wall of the insert sleeve.
The evolution of cooling flows. I - Self-similar cluster flows. [of gas in intergalactic medium
NASA Technical Reports Server (NTRS)
Chevalier, Roger A.
1987-01-01
The evolution of a cooling flow from an initial state of hydrostatic equilibrium in a cluster of galaxies is investigated. After gas mass and energy are injected into the cluster at an early phase, the gas approaches hydrostatic equilibrium over most of the cluster and cooling becomes important in the dense central regions. As time passes, cooling strongly affects an increasing amount of gas. The effects of mass removal from the flow, the inclusion of magnetic or cosmic-ray pressure, and heat conduction are considered individually.
Axial flow heat exchanger devices and methods for heat transfer using axial flow devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferredmore » across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.« less
NASA Astrophysics Data System (ADS)
Beneš, Michal; Pažanin, Igor
2018-03-01
This paper reports an analytical investigation of non-isothermal fluid flow in a thin (or long) vertical pipe filled with porous medium via asymptotic analysis. We assume that the fluid inside the pipe is cooled (or heated) by the surrounding medium and that the flow is governed by the prescribed pressure drop between pipe's ends. Starting from the dimensionless Darcy-Brinkman-Boussinesq system, we formally derive a macroscopic model describing the effective flow at small Brinkman-Darcy number. The asymptotic approximation is given by the explicit formulae for the velocity, pressure and temperature clearly acknowledging the effects of the cooling (heating) and porous structure. The theoretical error analysis is carried out to indicate the order of accuracy and to provide a rigorous justification of the effective model.
A homogeneous cooling scheme investigation for high power slab laser
NASA Astrophysics Data System (ADS)
He, Jianguo; Lin, Weiran; Fan, Zhongwei; Chen, Yanzhong; Ge, Wenqi; Yu, Jin; Liu, Hao; Mo, Zeqiang; Fan, Lianwen; Jia, Dan
2017-10-01
The forced convective heat transfer with the advantages of reliability and durability is widely used in cooling the laser gain medium. However, a flow direction induced temperature gradient always appears. In this paper, a novel cooling configuration based on longitudinal forced convective heat transfer is presented. In comparison with two different types of configurations, it shows a more efficient heat transfer and more homogeneous temperature distribution. The investigation of the flow rate reveals that the higher flow rate the better cooling performance. Furthermore, the simulation results with 20 L/min flow rate shows an adequate temperature level and temperature homogeneity which keeps a lower hydrostatic pressure in the flow path.
Porous media heat transfer for injection molding
Beer, Neil Reginald
2016-05-31
The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.
Chandra Observations of MS0440.5+0204 & MS0839.9+2938: Cooling Flow Clusters in Formation?
NASA Astrophysics Data System (ADS)
McNamara, Brian
2000-09-01
We propose to observe two redshift z~0.2 clusters, MS0839.9+2938 and MS0440+0204, discovered as bright X-ray sources in the Einstein Medium Sensitivity Survey. The cluster cores are structured in the X-ray and optical bands, and they harbor large cooling flows. Their central cluster galaxies contain luminous nebular emission systems, active star formation, and strong radio sources. Using the Chandra data, we will determine whether the large discrepancies between the X-ray cooling rates and optical star formation rates can be reconciled, and we will test the hypothesis that cooling flows form as cool, dense groups accrete into massive clusters.
Rescuing the intracluster medium of NGC 5813
NASA Astrophysics Data System (ADS)
Soker, Noam; Hillel, Shlomi; Sternberg, Assaf
2016-06-01
We use recent X-ray observations of the intracluster medium (ICM) of the galaxy group NGC 5813 to confront theoretical studies of ICM thermal evolution with the newly derived ICM properties. We argue that the ICM of the cooling flow in the galaxy group NGC 5813 is more likely to be heated by mixing of post-shock gas from jets residing in hot bubbles with the ICM, than by shocks or turbulent-heating. Shocks thermalize only a small fraction of their energy in the inner regions of the cooling flow; in order to adequately heat the inner part of the ICM, they would overheat the outer regions by a large factor, leading to its ejection from the group. Heating by mixing, which was found to be much more efficient than turbulent-heating and shocks-heating, hence, rescues the outer ICM of NGC 5813 from its predestined fate according to cooling flow feedback scenarios that are based on heating by shocks.
ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows
NASA Technical Reports Server (NTRS)
Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian B.; Joy, Marshall
1995-01-01
We present ROSAT high-resolution images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, X-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. If real, the enhancements may be associated with clumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.
ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows
NASA Technical Reports Server (NTRS)
Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian; Joy, Marshall
1994-01-01
We present ROSAT HRI images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, x-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. The enhancements may be associated with lumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.
Searching for 300, 000 Degree Gas in the Core of the Phoenix Cluster with HST-COS
NASA Astrophysics Data System (ADS)
McDonald, Michael
2013-10-01
The high central density of the intracluster medium in some galaxy clusters suggests that the hot 10,000,000K gas should cool completely in less than a Hubble time. In these clusters, simple cooling models predict 100-1000 solar masses per year of cooling gas should fuel massive starbursts in the central galaxy. The fact that the typical central cluster galaxy is a massive, "red and dead" elliptical galaxy, with little evidence for a cool ISM, has led to the realization of the "cooling flow problem". It is now thought that mechanical feedback from the central supermassive blackhole, in the form of radio-blown bubbles, is offsetting cooling, leading to an exceptionally precise {residuals of less than 10 percent} balance between cooling and feedback in nearly every galaxy cluster in the local Universe. In the recently-discovered Phoenix cluster, where z=0.596, we observe an 800 solar mass per year starburst within the central galaxy which accounts for about 30 percent of the classical cooling prediction for this system. We speculate that this may represent the first "true" cooling flow, with the factor of 3 difference between cooling and star formation being attributed to star formation efficiency, rather than a problem with cooling. In order to test these predictions, we propose far-UV spectroscopic observations of the OVI 1032A emission line, which probes 10^5.5K gas, in the central galaxy of the Phoenix cluster. If detected at the expected levels, this would provide compelling evidence that the starburst is, indeed, fueled by runaway cooling of the intracluster medium, confirming the presence of the first, bonafide cooling flow.
Thermal management of liquid direct cooled split disk laser
NASA Astrophysics Data System (ADS)
Yang, Huomu; Feng, Guoying; Zhou, Shouhuan
2015-02-01
The thermal effects of a liquid direct cooled split disk laser are modeled and analytically solved. The analytical solutions with the consideration of longitudinal cooling liquid temperature rise have been given to describe the temperature distribution in the split disk and cooling liquid based on the hydrodynamics and heat transfer. The influence of cooling liquid, liquid flowing velocity, thickness of cooling channel and of disk gain medium can also be got from the analytical solutions.
NASA Astrophysics Data System (ADS)
Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang
2018-06-01
In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.
Film cooling air pocket in a closed loop cooled airfoil
Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian
2002-01-01
Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.
Regeneratively cooled coal combustor/gasifier with integral dry ash removal
Beaufrere, A.H.
1982-04-30
A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.
NASA Astrophysics Data System (ADS)
Khalatov, A. A.; Borisov, I. I.; Dashevsky, Yu. J.; Panchenko, N. A.; Kovalenko, A. S.
2014-12-01
Results of an experimental study of flat-plate film cooling effectiveness achieved with an inlet double jet scheme are reported. At low ( m = 0.5) and medium ( m = 1.0) blowing ratio the average film cooling effectiveness is about 20 % greater of the traditional two-row scheme of round holes data, while at higher m = 1.5 it is close to it. The free-stream turbulence (≈ 7 %) influences weekly on the average flat-plate film cooling effectiveness. The flow acceleration decreases the film cooling effectiveness down to 25 % when the pressure gradient parameter K is ranged from 0.5·10-6 to 3.5·10-6.
The Inhomogeneous Centers of Cooling Flows in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Sharma, Mangala
2004-04-01
The intracluster medium (ICM) in the centers of galaxy clusters is cool, dense and may be imhomogeneous. We present Chandra X-ray Observatory imaging spectroscopic data on two galaxy clusters, Abell 1991 and MS 0839.8+2938, that have cooling flows in their central few hundred kpc. Their cD galaxies show current star formation, and host compact radio sources. The hot ICM at both their centers has nonhomogeneities on kiloparsec scales. These finer structures are likely to be signatures of the formation of clusters through infall of smaller, cooler subclusters.
A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster
NASA Technical Reports Server (NTRS)
McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.;
2012-01-01
In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.
Film cooling for a closed loop cooled airfoil
Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael
2003-01-01
Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.
Multifrequency VLA observations of PKS 0745 - 191 - The archetypal 'cooling flow' radio source?
NASA Technical Reports Server (NTRS)
Baum, S. A.; O'Dea, C. P.
1991-01-01
Ninety-, 20-, 6- and 2-cm VLA observations of the high-radio-luminosity cooling-flow radio source PKS 0745 - 191 are presented. The radio source was found to have a core with a very steep spectrum (alpha is approximately -1.5) and diffuse emission with an even steeper spectrum (alpha is approximately -1.5 to -2.3) without clear indications of the jets, hotspots, or double lobes found in the other radio sources of comparable luminosity. It is inferred that the energy to power the radio source comes from the central engine, but the source's structure may be heavily influenced by the past history of the galaxy and the inflowing intracluster medium. It is shown that, while the radio source is energetically unimportant for the cluster as a whole, it is important on the scale of the cooling flow. The mere existence of cosmic rays and magnetic fields within a substantial fraction of the volume inside the cooling radius has important consequences for cooling-flow models.
Effect of air velocity and direction for indirect evaporative cooling in tropical area
NASA Astrophysics Data System (ADS)
Ayodha Ajiwiguna, Tri; Nugraha Rismi, Fadhlin; Ramdlan Kirom, Mukhammad
2017-06-01
In this research, experimental study of heat absorption rate caused by indirect evaporative cooling is performed by varying the velocity and direction of air. The ambient is at average temperature and relative humidity of 28.7 °C and 78% respectively. The experiment is conducted by attaching wet medium on the top of material reference plate with the dimension of 14 x 8 cm with 5 mm thickness. To get evaporative cooling effect, the air flow is directed to the wet medium with velocity from 1.6 m/s to 3.4 m/s with the increment of 0.2 m/s. The direction of air is set 0° (parallel), 45° (inclined), and 90° (perpendicular) to the wet medium surface. While the experiment is being performed, the air temperature, top and bottom of plate temperature are measured simultaneously after steady state condition is established. Based on the measurement result, heat absorption is calculated by analysing the heat conduction on the material reference. The result shows that the heat absorption rate is increased by higher velocity. Perpendicular direction of air flow results the highest cooling capacity compared with other direction. The maximum heat absorption rate is achieved at 13.9 Watt with 3.4 m/s velocity and perpendicular direction of air.
Regeneratively cooled coal combustor/gasifier with integral dry ash removal
Beaufrere, Albert H.
1983-10-04
A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.
Burdgick, Steven Sebastian
2002-01-01
A gas turbine nozzle segment has outer and inner bands and vanes therebetween. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. Slots are formed through the inturned flange along the nozzle side wall. A plate having through-apertures extending between opposite edges thereof is disposed in each slot, the slots and plates being angled such that the cooling medium exiting the apertures in the second cavity lie close to the side wall for focusing and targeting cooling medium onto the side wall.
Hemodynamic Responses to Head and Neck Cooling
NASA Technical Reports Server (NTRS)
Ku, Yu-Tsuan E.; Carbo, Jorge E.; Montgomery, Leslie D.; Webbon, Bruce W.
1994-01-01
Personal thermoregulatory systems which provide head and neck cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objective of this study was to measure the scalp temperature and circulatory responses during use of one commercially available thermal control system. The Life Support Systems, Inc. Mark VII portable cooling system and a liquid cooling helmet were used in this study. Two EEG electrodes and one skin temperature transducer were placed on the anterior midline of the scalp to measure the scalp blood and temperature. Blood flow was measured using a bipolar impedance rheograph. Ten subjects, seated in an upright position at normal room temperature, were tested at high, medium, moderate, moderate-low and low coolant temperatures. Scalp blood flow was recorded continuously using a computer data acquisition system with a sampling frequency of 200 Hz. Scalp temperature and cooling helmet Inlet temperature was logged periodically during the test period. This study quantifies the effect of head cooling upon scalp temperature and blood flow. These data may also be used to select operational specifications of the head cooling system for biomedical applications such as the treatment of migraine headaches, scalp cooling during chemotherapy, and cooling of multiple sclerosis patients.
The Interstellar Medium in External Galaxies: Summaries of contributed papers
NASA Technical Reports Server (NTRS)
Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)
1990-01-01
The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.
Simulation of an active cooling system for photovoltaic modules
NASA Astrophysics Data System (ADS)
Abdelhakim, Lotfi
2016-06-01
Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.
Mineral chemistry of Pangidi basalt flows from Andhra Pradesh
NASA Astrophysics Data System (ADS)
Nageswara Rao, P. V.; Swaroop, P. C.; Karimulla, Syed
2012-04-01
This paper elucidates the compositional studies on clinopyroxene, plagioclase, titaniferous magnetite and ilmenite of basalts of Pangidi area to understand the geothermometry and oxybarometry conditions. Petrographic evidence and anorthite content (up to 85%) of plagioclase and temperature estimates of clinopyroxene indicate that the clinopyroxene is crystallized later than or together with plagioclase. The higher An content indicates that the parent magma is tholeiitic composition. The equilibration temperatures of clinopyroxene (1110-1190°C) and titaniferous magnetite and ilmenite coexisting mineral phases (1063-1103°C) are almost similar in lower basalt flow and it is higher for clinopyroxene (900-1110°C) when compared to titaniferous magnetite and ilmenite coexisting mineral phases (748-898°C) in middle and upper basalt flows. From this it can be inferred that the clinopyroxene is crystallized earlier than Fe-Ti oxide phases reequilibration, which indicates that the clinopyroxene temperature is the approximate eruption temperature of the present lava flows. The wide range of temperatures (900-1190°C) attained by clinopyroxene may point out that the equilibration of clinopyroxene crystals initiated from depth till closer to the surface before the melt erupted. Pangidi basalts follow the QFM buffer curve which indicates the more evolved tholeiitic composition. This suggests the parent tholeiitic magma suffered limited fractionation at high temperature under increasing oxygen fugacity in lower basalt flow and more fractionation at medium to lower temperatures under decreasing oxygen fugacity conditions during cooling of middle and upper basalt flows. The variation of oxygen fugacity indicates the oxidizing conditions for lower basalt flow (9.48-10.3) and extremely reducing conditions for middle (12.1-15.5) and upper basalt (12.4-15.54) flows prevailed at the time of cooling. Temperature vs. (FeO+Fe2O3)/(FeO+Fe2O3 +MgO) data plots for present basalts suggested the lower basaltic flow is formed at higher temperatures while the middle and upper basalt flows at medium to lower temperatures. The lower basalt flow is represented by higher temperatures which shows high modal values of opaques and glass whereas the medium to lower temperatures of middle and upper flow are caused by vesicular nature which contain larger content of gases and humid to semi-arid conditions during cooling.
ISM stripping from cluster galaxies and inhomogeneities in cooling flows
NASA Technical Reports Server (NTRS)
Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.
1990-01-01
Analyses of the x ray surface brightness profiles of cluster cooling flows suggest that the mass flow rate decreases towards the center of the cluster. It is often suggested that this decrease results from thermal instabilities, in which denser blobs of gas cool rapidly and drop below x ray emitting temperatures. If the seeds for the thermal instabilities are entropy perturbations, these perturbations must enter the flow already in the nonlinear regime. Otherwise, the blobs would take too long to cool. Here, researchers suggest that such nonlinear perturbations might start as blobs of interstellar gas which are stripped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly M sub Interstellar Matter (ISM) approx. 100 solar mass yr(-1). It is interesting that the typical rates of cooling in cluster cooling flows are M sub cool approx. 100 solar mass yr(-1). Thus, it is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low entropy perturbations can help to maintain their identities, both by suppressing thermal conduction and through the dynamical effects of magnetic tension. One significant question concerning this scenario is: Why are cooling flows seen only in a fraction of clusters, although one would expect gas stripping to be very common. It may be that the density perturbations only survive and cool efficiently in clusters with a very high intracluster gas density and with the focusing effect of a central dominant galaxy. Inhomogeneities in the intracluster medium caused by the stripping of interstellar gas from galaxies can have a number of other effects on clusters. For example, these density fluctuations may disrupt the propagation of radio jets through the intracluster gas, and this may be one mechanism for producing Wide-Angle-Tail radio galaxies.
Chaveiro, A; Machado, L; Frijters, A; Engel, B; Woelders, H
2006-06-01
The aim of this study was to improve the freezing protocol of bull sperm, by investigating the influence on sperm viability after freeze/thawing of different freezing medium components, as well as the effect of cooling rates in the different stages of the cooling protocol, in single factor experiments. The experimental variables were: (1) salt-based versus a sugar-based medium (Tris versus sucrose); (2) glycerol concentration; (3) detergent (Equex) concentration; (4) presence of bicarbonate; (5) rate of cooling from 22 degrees C to holding temperature (CR1); (6) holding temperature (HT); (7) rate of cooling from holding temperature to -6 degrees C (CR2); (8) rate of cooling from -10 to -100 degrees C (CR3). All experiments were performed using five bulls per experiment (three ejaculates per bull). Sperm motility after freezing and thawing was assessed by CASA system, and sperm membrane integrity was assessed by flow cytometry. Sucrose-based medium did not offer a clear significant benefit compared to Tris medium. The concentration of Equex that gave the best results in Tris-based media group and sucrose-based media group was in a range between 2-7 and 4-7 g/l, respectively. In both media groups, a glycerol concentration of 800 mM was the best in any post-thaw viability parameters. In the Tris media group, the presence of bicarbonate had a negative effect on sperm viability. CR1 and CR2 had no significant effect on any of the post-thaw sperm viability parameters, but a CR1=0.2 degrees C/min and CR2=4 degrees C/min appeared to give better results in both media. The holding temperature (HT) that gave the best results was found to be in the range of 5-9 degrees C. There was a significant disadvantage of using a low CR3 of 10 degrees C/min, while 150 degrees C/min appeared to be the best cooling rate for either medium.
AGN self-regulation in cooling flow clusters
NASA Astrophysics Data System (ADS)
Cattaneo, A.; Teyssier, R.
2007-04-01
We use three-dimensional high-resolution adaptive-mesh-refinement simulations to investigate if mechanical feedback from active galactic nucleus jets can halt a massive cooling flow in a galaxy cluster and give rise to a self-regulated accretion cycle. We start with a 3 × 109 Msolar black hole at the centre of a spherical halo with the mass of the Virgo cluster. Initially, all the baryons are in a hot intracluster medium in hydrostatic equilibrium within the dark matter's gravitational potential. The black hole accretes the surrounding gas at the Bondi rate, and a fraction of the accretion power is returned into the intracluster medium mechanically through the production of jets. The accretion, initially slow (~2 × 10-4 Msolaryr-1), becomes catastrophic, as the gas cools and condenses in the dark matter's potential. Therefore, it cannot prevent the cooling catastrophe at the centre of the cluster. However, after this rapid phase, where the accretion rate reaches a peak of ~0.2Msolaryr-1, the cavities inflated by the jets become highly turbulent. The turbulent mixing of the shock-heated gas with the rest of the intracluster medium puts a quick end to this short-lived rapid-growth phase. After dropping by almost two orders of magnitudes, the black hole accretion rate stabilizes at ~0.006 Msolaryr-1, without significant variations for several billions of years, indicating that a self-regulated steady state has been reached. This accretion rate corresponds to a negligible increase of the black hole mass over the age of the Universe, but is sufficient to create a quasi-equilibrium state in the cluster core.
NASA Technical Reports Server (NTRS)
Snow, W. L.; Morris, O. A.
1984-01-01
Methods for increasing the radiant in light sheets used for vapor screen set-ups were investigated. Both high-pressure mercury arc lamps and lasers were considered. Pulsed operation of the air-cooled 1-kW lamps increased the light output but decreased reliability. An ellipsoidal mirror improved the output of the air-cooled lamps by concentrating the light but increased the complexity of the housing. Water-cooled-4-kW lamps coupled with high-aperture Fresnel lenses provided reasonable improvements over the air-cooled lamps. Fanned laser beams measurements of scattered light versus dew point made in conjunction with successful attempts to control the fluid injection. A number of smoke generators are described and test results comparing smoke and vapor screens are shown. Finally, one test included a periscope system to relay the image to a camera outside the flow.
Simulation of an active cooling system for photovoltaic modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelhakim, Lotfi
Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water alsomore » acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.« less
Transpiration Cooling Experiment
NASA Technical Reports Server (NTRS)
Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.
1997-01-01
The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.
Searching for cluster magnetic fields in the cooling flows of 0745-191, A2029, and A4059
NASA Technical Reports Server (NTRS)
Taylor, Gregory B.; Barton, Elizabeth J.; Ge, Jingping
1994-01-01
We have performed sensitive polarimetric radio observations with the Very Large Array (VLA) of three galaxies: PKS 0745-191, PKS 1508+059, and PKS 2354-350, embedded in x-ray cooling flow clusters. High sensitivity, multifrequency maps of all three, along with spectral index and Faraday rotation measure (RM) maps of PKS 1508+059 and PKS 2354-350 are presented. For PKS 1508+059 and PKS 2354-350 models of the electron density of the intracluster medium (ICM) have been used to set lower limits of 0.1 and 2.7 microG, respectively, on the magnetic field in the ICM based on the observed RMs. In an x-ray selected sample of cooling flow clusters with an associated radio source, 57% (8/14) are found to have absolute RMs in excess of 800 radians/sq m. This sample includes the three sources of this study and all the other high RM sources found to date at zeta less than 0.4. These facts are consistent with the high RM phenomenon being produced by magnetic fields associated with the relatively dense, hot x-ray gas in cooling flow clusters.
AGN Feedback and Cooling Flows: Problems with Simple Hydrodynamic Models
NASA Astrophysics Data System (ADS)
Vernaleo, John C.; Reynolds, Christopher S.
2006-07-01
In recent years it has become increasingly clear that active galactic nuclei, and radio galaxies in particular, have an impact on large-scale structure and galaxy formation. In principle, radio galaxies are energetic enough to halt the cooling of the virialized intracluster medium (ICM) in the inner regions of galaxy clusters, solving the cooling flow problem and explaining the high-mass truncation of the galaxy luminosity function. We explore this process through a series of high-resolution, three-dimensional hydrodynamic simulations of jetted active galaxies that act in response to cooling-mediated accretion of an ICM atmosphere. We find that our models are incapable of producing a long-term balance of heating and cooling; catastrophic cooling can be delayed by the jet action but inevitably takes hold. At the heart of the failure of these models is the formation of a low-density channel through which the jet can freely flow, carrying its energy out of the cooling core. It is possible that this failure is due to an oversimplified treatment of the fast jet (which may underestimate the ``dentist drill'' effect). However, it seems likely that additional complexity (large-angle jet precession or ICM turbulence) or additional physics (magnetohydrodynamic effects and plasma transport processes) is required to produce a spatial distribution of jet heating that can prevent catastrophic cooling. This work also underscores the importance of including jet dynamics in any feedback model, as opposed to the isotropically inflated bubble approach taken in some previous works.
Thermal and Fluid Mechanical Investigation of an Internally Cooled Piston Rod
NASA Astrophysics Data System (ADS)
Klotsche, K.; Thomas, C.; Hesse, U.
2017-08-01
The Internal Cooling of Reciprocating Compressor Parts (ICRC) is a promising technology to reduce the temperature of the thermally stressed piston and piston rod of process gas compressors. The underlying heat transport is based on the flow of a two-phase cooling medium that is contained in the hollow reciprocating assembly. The reciprocating motion forces the phases to mix, enabling an enhanced heat transfer. In order to investigate this heat transfer, experimental results from a vertically reciprocating hollow rod are presented that show the influence of different liquid charges for different working temperatures. In addition, pressure sensors are used for a crank angle dependent analysis of the fluid mechanical processes inside the rod. The results serve to investigate the two-phase flow in terms of the velocity and distribution of the liquid and vapour phase for different liquid fractions.
Pyrometer mount for a closed-circuit thermal medium cooled gas turbine
Jones, Raymond Joseph; Kirkpatrick, Francis Lawrence; Burns, James Lee; Fulton, John Robert
2002-01-01
A steam-cooled second-stage nozzle segment has an outer band and an outer cover defining a plenum therebetween for receiving cooling steam for flow through the nozzles to the inner band and cover therefor and return flow through the nozzles. To measure the temperature of the buckets of the stage forwardly of the nozzle stage, a pyrometer boss is electron beam-welded in an opening through the outer band and TIG-welded to the outer cover plate. By machining a hole through the boss and seating a linearly extending tube in the boss, a line of sight between a pyrometer mounted on the turbine frame and the buckets is provided whereby the temperature of the buckets can be ascertained. The welding of the boss to the outer band and outer cover enables steam flow through the plenum without leakage, while providing a line of sight through the outer cover and outer band to measure bucket temperature.
Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays
NASA Astrophysics Data System (ADS)
Ampleford, David
2009-11-01
We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman
Mapping the filaments in NGC 1275
NASA Astrophysics Data System (ADS)
Cobos, Aracely Susan; Rich, Jeffrey; Great Observatories All-sky LIRG Survey (GOALS)
2018-01-01
The giant elliptical brightest cluster galaxies (BCGs) at the centers of many massive clusters are often surrounded by drawn-out forms of gaseous material. It is believed that this gaseous material is gas condensing from the intracluster medium (ICM) in a “cooling flow,” and it can directly impact the growth of the BCG. The galaxy NGC 1275 is one of the closest giant elliptical BCGs and lies at the center of the Perseus cluster. NGC 1275 has large filaments that are thought to be associated with a cooling flow, but they may also be affected by its AGN. To investigate the relationship between the AGN and the cooling flow we have mapped the filaments around NGC 1275 with the Cosmic Web Imager, an image-slicing integral field spectrograph at Palomar Observatories. We employ standard emission-line ratio diagnostics to determine the source of ionizing radiation. We use our analysis to investigate whether the formation of the extended filaments is a result of gas from the ICM collapsing onto the galaxy as it cools or if it is possible that the filaments are a result of the cluster’s interaction with the outflow driven by the AGN.
Spiral Flows in Cool-core Galaxy Clusters
NASA Astrophysics Data System (ADS)
Keshet, Uri
2012-07-01
We argue that bulk spiral flows are ubiquitous in the cool cores (CCs) of clusters and groups of galaxies. Such flows are gauged by spiral features in the thermal and chemical properties of the intracluster medium, by the multiphase properties of CCs, and by X-ray edges known as cold fronts. We analytically show that observations of piecewise-spiral fronts impose strong constraints on the CC, implying the presence of a cold, fast flow, which propagates below a hot, slow inflow, separated by a slowly rotating, trailing, quasi-spiral, tangential discontinuity surface. This leads to the nearly logarithmic spiral pattern, two-phase plasma, ρ ~ r -1 density (or T ~ r 0.4 temperature) radial profile, and ~100 kpc size, characteristic of CCs. By advecting heat and mixing the gas, such flows can eliminate the cooling problem, provided that a feedback mechanism regulates the flow. In particular, we present a quasi-steady-state model for an accretion-quenched, composite flow, in which the fast phase is an outflow, regulated by active galactic nucleus bubbles, reproducing the observed low star formation rates and explaining some features of bubbles such as their Rb vpropr size. The simplest two-component model reproduces several key properties of CCs, so we propose that all such cores harbor a spiral flow. Our results can be tested directly in the next few years, for example by ASTRO-H.
The Evolution of Galaxies and Their Environment
NASA Technical Reports Server (NTRS)
Hollenbach, David (Editor); Thronson, Harley A. (Editor); Shull, J. Michael (Editor)
1993-01-01
The Third Teton Summer School on Astrophysics discussed the formation of galaxies, star formation in galaxies, galaxies and quasars at high red shift, and the intergalactic and intercluster medium and cooling flows. Observation and theoretical research on these topics was presented at the meeting and summaries of the contributed papers are included in this volume.
Desulfurizing Coal With an Alkali Treatment
NASA Technical Reports Server (NTRS)
Ravindram, M.; Kalvinskas, J. J.
1987-01-01
Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.
Airfoil shape for a turbine nozzle
Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael
2002-01-01
A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.
Constraints on the interaction between dark matter and Baryons from cooling flow clusters.
Qin, B; Wu, X P
2001-08-06
Other nongravitational heating processes are needed to resolve the disagreement between the absence of cool gas components in the centers of galaxy clusters revealed recently by Chandra and XMM observations and the expectations of conventional radiative cooling models. We propose that the interaction between dark matter and baryonic matter may act as an alternative for the reheating of intracluster medium (ICM) in the inner regions of clusters, in which kinetic energy of dark matter is transported to ICM to balance radiative cooling. Using the Chandra and XMM data, we set a useful constraint on the dark-matter-baryon cross section: sigma(xp)/m(x) approximately 1x10(-25) cm(2) GeV-1, where m(x) is the mass of dark matter particles.
Methods and compositions for rapid thermal cycling
Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher
2015-10-27
The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.
Methods and compositions for rapid thermal cycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, Neil Reginald; Benett, William J.; Frank, James M.
The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature ofmore » the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.« less
Simulated dynamic response of a multi-stage compressor with variable molecular weight flow medium
NASA Technical Reports Server (NTRS)
Babcock, Dale A.
1995-01-01
A mathematical model of a multi-stage compressor with variable molecular weight flow medium is derived. The modeled system consists of a five stage, six cylinder, double acting, piston type compressor. Each stage is followed by a water cooled heat exchanger which serves to transfer the heat of compression from the gas. A high molecular weight gas (CFC-12) mixed with air in varying proportions is introduced to the suction of the compressor. Condensation of the heavy gas may occur in the upper stage heat exchangers. The state equations for the system are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic and steady state characteristics under varying operating conditions.
Assessment of total efficiency in adiabatic engines
NASA Astrophysics Data System (ADS)
Mitianiec, W.
2016-09-01
The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.
The Evolution of the Large-Scale ISM: Bubbles, Superbubbles and Non-Equilibrium Ionization
NASA Astrophysics Data System (ADS)
de Avillez, M. A.; Breitschwerdt, D.
2010-12-01
The ISM, powered by SNe, is turbulent and permeated by a magnetic field (with a mean and a turbulent component). It constitutes a frothy medium that is mostly out of equilibrium and is ram pressure dominated on most of the temperature ranges, except for T < 200 K and T > 106K, where magnetic and thermal pressures dominate, respectively. Such lack of equilibrium is also imposed by the feedback of the radiative processes into the ISM flow. Many models of the ISM or isolated phenomena, such as bubbles, superbubbles, clouds evolution, etc., take for granted that the flow is in the so-called collisional ionization equilibrium (CIE). However, recombination time scales of most of the ions below 106 K are longer than the cooling time scale. This implies that the recombination lags behind and the plasma is overionized while it cools. As a consequence cooling deviates from CIE. This has severe implications on the evolution of the ISM flow and its ionization structure. Here, besides reviewing several models of the ISM, including bubbles and superbubbles, the validity of the CIE approximation is discussed, and a presentation of recent developments in modeling the ISM by taking into account the time-dependent ionization structure of the flow in a full-blown numerical 3D high resolution simulation is presented.
A study of cooling flows in poor clusters of galaxies
NASA Technical Reports Server (NTRS)
Kriss, Gerard A.; Dillingham, Stephen
1995-01-01
We observed three poor clusters with central dominant galaxies (AWM 4, MKW 4, and MKW 3's) using the Position Sensitive Proportional Counter on the ROSAT X-ray satellite. The images reveal smooth, symmetrical X-ray emission filling the cluster with a sharp peak on each central galaxy. The cluster surface brightness profiles can be decomposed using superposed King models for the central galaxy and the intracluster medium. The King model parameters for the cluster portions are consistent with previous observations of these clusters. The newly measured King model parameters for the central galaxies are typical of the X-ray surface brightness distributions of isolated elliptical galaxies. Spatially resolved temperature measurements in annular rings throughout the clusters show a nearly isothermal profile. Temperatures are consistent with previously measured values, but are much better determined. There is no significant drop in temperature noted in the innermost bins where cooling flows are likely to be present, nor is any excess absorption by cold gas required. All cold gas columns are consistent with galactic foreground absorption. We derive mass profiles for the clusters assuming both isothermal temperature profiles and cooling flow models with constant mass flow rates. Our results are consistent with previous Einstein IPC observations by Kriss, Cioffi, & Canizares, but extend the mass profiles out to 1 Mpc in these poor clusters.
Steep-Slope Assembly Testing of Clay and Concrete Tile With and Without Cool Pigmented Colors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William A
Cool color pigments and sub-tile venting of clay and concrete tile roofs significantly impact the heat flow crossing the roof deck of a steep-slope roof. Field measures for the tile roofs revealed a 70% drop in the peak heat flow crossing the deck as compared to a direct-nailed asphalt shingle roof. The Tile Roofing Institute (TRI) and its affiliate members are keenly interested in documenting the magnitude of the drop for obtaining solar reflectance credits with state and federal "cool roof" building efficiency standards. Tile roofs are direct-nailed or are attached to a deck with batten or batten and counter-battenmore » construction. S-Misson clay and concrete tile roofs, a medium-profile concrete tile roof, and a flat slate tile roof were installed on fully nstrumented attic test assemblies. Temperature measures of the roof, deck, attic, and ceiling, heat flows, solar reflectance, thermal emittance, and the ambient weather were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventional pigmented and directnailed asphalt shingle roof. ORNL measured the tile's underside temperature and the bulk air temperature and heat flows just underneath the tile for batten and counter-batten tile systems and compared the results to the conventional asphalt shingle.« less
Origin and dynamics of emission line clouds in cooling flow environments
NASA Technical Reports Server (NTRS)
Loewenstein, Michael
1990-01-01
The author suggests that since clouds are born co-moving in a turbulent intra-cluster medium (ICM), the allowed parameter space can now be opened up to a more acceptable range. Large-scale motions can be driven in the central parts of cooling flows by a number of mechanisms including the motion of the central and other galaxies, and the dissipation of advected, focussed rotational and magnetic energy. In addition to the velocity width paradox, two other paradoxes (Heckman et al. 1989) can be solved if the ICM is turbulent. Firstly, the heating source for the emission line regions has always been puzzling - line luminosities are extremely high for a given (optical or radio) galaxy luminosity compared to those in non-cooling flow galaxies, therefore a mechanism peculiar to cooling flows must be at work. However most, if not all, previously suggested heating mechanisms either fail to provide enough ionization or give the wrong line ratios, or both. The kinetic energy in the turbulence provides a natural energy source if it can be efficiently converted to cloud heat. Researchers suggest that this can be done via magneto-hydrodynamic waves through plasma slip. Secondly, while the x ray observations indicate extended mass deposition, the optical line emission is more centrally concentrated. Since many of the turbulence-inducing mechanisms are strongest in the central regions of the ICM, so is the method of heating. In other words material is dropping out everywhere but only being lit up in the center.
Cooling circuit for and method of cooling a gas turbine bucket
Jacala, Ariel C. P.
2002-01-01
A closed internal cooling circuit for a gas turbine bucket includes axial supply and return passages in the dovetail of the bucket. A first radial outward supply passage provides cooling medium to and along a passageway adjacent the leading edge and then through serpentine arranged passageways within the airfoil to a chamber adjacent the airfoil tip. A second radial passage crosses over the radial return passage for supplying cooling medium to and along a pair of passageways along the trailing edge of the airfoil section. The last passageway of the serpentine passageways and the pair of passageways communicate one with the other in the chamber for returning spent cooling medium radially inwardly along divided return passageways to the return passage. In this manner, both the leading and trailing edges are cooled using the highest pressure, lowest temperature cooling medium.
Description and cost analysis of a deluge dry/wet cooling system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiles, L.E.; Bamberger, J.A.; Braun, D.J.
1978-06-01
The use of combined dry/wet cooling systems for large base-load power plants offers the potential for significant water savings as compared to evaporatively cooled power plants and significant cost savings in comparison to dry cooled power plants. The results of a detailed engineering and cost study of one type of dry/wet cooling system are described. In the ''deluge'' dry/wet cooling method, a finned-tube heat exchanger is designed to operate in the dry mode up to a given ambient temperature. To avoid the degradation of performance for higher ambient temperatures, water (the delugeate) is distributed over a portion of the heatmore » exchanger surface to enhance the cooling process by evaporation. The deluge system used in this study is termed the HOETERV system. The HOETERV deluge system uses a horizontal-tube, vertical-plate-finned heat exchanger. The delugeate is distributed at the top of the heat exchanger and is allowed to fall by gravity in a thin film on the face of the plate fin. Ammonia is used as the indirect heat transfer medium between the turbine exhaust steam and the ambient air. Steam is condensed by boiling ammonia in a condenser/reboiler. The ammonia is condensed in the heat exchanger by inducing airflow over the plate fins. Various design parameters of the cooling system have been studied to evaluate their impact on the optimum cooling system design and the power-plant/utility-system interface. Annual water availability was the most significant design parameter. Others included site meteorology, heat exchanger configuration and air flow, number and size of towers, fan system design, and turbine operation. It was concluded from this study that the HOETERV deluge system of dry/wet cooling, using ammonia as an intermediate heat transfer medium, offers the potential for significant cost savings compared with all-dry cooling, while achieving substantially reduced water consumption as compared to an evaporatively cooled power plant. (LCL)« less
A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick
How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentarymore » intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10{sup 12} M {sub ⊙} halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Christopher S.; Lohfink, Anne M.; Babul, Arif
2014-09-10
We present a deep Suzaku observation of H1821+643, an extremely rare example of a powerful quasar hosted by the central massive galaxy of a rich cooling-core cluster of galaxies. Informed by previous Chandra studies of the cluster, we achieve a spectral separation of emission from the active galactic nucleus (AGN) and the intracluster medium (ICM). With a high degree of confidence, we identify the signatures of X-ray reflection/reprocessing by cold and slowly moving material in the AGN's immediate environment. The iron abundance of this matter is found to be significantly sub-solar (Z ≈ 0.4 Z {sub ☉}), an unusual findingmore » for powerful AGN but in line with the idea that this quasar is feeding from the ICM via a Compton-induced cooling flow. We also find a subtle soft excess that can be described phenomenologically (with an additional blackbody component) or as ionized X-ray reflection from the inner regions of a high inclination (i ≈ 57°) accretion disk around a spinning (a > 0.4) black hole. We describe how the ionization state of the accretion disk can be used to constrain the Eddington fraction of the source. Applying these arguments to our spectrum implies an Eddington fraction of 0.25-0.5, with an associated black hole mass of 3--6×10{sup 9} M{sub ⊙}.« less
Carbon nanotube heat-exchange systems
Hendricks, Terry Joseph; Heben, Michael J.
2008-11-11
A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).
NASA Astrophysics Data System (ADS)
Fogarty, Kevin; Postman, Marc; Larson, Rebecca; Donahue, Megan; Moustakas, John
2017-09-01
We study the nature of feedback mechanisms in the 11 CLASH brightest cluster galaxies (BCGs) that exhibit extended ultraviolet and nebular line emission features. We estimate star formation rates (SFRs), dust masses, and starburst durations using a Bayesian photometry-fitting technique that accounts for both stellar and dust emission from the UV through far-IR. By comparing these quantities to intracluster medium (ICM) cooling times and freefall times derived from X-ray observations and lensing estimates of the cluster mass distribution, we discover a tight relationship between the BCG SFR and the ICM cooling time to freefall time ratio, {t}{cool}/{t}{ff}, with an upper limit on the intrinsic scatter of 0.15 dex. Furthermore, starburst durations may correlate with ICM cooling times at a radius of 0.025 {R}500, and the two quantities converge upon reaching the gigayear regime. Our results provide a direct observational link between the thermodynamical state of the ICM and the intensity and duration of BCG star formation activity, and appear consistent with a scenario where active galactic nuclei induce condensation of thermally unstable ICM overdensities that fuel long-duration (>1 Gyr) BCG starbursts. This scenario can explain (a) how gas with a low cooling time is depleted without causing a cooling flow and (b) the scaling relationship between SFR and {t}{cool}/{t}{ff}. We also find that the scaling relation between SFR and dust mass in BCGs with SFRs < 100 {M}⊙ yr-1 is similar to that in star-forming field galaxies; BCGs with large (> 100 {M}⊙ yr-1) SFRs have dust masses comparable to extreme starbursts.
DYNAMICS AND MAGNETIZATION IN GALAXY CLUSTER CORES TRACED BY X-RAY COLD FRONTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keshet, Uri; Markevitch, Maxim; Birnboim, Yuval
2010-08-10
Cold fronts (CFs)-density and temperature plasma discontinuities-are ubiquitous in cool cores of galaxy clusters, where they appear as X-ray brightness edges in the intracluster medium, nearly concentric with the cluster center. We analyze the thermodynamic profiles deprojected across core CFs found in the literature. While the pressure appears continuous across these CFs, we find that all of them require significant centripetal acceleration beneath the front. This is naturally explained by a tangential, nearly sonic bulk flow just below the CF, and a tangential shear flow involving a fair fraction of the plasma beneath the front. Such shear should generate near-equipartitionmore » magnetic fields on scales {approx}<50pc from the front and could magnetize the entire core. Such fields would explain the apparent stability of cool core CFs and the recently reported CF-radio minihalo association.« less
Energy analysis of cool, medium, and dark roofs on residential buildings in the U.S
NASA Astrophysics Data System (ADS)
Dunbar, Michael A.
This study reports an energy analysis of cool, medium, and dark roofs on residential buildings in the U.S. Three analyses were undertaken in this study: energy consumption, economic analysis, and an environmental analysis. The energy consumption reports the electricity and natural gas consumption of the simulations. The economic analysis uses tools such as simple payback period (SPP) and net present value (NPV) to determine the profitability of the cool roof and the medium roof. The variable change for each simulation model was the roof color. The default color was a dark roof and the results were focused on the changes produced by the cool roof and the medium roof. The environmental analysis uses CO2 emissions to assess the environmental impact of the cool roof and the medium roof. The analysis uses the U.S. Department of Energy (DOE) EnergyPlus software to produce simulations of a typical, two-story residential home in the U.S. The building details of the typical, two-story U.S. residential home and the International Energy Conservation Code (IECC) building code standards used are discussed in this study. This study indicates that, when material and labor costs are. assessed, the cool roof and the medium roof do not yield a SPP less than 10 years. Furthermore, the NPV results assess that neither the cool roof nor the medium roof are a profitable investment in any climate zone in the U.S. The environmental analysis demonstrates that both the cool roof and the medium roof have a positive impact in warmer climates by reducing the CO2 emissions as much as 264 kg and 129 kg, respectively.
Turbulent mixing layers in the interstellar medium of galaxies
NASA Technical Reports Server (NTRS)
Slavin, J. D.; Shull, J. M.; Begelman, M. C.
1993-01-01
We propose that turbulent mixing layers are common in the interstellar medium (ISM). Injection of kinetic energy into the ISM by supernovae and stellar winds, in combination with density and temperature inhomogeneities, results in shear flows. Such flows will become turbulent due to the high Reynolds number (low viscosity) of the ISM plasma. These turbulent boundary layers will be particularly interesting where the shear flow occurs at boundaries of hot (approximately 10(exp 6) K) and cold or warm (10(exp 2) - 10(exp 4) K) gas. Mixing will occur in such layers producing intermediate-temperature gas at T is approximately equal to 10(exp 5.0) - 10(exp 5.5) that radiates strongly in the optical, ultraviolet, and EUV. We have modeled these layers under the assumptions of rapid mixing down to the atomic level and steady flow. By including the effects of non-equilibrium ionization and self-photoionization of the gas as it cools after mixing, we predict the intensities of numerous optical, infrared, and ultraviolet emission lines, as well as absorption column densities of C 4, N 5, Si 4, and O 6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siemiginowska, Aneta; /Harvard-Smithsonian Ctr. Astrophys.; Cheung, C.C.
2006-01-11
We report the first significant detection of an X-ray cluster associated with a powerful (L{sub bol} {approx} 10{sup 47} erg sec{sup -1}) radio-loud quasar at high redshift (z=1.06). Diffuse X-ray emission is detected out to {approx} 120 kpc from the CSS quasar 3C 186. A strong Fe-line emission at the z{sub rest} = 1.06 confirms its thermal nature. We find that the CSS radio source is highly overpressured with respect to the thermal cluster medium by 2-3 orders of magnitude. This provides direct observational evidence that the radio source is not thermally confined as posited in the ''frustrated'' scenario formore » CSS sources. Instead, the radio source may be young and at an early stage of its evolution. This source provides the first detection of the AGN in outburst in the center of a cooling flow cluster. Powerful radio sources are thought to be triggered by the cooling flows. The evidence for the AGN activity and intermittent outbursts comes from the X-ray morphology of low redshift clusters, which usually do not harbour quasars. 3C186 is a young active radio source which can supply the energy into the cluster and potentially prevent its cooling. We discuss energetics related to the quasar activity and the cluster cooling flow, and possible feedback between the evolving radio source and the cluster.« less
Regeneratively cooled transition duct with transversely buffered impingement nozzles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Jay A; Lee, Ching-Pang; Crawford, Michael E
2015-04-21
A cooling arrangement (56) having: a duct (30) configured to receive hot gases (16) from a combustor; and a flow sleeve (50) surrounding the duct and defining a cooling plenum (52) there between, wherein the flow sleeve is configured to form impingement cooling jets (70) emanating from dimples (82) in the flow sleeve effective to predominately cool the duct in an impingement cooling zone (60), and wherein the flow sleeve defines a convection cooling zone (64) effective to cool the duct solely via a cross-flow (76), the cross-flow comprising cooling fluid (72) exhausting from the impingement cooling zone. In themore » impingement cooling zone an undimpled portion (84) of the flow sleeve tapers away from the duct as the undimpled portion nears the convection cooling zone. The flow sleeve is configured to effect a greater velocity of the cross-flow in the convection cooling zone than in the impingement cooling zone.« less
Utilizing of inner porous structure in injection moulds for application of special cooling method
NASA Astrophysics Data System (ADS)
Seidl, M.; Bobek, J.; Šafka, J.; Habr, J.; Nováková, I.; Běhálek, L.
2016-04-01
The article is focused on impact evaluation of controlled inner structure of production tools and new cooling method on regulation of thermal processes for injection moulding technology. The mould inserts with porous structure were cooled by means of liquid CO2 which is very progressive cooling method and enables very fast and intensive heat transfer among the plastic product, the production tool and cooling medium. The inserts were created using rapid prototype technology (DLSM) and they had a bi-component structure consisting of thin compact surface layer and defined porous inner structure of open cell character where liquid CO2 was flowing through. This analyse includes the evaluation of cooling efficiency for different inner structures and different time profiles for dosing of liquid CO2 into the porous structure. The thermal processes were monitored using thermocouples and IR thermal analyse of product surface and experimental device. Intensive heat removal influenced also the final structure and the shape and dimensional accuracy of the moulded parts that were made of semi-crystalline polymer. The range of final impacts of using intensive cooling method on the plastic parts was defined by DSC and dimensional analyses.
Analysis of heat and mass transfer during condensation over a porous substrate.
Balasubramaniam, R; Nayagam, V; Hasan, M M; Khan, L
2006-09-01
Condensing heat exchangers are important in many space applications for thermal and humidity control systems. The International Space Station uses a cooled fin surface to condense moisture from humid air that is blown over it. The condensate and the air are "slurped" into a system that separates air and water by centrifugal forces. The use of a cooled porous substrate is an attractive alternative to the fin where condensation and liquid/gas separation can be achieved in a single step. We analyze the heat and mass transfer during condensation of moisture from flowing air over such a cooled, flat, porous substrate. A fully developed regime is investigated for coupled mass, momentum and energy transport in the gas phase, and momentum and energy transport in the condensate layer on the porous substrate and through the porous medium.
Direct Simulation Monte Carlo for astrophysical flows - II. Ram-pressure dynamics
NASA Astrophysics Data System (ADS)
Weinberg, Martin D.
2014-03-01
We use the Direct Simulation Monte Carlo method combined with an N-body code to study the dynamics of the interaction between a gas-rich spiral galaxy and intracluster or intragroup medium, often known as the ram pressure scenario. The advantage of this gas kinetic approach over traditional hydrodynamics is explicit treatment of the interface between the hot and cold, dense and rarefied media typical of astrophysical flows and the explicit conservation of energy and momentum and the interface. This approach yields some new physical insight. Owing to the shock and backward wave that forms at the point intracluster medium (ICM)-interstellar medium (ISM) contact, ICM gas is compressed, heated and slowed. The shock morphology is Mach disc like. In the outer galaxy, the hot turbulent post-shock gas flows around the galaxy disc while heating and ablating the initially cool disc gas. The outer gas and angular momentum are lost to the flow. In the inner galaxy, the hot gas pressurizes the neutral ISM gas causing a strong two-phase instability. As a result, the momentum of the wind is no longer impulsively communicated to the cold gas as assumed in the Gunn-Gott formula, but oozes through the porous disc, transferring its linear momentum to the disc en masse. The escaping gas mixture has a net positive angular momentum and forms a slowly rotating sheath. The shear flow caused by the post-shock ICM flowing through the porous multiphase ISM creates a strong Kelvin-Helmholtz instability in the disc that results in Cartwheel-like ring and spoke morphology.
Semiconductor-based optical refrigerator
Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor
2002-01-01
Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.
NASA Astrophysics Data System (ADS)
Prasad, Ravindra; Samria, N. K.
1989-01-01
The problem considered has applications in the transient thermal analysis and time for attaining the steady state of the cylinder wall and cylinder head of an air-cooled internal-combustion engine. Numerical calculations based on finite difference approximations are carried out to assess the thermal response in a system of thin cylindrical and spherical shells having hot gases inside with convective boundary conditions. The outside surface is exposed to cooling medium where it looses heat by natural convection and radiation. As a special case, when radius is large, the surface may be considered to be a plane wall. The cylinder cover and cylinder wall of an internal-combustion engine are considered to be a plane wall for a comparatively higher ratio of cylinder diameter to the thickness of the wall, i.e., whend/δ varies from 80 to 100. A plot of temperature-time history and heat flow rates have been obtained.
Magnetic loops, downflows, and convection in the solar corona
NASA Technical Reports Server (NTRS)
Foukal, P.
1978-01-01
Optical and extreme-ultraviolet observations of solar loop structures show that flows of cool plasma from condensations near the loop apex are a common property of loops associated with radiations whose maximum temperature is greater than approximately 7000 K and less than approximately 3,000,000 K. It is suggested that the mass balance of these structures indicates reconnection by means of plasma motion across field lines under rather general circumstances (not only after flares). It is shown that the cool material has lower gas pressure than the surrounding coronal medium. The density structure of the bright extreme ultraviolet loops suggests that downflows of cool gas result from isobaric condensation of plasma that is either out of thermal equilibrium with the local energy deposition rate into the corona, or is thermally unstable. The evidence is thought to indicate that magnetic fields act to induce a pattern of forced convection.
Recent developments in CO2 lasers
NASA Astrophysics Data System (ADS)
Du, Keming
1993-05-01
CO2 lasers have been used in industry mainly for such things as cutting, welding, and surface processing. To conduct a broad spectrum of high-speed and high-quality applications, most of the developments in industrial CO2 lasers at the ILT are aimed at increasing the output power, optimizing the beam quality, and reducing the production costs. Most of the commercial CO2 lasers above 5 kW are transverse-flow systems using dc excitation. The applications of these lasers are limited due to the lower beam quality, the poor point stability, and the lower modulation frequency. To overcome the problems we developed a fast axial- flow CO2 laser using rf excitation with an output of 13 kW. In section 2 some of the results are discussed concerning the gas flow, the discharge, the resonator design, optical effects of active medium, the aerodynamic window, and the modulation of the output power. The first CO2 lasers ever built are diffusion-cooled systems with conventional dc excited cylindrical discharge tubes surrounded by cooling jackets. The output power per unit length is limited to 50 W/m by those lasers with cylindrical tubes. In the past few years considerable increases in the output power were achieved, using new mechanical geometries, excitation- techniques, and resonator designs. This progress in diffusion-cooled CO2 lasers is presented in section 3.
The United States of America as represented by the United States Department of Energy
2009-12-15
An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.
NASA Technical Reports Server (NTRS)
Saha, H.
1981-01-01
The test data and an analysis of the heat transfer characteristics of a solar thermal energy storage bed utilizing water filled cans and standard bricks as energy storage medium are presented. This experimental investigation was initiated to find a usable heat intensive solar thermal storage device other than rock storage and water tank. Four different sizes of soup cans were stacked in a chamber in three different arrangements-vertical, horizontal, and random. Air is used as transfer medium for charging and discharge modes at three different mass flow rates and inlet air temperature respectively. These results are analyzed and compared, which show that a vertical stacking and medium size cans with Length/Diameter (L/D) ratio close to one have better average characteristics of heat transfer and pressure drop.
Cosmic-Ray Feedback Heating of the Intracluster Medium
NASA Astrophysics Data System (ADS)
Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S.
2017-07-01
Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We find that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (I) CRs come into contact with the ambient ICM and efficiently heat it, (II) streaming instability heating dominates over Coulomb and hadronic heating, (III) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (IV) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.
NASA Astrophysics Data System (ADS)
Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming
2015-01-01
In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.
Cooling flows and X-ray emission in early-type galaxies
NASA Technical Reports Server (NTRS)
Sarazin, Craig L.
1990-01-01
The X-ray properties of normal early-type galaxies and the limited theoretical understanding of the physics of the hot interstellar medium in these galaxies are reviewed. A number of simple arguments about the physical state of the gas are given. Steady-state cooling flow models for these galaxies are presented, and their time-dependent evolution is discussed. The X-ray emission found in early-type galaxies indicates that they contain significant amounts of hot interstellar gas, and that they are not the gas-poor systems they were previously thought to be. In the brighter X-ray galaxies, the amounts of hot gas observed are consistent with those expected given the present rates of stellar mass loss. The required rates of heating of the gas are consistent with those expected from the motions of gas-losing stars and supernovae. The X-ray observations are generally more consistent with a lower rate of Type I supernovae than was previously thought.
PH adjustment of power plant cooling water with flue gas/fly ash
Brady, Patrick V.; Krumhansl, James L.
2015-09-22
A system including a vessel including a heat source and a flue; a turbine; a condenser; a fluid conduit circuit disposed between the vessel, the turbine and the condenser; and a diverter coupled to the flue to direct a portion of an exhaust from the flue to contact with a cooling medium for the condenser water. A method including diverting a portion of exhaust from a flue of a vessel; modifying the pH of a cooling medium for a condenser with the portion of exhaust; and condensing heated fluid from the vessel with the pH modified cooling medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Christopher S.; Balbus, Steven A.; Schekochihin, Alexander A., E-mail: chris@astro.umd.edu
2015-12-10
Central jetted active galactic nuclei (AGNs) appear to heat the core regions of the intracluster medium (ICM) in cooling-core galaxy clusters and groups, thereby preventing a cooling catastrophe. However, the physical mechanism(s) by which the directed flow of kinetic energy is thermalized throughout the ICM core remains unclear. We examine one widely discussed mechanism whereby the AGN induces subsonic turbulence in the ambient medium, the dissipation of which provides the ICM heat source. Through controlled inviscid three-dimensional hydrodynamic simulations, we verify that explosive AGN-like events can launch gravity waves (g-modes) into the ambient ICM, which in turn decays to volume-fillingmore » turbulence. In our model, however, this process is found to be inefficient, with less than 1% of the energy injected by the AGN activity actually ending up in the turbulence of the ambient ICM. This efficiency is an order of magnitude or more too small to explain the observations of AGN-feedback in galaxy clusters and groups with short central cooling times. Atmospheres in which the g-modes are strongly trapped/confined have an even lower efficiency since, in these models, the excitation of turbulence relies on the g-modes’ ability to escape from the center of the cluster into the bulk ICM. Our results suggest that, if AGN-induced turbulence is indeed the mechanism by which the AGN heats the ICM core, its driving may rely on physics beyond that captured in our ideal hydrodynamic model.« less
Low-temperature transonic cooling flows in galaxy clusters
NASA Technical Reports Server (NTRS)
Sulkanen, Martin E.; Burns, Jack O.; Norman, Michael L.
1989-01-01
Calculations are presented which demonstrate that cooling flow models with large sonic radii may be consistent with observed cluster gas properties. It is found that plausible cluster parameters and cooling flow mass accretion rates can produce sonic radii of 10-20 kpc for sonic point temperatures of 1-3 x 10 to the 6th K. The numerical calculations match these cooling flows to hydrostatic atmosphere solutions for the cluster gas beyond the cooling flow region. The cooling flows produce no appreciable 'holes' in the surface brightness toward the cluster center, and the model can be made to match the observed X-ray surface brightness of three clusters in which cooling flows had been believed to be absent. It is suggested that clusters with low velocity dispersion may be the natural location for such 'cool' cooling flows, and fits of these models to the X-ray surface brightness profiles for three clusters are presented.
NASA Astrophysics Data System (ADS)
Gaspari, M.; Melioli, C.; Brighenti, F.; D'Ercole, A.
2011-02-01
It is now widely accepted that heating processes play a fundamental role in galaxy clusters, struggling in an intricate but fascinating ‘dance' with its antagonist, radiative cooling. Last-generation observations, especially X-ray, are giving us tiny hints about the notes of this endless ballet. Cavities, shocks, turbulence and wide absorption lines indicate that the central active nucleus is injecting a huge amount of energy in the intracluster medium. However, which is the real dominant engine of self-regulated heating? One of the models we propose is massive subrelativistic outflows, probably generated by a wind disc or just the result of the entrainment on kpc scale by the fast radio jet. Using a modified version of the adaptive mesh refinement code FLASH 3.2, we have explored several feedback mechanisms that self-regulate the mechanical power. Two are the best schemes that answer our primary question, that is, quenching cooling flow and at the same time preserving a cool core appearance for a long-term evolution (7 Gyr): one is more explosive (with efficiencies ˜ 5 × 10-3-10-2), triggered by central cooled gas, and the other is gentler, ignited by hot gas Bondi accretion (with ɛ= 0.1). These three-dimensional simulations show that the total energy injected is not the key aspect, but the results strongly depend on how energy is given to the intracluster medium. We follow the dynamics of the best models (temperature, density, surface brightness maps and profiles) and produce many observable predictions: buoyant bubbles, ripples, turbulence, iron abundance maps and hydrostatic equilibrium deviation. We present an in-depth discussion of the merits and flaws of all our models, with a critical eye towards observational concordance.
Gas turbine bucket cooling circuit and related process
Lewis, Doyle C.; Barb, Kevin Joseph
2002-01-01
A turbine bucket includes an airfoil portion having leading and trailing edges; at least one radially extending cooling passage within the airfoil portion, the airfoil portion joined to a platform at a radially inner end of the airfoil portion; a dovetail mounting portion enclosing a cooling medium supply passage; and, a crossover passage in fluid communication with the cooling medium supply passage and with at least one radially extending cooling passage, the crossover passage having a portion extending along and substantially parallel to an underside surface of the platform.
Emplacement of the Rocche Rosse rhyolite lava flow (Lipari, Aeolian Islands)
NASA Astrophysics Data System (ADS)
Bullock, Liam A.; Gertisser, Ralf; O'Driscoll, Brian
2018-05-01
The Rocche Rosse lava flow marks the most recent rhyolitic extrusion on Lipari island (Italy), and preserves evidence for a multi-stage emplacement history. Due to the viscous nature of the advancing lava (108 to 1010 Pa s), indicators of complex emplacement processes are preserved in the final flow. This study focuses on structural mapping of the flow to highlight the interplay of cooling, crust formation and underlying slope in the development of rhyolitic lavas. The flow is made up of two prominent lobes, small (< 0.2 m) to large (> 0.2 m) scale folding and a channelled geometry. Foliations dip at 2-4° over the flatter topography close to the vent, and up to 30-50° over steeper mid-flow topography. Brittle faults, tension gashes and conjugate fractures are also evident across flow. Heterogeneous deformation is evident through increasing fold asymmetry from the vent due to downflow cooling and stagnation. A steeper underlying topography mid-flow led to development of a channelled morphology, and compression at topographic breaks resulted in fold superimposition in the channel. We propose an emplacement history that involved the evolution through five stages, each associated with the following flow regimes: (1) initial extrusion, crustal development and small scale folding; (2) extensional strain, stretching lineations and channel development over steeper topography; (3) compression at topographic break, autobrecciation, lobe development and medium scale folding; (4) progressive deformation with stagnation, large-scale folding and re-folding; and (5) brittle deformation following flow termination. The complex array of structural elements observed within the Rocche Rosse lava flow facilitates comparisons to be made with actively deforming rhyolitic lava flows at the Chilean volcanoes of Chaitén and Cordón Caulle, offering a fluid dynamic and structural framework within which to evaluate our data.
NASA Astrophysics Data System (ADS)
Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen
2015-11-01
Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.
Preparative free-flow electrophoresis as a method of fractionation of natural organic materials
Leenheer, J.A.; Malcolm, R.L.
1973-01-01
Preparative free-flow electrophoresis was found to be an efficient method of conducting large-scale fractionations of the natural organic polyelectrolytes occurring in many surface waters and soils. The method of free-flow electrophoresis obviates, the problem of adsorption upon a supporting medium and permits the use of high potential gradients and currents because of an efficient cooling system. Separations were monitored by determining organic carbon concentration with a dissolved carbon analyzer, and color was measured by absorbance at 400 nanometers. Organic materials from waters and soils were purified by filtration, hydrogen exchange, and dialysis and were concentrated by freeze drying or freeze concentration. In electrophoretic fractionations of natural organic materials typically found in surface waters and soils, color was found to increase with the charge of the fraction.
Experimental Optimisation of the Thermal Performance of Impinging Synthetic Jet Heat Sinks
NASA Astrophysics Data System (ADS)
Marron, Craig; Persoons, Tim
2014-07-01
Zero-net-mass flow synthetic jet devices offer a potential solution for energy- efficient cooling of medium power density electronic components. There remains an incomplete understanding of the interaction of these flows with extended surfaces, which prevents the wider implementation of these devices in the field. This study examines the effect of the main operating parameters on the heat transfer rate and electrical power consumption for a synthetic jet cooled heat sink. Three different heat sink geometries are tested. The results find that a modified sink with a 14 × 14 pin array with the central 6 × 6 pins removed provides superior cooling to either a fully pinned sink or flat plate. Furthermore each heat sink is found to have its own optimum jet orifice-to-sink spacing for heat transfer independent of flow conditions. The optimum heat transfer for the modified sink is H = 34 jet diameters. The effect of frequency on heat transfer is also studied. It is shown that heat transfer increases superlinearly with frequency at higher stroke lengths. The orientation of the impingement surface with respect to gravity has no effect on the heat transfer capabilities of the tested device. These tests are the starting point for further investigation into enhanced synthetic jet impingement surfaces. The equivalent axial fan cooled pinned heat sink (Malico Inc. MFP40- 18) has a thermal resistance of 1.93K/W at a fan power consumption of 0.12W. With the modified pinned heat sink, a synthetic jet at Re = 911, L0/D = 10, H/D = 30 provides a thermal resistance of 2.5K/W at the same power consumption.
NASA Astrophysics Data System (ADS)
Saito, Akio; Utaka, Yoshio; Okawa, Seiji; Ishibashi, Hiroaki
Investigation of heat transfer characteristics in an ice making cold energy storage using a set of horizontal cooling pipes was carried out experimentally. Cooling pipe arrangement, number of pipes used and initial water temperature were varied, and temperature distribution in the tank and the volume of ice formed around the pipe were measured. Natural convection was also observed visually. During the experiment, two kinds of layers were observed. One is the layer where ice forming is interfered by natural convection and its temperature decreases rapidly with an almost uniform temperature distribution, and the other is the layer where ice forms steadily under a stagnant water condition. The former was called that the layer is under a cooling process and the latter that the layer is under an ice forming process. The effect of the experimental parameters, such as the arrangement of the cooling pipes, the number of pipes, the initial water temperature and the flow rate of the cooling medium, on the cooling process and the ice forming process were discussed. Approximate analysis was also carried out and compared with the experimental results. Finally, the relationship between the ice packing factor, which is significant in preventing the blockade, and experimental parameters was discussed.
NASA Astrophysics Data System (ADS)
Nagaso, Masaru; Komatitsch, Dimitri; Moysan, Joseph; Lhuillier, Christian
2018-01-01
ASTRID project, French sodium cooled nuclear reactor of 4th generation, is under development at the moment by Alternative Energies and Atomic Energy Commission (CEA). In this project, development of monitoring techniques for a nuclear reactor during operation are identified as a measure issue for enlarging the plant safety. Use of ultrasonic measurement techniques (e.g. thermometry, visualization of internal objects) are regarded as powerful inspection tools of sodium cooled fast reactors (SFR) including ASTRID due to opacity of liquid sodium. In side of a sodium cooling circuit, heterogeneity of medium occurs because of complex flow state especially in its operation and then the effects of this heterogeneity on an acoustic propagation is not negligible. Thus, it is necessary to carry out verification experiments for developments of component technologies, while such kind of experiments using liquid sodium may be relatively large-scale experiments. This is why numerical simulation methods are essential for preceding real experiments or filling up the limited number of experimental results. Though various numerical methods have been applied for a wave propagation in liquid sodium, we still do not have a method for verifying on three-dimensional heterogeneity. Moreover, in side of a reactor core being a complex acousto-elastic coupled region, it has also been difficult to simulate such problems with conventional methods. The objective of this study is to solve these 2 points by applying three-dimensional spectral element method. In this paper, our initial results on three-dimensional simulation study on heterogeneous medium (the first point) are shown. For heterogeneity of liquid sodium to be considered, four-dimensional temperature field (three spatial and one temporal dimension) calculated by computational fluid dynamics (CFD) with Large-Eddy Simulation was applied instead of using conventional method (i.e. Gaussian Random field). This three-dimensional numerical experiment yields that we could verify the effects of heterogeneity of propagation medium on waves in Liquid sodium.
Investigation of Spray Cooling Schemes for Dynamic Thermal Management
NASA Astrophysics Data System (ADS)
Yata, Vishnu Vardhan Reddy
This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.
Cooling using complimentary tapered plenums
Hall, Shawn Anthony [Pleasantville, NY
2006-08-01
Where a fluid cooling medium cools a plurality of heat-producing devices arranged in a row along a generalized coordinate direction, with a space between each adjacent pair of devices, each space may have a partition that defines a boundary between a first plenum and a second plenum. The first plenum carries cooling medium across an entrance and thence into a first heat-producing device located on a first side of the partition facing the first plenum. The second plenum carries cooling medium away from a second heat-producing device located on a second side of the partition facing the second plenum and thence across an exit. The partition is disposed so that the first plenum becomes smaller in cross-sectional area as distance increases from the entrance, and the second plenum becomes larger in cross sectional area as distance decreases toward the exit.
Enhancing the performance of the domestic refrigerator with hot gas injection to suction line
NASA Astrophysics Data System (ADS)
Berman, E. T.; Hasan, S.; Mutaufiq
2016-04-01
The purpose of this study was to determine the increase in performance of a domestic refrigerator that uses hot gas injection (IHG) to the suction line. The experiment was conducted by flowing refrigerant from the discharge line to the suction line. To get performance data, measurements performed on the liquid brine as cooling load with various temperatures (range from 3°C to - 3°C). The working fluid is used as a cooling medium is R-134a. The experimental results showed that the injection of hot gas to the suction line generates an increase in the coefficient of performance systems (COPs) of 7% and is able to lower the discharge temperature, causing the compressor to work lighter/easier, saving electric power needed by the refrigerator.
Cosmic-Ray Feedback Heating of the Intracluster Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S., E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: chris@astro.umd.edu
2017-07-20
Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We findmore » that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (i) CRs come into contact with the ambient ICM and efficiently heat it, (ii) streaming instability heating dominates over Coulomb and hadronic heating, (iii) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (iv) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.« less
Revealing Thermal Instabilities in the Core of the Phoenix Cluster
NASA Astrophysics Data System (ADS)
McDonald, Michael
2017-08-01
The Phoenix cluster is the most relaxed cluster known, and hosts the strongest cool core of any cluster yet discovered. At the center of this cluster is a massive starburst galaxy, with a SFR of 500-1000 Msun/yr, seemingly satisfying the early cooling flow predictions, despite the presence of strong AGN feedback from the central supermassive black hole. Here we propose deep narrow-band imaging of the central 120 kpc of the cluster, to map the warm (10^4K) ionized gas via the [O II] emission line. In low-z clusters, such as Perseus and Abell 1795, the warm, ionized phase is of critical importance to map out thermal instabilities in the hot gas, and maps of Halpha and [O II] have been used for decades to understand how (and how not) cooling proceeds in the intracluster medium. The data proposed for here, combined with deep ALMA data, a recently-approved Large Chandra Program, and recently-approved multi-frequency JVLA data, will allow us to probe the cooling ICM, the cool, filamentary gas, the cold molecular gas, the star-forming population, and the AGN jets all on scales of <10 kpc. This multi-observatory campaign, focusing on the most extreme cooling cluster, will lead to a more complete understanding of how and why thermal instabilities develop in the hot ICM of cool core clusters.
Integrated exhaust gas recirculation and charge cooling system
Wu, Ko-Jen
2013-12-10
An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.
Fission fragment excited laser system
McArthur, David A.; Tollefsrud, Philip B.
1976-01-01
A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.
Neutrino Processes in Neutron Stars
NASA Astrophysics Data System (ADS)
Kolomeitsev, E. E.; Voskresensky, D. N.
2010-10-01
The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be included within the Green’s function formalism. Softening of the pion mode with an baryon density increase is explicitly incorporated. We show examples of inconsistencies in calculations without inclusion of medium effects. Then we demonstrate calculations of different reaction rates in non-superfluid nuclear matter with taking into account medium effects. Many new reaction channels are open up in the medium and should be analyzed. Part IV: We discuss the neutrino production reactions in superfluid nuclear systems. The reaction rates of processes associated with the pair breaking and formation are calculated. Special attention is focused on the gauge invariance and the exact fulfillment of the Ward identities for the vector current. Finally we present comparison of calculations of neutron star cooling performed within nuclear medium cooling scenario with the available data.
Fuel injection assembly for gas turbine engine combustor
NASA Technical Reports Server (NTRS)
Candy, Anthony J. (Inventor); Glynn, Christopher C. (Inventor); Barrett, John E. (Inventor)
2002-01-01
A fuel injection assembly for a gas turbine engine combustor, including at least one fuel stem, a plurality of concentrically disposed tubes positioned within each fuel stem, wherein a cooling supply flow passage, a cooling return flow passage, and a tip fuel flow passage are defined thereby, and at least one fuel tip assembly connected to each fuel stem so as to be in flow communication with the flow passages, wherein an active cooling circuit for each fuel stem and fuel tip assembly is maintained by providing all active fuel through the cooling supply flow passage and the cooling return flow passage during each stage of combustor operation. The fuel flowing through the active cooling circuit is then collected so that a predetermined portion thereof is provided to the tip fuel flow passage for injection by the fuel tip assembly.
High energy bursts from a solid state laser operated in the heat capacity limited regime
Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.
1996-06-11
High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.
High energy bursts from a solid state laser operated in the heat capacity limited regime
Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.
1996-01-01
High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.
Passive containment cooling system
Conway, Lawrence E.; Stewart, William A.
1991-01-01
A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.
NASA Astrophysics Data System (ADS)
1991-12-01
The major results of an experimental study of a slab Nd:YAG laser are reported in the article; the laser was successfully developed by the authors. The major findings include the following: (1) a method for cooling the blended flowing air and water, as well the related experimental parameters; (2) by using a crossed lens cavity, the authors further improved the anomalous capability within the compensation cavity of the slab laser, as well as higher insensitivity of the system to maladjustment; and (3) a processing technique and major points of slab YAG laser medium.
Numerical simulation of two-dimensional Rayleigh-Benard convection
NASA Astrophysics Data System (ADS)
Grigoriev, Vasiliy V.; Zakharov, Petr E.
2017-11-01
This paper considered Rayleigh-Benard convection (natural convection). This is a flow, which is formed in a viscous medium when heated from below and cooled from above. As a result, are formed vortices (convective cells). This process is described by a system of nonlinear differential equations in Oberbeck-Boussinesq approximation. As the governing parameters characterizing convection states Rayleigh number, Prandtl number are picked. The problem is solved by using finite element method with computational package FEniCS. Numerical results for different Rayleigh numbers are obtained. Studied integral characteristic (Nusselt number) depending on the Rayleigh number.
Technique for detecting liquid metal leaks
Bauerle, James E.
1979-01-01
In a system employing flowing liquid metal as a heat transfer medium in contact with tubular members containing a working fluid, i.e., steam, liquid metal leaks through the wall of the tubular member are detected by dislodging the liquid metal compounds forming in the tubular member at the leak locations and subsequently transporting the dislodged compound in the form of an aerosol to a detector responsive to the liquid metal compound. In the application to a sodium cooled tubular member, the detector would consist of a sodium responsive device, such as a sodium ion detector.
Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines
NASA Astrophysics Data System (ADS)
Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.
Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.
Handpiece coolant flow rates and dental cutting.
von Fraunhofer, J A; Siegel, S C; Feldman, S
2000-01-01
High-speed handpieces incorporate water coolant sprays to remove cutting debris and minimize thermal insult to the pulp. Little data exists on optimal coolant flow rates during clinical procedures. This study compared the effect of different coolant flow rates on diamond stone cutting efficiency. Cutting studies were performed on Macor machinable ceramic using a previously developed test regimen--a KaVo high-speed handpiece at a cutting force of 91.5 g (0.9 N). Cutting was performed with round end tapered medium grit diamond stones under cooling water flow rates of 15, 20, 25, 30 and 44 ml/min, with cutting rates determined as the time to transect the 13 mm square cross-section of the Macor bar. Each bur was used for five cuts, with six burs used for each flow rate, for a total of 150 measurements. The data were analyzed by one-way ANOVA with a post hoc Scheffé test. The cutting studies indicated that diamond stone cutting rates increased with higher coolant flow rates over the range of 15-44 ml/min. The data suggest that higher coolant flow rates promote cutting efficiency.
Scaling laws of passive-scalar diffusion in the interstellar medium
NASA Astrophysics Data System (ADS)
Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan
2017-05-01
Passive-scalar mixing (metals, molecules, etc.) in the turbulent interstellar medium (ISM) is critical for abundance patterns of stars and clusters, galaxy and star formation, and cooling from the circumgalactic medium. However, the fundamental scaling laws remain poorly understood in the highly supersonic, magnetized, shearing regime relevant for the ISM. We therefore study the full scaling laws governing passive-scalar transport in idealized simulations of supersonic turbulence. Using simple phenomenological arguments for the variation of diffusivity with scale based on Richardson diffusion, we propose a simple fractional diffusion equation to describe the turbulent advection of an initial passive scalar distribution. These predictions agree well with the measurements from simulations, and vary with turbulent Mach number in the expected manner, remaining valid even in the presence of a large-scale shear flow (e.g. rotation in a galactic disc). The evolution of the scalar distribution is not the same as obtained using simple, constant 'effective diffusivity' as in Smagorinsky models, because the scale dependence of turbulent transport means an initially Gaussian distribution quickly develops highly non-Gaussian tails. We also emphasize that these are mean scalings that apply only to ensemble behaviours (assuming many different, random scalar injection sites): individual Lagrangian 'patches' remain coherent (poorly mixed) and simply advect for a large number of turbulent flow-crossing times.
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
2015-01-01
Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.
Quasars Probing Quasars: the Circumgalactic Medium Surrounding z ~ 2 Quasars
NASA Astrophysics Data System (ADS)
Lau, Marie; Quasars Probing Quasars survey
2018-01-01
Understanding the circumgalactic medium--the gaseous halo surrounding a galaxy, is an integral part to understanding galaxy evolution. The z ~ 2-3 universe is interesting as this is when the star formation rate and AGN activity peak. My thesis concludes the decade-long Quasars Probing Quasars survey designed for studying massive galaxy formation and quasar feedback. I use background quasar sightlines that pass close to foreground quasars to study the circumgalactic medium of quasar-host galaxies in absorption. My sample of 149 quasar pairs involve spectra taken with 17 different optical and near IR instruments. I present results on the statistical and physical properties of the circumgalactic medium. The circumgalactic medium is enriched even beyond the virial radius. The alpha/Fe abundance ratio is enhanced, suggesting enrichment from core-collapse supernovae. The cool gas mass within the virial radius is enough to fuel star formation for another Gyr, and may account for 1/3 of the baryonic budget of the galaxy halo. The ionization state increases with projected distance from the quasar, which implies the quasar does not dominate the ionizing radiation flux. However, detection of fluorescent Lyman-alpha emission and NV absorption imply these transverse absorbers are partially illuminated by the quasar. In one peculiar case, the absorbing clump has density >100 cm^-3 and sub-parsec size. The average absorption in the circumgalactic medium exhibits large velocity widths, and is asymmetric about the systemic redshift of the galaxies. The widths are consistent with gravitational motions and Hubble flow, and outflows are not required to explain them. The asymmetry can be explained if the ionizing radiation from the quasar is anisotropic or intermittent and the gas is not in inflow. My results pose challenges for cosmological hydrodynamic simulations to produce a substantial cool gas reservoir surrounding quasars, that is also enriched and shows extreme kinematics.
The Formation and Physical Origin of Highly Ionized Cooling Gas
NASA Astrophysics Data System (ADS)
Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.; Norman, Colin A.
2017-10-01
We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O VI, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O VI is regularly observed around star-forming low-z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O VI absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.
The Formation and Physical Origin of Highly Ionized Cooling Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.
We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O vi, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explainedmore » by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O vi is regularly observed around star-forming low- z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O vi absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.« less
NASA Technical Reports Server (NTRS)
Silk, J.; Djorgovski, S.; Wyse, R. F. G.; Bruzual A., G.
1986-01-01
A self-consistent treatment of the heating by supernovae associated with star formation in a spherically symmetric cooling flow in a cluster core or elliptical galaxy is presented. An initial stellar mass function similar to that in the solar neighborhood is adopted. Inferred star-formation rates, within the cooling region - typically the inner 100 kpc around dominant galaxies at the centers of cooling flows in XD clusters - are reduced by about a factor of 2, relative to rates inferred when the heat input from star formation is ignored. Truncated initial mass functions (IMFs) are also considered, in which massive star formation is suppressed in accordance with previous treatments, and colors are predicted for star formation in cooling flows associated with central dominant elliptical galaxies and with isolated elliptical galaxies surrounded by gaseous coronae. The low inferred cooling-flow rates around isolated elliptical galaxies are found to be insensitive to the upper mass cutoff in the IMF, provided that the upper mass cutoff exceeds 2 M solar mass. Comparison with observed colors favors a cutoff in the IMF above 1 M solar mass in at least two well-studied cluster cooling flows, but a normal IMF cannot be excluded definitively. Models for NGC 1275 support a young (less than about 3 Gyr) cooling flow. As for the isolated elliptical galaxies, the spread in colors is consistent with a normal IMF. A definitive test of the IMF arising via star formation in cooling flows requires either UV spectral data or supernova searches in the cooling-flow-centered galaxies.
NASA Astrophysics Data System (ADS)
Alqefl, Mahmood Hasan
In many regions of the high-pressure gas turbine, film cooling flows are used to protect the turbine components from the combustor exit hot gases. Endwalls are challenging to cool because of the complex system of secondary flows that disturb surface film coolant coverage. The secondary flow vortices wash the film coolant from the surface into the mainstream significantly decreasing cooling effectiveness. In addition to being effected by secondary flow structures, film cooling flow can also affect these structures by virtue of their momentum exchange. In addition, many studies in the literature have shown that endwall contouring affects the strength of passage secondary flows. Therefore, to develop better endwall cooling schemes, a good understanding of passage aerodynamics and heat transfer as affected by interactions of film cooling flows with secondary flows is required. This experimental and computational study presents results from a linear, stationary, two-passage cascade representing the first stage nozzle guide vane of a high-pressure gas turbine with an axisymmetrically contoured endwall. The sources of film cooling flows are upstream combustor liner coolant and endwall slot film coolant injected immediately upstream of the cascade passage inlet. The operating conditions simulate combustor exit flow features, with a high Reynolds number of 390,000 and approach flow turbulence intensity of 11% with an integral length scale of 21% of the chord length. Measurements are performed with varying slot film cooling mass flow to mainstream flow rate ratios (MFR). Aerodynamic effects are documented with five-hole probe measurements at the exit plane. Heat transfer is documented through recovery temperature measurements with a thermocouple. General secondary flow features are observed. Total pressure loss measurements show that varying the slot film cooling MFR has some effects on passage loss. Velocity vectors and vorticity distributions show a very thin, yet intense, cross-pitch flow on the contoured endwall side. Endwall adiabatic effectiveness values and coolant distribution thermal fields show minimal effects of varying slot film coolant MFR. This suggests the dominant effects of combustor liner coolant. show dominant effects of combustor liner coolant on cooling the endwall. A coolant vorticity correlation presenting the advective mixing of the coolant due to secondary flow vorticity at the exit plane is also discussed.
A giant protogalactic disk linked to the cosmic web
NASA Astrophysics Data System (ADS)
Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J. Xavier; Chang, Daphne
2015-08-01
The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that `cold accretion flows'--relatively cool (temperatures of the order of 104 kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 1013 solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.
A giant protogalactic disk linked to the cosmic web.
Martin, D Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J Xavier; Chang, Daphne
2015-08-13
The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that 'cold accretion flows'--relatively cool (temperatures of the order of 10(4) kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 10(13) solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.
Cutaneous heat flow during heating and cooling in Alligator mississipiensis.
Smith, E N
1976-05-01
Direct in vivo measurement of heat flow across the skin of the American alligator (Alligator mississipiensis) showed increased heat flow during warming. Mean values at 25 degrees C during warming (15-35 degrees C) in air (airspeed 300 cm/s) were 17.9 +/- 92 SE cal/cm2 per h (mean alligator wt 3.27 kg). Cooling heat flow at the same temperature was 13.6 +/- 0.57 cal/cm2 per h. Subdermal heat flow was reduced during warming and was not significantly different from cutaneous heat flow during cooling. This indicated that the alligator was able to control its rate of heat exchange with the environment by altering cutaneous perfusion. Atropine, phenoxybenzamine, nitroglycerin, and Xylocaine did not affect cutaneous heat flow or heating and cooling rates. Atropine blocked bradycardia during cooling.
Algorithm for calculating turbine cooling flow and the resulting decrease in turbine efficiency
NASA Technical Reports Server (NTRS)
Gauntner, J. W.
1980-01-01
An algorithm is presented for calculating both the quantity of compressor bleed flow required to cool the turbine and the decrease in turbine efficiency caused by the injection of cooling air into the gas stream. The algorithm, which is intended for an axial flow, air routine in a properly written thermodynamic cycle code. Ten different cooling configurations are available for each row of cooled airfoils in the turbine. Results from the algorithm are substantiated by comparison with flows predicted by major engine manufacturers for given bulk metal temperatures and given cooling configurations. A list of definitions for the terms in the subroutine is presented.
EFFECT OF SOLID MEDIUM DURING COOLED STORAGE ON STALLION SPERM PARAMETERS.
Santos, F C; Corcini, C D; Costa, V G; Gheller, S M; Nogueira, C E; da Rosa Curcio, B; Varel, A S
2015-01-01
Solid storage medium prevents cellular sedimentation, reduces metabolic demand via limiting movement, and avoids the modification of an extender composition in the sedimentary microenvironment. It has been proven to prolong spermatozoa viability in mammalians. This experiment aims to evaluate the effect of cool storage in solid phase extender on stallion sperms. Semen was collected from 10 Crioulo stallions (n=30) and submitted to treatments: control group (semen extender) and groups with gelatin addition in different concentrations (semen extender + 1%, 2% and 3%). Seminal analyses included motility, mitochondrial functionality, plasma membrane integrity, DNA and acrosome at 0; 24; 48 and 72 hours during cooled storage at 5 degree C. Motility, mitochondrial functionality, plasma membrane and acrosome integrity declined during storage time, with no statistical difference between treatments. DNA integrity did not significantly change during storage period. Solid medium was not harmful and did not improved stallion sperm parameters during cooled storage.
Computing Cooling Flows in Turbines
NASA Technical Reports Server (NTRS)
Gauntner, J.
1986-01-01
Algorithm developed for calculating both quantity of compressor bleed flow required to cool turbine and resulting decrease in efficiency due to cooling air injected into gas stream. Program intended for use with axial-flow, air-breathing, jet-propulsion engines with variety of airfoil-cooling configurations. Algorithm results compared extremely well with figures given by major engine manufacturers for given bulk-metal temperatures and cooling configurations. Program written in FORTRAN IV for batch execution.
Santymire, R M; Marinari, P E; Kreeger, J S; Wildt, D E; Howard, J G
2007-01-01
The endangered black-footed ferret (Mustela nigripes) has benefited from artificial insemination; however, improved sperm cryopreservation protocols are still needed. The present study focused on identifying factors influencing gamete survival during processing before cryopreservation, including: (1) the presence or absence of seminal plasma; (2) temperature (25 degrees C v. 37 degrees C); (3) type of medium (Ham's F10 medium v. TEST yolk buffer [TYB]); (4) cooling rate (slow, rapid and ultra-rapid); and (5) the presence or absence of glycerol. Seminal plasma did not compromise (P > 0.05) sperm motility or acrosomal integrity. Sperm motility traits were maintained longer (P < 0.05) at 25 degrees C than at 37 degrees C in Ham's or TYB, but temperature did not affect (P > 0.05) acrosomal integrity. Overall, TYB maintained optimal (P < 0.05) sperm motility compared with Ham's medium, but Ham's medium maintained more (P < 0.05) intact acrosomes than TYB. Slow cooling (0.2 degrees C min(-1)) was optimal (P < 0.05) compared to rapid cooling (1 degrees C min(-1)), and ultra-rapid cooling (9 degrees C min(-1)) was found to be highly detrimental (P < 0.05). Results obtained in TYB with 0% or 4% glycerol were comparable (P > 0.05), indicating that 4% glycerol was non-toxic to ferret sperm; however, glycerol failed to ameliorate the detrimental effects of either rapid or ultra-rapid cooling. The results of the present study demonstrate that the damage observed to black-footed ferret spermatozoa is derived largely from the rate of cooling.
Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies
NASA Astrophysics Data System (ADS)
McDonald, M.; Gaspari, M.; McNamara, B. R.; Tremblay, G. R.
2018-05-01
We present a study of 107 galaxies, groups, and clusters spanning ∼3 orders of magnitude in mass, ∼5 orders of magnitude in central galaxy star formation rate (SFR), ∼4 orders of magnitude in the classical cooling rate ({\\dot{M}}cool}\\equiv {M}gas}(r< {r}cool})/{t}cool}) of the intracluster medium (ICM), and ∼5 orders of magnitude in the central black hole accretion rate. For each system in this sample, we measure the ICM cooling rate, {\\dot{M}}cool}, using archival Chandra X-ray data and acquire the SFR and systematic uncertainty in the SFR by combining over 330 estimates from dozens of literature sources. With these data, we estimate the efficiency with which the ICM cools and forms stars, finding {ε }cool}\\equiv {SFR}/{\\dot{M}}cool}=1.4 % +/- 0.4% for systems with {\\dot{M}}cool}> 30 M ⊙ yr‑1. For these systems, we measure a slope in the SFR–{\\dot{M}}cool} relation greater than unity, suggesting that the systems with the strongest cool cores are also cooling more efficiently. We propose that this may be related to, on average, higher black hole accretion rates in the strongest cool cores, which could influence the total amount (saturating near the Eddington rate) and dominant mode (mechanical versus radiative) of feedback. For systems with {\\dot{M}}cool}< 30 M ⊙ yr‑1, we find that the SFR and {\\dot{M}}cool} are uncorrelated and show that this is consistent with star formation being fueled at a low (but dominant) level by recycled ISM gas in these systems. We find an intrinsic log-normal scatter in SFR at a fixed {\\dot{M}}cool} of 0.52 ± 0.06 dex (1σ rms), suggesting that cooling is tightly self-regulated over very long timescales but can vary dramatically on short timescales. There is weak evidence that this scatter may be related to the feedback mechanism, with the scatter being minimized (∼0.4 dex) for systems for which the mechanical feedback power is within a factor of two of the cooling luminosity.
The initial cooling of pahoehoe flow lobes
Keszthelyi, L.; Denlinger, R.
1996-01-01
In this paper we describe a new thermal model for the initial cooling of pahoehoe lava flows. The accurate modeling of this initial cooling is important for understanding the formation of the distinctive surface textures on pahoehoe lava flows as well as being the first step in modeling such key pahoehoe emplacement processes as lava flow inflation and lava tube formation. This model is constructed from the physical phenomena observed to control the initial cooling of pahoehoe flows and is not an empirical fit to field data. We find that the only significant processes are (a) heat loss by thermal radiation, (b) heat loss by atmospheric convection, (c) heat transport within the flow by conduction with temperature and porosity-dependent thermal properties, and (d) the release of latent heat during crystallization. The numerical model is better able to reproduce field measurements made in Hawai'i between 1989 and 1993 than other published thermal models. By adjusting one parameter at a time, the effect of each of the input parameters on the cooling rate was determined. We show that: (a) the surfaces of porous flows cool more quickly than the surfaces of dense flows, (b) the surface cooling is very sensitive to the efficiency of atmospheric convective cooling, and (c) changes in the glass forming tendency of the lava may have observable petrographic and thermal signatures. These model results provide a quantitative explanation for the recently observed relationship between the surface cooling rate of pahoehoe lobes and the porosity of those lobes (Jones 1992, 1993). The predicted sensitivity of cooling to atmospheric convection suggests a simple field experiment for verification, and the model provides a tool to begin studies of the dynamic crystallization of real lavas. Future versions of the model can also be made applicable to extraterrestrial, submarine, silicic, and pyroclastic flows.
Cooling Characteristics of an Experimental Tail-pipe Burner with an Annular Cooling-air Passage
NASA Technical Reports Server (NTRS)
Kaufman, Harold R; Koffel, William K
1952-01-01
The effects of tail-pipe fuel-air ratio (exhaust-gas temperatures from approximately 3060 degrees to 3825 degrees R), radial distributiion of tail-pipe fuel flow, and mass flow of combustion gas and the inside wall were determined for an experimental tail-pipe burner cooled by air flowing through and insulated cooling-air to combustion gas mass flow from 0.066 to 0.192 were also determined.
STUDY PROGRAM FOR TURBO-COOLER FOR PRODUCING ENGINE COOLING AIR.
VANES , STAGNATION POINT, DECELERATION, ACCELERATION, SUPERSONIC DIFFUSERS, TURBINE BLADES , EVAPOTRANSPIRATION, LIQUID COOLED, HEAT TRANSFER, GAS BEARINGS, SEALS...HYPERSONIC AIRCRAFT , COOLING + VENTILATING EQUIPMENT), (*GAS TURBINES , COOLING + VENTILATING EQUIPMENT), HYPERSONIC FLOW, AIR COOLED, AIRCRAFT ... ENGINES , FEASIBILITY STUDIES, PRESSURE, SUPERSONIC CHARACTERISTICS, DESIGN, HEAT EXCHANGERS, COOLING (U) AXIAL FLOW TURBINES , DUCT INLETS, INLET GUIDE
Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume
NASA Astrophysics Data System (ADS)
Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen
2017-10-01
For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.
Analysis and comparison of wall cooling schemes for advanced gas turbine applications
NASA Technical Reports Server (NTRS)
Colladay, R. S.
1972-01-01
The relative performance of (1) counterflow film cooling, (2) parallel-flow film cooling, (3) convection cooling, (4) adiabatic film cooling, (5) transpiration cooling, and (6) full-coverage film cooling was investigated for heat loading conditions expected in future gas turbine engines. Assumed in the analysis were hot-gas conditions of 2200 K (3500 F) recovery temperature, 5 to 40 atmospheres total pressure, and 0.6 gas Mach number and a cooling air supply temperature of 811 K (1000 F). The first three cooling methods involve film cooling from slots. Counterflow and parallel flow describe the direction of convection cooling air along the inside surface of the wall relative to the main gas flow direction. The importance of utilizing the heat sink available in the coolant for convection cooling prior to film injection is illustrated.
The X-ray surface brightness distribution and spectral properties of six early-type galaxies
NASA Technical Reports Server (NTRS)
Trinchieri, G.; Fabbiano, G.; Canizares, C. R.
1986-01-01
Detailed analysis is presented of the Einstein X-ray observations of six early-type galaxies. The results show that effective cooling is probably present in these systems, at least in the innermost regions. Interaction with the surrounding medium has a major effect on the X-ray surface brightness distribution at large radii, at least for galaxies in clusters. The data do not warrant the general assumptions of isothermality and gravitational hydrostatic equilibrium at large radii. Comparison of the X-ray surface brightness profiles with model predictions indicate that 1/r-squared halos with masses of the order of 10 times the stellar masses are required to match the data. The physical model of White and Chevalier (1984) for steady cooling flows in a King law potential with no heavy halo gives a surface brightness distribution that resembles the data if supernovae heating is present.
Minett, Geoffrey M; Duffield, Rob; Kellett, Aaron; Portus, Marc
2012-05-01
This study examined physiological and performance effects of pre-cooling on medium-fast bowling in the heat. Ten, medium-fast bowlers completed two randomised trials involving either cooling (mixed-methods) or control (no cooling) interventions before a 6-over bowling spell in 31.9±2.1°C and 63.5±9.3% relative humidity. Measures included bowling performance (ball speed, accuracy and run-up speeds), physical characteristics (global positioning system monitoring and counter-movement jump height), physiological (heart rate, core temperature, skin temperature and sweat loss), biochemical (serum concentrations of damage, stress and inflammation) and perceptual variables (perceived exertion and thermal sensation). Mean ball speed (114.5±7.1 vs. 114.1±7.2 km · h(-1); P = 0.63; d = 0.09), accuracy (43.1±10.6 vs. 44.2±12.5 AU; P = 0.76; d = 0.14) and total run-up speed (19.1±4.1 vs. 19.3±3.8 km · h(-1); P = 0.66; d = 0.06) did not differ between pre-cooling and control respectively; however 20-m sprint speed between overs was 5.9±7.3% greater at Over 4 after pre-cooling (P = 0.03; d = 0.75). Pre-cooling reduced skin temperature after the intervention period (P = 0.006; d = 2.28), core temperature and pre-over heart rates throughout (P = 0.01-0.04; d = 0.96-1.74) and sweat loss by 0.4±0.3 kg (P = 0.01; d = 0.34). Mean rating of perceived exertion and thermal sensation were lower during pre-cooling trials (P = 0.004-0.03; d = 0.77-3.13). Despite no observed improvement in bowling performance, pre-cooling maintained between-over sprint speeds and blunted physiological and perceptual demands to ease the thermoregulatory demands of medium-fast bowling in hot conditions.
Effects of Building‒roof Cooling on Flow and Distribution of Reactive Pollutants in street canyons
NASA Astrophysics Data System (ADS)
Park, S. J.; Choi, W.; Kim, J.; Jeong, J. H.
2016-12-01
The effects of building‒roof cooling on flow and dispersion of reactive pollutants were investigated in the framework of flow dynamics and chemistry using a coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons in the presence of building‒roof cooling. A portal vortex was generated in street canyon, producing dominant reverse and outward flows near the ground in all the cases. The building‒roof cooling increased horizontal wind speeds at the building roof and strengthened the downward motion near the downwind building in the street canyon, resultantly intensifying street canyon vortex strength. The flow affected the distribution of primary and secondary pollutants. Concentrations of primary pollutants such as NOx, VOC and CO was high near the upwind building because the reverse flows were dominant at street level, making this area the downwind region of emission sources. Concentration of secondary pollutant such as O3 was lower than the background near the ground, where NOX concentrations were high. Building‒roof cooling decreased the concentration of primary pollutants in contrasted to those under non‒cooling conditions. In contrast, building‒roof cooling increased O3 by reducing NO concentrations in urban street canyon compared to concentrations under non‒cooling conditions.
NASA Astrophysics Data System (ADS)
Ligrani, P. M.
2018-03-01
A variety of different types of vortices and vortex structures have important influences on thermal protection, heat transfer augmentation, and cooling performance of impingement cooling, effusion cooling, and cross flow cooling. Of particular interest are horseshoe vortices, which form around the upstream portions of effusion coolant concentrations just after they exit individual holes, hairpin vortices, which develop nearby and adjacent to effusion coolant trajectories, and Kelvin-Helmholtz vortices which form within the shear layers that form around each impingement cooling jet. The influences of these different vortex structures are described as they affect and alter the thermal performance of effusion cooling, impingement cooling, and cross flow cooling, as applied to a double wall configuration.
Effect of Cooling Units on the Performance of an Automotive Exhaust-Based Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Su, C. Q.; Zhu, D. C.; Deng, Y. D.; Wang, Y. P.; Liu, X.
2017-05-01
Currently, automotive exhaust-based thermoelectric generators (AETEGs) are a hot topic in energy recovery. In order to investigate the influence of coolant flow rate, coolant flow direction and cooling unit arrangement in the AETEG, a thermoelectric generator (TEG) model and a related test bench are constructed. Water cooling is adopted in this study. Due to the non-uniformity of the surface temperature of the heat source, the coolant flow direction would affect the output performance of the TEG. Changing the volumetric flow rate of coolant can increase the output power of multi-modules connected in series or/and parallel as it can improve the temperature uniformity of the cooling unit. Since the temperature uniformity of the cooling unit has a strong influence on the output power, two cooling units are connected in series or parallel to research the effect of cooling unit arrangements on the maximum output power of the TEG. Experimental and theoretical analyses reveal that the net output power is generally higher with cooling units connected in parallel than cooling units connected in series in the cooling system with two cooling units.
The Launching of Cold Clouds by Galaxy Outflows. I. Hydrodynamic Interactions with Radiative Cooling
NASA Astrophysics Data System (ADS)
Scannapieco, Evan; Brüggen, Marcus
2015-06-01
To better understand the nature of the multiphase material found in outflowing galaxies, we study the evolution of cold clouds embedded in flows of hot and fast material. Using a suite of adaptive mesh refinement simulations that include radiative cooling, we investigate both cloud mass loss and cloud acceleration under the full range of conditions observed in galaxy outflows. The simulations are designed to track the cloud center of mass, enabling us to study the cloud evolution at long disruption times. For supersonic flows, a Mach cone forms around the cloud, which damps the Kelvin-Helmholtz instability but also establishes a streamwise pressure gradient that stretches the cloud apart. If time is expressed in units of the cloud crushing time, both the cloud lifetime and the cloud acceleration rate are independent of cloud radius, and we find simple scalings for these quantities as a function of the Mach number of the external medium. A resolution study suggests that our simulations accurately describe the evolution of cold clouds in the absence of thermal conduction and magnetic fields, physical processes whose roles will be studied in forthcoming papers.
Increasing the Efficiency of a Thermoelectric Generator Using an Evaporative Cooling System
NASA Astrophysics Data System (ADS)
Boonyasri, M.; Jamradloedluk, J.; Lertsatitthanakorn, C.; Therdyothin, A.; Soponronnarit, S.
2017-05-01
A system for reducing heat from the cold side of a thermoelectric (TE) power generator, based on the principle of evaporative cooling, is presented. An evaporative cooling system could increase the conversion efficiency of a TE generator. To this end, two sets of TE generators were constructed. Both TE generators were composed of five TE power modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The hot side heat sinks were inserted in a hot gas duct. The cold side of one set was cooled by the cooling air from a counter flow evaporative cooling system, whereas the other set was cooled by the parallel flow evaporative cooling system. The counter flow pattern had better performance than the parallel flow pattern. A comparison between the TE generator with and without an evaporative cooling system was made. Experimental results show that the power output increased by using the evaporative cooling system. This can significantly increase the TE conversion efficiency. The evaporative cooling system increased the power output of the TE generator from 22.9 W of ambient air flowing through the heat sinks to 28.6 W at the hot gas temperature of 350°C (an increase of about 24.8%). The present study shows the promising potential of using TE generators with evaporative cooling for waste heat recovery.
Steam exit flow design for aft cavities of an airfoil
Storey, James Michael; Tesh, Stephen William
2002-01-01
Turbine stator vane segments have inner and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates. Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. A skirt or flange structure is provided for shielding the steam cooling impingement holes adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.
NASA Technical Reports Server (NTRS)
Papell, S. S.
1984-01-01
The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.
Liquid cooled counter flow turbine bucket
Dakin, James T.
1982-09-21
Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.
NASA Astrophysics Data System (ADS)
Mekanik, Abolghasem; Soleimani, Mohsen
2007-11-01
Wind effect on natural draught cooling towers has a very complex physics. The fluid flow and temperature distribution around and in a single and two adjacent (tandem and side by side) dry-cooling towers under cross wind are studied numerically in the present work. Cross-wind can significantly reduce cooling efficiency of natural-draft dry-cooling towers, and the adjacent towers can affect the cooling efficiency of both. In this paper we will present a complex computational model involving more than 750,000 finite volume cells under precisely defined boundary condition. Since the flow is turbulent, the standard k-ɛ turbulence model is used. The numerical results are used to estimate the heat transfer between radiators of the tower and air surrounding it. The numerical simulation explained the main reason for decline of the thermo-dynamical performance of dry-cooling tower under cross wind. In this paper, the incompressible fluid flow is simulated, and the flow is assumed steady and three-dimensional.
Cooling circuit for a gas turbine bucket and tip shroud
Willett, Fred Thomas; Itzel, Gary Michael; Stathopoulos, Dimitrios; Plemmons, Larry Wayne; Plemmons, Helen M.; Lewis, Doyle C.
2002-01-01
An open cooling circuit for a gas turbine bucket wherein the bucket has an airfoil portion, and a tip shroud, the cooling circuit including a plurality of radial cooling holes extending through the airfoil portion and communicating with an enlarged internal area within the tip shroud before exiting the tip shroud such that a cooling medium used to cool the airfoil portion is subsequently used to cool the tip shroud.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Fulai, E-mail: fulai.guo@phys.ethz.ch
2014-12-20
Recent observations suggested that star formation quenching in galaxies is related to galaxy structure. Here we propose a new mechanism to explain the physical origin of this correlation. We assume that while quenching is maintained in quiescent galaxies by a feedback mechanism, cooling flows in the hot halo gas can still develop intermittently. We study cooling flows in a large suite of around 90 hydrodynamic simulations of an isolated galaxy group, and find that the flow development depends significantly on the gravitational potential well in the central galaxy. If the galaxy's gravity is not strong enough, cooling flows result inmore » a central cooling catastrophe, supplying cold gas and feeding star formation to galactic bulges. When the bulge grows prominent enough, compressional heating starts to offset radiative cooling and maintains cooling flows in a long-term hot mode without producing a cooling catastrophe. Our model thus describes a self-limited growth channel for galaxy bulges and naturally explains the connection between quenching and bulge prominence. In particular, we explicitly demonstrate that M{sub ∗}/R{sub eff}{sup 1.5} is a good structural predictor of quenching. We further find that the gravity from the central supermassive black hole also affects the bimodal fate of cooling flows, and we predict a more general quenching predictor to be M{sub bh}{sup 1.6}M{sub ∗}/R{sub eff}{sup 1.5}, which may be tested in future observational studies.« less
Cooling Panel Optimization for the Active Cooling System of a Hypersonic Aircraft
NASA Technical Reports Server (NTRS)
Youn, B.; Mills, A. F.
1995-01-01
Optimization of cooling panels for an active cooling system of a hypersonic aircraft is explored. The flow passages are of rectangular cross section with one wall heated. An analytical fin-type model for incompressible flow in smooth-wall rectangular ducts with coupled wall conduction is proposed. Based on this model, the a flow rate of coolant to each design minimum mass flow rate or coolant for a single cooling panel is obtained by satisfying hydrodynamic, thermal, and Mach number constraints. Also, the sensitivity of the optimal mass flow rate of coolant to each design variable is investigated. In addition, numerical solutions for constant property flow in rectangular ducts, with one side rib-roughened and coupled wall conduction, are obtained using a k-epsilon and wall function turbulence model, these results are compared with predictions of the analytical model.
The detection of distant cooling flows and the formation of dark matter
NASA Technical Reports Server (NTRS)
Fabian, A. C.; Arnaud, K. A.; Nulsen, P. E. J.; Mushotzky, R. F.
1986-01-01
Cooling flows involving substantial mass inflow rates appear to be common in many nearby rich and poor clusters and in isolated galaxies. The extensive optical and ultraviolet filaments produced by the thermal instability of large flows are detectable out to redshifts greater than 1. It is proposed that this may explain the extended optical line emission reported in, and around, many distant radio galaxies, narrow-line quasars, and even nearby normal and active galaxies. An important diagnostic to distinguish cooling flows from other possible origins of emission line filaments is the presence of extensive regions at high thermal pressure. Other evidence for distant cooling flows and the resultant star formation is further discussed, together with the implications of cooling flow initial-mass functions for galaxy formation and the nature of 'dark' matter.
Transition nozzle combustion system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Won-Wook; McMahan, Kevin Weston; Maldonado, Jaime Javier
The present application provides a combustion system for use with a cooling flow. The combustion system may include a head end, an aft end, a transition nozzle extending from the head end to the aft end, and an impingement sleeve surrounding the transition nozzle. The impingement sleeve may define a first cavity in communication with the head end for a first portion of the cooling flow and a second cavity in communication with the aft end for a second portion of the cooling flow. The transition nozzle may include a number of cooling holes thereon in communication with the secondmore » portion of the cooling flow.« less
X-ray-emitting filaments in the cooling flow cluster A2029
NASA Technical Reports Server (NTRS)
Sarazin, Craig L.; O'Connell, Robert W.; Mcnamara, Brian R.
1992-01-01
High-resolution X-ray observations of the cluster A2029 are presented which confirm the presence of a cooling flow, despite the lack of optical line emission or evidence for recent star formation. The cooling rate and radius are about 370 solar mass/yr and 230 kpc, respectively. Emission from the inner cooling flow is dominated by a number of X-ray-emitting filaments. This may be the first case where such inhomogeneities are clearly resolved. The filaments are theorized to be supported in part by magnetic fields and may be connected with the filaments of very strong Faraday rotation seen in several nearly cooling flows.
Implications of the Large O VI Columns around Low-redshift L ∗ Galaxies
NASA Astrophysics Data System (ADS)
McQuinn, Matthew; Werk, Jessica K.
2018-01-01
Observations reveal massive amounts of O VI around star-forming L * galaxies, with covering fractions of near unity extending to the host halo’s virial radius. This O VI absorption is typically kinematically centered upon photoionized gas, with line widths that are suprathermal and kinematically offset from the galaxy. We discuss various scenarios and whether they could result in the observed phenomenology (cooling gas flows, boundary layers, shocks, virialized gas). If collisionally ionized, as we argue is most probable, the O VI observations require that the circumgalactic medium (CGM) of L * galaxies holds nearly all of the associated baryons within a virial radius (∼ {10}11 {M}ȯ ) and hosts massive flows of cooling gas with ≈ 30[{nT}/30 {{cm}}-3 {{K}}] {M}ȯ {{yr}}-1, which must be largely prevented from accreting onto the host galaxy. Cooling and feedback energetics considerations require 10< {nT}< 100 cm‑3 K for the warm and hot halo gases. We argue that virialized gas, boundary layers, hot winds, and shocks are unlikely to directly account for the bulk of the O VI. Furthermore, we show that there is a robust constraint on the number density of many of the photoionized ∼ {10}4 {{K}} absorption systems that yields upper bounds in the range n< (0.1-3) × {10}-3(Z/0.3) cm‑3, suggesting that the dominant pressure in some photoionized clouds is nonthermal. This constraint is in accordance with the low densities inferred from more complex photoionization modeling. The large amount of cooling gas that is inferred could re-form these clouds in a fraction of the halo dynamical time, and it requires much of the feedback energy available from supernovae to be dissipated in the CGM.
Intercooler cooling-air weight flow and pressure drop for minimum drag loss
NASA Technical Reports Server (NTRS)
Reuter, J George; Valerino, Michael F
1944-01-01
An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.
NASA Astrophysics Data System (ADS)
Hultgrien, Lynn Kerrell
Basalt is the most common surface rock on the terrestrial planets. Understanding the emplacement mechanisms for basaltic lava flows facilitates study of the geologic history of a planet and in volcanic hazards assessment. Lava flow cooling is examined through two different models, one applicable to aa and the second to pahoehoe. Occurrence of these basaltic flow types is evaluated in an extensive global survey of lava flows on Venus using Magellan data. First, a basic heat balance model is considered for as flow cooling with terms for conduction, radiation, viscous dissipation and entrainment of cooler material. Pahoehoe cooling is modeled through three different analytic solutions to the one-dimensional, time-dependent heat conduction equation, with constant surface temperature, linear heat transfer at the surface, and surface radiation. The models are compared with thermal data from the Hawaiian 1984 Mauna Loa and 1990 Puu Oo-Kupaianaha, Kilauea eruptions, for as and pahoehoe, respectively. Although commonly omitted in other models, heat conduction is found here to be important in the cooling of both aa and pahoehoe. Equally important is entrainment in as flows and both radiation and atmospheric convection for pahoehoe cooling. Morphology measurements and surface properties are determined for ninety individual lava flows from forty-four volcanic features on Venus. Radar backscatter and rms slope values, relative to terrestrial studies, indicate Venusian lavas are predominately pahoehoe. Emissivities and dielectric constants are consistent with basalt as the principal lithology. Effusion rates and flow velocities, determined using Earth-calibrated parametric relationships, and lava flow dimensions are greater than those found on Earth. Modeling lava flows on the terrestrial planets should involve careful consideration of the type of lava flow being studied. This investigation finds that heat conduction is an important limitation in the ability of a basalt flow to cool. Some models underestimate cooling time and flow dimensions because of their failure to include such effects. Pahoehoe and aa flows are emplaced by different mechanisms and require individualized models. The prevalence of pahoehoe lava flows on both Earth and Venus is a major element for deciphering the past evolution of each planet.
Flow distribution analysis on the cooling tube network of ITER thermal shield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun
2014-01-29
Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube networkmore » for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.« less
Skin cooling on contact with cold materials: the effect of blood flow during short-term exposures.
Jay, Ollie; Havenith, George
2004-03-01
This study investigates the effect of blood flow upon the short-term (<180 s) skin contact cooling response in order to ascertain whether sufferers of circulatory disorders, such as the vasospastic disorder Raynaud's disease, are at a greater risk of cold injury than people with a normal rate of blood flow. Eight female volunteers participated, touching blocks of stainless steel and nylon with a finger contact force of 2.9 N at a surface temperature of -5 degrees C under occluded and vasodilated conditions. Contact temperature (Tc) of the finger pad was measured over time using a T-type thermocouple. Forearm blood flow was measured using strain gauge plethysmography. Contact cooling responses were analysed by fitting a modified Newtonian cooling curve. A significant difference was found between the starting skin temperatures for the two blood flow conditions (P<0.001). However, no effect of blood flow was found upon any of the derived cooling curve parameters characterizing the skin cooling response (P>0.05). It is hypothesized that the finger contact force used (2.9 N) and the resultant pressure upon the tissue of the contact finger pad restricted the blood supply to the contact area under both blood flow conditions; therefore, no effect of blood flow was found upon the parameters describing the contact cooling response. Whilst the findings of this study are sufficient to draw a conclusion for those in a working environment, i.e. contact forces below 2.9 N will seldom be encountered, a further study will be required to ascertain conclusively whether blood flow does affect the contact cooling response at a finger contact force low enough to allow unrestricted blood flow to the finger pad. Further protocol improvements are also recommended.
NASA Astrophysics Data System (ADS)
Degraff, James M.; Long, Philip E.; Aydin, Atilla
1989-09-01
Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part of a flow cools very rapidly by water-steam convection. Flooding of the flow top by surface drainage most likely induces the convection. Colonnades form under conditions of slower cooling by conductive heat transfer in the absence of water.
TURBINE COOLING FLOW AND THE RESULTING DECREASE IN TURBINE EFFICIENCY
NASA Technical Reports Server (NTRS)
Gauntner, J. W.
1994-01-01
This algorithm has been developed for calculating both the quantity of compressor bleed flow required to cool a turbine and the resulting decrease in efficiency due to cooling air injected into the gas stream. Because of the trend toward higher turbine inlet temperatures, it is important to accurately predict the required cooling flow. This program is intended for use with axial flow, air-breathing jet propulsion engines with a variety of airfoil cooling configurations. The algorithm results have compared extremely well with figures given by major engine manufacturers for given bulk metal temperatures and cooling configurations. The program calculates the required cooling flow and corresponding decrease in stage efficiency for each row of airfoils throughout the turbine. These values are combined with the thermodynamic efficiency of the uncooled turbine to predict the total bleed airflow required and the altered turbine efficiency. There are ten airfoil cooling configurations and the algorithm allows a different option for each row of cooled airfoils. Materials technology is incorporated and requires the date of the first year of service for the turbine stator vane and rotor blade. The user must specify pressure, temperatures, and gas flows into the turbine. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 3080 series computer with a central memory requirement of approximately 61K of 8 bit bytes. This program was developed in 1980.
How Does the Medium Affect the Message?
ERIC Educational Resources Information Center
Dommermuth, William P.
1974-01-01
This experimental comparison of the advertising effectiveness of television, movies, radio, and print finds no support for McLuhan's idea that television is a "cool" medium and movies are a "hot" medium. (RB)
NASA Astrophysics Data System (ADS)
Melnikov, A. A.; Kostishin, V. G.; Alenkov, V. V.
2017-05-01
Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j' are estimated in range of 0.38-0.44 and 0.48-0.95, respectively, for dimensionless conductance K' = 5-100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.
40 CFR 92.108 - Intake and cooling air measurements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake and cooling air measurements....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used...
Method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors
NASA Technical Reports Server (NTRS)
Nalim, M. Razi (Inventor); Paxson, Daniel E. (Inventor)
1999-01-01
A method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors having a plurality of channels formed around a periphery thereof. A first port injects a supply of cool air into the channels. A second port allows the supply of cool air to exit the channels and flow to a combustor. A third port injects a supply of hot gas from the combustor into the channels. A fourth port allows the supply of hot gas to exit the channels and flow to a turbine. A diverting port and a reinjection port are connected to the second and third ports, respectively. The diverting port diverts a portion of the cool air exiting through the second port as reinjection air. The diverting port is fluidly connected to the reinjection port which reinjects the reinjection air back into the channels. The reinjection air evacuates the channels of the hot gas resident therein and cools the channel walls, a pair of end walls of the rotor, ducts communicating with the rotor and subsequent downstream components. In a second embodiment, the second port receives all of the cool air exiting the channels and the diverting port diverts a portion of the cool air just prior to the cool air flowing to the combustor.
A generalized one-dimensional computer code for turbomachinery cooling passage flow calculations
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.
1989-01-01
A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.
Wavy flow cooling concept for turbine airfoils
Liang, George
2010-08-31
An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.
Curved film cooling admission tube
NASA Astrophysics Data System (ADS)
Graham, R. W.; Papell, S. S.
1980-10-01
Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.
Curved film cooling admission tube
NASA Technical Reports Server (NTRS)
Graham, R. W.; Papell, S. S. (Inventor)
1980-01-01
Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.
The cooling rates of pahoehoe flows: The importance of lava porosity
NASA Technical Reports Server (NTRS)
Jones, Alun C.
1993-01-01
Many theoretical models have been put forward to account for the cooling history of a lava flow; however, only limited detailed field data exist to validate these models. To accurately model the cooling of lava flows, data are required, not only on the heat loss mechanisms, but also on the surface skin development and the causes of differing cooling rates. This paper argues that the cause of such variations in the cooling rates are attributed, primarily, to the vesicle content and degassing history of the lava.
Kimmel, Keith D [Jupiter, FL
2012-05-29
A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.
Quenching of a highly superheated porous medium by injection of water
NASA Astrophysics Data System (ADS)
Fichot, F.; Bachrata, A.; Repetto, G.; Fleurot, J.; Quintard, M.
2012-11-01
Understanding of two-phase flow through porous medium with intense phase change is of interest in many situations, including nuclear, chemical or geophysical applications. Intense boiling occurs when the liquid is injected into a highly superheated medium. Under such conditions, the heat flux extracted by the fluid from the porous medium is mainly governed by the nucleation of bubbles and by the evaporation of thin liquid films. Both configurations are possible, depending on local flow conditions and on the ratio of bubble size to pore size. The present study is motivated by the safety evaluation of light water nuclear reactors in case of a severe accident scenario, such as the one that happened in Fukushima Dai-ichi plant in March, 2011. If water sources are not available for a long period of time, the reactor core heats up due to the residual power and eventually becomes significantly damaged due to intense oxidation of metals and fragmentation of fuel rods resulting in the formation of a porous medium where the particles have a characteristic length-scale of 1 to 5 mm. The coolability of the porous medium will depend on the water flow rate which can enter the medium under the available driving head and on the geometrical features of the porous matrix (average pore size, porosity). Therefore, it is of high interest to evaluate the conditions for which the injection of water in such porous medium is likely to stop the progression of the accident. The present paper addresses the issue of modelling two-phase flow and heat transfers in a porous medium initially dry, where water is injected. The medium is initially at a temperature well above the saturation temperature of water. In a first part, a summary of existing knowledge is provided, showing the scarcity of models and experimental data. In a second part, new experimental results obtained in an IRSN facility are analysed. The experiment consists in a bed of steel particles that are heated up to 700°Cbefore injecting water. The facility is briefly described. The velocity of the "quench front" (location where particles are quickly cooled down) and the total pressure drop across the medium are estimated. The dependencies of those quantities with respect to the inlet water flow rate, the initial temperature of the medium and the diameter of particles are obtained. In a third part, a model is proposed, based on a previously developed model which is improved in order to take into account intense boiling regimes (in particular nucleate boiling). The model includes a function that takes into account the contact area between water and the particles which depends on the temperature of particles and on the void fraction. That function affects the local intensity of phase change. The model involves a few parameters which cannot be evaluated analytically. Those parameters are bounded, following the analysis of experimental data. Finally, the model is assessed by comparison of calculations with those new experimental data. The satisfactory agreement shows that the model is almost predictive in the range of parameters studied. The experimental results also show that the quench front becomes unstable under certain conditions. This is also analysed and compared with the predictions of the model.
Cooling circuit for steam and air-cooled turbine nozzle stage
Itzel, Gary Michael; Yu, Yufeng
2002-01-01
The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.
Ultrashort pulse amplification in cryogenically cooled amplifiers
Backus, Sterling J.; Kapteyn, Henry C.; Murnane, Margaret Mary
2004-10-12
A laser amplifier system amplifies pulses in a single "stage" from .about.10.sup.-9 joules to more than 10.sup.-3 joules, with average power of 1-10 watts, and beam quality M.sup.2 <2. The laser medium is cooled substantially below room temperature, as a means to improve the optical and thermal characteristics of the medium. This is done with the medium inside a sealed, evacuated or purged cell to avoid moisture or other materials condensing on the surface. A "seed" pulse from a separate laser is passed through the laser medium, one or more times, in any of a variety of configurations including single-pass, multiple-pass, and regenerative amplifier configurations.
NASA Astrophysics Data System (ADS)
Ma, Libin; Ren, Jianxing
2018-01-01
Large capacity and super large capacity thermal power is becoming the main force of energy and power industry in our country. The performance of cooling tower is related to the water temperature of circulating water, which has an important influence on the efficiency of power plant. The natural draft counter flow wet cooling tower is the most widely used cooling tower type at present, and the high cooling tower is a new cooling tower based on the natural ventilation counter flow wet cooling tower. In this paper, for high cooling tower, the application background of high cooling tower is briefly explained, and then the structure principle of conventional cooling tower and high cooling tower are introduced, and the difference between them is simply compared. Then, the influence of crosswind on cooling performance of high cooling tower under different wind speeds is introduced in detail. Through analysis and research, wind speed, wind cooling had little impact on the performance of high cooling tower; wind velocity, wind will destroy the tower inside and outside air flow, reducing the cooling performance of high cooling tower; Wind speed, high cooling performance of cooling tower has increased, but still lower than the wind speed.
NASA Astrophysics Data System (ADS)
Fabian, A.; Murdin, P.
2000-11-01
A subsonic cooling flow occurs when the hot gaseous atmosphere of a galaxy, group or cluster of galaxies cools slowly. Such atmospheres occur as a result of gas having fallen into the DARK MATTER well of the object and heated by gravitational energy release. A dominant cooling process is the emission of radiation by the gas. As cooling proceeds the gas sinks further in the potential well, giving ...
Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1
NASA Technical Reports Server (NTRS)
Rigby, David L.
2000-01-01
Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number turbulence model to accurately predict details of heat transfer.
NASA Astrophysics Data System (ADS)
Kubin, M.; Ofner, B.; Holzgruber, H.; Schneider, R.; Enzenhofer, D.; Filzwieser, A.; Konetschnik, S.
2016-07-01
One of the main benefits of the ESR process is to obtain an ingot surface which is smooth and allows a subsequent forging operation without any surface dressing. The main influencing factor on surface quality is the precise controlling of the process such as melt rate and electrode immersion depth. However, the relatively strong cooling effect of water as a cooling medium can result in the solidification of the meniscus of the liquid steel on the boundary liquid steel and slag which is most likely the origin of surface defects. The usage of different cooling media like ionic liquids, a salt solution which can be heated up to 250°C operating temperature might diminish the meniscus solidification phenomenon. This paper shows the first results of the usage of an ionic liquid as a mould cooling medium. In doing so, 210mm diameter ESR ingots were produced with the laboratory scale ESR furnace at the university of applied science using an ionic liquid cooling device developed by the company METTOP. For each trial melt different inlet and outlet temperatures of the ionic liquid were chosen and the impact on the surface appearance and internal quality were analyzed. Furthermore the influence on the energy balance is also briefly highlighted. Ultimately, an effect of the usage of ionic liquids as a cooling medium could be determined and these results will be described in detail within the scope of this paper.
NASA Astrophysics Data System (ADS)
Whittington, A. G.; Sehlke, A.; Speck, A. K.
2017-12-01
Dust that coalesces to form planetary systems originates around dying stars, before passing into the interstellar medium (ISM). Historically, observations of broad smooth features in the 10-µm region suggested that dust in circumstellar regions, and in the ISM, was mostly amorphous rather than crystalline. With improved space telescope capabilities, crystalline silicates were discovered in the circumstellar regions around both young and old stars, although they remain undetected in the ISM. Despite intensive study the precise conditions that lead to the formation of crystalline silicates are still unknown, and their absence in the ISM remains problematic. Here we show that recalescence (spontaneous reheating) of rapidly crystallizing dust can explain the formation and apparent disappearance of crystalline silicates in space. We have documented recalescence in rapidly crystallizing Mg-rich silicate melts, with local heating at the crystallization front exceeding 160˚C in some cases. In circumstellar dust shells, amorphous grains with similar compositions condense at temperatures near their glass transition, and if they crystallize, they will recalesce. The higher temperature (T) of newly crystallized dust allows crystalline spectral features to be seen, because flux emitted depends on T4. After cooling to ambient temperature, crystalline spectral features in the ISM are concealed by volumetrically dominant amorphous dust. Our results explain the existence of crystalline silicate pre-solar grains, which are older than the solar system, and have implications for radiative transfer modeling and hydrodynamics of dusty environments, which are sensitive to small variations in optical properties. Our observations of mm-scale temperature differences up to 100˚C in cooling lava suggest that thermal imaging of basaltic lava flows needs to be conducted with mm-scale spatial resolution (see figure; crucible is 5mm diameter). Temperatures recorded with low spatial resolution, which average cooler melt and hotter crystals in a single pixel, will systematically overestimate the temperature of the liquid phase. Only the surface of a lava flow is likely to cool quickly enough for recalescence to occur, but this is precisely the part of the lava that is monitored by thermal imaging.
The role of magnetic fields in cluster cooling flows
NASA Technical Reports Server (NTRS)
Soker, Noam; Sarazin, Craig L.
1990-01-01
An investigation is made of the dynamical effects of the intracluster magnetic field, whose radial inflow and shear can produce a dramatic increase in the field's strength while rendering it more radial, with cooling flows. It is found that field reconnection is the most likely dominant-loss mechanism, so that buoyancy effects are probably not important. Attention is given to the effect of the magnetic field on thermal instabilities. The most important observable effect of the magnetic field in cooling flows will probably be very strong Faraday rotation of the polarization of radio sources within or behind the cooling flow.
NASA Astrophysics Data System (ADS)
Arkadyev, B. A.
2015-10-01
Basic principles of cooling of high-temperature steam turbines and constructive solutions used for development of the world's first cooled steam turbine SKR-100 (R-100-300) are described. Principal differences between the thermodynamic properties of cooling medium in the steam and gas turbines and the preference of making flow passes of cooled cylinders of steam turbines as reactive are shown. Some of its operation results and their conclusions are given. This turbine with a power of 100 MW, initial steam parameters approximately 30 MPa and 650°C, and back pressure 3 MPa was made by a Kharkov turbine plant in 1961 and ran successfully at a Kashira GRES (state district power plant) up to 1979, when it was taken out of use in a still fully operating condition. For comparison, some data on construction features and operation results of the super-high pressure cylinder of steam turbines of American Philo 6 (made by General Electric Co.) and Eddystone 1 (made by Westinghouse Co.) power generating units, which are close to the SKR-100 turbine by design initial steam parameters and the implementation time, are given. The high operational reliability and effectiveness of the cooling system that was used in the super-high pressure cylinder of the SKR-100 turbine of the power-generating unit, which were demonstrated in operation, confirms rightfulness and expediency of principles and constructive solutions laid at its development. As process steam temperatures are increased, the realization of the proposed approach to cooling of multistage turbines makes it possible to limit for large turbine parts the application of new, more expensive high-temperature materials, which are required for making steam boilers, and, in some cases, to do completely away with their utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andorf, M. B.; Lebedev, V. A.; Piot, P.
2015-06-01
Optical stochastic cooling (OSC) is a method of beam cooling which is expected to provide cooling rates orders of magnitude larger than ordinary stochastic cooling. Light from an undulator (the pickup) is amplified and fed back onto the particle beam via another undulator (the kicker). Fermilab is currently exploring a possible proof-of-principle experiment of the OSC at the integrable-optics test accelerator (IOTA) ring. To implement effective OSC a good correction of phase distortions in the entire band of the optical amplifier is required. In this contribution we present progress in experimental characterization of phase distortions associated to a Titanium Sapphiremore » crystal laser-gain medium (a possible candidate gain medium for the OSC experiment to be performed at IOTA). We also discuss a possible option for a mid-IR amplifier« less
NASA Technical Reports Server (NTRS)
Marek, C. J.; Juhasz, A. J.
1973-01-01
Data were obtained on a parallel-flow film- and convection-cooled test section placed in the exhaust stream of a rectangular-sector combustor. The combustor was operated at atmospheric pressure and at exhaust temperatures of 589 and 1033 K (600 and 1400 F). The cooling air was at ambient pressure and temperature. Test results indicate that it is better to use combined film and convection cooling rather than either film or convection cooling alone for a fixed total coolant flow. An optimum ratio of film to convection cooling flow rates was determined for the particular geometry tested. The experimental results compared well with calculated results.
Reversing cooling flows with AGN jets: shock waves, rarefaction waves and trailing outflows
NASA Astrophysics Data System (ADS)
Guo, Fulai; Duan, Xiaodong; Yuan, Ye-Fei
2018-01-01
The cooling flow problem is one of the central problems in galaxy clusters, and active galactic nucleus (AGN) feedback is considered to play a key role in offsetting cooling. However, how AGN jets heat and suppress cooling flows remains highly debated. Using an idealized simulation of a cool-core cluster, we study the development of central cooling catastrophe and how a subsequent powerful AGN jet event averts cooling flows, with a focus on complex gasdynamical processes involved. We find that the jet drives a bow shock, which reverses cooling inflows and overheats inner cool-core regions. The shocked gas moves outward in a rarefaction wave, which rarefies the dense core and adiabatically transports a significant fraction of heated energy to outer regions. As the rarefaction wave propagates away, inflows resume in the cluster core, but a trailing outflow is uplifted by the AGN bubble, preventing gas accumulation and catastrophic cooling in central regions. Inflows and trailing outflows constitute meridional circulations in the cluster core. At later times, trailing outflows fall back to the cluster centre, triggering central cooling catastrophe and potentially a new generation of AGN feedback. We thus envisage a picture of cool cluster cores going through cycles of cooling-induced contraction and AGN-induced expansion. This picture naturally predicts an anti-correlation between the gas fraction (or X-ray luminosity) of cool cores and the central gas entropy, which may be tested by X-ray observations.
A Novel Approach for Controlling the Band Formation in Medium Mn Steels
NASA Astrophysics Data System (ADS)
Farahani, H.; Xu, W.; van der Zwaag, S.
2018-06-01
Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.
A Novel Approach for Controlling the Band Formation in Medium Mn Steels
NASA Astrophysics Data System (ADS)
Farahani, H.; Xu, W.; van der Zwaag, S.
2018-03-01
Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.
Advanced liner-cooling techniques for gas turbine combustors
NASA Technical Reports Server (NTRS)
Norgren, C. T.; Riddlebaugh, S. M.
1985-01-01
Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).
Intelligent Engine Systems: Thermal Management and Advanced Cooling
NASA Technical Reports Server (NTRS)
Bergholz, Robert
2008-01-01
The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.
Air-cooled, hydrogen-air fuel cell
NASA Technical Reports Server (NTRS)
Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)
1999-01-01
An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.
Cooling system with compressor bleed and ambient air for gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, Jan H.; Marra, John J.
A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed airmore » through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.« less
Liquid rocket engine self-cooled combustion chambers
NASA Technical Reports Server (NTRS)
1977-01-01
Self-cooled combustion chambers are chambers in which the chamber wall temperature is controlled by methods other than fluid flow within the chamber wall supplied from an external source. In such chambers, adiabatic wall temperature may be controlled by use of upstream fluid components such as the injector or a film-coolant ring, or by internal flow of self-contained materials; e.g. pyrolysis gas flow in charring ablators, and the flow of infiltrated liquid metals in porous matrices. Five types of self-cooled chambers are considered in this monograph. The name identifying the chamber is indicative of the method (mechanism) by which the chamber is cooled, as follows: ablative; radiation cooled; internally regenerative (Interegen); heat sink; adiabatic wall. Except for the Interegen and heat sink concepts, each chamber type is discussed separately. A separate and final section of the monograph deals with heat transfer to the chamber wall and treats Stanton number evaluation, film cooling, and film-coolant injection techniques, since these subjects are common to all chamber types. Techniques for analysis of gas film cooling and liquid film cooling are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murav’ev, V. P., E-mail: murval1@mail.ru; Kochetkov, A. V.; Glazova, E. G.
A mathematical model and algorithms are proposed for automatic calculation of the optimum flow rate of cooling water in nuclear and thermal power plants with cooling systems of arbitrary complexity. An unlimited number of configuration and design variants are assumed with the possibility of obtaining a result for any computational time interval, from monthly to hourly. The structural solutions corresponding to an optimum cooling water flow rate can be used for subsequent engineering-economic evaluation of the best cooling system variant. The computerized mathematical model and algorithms make it possible to determine the availability and degree of structural changes for themore » cooling system in all stages of the life cycle of a plant.« less
Numerical Investigation of Ice Slurry Flow in a Horizontal Pipe
NASA Astrophysics Data System (ADS)
Rawat, K. S.; Pratihar, A. K.
2018-02-01
In the last decade, phase changing material slurry (PCMS) gained much attention as a cooling medium due to its high energy storage capacity and transportability. However the flow of PCM slurry is a complex phenomenon as it affected by various parameters, i.e. fluid properties, velocity, particle size and concentration etc.. In the present work ice is used as a PCM and numerical investigation of heterogeneous slurry flow has been carried out using Eulerian KTGF model in a horizontal pipe. Firstly the present model is validated with existing experiment results available in the literature, and then model is applied to the present problem. Results show that, flow is almost homogeneous for ethanol based ice slurry with particle diameter of 0.1 mm at the velocity of 1 m/s. It is also found that ice particle distribution is more uniform at higher velocity, concentration of ice and ethanol in slurry. Results also show that ice concentration increases on the top of the pipe, and the effect of particle wall collision is more significant at higher particle diameter.
Thermographic venous blood flow characterization with external cooling stimulation
NASA Astrophysics Data System (ADS)
Saxena, Ashish; Ng, E. Y. K.; Raman, Vignesh
2018-05-01
Experimental characterization of blood flow in a human forearm is done with the application of continuous external cooling based active thermography method. Qualitative and quantitative detection of the blood vessel in a thermal image is done, along with the evaluation of blood vessel diameter, blood flow direction, and velocity in the target blood vessel. Subtraction based image manipulation is performed to enhance the feature contrast of the thermal image acquired after the removal of external cooling. To demonstrate the effect of occlusion diseases (obstruction), an external cuff based occlusion is applied after the removal of cooling and its effect on the skin rewarming is studied. Using external cooling, a transit time method based blood flow velocity estimation is done. From the results obtained, it is evident that an external cooling based active thermography method can be used to develop a diagnosis tool for superficial blood vessel diseases.
Evaporative Cooling Membrane Device
NASA Technical Reports Server (NTRS)
Lomax, Curtis (Inventor); Moskito, John (Inventor)
1999-01-01
An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.
Minett, Geoffrey M; Duffield, Rob; Kellett, Aaron; Portus, Marc
2012-01-01
This investigation examined physiological and performance effects of cooling on recovery of medium-fast bowlers in the heat. Eight, medium-fast bowlers completed two randomised trials, involving two sessions completed on consecutive days (Session 1: 10-overs and Session 2: 4-overs) in 31 ± 3°C and 55 ± 17% relative humidity. Recovery interventions were administered for 20 min (mixed-method cooling vs. control) after Session 1. Measures included bowling performance (ball speed, accuracy, run-up speeds), physical demands (global positioning system, counter-movement jump), physiological (heart rate, core temperature, skin temperature, sweat loss), biochemical (creatine kinase, C-reactive protein) and perceptual variables (perceived exertion, thermal sensation, muscle soreness). Mean ball speed was higher after cooling in Session 2 (118.9 ± 8.1 vs. 115.5 ± 8.6 km · h⁻¹; P = 0.001; d = 0.67), reducing declines in ball speed between sessions (0.24 vs. -3.18 km · h⁻¹; P = 0.03; d = 1.80). Large effects indicated higher accuracy in Session 2 after cooling (46.0 ± 11.2 vs. 39.4 ± 8.6 arbitrary units [AU]; P = 0.13; d = 0.93) without affecting total run-up speed (19.0 ± 3.1 vs. 19.0 ± 2.5 km · h⁻¹; P = 0.97; d = 0.01). Cooling reduced core temperature, skin temperature and thermal sensation throughout the intervention (P = 0.001-0.05; d = 1.31-5.78) and attenuated creatine kinase (P = 0.04; d = 0.56) and muscle soreness at 24-h (P = 0.03; d = 2.05). Accordingly, mixed-method cooling can reduce thermal strain after a 10-over spell and improve markers of muscular damage and discomfort alongside maintained medium-fast bowling performance on consecutive days in hot conditions.
Internal-Film Cooling of Rocket Nozzles
NASA Technical Reports Server (NTRS)
Sloop, J L; Kinney, George R
1948-01-01
Experiments were conducted with 1000-pound-thrust rocket engine to determine feasibility of cooling convergent-divergent nozzle by internal film of water introduced at nozzle entrance. Water flow of 3 percent of propellant flow reduced heat flow into nozzle to 55 percent of uncooled heat flow. Introduction of water by porous ring before nozzle resulted in more uniform coverage of nozzle than water introduced by single arrangement of 36 jets directed along nozzle wall. Water flow through porous ring of 3.5 percent of propellant flow stabilized wall temperature in convergent section but did not adequately cool throat or divergent sections.
Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun
2015-03-17
A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.
Active Control of Jets in Cross-Flow for Film Cooling Applications
NASA Technical Reports Server (NTRS)
Nikitopoulos, Dimitris E.
2003-01-01
Jets in cross-flow have applications in film cooling of gas turbine vanes, blades and combustor liners. Their cooling effectiveness depends on the extent to which the cool jet-fluid adheres to the cooled component surface. Lift-off of the cooling jet flow or other mechanisms promoting mixing, cause loss of cooling effectiveness as they allow the hot "free-stream" fluid to come in contact with the component surface. The premise of this project is that cooling effectiveness can be improved by actively controlling (e.9. forcing, pulsing) the jet flow. Active control can be applied to prevent/delay lift-off and suppress mixing. Furthermore, an actively controlled film-cooling system coupled with appropriate sensory input (e.g. temperature or heat flux) can adapt to spatial and temporal variations of the hot-gas path. Thus, it is conceivable that the efficiency of film-cooling systems can be improved, resulting in coolant fluid economy. It is envisioned that Micro Electro-Mechanical Systems (MEMS) will play a role in the realization of such systems. As a first step, a feasibility study will be conducted to evaluate the concept, identify actuation and sensory elements and develop a control strategy. Part of this study will be the design of a proof-of-concept experiment and collection of necessary data.
Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage
NASA Astrophysics Data System (ADS)
Papell, S. S.
The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.
NASA Technical Reports Server (NTRS)
Eckert, E.R.G.; Livingood, John N.B.
1951-01-01
An approximate method for development of flow and thermal boundary layers in laminar regime on cylinders with arbitrary cross section and transpiration-cooled walls is obtained by use of Karman's integrated momentum equation and an analogous heat-flow equation. Incompressible flow with constant property values throughout boundary layer is assumed. Shape parameters for approximated velocity and temperature profiles and functions necessary for solution of boundary-layer equations are presented as charts, reducing calculations to a minimum. The method is applied to determine local heat-transfer coefficients and surface temperature-cooled turbine blades for a given flow rate. Coolant flow distributions necessary for maintaining uniform blade temperatures are also determined.
Direct cooled power electronics substrate
Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN
2010-09-14
The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.
NASA Astrophysics Data System (ADS)
Zakaria, Irnie Azlin; Mohamed, Wan Ahmad Najmi Wan; Mamat, Aman Mohd Ihsan; Sainan, Khairul Imran; Talib, Siti Fatimah Abu
2015-08-01
Continuous need for an optimum conversion efficiency of a Proton Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Nanofluids as an innovative heat transfer fluid solution are expected to be a promising candidate for alternative coolant in mini channel cooling plate of PEMFC. In this work, heat transfer performance of low concentration of 0.1, 0.3 and 0.5 % Al2O3 in water: Ethylene glycol (EG) mixtures of 100:0 and 50:50 nanofluids have been studied and compared against its base fluids at Re number ranging from 10 to 100. A steady, laminar and incompressible flow with constant heat flux is assumed in the channel of 140mm × 200mm. It was found that nanofluids have performed better than the base fluid but the demerit is on the pumping power due to the higher pressure drop across mini channel geometry as expected.
Warzoha, Ronald J; Fleischer, Amy S
2014-08-13
Solid-liquid phase change materials (PCMs) are attractive candidates for thermal energy storage and electronics cooling applications but have limited applicability in state-of-the-art technologies due to their low intrinsic thermal conductivities. Recent efforts to incorporate graphene and multilayer graphene into PCMs have led to the development of thermal energy storage materials with remarkable values of bulk thermal conductivity. However, the full potential of graphene as a filler material for the thermal enhancement of PCMs remains unrealized, largely due to an incomplete understanding of the physical mechanisms that govern thermal transport within graphene-based nanocomposites. In this work, we show that the number of graphene layers (n) within an individual graphene nanoparticle has a significant effect on the bulk thermal conductivity of an organic PCM. Results indicate that the bulk thermal conductivity of PCMs can be tuned by over an order of magnitude simply by adjusting the number of graphene layers (n) from n = 3 to 44. Using scanning electron microscopy in tandem with nanoscale analytical techniques, the physical mechanisms that govern heat flow within a graphene nanocomposite PCM are found to be nearly independent of the intrinsic thermal conductivity of the graphene nanoparticle itself and are instead found to be dependent on the mechanical compliance of the graphene nanoparticles. These findings are critical for the design and development of PCMs that are capable of cooling next-generation electronics and storing heat effectively in medium-to-large-scale energy systems, including solar-thermal power plants and building heating and cooling systems.
Solid colloidal optical wavelength filter
Alvarez, Joseph L.
1992-01-01
A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.
Intrinsically irreversible heat engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-01-01
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.
Intrinsically irreversible heat engine
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1984-01-01
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.
Intrinsically irreversible heat engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-12-25
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.
Rapid Induction of Therapeutic Hypothermia Using Transnasal High Flow Dry Air
Chava, Raghuram; Raghavan, Madhavan Srinivas; Halperin, Henry; Maqbool, Farhan; Geocadin, Romergryko; Quinones-Hinojosa, Alfredo; Kolandaivelu, Aravindan; Rosen, Benjamin A.
2017-01-01
Early induction of therapeutic hypothermia (TH) is recommended in out-of-hospital cardiac arrest (CA); however, currently no reliable methods exist to initiate cooling. We investigated the effect of high flow transnasal dry air on brain and body temperatures in adult porcine animals. Adult porcine animals (n = 23) under general anesthesia were subject to high flow of transnasal dry air. Mouth was kept open to create a unidirectional airflow, in through the nostrils and out through the mouth. Brain, internal jugular, and aortic temperatures were recorded. The effect of varying airflow rate and the air humidity (0% or 100%) on the temperature profiles were recorded. The degree of brain cooling was measured as the differential temperature from baseline. A 10-minute exposure of high flow dry air caused rapid cooling of brain and gradual cooling of the jugular and the aortic temperatures in all animals. The degree of brain cooling was flow dependent and significantly higher at higher airflow rates (0.8°C ± 0.3°C, 1.03°C ± 0.6°C, and 1.3°C ± 0.7°C for 20, 40, and 80 L, respectively, p < 0.05 for all comparisons). Air temperature had minimal effect on the brain cooling over 10 minutes with similar decrease in temperature at 4°C and 30°C. At a constant flow rate (40 LPM) and temperature, the degree of cooling over 10 minutes during dry air exposure was significantly higher compared to humid air (100% saturation) (1.22°C ± 0.35°C vs. 0.21°C ± 0.12°C, p < 0.001). High flow transnasal dry air causes flow dependent cooling of the brain and the core temperatures in intubated porcine animals. The mechanism of cooling appears to be evaporation of nasal mucus as cooling is mitigated by humidifying the air. This mechanism may be exploited to initiate TH in CA. PMID:27635468
Rapid Induction of Therapeutic Hypothermia Using Transnasal High Flow Dry Air.
Chava, Raghuram; Zviman, Menekhem; Raghavan, Madhavan Srinivas; Halperin, Henry; Maqbool, Farhan; Geocadin, Romergryko; Quinones-Hinojosa, Alfredo; Kolandaivelu, Aravindan; Rosen, Benjamin A; Tandri, Harikrishna
2017-03-01
Early induction of therapeutic hypothermia (TH) is recommended in out-of-hospital cardiac arrest (CA); however, currently no reliable methods exist to initiate cooling. We investigated the effect of high flow transnasal dry air on brain and body temperatures in adult porcine animals. Adult porcine animals (n = 23) under general anesthesia were subject to high flow of transnasal dry air. Mouth was kept open to create a unidirectional airflow, in through the nostrils and out through the mouth. Brain, internal jugular, and aortic temperatures were recorded. The effect of varying airflow rate and the air humidity (0% or 100%) on the temperature profiles were recorded. The degree of brain cooling was measured as the differential temperature from baseline. A 10-minute exposure of high flow dry air caused rapid cooling of brain and gradual cooling of the jugular and the aortic temperatures in all animals. The degree of brain cooling was flow dependent and significantly higher at higher airflow rates (0.8°C ± 0.3°C, 1.03°C ± 0.6°C, and 1.3°C ± 0.7°C for 20, 40, and 80 L, respectively, p < 0.05 for all comparisons). Air temperature had minimal effect on the brain cooling over 10 minutes with similar decrease in temperature at 4°C and 30°C. At a constant flow rate (40 LPM) and temperature, the degree of cooling over 10 minutes during dry air exposure was significantly higher compared to humid air (100% saturation) (1.22°C ± 0.35°C vs. 0.21°C ± 0.12°C, p < 0.001). High flow transnasal dry air causes flow dependent cooling of the brain and the core temperatures in intubated porcine animals. The mechanism of cooling appears to be evaporation of nasal mucus as cooling is mitigated by humidifying the air. This mechanism may be exploited to initiate TH in CA.
NASA Technical Reports Server (NTRS)
Ellerbrock, Herman H , Jr
1950-01-01
In the determination of the performance of an air-cooled turbine, the cooling-air-flow characteristics between the root and the tip of the blades must be evaluated. The methods, which must be verified and the unknown functions evaluated, that are expected to permit the determination of pressure, temperature, and velocity through the blade cooling-air passages from specific investigation are presented.
Airfoil, platform, and cooling passage measurements on a rotating transonic high-pressure turbine
NASA Astrophysics Data System (ADS)
Nickol, Jeremy B.
An experiment was performed at The Ohio State University Gas Turbine Laboratory for a film-cooled high-pressure turbine stage operating at design-corrected conditions, with variable rotor and aft purge cooling flow rates. Several distinct experimental programs are combined into one experiment and their results are presented. Pressure and temperature measurements in the internal cooling passages that feed the airfoil film cooling are used as boundary conditions in a model that calculates cooling flow rates and blowing ratio out of each individual film cooling hole. The cooling holes on the suction side choke at even the lowest levels of film cooling, ejecting more than twice the coolant as the holes on the pressure side. However, the blowing ratios are very close due to the freestream massflux on the suction side also being almost twice as great. The highest local blowing ratios actually occur close to the airfoil stagnation point as a result of the low freestream massflux conditions. The choking of suction side cooling holes also results in the majority of any additional coolant added to the blade flowing out through the leading edge and pressure side rows. A second focus of this dissertation is the heat transfer on the rotor airfoil, which features uncooled blades and blades with three different shapes of film cooling hole: cylindrical, diffusing fan shape, and a new advanced shape. Shaped cooling holes have previously shown immense promise on simpler geometries, but experimental results for a rotating turbine have not previously been published in the open literature. Significant improvement from the uncooled case is observed for all shapes of cooling holes, but the improvement from the round to more advanced shapes is seen to be relatively minor. The reduction in relative effectiveness is likely due to the engine-representative secondary flow field interfering with the cooling flow mechanics in the freestream, and may also be caused by shocks and other compressibility effects within the cooling holes which are not present in low speed experiments. Another major focus of this work is on the forward purge cavity and rotor and stator inner endwalls. Pressure and heat transfer measurements are taken at several locations, and compared as both forward and aft purge flow rates are varied. It is seen that increases in forward purge rates result in a flow blockage and greater pressure on the endwalls both up and downstream of the cavity. Thus, even in locations where the coolant does not directly cover the metal surface, it can have a significant impact on the local pressure loading and heat transfer rate. The heat transfer on the platform further downstream, however, is unchanged by variations in purge flow rates.
Secondary flow and heat transfer control in gas turbine inlet nozzle guide vanes
NASA Astrophysics Data System (ADS)
Burd, Steven Wayne
1998-12-01
Endwall heat transfer is a very serious problem in the inlet nozzle guide vane region of gas turbine engines. To resolve heat transfer concerns and provide the desired thermal protection, modern cooling flows for the vane endwalls tend to be excessive leading to lossy and inefficient designs. Coolant introduction is further complicated by the flow patterns along vane endwall surfaces. They are three-dimensional and dominated by strong, complex secondary flows. To achieve performance goals for next-generation engines, more aerodynamically efficient and advanced cooling concepts, including combustor bleed cooling, must be investigated. To this end, the overall performance characteristics of several combustor bleed flow designs are assessed in this experimental study. In particular, their contributions toward secondary flow control and component cooling are documented. Testing is performed in a large-scale, guide vane simulator comprised of three airfoils encased between one contoured and one flat endwall. Core flow is supplied to this simulator at an inlet chord Reynolds number of 350,000 and turbulence intensity of 9.5%. Combustor bleed cooling flow is injected through the contoured endwall via inclined slots. The slots vary in cross-sectional area, have equivalent slot widths, and are positioned with their leeward edges 10% of the axial chord ahead of the airfoil leading edges. Measurements with hot-wire anemometry characterize the inlet and exit flow fields of the cascade. Total and static pressure measurements document aerodynamic performance. Thermocouple measurements detail thermal fields and permit evaluation of surface adiabatic effectiveness. To elucidate the effects of bleed injection, data are compared to an experiment taken without bleed. The influence of bleed mass flow rate and slot geometry on the aerodynamic losses and thermal protection arc given. This study suggests that such combustor bleed flow cooling offers significant thermal protection without imposing aerodynamic penalties. Such performance is contrary to the performance of present vane cooling schemes. The results of this investigation support designs which incorporate combustor coolant injection upstream of the airfoil leading edges. To complement, a short exploratory study regarding the effects of surface roughness was also performed. Results indicate modified cooling performance and significantly higher aerodynamic losses with rough surfaces.
NASA Technical Reports Server (NTRS)
Kinney, George R; Abramson, Andrew E; Sloop, John L
1952-01-01
Report presents the results of an investigation conducted to determine the effectiveness of liquid-cooling films on the inner surfaces of tubes containing flowing hot air. Experiments were made in 2- and 4-inch-diameter straight metal tubes with air flows at temperatures from 600 degrees to 2000 degrees F. and diameter Reynolds numbers from 2.2 to 14 x 10(5). The film coolant, water, was injected around the circumference at a single axial position on the tubes at flow rates from 0.02 to .24 pound per second per foot of tube circumference (0.8 to 12 percent of the air flow). Liquid-coolant films were established and maintained around and along the tube wall in concurrent flow with the hot air. The results indicated that, in order to film cool a given surface area with as little coolant flow as possible, it may be necessary to limit the flow of coolant introduced at a single axial position and to introduce it at several axial positions. The flow rate of inert coolant required to maintain liquid-film cooling over a given area of tube surface can be estimated when the gas-flow conditions are known by means of a generalized plot of the film-cooling data.
A Dual-Plane PIV Study of Turbulent Heat Transfer Flows
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.
2016-01-01
Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.
Kilmer, Suzanne L
2017-01-01
Cryolipolysis is a safe, effective non-surgical procedure to reduce fat. For most cryolipolysis treatments, tissue is pulled between parallel cooling plates with a treatment duration of 60 minutes. A novel contoured cup, medium-sized applicator was developed to increase tissue contact with reduced skin tension and reduced treatment time. This prototype contoured cup was investigated with a standard cryolipolysis applicator to evaluate safety, efficacy, and patient preference. A prototype CoolCup medium-sized vacuum applicator (CoolSculpting System, ZELTIQ Aesthetics) was used to treat n = 19 subjects in the flanks. Randomly assigned, one flank received standard treatment with the CoolCore applicator (-10°C for 60 minutes). The contralateral flank received treatment from the CoolCup (-11°C for 35 minutes). The clinical study primary efficacy endpoint was 70% correct identification of baseline photographs by independent physician review. Incidence of adverse device effects was monitored. Fat layer reduction was measured by ultrasound and subject surveys were administered 12 weeks post-treatment. Equivalent efficacy was demonstrated between the CoolCore standard treatment and the prototype CoolCup. Independent review from three blinded physicians found 81% correct identification of baseline photographs for the standard treatment and 79% for the CoolCup. Ultrasound measurements indicated mean fat layer reduction of 4.38 mm for the standard treatment and 4.40 mm for the CoolCup; no statistically significant difference was found when comparing treatment efficacy of the two applicators (P = 0.96). Patient questionnaires revealed 85% preferred CoolCup because of shorter treatment duration and greater comfort. Procedural assessments revealed 45% lower pain scores for CoolCup. Immediate post-treatment clinical assessments revealed 82% less bruising. Typical side effects, such as numbness and erythema, were similar. There were no adverse events. This clinical study of a prototype medium-sized vacuum applicator with a cooled contoured surface indicates that the CoolCup produces equivalent safety and efficacy to the standard CoolCore cryolipolysis applicator. With a 42% reduction in treatment time, the procedure was found to be more comfortable because of lower vacuum skin tension and shorter treatment duration. Lasers Surg. Med. 49:63-68, 2017. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.
Magnetothermal instability in cooling flows
NASA Technical Reports Server (NTRS)
Loewenstein, Michael
1990-01-01
The effect of magnetic fields on thermal instability in cooling flows is investigated using linear, Eulerian perturbation analysis. As contrasted with the zero magnetic-field case, hydromagnetic stresses support perturbations against acceleration caused by buoyancy - comoving evolution results and global growth rates are straightforward to obtain for a given cooling flow entropy distribution. In addition, background and induced magnetic fields ensure that conductive damping of thermal instability is greatly reduced.
Salvaged castings and methods of salvaging castings with defective cast cooling bumps
Johnson, Robert Alan; Schaeffer, Jon Conrad; Lee, Ching-Pang; Abuaf, Nesim; Hasz, Wayne Charles
2002-01-01
Castings for gas turbine parts exposed on one side to a high-temperature fluid medium have cast-in bumps on an opposite cooling surface side to enhance heat transfer. Areas on the cooling surface having defectively cast bumps, i.e., missing or partially formed bumps during casting, are coated with a braze alloy and cooling enhancement material to salvage the part.
Intelligent Engine Systems: Thermal Management and Advanced Cooling
NASA Technical Reports Server (NTRS)
Bergholz, Robert
2008-01-01
The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.
Heat exchanger with auxiliary cooling system
Coleman, John H.
1980-01-01
A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.
NASA Technical Reports Server (NTRS)
White, Raymond E., III
1998-01-01
This final report uses ROSAT observations to analyze two different studies. These studies are: Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies; and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters.
Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices
Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant
2015-04-21
The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.
An experimental study of heat transfer and film cooling on low aspect ratio turbine nozzles
NASA Astrophysics Data System (ADS)
Takeishi, K.; Matsuura, M.; Aoki, S.; Sato, T.
1989-06-01
The effects of the three-dimensional flow field on the heat transfer and the film cooling on the endwall, suction and pressure surface of an airfoil were studied using a low speed, fully annular, low aspect h/c = 0.5 vane cascade. The predominant effects that the horseshoe vortex, secondary flow, and nozzle wake increases in the heat transfer and decreases in the film cooling on the suction vane surface and the endwall were clearly demonstrated. In addition, it was demonstrated that secondary flow has little effect on the pressure surface. Pertinent flow visualization of the flow passage was also carried out for better understanding of these complex phenomena. Heat transfer and film cooling on the fully annular vane passage surface is discussed.
NASA Technical Reports Server (NTRS)
Shyam, Vikram (Inventor); Poinsatte, Philip (Inventor); Thurman, Douglas (Inventor)
2017-01-01
One or more embodiments of techniques or systems for shaped recess flow control are provided herein. A shaped recess or cavity can be formed on a surface associated with fluid flow. The shaped recess can be configured to create or induce fluid effects, temperature effects, or shedding effects that interact with a free stream or other structures. The shaped recess can be formed at an angle to a free stream flow and may be substantially "V" shaped. The shaped recess can be coupled with a cooling channel, for example. The shaped recess can be upstream or downstream from a cooling channel and aligned in a variety of manners. Due to the fluid effects, shedding effects, and temperature effects created by a shaped recess, lift-off or separation of cooling jets of cooling channels can be mitigated, thereby enhancing film cooling effectiveness.
A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
NASA Technical Reports Server (NTRS)
Ameri, A. A.; Rigby, D. L.
1999-01-01
A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voroshilov, V.A.; Kamenev, V.D.; Kochurkina, Yu.I.
This study investigates a wide range of substances to discover a high quality quenching medium. The medium must have the possibility of variation of cooling ability, fire resistance, and nontoxicity, and be available, simple, and safe. Surfactants, liquids, organosilicon compounds, and water soluble polymerics were surveyed and rejected. In aqueous solutions the cooling properties worsened during heating. Modified celluloses (polyethylenepolymine) and sulfite liquor were also studied. These were determined to be the most promising quenching media, and were tested and detailed.
Rotor bore and turbine rotor wheel/spacer heat exchange flow circuit
Caruso, Philip M.; Eldrid, Sacheverel Quentin; Ladhani, Azad A.; DeMania, Alan Richard; Palmer, Gene David; Wilson, Ian David; Rathbun, Lisa Shirley; Akin, Robert Craig
2002-01-01
In a turbine having closed-circuit steam-cooling passages about the rim of the rotor during steady-state operation, compressor discharge air is supplied to the rotor bore for passage radially outwardly into the wheel space cavities between the wheels and spacers. Communicating slots and channels in the spacers and wheels at circumferentially spaced positions enable egress of the compressor discharge air into the hot gas flow path. At turbine startup, cooling air flows through the closed-circuit steam passages to cool the outer rim of the rotor while compressor discharge air pre-warms the wheels and spacers. At steady-state, cooling steam is supplied in the closed-circuit steam-cooling passages and compressor discharge air is supplied through the bore and into the wheel space cavities to cool the rotor.
Effect of Fin Passage Length on Optimization of Cylinder Head Cooling Fins
NASA Technical Reports Server (NTRS)
Siegel, R.; Graham, R. W.
1977-01-01
The heat transfer performance of baffled cooling fins on cylinder heads of small, air-cooled, general-aviation aircraft engines was analyzed to determine the potential for improving cooling fin design. Flow baffles were assumed to be installed tightly against the fin end edges, an ideal baffle configuration for guiding all flow between the fins. A rectangular flow passage is thereby formed between each set of two adjacent fins, the fin base surface, and the baffle. These passages extend around each side of the cylinder head, and the cooling air absorbs heat as it flows within them. For each flow passage length, the analysis was concerned with optimizing fin spacing and thickness to achieve the best heat transfer for each fin width. Previous literature has been concerned mainly with maximizing the local fin conductance and has not considered the heating of the gas in the flow direction, which leads to higher wall temperatures at the fin passage exits. If the fins are close together, there is a large surface area, but the airflow is restricted.
Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung
NASA Astrophysics Data System (ADS)
Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.
Modeling and Simulation of A Microchannel Cooling System for Vitrification of Cells and Tissues.
Wang, Y; Zhou, X M; Jiang, C J; Yu, Y T
The microchannel heat exchange system has several advantages and can be used to enhance heat transfer for vitrification. To evaluate the microchannel cooling method and to analyze the effects of key parameters such as channel structure, flow rate and sample size. A computational flow dynamics model is applied to study the two-phase flow in microchannels and its related heat transfer process. The fluid-solid coupling problem is solved with a whole field solution method (i.e., flow profile in channels and temperature distribution in the system being simulated simultaneously). Simulation indicates that a cooling rate >10 4 C/min is easily achievable using the microchannel method with the high flow rate for a board range of sample sizes. Channel size and material used have significant impact on cooling performance. Computational flow dynamics is useful for optimizing the design and operation of the microchannel system.
NASA Astrophysics Data System (ADS)
Guo, Yonghong; Du, Xiaoze; Yang, Lijun
2018-02-01
Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.
Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D
2012-10-01
The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague-Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = -10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers.
Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A
2007-09-04
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.
Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D.
2012-01-01
The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using wavelet analysis of blood flow oscillations in rats. Twelve Sprague Dawley rats were randomly assigned into three protocols, including pressure with local cooling (Δt= −10°C), pressure with local heating (Δt= 10°C), and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 hours. Skin blood flow was measured using laser Doppler flowmetry. The 3-hour loading period was divided into non-overlapping 30 min epochs for analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased in the conditions of pressure with heating and of pressure without temperature changes, but maintained stable in the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. PMID:23010955
Loyd, S. J.; Becker, T. W.; Conrad, C. P.; Lithgow-Bertelloni, C.; Corsetti, F. A.
2007-01-01
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by ∼0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past. PMID:17720806
Analysis of counter flow of corona wind for heat transfer enhancement
NASA Astrophysics Data System (ADS)
Shin, Dong Ho; Baek, Soo Hong; Ko, Han Seo
2018-03-01
A heat sink for cooling devices using the counter flow of a corona wind was developed in this study. Detailed information about the numerical investigations of forced convection using the corona wind was presented. The fins of the heat sink using the counter flow of a corona wind were also investigated. The corona wind generator with a wire-to-plate electrode arrangement was used for generating the counter flow to the fin. The compact and simple geometric characteristics of the corona wind generator facilitate the application of the heat sink using the counter flow, demonstrating the heat sink is effective for cooling electronic devices. Parametric studies were performed to analyze the effect of the counter flow on the fins. Also, the velocity and temperature were measured experimentally for the test mock-up of the heat sink with the corona wind generator to verify the numerical results. From a numerical study, the type of fin and its optimal height, length, and pitch were suggested for various heat fluxes. In addition, the correlations to calculate the mass of the developed heat sink and its cooling performance in terms of the heat transfer coefficient were derived. Finally, the cooling efficiencies corresponding to the mass, applied power, total size, and noise of the devices were compared with the existing commercial central processing unit (CPU) cooling devices with rotor fans. As a result, it was confirmed that the heat sink using the counter flow of the corona wind showed appropriate efficiencies for cooling electronic devices, and is a suitable replacement for the existing cooling device for high power electronics.
Liquid cooling of aircraft engines
NASA Technical Reports Server (NTRS)
Weidinger, Hanns
1931-01-01
This report presents a method for solving the problem of liquid cooling at high temperatures, which is an intermediate method between water and air cooling, by experiments on a test-stand and on an airplane. A utilizable cooling medium was found in ethylene glycol, which has only one disadvantage, namely, that of combustibility. The danger, however is very slight. It has one decided advantage, that it simultaneously serves as protection against freezing.
Chiu, Rong-Shi Paul; Hasz, Wayne Charles; Johnson, Robert Alan; Lee, Ching-Pang; Abuaf, Nesim
2002-01-01
An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.
Mid-section of a can-annular gas turbine engine with a cooling system for the transition
Wiebe, David J.; Rodriguez, Jose L.
2015-12-08
A cooling system is provided for a transition (420) of a gas turbine engine (410). The cooling system includes a cowling (460) configured to receive an air flow (111) from an outlet of a compressor section of the gas turbine engine (410). The cowling (460) is positioned adjacent to a region of the transition (420) to cool the transition region upon circulation of the air flow within the cowling (460). The cooling system further includes a manifold (121) to directly couple the air flow (111) from the compressor section outlet to an inlet (462) of the cowling (460). The cowling (460) is configured to circulate the air flow (111) within an interior space (426) of the cowling (460) that extends radially outward from an inner diameter (423) of the cowling to an outer diameter (424) of the cowling at an outer surface.
Fluid-cooled heat sink for use in cooling various devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth
The disclosure provides a fluid-cooled heat sink having a heat transfer base, a shroud, and a plurality of heat transfer fins in thermal communication with the heat transfer base and the shroud, where the heat transfer base, heat transfer fins, and the shroud form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop ofmore » the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.« less
Near wall cooling for a highly tapered turbine blade
Liang, George [Palm City, FL
2011-03-08
A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.
NASA Astrophysics Data System (ADS)
Kumaresan, E.; Vijaya Kumar, A. G.; Rushi Kumar, B.
2017-11-01
This article studies, an exact solution of unsteady MHD free convection boundary-layer flow of a silver nanofluid past an exponentially accelerated moving vertical plate through aporous medium in the presence of thermal radiation, transverse applied amagnetic field, radiation absorption and Heat generation or absorption with chemical reaction are investigated theoretically. We consider nanofluids contain spherical shaped nanoparticle of silverwith a nanoparticle volume concentration range smaller than or equal to 0.04. This phenomenon is modeled in the form of partial differential equations with initial boundary conditions. Some suitable dimensional variables are introduced. The corresponding dimensionless equations with boundary conditions are solved by using Laplace transform technique. The exact solutions for velocity, energy, and species are obtained, also the corresponding numerical values of nanofluid velocity, temperature and concentration profiles are represented graphically. The expressions for skin friction coefficient, the rate of heat transfer and mass transfer are derived. The present study finds applications involving heat transfer, enhancement of thermal conductivity and other applications like transportation, industrial cooling applications, heating buildings and reducing pollution, energy applications and solar absorption. The effect of heat transfer is found to be more pronounced in a silver-water nanofluid than in the other nanofluids.
Supersonic laminar flow control research
NASA Technical Reports Server (NTRS)
Lo, Ching F.
1994-01-01
The objective of the research is to understand supersonic laminar flow stability, transition, and active control. Some prediction techniques will be developed or modified to analyze laminar flow stability. The effects of supersonic laminar flow with distributed heating and cooling on active control will be studied. The primary tasks of the research applying to the NASA/Ames Proof of Concept (POC) Supersonic Wind Tunnel and Laminar Flow Supersonic Wind Tunnel (LFSWT) nozzle design with laminar flow control are as follows: (1) predictions of supersonic laminar boundary layer stability and transition, (2) effects of wall heating and cooling for supersonic laminar flow control, and (3) performance evaluation of POC and LFSWT nozzles design with wall heating and cooling effects applying at different locations and various length.
Bailey, James L.; Vresk, Josip
1989-01-01
A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.
Breaking Barriers to Low-Cost Modular Inverter Production & Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdan Borowy; Leo Casey; Jerry Foshage
2005-05-31
The goal of this cost share contract is to advance key technologies to reduce size, weight and cost while enhancing performance and reliability of Modular Inverter Product for Distributed Energy Resources (DER). Efforts address technology development to meet technical needs of DER market protection, isolation, reliability, and quality. Program activities build on SatCon Technology Corporation inverter experience (e.g., AIPM, Starsine, PowerGate) for Photovoltaic, Fuel Cell, Energy Storage applications. Efforts focused four technical areas, Capacitors, Cooling, Voltage Sensing and Control of Parallel Inverters. Capacitor efforts developed a hybrid capacitor approach for conditioning SatCon's AIPM unit supply voltages by incorporating several typesmore » and sizes to store energy and filter at high, medium and low frequencies while minimizing parasitics (ESR and ESL). Cooling efforts converted the liquid cooled AIPM module to an air-cooled unit using augmented fin, impingement flow cooling. Voltage sensing efforts successfully modified the existing AIPM sensor board to allow several, application dependent configurations and enabling voltage sensor galvanic isolation. Parallel inverter control efforts realized a reliable technique to control individual inverters, connected in a parallel configuration, without a communication link. Individual inverter currents, AC and DC, were balanced in the paralleled modules by introducing a delay to the individual PWM gate pulses. The load current sharing is robust and independent of load types (i.e., linear and nonlinear, resistive and/or inductive). It is a simple yet powerful method for paralleling both individual devices dramatically improves reliability and fault tolerance of parallel inverter power systems. A patent application has been made based on this control technology.« less
Vortex generating flow passage design for increased film cooling effectiveness
NASA Astrophysics Data System (ADS)
Papell, S. S.
1985-07-01
It is an object of the invention to provide a film cooling apparatus of increased effectiveness and efficiency. In accordance with the invention, a cooling fluid is injected into a hot flowing gas through a passageway in a wall which contains and is subject to the hot gas. The passageway is slanted in a downstream direction at an acute angle to the wall. A cusp shape is provided in the passageway to generate vortices in the injected cooling fluid thereby reducing the energy extracted from the hot gas for that purpose. The cusp shape increases both film cooling effectiveness and wall area coverage. The cusp may be at either the downstream or upstream side of the passageway, the former substantially eliminating flow separation of the cooling fluid from the wall immediately downstream of the passageway.
Vortex generating flow passage design for increased film cooling effectiveness
NASA Technical Reports Server (NTRS)
Papell, S. S. (Inventor)
1985-01-01
It is an object of the invention to provide a film cooling apparatus of increased effectiveness and efficiency. In accordance with the invention, a cooling fluid is injected into a hot flowing gas through a passageway in a wall which contains and is subject to the hot gas. The passageway is slanted in a downstream direction at an acute angle to the wall. A cusp shape is provided in the passageway to generate vortices in the injected cooling fluid thereby reducing the energy extracted from the hot gas for that purpose. The cusp shape increases both film cooling effectiveness and wall area coverage. The cusp may be at either the downstream or upstream side of the passageway, the former substantially eliminating flow separation of the cooling fluid from the wall immediately downstream of the passageway.
Double diffusive conjugate heat transfer: Part II
NASA Astrophysics Data System (ADS)
Azeem, Soudagar, Manzoor Elahi M.
2018-05-01
Conjugate heat transfer in porous medium is an important study involved in many practical applications. The current study is aimed to investigate the double diffusive flow in a square porous cavity subjected to left vertical surface heating and right vertical surface cooling respectively along with left and right surfaces maintained at high and low concentration. The three governing equations are converted into algebraic form of equations by applying finite element method and solved in iterative manner. The study is focused to investigate the effect of presence of solid inside the cavity with respect to varying buoyancy ratio. It is found that the local heat and mass transfer rate decreases along the height of cavity.
Are cosmological gas accretion streams multiphase and turbulent?
NASA Astrophysics Data System (ADS)
Cornuault, Nicolas; Lehnert, Matthew D.; Boulanger, François; Guillard, Pierre
2018-03-01
Simulations of cosmological filamentary accretion reveal flows ("streams") of warm gas, T 104 K, which bring gas into galaxies efficiently. We present a phenomenological scenario in which gas in such flows, if it is shocked as it enters the halo as we assume and depending on the post-shock temperature, stream radius, its relative overdensity, and other factors, becomes biphasic and turbulent. We consider a collimated stream of warm gas that flows into a halo from an overdense filament of the cosmic web. The post-shock streaming gas expands because it has a higher pressure than the ambient halo gas and fragments as it cools. The fragmented stream forms a two phase medium: a warm cloudy phase embedded in hot post-shock gas. We argue that the hot phase sustains the accretion shock. During fragmentation, a fraction of the initial kinetic energy of the infalling gas is converted into turbulence among and within the warm clouds. The thermodynamic evolution of the post-shock gas is largely determined by the relative timescales of several processes. These competing timescales characterize the cooling, expansion of the post-shock gas, amount of turbulence in the clouds, and dynamical time of the halo. We expect the gas to become multiphase when the gas cooling and dynamical times are of the same order of magnitude. In this framework, we show that this mainly occurs in the mass range, Mhalo 1011 to 1013 M⊙, where the bulk of stars have formed in galaxies. Because of the expansion of the stream and turbulence, gas accreting along cosmic web filaments may eventually lose coherence and mix with the ambient halo gas. Through both the phase separation and "disruption" of the stream, the accretion efficiency onto a galaxy in a halo dynamical time is lowered. Decollimating flows make the direct interaction between galaxy feedback and accretion streams more likely, thereby further reducing the overall accretion efficiency. As we discuss in this work, moderating the gas accretion efficiency through these mechanisms may help to alleviate a number of significant challenges in theoretical galaxy formation.
Miller, Thomas D; Maxwell, Andrew J; Lindquist, Thomas D; Requard, Jake
2013-01-01
To determine the cooling effect of generic insulated shipping containers in ambient and high-temperature environments. Twenty-seven shipping containers were packed with wet ice according to industry standards. The ice in each container was weighed. Ambient temperatures were recorded by data loggers affixed to the exterior. Internal temperatures were recorded by data loggers packed inside the containers, for as long as the data loggers remained at ≤8°C. The cooling effect, or minutes per gram of ice a data logger maintained a temperature of ≤8°C, was calculated using linear regression; 8 similar containers were subjected to elevated summer temperatures. Small, medium, and large containers held mean masses of wet ice of 685, 1929, and 4439 g, respectively. The linear regression equation for grams of ice to duration of time at ≤8°C was y = 0.1994x + 385.13 for small containers, y = 0.1854x + 1273.3 for medium, and y = 0.5892x + 1410.3 for large containers, resulting in a cooling effect of 25.1 hours for small, 58.9 hours for medium, and 85.7 hours for large containers at ambient temperature. The duration of cooling effect in the summer profile group was consistent with that of the ambient temperature group. All of the container sizes successfully maintained proper cooling when packed with the appropriate grams of wet ice for the needed time interval. This study validates current practice for the shipment of corneal tissue in inexpensive, generic containers that can maintain effective cooling for the duration required for local, national, and international shipment.
Magnetic Heat Pump Containing Flow Diverters
NASA Technical Reports Server (NTRS)
Howard, Frank S.
1995-01-01
Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.
Film-cooling effectiveness with developing coolant flow through straight and curved tubular passages
NASA Technical Reports Server (NTRS)
Papell, S. S.; Wang, C. R.; Graham, R. W.
1982-01-01
The data were obtained with an apparatus designed to determine the influence of tubular coolant passage curvature on film-cooling performance while simulating the developing flow entrance conditions more representative of cooled turbine blade. Data comparisons were made between straight and curved single tubular passages embedded in the wall and discharging at 30 deg angle in line with the tunnel flow. The results showed an influence of curvature on film-cooling effectiveness that was inversely proportional to the blowing rate. At the lowest blowing rate of 0.18, curvature increased the effectiveness of film cooling by 35 percent; but at a blowing rate of 0.76, the improvement was only 10 percent. In addition, the increase in film-cooling area coverage ranged from 100 percent down to 25 percent over the same blowing rates. A data trend reversal at a blowing rate of 1.5 showed the straight tubular passage's film-cooling effectiveness to be 20 percent greater than that of the curved passage with about 80 percent more area coverage. An analysis of turbulence intensity detain the mixing layer in terms of the position of the mixing interface relative to the wall supported the concept that passage curvature tends to reduce the diffusion of the coolant jet into the main stream at blowing rates below about. Explanations for the film-cooling performance of both test sections were made in terms differences in turbulences structure and in secondary flow patterns within the coolant jets as influenced by flow passage geometry.
Film-cooling effectiveness with developing coolant flow through straight and curved tubular passages
NASA Astrophysics Data System (ADS)
Papell, S. S.; Wang, C. R.; Graham, R. W.
1982-11-01
The data were obtained with an apparatus designed to determine the influence of tubular coolant passage curvature on film-cooling performance while simulating the developing flow entrance conditions more representative of cooled turbine blade. Data comparisons were made between straight and curved single tubular passages embedded in the wall and discharging at 30 deg angle in line with the tunnel flow. The results showed an influence of curvature on film-cooling effectiveness that was inversely proportional to the blowing rate. At the lowest blowing rate of 0.18, curvature increased the effectiveness of film cooling by 35 percent; but at a blowing rate of 0.76, the improvement was only 10 percent. In addition, the increase in film-cooling area coverage ranged from 100 percent down to 25 percent over the same blowing rates. A data trend reversal at a blowing rate of 1.5 showed the straight tubular passage's film-cooling effectiveness to be 20 percent greater than that of the curved passage with about 80 percent more area coverage. An analysis of turbulence intensity detain the mixing layer in terms of the position of the mixing interface relative to the wall supported the concept that passage curvature tends to reduce the diffusion of the coolant jet into the main stream at blowing rates below about. Explanations for the film-cooling performance of both test sections were made in terms differences in turbulences structure and in secondary flow patterns within the coolant jets as influenced by flow passage geometry.
Turbine airfoil with laterally extending snubber having internal cooling system
Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.
2016-09-06
A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.
Convection induced by radiative cooling of a layer of participating medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasanna, Swaminathan, E-mail: prasannaswam@gmail.com; Venkateshan, S. P., E-mail: spv@iitm.ac.in
2014-05-15
Simulations and experiments have been conducted to study the effect of radiative cooling on natural convection in a horizontal layer of a participating medium enclosed between isothermal opaque wall and radiatively transparent wall and exposed to a cold background. The study is of relevance to a nocturnal boundary layer under clear and calm conditions. The focus of the study is to capture the onset of convection caused by radiative cooling. The experiments have been designed to mimic the atmospheric radiative boundary conditions, and hence decoupling convection and radiation boundary conditions. Planck number Pl and optical thickness of the layer τ{submore » H} are the two important parameters that govern the interaction between radiation and convection. The radiation-convection coupling is a strong function of length scale. Convection sets up within first few seconds for all the experiments. Strong plume like convection is observed for the experimental conditions used in the present study. Both simulations and experiments confirm that radiative cooling increases substantially with decrease in emissivity of the bottom wall. Radiative cooling is strongly influenced by the nongray nature of the participating medium, especially when strong emission from the medium escapes to space, in the window region of the atmosphere. Accurate representation of radiative properties is critical. Linear stability analysis of onset of convection indicates that radiation stabilizes convection as Pl decreases. The observations are similar to the case of Rayleigh Bénard convection in a radiating gas. However, for both experimental and numerical conditions, the observed Rayleigh numbers are much greater than the critical Rayleigh number. To conclude, the role of radiation is to drive and sustain convection in the unstable layer.« less
Thermocouple for heating and cooling of memory metal actuators
NASA Technical Reports Server (NTRS)
Wood, Charles (Inventor)
1988-01-01
A semiconductor thermocouple unit is provided for heating and cooling memory metal actuators. The semiconductor thermocouple unit is mounted adjacent to a memory metal actuator and has a heat sink attached to it. A flexible thermally conductive element extends between the semiconductor thermocouple and the actuator and serves as a heat transfer medium during heating and cooling operations.
Infrared photoemitting diode having reduced work function
Hirschfeld, Tomas B.
1984-01-01
In electro-optical detectors which include as elements a photoemitting photocathode and anode, a photoemitting diode is fabricated which lowers the diode's work function, thus reducing the cooling requirement typically needed for this type of device. The work function is reduced by sandwiching between the photocathode and anode a liquid medium of the formula NR.sub.3 and having an electron affinity for the electrons of the photocathode, which liquid medium permits free electrons leaving the photocathode to remain as stable solvated species in the liquid medium. Thus, highly light-absorbent, and therefore thin, metallic layers can be used for detection, thereby reducing dark current at a given temperature, with a consequent reduction in cooling requirements at constant detector performance.
NASA Astrophysics Data System (ADS)
Muthukumar, Palanisamy; Naik, Bukke Kiran; Goswami, Amarendra
2018-02-01
Mechanical draft cross flow cooling towers are generally used in a large-scale water cooled condenser based air-conditioning plants for removing heat from warm water which comes out from the condensing unit. During this process considerable amount of water in the form of drift (droplets) and evaporation is carried away along with the circulated air. In this paper, the performance evaluation of a standard cross flow induced draft cooling tower in terms of water loss, range, approach and cooling tower efficiency are presented. Extensive experimental studies have been carried out in three cooling towers employed in a water cooled condenser based 1200 TR A/C plant over a period of time. Daily variation of average water loss and cooling tower performance parameters have been reported for some selected days. The reported average water loss from three cooling towers is 4080 l/h and the estimated average water loss per TR per h is about 3.1 l at an average relative humidity (RH) of 83%. The water loss during peak hours (2 pm) is about 3.4 l/h-TR corresponding to 88% of RH and the corresponding efficiency of cooling towers varied between 25% and 45%.
NASA Astrophysics Data System (ADS)
Akhlaghi, H.; Roohi, E.; Myong, R. S.
2012-11-01
Micro/nano geometries with specified wall heat flux are widely encountered in electronic cooling and micro-/nano-fluidic sensors. We introduce a new technique to impose the desired (positive/negative) wall heat flux boundary condition in the DSMC simulations. This technique is based on an iterative progress on the wall temperature magnitude. It is found that the proposed iterative technique has a good numerical performance and could implement both positive and negative values of wall heat flux rates accurately. Using present technique, rarefied gas flow through micro-/nanochannels under specified wall heat flux conditions is simulated and unique behaviors are observed in case of channels with cooling walls. For example, contrary to the heating process, it is observed that cooling of micro/nanochannel walls would result in small variations in the density field. Upstream thermal creep effects in the cooling process decrease the velocity slip despite of the Knudsen number increase along the channel. Similarly, cooling process decreases the curvature of the pressure distribution below the linear incompressible distribution. Our results indicate that flow cooling increases the mass flow rate through the channel, and vice versa.
Heat Transfer Prediction of Film Cooling in Supersonic Flow
NASA Astrophysics Data System (ADS)
Luchi, Riccardo; Salvadori, Simone; Martelli, Francesco
2008-09-01
Considering the modern high pressure stages of gas turbines, the flow over the suction side of the blades can be affected by the presence of shock impingement and boundary layer separation. Furthermore, it should be pointed out that the combustor exit temperature reaches values which are close to the allowable material limit. Then, a cooling system based on the film cooling approach should be designed to prevent failure. The interaction between the ejected coolant and the shock impingement must be studied to achieve a higher efficiency of the cooling system. The proposed approach is based on the numerical evaluation of a film cooled test section experimentally studied at the University of Karlsruhe. The testing rig consists in a converging-diverging nozzle that accelerates the flow up to sonic conditions while an oblique shock is generated at the nozzle exit section. Three cases have been studied, changing the cooling holes position with respect to the shock impingement over the cooled surface. The obtained results are presented and compared with the experimental data. The used solver is the in-house CFD 3D code HybFlow, developed at the University of Florence. This study has been carried out in the frame of the EU funded TATEF2 project.
FUSE Observations of Warm Gas in the Cooling Flow Clusters A1795 and A2597
NASA Technical Reports Server (NTRS)
Oegerle, W. R.; Cowie, L.; Davidsen, A.; Hu, E.; Hutchings, J.; Murphy, E.; Sembach, K.; Woodgate, B.; Fisher, Richard R. (Technical Monitor)
2001-01-01
We present far-ultraviolet spectroscopy of the cores of the massive cooling flow clusters Abell 1795 and 2597 obtained with FUSE. As the intracluster gas cools through 3 x 10(exp 5)K, it should emit strongly in the O VI lambda(lambda)1032,1038 resonance lines. We report the detection of O VI (lambda)1032 emission in A2597, with a line flux of 1.35 +/- 0.35 x 10(exp -15) erg/sq cm s, as well as detection of emission from C III (lambda)977. A marginal detection of C III (lambda)977 emission is also reported for A1795. These observations provide evidence for a direct link between the hot (10(exp 7) K) cooling flow gas and the cool (10(exp 4) K) gas in the optical emission line filaments. Assuming simple cooling flow models, the O VI line flux in A2597 corresponds to a mass deposition rate of approx. 40 solar mass /yr within the central 36 kpc. Emission from O VI (lambda)1032 was not detected in A1795, with an upper limit of 1.5 x 10(exp -15) erg/sq cm s, corresponding to a limit on the mass cooling flow rate of M(28 kpc) less than 28M solar mass/ yr. We have considered several explanations for the lack of detection of O VI emission in A1795 and the weaker than expected flux in A2597, including extinction by dust in the outer cluster, and quenching of thermal conduction by magnetic fields. We conclude that a turbulent mixing model, with some dust extinction, could explain our O VI results while also accounting for the puzzling lack of emission by Fe(sub XVII) in cluster cooling flows.
40 CFR 419.47 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... forth in § 419.46 (a) and (b). (b) The following standard is applied to the cooling tower discharge part... flow to the POTW; and (3) by the ratio of the cooling tower discharge flow to the total refinery flow...
40 CFR 419.17 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... forth in § 419.16 (a) and (b). (b) The following standard is applied to the cooling tower discharge part... flow to the POTW; and (3) by the ratio of the cooling tower discharge flow to the total refinery flow...
40 CFR 419.57 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... forth in § 419.56 (a) and (b). (b) The following standard is applied to the cooling tower discharge part... flow to the POTW; and (3) by the ratio of the cooling tower discharge flow to the total refinery flow...
Flow-permeability feedbacks and the development of segregation pipes in volcanic materials
NASA Astrophysics Data System (ADS)
Rust, Alison
2014-05-01
Flow and transformation in volcanic porous media is important for the segregation of melts and aqueous fluids from magmas as well as elutriation of fine ash from pyroclastic flows and vents. The general topic will be discussed in the framework of understanding sets of vertical pipes found in two very different types of volcanic deposits: 1) vesicular (bubbly) cylinders in basalt lava flows and 2) gas escape pipes in pyroclastic flow deposits. In both cases the cylinders can be explained by a flow-permeability feedback where perturbations in porosity and thus permeability cause locally higher flow speeds that in turn locally increase the permeability. For vesicular cylinders in lava flows, the porous medium is a framework of crystals within the magma. Above a critical crystallinity, which depends on the shape and size distribution of the crystals, the crystals form a touching framework. As the water-saturated magma continues to cool, it crystallizes anhydrous minerals, resulting in the exsolution of water vapour bubbles that can drive flow of bubbly melt through the crystal network. It is common to find sets of vertical cylinders of bubby melt in solidified lava flows, with compositions that match the residual melt from 35-50% crystallization of the host basalt. These cylinders resemble chimneys in experiments of crystallising ammonium chloride solution that are explained by reactive flow with porous medium convection. The Rayleigh number for the magmatic case is too low for convection but the growth of steam bubbles as the magma crystallizes induces pore fluid flow up through the permeable crystal pile even if there is no convective instability. This bubble-growth-driven upward flow is reactive and can lead to channelization because of a feedback between velocity and permeability. For the gas escape pipes in pyroclastic flows, the porous medium is a very poorly sorted granular material composed of fragments of solid magma with a huge range of grain sizes from ash (microns to 2 mm) to clasts of decimeters or greater. The vertical gas escape pipes are distinguished from the surrounding pyroclastic flow deposit by the lack of fine ash in the pipes; this missing ash was transported up out of the pyroclastic flow by gas flow, a process called elutriation. Laboratory experiments with beds of binary mixtures of spheres aerated through a porous plate at the base, demonstrate that the size ratio, density ratio, and proportions of the two populations of spheres all affect the pattern and efficiency of segregation. Decompaction of the upper portion of the bed separates the grains and thus facilitated the elutriation of the finer particles, which must be transported up through the spaces between the larger particles. A variety of segregation feature are found including pipes lacking fines that grow down from the top of the bed. These could be explained by channelizing of gas flow due to a feedback between local reduction in fines increasing the local permeability and gas velocity.
Cooling rate of an active Hawaiian lava flow from nighttime spectroradiometer measurements
NASA Technical Reports Server (NTRS)
Flynn, Luke P.; Mouginis-Mark, Peter J.
1992-01-01
A narrow-band spectroradiometer has been used to make nighttime measurements of the Phase 50 eruption of Pu'u O'o, on the East Rift Zone of Kilauea Volcano, Hawaii. On February 19, 1992, a GER spectroradiometer was used to determine the cooling rate of an active lava flow. This instrument collects 12-bit data between 0.35 to 3.0 microns at a spectral resolution of 1-5 nm. Thirteen spectra of a single area on a pahoehoe flow field were collected over a 59 minute period (21:27-22:26 HST) from which the cooling of the lava surface has been investigated. A two-component thermal mixing model (Flynn, 1992) applied to data for the flow immediately on emplacement gave a best-fit crustal temperature of 768 C, a hot component at 1150 C, and a hot radiating area of 3.6 percent of the total area. Over a 52-minute period (within the time interval between flow resurfacings) the lava flow crust cooled by 358 to 410 C at a rate that was as high as 15 C/min. The observations have significance both for satellite observations of active volcanoes and for numerical models of the cooling of lava flows during their emplacement.
Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe Lava to 'A'ā
NASA Astrophysics Data System (ADS)
Cashman, Katharine V.; Thornber, Carl; Kauahikaua, James P.
Samples collected from a lava channel active at Kīlauea Volcano during May 1997 are used to constrain rates of lava cooling and crystallization during early stages of flow. Lava erupted at near-liquidus temperatures ( 1150 °C) cooled and crystallized rapidly in upper parts of the channel. Glass geothermometry indicates cooling by 12-14 °C over the first 2km of transport. At flow velocities of 1-2m/s, this translates to cooling rates of 22-50 °C/h. Cooling rates this high can be explained by radiative cooling of a well-stirred flow, consistent with observations of non-steady flow in proximal regions of the channel. Crystallization of plagioclase and pyroxene microlites occurred in response to cooling, with crystallization rates of 20-50% per hour. Crystallization proceeded primarily by nucleation of new crystals, and nucleation rates of 104/cm3s are similar to those measured in the 1984 open channel flow from Mauna Loa Volcano. There is no evidence for the large nucleation delays commonly assumed for plagioclase crystallization in basaltic melts, possibly a reflection of enhanced nucleation due to stirring of the flow. The transition of the flow surface morphology from pāhoehoe to 'a'ā occurred at a distance of 1.9km from the vent. At this point, the flow was thermally stratified, with an interior temperature of 1137 °C and crystallinity of 15%, and a flow surface temperature of 1100 °C and crystallinity of 45%. 'A'ā formation initiated along channel margins, where crust was continuously disrupted, and involved tearing and clotting of the flow surface. Both observations suggest that the transition involved crossing of a rheological threshold. We suggest this threshold to be the development of a lava yield strength sufficient to prevent viscous flow of lava at the channel margin. We use this concept to propose that 'a'ā formation in open channels requires both sufficiently high strain rates for continued disruption of surface crusts and sufficient groundmass crystallinity to generate a yield strength equivalent to the imposed stress. In Hawai'i, where lava is typically microlite poor on eruption, these combined requirements help to explain two common observations on 'a'ā formation: (a) 'a'ā flow fields are generated when effusion rates are high (thus promoting crustal disruption); and (b) under most eruption conditions, lava issues from the vent as pāhoehoe and changes to 'a'ā only after flowing some distance, thus permitting sufficient crystallization.
Deep thermal disturbances related to the sub-surface groundwater flow (Western Alps, France)
NASA Astrophysics Data System (ADS)
Mommessin, Grégoire; Dzikowski, Marc; Menard, Gilles; Monin, Nathalie
2013-04-01
In mountain area, the bedrock of the valley side is affected by a thickness of decompressed rock in subsurface (decompressed zone). Groundwater flowing in this zone disrupts the depth geothermal gradients. The evolution of thermal gradients under the decompressed zone depends of groundwater temperature changes into the decompressed zone. In this study, the phenomenon is studied from data acquired in exploration drilling prior to the construction of the France - Italy transalpine tunnel (High Speed Line project between Lyon and Turin). The study area is located in the Vanoise siliceous series between Modane and Avrieux (Western Alps, France). Of 31 boreholes, we selected 14 wells showing a natural thermal disturbance (not due to the drilling) linked to the groundwater flow in decompressed zone. The drill holes have a length between 200 and 1380m and well logs were carried out (gamma log, acoustic log, temperature log, flowmeter log). The rocks are constituted mainly by quartzite with high thermal conductivity or by schist and gneiss with low thermal conductivity. The decompressed zone concerns the quartzite with thicknesses ranging from 50m to 750m where groundwater flow imposes a constant temperature throughout the rock thickness. In the very low permeability rocks under the decompressed zone, the thermal gradient shows variations with depth. These variations suggest a water temperature change in the decompressed zone probably due to a paleoclimate event. We used the derived of the equation describing the propagation of a temperature in a 1D semi-infinite, in response to a sudden temperature disturbance at the boundary of the medium, to estimate the age and the amplitude of temperature change in the decompressed zone. The medium under the decompressed zone is supposed to be initially in a steady state and only conductive. Numerical tests assess that the 1D model is applicable in the slope context. The results obtained from 13 wells data show a few warming degrees (1 to 4°K) of the decompressed zone occurring about two to four centuries BP. The latest high altitude drilling shows about two degrees cooling of the decompressed zone two centuries ago. The groundwater temperature warming can be due to a type of recharge change with a reduction of the snowmelt contribution or it can be provided by an increase of atmospheric and rainfall temperature. The observed cooling in the latest drilling can be interpreted as a groundwater flow change caused by the permafrost melting. The temperature change occurs during the end of Little Ice Age.
Core cooling under accident conditions at the high-flux beam reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, P.; Cheng, L.; Fauske, H.
The High-Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) is cooled and moderated by heavy water and contains {sup 235}U in the form of narrow-channel, parallel-plate-type fuel elements. During normal operation, the flow direction is downward through the core. This flow direction is maintained at a reduced flow rate during routine shutdown and on loss of commercial power by means of redundant pumps and power supplies. However, in certain accident scenarios, e.g. loss-of-coolant accidents (LOCAs), all forced-flow cooling is lost. Although there was experimental evidence during the reactor design period (1958-1963) that the heat removal capacity in the fullymore » developed natural circulation cooling mode was relatively high, it was not possible to make a confident prediction of the heat removal capacity during the transition from downflow to natural circulation. Accordingly, a test program was initiated using an electrically heated section to simulate the fuel channel and a cooling loop to simulate the balance of the primary cooling system.« less
X-ray and optical emission-line filaments in the cooling flow cluster 2A 0335 + 096
NASA Technical Reports Server (NTRS)
Sarazin, Craig L.; O'Connell, Robert W.; Mcnamara, Brian R.
1992-01-01
We present a new high-resolution X-ray image of the 2A 0335 + 096 cluster of galaxies obtained with the High Resolution Imager (HRI) aboard the ROSAT satellite. The presence of dense gas having a very short cooling time in the central regions confirms its earlier identification as a cooling flow. The X-ray emission from the central regions of the cooling flow shows a great deal of filamentary structure. Using the crude spectral resolution of the HRI, we show that these filaments are the result of excess emission, rather than foreground X-ray absorption. Although there are uncertainties in the pointing, many of the X-ray features in the cooling flow region correspond to features in H-alpha optical line emission. This suggests that the optical emission line gas has resulted directly from the cooling of X-ray-emitting gas. The filament material cannot be in hydrostatic equilibrium, and it is likely that other forces such as rotation, turbulence, and magnetic fields influence the dynamical state of the gas.
Coupling Network Computing Applications in Air-cooled Turbine Blades Optimization
NASA Astrophysics Data System (ADS)
Shi, Liang; Yan, Peigang; Xie, Ming; Han, Wanjin
2018-05-01
Through establishing control parameters from blade outside to inside, the parametric design of air-cooled turbine blade based on airfoil has been implemented. On the basis of fast updating structure features and generating solid model, a complex cooling system has been created. Different flow units are modeled into a complex network topology with parallel and serial connection. Applying one-dimensional flow theory, programs have been composed to get pipeline network physical quantities along flow path, including flow rate, pressure, temperature and other parameters. These inner units parameters set as inner boundary conditions for external flow field calculation program HIT-3D by interpolation, thus to achieve full field thermal coupling simulation. Referring the studies in literatures to verify the effectiveness of pipeline network program and coupling algorithm. After that, on the basis of a modified design, and with the help of iSIGHT-FD, an optimization platform had been established. Through MIGA mechanism, the target of enhancing cooling efficiency has been reached, and the thermal stress has been effectively reduced. Research work in this paper has significance for rapid deploying the cooling structure design.
Pāhoehoe flow cooling, discharge, and coverage rates from thermal image chronometry
Dehn, Jonathan; Hamilton, Christopher M.; Harris, A. J. L.; Herd, Richard A.; James, M.R.; Lodato, Luigi; Steffke, Andrea
2007-01-01
Theoretically- and empirically-derived cooling rates for active pāhoehoe lava flows show that surface cooling is controlled by conductive heat loss through a crust that is thickening with the square root of time. The model is based on a linear relationship that links log(time) with surface cooling. This predictable cooling behavior can be used assess the age of recently emplaced sheet flows from their surface temperatures. Using a single thermal image, or image mosaic, this allows quantification of the variation in areal coverage rates and lava discharge rates over 48 hour periods prior to image capture. For pāhoehoe sheet flow at Kīlauea (Hawai`i) this gives coverage rates of 1–5 m2/min at discharge rates of 0.01–0.05 m3/s, increasing to ∼40 m2/min at 0.4–0.5 m3/s. Our thermal chronometry approach represents a quick and easy method of tracking flow advance over a three-day period using a single, thermal snap-shot.
Computation of Turbulent Recirculating Flow in Channels, and for Impingement Cooling
NASA Technical Reports Server (NTRS)
Chang, Byong Hoon
1992-01-01
Fully elliptic forms of the transport equations have been solved numerically for two flow configurations. The first is turbulent flow in a channel with transverse rectangular ribs, and the second is impingement cooling of a plane surface. Both flows are relevant to proposed designs for active cooling of hypersonic vehicles using supercritical hydrogen as the coolant. Flow downstream of an abrupt pipe expansion and of a backward-facing step were also solved with various near-wall turbulence models as benchmark problems. A simple form of periodicity boundary condition was used for the channel flow with transverse rectangular ribs. The effects of various parameters on heat transfer in channel flow with transverse ribs and in impingement cooling were investigated using the Yap modified Jones and Launder low Reynolds number k-epsilon turbulence model. For the channel flow, predictions were in adequate agreement with experiment for constant property flow, with the results for friction superior to those for heat transfer. For impingement cooling, the agreement with experiment was generally good, but the results suggest that improved modelling of the dissipation rate of turbulence kinetic energy is required in order to obtain improved heat transfer prediction, especially near the stagnation point. The k-epsilon turbulence model was used to predict the mean flow and heat transfer for constant and variable property flows. The effect of variable properties for channel flow was investigated using the same turbulence model, but comparison with experiment yielded no clear conclusions. Also, the wall function method was modified for use in the variable properties flow with a non-adiabatic surface, and an empirical model is suggested to correctly account for the behavior of the viscous sublayer with heating.
Investigation of Impact Jets Flow in Heat Sink Device of Closed-Circuit Cooling Systems
NASA Astrophysics Data System (ADS)
Tokarev, D. A.; Yenivatov, V. V.; Sokolov, S. S.; Erofeev, V. L.
2018-03-01
The flow simulations of impact jets in the heat sink device of the closed-circuit cooling systems are presented. The analysis of the rate of fluid flow in the heat sink device with the jet supply coolant is given.
Cooling and clusters: when is heating needed?
Bryan, Greg; Voit, Mark
2005-03-15
There are (at least) two unsolved problems concerning the current state of the ther- mal gas in clusters of galaxies. The first is to identify the source of the heating which onsets cooling in the centres of clusters with short cooling times (the 'cooling-flow' problem). The second to understand the mechanism which boosts the entropy in cluster and group gas. Since both of these problems involve an unknown source of heating it is tempting to identify them with the same process, particularly since active galactic nuclei heating is observed to be operating at some level in a sample of well-observed 'cooling-flow' clusters. Here we show, using numerical simulations of cluster formation, that much of the gas ending up in clusters cools at high redshift and so the heating is also needed at high redshift, well before the cluster forms. This indicates that the same process operating to solve the cooling-flow problem may not also resolve the cluster-entropy problem.
Compliant Metal Enhanced Convection Cooled Reverse-Flow Annular Combustor
NASA Technical Reports Server (NTRS)
Paskin, Marc D.; Acosta, Waldo A.
1994-01-01
A joint Army/NASA program was conducted to design, fabricate, and test an advanced, reverse-flow, small gas turbine combustor using a compliant metal enhanced (CME) convection wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CME cooling technique and tben demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F (1922 K) burner outlet temperature (BOT). The CME concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefit of improved efficiency, reduced emissions, and smoke levels. Rig test results demonstrated the benefits and viability of the CME concept meeting or exceeding the aerothermal performance and liner wall temperature characteristics of similar lower temperature-rise combustors, achieving 0.15 pattern factor at 3000 F (1922 K) BOT, while utilizing approximately 80 percent less cooling air than conventional, film-cooled combustion systems.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1979-01-01
A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled axial flow turbine blade or vane with an impingement insert is described. Coolant-side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Input to the program includes a description of the blade geometry, coolant-supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the coolant-side heat transfer coefficients.
NASA Technical Reports Server (NTRS)
Lagen, Nicholas; Seiner, John M.
1990-01-01
Water cooled supersonic probes are developed to investigate total pressure, static pressure, and total temperature in high-temperature jet plumes and thereby determine the mean flow properties. Two probe concepts, designed for operation at up to 1366 K in a Mach 2 flow, are tested on a water cooled nozzle. The two probe designs - the unsymmetric four-tube cooling configuration and the symmetric annular cooling design - take measurements at 755, 1089, and 1366 K of the three parameters. The cooled total and static pressure readings are found to agree with previous test results with uncooled configurations. The total-temperature probe, however, is affected by the introduction of water coolant, and effect which is explained by the increased heat transfer across the thermocouple-bead surface. Further investigation of the effect of coolant on the temperature probe is proposed to mitigate the effect and calculate more accurate temperatures in jet plumes.
Ducting arrangement for cooling a gas turbine structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ching-Pang; Morrison, Jay A.
2015-07-21
A ducting arrangement (10) for a can annular gas turbine engine, including: a duct (12, 14) disposed between a combustor (16) and a first row of turbine blades and defining a hot gas path (30) therein, the duct (12, 14) having raised geometric features (54) incorporated into an outer surface (80); and a flow sleeve (72) defining a cooling flow path (84) between an inner surface (78) of the flow sleeve (72) and the duct outer surface (80). After a cooling fluid (86) traverses a relatively upstream raised geometric feature (90), the inner surface (78) of the flow sleeve (72)more » is effective to direct the cooling fluid (86) toward a landing (94) separating the relatively upstream raised geometric feature (90) from a relatively downstream raised geometric feature (94).« less
Heating and cooling system for an on-board gas adsorbent storage vessel
Tamburello, David A.; Anton, Donald L.; Hardy, Bruce J.; Corgnale, Claudio
2017-06-20
In one aspect, a system for controlling the temperature within a gas adsorbent storage vessel of a vehicle may include an air conditioning system forming a continuous flow loop of heat exchange fluid that is cycled between a heated flow and a cooled flow. The system may also include at least one fluid by-pass line extending at least partially within the gas adsorbent storage vessel. The fluid by-pass line(s) may be configured to receive a by-pass flow including at least a portion of the heated flow or the cooled flow of the heat exchange fluid at one or more input locations and expel the by-pass flow back into the continuous flow loop at one or more output locations, wherein the by-pass flow is directed through the gas adsorbent storage vessel via the by-pass line(s) so as to adjust an internal temperature within the gas adsorbent storage vessel.
Bailey, J.L.; Vresk, J.
1989-07-18
A thermal transient anemometer is disclosed having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe. 12 figs.
Analysis of the Effects of Vitiates on Surface Heat Flux in Ground Tests of Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Cuda, Vincent; Gaffney, Richard L
2008-01-01
To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the air upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the heat fluxes associated with aerodynamic heating. The difference in the heating rates between clean air and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by air-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean air to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted heat flux. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean air values to determine which combination of parameters affected the computed heat transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in heating. Other combinations showed departures of up to 10% in the heat flux estimate.
NASA Astrophysics Data System (ADS)
Le Bars, Michael; Worster, M. Grae
2006-07-01
A finite-element simulation of binary alloy solidification based on a single-domain formulation is presented and tested. Resolution of phase change is first checked by comparison with the analytical results of Worster [M.G. Worster, Solidification of an alloy from a cooled boundary, J. Fluid Mech. 167 (1986) 481-501] for purely diffusive solidification. Fluid dynamical processes without phase change are then tested by comparison with previous numerical studies of thermal convection in a pure fluid [G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Meth. Fluids 3 (1983) 249-264; D.A. Mayne, A.S. Usmani, M. Crapper, h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem, Int. J. Numer. Meth. Heat Fluid Flow 10 (2000) 598-615; D.C. Wan, B.S.V. Patnaik, G.W. Wei, A new benchmark quality solution for the buoyancy driven cavity by discrete singular convolution, Numer. Heat Transf. 40 (2001) 199-228], in a porous medium with a constant porosity [G. Lauriat, V. Prasad, Non-darcian effects on natural convection in a vertical porous enclosure, Int. J. Heat Mass Transf. 32 (1989) 2135-2148; P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967] and in a mixed liquid-porous medium with a spatially variable porosity [P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967; N. Zabaras, D. Samanta, A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes, Int. J. Numer. Meth. Eng. 60 (2004) 1103-1138]. Finally, new benchmark solutions for simultaneous flow through both fluid and porous domains and for convective solidification processes are presented, based on the similarity solutions in corner-flow geometries recently obtained by Le Bars and Worster [M. Le Bars, M.G. Worster, Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. Fluid Mech. (in press)]. Good agreement is found for all tests, hence validating our physical and numerical methods. More generally, the computations presented here could now be considered as standard and reliable analytical benchmarks for numerical simulations, specifically and independently testing the different processes underlying binary alloy solidification.
Metal flows of the circumgalactic medium, and the metal budget in galactic haloes
NASA Astrophysics Data System (ADS)
Muratov, Alexander L.; Kereš, Dušan; Faucher-Giguère, Claude-André; Hopkins, Philip F.; Ma, Xiangcheng; Anglés-Alcázar, Daniel; Chan, T. K.; Torrey, Paul; Hafen, Zachary H.; Quataert, Eliot; Murray, Norman
2017-07-01
We present an analysis of the flow of metals through the circumgalactic medium (CGM) in the Feedback in Realistic Environments (FIRE) simulations of galaxy formation, ranging from isolated dwarfs to L* galaxies. We find that nearly all metals produced in high-redshift galaxies are carried out in winds that reach 0.25Rvir. When measured at 0.25Rvir the metallicity of outflows is slightly higher than the interstellar medium (ISM) metallicity. Many metals thus reside in the CGM. Cooling and recycling from this reservoir determine the metal budget in the ISM. The outflowing metal flux decreases by a factor of ˜2-5 between 0.25Rvir and Rvir. Furthermore, outflow metallicity is typically lower at Rvir owing to dilution of the remaining outflow by metal-poor material swept up from the CGM. The inflow metallicity at Rvir is generally low, but outflow and inflow metallicities are similar in the inner halo. At low redshift, massive galaxies no longer generate outflows that reach the CGM, causing a divergence in CGM and ISM metallicity. Dwarf galaxies continue to generate outflows, although they preferentially retain metal ejecta. In all but the least massive galaxy considered, a majority of the metals are within the halo at z = 0. We measure the fraction of metals in CGM, ISM and stars, and quantify the thermal state of CGM metals in each halo. The total amount of metals in the low-redshift CGM of two simulated L* galaxies is consistent with estimates from the Cosmic Origin Spectrograph haloes survey, while for the other two it appears to be lower.
THE BIGGEST EXPLOSIONS IN THE UNIVERSE. II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, Daniel J.; Smidt, Joseph; Johnson, Jarrett L.
2013-11-10
One of the leading contenders for the origin of supermassive black holes (SMBHs) at z ∼> 7 is catastrophic baryon collapse in atomically cooled halos at z ∼ 15. In this scenario, a few protogalaxies form in the presence of strong Lyman-Werner UV backgrounds that quench H{sub 2} formation in their constituent halos, preventing them from forming stars or blowing heavy elements into the intergalactic medium prior to formation. At masses of 10{sup 8} M{sub ☉} and virial temperatures of 10{sup 4} K, gas in these halos rapidly cools by H lines, in some cases forming 10{sup 4}-10{sup 6} M{submore » ☉} Population III stars and, a short time later, the seeds of SMBHs. Instead of collapsing directly to black holes (BHs), some of these stars died in the most energetic thermonuclear explosions in the universe. We have modeled the explosions of such stars in the dense cores of line-cooled protogalaxies in the presence of cosmological flows. In stark contrast to the explosions in diffuse regions in previous simulations, these supernovae briefly engulf the protogalaxy, but then collapse back into its dark matter potential. Fallback drives turbulence that efficiently distributes metals throughout the interior of the halo and fuels the rapid growth of nascent BHs at its center. The accompanying starburst and X-ray emission from these line-cooled galaxies easily distinguish them from more slowly evolving neighbors and might reveal the birthplaces of SMBHs on the sky.« less
NASA Astrophysics Data System (ADS)
Ardita, I. N.; Subagia, I. W. A.
2018-01-01
The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%
Radiative Cooling of Warm Molecular Gas
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Kaufman, Michael J.
1993-01-01
We consider the radiative cooling of warm (T >= 100 K), fully molecular astrophysical gas by rotational and vibrational transitions of the molecules H2O, CO, and H2. Using an escape probability method to solve for the molecular level populations, we have obtained the cooling rate for each molecule as a function of temperature, density, and an optical depth parameter. A four-parameter expression proves useful in fitting the run of cooling rate with density for any fixed values of the temperature and optical depth parameter. We identify the various cooling mechanisms which are dominant in different regions of the astrophysically relevant parameter space. Given the assumption that water is very abundant in warm regions of the interstellar medium, H2O rotational transitions are found to dominate the cooling of warm interstellar gas over a wide portion of the parameter space considered. While chemical models for the interstellar medium make the strong prediction that water will be produced copiously at temperatures above a few hundred degrees, our assumption of a high water abundance has yet to be tested observationally. The Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite will prove ideal instruments for testing whether water is indeed an important coolant of interstellar and circumstellar gas.
Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium
NASA Astrophysics Data System (ADS)
Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui
2016-03-01
Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.
Wagner, Jr., Edward P.
1999-01-01
A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.
X-Ray spectroscopy of cooling flows
NASA Technical Reports Server (NTRS)
Prestwich, Andrea
1996-01-01
Cooling flows in clusters of galaxies occur when the cooling time of the gas is shorter than the age of the cluster; material cools and falls to the center of the cluster potential. Evidence for short X-ray cooling times comes from imaging studies of clusters and X-ray spectroscopy of a few bright clusters. Because the mass accretion rate can be high (a few 100 solar mass units/year) the mass of material accumulated over the lifetime of a cluster can be as high as 10(exp 12) solar mass units. However, there is little evidence for this material at other wavelengths, and the final fate of the accretion material is unknown. X-ray spectra obtained with the Einstein SSS show evidence for absorption; if confirmed this result would imply that the accretion material is in the form of cool dense clouds. However ice on the SSS make these data difficult to interpret. We obtained ASCA spectra of the cooling flow cluster Abell 85. Our primary goals were to search for multi-temperature components that may be indicative of cool gas; search for temperature gradients across the cluster; and look for excess absorption in the cooling region.
Gravitational Acceleration Effects on Macrosegregation: Experiment and Computational Modeling
NASA Technical Reports Server (NTRS)
Leon-Torres, J.; Curreri, P. A.; Stefanescu, D. M.; Sen, S.
1999-01-01
Experiments were performed under terrestrial gravity (1g) and during parabolic flights (10-2 g) to study the solidification and macrosegregation patterns of Al-Cu alloys. Alloys having 2% and 5% Cu were solidified against a chill at two different cooling rates. Microscopic and Electron Microprobe characterization was used to produce microstructural and macrosegregation maps. In all cases positive segregation occurred next to the chill because shrinkage flow, as expected. This positive segregation was higher in the low-g samples, apparently because of the higher heat transfer coefficient. A 2-D computational model was used to explain the experimental results. The continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the solidification phenomena, for a two-phase system. The model considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The solidification event was divided into two stages. In the first one, the liquid containing freely moving equiaxed grains was described through the relative viscosity concept. In the second stage, when a fixed dendritic network was formed after dendritic coherency, the mushy zone was treated as a porous medium. The macrosegregation maps and the cooling curves obtained during experiments were used for validation of the solidification and segregation model. The model can explain the solidification and macrosegregation patterns and the differences between low- and high-gravity results.
Computation of Discrete Slanted Hole Film Cooling Flow Using the Navier-Stokes Equations.
1982-07-01
7 -121 796 COMPUTATION OF DISCRETE SLANTED HOLE FILM COOLING FLOW i/ i USING THE NAVIER- ..(U) CIENTIFIC RESEARCH ASSOCIATES INC GLASTONBURY CT H...V U U6-IMSA P/ & .OS,-TR. 82-1004 Report R82-910002-4 / COMPUTATION OF DISCRETE SLAMED HOLE FILM COOLING FLOW ( USING THE XAVIER-STOKES EQUATIONS H...CL SIT %GE (f.en Dae Entere)04 REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM REPORT NUMBER 2. GOVT ACCESSION NO] S. RECIPIENT’S CATALOG NUMBERAO
Liquid metal reactor air cooling baffle
Hunsbedt, Anstein
1994-01-01
A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.
Liquid metal reactor air cooling baffle
Hunsbedt, A.
1994-08-16
A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.
Cooling of superconducting devices by liquid storage and refrigeration unit
Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene
2013-08-20
A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.
Possibilities of application of the swirling flows in cooling systems of laser mirrors
NASA Astrophysics Data System (ADS)
Shanin, Yu; Chernykh, A.
2018-03-01
The paper presents analytical investigations into advanced cooling systems of the laser mirrors with heat exchange intensification by methods of ordered vortex impact on a coolant flow structure. Advantages and effectiveness of the proposed cooling systems have been estimated to reduction displacement of an optical mirror surface due to a flexure.
Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun
2015-08-11
A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.
Roustit, Matthieu; Hellmann, Marcin; Cracowski, Claire; Blaise, Sophie; Cracowski, Jean-Luc
2012-01-01
Digital skin vasoconstriction on local cooling is exaggerated in primary Raynaud’s phenomenon (RP) compared to controls. A significant part of such vasoconstriction relies on the nitric oxide (NO) pathway inhibition. We tested the effect of PDE5 inhibitor sildenafil, which potentiates the effect of NO, on skin blood flow. We recruited 15 patients with primary RP, performing local cooling without sildenafil (day 1), after a single 50 mg oral dose (day 2), and 100 mg (day 3). Skin blood flow, skin temperature and arterial pressure were recorded, and data were expressed as cutaneous vascular conductance (CVC). Sildenafil at 100 mg, but not 50 mg, significantly lessened the cooling-induced decrease in CVC. It also increased resting CVC and skin temperature. These data suggest that 100 mg sildenafil improves digital skin blood flow to local cooling in primary RP. The benefit of sildenafil “as required” should be confirmed in a randomized controlled trial. PMID:22453196
Wu, Edward C.; Sun, Victor; Manuel, Cyrus T.; Protsenko, Dmitriy E.; Jia, Wangcun; Nelson, J. Stuart; Wong, Brian J. F.
2014-01-01
Laser cartilage reshaping (LCR) with cryogen spray cooling is a promising modality for producing cartilage shape change while reducing cutaneous thermal injury. However, LCR in thicker tissues, such as auricular cartilage, requires higher laser power, thus increasing cooling requirements. To eliminate the risks of freeze injury characteristic of high cryogen spray pulse rates, a carbon dioxide (CO2) spray, which evaporates rapidly from the skin, has been proposed as the cooling medium. This study aims to identify parameter sets which produce clinically significant reshaping while producing minimal skin thermal injury in LCR with CO2 spray cooling in ex vivo rabbit auricular cartilage. Excised whole rabbit ears were mechanically deformed around a cylindrical jig and irradiated with a 1.45-μm wavelength diode laser (fluence 12–14 J/cm2 per pulse, four to six pulse cycles per irradiation site, five to six irradiation sites per row for four rows on each sample) with concomitant application of CO2 spray (pulse duration 33–85 ms) to the skin surface. Bend angle measurements were performed before and after irradiation, and the change quantified. Surface temperature distributions were measured during irradiation/cooling. Maximum skin surface temperature ranged between 49.0 to 97.6 °C following four heating/cooling cycles. Significant reshaping was achieved with all laser dosimetry values with a 50–70 °C difference noted between controls (no cooling) and irradiated ears. Increasing cooling pulse duration yielded progressively improved gross skin protection during irradiation. CO2 spray cooling may potentially serve as an alternative to traditional cryogen spray cooling in LCR and may be the preferred cooling medium for thicker tissues. Future studies evaluating preclinical efficacy in an in vivo rabbit model are in progress. PMID:23307439
Wu, Edward C; Sun, Victor; Manuel, Cyrus T; Protsenko, Dmitriy E; Jia, Wangcun; Nelson, J Stuart; Wong, Brian J F
2013-11-01
Laser cartilage reshaping (LCR) with cryogen spray cooling is a promising modality for producing cartilage shape change while reducing cutaneous thermal injury. However, LCR in thicker tissues, such as auricular cartilage, requires higher laser power, thus increasing cooling requirements. To eliminate the risks of freeze injury characteristic of high cryogen spray pulse rates, a carbon dioxide (CO2) spray, which evaporates rapidly from the skin, has been proposed as the cooling medium. This study aims to identify parameter sets which produce clinically significant reshaping while producing minimal skin thermal injury in LCR with CO2 spray cooling in ex vivo rabbit auricular cartilage. Excised whole rabbit ears were mechanically deformed around a cylindrical jig and irradiated with a 1.45-μm wavelength diode laser (fluence 12-14 J/cm(2) per pulse, four to six pulse cycles per irradiation site, five to six irradiation sites per row for four rows on each sample) with concomitant application of CO2 spray (pulse duration 33-85 ms) to the skin surface. Bend angle measurements were performed before and after irradiation, and the change quantified. Surface temperature distributions were measured during irradiation/cooling. Maximum skin surface temperature ranged between 49.0 to 97.6 °C following four heating/cooling cycles. Significant reshaping was achieved with all laser dosimetry values with a 50-70 °C difference noted between controls (no cooling) and irradiated ears. Increasing cooling pulse duration yielded progressively improved gross skin protection during irradiation. CO2 spray cooling may potentially serve as an alternative to traditional cryogen spray cooling in LCR and may be the preferred cooling medium for thicker tissues. Future studies evaluating preclinical efficacy in an in vivo rabbit model are in progress.
NASA Technical Reports Server (NTRS)
Befrui, Bizhan A.
1995-01-01
This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ames, Forrest E.; Kingery, Joseph E.
2015-06-17
Full coverage shaped-hole film cooling and downstream heat transfer measurements have been acquired in the accelerating flows over a large cylindrical leading edge test surface. The shaped holes had an 8° lateral expansion angled at 30° to the surface with spanwise and streamwise spacings of 3 diameters. Measurements were conducted at four blowing ratios, two Reynolds numbers and six well documented turbulence conditions. Film cooling measurements were acquired over a four to one range in blowing ratio at the lower Reynolds number and at the two lower blowing ratios for the higher Reynolds number. The film cooling measurements were acquiredmore » at a coolant to free-stream density ratio of approximately 1.04. The flows were subjected to a low turbulence condition (Tu = 0.7%), two levels of turbulence for a smaller sized grid (Tu = 3.5%, and 7.9%), one turbulence level for a larger grid (8.1%), and two levels of turbulence generated using a mock aero-combustor (Tu = 9.3% and 13.7%). Turbulence level is shown to have a significant influence in mixing away film cooling coverage progressively as the flow develops in the streamwise direction. Effectiveness levels for the aero-combustor turbulence condition are reduced to as low as 20% of low turbulence values by the furthest downstream region. The film cooling discharge is located close to the leading edge with very thin and accelerating upstream boundary layers. Film cooling data at the lower Reynolds number, show that transitional flows have significantly improved effectiveness levels compared with turbulent flows. Downstream effectiveness levels are very similar to slot film cooling data taken at the same coolant flow rates over the same cylindrical test surface. However, slots perform significantly better in the near discharge region. These data are expected to be very useful in grounding computational predictions of full coverage shaped hole film cooling with elevated turbulence levels and acceleration. IR measurements were performed for the two lowest turbulence levels to document the spanwise variation in film cooling effectiveness and heat transfer.« less
Design of Fully Austenitic Medium Manganese Steels
NASA Astrophysics Data System (ADS)
Luan, G.; Volkova, O.; Mola, J.
2018-06-01
Due to their higher ferrite potential compared to high Mn twinning-induced plasticity (TWIP) steels, medium Mn steels usually exhibit austenitic-ferritic microstructures, which makes them suitable for third-generation advanced high-strength steel applications. Nevertheless, the strain hardening characteristics of medium Mn steels are inferior to those of fully austenitic high Mn steels. The present work introduces alloy design strategies to obtain fully austenitic medium Mn steels capable of the TWIP effect. To achieve a fully austenitic microstructure, the martensite start temperature is reduced by raising the C concentration to above 1 mass-%, which in turn facilitates the formation of cementite. The formation of cementite during cooling from austenitization temperature is counteracted by alloying with Al. Microstructural examination of slowly-cooled Fe‑Mn‑Al‑C and Fe‑Mn‑C steels indicated that Al changes the morphology of intergranular cementite from plate-shaped to equiaxed.
NASA Astrophysics Data System (ADS)
Audier, P.; Fénot, M.; Bénard, N.; Moreau, E.
2016-02-01
The case presented here deals with plasma flow control applied to a cross-flow configuration, more specifically to a film cooling system. The ability of a plasma dielectric barrier discharge actuator for film cooling effectiveness enhancement is investigated through an experimental set-up, including a film injection from an elongated slot into a thermally uniform cross-flow. Two-dimensional particle image velocimetry and infrared-thermography measurements are performed for three different blowing ratios of M = 0.4, 0.5, and 1. Results show that the effectiveness can be increased when the discharge is switched on, as predicted by the numerical results available in literature. Whatever the blowing ratio, the actuator induces a deflection of the jet flow towards the wall, increases its momentum, and delays its diffusion in the cross-flow.
Reduction of Secondary Flow in Inclined Orifice Pulse Tubes by Addition of DC Flow
NASA Astrophysics Data System (ADS)
Shiraishi, M.; Fujisawa, Y.; Murakami, M.; Nanako, A.
2004-06-01
The effect of using a second orifice valve to reduce convective losses caused by gravity-driven convective secondary flow in inclined orifice pulse tube refrigerators was investigated. The second orifice valve was installed between a reservoir and a low-pressure line of a compressor. When the valve was open, an additional DC flow directed to the hot end of the refrigerator was generated to counterbalance the convective secondary flow in the core region by opening the valve. Experimental results indicated that with increasing additional DC flow to an optimum level, the convective secondary flow decreased and the cooling performance improved, although further increase of the DC flow over the level caused the cooling performance to degrade. In summary, the second orifice valve was effective in reducing both the convective losses without affecting the cooling performance at an inclination angle < 70° where convective losses were negligibly small.
Interaction of pressure and momentum driven flows with thin porous media: Experiments and modeling
NASA Astrophysics Data System (ADS)
Naaktgeboren, Christian
Flow interaction with thin porous media arise in a variety of natural and man-made settings. Examples include flow through thin grids in electronics cooling, and NOx emissions reduction by means of ammonia injection grids, pulsatile aquatic propulsion with complex trailing anatomy (e.g., jellyfish with tentacles) and microbursts from thunderstorm activity over dense vegetation, unsteady combustion in or near porous materials, pulsatile jet-drying of textiles, and pulsed jet agitation of clothing for trace contaminant sampling. Two types of interactions with thin porous media are considered: (i) forced convection or pressure-driven flows, where fluid advection is maintained by external forces, and (ii) inertial or momentum-driven flows, in which fluid motion is generated but not maintained by external forces. Forced convection analysis through thin permeable media using a porous continuum approach requires the knowledge of porous medium permeability and form coefficients, K and C, respectively, which are defined by the Hazen-Dupuit-Darcy (HDD) equation. Their determination, however, requires the measurement of the pressure-drop per unit of porous medium length. The pressure-drop caused by fluid entering and exiting the porous medium, however, is not related to the porous medium length. Hence, for situations in which the inlet and outlet pressure-drops are not negligible, e.g., for short porous media, the definition of Kand C via the HDD equation becomes ambiguous. This aspect is investigated analytically and numerically using the flow through a restriction in circular pipe and parallel plates channels as preliminary models. Results show that inlet and outlet pressure-drop effects become increasingly important when the inlet and outlet fluid surface fraction φ decreases and the Reynolds number Re increases for both laminar and turbulent flow regimes. A conservative estimate of the minimum porous medium length beyond which the core pressure-drop predominates over the inlet and outlet pressure-drop is obtained by considering a least restrictive porous medium core. Finally, modified K and C are proposed and predictive equations, accurate to within 2.5%, are obtained for both channel configurations with Re ranging from 10-2 to 102 and φ from 6% to 95%. When momentum driven flows interact with thin porous media, the interaction of vortices with the media's complex structure gives way to a number of phenomena of fundamental and applied interest, such as unsteady flow separation. A special case that embodies many of the key features of these flows is the interaction of a vortex ring with a permeable flat surface. Although fundamental, this complex flow configuration has never been considered. The present investigation experimentally studies the fluid mechanics of the interaction of a vortex ring impinging directly on thin permeable flat targets. The vortex ring is formed in water using a piston-cylinder mechanism and visualized using planar laser-induced fluorescence (PLIF). The rings are formed for jet Reynolds numbers of 3000 and 6000, and piston stroke-to-diameter ratios of 1.0, 3.0, and 6.0. Thin screens of similar geometry having surface opening fractions of 44, 60, 69, and 79% are targeted by the rings. The flow that emerges downstream of the screens reforms into a new, "transmitted" vortex ring. For the lower porosity targets, features that are characteristic of vortex ring impingement on walls are also observed, such as primary vortex ring rebound and reversal, flow separation, formation of secondary vortices and mixing. As the interaction proceeds, however, the primary vortex ring and secondary vortices are drawn toward the symmetry axis of the flow by fluid passing through the permeable screen. Quantitative flow measurements using digital particle image velocimetry (DPIV), indicate the transmitted vortex ring has lower velocity and less (total) kinetic energy than the incident ring. Ring trajectories and total kinetic energy relationships between vortices upstream and downstream the porous targets as a function of the porosity are presented, based on the velocity field from the DPIV measurements. Results show that kinetic energy dissipation is more intense for the low porosity targets and that flows with higher initial kinetic energy impacting on the same target loose a smaller percentage of their initial energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakaria, Irnie Azlin; Mohamed, Wan Ahmad Najmi Wan; Mamat, Aman Mohd Ihsan
Continuous need for an optimum conversion efficiency of a Proton Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Nanofluids as an innovative heat transfer fluid solution are expected to be a promising candidate for alternative coolant in mini channel cooling plate of PEMFC. In this work, heat transfer performance of low concentration of 0.1, 0.3 and 0.5 % Al{sub 2}O{sub 3} in water: Ethylene glycol (EG) mixtures of 100:0 and 50:50 nanofluids have been studied and compared against its base fluids at Re number ranging from 10 to 100. Amore » steady, laminar and incompressible flow with constant heat flux is assumed in the channel of 140mm × 200mm. It was found that nanofluids have performed better than the base fluid but the demerit is on the pumping power due to the higher pressure drop across mini channel geometry as expected.« less
Heat rejection efficiency research of new energy automobile radiators
NASA Astrophysics Data System (ADS)
Ma, W. S.; Shen, W. X.; Zhang, L. W.
2018-03-01
The driving system of new energy vehicle has larger heat load than conventional engine. How to ensure the heat dissipation performance of the cooling system is the focus of the design of new energy vehicle thermal management system. In this paper, the heat dissipation efficiency of the radiator of the hybrid electric vehicle is taken as the research object, the heat dissipation efficiency of the radiator of the new energy vehicle is studied through the multi-working-condition enthalpy difference test. In this paper, the test method in the current standard QC/T 468-2010 “automobile radiator” is taken, but not limited to the test conditions specified in the standard, 5 types of automobile radiator are chosen, each of them is tested 20 times in simulated condition of different wind speed and engine inlet temperature. Finally, regression analysis is carried out for the test results, and regression equation describing the relationship of radiator heat dissipation heat dissipation efficiency air side flow rate cooling medium velocity and inlet air temperature is obtained, and the influence rule is systematically discussed.
Hydrogen film/conductive cooling
NASA Technical Reports Server (NTRS)
Ewen, R. L.
1972-01-01
Small scale nozzle tests using heated nitrogen were run to obtain effectiveness and wall heat transfer data with hydrogen film cooling. Effectiveness data are compared with an entrainment model developed from planar, unaccelerated flow data. Results indicate significant effects due to flow turning and acceleration. With injection velocity effects accounted for explicitly, heat transfer correlation coefficients were found to be the same with and without film cooling when properties are evaluated at an appropriate reference temperature for the local gas composition defined by the coolant effectiveness. A design study for an O2/H2 application with 300 psia (207 N/sq cm) chamber pressure and 1500 lbs (6670 N) thrust indicates an adiabatic wall design requires 4 to 5 percent of the total flow as hydrogen film cooling. Internal regenerative cooling designs were found to offer no reduction in coolant requirements.
NASA Technical Reports Server (NTRS)
Al-Maaitah, Ayman A.; Nayfeh, Ali, H.; Ragab, Saad A.
1989-01-01
The effect of wall cooling on the two-dimensional linear stability of subsonic flows over two-dimensional surface imperfections is investigated. Results are presented for flows over smooth humps and backward-facing steps with Mach numbers up to 0.8. The results show that, whereas cooling decreases the viscous instability, it increases the shear-layer instability and hence it increases the growth rates in the separation region. The coexistence of more than one instability mechanism makes a certain degree of wall cooling most effective. For the Mach numbers 0.5 and 0.8, the optimum wall temperatures are about 80 pct and 60 pct of the adiabatic wall temperature, respectively. Increasing the Mach number decreases the effectiveness of cooling slightly and reduces the optimum wall temperature.
Stripped interstellar gas in cluster cooling flows
NASA Technical Reports Server (NTRS)
Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.
1991-01-01
It is suggested that nonlinear perturbations which lead to thermal instabilities in cooling flows might start as blobs of interstellar gas which are stipped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly 100 solar masses/yr, which is similar to the rates of cooling in cluster cooling flows. It is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low-entropy perturbations may help to maintain their identities by suppressing both thermal conduction and Kelvin-Helmholtz instabilities. These density fluctuations may disrupt the propagation of radio jets through the intracluster gas, which may be one mechanism for producing wideangle-tail radio galaxies.
Dual nozzle aerodynamic and cooling analysis study
NASA Technical Reports Server (NTRS)
Meagher, G. M.
1981-01-01
Analytical models to predict performance and operating characteristics of dual nozzle concepts were developed and improved. Aerodynamic models are available to define flow characteristics and bleed requirements for both the dual throat and dual expander concepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow, boundary layer, and shock effects within dual nozzle engines. Thermal analyses were performed to define cooling requirements for baseline configurations, and special studies of unique dual nozzle cooling problems defined feasible means of achieving adequate cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, Eric J
LiquidCool Solutions (LCS) has developed liquid submerged server (LSS) technology that changes the way computer electronics are cooled. The technology provides an option to cool electronics by the direct contact flow of dielectric fluid (coolant) into a sealed enclosure housing all the electronics of a single server. The intimate dielectric fluid contact with electronics improves the effectiveness of heat removal from the electronics.
Film cooling: case of double rows of staggered jets.
Dorignac, E; Vullierme, J J; Noirault, P; Foucault, E; Bousgarbiès, J L
2001-05-01
An experimental investigation of film cooling of a wall in a case of double rows of staggered hot jets (65 degrees C) in an ambient air flow. The wall is heated at a temperature value between the one of the jets and the one of the main flow. Experiments have been carried out for different injection rates, the main flow velocity is maintained at 32 m/s. Association of the measures of temperature profiles by cold wire and the measures of wall temperature by infrared thermography allows us to describe the behaviour of the flows and to propose the best injection which assures a good cooling of the plate.
NASA Astrophysics Data System (ADS)
Garel, F.; Kaminski, E.; Tait, S.; Limare, A.
2010-12-01
A quantitative monitoring of lava flow is required to manage a volcanic crisis, in order to assess where the flow will go, and when will it stop. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the lava flow temperature and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger energy radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., 2007) is used to estimate lava flow rate from satellite observations. However, the complete theoretical bases of this technique, especially its domain of validity, remain to be firmly established. Here we propose a theoretical study of the cooling of a viscous axisymmetric gravity current fed at constant flux rate to investigate whether or not this approach can and/or should be refined and/or modify to better assess flow rates. Our study focuses on the influence of boundary conditions at the surface of the flow, where cooling can occur both by radiation and convection, and at the base of the flow. Dimensionless numbers are introduced to quantify the relative interplay between the model parameters, such as the lava flow rate and the efficiency of the various cooling processes (conduction, convection, radiation.) We obtain that the thermal evolution of the flow can be described as a two-stage evolution. After a transient phase of dynamic cooling, the flow reaches a steady state, characterized by a balance between surface and base cooling and heat advection in the flow, in which the surface temperature structure is constant. The duration of the transient phase and the radiated energy in the steady regime are shown to be a function of the dimensionless numbers. In the case of lava flows, we obtain that the steady state regime is reached after a few days. In this regime, a thermal image provides a consistent estimate of the flow rate if the external cooling conditions are reasonably well constrained.
Applications of the Aqueous Self-Cooled Blanket concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, D.; Embrechts, M.J.; Varsamis, G.
1986-11-01
In this paper a novel water-cooled blanket concept is examined. This concept, designated the Aqueous Self-Cooled Blanket (ASCB), employs water with small amounts of dissolved fertile compounds as both the coolant and the breeding medium. The ASCB concept is reviewed and its application in three different contexts is examined: (1) power reactors; (2) near-term devices such as NET; and (3) fusion-fission hybrids.
NASA Astrophysics Data System (ADS)
Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan
2016-07-01
The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.
Hot gas path component trailing edge having near wall cooling features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Miranda, Carlos Miguel
A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines an interior space. The outer surface defines a pressure side surface and a suction side surface. The pressure and suction side surfaces are joined together at a leading edge and at a trailing edge. A first cooling passage is formed in the suction side surface of the substrate. It is coupled in flow communication to the interior space. A second cooling passage, separate from the first cooling passage, is formed in the pressure side surface. The second cooling passage ismore » coupled in flow communication to the interior space. A cover is disposed over at least a portion of the first and second cooling passages. The interior space channels a cooling fluid to the first and second cooling passages, which channel the cooling fluid therethrough to remove heat from the component.« less
Flame tolerant secondary fuel nozzle
Khan, Abdul Rafey; Ziminsky, Willy Steve; Wu, Chunyang; Zuo, Baifang; Stevenson, Christian Xavier
2015-02-24
A combustor for a gas turbine engine includes a plurality of primary nozzles configured to diffuse or premix fuel into an air flow through the combustor; and a secondary nozzle configured to premix fuel with the air flow. Each premixing nozzle includes a center body, at least one vane, a burner tube provided around the center body, at least two cooling passages, a fuel cooling passage to cool surfaces of the center body and the at least one vane, and an air cooling passage to cool a wall of the burner tube. The cooling passages prevent the walls of the center body, the vane(s), and the burner tube from overheating during flame holding events.
Wagner, E.P. Jr.
1999-01-12
A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.
NASA Astrophysics Data System (ADS)
Papell, S. S.
1984-11-01
The thermal film-cooling footprints observed by infrared imagery for three coolant-passage configurations embedded in adiabatic-test plates are discussed. The configurations included a standard round-hole cross section and two orientations of a vortex-generating flow passage. Both orientations showed up to factors of four increases in both film-cooling effectiveness and surface coverage over that obtained with the round coolant passage. The crossflow data covered a range of tunnel velocities from 15.5 to 45 m/sec with blowing rates from 0.20 to 2.05. A photographic streakline flow visualization technique supported the concept of the counterrotating apability of the flow passage design and gave visual credence to its role in inhibiting flow separation.
NASA Technical Reports Server (NTRS)
Papell, S. S.
1984-01-01
The thermal film-cooling footprints observed by infrared imagery for three coolant-passage configurations embedded in adiabatic-test plates are discussed. The configurations included a standard round-hole cross section and two orientations of a vortex-generating flow passage. Both orientations showed up to factors of four increases in both film-cooling effectiveness and surface coverage over that obtained with the round coolant passage. The crossflow data covered a range of tunnel velocities from 15.5 to 45 m/sec with blowing rates from 0.20 to 2.05. A photographic streakline flow visualization technique supported the concept of the counterrotating apability of the flow passage design and gave visual credence to its role in inhibiting flow separation.
HOW AGN JETS HEAT THE INTRACLUSTER MEDIUM—INSIGHTS FROM HYDRODYNAMIC SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karen Yang, H.-Y.; Reynolds, Christopher S., E-mail: hsyang@astro.umd.edu
Feedback from active galactic nuclei (AGNs) is believed to prevent catastrophic cooling in galaxy clusters. However, how the feedback energy is transformed into heat, and how the AGN jets heat the intracluster medium (ICM) isotropically, still remain elusive. In this work, we gain insights into the relative importance of different heating mechanisms using three-dimensional hydrodynamic simulations including cold gas accretion and momentum-driven jet feedback, which are the most successful models to date in terms of reproducing the properties of cool cores. We find that there is net heating within two “jet cones” (within ∼30° from the axis of jet precession)more » where the ICM gains entropy by shock heating and mixing with the hot thermal gas within bubbles. Outside the jet cones, the ambient gas is heated by weak shocks, but not enough to overcome radiative cooling, therefore, forming a “reduced” cooling flow. Consequently, the cluster core is in a process of “gentle circulation” over billions of years. Within the jet cones, there is significant adiabatic cooling as the gas is uplifted by buoyantly rising bubbles; outside the cones, energy is supplied by the inflow of already-heated gas from the jet cones as well as adiabatic compression as the gas moves toward the center. In other words, the fluid dynamics self-adjusts such that it compensates and transports the heat provided by the AGN, and hence no fine-tuning of the heating profile of any process is necessary. Throughout the cluster evolution, turbulent energy is only at the percent level compared to gas thermal energy, and thus turbulent heating is not the main source of heating in our simulation.« less
How AGN Jets Heat the Intracluster Medium—Insights from Hydrodynamic Simulations
NASA Astrophysics Data System (ADS)
Yang, H.-Y. Karen; Reynolds, Christopher S.
2016-10-01
Feedback from active galactic nuclei (AGNs) is believed to prevent catastrophic cooling in galaxy clusters. However, how the feedback energy is transformed into heat, and how the AGN jets heat the intracluster medium (ICM) isotropically, still remain elusive. In this work, we gain insights into the relative importance of different heating mechanisms using three-dimensional hydrodynamic simulations including cold gas accretion and momentum-driven jet feedback, which are the most successful models to date in terms of reproducing the properties of cool cores. We find that there is net heating within two “jet cones” (within ∼30° from the axis of jet precession) where the ICM gains entropy by shock heating and mixing with the hot thermal gas within bubbles. Outside the jet cones, the ambient gas is heated by weak shocks, but not enough to overcome radiative cooling, therefore, forming a “reduced” cooling flow. Consequently, the cluster core is in a process of “gentle circulation” over billions of years. Within the jet cones, there is significant adiabatic cooling as the gas is uplifted by buoyantly rising bubbles; outside the cones, energy is supplied by the inflow of already-heated gas from the jet cones as well as adiabatic compression as the gas moves toward the center. In other words, the fluid dynamics self-adjusts such that it compensates and transports the heat provided by the AGN, and hence no fine-tuning of the heating profile of any process is necessary. Throughout the cluster evolution, turbulent energy is only at the percent level compared to gas thermal energy, and thus turbulent heating is not the main source of heating in our simulation.
NASA Astrophysics Data System (ADS)
Li, Cheng; Li, Junming; Li, Le
2018-02-01
Falling water evaporation cooling could efficiently suppress the containment operation pressure during the nuclear accident, by continually removing the core decay heat to the atmospheric environment. In order to identify the process of large-scale falling water evaporation cooling, the water flow characteristics of falling film, film rupture and falling rivulet were deduced, on the basis of previous correlation studies. The influences of the contact angle, water temperature and water flow rates on water converge along the flow direction were then numerically obtained and results were compared with the data for AP1000 and CAP1400 nuclear power plants. By comparisons, it is concluded that the water coverage fraction of falling water could be enhanced by either reducing the surface contact angle or increasing the water temperature. The falling water flow with evaporation for AP1000 containment was then calculated and the feature of its water coverage fraction was analyzed. Finally, based on the phenomena identification of falling water flow for AP1000 containment evaporation cooling, the scaling-down is performed and the dimensionless criteria were obtained.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1978-01-01
A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled, axial flow turbine blade or vane with an impingement insert is described. Coolant side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Sample problems, with tables of input and output, are included in the report. Input to the program includes a description of the blade geometry, coolant supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the inside heat-transfer coefficients.
Quasars Probing Quasars: The Circumgalactic Medium Surrounding Z 2 Quasars
NASA Astrophysics Data System (ADS)
Lau, Marie Wingyee
Models of galaxy formation make the most direct predictions on gas related processes. Specifically, a picture on how gas flows through dark matter halos and onto galaxies to fuel star formation. A major prediction is that massive halos, including those hosting the progenitors of massive elliptical galaxies, exhibit a higher fraction of hot gas with T 107 K. Another prediction is that some mechanism must be invoked to quench the supply of cool gas in massive systems. Under the current galaxy formation paradigm, every massive galaxy has undergone a quasar phase, making high-redshift quasars the progenitors of inactive supermassive black holes found in the center of nearly all galaxies. Moreover, quasars clustering implies Mhalo = 1012.5 Msun , making quasar-host galaxies the progenitors of present day, massive, red and dead galaxies. The Quasars Probing Quasars survey is well-suited to examine gas related processes in the context of massive galaxy formation, as well as quasar feedback. To date the survey has selected 700 closely projected quasar pairs. To study the circumgalactic medium, a sub-sample of pairs with projected separation within 300 kpc at the foreground quasar's redshift are selected. From the first to seventh paper in the Quasars Probing Quasars series, the statistical results had been limited to covering fractions, equivalent widths, and without precise redshift measurements of the foreground quasars. Signatures of quasar feedback in the cool circumgalactic medium had not been identified. Hence, a sub-sample of 14 pairs with echellette spectra are selected for more detailed analysis. It is found that the low and high ions roughly trace each other in velocity structure. The HI and low ion surface densities decline with projected distance. HI absorption is strong even beyond the virial radius. Unresolved Lyalpha emission in one case and NV detection in another case together imply that a fraction of transverse sightlines are illuminated. The ionization parameter U positively correlates with impact parameter, which implies the foreground quasar does not dominate the radiation field. The circumgalactic medium is significantly enriched even beyond the virial radius, and has median [M/H] = -0.6. O/Fe is supersolar. No evolution in the total H column is found up to projected distance of 200 kpc, within which the median N H = 1020.5 cm-2. Within the virial radius, the mass of the cool CGM is estimated at MCGM ≈ 1.5*10 11 Msun. In two cases, detection of CII* implies electron density ne > 10 cm-3. Motivated by the preliminary kinematic results from this high-resolution sample, kinematic analysis of 148 pairs with precise foreground quasar redshifts is performed. The background spectra of this sample are of low and high resolution. The mean absorptions in metals exhibit velocity widths sigmav ≈ 300 km s-1, however the large widths do not require outflows. The mean absorptions have centroids redshifted from the systemic redshift by +200 km s-1. The asymmetry may be explained if the quasars are anisotropic or intermittent, and the gas is not flowing onto the galaxy. Finally, several observational and theoretical lines of future inquiry using multiwavelength data are presented.
Application of a transient heat transfer model for bundled, multiphase pipelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, T.S.; Clapham, J.; Danielson, T.J.
1996-12-31
A computer model has been developed which accurately describes transient heat transfer in pipeline bundles. An arbitrary number of internal pipelines containing different fluids, flowing in either direction along with the input of heat to one or more of the fluids can be accommodated. The model is coupled to the transient, multiphase flow simulator OLGA. The lines containing the multiphase production fluids are modeled by OLGA, and the heat transfer between the internal lines, carrier pipe, and surroundings is handled by the bundle model. The model has been applied extensively to the design of a subsea, heated bundle system formore » the Britannia gas condensate field in the North Sea. The 15-km bundle system contains a 14{double_prime} production line, an 8{double_prime} test line, a 3{double_prime} methanol line, and a 12{double_prime} internal heating medium line within a 37.25{double_prime} carrier. The heating medium (water) flows in the internal heating medium line and in the annulus at 82,500 BPD. The primary purpose of the bundle system is to avoid the formation of hydrates. A secondary purpose is to avoid the deposition of paraffin. The bundle model was used to (1) compare the merits of two coaxial lines vs. a single bundle; (2) optimize the insulation levels on the carrier and internal lines; (3) determine the minimum time required to heat up the bundle; (4) determine heat input requirements to avoid hydrates throughout the field life, (5) determine temperature profiles along the lines for a range of production rates; (6) study ruptures of the production line into the bundle annulus; (7) determine minimum temperatures during depressurization; and (8) determine cool-down times. The results of these studies were used to size lines, select insulation levels, assess erosion potential, design for thermal expansion-induced stresses, and to select materials of construction.« less
NASA Technical Reports Server (NTRS)
Carilli, Chris; Conner, Sam; Dreher, John; Perley, Rick
1990-01-01
Cygnus A is a powerful double radio source associated with a giant elliptical galaxy at the center of a poor cluster of galaxies. The radio source also sits within the core radius of a dense, cooling flow, x ray emitting cluster gas. Optical spectroscopy and narrow band imaging have revealed copious amounts of narrow line emission from the inner 20 kpc of the associated galaxy. Researchers assume H sub o = 75 km sec (-1) Mpc(-1). Discussed here are the pressures in the three components of the Interstellar Medium (ISM) (i.e., the radio, x ray, and line emitting fluids) within a radius of about 15 kpc of the active nucleus of the Cygnus A galaxy.
Wheatley, J.C.; Paulson, D.N.; Allen, P.C.
1983-01-04
A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.
Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.
1983-01-01
A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.
Parametric study of rock pile thermal storage for solar heating and cooling phase 1
NASA Technical Reports Server (NTRS)
Saha, H.
1977-01-01
The test data and an analysis were presented, of heat transfer characteristics of a solar thermal energy storage bed utilizing water filled cans as the energy storage medium. An attempt was made to optimize can size, can arrangement, and bed flow rates by experimental and analytical means. Liquid filled cans, as storage media, utilize benefits of both solids like rocks, and liquids like water. It was found that this combination of solid and liquid media shows unique heat transfer and heat content characteristics and is well suited for use with solar air systems for space and hot water heating. An extensive parametric study was made of heat transfer characteristics of rocks, of other solids, and of solid containers filled with liquids.
Unsteady, Cooled Turbine Simulation Using a PC-Linux Analysis System
NASA Technical Reports Server (NTRS)
List, Michael G.; Turner, Mark G.; Chen, Jen-Pimg; Remotigue, Michael G.; Veres, Joseph P.
2004-01-01
The fist stage of the high-pressure turbine (HPT) of the GE90 engine was simulated with a three-dimensional unsteady Navier-Sokes solver, MSU Turbo, which uses source terms to simulate the cooling flows. In addition to the solver, its pre-processor, GUMBO, and a post-processing and visualization tool, Turbomachinery Visual3 (TV3) were run in a Linux environment to carry out the simulation and analysis. The solver was run both with and without cooling. The introduction of cooling flow on the blade surfaces, case, and hub and its effects on both rotor-vane interaction as well the effects on the blades themselves were the principle motivations for this study. The studies of the cooling flow show the large amount of unsteadiness in the turbine and the corresponding hot streak migration phenomenon. This research on the GE90 turbomachinery has also led to a procedure for running unsteady, cooled turbine analysis on commodity PC's running the Linux operating system.
Method and apparatus for enhancing reactor air-cooling system performance
Hunsbedt, Anstein
1996-01-01
An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.
Apparatus for controlling nuclear core debris
Jones, Robert D.
1978-01-01
Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.
NASA Astrophysics Data System (ADS)
Ji, Yongbin; Ma, Chao; Ge, Bing; Zang, Shusheng
2016-08-01
A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera. Besides, conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison. The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant, and spatial difference is also discussed. Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest. The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path. Thermal barrier effects of the coating vary at different regions of the blade surface, where higher internal cooling performance exists, more effective the thermal barrier will be, which means the thermal protection effect of coatings is remarkable in these regions. At the designed mass flow ratio condition, the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface, while this value is 0.09 on the suction side.
Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andorf, Matthew; Lebedev, Valeri; Piot, Philippe
2016-06-01
Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility ofmore » nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.« less
Itzel, Gary Michael; Devine, II, Robert Henry; Chopra, Sanjay; Toornman, Thomas Nelson
2003-07-08
A coolant flow control structure is provided to channel cooling media flow to the fillet region defined at the transition between the wall of a nozzle vane and a wall of a nozzle segment, for cooling the fillet region. In an exemplary embodiment, the flow control structure defines a gap with the fillet region to achieve the required heat transfer coefficients in this region to meet part life requirements.
Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings
NASA Astrophysics Data System (ADS)
Shrestha, Suman K.
Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was referenced to the rotor surface speed for radial injection cooling. The mass flow rates for the radial injection were 0.032, 0.0432, 0.054 and 0.068 Kg/min, which result in average injection speed of 150, 200, 250 and 300% of rotor surface speed. Several thermocouples were attached at various circumferential directions of the bearing sleeve, two plenums, bearing holder and ball bearing housings to collect the temperature data of the bearing at 30krpm under 10lb of load. Both axial cooling and radial injection are effective cooling mechanism and effectiveness of both cooling methods is directly proportional to the total mass flow rates. However, axial cooling is slightly more efficient in controlling the average temperature of the bearing sleeve, but results in higher thermal gradient of the shaft along the axial direction and also higher thermal gradient of the bearing sleeve along the circumferential direction compared to the radial injection cooling. The smaller thermal gradient of the radial injection cooling is due to the direct cooling effect of the shaft by impinging jets. While the axial cooling has an effect on only the bearing, the radial injection has a cooling effect on both the bearing sleeve and shaft. It is considered the radial injection cooling needs to be further optimized in terms of number of injection holes and their locations.
Cooling of Water in a Flask: Convection Currents in a Fluid with a Density Maximum
ERIC Educational Resources Information Center
Velasco, S.; White, J. A.; Roman, F. L.
2010-01-01
The effect of density inversion on the convective flow of water in a spherical glass flask cooled with the help of an ice-water bath is shown. The experiment was carried out by temperature measurements (cooling curves) taken at three different heights along the vertical diameter of the flask. Flows inside the flask are visualized by seeding the…
NASA Astrophysics Data System (ADS)
Young, E. A.; Bailey, W. O. S.; Al-Mosawi, M. K.; Beduz, C.; Yang, Y.; Chappell, S.; Twin, A.
Since stand alone cryocooler systems have become more widely available, there has been increased commercial interest in superconductor applications in the temperature range intermediate to liquid helium and liquid nitrogen. There are however few facilities that have large in-field bore size with variable temperatures. A large bore system can reduce costs associated with full scale demonstration magnets by testing smaller coils and qualify medium length (up to meters) conductors. A 5 T, wide bore, (170 mm) Nb3Sn Oxford Instrument magnet has been integrated into a custom built dual mode refrigerator/helium flow cryostat with 600A HTS current leads. In one mode the system can be used with zero field without cost of liquid helium relying for cooling on a Sumitomo GM cryocooler with 1.5W at 4.2K: (no He) this can be used either as the sole characterisation method, or as a preliminary check before more expensive and extensive measurements are taken. The first measurements using MgB2 wire from 10 to 20K were made using a transient current step of ∼5s duration, as opposed to a DC measurement. This has the advantage of not requiring thermal equilibrium to be achieved at nominal current. The feasibility of this technique for determining critical transport properties is discussed.
Hot and turbulent gas in clusters
Schmidt, W.; Engels, J. F.; Niemeyer, J. C.; ...
2016-03-20
The gas in galaxy clusters is heated by shock compression through accretion (outer shocks) and mergers (inner shocks). These processes also produce turbulence. To analyse the relation between the thermal and turbulent energies of the gas under the influence of non-adiabatic processes, we performed numerical simulations of cosmic structure formation in a box of 152 Mpc comoving size with radiative cooling, UV background, and a subgrid scale model for numerically unresolved turbulence. By smoothing the gas velocities with an adaptive Kalman filter, we are able to estimate bulk flows towards cluster cores. This enables us to infer the velocity dispersionmore » associated with the turbulent fluctuation relative to the bulk flow. For haloes with masses above 10 13 M ⊙, we find that the turbulent velocity dispersions averaged over the warm-hot intergalactic medium (WHIM) and the intracluster medium (ICM) are approximately given by powers of the mean gas temperatures with exponents around 0.5, corresponding to a roughly linear relation between turbulent and thermal energies and transonic Mach numbers. However, turbulence is only weakly correlated with the halo mass. Since the power-law relation is stiffer for the WHIM, the turbulent Mach number tends to increase with the mean temperature of the WHIM. This can be attributed to enhanced turbulence production relative to dissipation in particularly hot and turbulent clusters.« less
Convective Array Cooling for a Solar Powered Aircraft
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Dolce, James (Technical Monitor)
2003-01-01
A general characteristic of photovoltaics is that they increase in efficiency as their operating temperature decreases. Based on this principal, the ability to increase a solar aircraft's performance by cooling the solar cells was examined. The solar cells were cooled by channeling some air underneath the cells and providing a convective cooling path to the back side of the array. A full energy balance and flow analysis of the air within the cooling passage was performed. The analysis was first performed on a preliminary level to estimate the benefits of the cooling passage. This analysis established a clear benefit to the cooling passage. Based on these results a more detailed analysis was performed. From this cell temperatures were calculated and array output power throughout a day period were determined with and without the cooling passage. The results showed that if the flow through the cooling passage remained laminar then the benefit in increased output power more than offset the drag induced by the cooling passage.
Component having cooling channel with hourglass cross section
Campbell, Christian X; Lee, Ching-Pang
2015-04-28
A cooling channel (36, 36B, 63-66) cools inner surfaces (48, 50) of exterior walls (41, 43) of a component (20, 60). Interior side surfaces (52, 54) of the channel converge to a waist (W2), forming an hourglass shaped transverse profile (46). The inner surfaces (48, 50) may have fins (44) aligned with the coolant flow (22). The fins may have a transverse profile (56A, 56B) highest at mid-width of the inner surfaces (48, 50). Turbulators (92) may be provided on the side surfaces (52, 54) of the channel, and may urge the coolant flow toward the inner surfaces (48, 50). Each turbulator (92) may have a peak (97) that defines the waist of the cooling channel. Each turbulator may have a convex upstream side (93). These elements increase coolant flow in the corners (C) of the channel to more uniformly and efficiently cool the exterior walls (41, 43).
The effects of magnetic fields on the growth of thermal instabilities in cooling flows
NASA Technical Reports Server (NTRS)
David, Laurence P.; Bregman, Joel N.
1989-01-01
The effects of heat conduction and magnetic fields on the growth of thermal instabilities in cooling flows are examined using a time-dependent hydrodynamics code. It is found that, for magnetic field strengths of roughly 1 micro-Gauss, magnetic pressure forces can completely suppress shocks from forming in thermally unstable entropy perturbations with initial length scales as large as 20 kpc, even for initial amplitudes as great as 60 percent. Perturbations with initial amplitudes of 50 percent and initial magnetic field strengths of 1 micro-Gauss cool to 10,000 K on a time scale which is only 22 percent of the initial instantaneous cooling time. Nonlinear perturbations can thus condense out of cooling flows on a time scale substantially less than the time required for linear perturbations and produce significant mass deposition of cold gas while the accreting intracluster gas is still at large radii.
A photoionization model for the optical line emission from cooling flows
NASA Technical Reports Server (NTRS)
Donahue, Megan; Voit, G. M.
1991-01-01
The detailed predictions of a photoionization model previously outlined in Voit and Donahue (1990) to explain the optical line emission associated with cooling flows in X-ray emitting clusters of galaxies are presented. In this model, EUV/soft X-ray radiation from condensing gas photoionizes clouds that have already cooled. The energetics and specific consequences of such a model, as compared to other models put forth in the literature is discussed. Also discussed are the consequences of magnetic fields and cloud-cloud shielding. The results illustrate how varying the individual column densities of the ionized clouds can reproduce the range of line ratios observed and strongly suggest that the emission-line nebulae are self-irradiated condensing regions at the centers of cooling flows.
Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability
Hunsbedt, A.; Boardman, C.E.
1995-04-11
A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.
Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability
Hunsbedt, Anstein; Boardman, Charles E.
1995-01-01
A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.
Investigation of cooling properties of the gaseous medium of a space station
NASA Technical Reports Server (NTRS)
Baranski, S.; Blosznyski, R.; Hermaszewski, M.; Kubiczkowa, J.; Piorko, A.; Saganiak, R.; Sarol, Z.; Skibniewski, F.; Stendera, J.; Walichnowski, W.
1982-01-01
An investigation of cooling properties of the gaseous medium was performed in the biosatellite Kosmos-936 as well as in the orbital complexes Soyuz-28/Salyut-6 and Soyuz-30/Salyut-6 with the aid of an especially constructed electric dynamic catathermometer. In this instrument current was measured which was necessary to keep a steady settled temperature of the sensing device. The investigation was performed because of the disturbed heat exhange of the human body caused by lack of natural convection in weightlessness. The instrument also enabled objective estimation of the temperature of the cosmonaut's ody in six optionally selected regions. The results obtained by means of the catathermometer will also enable defining the appropriate hygienic conditions of the gaseous medium of space stations.
A ROSAT HRI observation of the cooling flow cluster MS0839.9+2938.
NASA Astrophysics Data System (ADS)
Nesci, R.; Perola, G. C.; Wolter, A.
1995-07-01
A ROSAT HRI observation of the cluster MS0839.9+2938 at z=0.194 is presented. It confirms the earlier suggestion, based on the detection of extended Hα emission, that the inner regions of this cluster are dominated by a cooling flow. Within the cooling radius a marginally significant evidence is found of structures in the surface brightness, which are similar to those more significantly found in two less distant cooling flow clusters (A2029 and 2A0335+096). We note that, although its barycentre falls on top of the central giant elliptical galaxy, the azimuthally averaged brightness distribution does not peak at that position and actually stays flat out to about 40kpc (10") from the galaxy centre. From comparison with the two clusters mentioned above, this situation seems peculiar, and it is suggested that it could arise from photoelectric absorption by cold gas within the cooling flow, with an equivalent column density in the order of 5x10^21^/cm^2^ within ~10" from the centre, a factor 2-3 higher than the column spectroscopically detected in the comparison clusters.
Burdgick, Steven Sebastian; Burns, James Lee
2002-01-01
A nozzle segment for a gas turbine includes inner and outer band portions and a vane extending between the band portions. The inner and outer band portions are each divided into first and second plenums separated by an impingement plate. Cooling steam is supplied to the first cavity for flow through the apertures to cool the outer nozzle wall. The steam flows through a leading edge cavity in the vane into the first cavity of the inner band portion for flow through apertures of the impingement plate to cool the inner nozzle wall. Spent cooling steam flows through a plurality of cavities in the vane, exiting through an exit chimney in the outer band. The exit chimney is secured at its inner end directly to the nozzle vane wall surrounding the exit cavities, to the margin of the impingement plate at a location intermediate the ends of the exit chimney and to margins of an opening through the cover whereby each joint is externally accessible for joint formation and for subsequent inspection.
NASA Astrophysics Data System (ADS)
Yan, Zhenrong; Si, Jun
2017-09-01
The spiral coil waterwall is the main pressure parts and the core functional components of Ultra Supercritical Boiler. In the process of operation, the spiral coil waterwall is under the combined action of welding residual stress, installation defects stress and working fluid stress, Cracks and crack propagation are easy to occur in butt welds with defects. In view of the early cracks in the butt welds of more T23 water cooled walls, in this paper, the influence of various stresses on the crack propagation in the butt welds of spiral coil waterwall was studied by numerical simulation. Firstly, the welding process of T23 water cooled wall tube was simulated, and the welding residual stress field was obtained. Then,on the basis, put the working medium load on the spiral coil waterwall, the supercoated stress distribution of the welding residual stress and the stress of the working medium is obtained. Considering the bending moment formed by stagger joint which is the most common installation defects, the stress field distribution of butt welds in T23 water-cooled wall tubes was obtained by applying bending moment on the basis of the stress field of the welding residual stress and the working medium stress. The results show that, the welding residual stress is small, the effect of T23 heat treatment after welding to improve the weld quality is not obvious; The working medium load plays a great role in the hoop stress of the water cooled wall tube, and promotes the cracks in the butt welds; The axial stress on the water cooled wall tube produced by the installation defect stress is obvious, the stagger joint, and other installation defects are the main reason of crack propagation of spiral coil waterwall. It is recommended that the control the bending moment resulting from the stagger joint not exceed 756.5 NM.
Cooling system for a nuclear reactor
Amtmann, Hans H.
1982-01-01
A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.
Merrill, Thomas L; Mitchell, Jennifer E; Merrill, Denise R
2016-08-01
Recent revascularization success for ischemic stroke patients using stentrievers has created a new opportunity for therapeutic hypothermia. By using short term localized tissue cooling interventional catheters can be used to reduce reperfusion injury and improve neurological outcomes. Using experimental testing and a well-established heat exchanger design approach, the ɛ-NTU method, this paper examines the cooling performance of commercially available catheters as function of four practical parameters: (1) infusion flow rate, (2) catheter location in the body, (3) catheter configuration and design, and (4) cooling approach. While saline batch cooling outperformed closed-loop autologous blood cooling at all equivalent flow rates in terms of lower delivered temperatures and cooling capacity, hemodilution, systemic and local, remains a concern. For clinicians and engineers this paper provides insights for the selection, design, and operation of commercially available catheters used for localized tissue cooling. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Some current research in rotating-disc systems.
Owen, J M; Wilson, M
2001-05-01
Rotating-disc systems are used to model the flow and heat transfer that occurs inside the cooling-air systems of gas-turbine engines. In this paper, recent computational and experimental research in three systems is discussed: rotor-stator systems, rotating cavities with superposed flow and buoyancy-induced flow in a rotating cavity. Discussion of the first two systems concentrates respectively on pre-swirl systems and rotating cavities with a peripheral inflow and outflow of cooling air. Buoyancy-induced flow in a rotating cavity is one of the most difficult problems facing computationalists and experimentalists, and there are similarities between the circulation in the Earth's atmosphere and the flow inside gas-turbine rotors. For this case, results are presented for heat transfer in sealed annuli and in rotating cavities with an axial throughflow of cooling air.
Influence of cold-water immersion on limb blood flow after resistance exercise.
Mawhinney, Chris; Jones, Helen; Low, David A; Green, Daniel J; Howatson, Glyn; Gregson, Warren
2017-06-01
This study determined the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow following resistance exercise. Twelve males completed 4 sets of 10-repetition maximum squat exercise and were then immersed, semi-reclined, into 8°C or 22°C water for 10-min, or rested in a seated position (control) in a randomized order on different days. Rectal and thigh skin temperature, muscle temperature, thigh and calf skin blood flow and superficial femoral artery blood flow were measured before and after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). The colder water reduced thigh skin temperature and deep muscle temperature to the greatest extent (P < .001). Reductions in rectal temperature were similar (0.2-0.4°C) in all three trials (P = .69). Femoral artery conductance was similar after immersion in both cooling conditions, with both conditions significantly lower (55%) than the control post-immersion (P < .01). Similarly, there was greater thigh and calf cutaneous vasoconstriction (40-50%) after immersion in both cooling conditions, relative to the control (P < .01), with no difference between cooling conditions. These findings suggest that cold and cool water similarly reduce femoral artery and cutaneous blood flow responses but not muscle temperature following resistance exercise.
A simple counter-flow cooling system for a supersonic free-jet beam source assembly
NASA Astrophysics Data System (ADS)
Barr, M.; Fahy, A.; Martens, J.; Dastoor, P. C.
2016-05-01
A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.
A simple counter-flow cooling system for a supersonic free-jet beam source assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, M.; Fahy, A.; Martens, J.
2016-05-15
A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.
NASA Astrophysics Data System (ADS)
Neri, Augusto
1998-05-01
The local cooling process of thermal diffusion-dominated lava flows in the atmosphere was studied by a transient, one-dimensional heat transfer model taking into account the most relevant processes governing its behavior. Thermal diffusion-dominated lava flows include any type of flow in which the conductive-diffusive contribution in the energy equation largely overcomes the convective terms. This type of condition is supposed to be satisfied, during more or less extended periods of time, for a wide range of lava flows characterized by very low flow-rates, such as slabby and toothpaste pahoehoe, spongy pahoehoe, flow at the transition pahoehoe-aa, and flows from ephemeral vents. The analysis can be useful for the understanding of the effect of crust formation on the thermal insulation of the lava interior and, if integrated with adequate flow models, for the explanation of local features and morphologies of lava flows. The study is particularly aimed at a better knowledge of the complex non-linear heat transfer mechanisms that control lava cooling in the atmosphere and at the estimation of the most important parameters affecting the global heat transfer coefficient during the solidification process. The three fundamental heat transfer mechanisms with the atmosphere, that is radiation, natural convection, and forced convection by the wind, were modeled, whereas conduction and heat generation due to crystallization were considered within the lava. The magma was represented as a vesiculated binary melt with a given liquidus and solidus temperature and with the possible presence of a eutectic. The effects of different morphological features of the surface were investigated through a simplified description of their geometry. Model results allow both study of the formation in time of the crust and the thermal mushy layer underlying it, and a description of the behavior of the temperature distribution inside the lava as well as radiative and convective fluxes to the atmosphere. The analysis, performed by using parameters typical of Etnean lavas, particularly focuses on the non-intuitive relations between superficial cooling effects and inner temperature distribution as a function of the major variables involved in the cooling process. Results integrate recent modelings and measurements of the cooling process of Hawaiian pahoehoe flow lobes by Hon et al. (1994) and Keszthelyi and Denlinger (1996) and highlight the critical role played by surface morphology, lava thermal properties, and crystallization dynamics. Furthermore, the reported description of the various heat fluxes between lava and atmosphere can be extended to any other type of lava flows in which atmospheric cooling is involved.
Effect of the Initial Vortex Size on Intensity Change in the WRF-ROMS Coupled Model
NASA Astrophysics Data System (ADS)
Zhao, Xiaohui; Chan, Johnny C. L.
2017-12-01
Numerous studies have demonstrated that the tropical cyclone (TC) induced sea surface temperature (SST) cooling strongly depends on the preexisting oceanic condition and TC characteristics. However, very few focused on the correlation of SST cooling and the subsequent intensity with TC size. Therefore, a series of idealized numerical experiments are conducted using the Weather Research Forecasting (WRF) model coupled with the Regional Ocean Model System (ROMS) model to understand how the vortex size is related to SST cooling and subsequent intensity changes of a stationary TC-like vortex. In the uncoupled experiments, the radius of maximum wind (RMW) and size (radius of gale-force wind (R17)) both depend on the initial size within the 72 h simulation. The initially small vortex is smaller than the medium and large vortices throughout its life cycle and is the weakest. In other words, thermodynamic processes do not contribute as much to the R17 change as the dynamic processes proposed (e.g., angular momentum transport) in previous studies. In the coupled experiments, the area-averaged SST cooling induced by medium and large TCs within the inner-core region is comparable due to the similar surface winds and thus mixing in the ocean. Although a stronger SST cooling averaged within a larger region outside the inner-core is induced by the larger TC, the intensity of the larger TC is more intense. This is because that the enthalpy flux in the inner-core region is higher in the larger TC than that in the medium and small TCs.
Air cooled turbine component having an internal filtration system
Beeck, Alexander R [Orlando, FL
2012-05-15
A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.
Two-phase flow in the cooling circuit of a cryogenic rocket engine
NASA Astrophysics Data System (ADS)
Preclik, D.
1992-07-01
Transient two-phase flow was investigated for the hydrogen cooling circuit of the HM7 rocket engine. The nuclear reactor code ATHLET/THESEUS was adapted to cryogenics and applied to both principal and prototype experiments for validation and simulation purposes. The cooling circuit two-phase flow simulation focused on the hydrogen prechilling and pump transient phase prior to ignition. Both a single- and a multichannel model were designed and employed for a valve leakage flow, a nominal prechilling flow, and a prechilling with a subsequent pump-transient flow. The latter case was performed in order to evaluate the difference between a nominal and a delayed turbo-pump start-up. It was found that an extension of the nominal prechilling sequence in the order of 1 second is sufficient to finally provide for liquid injection conditions of hydrogen which, as commonly known, is undesirable for smooth ignition and engine starting transients.
Method and apparatus for enhancing reactor air-cooling system performance
Hunsbedt, A.
1996-03-12
An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.
Internally-cooled centrifugal compressor with cooling jacket formed in the diaphragm
Moore, James J.; Lerche, Andrew H.; Moreland, Brian S.
2014-08-26
An internally-cooled centrifugal compressor having a shaped casing and a diaphragm disposed within the shaped casing having a gas side and a coolant side so that heat from a gas flowing though the gas side is extracted via the coolant side. An impeller disposed within the diaphragm has a stage inlet on one side and a stage outlet for delivering a pressurized gas to a downstream connection. The coolant side of the diaphragm includes at least one passageway for directing a coolant in a substantially counter-flow direction from the flow of gas through the gas side.
Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatkowski, G.; Cheban, S.; Dhanaraj, N.
2015-01-01
The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantagesmore » which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids« less
Direct Numerical Simulation of A Shaped Hole Film Cooling Flow
NASA Astrophysics Data System (ADS)
Oliver, Todd; Moser, Robert
2015-11-01
The combustor exit temperatures in modern gas turbine engines are generally higher than the melting temperature of the turbine blade material. Film cooling, where cool air is fed through holes in the turbine blades, is one strategy which is used extensively in such engines to reduce heat transfer to the blades and thus reduce their temperature. While these flows have been investigated both numerically and experimentally, many features are not yet well understood. For example, the geometry of the hole is known to have a large impact on downstream cooling performance. However, the details of the flow in the hole, particularly for geometries similar to those used in practice, are generally know well-understood, both because it is difficult to experimentally observe the flow inside the hole and because much of the numerical literature has focused on round hole simulations. In this work, we show preliminary direct numerical simulation results for a film cooling flow passing through a shaped hole into a the boundary layer developing on a flat plate. The case has density ratio 1.6, blowing ratio 2.0, and the Reynolds number (based on momentum thickness) of incoming boundary layer is approximately 600. We compare the new simulations against both previous experiments and LES.
Cooled-Spool Piston Compressor
NASA Technical Reports Server (NTRS)
Morris, Brian G.
1994-01-01
Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.
NASA Astrophysics Data System (ADS)
Ramsey, M. S.; Harris, A. J. L.
2016-12-01
Satellite observations of active vents commonly group into several broad categories: thermal analysis, deformational studies, and gas/ash detection. These observations become increasingly detailed depending on the spatial, spectral and/or temporal resolution of the sensor. Higher temporal resolution thermal infrared (TIR) data are used to determine the time-averaged discharge rate (TADR) and the potential down-slope inundation of the newly-forming flow using thermorheologic-based modelling. Whereas, increased spectral resolution leads to improved measurement of the flow's composition, crystal content, and vesicularity. Combined, these data help to improve the accuracy of cooling-based viscosity models such as FLOWGO. In addition to topography, the dominant (internal) factors controlling flow propagation are the discharge rate combined with cooling and increasing viscosity. The cooling of the glassy lava surface is directly imaged by the TIR instrument to determine temperature, which is then used to calculate the model's starting conditions. Understanding the cooling, formation and dynamics of basaltic surfaces therefore helps to resolve compositional, textural, and silicate structural changes. Models, coupled with accurate knowledge of the characteristics of older, inactive flows (such as those on Mars), can be reversed to predict the vent conditions at the time of the eruption. Being able to directly connect the final flow morphology to specific eruption conditions is a critical goal to understand the last stages of volcanism on Mars and becomes an important educational tool where combined with 3D visualization. The 2012-2013 eruption of Tolbachik volcano, Russia was the largest and most thermally intense flow-forming eruption in the past 50 years, producing longer lava flows than that of a typical eruption at Kilauea or Etna. These flows have been studied using various scales of TIR data at the time of eruption and following cooling. The input parameters for the FLOWGO model are then tuned to produce the best fit of eruptive conditions to final flow morphology. The refined model can then be used to determine the TADR from the vent and make improved estimates of cooling, viscosity, velocity and crystallinity with distance. Final results are visualized and their educational potential assessed.
The disk-halo connection and the nature of the interstellar medium
NASA Technical Reports Server (NTRS)
Norman, Colin A.; Ikeuchi, Satoru
1988-01-01
Some results on the nature of the interstellar medium that are specifically concerned with the disk-halo interaction are discussed. Over the last five years or so it has become clear that the supernovae rate in our Galaxy is spatially clumped and the consequences of such clumping are superbubbles and supershells fed by tens or hundreds of supernovae per shell. These objects evolve and expand rapidly and soon break out of the disk of the Galaxy, feeding the halo with very significant mass, energy, and momentum. As cooling occurs, gas will rain down onto the disk of the Galaxy completing the cycle. The basic flow of physical quantities from disk to halo and vice versa are discussed. Some of the many implications are noted including aspects of dynamo theory, quasar absorption lines, the theory of galactic coronae, and the nature of the x ray background. The essential difference here with the McKee-Ostriker (1977) theory is that the filling factor of the hot gas in the disk is significantly less than unity.
Transpiring Cooling of a Scram-Jet Engine Combustion Chamber
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Scotti, Stephen J.; Song, Kyo D.; Ries,Heidi
1997-01-01
The peak cold-wall heating rate generated in a combustion chamber of a scram-jet engine can exceed 2000 Btu/sq ft sec (approx. 2344 W/sq cm). Therefore, a very effective heat dissipation mechanism is required to sustain such a high heating load. This research focused on the transpiration cooling mechanism that appears to be a promising approach to remove a large amount of heat from the engine wall. The transpiration cooling mechanism has two aspects. First, initial computations suggest that there is a reduction, as much as 75%, in the heat flux incident on the combustion chamber wall due to the transpirant modifying the combustor boundary layer. Secondly, the heat reaching the combustor wall is removed from the structure in a very effective manner by the transpirant. It is the second of these two mechanisms that is investigated experimentally in the subject paper. A transpiration cooling experiment using a radiant heating method, that provided a heat flux as high as 200 Btu/sq ft sec ( approx. 234 W/sq cm) on the surface of a specimen, was performed. The experiment utilized an arc-lamp facility (60-kW radiant power output) to provide a uniform heat flux to a test specimen. For safety reasons, helium gas was used as the transpirant in the experiments. The specimens were 1.9-cm diameter sintered, powdered-stainless-steel tubes of various porosities and a 2.54cm square tube with perforated multi-layered walls. A 15-cm portion of each specimen was heated. The cooling effectivenes and efficiencies by transpiration for each specimen were obtained using the experimental results. During the testing, various test specimens displayed a choking phenomenon in which the transpirant flow was limited as the heat flux was increased. The paper includes a preliminary analysis of the transpiration cooling mechanism and a scaling conversion study that translates the results from helium tests into the case when a hydrogen medium is used.
Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.
Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min
2017-12-01
The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi
2016-06-01
In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.
NASA Technical Reports Server (NTRS)
Borg, Stephen E.; Wright, Robert E., Jr.; Alderfer, David W.; Whipple, Janet C.
1990-01-01
A comprehensive examination of the 8 foot temperature tunnel's transpiration cooled nozzle was completed using an infrared imaging radiometer to locate regions of cooling flow irregularities caused by obstruction of three or more adjacent cooling slots. Restrictions in the cooling flow were found and cataloged. Blockages found were due primarily to the presence of residual phosphoric acid being discharged from some of the cooling slots. This acid was used during construction of the nozzle components and was to have been purged prior to its delivery to the NASA Langley Research Center (LaRC). In addition, a radial displacement of one selection of discs located in the spool piece was inspected and cataloged for future reference. There did not seem to be a serious restriction of flow in this defect, but evidence from the infrared images indicated reduced slot activity within the gouge. The radiometer survey uncovered regions where closer inspection is recommended but did not cover the entire surface area of the three nozzle subsections due to equipment limitations. A list of areas with suspected problems is included in Appendix A.
Fuel supply device for supplying fuel to an engine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, M.H.; Kerr, W.B.
1990-05-29
This patent describes a variable flow rate fuel supply device for supplying fuel to an engine combustor. It comprises: fuel metering means having a fuel valve means for controlling the flow rate of fuel to the combustor; piston means for dividing a first cooling fluid chamber from a second cooling fluid chamber; coupling means for coupling the piston means to the fuel valve means; and cooling fluid supply means in communication with the first and second cooling fluid chamber for producing a first pressure differential across the piston means for actuating the fuel valve means in a first direction, andmore » for producing a second pressure differential across the piston means for actuating the valve means in a second direction opposite the first direction, to control the flow rate of the fuel through the fuel metering means and into the engine combustor; and means for positioning the fuel metering means within the second cooling air chamber enabling the cooling air supply means to both cool the fuel metering means and control the fuel supply rate of fuel supplied by the fuel metering means to the combustor.« less
Air-Cooled Turbine Blades with Tip Cap For Improved Leading-Edge Cooling
NASA Technical Reports Server (NTRS)
Calvert, Howard F.; Meyer, Andre J., Jr.; Morgan, William C.
1959-01-01
An investigation was conducted in a modified turbojet engine to determine the cooling characteristics of the semistrut corrugated air- cooled turbine blade and to compare and evaluate a leading-edge tip cap as a means for improving the leading-edge cooling characteristics of cooled turbine blades. Temperature data were obtained from uncapped air-cooled blades (blade A), cooled blades with the leading-edge tip area capped (blade B), and blades with slanted corrugations in addition to leading-edge tip caps (blade C). All data are for rated engine speed and turbine-inlet temperature (1660 F). A comparison of temperature data from blades A and B showed a leading-edge temperature reduction of about 130 F that could be attributed to the use of tip caps. Even better leading-edge cooling was obtained with blade C. Blade C also operated with the smallest chordwise temperature gradients of the blades tested, but tip-capped blade B operated with the lowest average chordwise temperature. According to a correlation of the experimental data, all three blade types 0 could operate satisfactorily with a turbine-inlet temperature of 2000 F and a coolant flow of 3 percent of engine mass flow or less, with an average chordwise temperature limit of 1400 F. Within the range of coolant flows investigated, however, only blade C could maintain a leading-edge temperature of 1400 F for a turbine-inlet temperature of 2000 F.
Development and Experimental Evaluation of Passive Fuel Cell Thermal Control
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Jakupca, Ian J.; Castle, Charles H.; Burke, Kenneth A.
2014-01-01
To provide uniform cooling for a fuel cell stack, a cooling plate concept was evaluated. This concept utilized thin cooling plates to extract heat from the interior of a fuel cell stack and move this heat to a cooling manifold where it can be transferred to an external cooling fluid. The advantages of this cooling approach include a reduced number of ancillary components and the ability to directly utilize an external cooling fluid loop for cooling the fuel cell stack. A number of different types of cooling plates and manifolds were developed. The cooling plates consisted of two main types; a plate based on thermopyrolytic graphite (TPG) and a planar (or flat plate) heat pipe. The plates, along with solid metal control samples, were tested for both thermal and electrical conductivity. To transfer heat from the cooling plates to the cooling fluid, a number of manifold designs utilizing various materials were devised, constructed, and tested. A key aspect of the manifold was that it had to be electrically nonconductive so it would not short out the fuel cell stack during operation. Different manifold and cooling plate configurations were tested in a vacuum chamber to minimize convective heat losses. Cooling plates were placed in the grooves within the manifolds and heated with surface-mounted electric pad heaters. The plate temperature and its thermal distribution were recorded for all tested combinations of manifold cooling flow rates and heater power loads. This testing simulated the performance of the cooling plates and manifold within an operational fuel cell stack. Different types of control valves and control schemes were tested and evaluated based on their ability to maintain a constant temperature of the cooling plates. The control valves regulated the cooling fluid flow through the manifold, thereby controlling the heat flow to the cooling fluid. Through this work, a cooling plate and manifold system was developed that could maintain the cooling plates within a minimal temperature band with negligible thermal gradients over power profiles that would be experienced within an operating fuel cell stack.
Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade
NASA Astrophysics Data System (ADS)
Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz
2016-08-01
This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1986-01-01
This effort summarizes the work performed on a steam cooled, rich-burn primary zone, variable geometry combustor designed for combustion of nitrogeneous fuels such as heavy oils or synthetic crude oils. The steam cooling was employed to determine its feasibility and assess its usefulness as part of a ground based gas turbine bottoming cycle. Variable combustor geometry was employed to demonstrate its ability to control primary and secondary zone equivalence ratios and overall pressure drop. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This low temperature offers the potential of both long life and reduced use of strategic materials for liner fabrication. These degrees of variable geometry were successfully employed to control air flow distribution within the combustor. A variable blade angle axial flow air swirler was used to control primary zone air flow, while the secondary and tertiary zone air flows were controlled by rotating bands which regulated air flow to the secondary zone quench holes and the dilutions holes respectively.
NASA Technical Reports Server (NTRS)
Ameri, Ali; Shyam, Vikram; Rigby, David; Poinsatte, Philip; Thurman, Douglas; Steinthorsson, Erlendur
2014-01-01
Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations which are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminarturbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes which take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-HT code and applied to film cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30 holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and four blowing ratios of 0.5, 1.0, 1.5 and 2.0 are shown. Flow features under those conditions are also described.
Fuel cell with metal screen flow-field
Wilson, M.S.; Zawodzinski, C.
1998-08-25
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
2001-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
1998-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
Current star formation in S0 galaxies: NGC 4710
NASA Technical Reports Server (NTRS)
Wrobel, J. M.
1990-01-01
Elliptical (E) and lenticular (S0) galaxies lack the substantial interstellar medium (ISM) found in the star-forming spiral galaxies. However, significant numbers of E and S0 galaxies are known to contain detectable amounts of interstellar matter (e.g., Jura 1988). Thus, it is worth investigating whether these galaxies are currently able to form stars from their ISM, or whether they should be consigned to the dustbin of inert objects (Thronson and Bally 1987). The results strongly imply that current star formation is responsible for NGC 4710's far infrared and radio continuum properties. If this is indeed the case, then one expects this star formation to be fueled by molecular gas, which is presumably dominated by H2 and can be traced by the CO-12 J=1 to 0 line. Both Kenney and Young (1988) and Sage and Wrobel (1989) have detected such an emission line from NGC 4710, and infer the presence of more than 10(exp 8) solar mass of H2. The origin of the molecular gas in NGC 4710 remains a mystery. The galaxy is very deficient in HI (Kenney and Young, in preparation), suggesting that it originally was a spiral galaxy from which the outer, mainly atomic, gas was stripped by the ram pressure of the Virgo Cluster's intracluster medium, leaving only a central interstellar medium (ISM) rich in molecular gas. Alternatively, the CO may have originated via stellar mass loss with subsequent cooling, cooling flows, or capture from a gas-rich companion. Information on the morphology and kinematics of the CO can be compared with that of the galaxy's other gases and stars to distinguish among these various possible origins for the molecular gas. Major axis CO mapping with single dishes indicate an unresolved source. Thus, a millimeter array is currently being used to image NGC 4710 in CO to provide the needed morphological and kinematical data.
Boiling water neutronic reactor incorporating a process inherent safety design
Forsberg, C.W.
1985-02-19
A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.
Boiling water neutronic reactor incorporating a process inherent safety design
Forsberg, Charles W.
1987-01-01
A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.
NASA Astrophysics Data System (ADS)
Dröske, Nils C.; Förster, Felix J.; Weigand, Bernhard; von Wolfersdorf, Jens
2017-03-01
In this paper, we present a combined experimental and numerical approach to assess the thermal loads and the cooling mechanism of an internally cooled strut injector for a supersonic combustion ramjet. Infrared measurements of the injector surface are conducted at a moderate external flow temperature. In addition, the main flow field is investigated with the LITA technique. Main features of the cooling mechanism are identified based on experimental data. However, a full evaluation can only be obtained using a complex, conjugate CFD simulation, which couples the external and internal flow fields to the heat conduction inside the injector body. Furthermore, numerical simulations are also presented for hot gas conditions corresponding to combustion experiments. Both hydrogen, which would be used as fuel for flight tests, and air are considered as coolants. While the main features of the cooling mechanism will be shown to remain unchanged, the combustor wall temperature is found to have a significant influence on the cooling. This emphasizes the importance and the usefulness of such complex conjugate numerical simulations.
Effect of Several Factors on the Cooling of a Radial Engine in Flight
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Pinkel, Benjamin
1936-01-01
Flight tests of a Grumman Scout (XSF-2) airplane fitted with a Pratt & Whitney 1535 supercharged engine were conducted to determine the effect of engine power, mass flow of the cooling air, and atmospheric temperature on cylinder temperature. The tests indicated that the difference in temperature between the cylinder wall and the cooling air varied as the 0.38 power of the brake horsepower for a constant mass flow of cooling air, cooling-air temperature, engine speed, and brake fuel consumption. The difference in temperature was also found to vary inversely as the 0.39 power of the mass flow for points on the head and the 0.35 power for points on the barrel, provided that engine power, engine speed, brake fuel consumption, and cooling-air temperature were kept constant. The results of the tests of the effect of atmospheric temperature on cylinder temperature were inconclusive owing to unfavorable weather conditions prevailing at the time of the tests. The method used for controlling the test conditions, however, was found to be feasible.
Honig, Hen; Ofer, Lior; Kaim, Moshe; Jacobi, Shamay; Shinder, Dima; Gershon, Eran
2016-07-15
The use of ultrasound imaging for the examination of reproductive organs has contributed substantially to the fertility management of dairy cows around the world. This method has many advantages such as noninvasiveness and immediate availability of information. Adding Doppler index to the ultrasound imaging examination, improved the estimation of blood volume and flow rate to the ovaries in general and to the dominant follicle in particular. The aim of this study was to examine changes in the blood flow to the dominant follicle and compare them to the follicular development throughout the cycle. We further set out to examine the effects of different types of cooling management during the summer on the changes in blood flow to the dominant follicle. For this purpose, 24 Israeli-Holstein dairy cows, under heat stress, were randomly assigned one of two groups: one was exposed to five cooling sessions per day (5CS) and the other to eight cooling sessions per day (8CS). Blood flow to the dominant follicle was measured daily using Doppler index throughout the estrous cycle. No differences in the preovulatory dominant follicle diameter were detected between the two cooling management regimens during the cycle. However, the length of the first follicular wave was significantly longer, whereas the second follicular wave was nonsignificantly shorter in the 5CS group as compared to the 8CS group. In addition, no difference in blood flow was found during the first 18 days of the cycle between the two groups. However, from Day 20 until ovulation a higher rate of blood flow was measured in the ovaries of cows cooled 8 times per day as compared to the 5CS group. No differences in progesterone levels were noted. Finally, the estrous cycle length was shorter in the 8CS group as compared to the 5CS group. Our data suggest that blood flow to the dominant follicle and estrous cycle length is affected by heat stress. Using the appropriate cooling management during heat stress can enhance the blood flow to the ovary and may contribute to improved fertility in dairy cows. Copyright © 2016 Elsevier Inc. All rights reserved.
40 CFR 419.37 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... ammonia set forth in § 419.36 (a) and (b). (b) The following standard is applied to the cooling tower... refinery flow to the POTW; and (3) by the ratio of the cooling tower discharge flow to the total refinery...
Coolant tube curvature effects on film cooling as detected by infrared imagery
NASA Technical Reports Server (NTRS)
Papell, S. S.; Graham, R. W.
1979-01-01
Reported herein are comparative thermal film cooling footprints observed by infrared imagery from straight, curved and looped coolant tube geometries. It was hypothesized that the difference in secondary flow and turbulence structure of flow through these three tubes should influence the mixing properties between the coolant and mainstream. The coolant was injected across an adiabatic plate through a hole angled at 30 deg to the surface in line with the free stream flow. The data cover a range of blowing rates from 0.37 to 1.25 (mass flow per unit area of coolant divided by free stream). Average temperature difference between coolant and tunnel air was 25 C. Data comparisons confirmed that coolant tube curvature significantly influences film cooling effectiveness.
Properties of tetrahedral clusters and medium range order in GaN during rapid solidification
NASA Astrophysics Data System (ADS)
Gao, Tinghong; Li, Yidan; Yao, Zhenzhen; Hu, Xuechen; Xie, Quan
2017-12-01
The solidification process of liquid gallium nitride has been studied by molecular dynamics simulation using the Stillinger-Weber potential at cooling rate of 10 K/ps. The structural properties of gallium nitride during the rapid cooling process were investigated in detail by the radial distribution functions, Voronoi polyhedron index and the visualization technology. The amorphous structures were formed with many medium range order structures at 200 K. The <4 0 0 0> polyhedron as the main polyhedron was more stable than other polyhedron in GaN during the quenching process. The cubic and hexahedral medium range order structures were formed by the close link between <4 0 0 0> polyhedron. The cubic crystal structures grew up through the crystalline surface by a layer-by-layer method to become more stable structures during the quenching process.
Experimental Testing and Numerical Modeling of Spray Cooling Under Terrestrial Gravity Conditions
2005-01-01
running safely. Mudawar (2000) identifies two heat flux ranges relative to the amount of heat dissipation. The high-flux range includes heat fluxes on...inferior to those of water ( Mudawar , 2000). Phase change cooling can exist in several forms, or cooling schemes. Pool boiling may be used in...addition to reducing the significant effects of flow orientation ( Mudawar , 2000). It is not fully known how low gravity affects flow boiling, as
Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows
White, A.F.; Hochella, M.F.
1992-01-01
The surface chemistry of fresh and weathered historical basalt flows was characterized using surface-sensitive X-ray photoelectron spectroscopy (XPS). Surfaces of unweathered 1987-1990 flows from the Kilauea Volcano, Hawaii, exhibited variable enrichment in Al, Mg, Ca, and F due to the formation of refractory fluoride compounds and pronounced depletion in Si and Fe from the volatilization of SiF4 and FeF3 during cooling. These reactions, as predicted from shifts in thermodynamic equilibrium with temperature, are induced by diffusion of HF from the flow interiors to the cooling surface. The lack of Si loss and solid fluoride formation for recent basalts from the Krafla Volcano, Iceland, suggest HF degassing at higher temperatures. Subsequent short-term subaerial weathering reactions are strongly influenced by the initial surface composition of the flow and therefore its cooling history. Successive samples collected from the 1987 Kilauea flow demonstrated that the fluoridated flow surfaces leached to a predominantly SiO2 composition by natural weathering within one year. These chemically depleted surfaces were also observed on Hawaiian basalt flows dating back to 1801 AD. Solubility and kinetic models, based on thermodynamic and kinetic data for crystalline AlF3, MgF2, and CaF2, support observed elemental depletion rates due to chemical weathering. Additional loss of alkalis from the Hawaiian basalt occurs from incongruent dissolution of the basalt glass substrate during weathering. ?? 1992.
NASA Technical Reports Server (NTRS)
Montogomery, Leslie D.; Ku, Yu-Tsuan E.; Webbon, Bruce W. (Technical Monitor)
1995-01-01
We have prepared a computer program (RHEOSYS:RHEOencephalographic impedance trace scanning SyStem) that can be used to automate the analysis of segmental impedance blood flow waveforms. This program was developed to assist in the post test analysis of recorded impedance traces from multiple segments of the body. It incorporates many of the blood flow, segmental volume, and vascular state indices reported in the world literature. As it is currently programmed, seven points are selected from each blood flow pulse and associated ECG waveforrn: 1. peak of the first ECG QRS complex, 2. start of systolic slope on the blood flow trace, 3. maximum amplitude of the impedance pulse, 4. position of the dicrotic notch, 5. maximum amplitude of the postdicrotic segment, 6. peak of the second ECG QRS complex, and 7. start of the next blood flow pulse. These points we used to calculate various geometric, area, and time-related values associated with the impedance pulse morphology. RHEOSYS then calculates a series of 34 impedance and cardiac cycle parameters which include pulse amplitudes; areas; pulse propagation times; cardiac cycle times; and various measures of arterial and various tone, contractility, and pulse volume. We used this program to calculate the scalp and intracranial blood flow responses to head and neck cooling as it may be applied to lower the body temperatures of multiple sclerosis patients. Twelve women and twelve men were tested using a commercially available head and neck cooling system operated at its maximum cooling capacity for a period of 30 minutes. Head and neck cooling produced a transient change in scalp blood flow and a significant, (P<0.05) decrease of approx. 30% in intracranial blood flow. Results of this experiment will illustrate how REG and RHEOSYS can be used in biomedical applications.
NASA Technical Reports Server (NTRS)
Plaessmann, Henry (Inventor); Grossman, William M. (Inventor)
1997-01-01
A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A confocal resonator or White Cell resonator is provided, including two or three curvilinearly shaped mirrors facing each other along a resonator axis and an optical gain medium positioned on the resonator axis between the mirrors (confocal resonator) or adjacent to one of the mirrors (White Cell). In a first embodiment, two mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. The optical gain medium may be solid-state, liquid or gaseous medium and may be pumped longitudinally or transversely. In a second embodiment, first and second mirrors face a third mirror in a White Cell configuration, and the optical gain medium is positioned at or adjacent to one of the mirrors. Defocusing means and optical gain medium cooling means are optionally provided with either embodiment, to controllably defocus the light beam, to cool the optical gain medium and to suppress thermal lensing in the gain medium.
Fuel injector for use in a gas turbine engine
Wiebe, David J.
2012-10-09
A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.
Film cooling from inclined cylindrical holes using large eddy simulations
NASA Astrophysics Data System (ADS)
Peet, Yulia V.
2006-12-01
The goal of the present study is to investigate numerically the physics of the flow, which occurs during the film cooling from inclined cylindrical holes, Film cooling is a technique used in gas turbine industry to reduce heat fluxes to the turbine blade surface. Large Eddy Simulation (LES) is performed modeling a realistic film cooling configuration, which consists of a large stagnation-type reservoir, feeding an array of discrete cooling holes (film holes) flowing into a flat plate turbulent boundary layer. Special computational methodology is developed for this problem, involving coupled simulations using multiple computational codes. A fully compressible LES code is used in the area above the flat plate, while a low Mach number LES code is employed in the plenum and film holes. The motivation for using different codes comes from the essential difference in the nature of the flow in these different regions. Flowfield is analyzed inside the plenum, film hole and a crossflow region. Flow inside the plenum is stagnating, except for the region close to the exit, where it accelerates rapidly to turn into the hole. The sharp radius of turning at the trailing edge of the plenum pipe connection causes the flow to separate from the downstream wall of the film hole. After coolant injection occurs, a complex flowfield is formed consisting of coherent vortical structures responsible for bringing hot crossflow fluid in contact with the walls of either the film hole or the blade, thus reducing cooling protection. Mean velocity and turbulent statistics are compared to experimental measurements, yielding good agreement for the mean flowfield and satisfactory agreement for the turbulence quantities. LES results are used to assess the applicability of basic assumptions of conventional eddy viscosity turbulence models used with Reynolds-averaged (RANS) approach, namely the isotropy of an eddy viscosity and thermal diffusivity. It is shown here that these assumptions do not hold for the film cooling flows. Comparison of film cooling effectiveness with experiments shows fair agreement for the centerline and laterally-averaged effectiveness. Lateral growth of the jet as judged from the lateral distribution of effectiveness is predicted correctly.
NASA Technical Reports Server (NTRS)
Acosta, W. A.; Norgren, C. T.
1986-01-01
Combustor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combustor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1)splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels.
NASA Technical Reports Server (NTRS)
Acosta, W. A.; Norgren, C. T.
1986-01-01
Combustor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combustor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1) splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels.
2008-09-01
TWO-PHASE FLOW IN HIGH-HEAT-FLUX MICRO-CHANNEL HEAT SINK FOR REFRIGERATION COOLING APPLICATIONS (Contract No. N00014-05-1-0408) by Issam Mudawar ...Refrigeration Cooling Applications 5b. GRANT NUMBER N00014-04-1-0408 5c. PROGRAM ELEMENT NUMBER NA 6. AUTHOR(S) 5d. PROJECT NUMBER Mudawar , Issam NA...ABSTRACT OF Mudawar , Issam PAGES U U U UU 465 19b. TELEPHONE NUMBER (Include area code) 765-494-5705 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std
NASA Technical Reports Server (NTRS)
Goldman, L. J.; Mclallin, K. L.
1975-01-01
The aerodynamic performance of four different cooled vane configurations was experimentally determined in a full-annular cascade at a primary- to coolant-total-temperature ratio of 1.0. The vanes were tested over a range of coolant flow rates and pressure ratios. Overall vane efficiencies were obtained and compared, where possible, with the results obtained in a four-vane, annular-sector cascade. The vane efficiency and exit flow conditions as functions of radial position were also determined and compared with solid (uncooled) vane results.
Near-wall serpentine cooled turbine airfoil
Lee, Ching-Pang
2014-10-28
A serpentine coolant flow path is formed by inner walls in a cavity between pressure and suction side walls of a turbine airfoil, the cavity partitioned by one or more transverse partitions into a plurality of continuous serpentine cooling flow streams each having a respective coolant inlet.
Flow directing means for air-cooled transformers
Jallouk, Philip A.
1977-01-01
This invention relates to improvements in systems for force-cooling transformers of the kind in which an outer helical winding and an insulation barrier nested therein form an axially extending annular passage for cooling-fluid flow. In one form of the invention a tubular shroud is positioned about the helical winding to define an axially extending annular chamber for cooling-fluid flow. The chamber has a width in the range of from about 4 to 25 times that of the axially extending passage. Two baffles extend inward from the shroud to define with the helical winding two annular flow channels having hydraulic diameters smaller than that of the chamber. The inlet to the chamber is designed with a hydraulic diameter approximating that of the coolant-entrance end of the above-mentioned annular passage. As so modified, transformers of the kind described can be operated at significantly higher load levels without exceeding safe operating temperatures. In some instances the invention permits continuous operation at 200% of the nameplate rating.
Low exchange element for nuclear reactor
Brogli, Rudolf H.; Shamasunder, Bangalore I.; Seth, Shivaji S.
1985-01-01
A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.
Inductively coupled plasma torch with laminar flow cooling
Rayson, Gary D.; Shen, Yang
1991-04-30
An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.
Serial cooling of a combustor for a gas turbine engine
Abreu, Mario E.; Kielczyk, Janusz J.
2001-01-01
A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.
Evaluation of Environmental Profiles for Reliability Demonstration
1975-09-01
the increase in the ram air flow rate. As a result, one cannot generalize in advance about the effect of velocity increase on air-conditioner turbine ...152 6.2.6.3 Forced Cooling Air Temperature/ Flow Schedule. 152 Sample Test Provile ....... .............. 154 6.2.8 Profiles for Multi...Profiles for Reliability Demonstration Study Flow ....... . ....... 7 2 Typical MIL-STD-781 Profile ................ 23 3 Test Cycle A - Ambient Cooled
NASA Astrophysics Data System (ADS)
Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.
2012-06-01
Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.
Large Eddy simulation of flat plate film cooling at high blowing ratio using open FOAM
NASA Astrophysics Data System (ADS)
Baagherzadeh Hushmandi, Narmin
2017-12-01
In this work, numerical analysis was performed to predict the behaviour of high Reynolds number turbulent cross-flows used in film cooling applications. The geometry included one row of three discrete coolant holes inclined at 30 degrees to the main flow. In the computational model, the width of the channel was cut into one sixth and symmetry boundaries were applied in the centreline of the coolant hole and along the line of symmetry between two adjacent holes. One of the main factors that affect the performance of film cooling is the blowing ratio of coolant to the main flow. A blowing ratio equal to two was chosen in this study. Analysis showed that the common practice CFD models that employ RANS equations together with turbulence modelling under predict the film cooling effectiveness up to a factor of four. However, LES method showed better agreement of film cooling effectiveness both in tendency and absolute values compared with experimental results.
Large Eddy simulation of flat plate film cooling at high blowing ratio using open FOAM
NASA Astrophysics Data System (ADS)
Baagherzadeh Hushmandi, Narmin
2018-06-01
In this work, numerical analysis was performed to predict the behaviour of high Reynolds number turbulent cross-flows used in film cooling applications. The geometry included one row of three discrete coolant holes inclined at 30 degrees to the main flow. In the computational model, the width of the channel was cut into one sixth and symmetry boundaries were applied in the centreline of the coolant hole and along the line of symmetry between two adjacent holes. One of the main factors that affect the performance of film cooling is the blowing ratio of coolant to the main flow. A blowing ratio equal to two was chosen in this study. Analysis showed that the common practice CFD models that employ RANS equations together with turbulence modelling under predict the film cooling effectiveness up to a factor of four. However, LES method showed better agreement of film cooling effectiveness both in tendency and absolute values compared with experimental results.
NASA Astrophysics Data System (ADS)
Park, Jun-Yong; Ryu, Jae Wook; Sohn, Il
2014-08-01
The in situ crystallization behavior of highly volatile commercial mold fluxes for medium carbon steels was investigated using the confocal laser scanning microscope (CLSM) equipped with an optimized isolated observation system. The highly volatile compounds of the mold flux were suppressed during heating allowing direct observation in the CLSM. Cooling rates of 25, 50, 100, 400, and 800 K/min were incorporated and continuous cooling transformation (CCT) diagrams of 4 different commercial mold fluxes for medium carbon steels were developed. Identification of the crystalline phase was conducted with XRD and SEM-EDS analysis. A cuspidine crystalline was observed in all samples at various cooling rates. With higher basicity, CaF2, and NaF, the crystallization of the fluxes was enhanced according to the CCT diagram. As the slag structure becomes depolymerized, the diffusion rate of the cathodic ions seems to increase.
NASA Astrophysics Data System (ADS)
Lodge, Robert W. D.; Lescinsky, David T.
2009-09-01
Cooling lava commonly develop polygonal joints that form equant hexagonal columns. Such fractures are formed by thermal contraction resulting in an isotropic tensional stress regime. However, certain linear cooling fracture patterns observed at some lava-ice contacts do not appear to fit the model for formation of cooling fractures and columns because of their preferred orientations. These fracture types include sheet-like (ladder-like rectangular fracture pattern), intermediate (pseudo-aligned individual column-bounding fractures), and pseudopillow (straight to arcuate fractures with perpendicular secondary fractures caused by water infiltration) fractures that form the edges of multiple columns along a single linear fracture. Despite the relatively common occurrence of these types of fractures at lava-ice contacts, their significance and mode of formation have not been fully explored. This study investigates the stress regimes responsible for producing these unique fractures and their significance for interpreting cooling histories at lava-ice contacts. Data was collected at Kokostick Butte dacite flow at South Sister, OR, and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these lava flows have been interpreted as being emplaced into contact with ice and linear fracture types have been observed on their ice-contacted margins. Two different mechanisms are proposed for the formation of linear fracture networks. One possible mechanism for the formation of linear fracture patterns is marginal bulging. Melting of confining ice walls will create voids into which flowing lava can deform resulting in margin-parallel tension causing margin-perpendicular fractures. If viewed from the ice-wall, these fractures would be steeply dipping, linear fractures. Another possible mechanism for the formation of linear fracture types is gravitational settling. Pure shear during compression and settling can result in a tensional environment with similar consequences as marginal inflation. In addition to this, horizontally propagating cooling fractures will be directly influenced by viscous strain caused by the settling of the flow. This would cause preferential opening of fractures horizontally, resulting in vertically oriented fractures. It is important to note that the proposed model for the formation of linear fractures is dependent on contact with and confinement by glacial ice. The influence of flow or movement on cooling fracture patterns has not been extensively discussed in previous modeling of cooling fractures. Rapid cooling of lava by the interaction with water and ice will increase the ability to the capture and preserve perturbations in the stress regime.
Gentle Heating by Mixing in Cooling Flow Clusters
NASA Astrophysics Data System (ADS)
Hillel, Shlomi; Soker, Noam
2017-08-01
We analyze 3D hydrodynamical simulations of the interaction of jets and the bubbles they inflate with the intracluster medium (ICM) and show that the heating of the ICM by mixing hot bubble gas with the ICM operates over tens of millions of years and hence can smooth the sporadic activity of the jets. The inflation process of hot bubbles by propagating jets forms many vortices, and these vortices mix the hot bubble gas with the ICM. The mixing, and hence the heating of the ICM, starts immediately after the jets are launched, but continues for tens of millions of years. We suggest that the smoothing of the active galactic nucleus (AGN) sporadic activity by the long-lived vortices accounts for the recent finding of a gentle energy coupling between AGN heating and the ICM.
Efremov, A A; Bratseva, I I
1985-01-01
New method for optimized computing thermoelectric coolers is proposed for the case of variable temperatures within heat-transfer media. The operation of the device is analyzed when the temperature of the cooled medium is greater than the temperature of the heated one, i. e. under conditions of the negative temperature difference. The comparative analysis of the computed and experimental data in values of the cooling and electric power demonstrates fully satisfactory results.
Structural transition in sputter-deposited amorphous germanium films by aging at ambient temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okugawa, M.; Nakamura, R., E-mail: nakamura@mtr.osakafu-u.ac.jp; Numakura, H.
The structure of amorphous Ge (a-Ge) films prepared by sputter-deposition and the effects of aging at ambient temperature and pressure were studied by pair-distribution-function (PDF) analysis from electron scattering and molecular dynamics simulations. The PDFs of the as-deposited and aged samples for 3–13 months showed that the major peaks for Ge-Ge bonds decrease in intensity and broaden with aging for up to 7 months. In the PDFs of a-Ge of molecular dynamics simulation obtained by quenching liquid at different rates, the major peak intensities of a slowly cooled model are higher than those of a rapidly cooled model. Analyses onmore » short- and medium-range configurations show that the slowly cooled model includes a certain amount of medium-range ordered (MRO) clusters, while the rapidly cooled model includes liquid-like configurations rather than MRO clusters. The similarity between experimental and computational PDFs implies that as-deposited films are similar in structure to the slowly cooled model, whereas the fully aged films are similar to the rapidly cooled model. It is assumed that as they undergo room-temperature aging, the MRO clusters disintegrate and transform into liquid-like regions in the same matrix. This transition in local configurations is discussed in terms of instability and the non-equilibrium of nanoclusters produced by a vapor-deposition process.« less
Directly connected heat exchanger tube section and coolant-cooled structure
Chainer, Timothy J.; Coico, Patrick A.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.
2015-09-15
A method is provided for fabricating a cooling apparatus for cooling an electronics rack, which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures, and a tube. The heat exchanger is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of coolant-carrying tube sections, each tube section having a coolant inlet and outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.
NASA Technical Reports Server (NTRS)
1977-01-01
A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.
Discrete Morse flow for Ricci flow and porous medium equation
NASA Astrophysics Data System (ADS)
Ma, Li; Witt, Ingo
2018-06-01
In this paper, we study the discrete Morse flow for the Ricci flow on the American football, which is the 2-sphere with the north and south poles removed and equipped with a metric g0 of constant scalar curvature, and for the porous medium equation on a bounded regular domain in the plane. We show that under suitable assumptions on the initial metric g(0) one has a weak approximate discrete Morse flow for the approximated Ricci flow and porous medium equation on any time interval.
The design of an air-cooled metallic high temperature radial turbine
NASA Technical Reports Server (NTRS)
Snyder, Philip H.; Roelke, Richard J.
1988-01-01
Recent trends in small advanced gas turbine engines call for higher turbine inlet temperatures. Advances in radial turbine technology have opened the way for a cooled metallic radial turbine capable of withstanding turbine inlet temperatures of 2500 F while meeting the challenge of high efficiency in this small flow size range. In response to this need, a small air-cooled radial turbine has been designed utilizing internal blade coolant passages. The coolant flow passage design is uniquely tailored to simultaneously meet rotor cooling needs and rotor fabrication constraints. The rotor flow-path design seeks to realize improved aerodynamic blade loading characteristics and high efficiency while satisfying rotor life requirements. An up-scaled version of the final engine rotor is currently under fabrication and, after instrumentation, will be tested in the warm turbine test facility at the NASA Lewis Research Center.
Study on the flow nonuniformity in a high capacity Stirling pulse tube cryocooler
NASA Astrophysics Data System (ADS)
You, X.; Zhi, X.; Duan, C.; Jiang, X.; Qiu, L.; Li, J.
2017-12-01
High capacity Stirling-type pulse tube cryocoolers (SPTC) have promising applications in high temperature superconductive motor and gas liquefaction. However, with the increase of cooling capacity, its performance deviates from well-accepted one-dimensional model simulation, such as Sage and Regen, mainly due to the strong field nonuniformity. In this study, several flow straighteners placed at both ends of the pulse tube are investigated to improve the flow distribution. A two-dimensional model of the pulse tube based on the computational fluid dynamics (CFD) method has been built to study the flow distribution of the pulse tube with different flow straighteners including copper screens, copper slots, taper transition and taper stainless slot. A SPTC set-up which has more than one hundred Watts cooling power at 80 K has been built and tested. The flow straighteners mentioned above have been applied and tested. The results show that with the best flow straightener the cooling performance of the SPTC can be significantly improved. Both CFD simulation and experiment show that the straighteners have impacts on the flow distribution and the performance of the high capacity SPTC.
Seebacher, F
2000-03-21
Thermally-induced changes in heart rate and blood flow in reptiles are believed to be of selective advantage by allowing animal to exert some control over rates of heating and cooling. This notion has become one of the principal paradigms in reptilian thermal physiology. However, the functional significance of changes in heart rate is unclear, because the effect of heart rate and blood flow on total animal heat transfer is not known. I used heat transfer theory to determine the importance of heat transfer by blood flow relative to conduction. I validated theoretical predictions by comparing them with field data from two species of lizard, bearded dragons (Pogona barbata) and lace monitors (Varanus varius). Heart rates measured in free-ranging lizards in the field were significantly higher during heating than during cooling, and heart rates decreased with body mass. Convective heat transfer by blood flow increased with heart rate. Rates of heat transfer by both blood flow and conduction decreased with mass, but the mass scaling exponents were different. Hence, rate of conductive heat transfer decreased more rapidly with increasing mass than did heat transfer by blood flow, so that the relative importance of blood flow in total animal heat transfer increased with mass. The functional significance of changes in heart rate and, hence, rates of heat transfer, in response to heating and cooling in lizards was quantified. For example, by increasing heart rate when entering a heating environment in the morning, and decreasing heart rate when the environment cools in the evening a Pogona can spend up to 44 min longer per day with body temperature within its preferred range. It was concluded that changes in heart rate in response to heating and cooling confer a selective advantage at least on reptiles of mass similar to that of the study animals (0. 21-5.6 kg). Copyright 2000 Academic Press.
Experimental study of porous media flow using hydro-gel beads and LED based PIV
NASA Astrophysics Data System (ADS)
Harshani, H. M. D.; Galindo-Torres, S. A.; Scheuermann, A.; Muhlhaus, H. B.
2017-01-01
A novel experimental approach for measuring porous flow characteristics using spherical hydro-gel beads and particle image velocimetry (PIV) technique is presented. A transparent porous medium consisting of hydro-gel beads that are made of a super-absorbent polymer, allows using water as the fluid phase while simultaneously having the same refractive index. As a result, a more adaptable and cost effective refractive index matched (RIM) medium is created. The transparent nature of the porous medium allows optical systems to visualize the flow field by using poly-amide seeding particles (PSP). Low risk light emitting diode (LED) based light was used to illuminate the plane in order to track the seeding particles’ path for the characterization of the flow inside the porous medium. The system was calibrated using a manually measured flow by a flow meter. Velocity profiles were obtained and analysed qualitatively and quantitatively in order to characterise the flow. Results show that this adaptable, low risk experimental set-up can be used for flow measurements in porous medium under low Reynolds numbers. The limitations of using hydro-gel beads are also discussed.
Water consumption by nuclear powerplants and some hydrological implications
Giusti, Ennio V.; Meyer, E.L.
1977-01-01
Published data show that estimated water consumption varies with the cooling system adopted, being least in once-through cooling (about 18 cubic feet per second per 1,000 megawatts electrical) and greatest in closed cooling with mechanical draft towers (about 30 cubic feet per second per 1,000 megawatts electrical). When freshwater is used at this magnitude, water-resources economy may be affected in a given region. The critical need for cooling water at all times by the nuclear powerplant industry, coupled with the knowledge that water withdrawal in the basin will generally increase with time and will be at a maximum during low-flow periods, indicates a need for reexamination of the design low flow currently adopted and the methods used to estimate it. The amount of power generated, the name of the cooling water source, and the cooling method adopted for all nuclear powerplants projected to be in operation by 1985 in the United States are tabulated and the estimated annual evaporation at each powerplant site is shown on a map of the conterminous United States. Another map is presented that shows all nuclear powerplants located on river sites as well as stream reaches in the United States where the 7-day, 10-year low flow is at least 300 cubic feet per second or where this amount of flow can be developed with storage. (Woodard-USGS)
Experimental studies of shock-wave/wall-jet interaction in hypersonic flow
NASA Technical Reports Server (NTRS)
Holden, Michael S.; Rodriguez, Kathleen
1994-01-01
Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not significantly reduced by even the largest levels of film cooling. For the case studies in the absence of film cooling, the interaction regions were unseparated. However, adding film cooling resulted in regions of boundary layer separation induced in the film cooling layer -- the size of which regions first increased and then decreased with increased film cooling. Surprisingly, the size of the separated regions and the magnitude of the recompression heating were not strongly influenced by the thickness of the cooling film, nor by the point of shock impingement relative to the exit plane of the nozzles. The lip thickness was found to have little effect on cooling effectiveness. Measurements with and in the absence of shock interaction were compared with the results of earlier experimental studies and correlated in terms of the major parameters controlling these flows.
Experimental studies of shock-wave/wall-jet interaction in hypersonic flow, part A
NASA Technical Reports Server (NTRS)
Holden, Michael S.; Rodriguez, Kathleen
1994-01-01
Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident-shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not significantly reduced by even the largest levels of film cooling. For the case studies in the absence of film cooling, the interaction regions were unseparated. However, adding film cooling resulted in regions of boundary layer separation induced in the film cooling layer, the size of which regions first increased and then decreased with increased film cooling. Surprisingly, the size of the separated regions and the magnitude of the recompression heating were not strongly influenced by the thickness of the cooling film, nor by the point of shock impingement relative to the exit plane of the nozzles. The lip thickness was found to have little effect on cooling effectiveness. Measurements with and in the absence of shock interaction were compared with the results of earlier experimental studies and correlated in terms of the major parameters controlling these flows.
NASA Astrophysics Data System (ADS)
Pittard, J. M.; Dobson, M. S.; Durisen, R. H.; Dyson, J. E.; Hartquist, T. W.; O'Brien, J. T.
2005-07-01
We present hydrodynamical calculations of radiative shocks with low Mach numbers and find that the well-known global overstability can occur if the temperature exponent (α) of the cooling is sufficiently negative. We find that the stability of radiative shocks increases with decreasing Mach number, with the result that M=2 shocks require α ⪉ -1.2 in order to be overstable. Such values occur within a limited temperature range of many cooling curves. We observe that Mach numbers of order 100 are needed before the strong shock limit of α_cr ≈ 0.4 is reached, and we discover that the frequency of oscillation of the fundamental mode also has a strong Mach number dependence. We find that feedback between the cooling region and the cold dense layer (CDL) further downstream is a function of Mach number, with stronger feedback and oscillation of the boundary between the CDL and the cooling region occuring at lower Mach numbers. This feedback can be quantified in terms of the reflection coefficient of sound waves, and in those cases where the cooling layer completely disappears at the end of each oscillation cycle, the initial velocity of the waves driven into the upstream pre-shock flow and into the downstream CDL, and the velocity of the the boundary between the CDL and the cooling layer, can be understood in terms of the solution to the Riemann problem. An interesting finding is that the stability properties of low Mach number shocks can be dramatically altered if the shocked gas is able to cool to temperatures less than the pre-shock value (i.e. when χ < 1, where χ is the ratio of the temperature of the cold dense layer to the pre-shock temperature). In such circumstances, low Mach number shocks have values of α_cr which are comparable to values obtained for higher Mach number shocks when χ = 1. For instance, α_cr=-0.1 when M=2 and χ=0.1, comparable to that when M=10 and χ=1. Thus, it is probable that low Mach number astrophysical shocks will be overstable in a variety of situations. We also explore the effect of different assumptions for the initial hydrodynamic set up and the type of boundary condition imposed downstream, and find that the properties of low Mach number shocks are relatively insensitive to these issues. The results of this work are relevant to astrophysical shocks with low Mach numbers, such as supernova remnants (SNRs) immersed in a hot interstellar medium (e.g., within a starburst region), and shocks in molecular clouds, where time-dependent chemistry can lead to overstability.
Hybrid radiator cooling system
France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.
2016-03-15
A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.
NASA Technical Reports Server (NTRS)
Hicks, A. K.; Mushotzky, R.
2006-01-01
We have analyzed XMM-Newton Optical Monitor (OM) UV (180-400 nm) data for a sample of 33 galaxies. 30 are cluster member galaxies, and nine of these are central cluster galaxies (CCGs) in cooling flow clusters having mass deposition rates which span a range of 8 - 525 Solar Mass/yr. By comparing the ratio of UV to 2MASS J band fluxes, we find a significant UV excess in many, but not all, cooling flow CCGs, a finding consistent with the outcome of previous studies based on optical imaging data (McNamara & O'Connell 1989; Cardiel, Gorgas, & Aragon-Salamanca 1998; Crawford et al. 1999). This UV excess is a direct indication of the presence of young massive stars, and therefore recent star formation, in these galaxies. Using the Starburst99 spectral energy distribution (SED) model of continuous star formation over a 900 Myr period, we derive star formation rates of 0.2 - 219 solar Mass/yr for the cooling flow sample. For 2/3 of this sample it is possible to equate Chandra/XMM cooling flow mass deposition rates with UV inferred star formation rates, for a combination of starburst lifetime and IMF slope. This is a pilot study of the well populated XMM UV cluster archive and a more extensive follow up study is currently underway.
Methods for forming wellbores in heated formations
Guimerans, Rosalvina Ramona; Mansure, Arthur James
2012-09-25
A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.
Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels
NASA Astrophysics Data System (ADS)
Kosaraju, Srinivas
2017-11-01
The layout of T- and V-shaped flow channel networks on a surface can be optimized for minimum pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, an effort has been made to study the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same input parameters and heat generation constraints. Comparisons are made with similar results published in literature.
A quiet tunnel investigation of hypersonic boundary-layer stability over a cooled, flared cone
NASA Technical Reports Server (NTRS)
Blanchard, Alan E.; Selby, Gregory V.; Wilkinson, Stephen P.
1996-01-01
A flared-cone model under adiabatic and cooled-wall conditions was placed in a calibrated, low-disturbance Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N = 10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows under low freestream noise conditions was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of spectral data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions.
Analysis of the cooling of continuous flow helium cryostats
NASA Astrophysics Data System (ADS)
Pust, L.
A mathematical model of the cooling of a continuous-flow cryostat which takes into account real values of the specific and latent heat of the cryogenic fluid and of the specific heat of the cryostat material is presented. The amount of liquid in the cooling fluid and four parasitic heat flows, caused by radiation and heat conduction in the construction materials and in the rest gas in the vacuum insulation, are also taken into account. The influence of different model parameters on performance, particularly in the non-stationary regime, is demonstrated by means of numerical solutions of the modelling equations. A quantitative criterion which assesses the properties of the planned cryostat, is formulated. The theoretical conclusions are compared with measurements performed on a continuous flow helium cryostat.
NASA Astrophysics Data System (ADS)
El Ayoubi, Carole; Hassan, Ibrahim; Ghaly, Wahid
2012-11-01
This paper aims to optimize film coolant flow parameters on the suction surface of a high-pressure gas turbine blade in order to obtain an optimum compromise between a superior cooling performance and a minimum aerodynamic penalty. An optimization algorithm coupled with three-dimensional Reynolds-averaged Navier Stokes analysis is used to determine the optimum film cooling configuration. The VKI blade with two staggered rows of axially oriented, conically flared, film cooling holes on its suction surface is considered. Two design variables are selected; the coolant to mainstream temperature ratio and total pressure ratio. The optimization objective consists of maximizing the spatially averaged film cooling effectiveness and minimizing the aerodynamic penalty produced by film cooling. The effect of varying the coolant flow parameters on the film cooling effectiveness and the aerodynamic loss is analyzed using an optimization method and three dimensional steady CFD simulations. The optimization process consists of a genetic algorithm and a response surface approximation of the artificial neural network type to provide low-fidelity predictions of the objective function. The CFD simulations are performed using the commercial software CFX. The numerical predictions of the aero-thermal performance is validated against a well-established experimental database.
NASA Technical Reports Server (NTRS)
David, Laurence P.; Jones, Christine; Forman, William; Daines, Stuart
1994-01-01
The NGC 5044 group of galaxies was observed by the ROSAT Position Sensitive Proportional Counter (PSPC) for 30 ks during its reduced pointed phase (1991 July). Due to the relatively cool gas temperature in the group (kT = 0.98 +/- 0.02 keV) and the excellent photon statistics (65,000 net counts), we are able to determine precisely a number of fundamental properties of the group within 250 kpc of the central galaxy. In particular, we present model-independent measurements of the total gravitating mass, the temperature and abundance profiles of the gas, and the mass accretion rate. Between 60 and 250 kpc, the gas is nearly isothermal with T varies as r(exp (-0.13 +/- 0.03)). The total gravitating mass of the group can be unambiguously determined from the observed density and temperature profiles of the gas using the equation of hydrostatic equilibrium. Within 250 kpc, the gravitating mass is 1.6 x 10(exp 13) solar mass, yielding a mass-to-light ratio of 130 solar mass/solar luminosity. The baryons (gas and stars) comprise 12% of the total mass within this radius. At small radii, the temperature clearly increases outward and attains a maximum value at 60 kpc. The positive temperature gradient in the center of the group confirms the existence of a cooling flow. The cooling flow region extends well beyond the temperature maximum with a cooling radius between 100 and 150 kpc. There are two distinct regions in the cooling flow separated by the temperature maximum. In the outer region, the gas is nearly isothermal with a unifor m Fe abundance of approximately 80% solar, the flow is nearly homogeneous with dot-M= 20 to 25 solar mass/year, the X-ray contours are spherically symmetric, and rho(sub gas) varies as r(exp -1.6). In the inner region, the temperature profile has a positive gradient, the mass accretion rate decreases rapidly inward, the gas density profile is steeper, and the X-ray image shows some substrucutre. NGC 5044 is offset from the centroid of the outer X-ray contours indicating that the central galaxy may have a residual velocity with respect to the center of the group potential. There is also a linear X-ray feature with an extent of approximately 30 kpc with one end coincident with NGC 5044. The X-ray emission from this feature is softer than the ambient gas. We interpret this feature as a 'cooling wake' formed by the accreting gas as it is gravitationally focused into the wake of NGC 5044. One of the most surprising results of our PSPC observation is the discovery of a nearly homogeneous cooling flow. Prior results concerning the mass accretion profile in cooling flows indicate that dot-M varies as r. This relation implies that significant mass deposition occurs at large radii which generates an inhomogeneous flow. The mass accretion rate in the NGC 5044 group is essentially a constant beyond 40 kpc (well within the cooling radius). Significant mass deposition (a declining dot-M) does not commence until the gas accretes to within 40 kpc of the group center where the radiative cooling time is approximately equals 10(exp 9) year. Th is radius also corresponds to the temperature maximum, the break in gas density profile, and the onset of structure in the X-ray image. A Hubble constant of H(sub 0) = 50 km/sec/Mpc is used throughout the paper.
NASA Astrophysics Data System (ADS)
Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.
2015-12-01
Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.
A simplified simulation model for a HPDC die with conformal cooling channels
NASA Astrophysics Data System (ADS)
Frings, Markus; Behr, Marek; Elgeti, Stefanie
2017-10-01
In general, the cooling phase of the high-pressure die casting process is based on complex physical phenomena: so-lidification of molten material; heat exchange between cast part, die and cooling fluid; turbulent flow inside the cooling channels that needs to be considered when computing the heat flux; interdependency of properties and temperature of the cooling liquid. Intuitively understanding and analyzing all of these effects when designing HPDC dies is not feasible. A remedy that has become available is numerical design, based for example on shape optimization methods. However, current computing power is not sufficient to perform optimization while at the same time fully resolving all physical phenomena. But since in HPDC suitable objective functions very often lead to integral values, e.g., average die temperature, this paper identifies possible simplifications in the modeling of the cooling phase. As a consequence, the computational effort is reduced to an acceptable level. A further aspect that arises in the context of shape optimization is the evaluation of shape gradients. The challenge here is to allow for large shape deformations without remeshing. In our approach, the cooling channels are described by their center lines. The flow profile of the cooling fluid is then estimated based on experimental data found in literature for turbulent pipe flows. In combination, the heat flux throughout cavity, die, and cooling channel can be described by one single advection-diffusion equation on a fixed mesh. The parameters in the equation are adjusted based on the position of cavity and cooling channel. Both results contribute towards a computationally efficient, yet accurate method, which can be employed within the frame of shape optimization of cooling channels in HPDC dies.
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Thurman, Douglas R.; Poinsatte, Philip E.; Ameri, Ali A.; Culley, Dennis E.
2018-01-01
Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. Ways to quantify the efficacy of novel cooling holes that are asymmetric, not uniformly spaced or that show variation from hole to hole are presented. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and square holes. A patent-pending spiral hole design showed the highest potential of the nondiffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing ratios of 1.0, 1.5, 2.0, and 2.5 at a density ratio of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS. A section on ideas for future work is included that addresses issues of quantifying cooling uniformity and provides some ideas for changing the way we think about cooling such as changing the direction of cooling or coupling acoustic devices to cooling holes to regulate frequency.
Formation of Cool Cores in Galaxy Clusters via Hierarchical Mergers
NASA Astrophysics Data System (ADS)
Motl, Patrick M.; Burns, Jack O.; Loken, Chris; Norman, Michael L.; Bryan, Greg
2004-05-01
We present a new scenario for the formation of cool cores in rich galaxy clusters, based on results from recent high spatial dynamic range, adaptive mesh Eulerian hydrodynamic simulations of large-scale structure formation. We find that cores of cool gas, material that would be identified as a classical cooling flow on the basis of its X-ray luminosity excess and temperature profile, are built from the accretion of discrete stable subclusters. Any ``cooling flow'' present is overwhelmed by the velocity field within the cluster; the bulk flow of gas through the cluster typically has speeds up to about 2000 km s-1, and significant rotation is frequently present in the cluster core. The inclusion of consistent initial cosmological conditions for the cluster within its surrounding supercluster environment is crucial when the evolution of cool cores in rich galaxy clusters is simulated. This new model for the hierarchical assembly of cool gas naturally explains the high frequency of cool cores in rich galaxy clusters, despite the fact that a majority of these clusters show evidence of substructure that is believed to arise from recent merger activity. Furthermore, our simulations generate complex cluster cores in concordance with recent X-ray observations of cool fronts, cool ``bullets,'' and filaments in a number of galaxy clusters. Our simulations were computed with a coupled N-body, Eulerian, adaptive mesh refinement, hydrodynamics cosmology code that properly treats the effects of shocks and radiative cooling by the gas. We employ up to seven levels of refinement to attain a peak resolution of 15.6 kpc within a volume 256 Mpc on a side and assume a standard ΛCDM cosmology.
Economic analysis of condensers for water recovery in steam injected gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Paepe, M.; Huvenne, P.; Dick, E.
1998-07-01
Steam injection cycles are interesting for small power ranges because of the high efficiency and the relatively low investment costs. A big disadvantage is the consumption of water by the cycle. Water recovery is seldom realized in industrial practice. In this paper an analysis of the technical and economical possibilities of water recovery by condensation of water out of the exhaust gases is made. Three gas turbines are considered : the Kawasaki M1A-13CC (2.3 MWe), the Allison 501KH (6.8 MWe) and the General Electric LM1600 (17 MWe). For every gas turbine two types of condensers are designed. In the watermore » cooled condenser finned tubes are used to cool the exhaust gases, flowing at the outside of the tubes. The water itself flows at the inside of the tubes and is cooled by a water to air cooler. In the air cooled condenser the exhaust gases flow at the inside of the tubes and the cooling air at the outside. The investment costs of the condensers is compared to the costs of the total installation. The investment costs are relatively smaller if the produced power goes up. The water cooled condenser with water to air cooler is cheaper than the air cooled condenser. Using a condenser results in higher exploitation costs due to the fans and pumps. It is shown that the air cooled condenser has lower exploitation costs than the water cooled one. Pay back time of the total installation does not significantly vary compared to the installation without recovery. Water prices are determined for which water recovery is profitable. For the water cooled condenser the turning point lies at 2.2 Euro/m; for the air cooled condenser this is 0.6 Euro/m.« less
Liquid Hydrogen Recirculation System for Forced Flow Cooling Test of Superconducting Conductors
NASA Astrophysics Data System (ADS)
Shirai, Y.; Kainuma, T.; Shigeta, H.; Shiotsu, M.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.; Yoshinaga, S.
2017-12-01
The knowledge of forced flow heat transfer characteristics of liquid hydrogen (LH2) is important and necessary for design and cooling analysis of high critical temperature superconducting devices. However, there are few test facilities available for LH2 forced flow cooling for superconductors. A test system to provide a LH2 forced flow (∼10 m/s) of a short period (less than 100 s) has been developed. The test system was composed of two LH2 tanks connected by a transfer line with a controllable valve, in which the forced flow rate and its period were limited by the storage capacity of tanks. In this paper, a liquid hydrogen recirculation system, which was designed and fabricated in order to study characteristics of superconducting cables in a stable forced flow of liquid hydrogen for longer period, was described. This LH2 loop system consists of a centrifugal pump with dynamic gas bearings, a heat exchanger which is immersed in a liquid hydrogen tank, and a buffer tank where a test section (superconducting wires or cables) is set. The buffer tank has LHe cooled superconducting magnet which can produce an external magnetic field (up to 7T) at the test section. A performance test was conducted. The maximum flow rate was 43.7 g/s. The lowest temperature was 22.5 K. It was confirmed that the liquid hydrogen can stably circulate for 7 hours.
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Shyam, Vikram; Rigby, David; Poinsatte, Phillip; Thurman, Douglas; Steinthorsson, Erlendur
2014-01-01
Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations that are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminar/turbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes that take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-Heat-Transfer (Glenn-HT) code and applied to film-cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30deg holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and two blowing ratios of 0.5 and 1.0 are shown. Flow features under those conditions are also described.
NASA Technical Reports Server (NTRS)
Ameri, Ali; Shyam, Vikram; Rigby, David; Poinsatte, Phillip; Thurman, Douglas; Steinthorsson, Erlendur
2014-01-01
Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations that are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminar/turbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes that take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-Heat-Transfer (Glenn-HT) code and applied to film-cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30deg holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and two blowing ratios of 0.5 and 1.0 are shown. Flow features under those conditions are also described.
Thermohydraulic behavior of the liquid metal target of a spallation neutron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Y.
1996-06-01
The author presents work done on three main problems. (1) Natural circulation in double coaxial cylindircal container: The thermohydraulic behaviour of the liquid metal target of the spallation neutron source at PSI has been investigated. The configuration is a natural-circulation loop in a concentric double-tube-type container. The results show that the natural-circulation loop concept is valid for the design phase of the target construction, and the current specified design criteria will be fulfilled with the proposed parameter values. (2) Flow around the window: Water experiments were performed for geometry optimisation of the window shape of the SINQ container for avoidingmore » generating recirculation zones at peripheral area and the optimal cooling of the central part of the beam entrance window. Flow visualisation technique was mainly used for various window shapes, gap distance between the window and the guide tube edge. (3) Flow in window cooling channels: Flows in narrow gaps of cooling channels of two different types of windows were studied by flow visualisation techniques. One type is a slightly curved round cooling channel and the other is hemispherical shape, both of which have only 2 mm gap distance and the water inlet is located on one side and flows out from the opposite side. In both cases, the central part of the flow area has lower velocity than peripheral area.« less
Numerical study of metal foam heat sinks under uniform impinging flow
NASA Astrophysics Data System (ADS)
Andreozzi, A.; Bianco, N.; Iasiello, M.; Naso, V.
2017-01-01
The ever-increasing demand for performance improvement and miniaturization of electronics has led to a significant generation of waste heat that must be dissipated to ensure a reliable device operation. The miniaturization of the components complicates this task. In fact, reducing the heat transfer area, at the same required heat rate, it is necessary to increase the heat flux, so that the materials operate in a temperature range suitable to its proper functioning. Traditional heat sinks are no longer capable of dissipating the generated heat and innovative approaches are needed to address the emerging thermal management challenges. Recently, heat transfer in open-cell metal foams under an impinging jet has received attention due to the considerable heat transfer potential of combining two cooling technologies: impinging jet and porous medium. This paper presents a numerical study on Finned Metal Foam (FMF) and Metal Foam (MF) heat sinks under impinging air jet cooling. The analysis is carried out by means of the commercial software COMSOL Multiphysics®. The purpose is to analyze the thermal performance of the metal foam heat sink, finned or not, varying its geometric parameters. Results are presented in terms of predicted dissipated heat rate, convective heat transfer coefficient and pressure losses.
Kotzias-Bandeira, E; Waberski, D; Weitze, K F
1997-08-01
The influence of an extended holding time at room temperature (+18 degrees C) before freezing on boar sperm quality was investigated. 17 ejaculates were collected from 5 different boars by separation in sperm rich and sperm poor fraction. The ejaculate were split, diluted 1+1 with Merck I-Medium, and submitted to three different treatments before freezing: 1. Sperm rich fraction, cooling to +20 degrees C for 1.5 h and subsequent cooling to +15 degrees C for 2.5 h; 2. Sperm rich fraction, cooling to +18 degrees C for 4 h and subsequent holding time at +18 degrees C for 16 h; 3. Whole ejaculate (sperm rich fraction plus seminal plasma), cooling to +18 degrees C for 4 h and subsequent holding time at +18 degrees C for 16 h. Subjectively assessed post thaw motility (SMOT), computer-measured motility (CMOT), and acrosome integrity (NAR), assessed by phase contrast microscopy were significantly (p < 0.05) higher after extended holding time (procedure 2 and 3) compared to short holding time (procedure 1). The exposure to seminal plasma during holding had no significant effect. Chlortetracyclin (CTC) staining of sperm membranes gave no reliable information in the presence of an EDTA-containing preservation medium, used routinely in the preservation process.
An investigation of the heat induced during ultrasonic post removal.
Ettrich, Christopher A; Labossière, Paul E; Pitts, David L; Johnson, James D
2007-10-01
The purpose of this study was to investigate the potential for temperature increase along the external root surface during ultrasonic post removal in a simulated clinical environment. Thirty-seven extracted teeth were decoronated, instrumented, and then obturated with gutta-percha and sealer. Post spaces were prepared, followed by cementation of stainless steel posts. A simulated clinical environment was created by using a polymethylmethacrylate sheet with holes custom fitted for the extracted teeth and then suspended over a heated water bath. Two thermocouples were attached at 6 and 12 mm from the top of the post along the external root surface. Teeth were divided into 3 test groups, no coolant, air-cooled, and water-cooled. Temperature changes were recorded by using a Vishay 5000 Strain Smart system. Results demonstrated that a significant difference existed in the average heat rates between the upper and lower thermocouples for no coolant and water-cooled groups at the medium setting and the air-cooled group at the high setting. The average heat rates were significantly different between the 2 thermocouples for all 3 groups when comparing the 2 ultrasonic power settings. Results indicated that the average heat rate was less for the water-cooled group when using a medium power setting.
Peinado, Charles O.; Koutz, Stanley L.
1985-01-01
A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.
Aseptic minimum volume vitrification technique for porcine parthenogenetically activated blastocyst.
Lin, Lin; Yu, Yutao; Zhang, Xiuqing; Yang, Huanming; Bolund, Lars; Callesen, Henrik; Vajta, Gábor
2011-01-01
Minimum volume vitrification may provide extremely high cooling and warming rates if the sample and the surrounding medium contacts directly with the respective liquid nitrogen and warming medium. However, this direct contact may result in microbial contamination. In this work, an earlier aseptic technique was applied for minimum volume vitrification. After equilibration, samples were loaded on a plastic film, immersed rapidly into factory derived, filter-sterilized liquid nitrogen, and sealed into sterile, pre-cooled straws. At warming, the straw was cut, the filmstrip was immersed into a 39 degree C warming medium, and the sample was stepwise rehydrated. Cryosurvival rates of porcine blastocysts produced by parthenogenetical activation did not differ from control, vitrified blastocysts with Cryotop. This approach can be used for minimum volume vitrification methods and may be suitable to overcome the biological dangers and legal restrictions that hamper the application of open vitrification techniques.
NASA Astrophysics Data System (ADS)
Lodge, R. W.; Lescinsky, D. T.
2006-12-01
Polygonal joints in lava flows ("columns") are commonly equant leading to a model of formation associated with cooling in an isotropic stress field. This model, however, does not explain rectangular columns, sheet-like fractures, fractures with crosscutting relationships, and fractures with orientations other than perpendicular to the cooling surface. These fracture patterns are often observed at glaciated volcanoes. The presence of preferential fracture orientations suggests an applied stress component likely due to environmental conditions such as the presence of glaciers or flow dynamics such as down-slope settling or flow margin inflation. During this study we investigated the formation and significance of these non-equant fracture patterns to propose a model for their formation. These `abnormal' fracture patterns have not been discussed in the literature and may be important to better understanding the cooling conditions of such lava flows. To test these possibilities we studied Kokostick Butte dacite flow, OR (near South Sister), and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these flows have well developed sheet-like fractures and display evidence of ice-contact during eruption and emplacement. Sheet fractures are long and continuous fractures that have perpendicular connecting fractures forming rectangular columns. The sheet-like fractures are largely parallel to each other on the exposure surface and the connecting fractures vary locally from primary fractures (associated with cooling toward flow interior) to secondary fractures (associated with cooling by water infiltration). Detailed measurements of fracture orientations and spacing were collected at Kokostick Butte and Mazama Ridge to examine the relationship between the sheet fractures and flow geometry. Preliminary results support this relationship and suggest these patterns likely form due to shear associated with small amounts of flow advance by the rapidly cooling lava. Laboratory studies have been undertaken to complement the field observations and measurements. Starch- water experiments have been proven a useful analogue for lava column formation. Various experimental setups involving different mixture thicknesses and compression of the mixture were utilized to simulate the stresses acting during ponding of lava against glacial ice and to produce different fracture morphologies and patterns. Initial results show that compression of the starch slurry results in non-equant fracture patterns with some sheet-like fracturing present.
NASA Astrophysics Data System (ADS)
Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur
2017-06-01
The present study aimed to evaluate the feasibility of coconut coir pads, jute fiber pads and sackcloth pads as alternative pad materials. Experimental measurements were conducted and the experimental data were quantitative. The experimental work mainly focused on the effects of different types and thicknesses of evaporative cooling pads by using forced draft fan while changing the environmental conditions. Experiments are conducted in a specifically constructed test chamber having dimensions of 12'X8'X8', using a number of cooling pads (36"X26") with a variable thickness parameters of the evaporative cooling pads i.e., 50, 75 and 100 mm. Moreover, the experimental work involved the measurement of environmental parameters such as temperature, relative humidity, air velocity, water mass flow rate and pressure drops at different times during the day. Experiments were conducted at three different water mass flow rates (0.25 kgs-1, 0.40 kgs-1 & 0.55 kgs-1) and three different air velocities (3.6 ms-1, 4.6 ms-1& 5.6 ms-1). There was a significant difference between evaporative cooling pad types and cooling efficiency. The coconut coir pads yielded maximum cooling efficiency of 85%, whereas other pads yielded the following maximum cooling efficiency: jute fiber pads 78% and sackcloth 69% for higher air velocity and minimum mass flow rate. It is found that the maximum reduction in temperature between cooling pad inlet and outlet is 4°C with a considerable increase in humidity. With the increase of pad thickness there was an increment of cooling efficiency. The results obtained for environmental factors, indicated that there was a significant difference between environmental factors and cooling efficiency. In terms of the effect of air velocity on saturation efficiency and pressure drop, higher air velocity decreases saturation efficiency and increases pressure drop across the wetted pad for maximum flow rate. Convective heat transfer co-efficient has an almost linear relationship with air Velocity. Water consumption or evaporation rate increases with the increase in air velocity. Finally, the present study indicated that the coconut coir pads perform better than the other evaporative cooling pads and have higher potential as wetted-pad material. The outcomes of this study can provide an effective and low-cost solution in the form of evaporative cooling system, especially in an agricultural country like Bangladesh.
Cooling system for removing metabolic heat from an hermetically sealed spacesuit
NASA Technical Reports Server (NTRS)
Webbon, B. W.; Vykukal, H. C.; Williams, B. A. (Inventor)
1978-01-01
An improved cooling and ventilating system is described for removing metabolic heat, waste gases and water vapor generated by a wearer of an hermetically sealed spacesuit. The cooling system was characterized by a body suit, having a first circuit for simultaneously establishing a cooling flow of water through the thorax and head sections of the body suit. Circulation patches were included mounted in the thorax section and head section of the body suit. A second circuit for discharing a flow of gas throughout the spacesuit and a disconnect unit for coupling the circuits with a life support system externally related to the spacesuit were provided.
Analysis of film cooling in rocket nozzles
NASA Technical Reports Server (NTRS)
Woodbury, Keith A.; Karr, Gerald R.
1992-01-01
Progress during the reporting period is summarized. Analysis of film cooling in rocket nozzles by computational fluid dynamics (CFD) computer codes is desirable for two reasons. First, it allows prediction of resulting flow fields within the rocket nozzle, in particular the interaction of the coolant boundary layer with the main flow. This facilitates evaluation of potential cooling configurations with regard to total thrust, etc., before construction and testing of any prototype. Secondly, CFD simulation of film cooling allows for assessment of the effectiveness of the proposed cooling in limiting nozzle wall temperature rises. This latter objective is the focus of the current work. The desired objective is to use the Finite Difference Navier Stokes (FDNS) code to predict wall heat fluxes or wall temperatures in rocket nozzles. As prior work has revealed that the FDNS code is deficient in the thermal modeling of boundary conditions, the first step is to correct these deficiencies in the FDNS code. Next, these changes must be tested against available data. Finally, the code will be used to model film cooling of a particular rocket nozzle. The third task of this research, using the modified code to compute the flow of hot gases through a nozzle, is described.
Study of design and technology factors influencing gas turbine blade cooling
NASA Astrophysics Data System (ADS)
Shevchenko, I. V.; Garanin, I. V.; Rogalev, A. N.; Kindra, V. O.; Khudyakova, V. P.
2017-11-01
The knowledge of aerodynamic and thermal parameters of turbulators used in order to design an efficient blade cooling system. However, all experimental tests of the hydraulic and thermal characteristics of the turbulators were conducted on the rectangular shape channels with a strongly defined air flow direction. The actual blades have geometry of the channels that essentially differs from the rectangular shape. Specifically, the air flow in the back cavity of a blade with one and half-pass cooling channel changes its direction throughout the feather height. In most cases the ribs and pins are made with a tilt to the channel walls, which is determined by the moving element design of a mould for the ceramic rod element fabrication. All of the factors described above may result in the blade thermohydraulic model being developed failing to fully simulate the air flow and the heat exchange processes in some sections of the cooling path. Hence, the design temperature field will differ from the temperature field of an actual blade. This article studied the numerical data of design and technology factors influencing heat transfer in the cooling channels. The results obtained showed their substantial impact on the blade cooling efficiency.
System and method for cooling a combustion gas charge
Massey, Mary Cecelia; Boberg, Thomas Earl
2010-05-25
The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.
Method and apparatus for adapting steady flow with cyclic thermodynamics
Swift, Gregory W.; Reid, Robert S.; Ward, William C.
2000-01-01
Energy transfer apparatus has a resonator for supporting standing acoustic waves at a selected frequency with a steady flow process fluid thermodynamic medium and a solid medium having heat capacity. The fluid medium and the solid medium are disposed within the resonator for thermal contact therebetween and for relative motion therebetween. The relative motion is produced by a first means for producing a steady velocity component and second means for producing an oscillating velocity component at the selected frequency and concomitant wavelength of the standing acoustic wave. The oscillating velocity and associated oscillating pressure component provide energy transfer between the steady flow process fluid and the solid medium as the steady flow process fluid moves through the resonator.
Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path
Hunsbedt, Anstein; Boardman, Charles E.
1993-01-01
A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.
NASA Astrophysics Data System (ADS)
Gokce, Zeki Ozgur
The gas turbine is one of the most important parts of the air-breathing jet engine. Hence, improving its efficiency and rendering it operable under high temperatures are constant goals for the aerospace industry. Two types of flow within the gas turbine are of critical relevance: The flow around the first row of stator blades (also known as the nozzle guide vane blade - NGV) and the cooling flow inside the turbine blade cooling channel. The subject of this thesis work was to search for methods that could improve the characteristics of these two types of flows, thus enabling superior engine performance. The innovative aspect of our work was to apply an endwall shape modification previously employed by non-aerospace industries for cooling applications, to the gas turbine cooling flow which is vital to aerospace propulsion. Since the costs of investigating the possible benefits of any idea via extensive experiments could be quite high, we decided to use computational fluid dynamics (CFD) followed by experimentation as our methodology. We decided to analyze the potential benefits of using vortex generators (VGs) as well as the rectangular endwall fence. Since the pin-fins used in cooling flow are circular cylinders, and since the boundary layer flow is mainly characterized by the leading edge diameter of the NGV blade, we modeled both the pin-fins and the NGV blade as vertical circular cylinders. The baseline case consisted of the cylinder(s) being subjected to cross flow and a certain amount of freestream turbulence. The modifications we made on the endwall consisted of rectangular fences. In the case of the cooling flow, we used triangular shaped, common flow up oriented, delta winglet type vortex generators as well as rectangular endwall fences. The channel contained singular cylinders as well as staggered rows of multiple cylinders. For the NGV flow, a rectangular endwall fence and a singular cylinder were utilized. Using extensive CFD modeling and analysis, we confirmed that placing a rectangular endwall fence upstream of the cylinder created additional turbulent mixing in the domain. This led to increased mixing of the cooler flow in the freestream and the hotter flow near the endwall. As a result, we showed that adding a rectangular fence created a 10% mean heat transfer increase downstream of the cylinder. When vortex generators are used, as the flow passes over the sharp edges of the vortex generators, it separates and continues downstream in a rolling, helical pattern. Combined with the effect generated by the orientation of the vortex generators, this flow structure mixes the higher momentum fluid in the freestream with lower momentum fluid in the boundary layer. Similar turbulent mixing behavior is observed over the entire domain, near the cylinders and the side walls. As a result, the heat transfer levels over the wall surfaces are increased and improved cooling is achieved. The improvements in heat transfer are obtained at the expense of acceptable pressure losses across the cooling channel. When the vortex generators are used, the CFD modeling studies showed that overall heat transfer improvements as high as 27% compared to the baseline case are observed inside a domain containing multiple rows of cylinders. A price in the form of 13% pressure loss increase across the channel is paid for the heat transfer benefits. Experiments conducted in the open loop wind tunnel of the Turbomachinery Aero-Heat Transfer Laboratory of the Department of Aerospace Engineering of Penn State University supported the general positive trend of these findings, with a 14% overall increase in heat transfer over the constant heat flux surface when vortex generators are installed, accompanied by an 8% increase in pressure loss. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Georgiadis, Nicholas J.; Locke, Randy J.
2018-01-01
Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient thin film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better turbulence models. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity and also the mean temperature and normalized root mean square (rms) temperatures in a single injector cooling flow arrangement. In addition to flowfield measurements, thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures and Mach numbers, across a 30.48 cm long plate equipped with a single injector cooling hole. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 15 axial stations were collected in the same flows. The velocity and temperature data were then compared against Wind-US CFD code predictions for the same flow conditions. The results of this and planned follow-on studies will support NASA's development and assessment of turbulence models for heated flows.
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Georgiadis, Nicholas J.; Locke, Randy J.
2018-01-01
Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient thin film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better turbulence models. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity and also the mean temperature and normalized root mean square (rms) temperatures in a single injector cooling flow arrangement. In addition to flowfield measurements, thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures and Mach numbers, across a 30.48cm long plate equipped with a single injector cooling hole. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 15 axial stations were collected in the same flows. The velocity and temperature data were then compared against Wind-US CFD code predictions for the same flow conditions. The results of this and planned follow-on studies will support NASA's development and assessment of turbulence models for heated flows.
Liquid cooling applications on automotive exterior LED lighting
NASA Astrophysics Data System (ADS)
Aktaş, Mehmet; Şenyüz, Tunç; Şenyıldız, Teoman; Kılıç, Muhsin
2018-02-01
In this study cooling of a LED unit with heatsink and liquid cooling block which is used in automotive head lamp applications has been investigated numerically and experimentally. Junction temperature of a LED which is cooled with heatsink and liquid cooling block obtained in the experiment. 23°C is used both in the simulation and the experiment phase. Liquid cooling block material is choosed aluminium (Al) and polyamide. All tests and simulation are performed with three different flow rate. Temperature distribution of the designed product is investigated by doing the numerical simulations with a commercially software. In the simulations, fluid flow is assumed to be steady, incompressible and laminar and 3 dimensional (3D) Navier-Stokes equations are used. According to the calculations it is obtained that junction temperature is higher in the heatsink design compared to block cooled one. By changing the block material, it is desired to investigate the variation on the LED junction temperature. It is found that more efficient cooling can be obtained in block cooling by using less volume and weight. With block cooling lifetime of LED can be increased and flux loss can be decreased with the result of decreased junction temperature.
Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann
2016-05-03
Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.
Development of a thermal and structural analysis procedure for cooled radial turbines
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Deanna, Russell G.
1988-01-01
A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine is considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analyses. An inviscid, quasi three-dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous one-dimensional internal flow code for the momentum and energy equation. These boundary conditions are input to a three-dimensional heat conduction code for calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results from this case are included.
Combustor assembly for use in a turbine engine and methods of assembling same
Uhm, Jong Ho; Johnson, Thomas Edward
2013-05-14
A fuel nozzle assembly for use with a turbine engine is described herein. The fuel nozzle assembly includes a plurality of fuel nozzles positioned within an air plenum defined by a casing. Each of the plurality of fuel nozzles is coupled to a combustion liner defining a combustion chamber. Each of the plurality of fuel nozzles includes a housing that includes an inner surface that defines a cooling fluid plenum and a fuel plenum therein, and a plurality of mixing tubes extending through the housing. Each of the mixing tubes includes an inner surface defining a flow channel extending between the air plenum and the combustion chamber. At least one mixing tube of the plurality of mixing tubes including at least one cooling fluid aperture for channeling a flow of cooling fluid from the cooling fluid plenum to the flow channel.
Development of a thermal and structural analysis procedure for cooled radial turbines
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Deanna, Russell G.
1988-01-01
A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine are considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analysis. The inviscid, quasi three dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous three dimensional internal flow cade for the momentum and energy equation. These boundary conditions are input to a three dimensional heat conduction code for the calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results are given.
Yan, Yaping; Ao, Lei; Wang, Hong; Duan, Yanchao; Chang, Shaohui; Chen, Bingbing; Zhi, Dalong; Li, Sujuan; Niu, Yuyu; Ji, Weizhi; Si, Wei
2016-11-01
Conventional TRISegg yolk (TEY) freezing medium for the cryopreservation of NHP sperm has the risk of contamination due to widespread zoonotic diseases. This study was aimed at determining the optimal glycerol concentration, freezing rate, and holding time in liquid N2 vapor for the cryopreservation of cynomolgus macaque sperm by using a commercial egg-yolkfree freezing medium (SC medium) designed for human sperm cryopreservation. Sperm motility and acrosomal integrity after freezing were assessed. Sperm in SC medium (dilution ratio, 3:1) frozen at cooling rates of 67 and 183C/min in liquid N2 vapor showed higher post-thaw motility than did samples frozen at 435C/min. At the cooling rate of 183C/min and dilution in SC medium at a 3:1 ratio, post-thaw motility was higher after a holding time of 10 min than after 30 min (recommended by the manufacturer). In addition, post-thaw motility of sperm frozen in SC medium was higher with dilution ratios of 3:1, 4.5:1, and 6:1 compared with 9:1, 10.5:1, and 12:1, and the sample diluted 12:1 showed the lowest percentage of thawed sperm with intact acrosomes. Sperm showed higher post-thaw motility after freezing in TEY than in SC medium; acrosomal integrity did not differ between the 2 media. Our results indicated that cynomolgus macaque sperm can be cryopreserved successfully by using a commercial egg-yolkfree freezing medium, which provides an option for genetic preservation with decreased zoonotic risk in this important NHP species.
A cooling flow in a high-redshift, X-ray-selected cluster of galaxies
NASA Astrophysics Data System (ADS)
Nesci, Roberto; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.; Perola, Giuseppe C.; Schild, Rudolph E.; Wolter, Anna
1989-09-01
The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.
A cooling flow in a high-redshift, X-ray-selected cluster of galaxies
NASA Technical Reports Server (NTRS)
Nesci, Roberto; Perola, Giuseppe C.; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.
1989-01-01
The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.
NASA Astrophysics Data System (ADS)
Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma
2015-10-01
A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).
Gaseous film cooling investigation in a multi-element splash platelet injector
NASA Astrophysics Data System (ADS)
Yin, Liang; Liu, Weiqiang
2018-03-01
Film cooling is an effective technique that protects chamber walls in rocket combustion against chemical attacks and heat fluxes. This study discusses cooling effect in a multi-element GO2/CH4 splash platelet injector. Influence parameters, such as slot height, slot number, percentage of coolant, and injection position on cooling effect, were investigated. GCH4 with 298.15 K was applied as film coolant. In the first step, slot heights of 0.2 and 0.4 mm were compared by applying a constant film mass flow rate. Temperature, CH4 mole fraction distribution, and flow field structure were obtained. The effects of slot number, percentage of coolant, and injection position on wall temperature distribution were then determined. Finally, the reasons for the low cooling efficiency were analyzed. Improvement in the method is proposed to achieve improved cooling effect for splash platelet injectors.
Turbomachinery for Low-to-High Mach Number Flight
NASA Technical Reports Server (NTRS)
Tan, Choon S.; Shah, Parthiv N.
2004-01-01
The thrust capability of turbojet cycles is reduced at high flight Mach number (3+) by the increase in inlet stagnation temperature. The 'hot section' temperature limit imposed by materials technology sets the maximum heat addition and, hence, sets the maximum flight Mach number of the operating envelope. Compressor pre-cooling, either via a heat exchanger or mass-injection, has been suggested as a means to reduce compressor inlet temperature and increase mass flow capability, thereby increasing thrust. To date, however, no research has looked at compressor cooling (i.e., using a compressor both to perform work on the gas path air and extract heat from it simultaneously). We wish to assess the feasibility of this novel concept for use in low-to-high Mach number flight. The results to-date show that an axial compressor with cooling: (1) relieves choking in rear stages (hence opening up operability), (2) yields higher-pressure ratio and (3) yields higher efficiency for a given corrected speed and mass flow. The performance benefit is driven: (i) at the blade passage level, by a decrease in the total pressure reduction coefficient and an increase in the flow turning; and (ii) by the reduction in temperature that results in less work required for a given pressure ratio. The latter is a thermodynamic effect. As an example, calculations were performed for an eight-stage compressor with an adiabatic design pressure ratio of 5. By defining non-dimensional cooling as the percentage of compressor inlet stagnation enthalpy removed by a heat sink, the model shows that a non-dimensional cooling of percent in each blade row of the first two stages can increase the compressor pressure ratio by as much as 10-20 percent. Maximum corrected mass flow at a given corrected speed may increase by as much as 5 percent. In addition, efficiency may increase by as much as 5 points. A framework for characterizing and generating the performance map for a cooled compressor has been developed. The approach is based upon CFD computations and mean line analysis. Figures of merit that characterize the bulk performance of blade passage flows with and without cooling are extracted from CFD solutions. Such performance characterization is then applied to a preliminary compressor design framework (mean line). The generic nature of this approach makes it suitable for assessing the effect of different types of compressor cooling schemes, such as heat exchange or evaporative cooling (mass injection). Future work will focus on answering system level questions regarding the feasibility of compressor cooling. Specifically, we wish to determine the operational parametric space in which compressor cooling would be advantageous over other high flight Mach number propulsion concepts. In addition, we will explore the design requirements of cooled compressor turbomachinery, as well as the flow phenomena that limit and control its operation, and the technology barriers that must be crossed for its implementation.
Influence of coolant tube curvature on film cooling effectiveness as detected by infrared imagery
NASA Technical Reports Server (NTRS)
Papell, S. S.; Graham, R. W.; Cageao, R. P.
1979-01-01
Thermal film cooling footprints observed by infrared imagery from straight, curved, and looped coolant tube geometries are compared. It was hypothesized that the differences in secondary flow and in the turbulence structure of flow through these three tubes should influence the mixing properties between the coolant and the main stream. A flow visualization tunnel, an infrared camera and detector, and a Hilsch tube were employed to test the hypothesis.
Preparation and release study of Triclosan in polyethylene/Triclosan anti-bacterial blend.
Kamalipour, Jamshid; Masoomi, Mahmood; Khonakdar, Hossein Ali; Razavi, Seyed Mohammad Reza
2016-09-01
In this study, medium density polyethylene (MDPE) incorporated with Triclosan antibacterial substance has been prepared and Triclosan release rate was investigated. The crystallinity level and matrix polarity, as two significant parameters in antibacterial release control, were studied. Triclosan, a well-established widespread antibacterial agent, was incorporated into medium density polyethylene (MDPE) and Maleic anhydride grafted polyethylene (PE-g-MA) was used to change the polarity of the MDPE matrix. A masterbatch of 10wt% Triclosan incorporated with the MDPE and various PE-g-MA concentrations were prepared using an internal mixer. Then the masterbatch was diluted in the MDPE matrix to produce compounds with 0.1, 0.5, and1wt% Triclosan via twin screw extruder. The compounds were molded by compression molding method and then were cooled in three different cooling rate methods: isothermal cooling (I), quenching (Q),and moderate 5-10°C/min cooling rate (M). Cooling rate effects on crystallinity level were investigated applying sample density measurement. UV-vis absorption spectroscopy was used to probe the release of Triclosan. Antibacterial properties of the compounds against Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus were measured. The results showed that by addition of PE-g-MA, Triclosan release rate was increased. It was confirmed that the sample crystallinity was decreased by the cooling rate enhancement. The results also showed that quenched samples indicated higher release of Triclosan. Cooling rate reduction and raising the polarity increased the release of Triclosan and improved the antibacterial properties of the compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Thermally Simulated Testing of a Direct-Drive Gas-Cooled Nuclear Reactor
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Bragg-Sitton, Shannon; VanDyke, Melissa
2003-01-01
This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet-sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrical thermal simulation of reactor components and concepts.
Direct-Drive Gas-Cooled Reactor Power System: Concept and Preliminary Testing
NASA Technical Reports Server (NTRS)
Wright, S. A.; Lipinski, R. J.; Godfroy, T. J.; Bragg-Sitton, S. M.; VanDyke, M. K.
2002-01-01
This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet- sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrically heated testing of simulated reactor components.
Directly connected heat exchanger tube section and coolant-cooled structure
Chainer, Timothy J; Coico, Patrick A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E
2014-04-01
A cooling apparatus for an electronics rack is provided which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures and a tube. The heat exchanger, which is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of distinct, coolant-carrying tube sections, each tube section having a coolant inlet and a coolant outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.
MHD Electrode and wall constructions
Way, Stewart; Lempert, Joseph
1984-01-01
Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.
NASA Astrophysics Data System (ADS)
Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung
2017-04-01
The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.
Interaction of the accretion flows in corona and disk near the black hole in active galactic nuclei
NASA Astrophysics Data System (ADS)
Meyer-Hofmeister, E.; Liu, B. F.; Qiao, E.
2017-11-01
Context. Accretion flows toward black holes can be of a quite different nature, described as an optically thick cool gas flow in a disk for high accretion rates or as a hot coronal optically thin gas flow for low accretion rates, possibly affected by outflowing gas. Aims: The detection of broad iron emission lines in active galactic nuclei (AGN) indicates the coexistence of corona and disk. The appearance and relative strength of such flows essentially depends on their interaction. Liu et al. suggested that condensation of gas from the corona to the disk allows to understand accretion flows of comparable strength of emission. Matter inflow due to gravitational capture of gas is important for the condensation process. We discuss observational features predicted by the model. Methods: Data from simultaneous observations of AGN with Swift's X-ray and UV-optical telescopes are compared with the theoretical predictions. Results: The frequent detection of broad iron Kα emission lines and the dependence of the emitted spectra on the Eddington ratio, described by the values of the photon index Γ and the two-point spectral index αox are in approximate agreement with the predictions of the condensation model; the latter, however, with a large scatter. The model further yields a coronal emission concentrated in a narrow inner region as is also deduced from the analysis of emissivity profiles. Conclusions: The accretion flows in bright AGN could be described by the accretion of stellar wind or interstellar medium and its condensation into a thin disk.
Interface Instabilities in the Interstellar Medium
NASA Technical Reports Server (NTRS)
Hunter, J. H., Jr.; Siopis, C.; Whitaker, R. W.; Lovelace, R. V. E.
1995-01-01
In the present communication, we reexamine two limiting cases of star-forming mechanisms involving self-gravity, thermodynamics, and velocity fields, that we believe must be ubiquitous in the ISM -- the generally oblique collision of supersonic gas streams or turbulent eddies. The general case of oblique collisions has not yet been examined. However, two limiting cases have been studied in detail: (1) The head-on collision of two identical gas streams that form dense, cool accretion shocks that become unstable and may form Jeans mass clouds, which subsequently undergo collapse. (2) Linearly unstable tangential velocity discontinuities, which result in Kelvin-Helmholtz (K-H) instabilities and related phenomena. The compressible K-H instabilities exhibit rich and unexpected behaviors. Moreover a new thermal-dynamic (T-D) mode was discovered that arises from the coupling of the perturbed thermal behavior and the unperturbed flow. The T-D mode has the curious characteristic that it may be strongly unstable to interface modes when the global modes in either medium are absolutely thermally stable. In the present communication additional models of case 1 are described and discussed, and self-gravity is added in the linear theory of tangential discontinuities, case 2. We prove that self-gravity fundamentally changes the behavior of interfacial modes -- density discontinuities (or steps) are inherently unstable on roughly the free-fall timescale of the denser medium to perturbations of all wavelengths.
Search for cold gas in clusters with and without cooling flows
NASA Technical Reports Server (NTRS)
Grabelsky, D. A.; Ulmer, M. P.
1990-01-01
The dominant galaxy in each of approx. 40 clusters was studied using co-added Infrared Astronomy Satellite (IRAS) survey data, and 11 of these galaxies were observed for CO (J=1 to 0) emission with the 12 m telescope at Kitt Peak. Half of the galaxies in the sample are in clusters reported to have cooling flows while the other half are not. Six of the galaxies appear to have been detected by IRAS at fairly low flux levels, in addition to one previously known strong detection; all seven have reported cooling flows. No detectable CO emission (to 2 to 3 mK) was found in any of the 11 galaxies observed. Assuming accretion rates of approx. 100 Solar Mass yr(-1), the star formation rates and efficiencies in these galaxies must be quite high in order to render the CO undetectable. At the same time, the infrared luminosities of these galaxies is unremarkable, suggesting that the correlation between star formation efficiency and infrared luminosity found for spirals may not hold for cooling flows.
NASA Astrophysics Data System (ADS)
Semiatin, S. L.; Fagin, P. N.; Goetz, R. L.; Furrer, D. U.; Dutton, R. E.
2015-09-01
The plastic-flow behavior which controls the formation of bulk residual stresses during final heat treatment of powder-metallurgy (PM), nickel-base superalloys was quantified using conventional (isothermal) stress-relaxation (SR) tests and a novel approach which simulates concurrent temperature and strain transients during cooling following solution treatment. The concurrent cooling/straining test involves characterization of the thermal compliance of the test sample. In turn, this information is used to program the ram-displacement- vs-time profile to impose a constant plastic strain rate during cooling. To demonstrate the efficacy of the new approach, SR tests (in both tension and compression) and concurrent cooling/tension-straining experiments were performed on two PM superalloys, LSHR and IN-100. The isothermal SR experiments were conducted at a series of temperatures between 1144 K and 1436 K (871 °C and 1163 °C) on samples that had been supersolvus solution treated and cooled slowly or rapidly to produce starting microstructures comprising coarse gamma grains and coarse or fine secondary gamma-prime precipitates, respectively. The concurrent cooling/straining tests comprised supersolvus solution treatment and various combinations of subsequent cooling rate and plastic strain rate. Comparison of flow-stress data from the SR and concurrent cooling/straining tests showed some similarities and some differences which were explained in the context of the size of the gamma-prime precipitates and the evolution of dislocation substructure. The magnitude of the effect of concurrent deformation during cooling on gamma-prime precipitation was also quantified experimentally and theoretically.
Stationary radiation hydrodynamics of accreting magnetic white dwarfs.
NASA Astrophysics Data System (ADS)
Woelk, U.; Beuermann, K.
1996-02-01
Using an artificial viscosity, we solved the one-dimensional time-independent two-fluid hydrodynamic equations simultaneously to the fully frequency and angle dependent radiation transport in an accretion flow directed towards the surface of a magnetic white dwarf. We consider energy transfer from ions to electrons by Coulomb encounters and cooling by bremsstrahlung and by cyclotron radiation in fields between B=5 and 70MG. Electron and ion temperatures relax in the post-shock regime and the cooling flow settles onto the white dwarf surface. For high mass flow rates ˙(m) (in g/cm^2^/s), cooling takes place mainly by bremsstrahlung and the solutions approach the non-magnetic case. For low ˙(m) and high B, cooling is dominated by cyclotron radiation which causes the thickness of the cooling region to collapse by 1-2 orders of magnitude compared to the non-magnetic case. The electron temperature behind the shock drops from a few 10^8^ to a few 10^7^K and the ratio of cyclotron vs. total radiative flux approaches unity. For high ˙(m) and low B values, bremsstrahlung dominates, but cyclotron losses can never be neglected. We find a smooth transition from particle-heated to shock-heated atmospheres in the maximum electron temperature and also in the thickness of the heated layer. With these results, the stationary radiation-hydrodynamics of accreting magnetic white dwarfs with cyclotron and bremsstrahlung cooling has been solved for the whole range of observed mass flow rates and field strengths.
Infrared photoemitting diode having reduced work function
Hirschfeld, T.B.
1982-05-06
In electro-optical detectors which include as elements a photoemitting photocathode and anode, a photoemitting diode is fabricated which lowers the diode's work function, thus reducing the cooling requirement typically needed for this type of device. The work function is reduced by sandwiching between the photocathode and anode a liquid meidum of the formula NR/sub 3/ and having an electron affinity for the electrons of the photocathode, which liquid medium permits free electrons leaving the photocathode to remain as stable solvated species in the liquid medium. Thus, highly light-absorbent, and therefore thin, metallic layers can be used for detection, thereby reducing dark current at a given temperature, with a consequent reduction in cooling requirements at constant detector performance.
Bushing retention system for thermal medium cooling delivery tubes in a gas turbine rotor
Mashey, Thomas Charles
2002-01-01
Bushings are provided in counterbores for wheels and spacers for supporting thermal medium cooling tubes extending axially adjacent the rim of the gas turbine rotor. The retention system includes a retaining ring disposed in a groove adjacent an end face of the bushing and which retaining ring projects radially inwardly to prevent axial movement of the bushing in one direction. The retention ring has a plurality of circumferentially spaced tabs along its inner diameter whereby the ring is supported by the lands of the tube maintaining its bushing retention function, notwithstanding operation in high centrifugal fields and rotation of the ring in the groove into other circular orientations.
Air film cooling in a nonadiabatic wall conical nozzle.
NASA Technical Reports Server (NTRS)
Boldman, D. R.; Papell, S. S.; Ehlers, R. C.
1972-01-01
Experimental data for an air-film cooled conical nozzle operating with a heated-air main stream and a water-cooled wall confirm the validity of Lieu's (1964) method for correlating film cooling data in the accelerated flow of a nonadiabatic-wall nozzle. The film cooling effectiveness modified for nonadiabatic walls by Lieu can be used to correlate film cooling under the condition that the main-stream to coolant velocity ratio at the slot is about 1. Such a ratio provides the optimum cooling effectiveness.
NASA Astrophysics Data System (ADS)
Holtz, Ronald; Matic, Peter; Mott, David
2013-03-01
Warfighter performance can be adversely affected by heat load and weight of equipment. Current tactical vest designs are good insulators and lack ventilation, thus do not provide effective management of metabolic heat generated. NRL has undertaken a systematic study of tactical vest thermal management, leading to physics-based strategies that provide improved cooling without undesirable consequences such as added weight, added electrical power requirements, or compromised protection. The approach is based on evaporative cooling of sweat produced by the wearer of the vest, in an air flow provided by ambient wind or ambulatory motion of the wearer. Using an approach including thermodynamic analysis, computational fluid dynamics modeling, air flow measurements of model ventilated vest architectures, and studies of the influence of fabric aerodynamic drag characteristics, materials and geometry were identified that optimize passive cooling of tactical vests. Specific architectural features of the vest design allow for optimal ventilation patterns, and selection of fabrics for vest construction optimize evaporation rates while reducing air flow resistance. Cooling rates consistent with the theoretical and modeling predictions were verified experimentally for 3D mockups.
Numerical modelling of series-parallel cooling systems in power plant
NASA Astrophysics Data System (ADS)
Regucki, Paweł; Lewkowicz, Marek; Kucięba, Małgorzata
2017-11-01
The paper presents a mathematical model allowing one to study series-parallel hydraulic systems like, e.g., the cooling system of a power boiler's auxiliary devices or a closed cooling system including condensers and cooling towers. The analytical approach is based on a set of non-linear algebraic equations solved using numerical techniques. As a result of the iterative process, a set of volumetric flow rates of water through all the branches of the investigated hydraulic system is obtained. The calculations indicate the influence of changes in the pipeline's geometrical parameters on the total cooling water flow rate in the analysed installation. Such an approach makes it possible to analyse different variants of the modernization of the studied systems, as well as allowing for the indication of its critical elements. Basing on these results, an investor can choose the optimal variant of the reconstruction of the installation from the economic point of view. As examples of such a calculation, two hydraulic installations are described. One is a boiler auxiliary cooling installation including two screw ash coolers. The other is a closed cooling system consisting of cooling towers and condensers.
Random Walk Particle Tracking For Multiphase Heat Transfer
NASA Astrophysics Data System (ADS)
Lattanzi, Aaron; Yin, Xiaolong; Hrenya, Christine
2017-11-01
As computing capabilities have advanced, direct numerical simulation (DNS) has become a highly effective tool for quantitatively predicting the heat transfer within multiphase flows. Here we utilize a hybrid DNS framework that couples the lattice Boltzmann method (LBM) to the random walk particle tracking (RWPT) algorithm. The main challenge of such a hybrid is that discontinuous fields pose a significant challenge to the RWPT framework and special attention must be given to the handling of interfaces. We derive a method for addressing discontinuities in the diffusivity field, arising at the interface between two phases. Analytical means are utilized to develop an interfacial tracer balance and modify the RWPT algorithm. By expanding the modulus of the stochastic (diffusive) step and only allowing a subset of the tracers within the high diffusivity medium to undergo a diffusive step, the correct equilibrium state can be restored (globally homogeneous tracer distribution). The new RWPT algorithm is implemented within the SUSP3D code and verified against a variety of systems: effective diffusivity of a static gas-solids mixture, hot sphere in unbounded diffusion, cooling sphere in unbounded diffusion, and uniform flow past a hot sphere.
40 CFR 63.1086 - How must I monitor for leaks to cooling water?
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitor for leaks to cooling water? You must monitor for leaks to cooling water by monitoring each heat... system so that the cooling water flow rate is 51,031 liters per minute or less so that a leak of 3.06 kg... detected a leak. (b) Individual heat exchangers. Monitor the cooling water at the entrance and exit of each...
Jay, Ollie; Havenith, George
2006-05-01
To assess the presence and magnitude of the effect of skin blood flow on finger skin cooling on contact with cold objects against the background of circulatory disorder risks in occupational exposures, this study investigates the effect of zero vs. close-to-maximal hand blood flow on short-term (< or =180 s) skin contact cooling response at a contact pressure that allows capillary perfusion of the distal pulp of the fingertip. Six male volunteers touched a block of aluminium with a finger contact force of 0.5 N at a temperature of -2 degrees C under a vasodilated and an occluded condition. Before both conditions, participants were required to exercise in a hot room for > or = 30 min for cutaneous vasodilation to occur (increase in rectal temperature of 1 degrees C). Under the vasodilated condition, forearm blood flow rate rose as high as 16.8 ml.100 ml(-1).min(-1). Under the occluded condition, the arm was exsanguinated, after which a blood pressure cuff was secured on the wrist inducing arterial occlusion. Contact temperature of the finger pad during the subsequent cold contact exposure was measured. No significant difference was found between the starting skin temperatures for the two blood flow conditions, but a distinct difference in shape of the contact cooling curve was apparent between the two blood flow conditions, with Newtonian cooling observed under the occluded condition, whereas a rewarming of the finger skin toward the end of the exposure occurred for the vasodilated condition. Blood flow was found to significantly increase contact temperature from 40 s onward (P < 0.01). It is concluded that, at a finger contact force compatible with capillary perfusion of the finger pad ( approximately 0.5 N), circulating blood provides a heat input source that significantly affects finger skin contact cooling during a vasodilated state.
Paleointensity results for 0 and 4 ka from Hawaiian lava flows: a new approach to sampling
NASA Astrophysics Data System (ADS)
Cromwell, G.; Tauxe, L.; Staudigel, H.; Ron, H.; Trusdell, F.
2012-04-01
Paleointensity data are typically generated from core samples drilled out of the massive parts of lava flows. During Thellier-Thellier type experiments, these massive samples suffer from very low success rates (~20%), as shown by failure to meet statistical criteria. Low success generally occurs for two reasons: 1) alteration of the sample during the heating process, and 2) multi-domain behavior of massive material. Moreover, recent studies of historical lava flows show that massive samples may not accurately reflect the intensity of the magnetic field even when they are successful (Valet et al., 2010). Alternatively, submarine basaltic glasses (SBG) produce high success rates (~80%) for Thellier-Thellier type experiments, likely due to near instantaneous cooling rates which produce single-domain magnetic grains. In addition, SBG have been proven to produce accurate records of the magnetic field (e.g., Pick and Tauxe, 1993). In this study we investigate the success of paleointensity experiments on subaerial quenched basalts from Hawaii in the quest for single domain, rapidly cooled subaerial analogs to SBG. We also examine the effects of grain size and cooling rate on the accuracy of paleointensity results. During March 2011, we collected samples from 31 dated lava flows (0-3800 BP), including the historical 1950 C.E. and 2010 C.E. flows. Each lava flow was additionally subsampled when unique cooling structures within the unit could be identified. Single-domain, rapidly quenched glasses from the 1950 and 2010 flows are ideally behaved, i.e. straight Arai plots, and accurately record the expected geomagnetic field strength. However, slower cooled specimens from the same flows produce sagged Arai plots and consistently underestimate expected geomagnetic field intensity. Results from ideally behaved glasses over the last 4 ka indicate periods of rapid field change in Hawaii and a possible high intensity field spike around 2.7 ka. We will present new results from our comprehensive data set of Hawaii paleointensity on about the last 4 ka.
Control of reactor coolant flow path during reactor decay heat removal
Hunsbedt, Anstein N.
1988-01-01
An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.
NASA Astrophysics Data System (ADS)
Zhang, Ruiying; Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.
2013-08-01
We propose a method for photoacoustic flow measurement based on the Doppler effect from a flowing homogeneous medium. Excited by spatially modulated laser pulses, the flowing medium induces a Doppler frequency shift in the received photoacoustic signals. The frequency shift is proportional to the component of the flow speed projected onto the acoustic beam axis, and the sign of the shift reflects the flow direction. Unlike conventional flowmetry, this method does not rely on particle heterogeneity in the medium; thus, it can tolerate extremely high particle density. A red-ink phantom flowing in a tube immersed in water was used to validate the method in both the frequency and time domains. The phantom flow immersed in an intralipid solution was also measured.
Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets
NASA Astrophysics Data System (ADS)
Gaspari, M.; Ruszkowski, M.; Sharma, P.
2012-02-01
Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI/t ff) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments "rain" down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI/t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI/t ff <~ 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.
Beam Test of a Dielectric Loaded High Pressure RF Cavity for Use in Muon Cooling Channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freemire, Ben; Bowring, Daniel; Kochemirovskiy, Alexey
2016-06-01
Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. A 99.5% aluminamore » ring was inserted in a high pressure RF test cell and subjected to an intense proton beam at the MuCool Test Area at Fermilab. The results of the performance of this dielectric loaded high pressure RF cavity will be presented.« less
Color and Morphology of Lava Flows on Io
NASA Astrophysics Data System (ADS)
Piatek, Jennifer L.; McElfresh, Sarah B. Z.; Byrnes, Jeffrey M.; Hale, Amy Snyder; Crown, David A.
2000-12-01
Analyses of color and morphologic changes in Voyager images of lava flows on Io were conducted to extend previous flow studies to additional volcanoes in preparation for comparison to Galileo data. Blue and orange filter images of Atar, Daedalus, and Ra Paterae were examined to identify systematic downflow decreases in blue/orange reflectivity suggested in earlier studies as diagnostic of color changes in cooled sulfur flows. Analyses of the color and morphology of 21 lava flows were conducted at these volcanoes, with additional morphologic analysis of lava flows at Agni, Masaaw, Mbali, Shoshu, and Talos Paterae. A total of 66 lava flows of up to 245 km in length were mapped to identify morphologic changes consistent with the rheologic changes expected to occur in sulfur flows. Although downflow color changes are observed, the trends are not consistent, even at the same edifice. Individual flows exhibit a statistically significant increase in blue/orange ratio, decrease in blue/orange ratio, or a lack of progressive downflow color variation. Color changes have similar magnitudes downflow and across flow, and the color ranges observed are similar from volcano to volcano, suggesting that similar processes are controlling color ratios at these edifices. In addition, using flow widening and branching as an indicator of the low viscosity exhibited by sulfur cooling from high temperatures, these flows do not exhibit morphologic changes consistent with the systematic behavior expected from the simple progressive cooling of sulfur.
NASA Astrophysics Data System (ADS)
Dong, Da; Lu, Yang; Yuan, Yueming; Fan, Xuejun
2018-06-01
An experimental facility was designed to simulate the heat exchange between the hot gas and the fuel-cooled wall in a scramjet combustor. Thermal radiation from an electrically heated graphite plate is employed to unilaterally heat up a multi-channeled cooling plate. A maximum heat flux of over 0.8 MW/m2 was achieved for an effective heating area up to 1000 mm × 40 mm. Precise control of the back pressure of a coolant (up to 5 MPa) in a unique way was also demonstrated. With this facility, studies of flow and heat transfer in hydrocarbon-cooled structures can be performed under a well-controlled manner.
Cooling, degassing and compaction of rhyolitic ash flow tuffs: a computational model
Riehle, J.R.; Miller, T.F.; Bailey, R.A.
1995-01-01
Previous models of degassing, cooling and compaction of rhyolitic ash flow deposits are combined in a single computational model that runs on a personal computer. The model applies to a broader range of initial and boundary conditions than Riehle's earlier model, which did not integrate heat and mass flux with compaction and which for compound units was limited to two deposits. Model temperatures and gas pressures compare well with simple measured examples. The results indicate that degassing of volatiles present at deposition occurs within days to a few weeks. Compaction occurs for weeks to two to three years unless halted by devitrification; near-emplacement temperatures can persist for tens of years in the interiors of thick deposits. Even modest rainfall significantly chills the upper parts of ash deposits, but compaction in simple cooling units ends before chilling by rainwater influences cooling of the interior of the sheet. Rainfall does, however, affect compaction at the boundaries of deposits in compound cooling units, because the influx of heat from the overlying unit is inadequate to overcome heat previously lost to vaporization of water. Three density profiles from the Matahina Ignimbrite, a compound cooling unit, are fairly well reproduced by the model despite complexities arising from numerous cooling breaks. Uncertainties in attempts to correlate in detail among the profiles may be the result of the non-uniform distribution of individual deposits. Regardless, it is inferred that model compaction is approximately valid. Thus the model should be of use in reconstructing the emplacement history of compound ash deposits, for inferring the depositional environments of ancient deposits and for assessing how long deposits of modern ash flows are capable of generating phreatic eruptions or secondary ash flows. ?? 1995 Springer-Verlag.
Theoretical analysis of evaporative cooling of classic heat stroke patients
NASA Astrophysics Data System (ADS)
Alzeer, Abdulaziz H.; Wissler, E. H.
2018-05-01
Heat stroke is a serious health concern globally, which is associated with high mortality. Newer treatments must be designed to improve outcomes. The aim of this study is to evaluate the effect of variations in ambient temperature and wind speed on the rate of cooling in a simulated heat stroke subject using the dynamic model of Wissler. We assume that a 60-year-old 70-kg female suffers classic heat stroke after walking fully exposed to the sun for 4 h while the ambient temperature is 40 °C, relative humidity is 20%, and wind speed is 2.5 m/s-1. Her esophageal and skin temperatures are 41.9 and 40.7 °C at the time of collapse. Cooling is accomplished by misting with lukewarm water while exposed to forced airflow at a temperature of 20 to 40 °C and a velocity of 0.5 or 1 m/s-1. Skin blood flow is assumed to be either normal, one-half of normal, or twice normal. At wind speed of 0.5 m/s-1 and normal skin blood flow, the air temperature decreased from 40 to 20 °C, increased cooling, and reduced time required to reach to a desired temperature of 38 °C. This relationship was also maintained in reduced blood flow states. Increasing wind speed to 1 m/s-1 increased cooling and reduced the time to reach optimal temperature both in normal and reduced skin blood flow states. In conclusion, evaporative cooling methods provide an effective method for cooling classic heat stroke patients. The maximum heat dissipation from the simulated model of Wissler was recorded when the entire body was misted with lukewarm water and applied forced air at 1 m/s at temperature of 20 °C.
NASA Astrophysics Data System (ADS)
Iqbal, Asif; Kale, Ruta; Majumdar, Subhabrata; Nath, Biman B.; Pandge, Mahadev; Sharma, Prateek; Malik, Manzoor A.; Raychaudhury, Somak
2017-12-01
Active Galactic Nuclei (AGN) feedback is regarded as an important non-gravitational process in galaxy clusters, providing useful constraints on large-scale structure formation. It modifies the structure and energetics of the intra-cluster medium (ICM) and hence its understanding is crucially needed in order to use clusters as high precision cosmological probes. In this context, particularly keeping in mind the upcoming high quality radio data expected from radio surveys like Square Kilometre Array (SKA) with its higher sensitivity, high spatial and spectral resolutions, we review our current understanding of AGN feedback, its cosmological implications and the impact that SKA can have in revolutionizing our understanding of AGN feedback in large-scale structures. Recent developments regarding the AGN outbursts and its possible contribution to excess entropy in the hot atmospheres of groups and clusters, its correlation with the feedback energy in ICM, quenching of cooling flows and the possible connection between cool core clusters and radio mini-halos, are discussed. We describe current major issues regarding modeling of AGN feedback and its impact on the surrounding medium. With regard to the future of AGN feedback studies, we examine the possible breakthroughs that can be expected from SKA observations. In the context of cluster cosmology, for example, we point out the importance of SKA observations for cluster mass calibration by noting that most of z>1 clusters discovered by eROSITA X-ray mission can be expected to be followed up through a 1000 hour SKA1-mid programme. Moreover, approximately 1000 radio mini halos and ˜ 2500 radio halos at z<0.6 can be potentially detected by SKA1 and SKA2 and used as tracers of galaxy clusters and determination of cluster selection function.