Sample records for cooper pair splitting

  1. Cooper pair splitter realized in a two-quantum-dot Y-junction.

    PubMed

    Hofstetter, L; Csonka, S; Nygård, J; Schönenberger, C

    2009-10-15

    Non-locality is a fundamental property of quantum mechanics that manifests itself as correlations between spatially separated parts of a quantum system. A fundamental route for the exploration of such phenomena is the generation of Einstein-Podolsky-Rosen (EPR) pairs of quantum-entangled objects for the test of so-called Bell inequalities. Whereas such experimental tests of non-locality have been successfully conducted with pairwise entangled photons, it has not yet been possible to realize an electronic analogue of it in the solid state, where spin-1/2 mobile electrons are the natural quantum objects. The difficulty stems from the fact that electrons are immersed in a macroscopic ground state-the Fermi sea-which prevents the straightforward generation and splitting of entangled pairs of electrons on demand. A superconductor, however, could act as a source of EPR pairs of electrons, because its ground-state is composed of Cooper pairs in a spin-singlet state. These Cooper pairs can be extracted from a superconductor by tunnelling, but, to obtain an efficient EPR source of entangled electrons, the splitting of the Cooper pairs into separate electrons has to be enforced. This can be achieved by having the electrons 'repel' each other by Coulomb interaction. Controlled Cooper pair splitting can thereby be realized by coupling of the superconductor to two normal metal drain contacts by means of individually tunable quantum dots. Here we demonstrate the first experimental realization of such a tunable Cooper pair splitter, which shows a surprisingly high efficiency. Our findings open a route towards a first test of the EPR paradox and Bell inequalities in the solid state.

  2. Splitting efficiency and interference effects in a Cooper pair splitter based on a triple quantum dot with ferromagnetic contacts

    NASA Astrophysics Data System (ADS)

    Bocian, Kacper; Rudziński, Wojciech; Weymann, Ireneusz

    2018-05-01

    We theoretically study the spin-resolved subgap transport properties of a Cooper pair splitter based on a triple quantum dot attached to superconducting and ferromagnetic leads. Using the Keldysh Green's function formalism, we analyze the dependence of the Andreev conductance, Cooper pair splitting efficiency, and tunnel magnetoresistance on the gate and bias voltages applied to the system. We show that the system's transport properties are strongly affected by spin dependence of tunneling processes and quantum interference between different local and nonlocal Andreev reflections. We also study the effects of finite hopping between the side quantum dots on the Andreev current. This allows for identifying the optimal conditions for enhancing the Cooper pair splitting efficiency of the device. We find that the splitting efficiency exhibits a nonmonotonic dependence on the degree of spin polarization of the leads and the magnitude and type of hopping between the dots. An almost perfect splitting efficiency is predicted in the nonlinear response regime when the energies of the side quantum dots are tuned to the energies of the corresponding Andreev bound states. In addition, we analyzed features of the tunnel magnetoresistance (TMR) for a wide range of the gate and bias voltages, as well as for different model parameters, finding the corresponding sign changes of the TMR in certain transport regimes. The mechanisms leading to these effects are thoroughly discussed.

  3. Electron Waiting Times of a Cooper Pair Splitter

    NASA Astrophysics Data System (ADS)

    Walldorf, Nicklas; Padurariu, Ciprian; Jauho, Antti-Pekka; Flindt, Christian

    2018-02-01

    Electron waiting times are an important concept in the analysis of quantum transport in nanoscale conductors. Here we show that the statistics of electron waiting times can be used to characterize Cooper pair splitters that create spatially separated spin-entangled electrons. A short waiting time between electrons tunneling into different leads is associated with the fast emission of a split Cooper pair, while long waiting times are governed by the slow injection of Cooper pairs from a superconductor. Experimentally, the waiting time distributions can be measured using real-time single-electron detectors in the regime of slow tunneling, where conventional current measurements are demanding. Our work is important for understanding the fundamental transport processes in Cooper pair splitters and the predictions may be verified using current technology.

  4. Quantum teleportation and entanglement swapping of electron spins in superconducting hybrid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bubanja, Vladimir, E-mail: vladimir.bubanja@callaghaninnovation.govt.nz

    2015-06-15

    We present schemes for quantum teleportation and entanglement swapping of electronic spin states in hybrid superconductor–normal-metal systems. The proposed schemes employ subgap transport whereby the lowest order processes involve Cooper pair-electron and double Cooper-pair cotunneling in quantum teleportation and entanglement swapping protocols, respectively. The competition between elastic cotunneling and Cooper-pair splitting results in the success probability of 25% in both cases. Described implementations of these protocols are within reach of present-day experimental techniques.

  5. Aharonov-Bohm and Aharonov-Casher effects for local and nonlocal Cooper pairs

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Damian; Busz, Piotr; López, Rosa; Žitko, Rok; Lee, Minchul; Martinek, Jan

    2018-06-01

    We study combined interference effects due to the Aharonov-Bohm (AB) and Aharonov-Casher (AC) phases in a Josephson supercurrent of local and nonlocal (split) Cooper pairs. We analyze a junction between two superconductors interconnected through a normal-state nanostructure with either (i) a ring, where single-electron interference is possible, or (ii) two parallel nanowires, where the single-electron interference can be absent, but the cross Andreev reflection can occur. In the low-transmission regime in both geometries the AB and AC effects can be related to only local or nonlocal Cooper pair transport, respectively.

  6. Positive Noise Cross Correlation in a Copper Pair Splitter.

    NASA Astrophysics Data System (ADS)

    Das, Anindya; Ronen, Yuval; Heiblum, Moty; Shtrikman, Hadas; Mahalu, Diana

    2012-02-01

    Entanglement is in heart of the Einstein-Podolsky-Rosen (EPR) paradox, in which non-locality is a fundamental property. Up to date spin entanglement of electrons had not been demonstrated. Here, we provide direct evidence of such entanglement by measuring: non-local positive current correlation and positive cross correlation among current fluctuations, both of separated electrons born by a Cooper-pair-beam-splitter. The realization of the splitter is provided by injecting current from an Al superconductor contact into two, single channel, pure InAs nanowires - each intercepted by a Coulomb blockaded quantum dot (QD). The QDs impedes strongly the flow of Cooper pairs allowing easy single electron transport. The passage of electron in one wire enables the simultaneous passage of the other in the neighboring wire. The splitting efficiency of the Cooper pairs (relative to Cooper pairs actual current) was found to be ˜ 40%. The positive cross-correlations in the currents and their fluctuations (shot noise) are fully consistent with entangled electrons produced by the beam splitter.

  7. Unitary limit in crossed Andreev transport

    DOE PAGES

    Sadovskyy, I. A.; Lesovik, G. B.; Vinokur, V. M.

    2015-10-08

    One of the most promising approaches for generating spin- and energy-entangled electron pairs is splitting a Cooper pair into the metal through spatially separated terminals. Utilizing hybrid systems with the energy-dependent barriers at the superconductor/normal metal (NS) interfaces, one can achieve a practically 100% efficiency outcome of entangled electrons. We investigate a minimalistic one-dimensional model comprising a superconductor and two metallic leads and derive an expression for an electron-to-hole transmission probability as a measure of splitting efficiency. We find the conditions for achieving 100% efficiency and present analytical results for the differential conductance and differential noise.

  8. Determination of nonlinear nanomechanical resonator-qubit coupling coefficient in a hybrid quantum system.

    PubMed

    Geng, Qi; Zhu, Ka-Di

    2016-07-10

    We have theoretically investigated a hybrid system that is composed of a traditional optomechanical component and an additional charge qubit (Cooper pair box) that induces a new nonlinear interaction. It is shown that the peak in optomechanically induced transparency has been split by the new nonlinear interaction, and the width of the splitting is proportional to the coupling coefficient of this nonlinear interaction. This may give a way to measure the nanomechanical oscillator-qubit coupling coefficient in hybrid quantum systems.

  9. Thermostability promotes the cooperative function of split adenylate kinases.

    PubMed

    Nguyen, Peter Q; Liu, Shirley; Thompson, Jeremy C; Silberg, Jonathan J

    2008-05-01

    Proteins can often be cleaved to create inactive polypeptides that associate into functional complexes through non-covalent interactions, but little is known about what influences the cooperative function of the ensuing protein fragments. Here, we examine whether protein thermostability affects protein fragment complementation by characterizing the function of split adenylate kinases from the mesophile Bacillus subtilis (AKBs) and the hyperthermophile Thermotoga neapolitana (AKTn). Complementation studies revealed that the split AKTn supported the growth of Escherichia coli with a temperature-sensitive AK, but not the fragmented AKBs. However, weak complementation occurred when the AKBs fragments were fused to polypeptides that strongly associate, and this was enhanced by a Q16L mutation that thermostabilizes the full-length protein. To examine how the split AK homologs differ in structure and function, their catalytic activity, zinc content, and circular dichroism spectra were characterized. The reconstituted AKTn had higher levels of zinc, greater secondary structure, and >10(3)-fold more activity than the AKBs pair, albeit 17-fold less active than full-length AKTn. These findings provide evidence that the design of protein fragments that cooperatively function can be improved by choosing proteins with the greatest thermostability for bisection, and they suggest that this arises because hyperthermophilic protein fragments exhibit greater residual structure compared to their mesophilic counterparts.

  10. Investigations of Crossed Andreev Reflection in Hybrid Superconductor-Ferromagnet Structures

    ERIC Educational Resources Information Center

    Colci O'Hara, Madalina

    2009-01-01

    Cooper pair splitting is predicted to occur in hybrid devices where a superconductor is coupled to two ferromagnetic wires placed at a distance less than the superconducting coherence length. This thesis searches for signatures of this process, called crossed Andreev reflection (CAR), in three device geometries. The first devices studied are…

  11. Fulde–Ferrell superfluids in spinless ultracold Fermi gases

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Fei; Guo, Guang-Can; Zheng, Zhen; Zou, Xu-Bo

    2018-06-01

    The Fulde–Ferrell (FF) superfluid phase, in which fermions form finite momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that the FF state can emerge in spinless Fermi gases confined in optical lattice associated with nearest-neighbor interactions. The mechanism of the spinless FF state relies on the split Fermi surfaces by tuning the chemistry potential, which naturally gives rise to finite momentum Cooper pairings. The phase transition is accompanied by changed Chern numbers, in which, different from the conventional picture, the band gap does not close. By beyond-mean-field calculations, we find the finite momentum pairing is more robust, yielding the system promising for maintaining the FF state at finite temperature. Finally we present the possible realization and detection scheme of the spinless FF state.

  12. Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Tomoaki; Shimahara, Hiroshi

    2017-02-01

    In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.

  13. Comparison of split double and triple twists in pair figure skating.

    PubMed

    King, Deborah L; Smith, Sarah L; Brown, Michele R; McCrory, Jean L; Munkasy, Barry A; Scheirman, Gary I

    2008-05-01

    In this study, we compared the kinematic variables of the split triple twist with those of the split double twist to help coaches and scientists understand these landmark pair skating skills. High-speed video was taken during the pair short and free programmes at the 2002 Salt Lake City Winter Olympics and the 2003 International Skating Union Grand Prix Finals. Three-dimensional analyses of 14 split double twists and 15 split triple twists from eleven pairs were completed. In spite of considerable variability in the performance variables among the pairs, the main difference between the split double twists and split triple twists was an increase in rotational rate. While eight of the eleven pairs relied primarily on an increased rotational rate to complete the split triple twist, three pairs employed a combined strategy of increased rotational rate and increased flight time due predominantly to delayed or lower catches. These results were similar to observations of jumps in singles skating for which the extra rotation is typically due to an increase in rotational velocity; increases in flight time come primarily from delayed landings as opposed to additional height during flight. Combining an increase in flight time and rotational rate may be a good strategy for completing the split triple twist in pair skating.

  14. Zero energy states at a normal-metal/cuprate-superconductor interface probed by shot noise

    NASA Astrophysics Data System (ADS)

    Negri, O.; Zaberchik, M.; Drachuck, G.; Keren, A.; Reznikov, M.

    2018-06-01

    We report measurements of the current noise generated in the optimally doped, x =0.15 , Au-La2-xSrxCuO4 junctions. For high transmission junctions on a (110) surface, we observed a split zero-bias conductance peak (ZBCP), accompanied by enhanced shot noise. We observed no enhanced noise neither in low-transmission junctions on a (110) surface nor in any junction on a (100) surface. We attribute the enhanced noise to Cooper pair transport through the junctions.

  15. Differences in results of analyses of concurrent and split stream-water samples collected and analyzed by the US Geological Survey and the Illinois Environmental Protection Agency, 1985-91

    USGS Publications Warehouse

    Melching, C.S.; Coupe, R.H.

    1995-01-01

    During water years 1985-91, the U.S. Geological Survey (USGS) and the Illinois Environmental Protection Agency (IEPA) cooperated in the collection and analysis of concurrent and split stream-water samples from selected sites in Illinois. Concurrent samples were collected independently by field personnel from each agency at the same time and sent to the IEPA laboratory, whereas the split samples were collected by USGS field personnel and divided into aliquots that were sent to each agency's laboratory for analysis. The water-quality data from these programs were examined by means of the Wilcoxon signed ranks test to identify statistically significant differences between results of the USGS and IEPA analyses. The data sets for constituents and properties identified by the Wilcoxon test as having significant differences were further examined by use of the paired t-test, mean relative percentage difference, and scattergrams to determine if the differences were important. Of the 63 constituents and properties in the concurrent-sample analysis, differences in only 2 (pH and ammonia) were statistically significant and large enough to concern water-quality engineers and planners. Of the 27 constituents and properties in the split-sample analysis, differences in 9 (turbidity, dissolved potassium, ammonia, total phosphorus, dissolved aluminum, dissolved barium, dissolved iron, dissolved manganese, and dissolved nickel) were statistically significant and large enough to con- cern water-quality engineers and planners. The differences in concentration between pairs of the concurrent samples were compared to the precision of the laboratory or field method used. The differences in concentration between pairs of the concurrent samples were compared to the precision of the laboratory or field method used. The differences in concentration between paris of split samples were compared to the precision of the laboratory method used and the interlaboratory precision of measuring a given concentration or property. Consideration of method precision indicated that differences between concurrent samples were insignificant for all concentrations and properties except pH, and that differences between split samples were significant for all concentrations and properties. Consideration of interlaboratory precision indicated that the differences between the split samples were not unusually large. The results for the split samples illustrate the difficulty in obtaining comparable and accurate water-quality data.

  16. Magnetic photon splitting and gamma ray burst spectra

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1992-01-01

    The splitting of photons into two photons becomes both possible and significant in magnetic fields in excess of 10(exp 12) Gauss. Below the threshold energy, 2m sub e c(exp 2) for single photon pair production, splitting can be an astronomically observable phenomenon evident in gamma ray burst spectra. In such circumstances, it was found that magnetic photon splitting reprocesses the gamma ray burst continuum by degrading the photon energy, with a net effect that is quite similar to pair cascade reprocessing of the spectrum. Results are presented for the spectral modifications due to splitting, taking into account the different probabilities for splitting for different polarization modes. Unpolarized and polarized pair cascade photon spectra form the input spectra for the model, which calculates the resulting splitting reprocessed spectra numerically by solving the photon kinetic equations for each polarization mode. This inclusion of photon polarizations is found to not alter previous predictions that splitting produce a significant flattening of the hard X ray continuum and a bump at MeV energies below a pair production turnover. The spectrum near the bump is always strongly polarized.

  17. Cooperative Search of Autonomous Vehicles for Unknown Targets

    NASA Astrophysics Data System (ADS)

    Yang, Sheng Qing; Yu, Jian Qiao; Zhang, Si Yu

    2013-01-01

    We study the orbital-dependent superconducting pairing in a five-orbital t-J1-J2 model for iron pnictides. Depending on the orbital selectivity of electron correlations and the orbital characters along the Fermi surface, the superconducting gap in an A_{1g} pairing state may exhibit anisotropy. This anisotropy varies with the degree of J1-J2 magnetic frustration. We have also calculated the dynamical spin susceptibility in the superconducting state. The frequency dependence of the susceptibility at the antiferromagnetic wavevector (\\pi,0) shows a resonance, whose width is enhanced by the orbital dependence of the superconducting gap; when the latter is sufficiently strong, the resonance peak may be split into two. We discuss the implications of our results on the recent angle-resolved photoemission and neutron-scattering measurements in several superconducting iron pnictides.

  18. Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP

    NASA Astrophysics Data System (ADS)

    Lynner, Colton; Long, Maureen D.

    2014-05-01

    Shear wave splitting of SK(K)S phases is often used to examine upper mantle anisotropy. In specific cases, however, splitting of these phases may reflect anisotropy in the lowermost mantle. Here we present SKS and SKKS splitting measurements for 233 event-station pairs at 34 seismic stations that sample D″ beneath Africa. Of these, 36 pairs show significantly different splitting between the two phases, which likely reflects a contribution from lowermost mantle anisotropy. The vast majority of discrepant pairs sample the boundary of the African large low shear velocity province (LLSVP), which dominates the lower mantle structure beneath this region. In general, we observe little or no splitting of phases that have passed through the LLSVP itself and significant splitting for phases that have sampled the boundary of the LLSVP. We infer that the D″ region just outside the LLSVP boundary is strongly deformed, while its interior remains undeformed (or weakly deformed).

  19. Electrically tunable crossed Andreev reflection in a ferromagnet–superconductor–ferromagnet junction on a topological insulator

    NASA Astrophysics Data System (ADS)

    Zhang, Kunhua; Cheng, Qiang

    2018-07-01

    We investigate the crossed Andreev reflection in a ferromagnet–superconductor–ferromagnet junction on the surface of a topological insulator, where the magnetizations in the left and right leads are perpendicular to the surface. We find that the nonlocal transport process can be pure crossed Andreev reflection or pure elastic cotunneling, and the switch between the two processes can be controlled electrically. Pure crossed Andreev reflection appears for all bias voltages in the superconducting energy gap, which is independent of the configuration of the magnetizations in the two leads. The spin of the crossed Andreev reflected hole could be parallel to the spin of the incident electron, which is brought by the spin-triplet pairing correlation. The average transmission probability of crossed Andreev reflection can be larger than 90%, so a high efficiency nonlocal splitting of Cooper pairs can be generated, and turned on and off electrically.

  20. A cooperative-binding split aptamer assay for rapid, specific and ultra-sensitive fluorescence detection of cocaine in saliva.

    PubMed

    Yu, Haixiang; Canoura, Juan; Guntupalli, Bhargav; Lou, Xinhui; Xiao, Yi

    2017-01-01

    Sensors employing split aptamers that reassemble in the presence of a target can achieve excellent specificity, but the accompanying reduction of target affinity mitigates any overall gains in sensitivity. We for the first time have developed a split aptamer that achieves enhanced target-binding affinity through cooperative binding. We have generated a split cocaine-binding aptamer that incorporates two binding domains, such that target binding at one domain greatly increases the affinity of the second domain. We experimentally demonstrate that the resulting cooperative-binding split aptamer (CBSA) exhibits higher target binding affinity and is far more responsive in terms of target-induced aptamer assembly compared to the single-domain parent split aptamer (PSA) from which it was derived. We further confirm that the target-binding affinity of our CBSA can be affected by the cooperativity of its binding domains and the intrinsic affinity of its PSA. To the best of our knowledge, CBSA-5335 has the highest cocaine affinity of any split aptamer described to date. The CBSA-based assay also demonstrates excellent performance in target detection in complex samples. Using this CBSA, we achieved specific, ultra-sensitive, one-step fluorescence detection of cocaine within fifteen minutes at concentrations as low as 50 nM in 10% saliva without signal amplification. This limit of detection meets the standards recommended by the European Union's Driving under the Influence of Drugs, Alcohol and Medicines program. Our assay also demonstrates excellent reproducibility of results, confirming that this CBSA-platform represents a robust and sensitive means for cocaine detection in actual clinical samples.

  1. Detecting reciprocity at a global scale

    PubMed Central

    Frank, Morgan R.; Obradovich, Nick; Sun, Lijun; Woon, Wei Lee; LeVeck, Brad L.; Rahwan, Iyad

    2018-01-01

    Reciprocity stabilizes cooperation from the level of microbes all the way up to humans interacting in small groups, but does reciprocity also underlie stable cooperation between larger human agglomerations, such as nation states? Famously, evolutionary models show that reciprocity could emerge as a widespread strategy for achieving international cooperation. However, existing studies have only detected reciprocity-driven cooperation in a small number of country pairs. We apply a new method for detecting mutual influence in dynamical systems to a new large-scale data set that records state interactions with high temporal resolution. Doing so, we detect reciprocity between many country pairs in the international system and find that these reciprocating country pairs exhibit qualitatively different cooperative dynamics when compared to nonreciprocating pairs. Consistent with evolutionary theories of cooperation, reciprocating country pairs exhibit higher levels of stable cooperation and are more likely to punish instances of noncooperation. However, countries in reciprocity-based relationships are also quicker to forgive single acts of noncooperation by eventually returning to previous levels of mutual cooperation. By contrast, nonreciprocating pairs are more likely to exploit each other’s cooperation via higher rates of defection. Together, these findings provide the strongest evidence to date that reciprocity is a widespread mechanism for achieving international cooperation. PMID:29326983

  2. Detecting reciprocity at a global scale.

    PubMed

    Frank, Morgan R; Obradovich, Nick; Sun, Lijun; Woon, Wei Lee; LeVeck, Brad L; Rahwan, Iyad

    2018-01-01

    Reciprocity stabilizes cooperation from the level of microbes all the way up to humans interacting in small groups, but does reciprocity also underlie stable cooperation between larger human agglomerations, such as nation states? Famously, evolutionary models show that reciprocity could emerge as a widespread strategy for achieving international cooperation. However, existing studies have only detected reciprocity-driven cooperation in a small number of country pairs. We apply a new method for detecting mutual influence in dynamical systems to a new large-scale data set that records state interactions with high temporal resolution. Doing so, we detect reciprocity between many country pairs in the international system and find that these reciprocating country pairs exhibit qualitatively different cooperative dynamics when compared to nonreciprocating pairs. Consistent with evolutionary theories of cooperation, reciprocating country pairs exhibit higher levels of stable cooperation and are more likely to punish instances of noncooperation. However, countries in reciprocity-based relationships are also quicker to forgive single acts of noncooperation by eventually returning to previous levels of mutual cooperation. By contrast, nonreciprocating pairs are more likely to exploit each other's cooperation via higher rates of defection. Together, these findings provide the strongest evidence to date that reciprocity is a widespread mechanism for achieving international cooperation.

  3. Lewis acid-base interactions in weakly bound formaldehyde complexes with CO2, HCN, and FCN: considerations on the cooperative H-bonding effects.

    PubMed

    Rivelino, Roberto

    2008-01-17

    Ab initio quantum chemistry calculations reveal that HCN and mainly FCN can form Lewis acid-base complexes with formaldehyde associated with cooperative H bonds, as first noticed by Wallen et al. (Blatchford, M. A.; Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. 2002, 124, 14818-14819) for CO2-philic materials under supercritical conditions. The present results, obtained with MP2(Full)/aug-cc-pVDZ calculations, show that the degeneracy of the nu(2) mode in free HCN or FCN is removed upon complexation in the same fashion as that of CO2. The splitting of these bands along with the electron structure analysis provides substantial evidence of the interaction of electron lone pairs of the carbonyl oxygen with the electron-deficient carbon atom of the cyanides. Also, this work investigates the role of H bonds acting as additional stabilizing interactions in the complexes by performing the energetic and geometric characterization.

  4. Strong temperature effect on the sizes of the Cooper pairs in a two-band superconductor

    NASA Astrophysics Data System (ADS)

    Örd, Teet; Rägo, Küllike; Vargunin, Artjom; Litak, Grzegorz

    2018-01-01

    We study the temperature dependencies of the mean sizes of the Cooper pairs in a two-band BCS-type s-wave superconductivity model with coupling cut-off in the momentum space. It is found that, in contrast to single-band systems, the size of Cooper pairs in the weaker superconductivity band can significantly decrease with a temperature increase due to an interband proximity effect. The relevant spatial behaviour of the wave functions of the Cooper pairs is analyzed. The results also indicate a possibility that the size of Cooper pairs in two-band systems may increase with an increase in temperature.

  5. X-ray Spectropolarimetry of Z-pinch Plasmas with a Single-Crystal Technique

    NASA Astrophysics Data System (ADS)

    Wallace, Matt; Haque, Showera; Neill, Paul; Pereira, Nino; Presura, Radu

    2017-10-01

    When directed beams of energetic electrons exist in a plasma the resulting x-rays emitted by the plasma can be partially polarized. This makes plasma x-ray polarization spectroscopy, spectropolarimetry, useful for revealing information about the anisotropy of the electron velocity distribution. X-ray spectropolarimetry has indeed been used for this in both space and laboratory plasmas. X-ray polarization measurements are typically performed employing two crystals, both at a 45° Bragg angle. A single-crystal spectropolarimeter can replace two crystal schemes by utilizing two matching sets of internal planes for polarization-splitting. The polarization-splitting planes diffract the incident x-rays into two directions that are perpendicular to each other and the incident beam as well, so the two sets of diffracted x-rays are linearly polarized perpendicularly to each other. An X-cut quartz crystal with surface along the [11-20] planes and a paired set of [10-10] planes in polarization-splitting orientation is now being used on aluminum z-pinches at the University of Nevada, Reno. Past x-ray polarization measurements have been reserved for point-like sources. Recently a slotted collimating aperture has been used to maintain the required geometry for polarization-splitting enabling the spectropolarimetry of extended sources. The design of a single-crystal x-ray spectropolarimeter and experimental results will be presented. Work was supported by U.S. DOE, NNSA Grant DE-NA0001834 and cooperative agreement DE-FC52-06NA27616.

  6. ac Josephson effect and resonant Cooper pair tunneling emission of a single Cooper pair transistor.

    PubMed

    Billangeon, P-M; Pierre, F; Bouchiat, H; Deblock, R

    2007-05-25

    We measure the high-frequency emission of a single Cooper pair transistor (SCPT) in the regime where transport is only due to tunneling of Cooper pairs. This is achieved by coupling on chip the SCPT to a superconductor-insulator-superconductor junction and by measuring the photon assisted tunneling current of quasiparticles across the junction. This technique allows a direct detection of the ac Josephson effect of the SCPT and provides evidence of Landau-Zener transitions for proper gate voltage. The emission in the regime of resonant Cooper pair tunneling is also investigated. It is interpreted in terms of transitions between charge states coupled by the Josephson effect.

  7. Proximity-induced mixed odd- and even-frequency pairing in monolayer NbSe2

    NASA Astrophysics Data System (ADS)

    Aliabad, Mojtaba Rahimi; Zare, Mohammad-Hossein

    2018-06-01

    Monolayer superconducting transition-metal dichalcogenide NbSe2 is a candidate for a nodal topological superconductor by magnetic field. Because of the so-called Ising spin-orbit coupling that strongly pins the electron spins to the out-of-plane direction, Cooper pairs in monolayer superconductor NbSe2 are protected against an applied in-plane magnetic field much larger than the Pauli limit. In monolayer NbSe2, in addition to the Fermi pockets at the corners of Brillouin zone with opposite crystal momentum similar to other semiconducting transition-metal dichalcogenids, there is an extra Fermi pocket around the Γ point with much smaller spin splitting, which could lead to an alternative strategy for pairing possibilities that are manipulable by a smaller magnetic field. By considering a monolayer NbSe2-ferromagnet substrate junction, we explore the modified pairing correlations on the pocket at Γ point in hole-doped monolayer NbSe2. The underlying physics is fascinating as there is a delicate interplay of the induced exchange field and the Ising spin-orbit coupling. We realize a mixed singlet-triplet superconductivity, s +f , due to the Ising spin-orbit coupling. Moreover, our results reveal the admixture state including both odd- and even-frequency components, associated with the ferromagnetic proximity effect. Different frequency symmetries of the induced pairing correlations can be realized by manipulating the magnitude and direction of the induced magnetization.

  8. Oriented covalent immobilization of antibodies for measurement of intermolecular binding forces between zipper-like contact surfaces of split inteins.

    PubMed

    Sorci, Mirco; Dassa, Bareket; Liu, Hongwei; Anand, Gaurav; Dutta, Amit K; Pietrokovski, Shmuel; Belfort, Marlene; Belfort, Georges

    2013-06-18

    In order to measure the intermolecular binding forces between two halves (or partners) of naturally split protein splicing elements called inteins, a novel thiol-hydrazide linker was designed and used to orient immobilized antibodies specific for each partner. Activation of the surfaces was achieved in one step, allowing direct intermolecular force measurement of the binding of the two partners of the split intein (called protein trans-splicing). Through this binding process, a whole functional intein is formed resulting in subsequent splicing. Atomic force microscopy (AFM) was used to directly measure the split intein partner binding at 1 μm/s between native (wild-type) and mixed pairs of C- and N-terminal partners of naturally occurring split inteins from three cyanobacteria. Native and mixed pairs exhibit similar binding forces within the error of the measurement technique (~52 pN). Bioinformatic sequence analysis and computational structural analysis discovered a zipper-like contact between the two partners with electrostatic and nonpolar attraction between multiple aligned ion pairs and hydrophobic residues. Also, we tested the Jarzynski's equality and demonstrated, as expected, that nonequilibrium dissipative measurements obtained here gave larger energies of interaction as compared with those for equilibrium. Hence, AFM coupled with our immobilization strategy and computational studies provides a useful analytical tool for the direct measurement of intermolecular association of split inteins and could be extended to any interacting protein pair.

  9. Hanbury Brown and Twiss correlations of Cooper pairs in helical liquids

    NASA Astrophysics Data System (ADS)

    Choi, Mahn-Soo

    2014-01-01

    We propose a Hanbury Brown and Twiss (HBT) experiment of Cooper pairs on the edge channels of quantum spin Hall insulators. The helical edge channels provide a well-defined beam of Cooper pairs and perfect Andreev reflections from superconductors. This allows our setup to be identical in spirit to the original HBT experiment. Interestingly, the cross correlation is always negative and provides no hint of the bosonic nature of Cooper pairs. This counterintuitive result is attributed to the perfect Andreev reflection and the true beam splitter in the setup.

  10. Cooper Pairs in Insulators?!

    ScienceCinema

    James Valles

    2017-12-09

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  11. Periodical energy oscillation and pulse splitting in sinusoidal volume holographic grating.

    PubMed

    Yan, Xiaona; Gao, Lirun; Dai, Ye; Yang, Xihua; Chen, Yuanyuan; Ma, Guohong

    2014-07-28

    This paper presents dynamical diffraction properties of a femtosecond pulse in a sinusoidal volume holographic grating (VHG). By the modified coupled-wave equations of Kogelnik, we show that the diffraction of a femtosecond pulse on the VHG gives rise to periodical energy oscillation and pulse splitting. In the initial stage of diffraction, one diffracted pulse and one transmitted pulse emerge, and energy of the transmitted pulse periodically transfers to the diffracted pulse and vice versa. In the latter stage, both the diffracted and transmitted pulses split into two spatially separated pulses. One pair of transmitted and diffracted pulses propagates in the same direction and forms the output diffracted dual pulses of the VHG, and the other pair of pulses forms the output transmitted dual pulses. The pulse interval between each pair of dual pulses is in linearly proportional to the refractive index modulation and grating thickness. By the interference effect and group velocity difference we give explanations on the periodical energy oscillation and pulse splitting respectively.

  12. Cooper-pair size and binding energy for unconventional superconducting systems

    NASA Astrophysics Data System (ADS)

    Dinóla Neto, F.; Neto, Minos A.; Salmon, Octavio D. Rodriguez

    2018-06-01

    The main proposal of this paper is to analyze the size of the Cooper pairs composed by unbalanced mass fermions from different electronic bands along the BCS-BEC crossover and study the binding energy of the pairs. We are considering an interaction between fermions with different masses leading to an inter-band pairing. In addiction to the attractive interaction we have an hybridization term to couple both bands, which in general acts unfavorable for the pairing between the electrons. We get first order phase transitions as the hybridization breaks the Cooper pairs for the s-wave symmetry of the gap amplitude. The results show the dependence of the Cooper-pair size as a function of the hybridization for T = 0 . We also propose the structure of the binding energy of the inter-band system as a function of the two-bands quasi-particle energies.

  13. Optical power splitter and polarization splitter

    NASA Technical Reports Server (NTRS)

    Bogert, Gail A. (Inventor)

    1988-01-01

    A 3.times.3 optical guiding arrangement is disclosed for providing both power splitting between a pair of output guides in the 3.times.3 guide structure and polarization splitting (into the TE and TM modes) between the central guide and the pair of outer guides. In accordance with the present invention, the mutual coupling length L and separation distance d between adjacent guides are chosen to provide the desired polarization splitting and total intensity (power) in the outer guides. For example, an input signal of intensity I comprising both the TE and TM modes may be launched in the center guide and with correct choices for L and d, will result in output signals of I.sub.TM /2 each of the outer pair of guides and I.sub.TE from the central guide.

  14. The coevolution of long-term pair bonds and cooperation.

    PubMed

    Song, Z; Feldman, M W

    2013-05-01

    The evolution of social traits may not only depend on but also change the social structure of the population. In particular, the evolution of pairwise cooperation, such as biparental care, depends on the pair-matching distribution of the population, and the latter often emerges as a collective outcome of individual pair-bonding traits, which are also under selection. Here, we develop an analytical model and individual-based simulations to study the coevolution of long-term pair bonds and cooperation in parental care, where partners play a Snowdrift game in each breeding season. We illustrate that long-term pair bonds may coevolve with cooperation when bonding cost is below a threshold. As long-term pair bonds lead to assortative interactions through pair-matching dynamics, they may promote the prevalence of cooperation. In addition to the pay-off matrix of a single game, the evolutionarily stable equilibrium also depends on bonding cost and accidental divorce rate, and it is determined by a form of balancing selection because the benefit from pair-bond maintenance diminishes as the frequency of cooperators increases. Our findings highlight the importance of ecological factors affecting social bonding cost and stability in understanding the coevolution of social behaviour and social structures, which may lead to the diversity of biological social systems. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  15. Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs

    DOE PAGES

    Li, Chenyu; Chang, Chun-Chieh; Zhou, Qingli; ...

    2017-10-10

    Here, we investigate edge-coupling of twisted split-ring resonator (SRR) pairs in the terahertz (THz) frequency range. By using a simple coupled-resonator model we show that such a system exhibits resonance splitting and cross-polarization conversion. Numerical simulations and experimental measurements agree well with theoretical calculations, verifying the resonance splitting as a function of the coupling strength given by the SRR separation. We further show that a metal ground plane can be integrated to significantly enhance the resonance coupling, which enables the effective control of resonance splitting and the efficiency and bandwidth of the cross-polarization conversion. Our findings improve the fundamental understandingmore » of metamaterials with a view of accomplishing metamaterial functionalities with enhanced performance, which is of great interest in realizing THz functional devices required in a variety of applications.« less

  16. Interacting preformed Cooper pairs in resonant Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbels, K. B.; Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, NL-6525 AJ Nijmegen; Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3584 CE Utrecht

    2011-07-15

    We consider the normal phase of a strongly interacting Fermi gas, which can have either an equal or an unequal number of atoms in its two accessible spin states. Due to the unitarity-limited attractive interaction between particles with different spin, noncondensed Cooper pairs are formed. The starting point in treating preformed pairs is the Nozieres-Schmitt-Rink (NSR) theory, which approximates the pairs as being noninteracting. Here, we consider the effects of the interactions between the Cooper pairs in a Wilsonian renormalization-group scheme. Starting from the exact bosonic action for the pairs, we calculate the Cooper-pair self-energy by combining the NSR formalismmore » with the Wilsonian approach. We compare our findings with the recent experiments by Harikoshi et al. [Science 327, 442 (2010)] and Nascimbene et al. [Nature (London) 463, 1057 (2010)], and find very good agreement. We also make predictions for the population-imbalanced case, which can be tested in experiments.« less

  17. Exciting News From Va. Tech - Repaired Pallets May Be Stronger Than the Original

    Treesearch

    John W. Clarke; Marshall S. White; T.E. McLain; Philip A. Araman

    1995-01-01

    Virginia Tech, in cooperation with the NWPCA and the Southern Research Station of the USDA Forest Service, conducted a research program on the use of metal plates for repair of stringer pallets. This study looked at common stringer failure locations: splits between the notches, splits above the notches, and splits in the end feet. One of the research objectives was to...

  18. Supercurrent in ferromagnetic Josephson junctions with heavy metal interlayers

    NASA Astrophysics Data System (ADS)

    Satchell, Nathan; Birge, Norman O.

    2018-06-01

    The length scale over which supercurrent from conventional BCS, s -wave superconductors (S ) can penetrate an adjacent ferromagnetic (F ) layer depends on the ability to convert singlet Cooper pairs into triplet Cooper pairs. Spin-aligned triplet Cooper pairs are not dephased by the ferromagnetic exchange interaction and can thus penetrate an F layer over much longer distances than singlet Cooper pairs. These triplet Cooper pairs carry a dissipationless spin current and are the fundamental building block for the fledgling field of superspintronics. Singlet-triplet conversion by inhomogeneous magnetism is well established. Here, we describe an attempt to use spin-orbit coupling as an alternative mechanism to mediate singlet-triplet conversion in S-F-S Josephson junctions. We report that the addition of thin Pt spin-orbit-coupling layers in our Josephson junctions significantly increases supercurrent transmission, however the decay length of the supercurrent is not found to increase. We attribute the increased supercurrent transmission to Pt acting as a buffer layer to improve the growth of the Co F layer.

  19. Undermining the rules in home care services for the elderly in Norway: flexibility and cooperation.

    PubMed

    Wollscheid, Sabine; Eriksen, John; Hallvik, Jørgen

    2013-06-01

    This study explores the provision of home care services (home nursing and domiciliary help) for the elderly in Norwegian municipalities with purchaser-provider split model. The study draws on the assumption that flexibility in adjusting services to the care receivers' needs, and cooperation between provider and purchasers are indicators of good quality of care. Data were collected through semi-structured telephone interviews with 22 team leaders of provider units in nine municipalities. Data were collected in 2008-2009. The study has been approved by the Norwegian Social Science Data Services. We identified four different ways of organising home care services under a purchaser-provider split model: Provider empowerment, New Public Management, Vague instructions and undermining the rules. High flexibility in providing care and cooperation with the purchaser unit were identified by the team leaders as characteristics for good care. Our findings suggest that the care providers use individual strategies that allow flexibility and cooperation rather than rigidly abiding to the regulations the purchaser-provider split models implies. Ironically, in provider units where the 'rules were undermined', the informants (team leaders of provider units) seemed to be most satisfied with the quality of home care that they delivered. © 2012 Nordic College of Caring Science.

  20. Unconventional Cooper pairing results in a pseudogap-like phase in s-wave superconductors

    NASA Astrophysics Data System (ADS)

    Springer, Daniel; Cheong, Siew Ann

    2015-10-01

    The impact of disorder on the superconducting (SC) pairing mechanism is the centre of much debate. Some evidence suggests a loss of phase coherence of pairs while others point towards the formation of a competing phase. In our work we show that the two perspectives may be different sides of the same coin. Using an extension of the perturbative renormalization group approach we compare the impact of different disorder-induced interactions on a SC ground state. We find that in the strongly disordered regime an interaction between paired fermions and their respective disordered environment replaces conventional Cooper pairing. For these unconventional Cooper pairs the phase coherence condition, required for the formation of a SC condensate, is not satisfied.

  1. Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering

    NASA Astrophysics Data System (ADS)

    Breunig, Daniel; Burset, Pablo; Trauzettel, Björn

    2018-01-01

    In superconducting spintronics, it is essential to generate spin-triplet Cooper pairs on demand. Up to now, proposals to do so concentrate on hybrid structures in which a superconductor (SC) is combined with a magnetically ordered material (or an external magnetic field). We, instead, identify a novel way to create and isolate spin-triplet Cooper pairs in the absence of any magnetic ordering. This achievement is only possible because we drive a system with strong spin-orbit interaction—the Dirac surface states of a strong topological insulator (TI)-out of equilibrium. In particular, we consider a bipolar TI-SC-TI junction, where the electrochemical potentials in the outer leads differ in their overall sign. As a result, we find that nonlocal singlet pairing across the junction is completely suppressed for any excitation energy. Hence, this junction acts as a perfect spin-triplet filter across the SC, generating equal-spin Cooper pairs via crossed Andreev reflection.

  2. Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering.

    PubMed

    Breunig, Daniel; Burset, Pablo; Trauzettel, Björn

    2018-01-19

    In superconducting spintronics, it is essential to generate spin-triplet Cooper pairs on demand. Up to now, proposals to do so concentrate on hybrid structures in which a superconductor (SC) is combined with a magnetically ordered material (or an external magnetic field). We, instead, identify a novel way to create and isolate spin-triplet Cooper pairs in the absence of any magnetic ordering. This achievement is only possible because we drive a system with strong spin-orbit interaction-the Dirac surface states of a strong topological insulator (TI)-out of equilibrium. In particular, we consider a bipolar TI-SC-TI junction, where the electrochemical potentials in the outer leads differ in their overall sign. As a result, we find that nonlocal singlet pairing across the junction is completely suppressed for any excitation energy. Hence, this junction acts as a perfect spin-triplet filter across the SC, generating equal-spin Cooper pairs via crossed Andreev reflection.

  3. Interferometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B. (Inventor)

    1981-01-01

    An interferometer of relatively simple design which is tilt compensated, and which facilitates adjustment of the path lengths of split light beams is described. The interferometer includes a pair of plate-like elements with a dielectric coating and an oil film between them, that forms a beamsplitter interface, and with a pair of reflector surfaces at the ends of the plates. A pair of retroreflectors are positioned so that each split beam component is directed by a retroreflector onto one of the reflector surfaces and is then returned to the beamsplitter interface, so that the reflector surfaces tilt in a direction and amount that compensates for tilting of the beamsplitter interface.

  4. Vertically integrated visible and near-infrared metasurfaces enabling an ultra-broadband and highly angle-resolved anomalous reflection.

    PubMed

    Gao, Song; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2018-06-21

    An optical device with minimized dimensions, which is capable of efficiently resolving an ultra-broad spectrum into a wide splitting angle but incurring no spectrum overlap, is of importance in advancing the development of spectroscopy. Unfortunately, this challenging task cannot be easily addressed through conventional geometrical or diffractive optical elements. Herein, we propose and demonstrate vertically integrated visible and near-infrared metasurfaces which render an ultra-broadband and highly angle-resolved anomalous reflection. The proposed metasurface capitalizes on a supercell that comprises two vertically concatenated trapezoid-shaped aluminum antennae, which are paired with a metallic ground plane via a dielectric layer. Under normal incidence, reflected light within a spectral bandwidth of 1000 nm ranging from λ = 456 nm to 1456 nm is efficiently angle-resolved to a single diffraction order with no spectrum overlap via the anomalous reflection, exhibiting an average reflection efficiency over 70% and a substantial angular splitting of 58°. In light of a supercell pitch of 1500 nm, to the best of our knowledge, the micron-scale bandwidth is the largest ever reported. It is noted that the substantially wide bandwidth has been accomplished by taking advantage of spectral selective vertical coupling effects between antennae and ground plane. In the visible regime, the upper antenna primarily renders an anomalous reflection by cooperating with the lower antenna, which in turn cooperates with the ground plane and produces phase variations leading to an anomalous reflection in the near-infrared regime. Misalignments between the two antennae have been particularly inspected to not adversely affect the anomalous reflection, thus guaranteeing enhanced structural tolerance of the proposed metasurface.

  5. Group formation through indirect reciprocity

    NASA Astrophysics Data System (ADS)

    Oishi, Koji; Shimada, Takashi; Ito, Nobuyasu

    2013-03-01

    The emergence of group structure of cooperative relations is studied in an agent-based model. It is proved that specific types of reciprocity norms lead individuals to split into two groups only inside of which they are cooperative. The condition for the evolutionary stability of the norms is also obtained. This result suggests reciprocity norms, which usually promote cooperation, can cause society's separation into multiple groups.

  6. Detection of a Cooper-pair density wave in Bi 2Sr 2CaCu 2O 8+x

    DOE PAGES

    Hamidian, M. H.; Edkins, S. D.; Joo, Sang Hyun; ...

    2016-04-13

    The quantum condensate of Cooper pairs forming a superconductor was originally conceived as being translationally invariant. In theory, however, pairs can exist with finite momentum Q, thus generating a state with a spatially modulated Cooper-pair density. Such a state has been created in ultracold 6Li gas but never observed directly in any superconductor. It is now widely hypothesized that the pseudogap phase of the copper oxide superconductors contains such a ‘pair density wave’ state. In this paper we report the use of nanometre-resolution scanned Josephson tunnelling microscopy to image Cooper pair tunnelling from a d-wave superconducting microscope tip to themore » condensate of the superconductor Bi 2Sr 2CaCu 2O 8+x. We demonstrate condensate visualization capabilities directly by using the Cooper-pair density variations surrounding zinc impurity atoms and at the Bi 2Sr 2CaCu 2O 8+x crystal supermodulation. Then, by using Fourier analysis of scanned Josephson tunnelling images, we discover the direct signature of a Cooper-pair density modulation at wavevectors Q P ≈ (0.25, 0)2π/a 0 and (0, 0.25)2π/a 0 in Bi 2Sr 2CaCu 2O 8+x. The amplitude of these modulations is about five per cent of the background condensate density and their form factor exhibits primarily s or s' symmetry. Finally, this phenomenology is consistent with Ginzburg–Landau theory when a charge density wave with d-symmetry form factor and wavevector Q C = Q P coexists with a d-symmetry superconductor; it is also predicted by several contemporary microscopic theories for the pseudogap phase.« less

  7. Individual Characteristics vs. Experience: An Experimental Study on Cooperation in Prisoner's Dilemma

    PubMed Central

    Barreda-Tarrazona, Iván; Jaramillo-Gutiérrez, Ainhoa; Pavan, Marina; Sabater-Grande, Gerardo

    2017-01-01

    Cooperative behavior is often assumed to depend on individuals' characteristics, such as altruism and reasoning ability. Evidence is mixed about what the precise impact of these characteristics is, as the subjects of study are generally randomly paired, generating a heterogeneous mix of the two characteristics. In this study we ex-ante create four different groups of subjects by factoring their higher or lower than the median scores in both altruism and reasoning ability. Then we use these groups in order to analyze the joint effect of the two characteristics on the individual choice of cooperating and on successful paired cooperation. Subjects belonging to each group play first 10 one-shot prisoner's dilemma (PD) games with ten random partners and then three consecutive 10-round repeated PD games with three random partners. In all games, we elicit players' beliefs regarding cooperation using an incentive compatible method. Individuals with high altruism are more optimistic about the cooperative behavior of the other player in the one-shot game. They also show higher individual cooperation and paired cooperation rates in the first repetitions of this game. Contrary to the one-shot PD games where high reasoning ability reduces the probability of playing cooperatively, the sign of the relationship is inverted in the first repeated PD game, showing that high reasoning ability individuals better adjust their behavior to the characteristics of the game they are playing. In this sense, the joint effect of reasoning ability and altruism is not linear, with reasoning ability counteracting the cooperative effect of altruism in the one-shot game and reinforcing it in the first repeated game. However, experience playing the repeated PD games takes over the two individual characteristics in explaining individual and paired cooperation. Thus, in a (PD) setting, altruism and reasoning ability significantly affect behavior in single encounters, while in repeated interactions individual and paired cooperation reach similarly high levels independently of these individual characteristics. PMID:28473787

  8. Cooperative Lewis pairs based on late transition metals: activation of small molecules by platinum(0) and B(C6 F5 )3.

    PubMed

    Forrest, Sebastian J K; Clifton, Jamie; Fey, Natalie; Pringle, Paul G; Sparkes, Hazel A; Wass, Duncan F

    2015-02-09

    A Lewis basic platinum(0)-CO complex supported by a diphosphine ligand and B(C6 F5 )3 act cooperatively, in a manner reminiscent of a frustrated Lewis pair, to activate small molecules such as hydrogen, CO2 , and ethene. This cooperative Lewis pair facilitates the coupling of CO and ethene in a new way. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Pairing of Pre-Service and Cooperating Teachers during Student Internship: Opinions of Collaborative Relationships

    ERIC Educational Resources Information Center

    Lawley, Jennifer Avery

    2012-01-01

    This study investigated the opinions of collaborative relationships of pre-service and cooperating teachers during the internship semester. The primary purpose of the study was to determine if purposefully pairing pre-service and cooperating teachers with similar personality traits improved the opinions of collaboration. Using the method of…

  10. Direct evidence for a magnetic f-electron–mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5

    PubMed Central

    Van Dyke, John S.; Massee, Freek; Allan, Milan P.; Davis, J. C. Séamus; Petrovic, Cedomir; Morr, Dirk K.

    2014-01-01

    To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high-temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference imaging to reveal quantitatively the momentum space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ekα,β with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5 then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by f-electron magnetism. PMID:25062692

  11. Use of visual CO2 feedback as a retrofit solution for improving classroom air quality.

    PubMed

    Wargocki, P; Da Silva, N A F

    2015-02-01

    Carbon dioxide (CO2 ) sensors that provide a visual indication were installed in classrooms during normal school operation. During 2-week periods, teachers and students were instructed to open the windows in response to the visual CO2 feedback in 1 week and open them, as they would normally do, without visual feedback, in the other week. In the heating season, two pairs of classrooms were monitored, one pair naturally and the other pair mechanically ventilated. In the cooling season, two pairs of naturally ventilated classrooms were monitored, one pair with split cooling in operation and the other pair with no cooling. Classrooms were matched by grade. Providing visual CO2 feedback reduced CO2 levels, as more windows were opened in this condition. This increased energy use for heating and reduced the cooling requirement in summertime. Split cooling reduced the frequency of window opening only when no visual CO2 feedback was present. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Topological superconductivity in monolayer transition metal dichalcogenides.

    PubMed

    Hsu, Yi-Ting; Vaezi, Abolhassan; Fischer, Mark H; Kim, Eun-Ah

    2017-04-11

    Theoretically, it has been known that breaking spin degeneracy and effectively realizing spinless fermions is a promising path to topological superconductors. Yet, topological superconductors are rare to date. Here we propose to realize spinless fermions by splitting the spin degeneracy in momentum space. Specifically, we identify monolayer hole-doped transition metal dichalcogenide (TMD)s as candidates for topological superconductors out of such momentum-space-split spinless fermions. Although electron-doped TMDs have recently been found superconducting, the observed superconductivity is unlikely topological because of the near spin degeneracy. Meanwhile, hole-doped TMDs with momentum-space-split spinless fermions remain unexplored. Employing a renormalization group analysis, we propose that the unusual spin-valley locking in hole-doped TMDs together with repulsive interactions selectively favours two topological superconducting states: interpocket paired state with Chern number 2 and intrapocket paired state with finite pair momentum. A confirmation of our predictions will open up possibilities for manipulating topological superconductors on the device-friendly platform of monolayer TMDs.

  13. Social Networks-Based Adaptive Pairing Strategy for Cooperative Learning

    ERIC Educational Resources Information Center

    Chuang, Po-Jen; Chiang, Ming-Chao; Yang, Chu-Sing; Tsai, Chun-Wei

    2012-01-01

    In this paper, we propose a grouping strategy to enhance the learning and testing results of students, called Pairing Strategy (PS). The proposed method stems from the need of interactivity and the desire of cooperation in cooperative learning. Based on the social networks of students, PS provides members of the groups to learn from or mimic…

  14. Chiral Majorana fermion modes regulated by a scanning tunneling microscope tip

    NASA Astrophysics Data System (ADS)

    Zhou, Yan-Feng; Hou, Zhe; Zhang, Ying-Tao; Sun, Qing-Feng

    2018-03-01

    The Majorana fermion can be described by a real wave function with only two phases (zero and π ) which provide a controllable degree of freedom. We propose a strategy to regulate the phase of the chiral Majorana state by coupling with a scanning tunneling microscope tip in a system consisting of a quantum anomalous Hall insulator coupled with a superconductor. With the change in the chemical potential, the chiral Majorana state can be tuned alternately between zero and π , in which the perfect normal tunneling and perfect crossed Andreev reflection appear, respectively. The perfect crossed Andreev reflection, by which a Cooper pair can be split into two electrons going into different terminals completely, leads to a pumping current and distinct quantized resistances. These findings may provide a signature of Majorana fermions and pave a feasible avenue to regulate the phase of the Majorana state.

  15. Correlated spin currents generated by resonant-crossed Andreev reflections in topological superconductors

    PubMed Central

    He, James J.; Wu, Jiansheng; Choy, Ting-Pong; Liu, Xiong-Jun; Tanaka, Y.; Law, K. T.

    2014-01-01

    Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors. PMID:24492649

  16. Magnetic Photon Splitting: The S-Matrix Formulation in the Landau Representation

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1999-01-01

    Calculations of reaction rates for the third-order QED process of photon splitting gamma yields gamma.gamma in strong magnetic fields traditionally have employed either the effective Lagrangian method or variants of Schwinger's proper-time technique. Recently, Mentzel, Berg and Wunner [1] presented an alternative derivation via an S-matrix formulation in the Landau representation. Advantages of such a formulation include the ability to compute rates near pair resonances above pair threshold. This paper presents new developments of the Landau representation formalism as applied to photon splitting, providing significant, advances beyond the work of [1] by summing over the spin quantum numbers of the electron propagators, and analytically integrating over the component of momentum of the intermediate states that is parallel to field. The ensuing tractable expressions for the scattering amplitudes are satisfyingly compact, and of an appearance familiar to S-matrix theory applications. Such developments can facilitate numerical computations of splitting considerably both below and above pair threshold. Specializations to two regimes of interest are obtained, namely the limit of highly supercritical fields and the domain where photon energies are far inferior to that for the threshold of single-photon pair creation. In particular, for the first time the low-frequency amplitudes are simply expressed in terms of the Gamma function, its integral and its derivatives. In addition, the equivalence of the asymptotic forms in these two domains to extant results from effective Lagrangian/proper- time formulations is demonstrated.

  17. A cooperative-binding split aptamer assay for rapid, specific and ultra-sensitive fluorescence detection of cocaine in saliva† †Electronic supplementary information (ESI) available: Optimization of Mg2+ and ATMND concentrations for our CBSA-based ATMND-binding assay; ATMND-reported calibration curve for CBSA-5325 at various cocaine concentrations; ATMND binding affinity for the cocaine-assembled CBSA-5325; K D of 38-GC and different 38-GC mutants for cocaine as characterized by ITC; stem length effects on cocaine-induced CBSA assembly; spectra of CBSA-5335-based fluorescence detection of cocaine in 1× binding buffer; characterization of cocaine binding affinity of CBSA-5335 and PSA using ITC; fluorescence detection of cocaine in saliva with our fluorophore/quencher modified CBSA-5335; calibration curve of our CBSA-5335-based fluorophore/quencher assay in 1× binding buffer and 10% saliva at cocaine concentrations ranging from 0 to 10 μM; bias and precision of the CBSA-5335-based fluorophore/quencher assay; comparison of amplification-free split-aptamer assays for cocaine detection; sequence ID and DNA sequences used in this work. See DOI: 10.1039/c6sc01833e Click here for additional data file.

    PubMed Central

    Yu, Haixiang; Canoura, Juan; Guntupalli, Bhargav; Lou, Xinhui

    2017-01-01

    Sensors employing split aptamers that reassemble in the presence of a target can achieve excellent specificity, but the accompanying reduction of target affinity mitigates any overall gains in sensitivity. We for the first time have developed a split aptamer that achieves enhanced target-binding affinity through cooperative binding. We have generated a split cocaine-binding aptamer that incorporates two binding domains, such that target binding at one domain greatly increases the affinity of the second domain. We experimentally demonstrate that the resulting cooperative-binding split aptamer (CBSA) exhibits higher target binding affinity and is far more responsive in terms of target-induced aptamer assembly compared to the single-domain parent split aptamer (PSA) from which it was derived. We further confirm that the target-binding affinity of our CBSA can be affected by the cooperativity of its binding domains and the intrinsic affinity of its PSA. To the best of our knowledge, CBSA-5335 has the highest cocaine affinity of any split aptamer described to date. The CBSA-based assay also demonstrates excellent performance in target detection in complex samples. Using this CBSA, we achieved specific, ultra-sensitive, one-step fluorescence detection of cocaine within fifteen minutes at concentrations as low as 50 nM in 10% saliva without signal amplification. This limit of detection meets the standards recommended by the European Union's Driving under the Influence of Drugs, Alcohol and Medicines program. Our assay also demonstrates excellent reproducibility of results, confirming that this CBSA-platform represents a robust and sensitive means for cocaine detection in actual clinical samples. PMID:28451157

  18. Cooperativity and complexity in the binding of anions and cations to a tetratopic ion-pair host.

    PubMed

    Howe, Ethan N W; Bhadbhade, Mohan; Thordarson, Pall

    2014-05-21

    Cooperative interactions play a very important role in both natural and synthetic supramolecular systems. We report here on the cooperative binding properties of a tetratopic ion-pair host 1. This host combines two isophthalamide anion recognition sites with two unusual "half-crown/two carbonyl" cation recognition sites as revealed by the combination of single-crystal X-ray analysis of the free host and the 1:2 host:calcium cation complex, together with two-dimensional NMR and computational studies. By systematically comparing all of the binding data to several possible binding models and focusing on four different variants of the 1:2 binding model, it was in most cases possible to quantify these complex cooperative interactions. The data showed strong negative cooperativity (α = 0.01-0.05) of 1 toward chloride and acetate anions, while for cations the results were more variable. Interestingly, in the competitive (CDCl3/CD3OD (9:1, v/v)) solvent, the addition of calcium cations to the tetratopic ion-pair host 1 allosterically switched "on" chloride binding that is otherwise not present in this solvent system. The insight into the complexity of cooperative interactions revealed in this study of the tetratopic ion-pair host 1 can be used to design better cooperative supramolecular systems for information transfer and catalysis.

  19. Long-range Cooper pair splitter with high entanglement production rate

    PubMed Central

    Chen, Wei; Shi, D. N.; Xing, D. Y.

    2015-01-01

    Cooper pairs in the superconductor are a natural source of spin entanglement. The existing proposals of the Cooper pair splitter can only realize a low efficiency of entanglement production, and its size is constrained by the superconducting coherence length. Here we show that a long-range Cooper pair splitter can be implemented in a normal metal-superconductor-normal metal (NSN) junction by driving a supercurrent in the S. The supercurrent results in a band gap modification of the S, which significantly enhances the crossed Andreev reflection (CAR) of the NSN junction and simultaneously quenches its elastic cotunneling. Therefore, a high entanglement production rate close to its saturation value can be achieved by the inverse CAR. Interestingly, in addition to the conventional entangled electron states between opposite energy levels, novel entangled states with equal energy can also be induced in our proposal. PMID:25556521

  20. Pseudospin-orbit splitting and its consequences for the central depression in nuclear density

    NASA Astrophysics Data System (ADS)

    Li, Jia Jie; Long, Wen Hui; Song, Jun Ling; Zhao, Qiang

    2016-05-01

    The occurrence of the bubble-like structure has been studied, in the light of pseudospin degeneracy, within the relativistic Hartree-Fock-Bogoliubov (RHFB) theory. It is concluded that the charge/neutron bubble-like structure is predicted to occur in the mirror system of {34Si,34Ca } commonly by the selected Lagrangians, due to the persistence of Z (N )=14 subshell gaps above which the π (ν ) 2 s1 /2 states are not occupied. However, for the popular candidate 46Ar, the RHFB Lagrangian PKA1 does not support the occurrence of the bubble-like structure in the charge (proton) density profiles, due to the almost degenerate pseudospin doublet {π 2 s1 /2,π 1 d3 /2} and coherent pairing effects. The formation of a semibubble in heavy nuclei is less possible as a result of small pseudospin-orbit (PSO) splitting, while it tends to appear at Z =120 superheavy systems which coincides with large PSO splitting of the doublet {π 3 p3 /2,π 2 f5 /2} and couples with significant shell effects. Pairing correlations, which can work against bubble formation, significantly affect the PSO splitting. Furthermore, we found that the influence on semibubble formation due to different types of pairing interactions is negligible. The quenching of the spin-orbit splitting in the p orbit has been also stressed, and it may be considered the hallmark for semibubble nuclei.

  1. Cooperative gene regulation by microRNA pairs and their identification using a computational workflow

    PubMed Central

    Schmitz, Ulf; Lai, Xin; Winter, Felix; Wolkenhauer, Olaf; Vera, Julio; Gupta, Shailendra K.

    2014-01-01

    MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. Recently, it has been shown that pairs of miRNAs can repress the translation of a target mRNA in a cooperative manner, which leads to an enhanced effectiveness and specificity in target repression. However, it remains unclear which miRNA pairs can synergize and which genes are target of cooperative miRNA regulation. In this paper, we present a computational workflow for the prediction and analysis of cooperating miRNAs and their mutual target genes, which we refer to as RNA triplexes. The workflow integrates methods of miRNA target prediction; triplex structure analysis; molecular dynamics simulations and mathematical modeling for a reliable prediction of functional RNA triplexes and target repression efficiency. In a case study we analyzed the human genome and identified several thousand targets of cooperative gene regulation. Our results suggest that miRNA cooperativity is a frequent mechanism for an enhanced target repression by pairs of miRNAs facilitating distinctive and fine-tuned target gene expression patterns. Human RNA triplexes predicted and characterized in this study are organized in a web resource at www.sbi.uni-rostock.de/triplexrna/. PMID:24875477

  2. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  3. Extra-Pair Mating and Evolution of Cooperative Neighbourhoods

    PubMed Central

    Eliassen, Sigrunn; Jørgensen, Christian

    2014-01-01

    A striking but unexplained pattern in biology is the promiscuous mating behaviour in socially monogamous species. Although females commonly solicit extra-pair copulations, the adaptive reason has remained elusive. We use evolutionary modelling of breeding ecology to show that females benefit because extra-pair paternity incentivizes males to shift focus from a single brood towards the entire neighbourhood, as they are likely to have offspring there. Male-male cooperation towards public goods and dear enemy effects of reduced territorial aggression evolve from selfish interests, and lead to safer and more productive neighbourhoods. The mechanism provides adaptive explanations for the common empirical observations that females engage in extra-pair copulations, that neighbours dominate as extra-pair sires, and that extra-pair mating correlates with predation mortality and breeding density. The models predict cooperative behaviours at breeding sites where males cooperate more towards public goods than females. Where maternity certainty makes females care for offspring at home, paternity uncertainty and a potential for offspring in several broods make males invest in communal benefits and public goods. The models further predict that benefits of extra-pair mating affect whole nests or neighbourhoods, and that cuckolding males are often cuckolded themselves. Derived from ecological mechanisms, these new perspectives point towards the evolution of sociality in birds, with relevance also for mammals and primates including humans. PMID:24987839

  4. The impact of size of cooperative group on achievement, social support, and self-esteem.

    PubMed

    Bertucci, Andrea; Conte, Stella; Johnson, David W; Johnson, Roger T

    2010-01-01

    The effect of cooperative learning in pairs and groups of 4 and in individualistic learning were compared on achievement, social support, and self-esteem. Sixty-two Italian 7th-grade students with no previous experience with cooperative learning were assigned to conditions on a stratified random basis controlling for ability, gender, and self-esteem. Students participated in 1 instructional unit for 90 min for 6 instructional days during a period of about 6 weeks. The results indicate that cooperative learning in pairs and 4s promoted higher achievement and greater academic support from peers than did individualistic learning. Students working in pairs developed a higher level of social self-esteem than did students learning in the other conditions.

  5. Internal and external scope in willingness-to-pay estimates for threatened and endangered wildlife

    USGS Publications Warehouse

    Giraud, K.L.; Loomis, J.B.; Johnson, R.L.

    1999-01-01

    Economic theory suggests willingness-to-pay (WTP) should be significantly higher for a comprehensive good than for a subset of that good. We tested this using both a split sample design (external scope test) and paired responses (internal scope test) for WTP for several endangered fish and wildlife species in the US. In the paired response case we corrected for correlation of willingness-to-pay responses using a bivariate probit model. Surprisingly, the independent split samples passed the scope test but the paired samples did not. As the results contradict each other, questions of validity for policy implications are raised. However, using either approach, the benefit of maintaining critical habitat for these species exceeds the costs.

  6. Universal quantum gates for Single Cooper Pair Box based quantum computing

    NASA Technical Reports Server (NTRS)

    Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.

    2000-01-01

    We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.

  7. Dependency links can hinder the evolution of cooperation in the prisoner's dilemma game on lattices and networks.

    PubMed

    Wang, Xuwen; Nie, Sen; Wang, Binghong

    2015-01-01

    Networks with dependency links are more vulnerable when facing the attacks. Recent research also has demonstrated that the interdependent groups support the spreading of cooperation. We study the prisoner's dilemma games on spatial networks with dependency links, in which a fraction of individual pairs is selected to depend on each other. The dependency individuals can gain an extra payoff whose value is between the payoff of mutual cooperation and the value of temptation to defect. Thus, this mechanism reflects that the dependency relation is stronger than the relation of ordinary mutual cooperation, but it is not large enough to cause the defection of the dependency pair. We show that the dependence of individuals hinders, promotes and never affects the cooperation on regular ring networks, square lattice, random and scale-free networks, respectively. The results for the square lattice and regular ring networks are demonstrated by the pair approximation.

  8. A Quantitative Analysis of Children's Splitting Operations and Fraction Schemes

    ERIC Educational Resources Information Center

    Norton, Anderson; Wilkins, Jesse L. M.

    2009-01-01

    Teaching experiments with pairs of children have generated several hypotheses about students' construction of fractions. For example, Steffe (2004) hypothesized that robust conceptions of improper fractions depends on the development of a splitting operation. Results from teaching experiments that rely on scheme theory and Steffe's hierarchy of…

  9. PCTFPeval: a web tool for benchmarking newly developed algorithms for predicting cooperative transcription factor pairs in yeast.

    PubMed

    Lai, Fu-Jou; Chang, Hong-Tsun; Wu, Wei-Sheng

    2015-01-01

    Computational identification of cooperative transcription factor (TF) pairs helps understand the combinatorial regulation of gene expression in eukaryotic cells. Many advanced algorithms have been proposed to predict cooperative TF pairs in yeast. However, it is still difficult to conduct a comprehensive and objective performance comparison of different algorithms because of lacking sufficient performance indices and adequate overall performance scores. To solve this problem, in our previous study (published in BMC Systems Biology 2014), we adopted/proposed eight performance indices and designed two overall performance scores to compare the performance of 14 existing algorithms for predicting cooperative TF pairs in yeast. Most importantly, our performance comparison framework can be applied to comprehensively and objectively evaluate the performance of a newly developed algorithm. However, to use our framework, researchers have to put a lot of effort to construct it first. To save researchers time and effort, here we develop a web tool to implement our performance comparison framework, featuring fast data processing, a comprehensive performance comparison and an easy-to-use web interface. The developed tool is called PCTFPeval (Predicted Cooperative TF Pair evaluator), written in PHP and Python programming languages. The friendly web interface allows users to input a list of predicted cooperative TF pairs from their algorithm and select (i) the compared algorithms among the 15 existing algorithms, (ii) the performance indices among the eight existing indices, and (iii) the overall performance scores from two possible choices. The comprehensive performance comparison results are then generated in tens of seconds and shown as both bar charts and tables. The original comparison results of each compared algorithm and each selected performance index can be downloaded as text files for further analyses. Allowing users to select eight existing performance indices and 15 existing algorithms for comparison, our web tool benefits researchers who are eager to comprehensively and objectively evaluate the performance of their newly developed algorithm. Thus, our tool greatly expedites the progress in the research of computational identification of cooperative TF pairs.

  10. PCTFPeval: a web tool for benchmarking newly developed algorithms for predicting cooperative transcription factor pairs in yeast

    PubMed Central

    2015-01-01

    Background Computational identification of cooperative transcription factor (TF) pairs helps understand the combinatorial regulation of gene expression in eukaryotic cells. Many advanced algorithms have been proposed to predict cooperative TF pairs in yeast. However, it is still difficult to conduct a comprehensive and objective performance comparison of different algorithms because of lacking sufficient performance indices and adequate overall performance scores. To solve this problem, in our previous study (published in BMC Systems Biology 2014), we adopted/proposed eight performance indices and designed two overall performance scores to compare the performance of 14 existing algorithms for predicting cooperative TF pairs in yeast. Most importantly, our performance comparison framework can be applied to comprehensively and objectively evaluate the performance of a newly developed algorithm. However, to use our framework, researchers have to put a lot of effort to construct it first. To save researchers time and effort, here we develop a web tool to implement our performance comparison framework, featuring fast data processing, a comprehensive performance comparison and an easy-to-use web interface. Results The developed tool is called PCTFPeval (Predicted Cooperative TF Pair evaluator), written in PHP and Python programming languages. The friendly web interface allows users to input a list of predicted cooperative TF pairs from their algorithm and select (i) the compared algorithms among the 15 existing algorithms, (ii) the performance indices among the eight existing indices, and (iii) the overall performance scores from two possible choices. The comprehensive performance comparison results are then generated in tens of seconds and shown as both bar charts and tables. The original comparison results of each compared algorithm and each selected performance index can be downloaded as text files for further analyses. Conclusions Allowing users to select eight existing performance indices and 15 existing algorithms for comparison, our web tool benefits researchers who are eager to comprehensively and objectively evaluate the performance of their newly developed algorithm. Thus, our tool greatly expedites the progress in the research of computational identification of cooperative TF pairs. PMID:26677932

  11. Quantum theory of an atom in proximity to a superconductor

    NASA Astrophysics Data System (ADS)

    Le Dall, Matthias; Diniz, Igor; Dias da Silva, Luis G. G. V.; de Sousa, Rogério

    2018-02-01

    The impact of superconducting correlations on localized electronic states is important for a wide range of experiments in fundamental and applied superconductivity. This includes scanning tunneling microscopy of atomic impurities at the surface of superconductors, as well as superconducting-ion-chip spectroscopy of neutral ions and Rydberg states. Moreover, atomlike centers close to the surface are currently believed to be the main source of noise and decoherence in qubits based on superconducting devices. The proximity effect is known to dress atomic orbitals in Cooper-pair-like states known as Yu-Shiba-Rusinov (YSR) states, but the impact of superconductivity on the measured orbital splittings and optical-noise transitions is not known. Here we study the interplay between orbital degeneracy and particle-number admixture in atomic states, beyond the usual classical spin approximation. We model the atom as a generalized Anderson model interacting with a conventional s -wave superconductor. In the limit of zero on-site Coulomb repulsion (U =0 ), we obtain YSR subgap energy levels that are identical to the ones obtained from the classical spin model. When Δ is large and U >0 , the YSR spectra are no longer quasiparticle-like, and the highly degenerate orbital subspaces are split according to their spin, orbital, and number-parity symmetry. We show that U >0 activates additional poles in the atomic Green's function, suggesting an alternative explanation for the peak splittings recently observed in scanning tunneling microscopy of orbitally-degenerate impurities in superconductors. We describe optical excitation and absorption of photons by YSR states, showing that many additional optical channels open up in comparison to the nonsuperconducting case. Conversely, the additional dissipation channels imply increased electromagnetic noise due to impurities in superconducting devices.

  12. Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena

    NASA Astrophysics Data System (ADS)

    Cottet, Audrey; Dartiailh, Matthieu C.; Desjardins, Matthieu M.; Cubaynes, Tino; Contamin, Lauriane C.; Delbecq, Matthieu; Viennot, Jérémie J.; Bruhat, Laure E.; Douçot, Benoit; Kontos, Takis

    2017-11-01

    Circuit QED techniques have been instrumental in manipulating and probing with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices in which the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments uses cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.

  13. Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena.

    PubMed

    Cottet, Audrey; Dartiailh, Matthieu C; Desjardins, Matthieu M; Cubaynes, Tino; Contamin, Lauriane C; Delbecq, Matthieu; Viennot, Jérémie J; Bruhat, Laure E; Douçot, Benoit; Kontos, Takis

    2017-11-01

    Circuit QED techniques have been instrumental in manipulating and probing with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices in which the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments uses cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.

  14. Dependency Links Can Hinder the Evolution of Cooperation in the Prisoner’s Dilemma Game on Lattices and Networks

    PubMed Central

    Wang, Xuwen; Nie, Sen; Wang, Binghong

    2015-01-01

    Networks with dependency links are more vulnerable when facing the attacks. Recent research also has demonstrated that the interdependent groups support the spreading of cooperation. We study the prisoner’s dilemma games on spatial networks with dependency links, in which a fraction of individual pairs is selected to depend on each other. The dependency individuals can gain an extra payoff whose value is between the payoff of mutual cooperation and the value of temptation to defect. Thus, this mechanism reflects that the dependency relation is stronger than the relation of ordinary mutual cooperation, but it is not large enough to cause the defection of the dependency pair. We show that the dependence of individuals hinders, promotes and never affects the cooperation on regular ring networks, square lattice, random and scale-free networks, respectively. The results for the square lattice and regular ring networks are demonstrated by the pair approximation. PMID:25798579

  15. High frequency of extra-pair paternity in an urban population of Cooper's Hawks

    USGS Publications Warehouse

    Rosenfield, Robert N.; Sonsthagen, Sarah A.; Stout, William C.; Talbot, Sandra L.

    2015-01-01

    Raptors exhibit some of the highest rates of intra-pair copulations among birds, perhaps in an attempt by males to reduce the risk of being cuckolded. Indeed, the frequency of extra-pair fertilizations reported in studies of raptors to date is relatively low (0-11.2%). Socially monogamous Cooper's Hawks (Accipiter cooperii) exhibit one of the highest copulation rates among birds, yet there are no published accounts of extra-pair copulations (or paternity). We studied a population of Cooper's Hawks in Milwaukee, Wisconsin, during three breeding seasons (2003, 2004, and 2007), examining the possible effects of age (1 yr old vs. ≥ 2 yr old), adult mass, and brood size on the frequency of extra-pair paternity (EPP). We found that 19.3% of nestlings (N = 27/140) were extra-pair young (EPY), and 34% of all broods (N = 15/44) had at least one EPY. The sires of the EPY in our study were identified for only two broods, suggesting that floater males may have engaged in extra-pair copulations with territorial females. We found that brood size was a good predictor of the occurrence of EPP (EPP) in nests, but adult mass and female age were not. To our knowledge, these possible correlates of the occurrence of EPP in raptors had not previously been investigated. Male Cooper's Hawks provide food for females during the pre-nesting period, and delivery of food is, in contrast to other raptor species, typically followed by copulation. Thus, one possible explanation of the relatively high rates of EPP in our study is that females might accept or even solicit extra-pair copulations from males other than their mates as a means of maximizing energy intake for egg production. Such behavior might be particularly likely in our study area, i.e., a food-rich urban setting with a high breeding density of Cooper's Hawks.

  16. Cooperation of a Dissatisfied Adaptive Prisoner's Dilemma in Spatial Structures

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Li, Yao-Sheng; Du, Peng; Xu, Chen

    2013-10-01

    We study the cooperative behavior of a dissatisfied adaptive prisoner's dilemma via a pair updating rule. We compare two kinds of relationship among the competing agents, one is the well-mixed population and the other is the two-dimensional square lattice. It is found that the cooperation emerges in both the cases and the frequency of cooperation is enhanced in the square lattice. Though it is impossible for the cooperators to have a higher average payoff than that of the defectors in the well-mixed case, the cooperators in the spatial square lattice could have higher average payoffs in certain regions of the game parameters. We theoretically analyze the well-mixed case exactly and the square lattice by pair approximation. The theoretic results are in agreement with the simulation data.

  17. A comprehensive performance evaluation on the prediction results of existing cooperative transcription factors identification algorithms.

    PubMed

    Lai, Fu-Jou; Chang, Hong-Tsun; Huang, Yueh-Min; Wu, Wei-Sheng

    2014-01-01

    Eukaryotic transcriptional regulation is known to be highly connected through the networks of cooperative transcription factors (TFs). Measuring the cooperativity of TFs is helpful for understanding the biological relevance of these TFs in regulating genes. The recent advances in computational techniques led to various predictions of cooperative TF pairs in yeast. As each algorithm integrated different data resources and was developed based on different rationales, it possessed its own merit and claimed outperforming others. However, the claim was prone to subjectivity because each algorithm compared with only a few other algorithms and only used a small set of performance indices for comparison. This motivated us to propose a series of indices to objectively evaluate the prediction performance of existing algorithms. And based on the proposed performance indices, we conducted a comprehensive performance evaluation. We collected 14 sets of predicted cooperative TF pairs (PCTFPs) in yeast from 14 existing algorithms in the literature. Using the eight performance indices we adopted/proposed, the cooperativity of each PCTFP was measured and a ranking score according to the mean cooperativity of the set was given to each set of PCTFPs under evaluation for each performance index. It was seen that the ranking scores of a set of PCTFPs vary with different performance indices, implying that an algorithm used in predicting cooperative TF pairs is of strength somewhere but may be of weakness elsewhere. We finally made a comprehensive ranking for these 14 sets. The results showed that Wang J's study obtained the best performance evaluation on the prediction of cooperative TF pairs in yeast. In this study, we adopted/proposed eight performance indices to make a comprehensive performance evaluation on the prediction results of 14 existing cooperative TFs identification algorithms. Most importantly, these proposed indices can be easily applied to measure the performance of new algorithms developed in the future, thus expedite progress in this research field.

  18. Interaction Quality during Partner Reading

    PubMed Central

    Meisinger, Elizabeth B.; Schwanenflugel, Paula J.; Bradley, Barbara A.; Stahl, Steven A.

    2009-01-01

    The influence of social relationships, positive interdependence, and teacher structure on the quality of partner reading interactions was examined. Partner reading, a scripted cooperative learning strategy, is often used in classrooms to promote the development of fluent and automatic reading skills. Forty-three pairs of second grade children were observed during partner reading sessions taking place in 12 classrooms. The degree to which the partners displayed social cooperation (instrumental support, emotional support, and conflict management) and on/off task behavior was evaluated. Children who chose their own partners showed greater social cooperation than those children whose teacher selected their partner. However, when the positive interdependence requirements of the task were not met within the pair (neither child had the skills to provide reading support or no one needed support), lower levels of on-task behavior were observed. Providing basic partner reading script instruction at the beginning of the year was associated with better social cooperation during partner reading, but providing elaborated instruction or no instruction was associated with poorer social cooperation. It is recommended that teachers provide basic script instruction and allow children to choose their own partners. Additionally, pairings of low ability children with other low ability children and high ability children with other high ability children should be avoided. Teachers may want to suggest alternate partners for children who inadvertently choose such pairings or adjust the text difficulty to the pair. Overall, partner reading seems to be an enjoyable pedagogical strategy for teaching reading fluency. PMID:19830259

  19. Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions

    NASA Astrophysics Data System (ADS)

    Venderbos, Jörn W. F.; Savary, Lucile; Ruhman, Jonathan; Lee, Patrick A.; Fu, Liang

    2018-01-01

    We study the topological properties of superconductors with paired j =3/2 quasiparticles. Higher spin Fermi surfaces can arise, for instance, in strongly spin-orbit coupled band-inverted semimetals. Examples include the Bi-based half-Heusler materials, which have recently been established as low-temperature and low-carrier density superconductors. Motivated by this experimental observation, we obtain a comprehensive symmetry-based classification of topological pairing states in systems with higher angular momentum Cooper pairing. Our study consists of two main parts. First, we develop the phenomenological theory of multicomponent (i.e., higher angular momentum) pairing by classifying the stationary points of the free energy within a Ginzburg-Landau framework. Based on the symmetry classification of stationary pairing states, we then derive the symmetry-imposed constraints on their gap structures. We find that, depending on the symmetry quantum numbers of the Cooper pairs, different types of topological pairing states can occur: fully gapped topological superconductors in class DIII, Dirac superconductors, and superconductors hosting Majorana fermions. Notably, we find a series of nematic fully gapped topological superconductors, as well as double- and triple-Dirac superconductors, with quadratic and cubic dispersion, respectively. Our approach, applied here to the case of j =3/2 Cooper pairing, is rooted in the symmetry properties of pairing states, and can therefore also be applied to other systems with higher angular momentum and high-spin pairing. We conclude by relating our results to experimentally accessible signatures in thermodynamic and dynamic probes.

  20. Gate tunable parallel double quantum dots in InAs double-nanowire devices

    NASA Astrophysics Data System (ADS)

    Baba, S.; Matsuo, S.; Kamata, H.; Deacon, R. S.; Oiwa, A.; Li, K.; Jeppesen, S.; Samuelson, L.; Xu, H. Q.; Tarucha, S.

    2017-12-01

    We report fabrication and characterization of InAs nanowire devices with two closely placed parallel nanowires. The fabrication process we develop includes selective deposition of the nanowires with micron scale alignment onto predefined finger bottom gates using a polymer transfer technique. By tuning the double nanowire with the finger bottom gates, we observed the formation of parallel double quantum dots with one quantum dot in each nanowire bound by the normal metal contact edges. We report the gate tunability of the charge states in individual dots as well as the inter-dot electrostatic coupling. In addition, we fabricate a device with separate normal metal contacts and a common superconducting contact to the two parallel wires and confirm the dot formation in each wire from comparison of the transport properties and a superconducting proximity gap feature for the respective wires. With the fabrication techniques established in this study, devices can be realized for more advanced experiments on Cooper-pair splitting, generation of Parafermions, and so on.

  1. Getting into Teams in Physical Education and Exclusion Processes among Students

    ERIC Educational Resources Information Center

    Grimminger, Elke

    2014-01-01

    Although splitting up a class into teams is a consistent didactical element in physical education (PE), it is under-investigated in terms of how students handle the social dynamics in these situations. Therefore, the present study examines the strategies of exclusion as markers for non-recognition when students are split up into teams/pairs. The…

  2. Figure 5 from Integrative Genomics Viewer: Visualizing Big Data | Office of Cancer Genomics

    Cancer.gov

    Split-Screen View. The split-screen view is useful for exploring relationships of genomic features that are independent of chromosomal location. Color is used here to indicate mate pairs that map to different chromosomes, chromosomes 1 and 6, suggesting a translocation event. Adapted from Figure 8; Thorvaldsdottir H et al. 2012

  3. Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years.

    PubMed

    Kenny, Elspeth; Birkhead, Tim R; Green, Jonathan P

    2017-01-01

    Individuals of many species form bonds with their breeding partners, yet the mechanisms maintaining these bonds are poorly understood. In birds, allopreening is a conspicuous feature of interactions between breeding partners and has been hypothesized to play a role in strengthening and maintaining pair bonds within and across breeding attempts. Many avian species, however, do not allopreen and the relationship between allopreening and pair bonding across species remains unexplored. In a comparative analysis of allopreening and pair bond behavior, we found that allopreening between breeding partners was more common among species where parents cooperate to rear offspring. The occurrence of allopreening was also associated with an increased likelihood that partners would remain together over successive breeding seasons. However, there was no strong evidence for an association between allopreening and sexual fidelity within seasons or time spent together outside the breeding season. Allopreening between partners was also no more common in colonial or cooperatively breeding species than in solitary species. Analyses of evolutionary transitions indicated that allopreening evolved from an ancestral state of either high parental cooperation or high partner retention, and we discuss possible explanations for this. Overall, our results are consistent with an important role for allopreening in the maintenance of avian pair bonds.

  4. Investigating Quantum Data Encrypted Modulation States

    DTIC Science & Technology

    2014-11-01

    propagation of entangled photon pairs through a hyper spectral filter device originally designed for multi-access laser communications between a hub...and multiple spokes. 15. SUBJECT TERMS Coherent optical detection, Long wavelength infrared, combined optical/RF link, entangled photon pairs , Lyot...Figure 36. Entangled photon pair amplitudes enter one port of a beam splitter (BS). There they split into two paths. They recombine when entering a

  5. Pair cascades in the magnetospheres of strongly magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Medin, Zach; Lai, Dong

    2010-08-01

    We present numerical simulations of electron-positron pair cascades in the magnetospheres of magnetic neutron stars for a wide range of surface fields (Bp = 1012-1015 G), rotation periods (0.1-10 s) and field geometries. This has been motivated by the discovery in recent years of a number of radio pulsars with inferred magnetic fields comparable to those of magnetars. Evolving the cascade generated by a primary electron or positron after it has been accelerated in the inner gap of the magnetosphere, we follow the spatial development of the cascade until the secondary photons and electron-positron pairs leave the magnetosphere, and we obtain the pair multiplicity and the energy spectra of the cascade pairs and photons under various conditions. Going beyond previous works, which were restricted to weaker fields (B <~ afew × 1012 G), we have incorporated in our simulations detailed treatments of physical processes that are potentially important (especially in the high-field regime) but were either neglected or crudely treated before, including photon splitting with the correct selection rules for photon polarization modes, one-photon pair production into low Landau levels for the e+/-, and resonant inverse Compton scattering from polar cap hotspots. We find that even for B >> BQ = 4 × 1013 G, photon splitting has a small effect on the multiplicity of the cascade since a majority of the photons in the cascade cannot split. One-photon decay into e+ e- pairs at low Landau levels, however, becomes the dominant pair production channel when B >~ 3 × 1012 G; this tends to suppress synchrotron radiation so that the cascade can develop only at a larger distance from the stellar surface. Nevertheless, we find that the total number of pairs and their energy spectrum produced in the cascade depend mainly on the polar cap voltage BpP-2, and are weakly dependent on Bp (and P) alone. We discuss the implications of our results for the radio pulsar death line and for the hard X-ray emission from magnetized neutron stars.

  6. Orbital selective pairing and gap structures of iron-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreisel, Andreas; Andersen, Brian M.; Sprau, P. O.

    We discuss the in uence on spin-fluctuation pairing theory of orbital selective strong correlation effects in Fe-based superconductors, particularly Fe chalcogenide systems. We propose that a key ingredient for an improved itinerant pairing theory is orbital selectivity, i.e., incorporating the reduced coherence of quasiparticles occupying specific orbital states. This modifies the usual spin-fluctuation via suppression of pair scattering processes involving those less coherent states and results in orbital selective Cooper pairing of electrons in the remaining states. We show that this paradigm yields remarkably good agreement with the experimentally observed anisotropic gap structures in both bulk and monolayer FeSe, asmore » well as LiFeAs, indicating that orbital selective Cooper pairing plays a key role in the more strongly correlated iron-based superconductors.« less

  7. Orbital selective pairing and gap structures of iron-based superconductors

    DOE PAGES

    Kreisel, Andreas; Andersen, Brian M.; Sprau, P. O.; ...

    2017-05-08

    We discuss the in uence on spin-fluctuation pairing theory of orbital selective strong correlation effects in Fe-based superconductors, particularly Fe chalcogenide systems. We propose that a key ingredient for an improved itinerant pairing theory is orbital selectivity, i.e., incorporating the reduced coherence of quasiparticles occupying specific orbital states. This modifies the usual spin-fluctuation via suppression of pair scattering processes involving those less coherent states and results in orbital selective Cooper pairing of electrons in the remaining states. We show that this paradigm yields remarkably good agreement with the experimentally observed anisotropic gap structures in both bulk and monolayer FeSe, asmore » well as LiFeAs, indicating that orbital selective Cooper pairing plays a key role in the more strongly correlated iron-based superconductors.« less

  8. Co-operation and conflict under hard and soft contracting regimes: case studies from England and Wales.

    PubMed

    Hughes, David; Allen, Pauline; Doheny, Shane; Petsoulas, Christina; Vincent-Jones, Peter

    2013-01-01

    This paper examines NHS secondary care contracting in England and Wales in a period which saw increasing policy divergence between the two systems. At face value, England was making greater use of market levers and utilising harder-edged service contracts incorporating financial penalties and incentives, while Wales was retreating from the 1990 s internal market and emphasising cooperation and flexibility in the contracting process. But there were also cross-border spill-overs involving common contracting technologies and management cultures that meant that differences in on-the-ground contracting practices might be smaller than headline policy differences suggested. The nature of real-world contracting behaviour was investigated by undertaking two qualitative case studies in England and two in Wales, each based on a local purchaser/provider network. The case studies involved ethnographic observations and interviews with staff in primary care trusts (PCTs) or local health boards (LHBs), NHS or Foundation trusts, and the overseeing Strategic Health Authority or NHS Wales regional office, as well as scrutiny of relevant documents. Wider policy differences between the two NHS systems were reflected in differing contracting frameworks, involving regional commissioning in Wales and commissioning by either a PCT, or co-operating pair of PCTs in our English case studies, and also in different oversight arrangements by higher tiers of the service. However, long-term relationships and trust between purchasers and providers had an important role in both systems when the financial viability of organisations was at risk. In England, the study found examples where both PCTs and trusts relaxed contractual requirements to assist partners faced with deficits. In Wales, news of plans to end the purchaser/provider split meant a return to less precisely-specified block contracts and a renewed concern to build cooperation between LHB and trust staff. The interdependency of local purchasers and providers fostered long-term relationships and co-operation that shaped contracting behaviour, just as much as the design of contracts and the presence or absence of contractual penalties and incentives. Although conflict and tensions between contracting partners sometimes surfaced in both the English and Welsh case studies, cooperative behaviour became crucial in times of trouble.

  9. Development of Face Gear Technology for Industrial and Aerospace Power Transmission

    NASA Technical Reports Server (NTRS)

    Heath, Gregory F.; Filler, Robert R.; Tan, Jie

    2002-01-01

    Tests of a 250 horsepower proof-of-concept (POC) split torque face gear transmission were completed by The Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP) This report provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA Design, manufacture and testing of the scaled-power TRP split torque gearbox followed preliminary evaluations of the concept performed early in the program The testing demonstrated the theory of operation for the concentric, tapered face gear assembly The results showed that the use of floating pinions in a concentric face gear arrangement produces a nearly even torque split The POC split torque tests determined that, with some improvements, face gears can be applied effectively in a split torque configuration which yields significant weight, cost and reliability improvements over conventional designs.

  10. Water pair potential of near spectroscopic accuracy. II. Vibration-rotation-tunneling levels of the water dimer

    NASA Astrophysics Data System (ADS)

    Groenenboom, G. C.; Wormer, P. E. S.; van der Avoird, A.; Mas, E. M.; Bukowski, R.; Szalewicz, K.

    2000-10-01

    Nearly exact six-dimensional quantum calculations of the vibration-rotation-tunneling (VRT) levels of the water dimer for values of the rotational quantum numbers J and K ⩽2 show that the SAPT-5s water pair potential presented in the preceding paper (paper I) gives a good representation of the experimental high-resolution far-infrared spectrum of the water dimer. After analyzing the sensitivity of the transition frequencies with respect to the linear parameters in the potential we could further improve this potential by using only one of the experimentally determined tunneling splittings of the ground state in (H2O)2. The accuracy of the resulting water pair potential, SAPT-5st, is established by comparison with the spectroscopic data of both (H2O)2 and (D2O)2: ground and excited state tunneling splittings and rotational constants, as well as the frequencies of the intermolecular vibrations.

  11. Superconductivity in an almost localized Fermi liquid of quasiparticles with spin-dependent masses and effective-field induced by electron correlations

    NASA Astrophysics Data System (ADS)

    Kaczmarczyk, Jan; Spałek, Jozef

    2009-06-01

    Paired state of nonstandard quasiparticles is analyzed in detail in two model situations. Namely, we consider the Cooper-pair bound state and the condensed phase of an almost localized Fermi liquid composed of quasiparticles in a narrow band with the spin-dependent masses and an effective field, both introduced earlier and induced by strong electronic correlations. Each of these novel characteristics is calculated in a self-consistent manner. We analyze the bound states as a function of Cooper-pair momentum |Q| in applied magnetic field in the strongly Pauli limiting case (i.e., when the orbital effects of applied magnetic field are disregarded). The spin-direction dependence of the effective mass makes the quasiparticles comprising Cooper-pair spin distinguishable in the quantum-mechanical sense, whereas the condensed gas of pairs may still be regarded as composed of identical entities. The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) condensed phase of moving pairs is by far more robust in the applied field for the case with spin-dependent masses than in the situation with equal masses of quasiparticles. Relative stability of the Bardeen-Cooper-Schrieffer vs FFLO phase is analyzed in detail on temperature-applied field plane. Although our calculations are carried out for a model situation, we can conclude that the spin-dependent masses should play an important role in stabilizing high-field low-temperature unconventional superconducting phases (FFLO, for instance) in systems such as CeCoIn5 , organic metals, and possibly others.

  12. Cooper-pair-condensate fluctuations and plasmons in layered superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cote, R.; Griffin, A.

    1993-10-01

    Starting from a given attractive potential, we give a systematic analysis of the spin-singlet [ital s]-wave Cooper-pair-condensate fluctuations in a two-dimensional (2D) superconductor. These results are applied to a superlattice of superconducting sheets in which the 2D charge fluctuations are coupled via the Coulomb interaction. Our main interest is how the low-energy Anderson-Bogoliubov (AB) phonon mode in the pair-breaking gap [omega][lt]2[Delta] is modified by the Coulomb interaction. Our formal analysis is valid at arbitrary temperatures. It describes the weakly bound, large-Cooper-pair limit as well as the strongly bound, small-Cooper-pair limit and thus includes both the BCS and Bose-Einstein scenarios (asmore » discussed by Nozieres and Schmitt-Rink as well as Randeira [ital et] [ital al].). A comlete normal-mode analysis is given for a charged BCS superconductor, showing how the repulsive (Coulomb) interaction modifies the collective modes of a neutral superconductor. This complements the recent numerical study carried out by Fertig and Das Sarma. We show that the pair-response function shares the same spectrum as the charge-response function, given by the zero of the longitudinal dielectric function [epsilon]([bold q],[omega]). In 2D and layered superconductors, there is a low-frequency and high-frequency plasmon branch, separated by a relatively narrow particle-hole continuum at around 2[Delta]. The low-frequency ([omega][lt]2[Delta]) plasmon branch is a renormalized version of the AB phonon mode.« less

  13. The use of surface layer with boron in friction pairs lubricated by engine oils

    NASA Astrophysics Data System (ADS)

    Szczypiński-Sala, W.; Lubas, J.

    2016-09-01

    The aim of the present work is to determine the influence of surface layers with boron and engine oil on the processes of friction and wear in friction pairs. The ring samples with borided surface layer cooperated under test conditions with counterparts made with CuPb30 and AlSn20 bearing alloys. During the tests, the friction pairs were lubricated with 15W/40 Lotos mineral oil and 5W/40 Lotos synthetic oil. The lubrication of friction area with Lotos mineral oil causes the reduction of the friction force, the temperature in the friction area and the wear of the bearing alloys under study, whereas the lubrication with Lotos synthetic oil reduces the changes in the geometrical structure of the cooperating friction pair elements. Lubrication of the friction area in the start-up phase of the friction pair by mineral oil causes faster stabilization of the friction conditions in the contact area than in the cause of lubrication of the friction pair by synthetic oil. The intensity of wear of the AlSn20 bearing alloy cooperating with the borided surface layer is three times smaller than the intensity of use of the CuPb30 alloy bearing.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogosov, Walter V.; Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Izhorskaya 13, 125412 Moscow; Combescot, Monique

    While the one-Cooper-pair problem is now a textbook exercise, the energy of two pairs of electrons with opposite spins and zero total momentum has not been derived yet, the exact handling of Pauli blocking between bound pairs being not that easy for N=2 already. The two-Cooper-pair problem however is quite enlightening to understand the very peculiar role played by the Pauli exclusion principle in superconductivity. Pauli blocking is known to drive the change from 1 to N pairs but no precise description of this continuous change has been given so far. Using Richardson's procedure, we here prove that Pauli blockingmore » increases the free part of the two-pair ground-state energy but decreases the binding part when compared to two isolated pairs--the excitation gap to break a pair however increasing from one to two pairs. When extrapolated to the dense BCS regime, the decrease in the pair binding while the gap increases strongly indicates that at odd with common belief, the average pair binding energy cannot be on the order of the gap.« less

  15. Topological Nodal Cooper Pairing in Doped Weyl Metals

    NASA Astrophysics Data System (ADS)

    Li, Yi; Haldane, F. D. M.

    2018-02-01

    We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge qp. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j =|qp|, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge qp independent of concrete pairing mechanism.

  16. PAIR: A Cooperative Effort to Meet Informational Needs

    PubMed Central

    Closurdo, Janette S.; Pehkonen, Charles A.

    1973-01-01

    St. Joseph Mercy Hospital organized a cooperative association of area institutions (the Pontiac Area Instructional Resources group: PAIR) in order to (1) promote a forum in which to exchange ideas and information on software used for learning materials and hardware for using such materials, (2) provide a resource library system to lend such learning materials, and (3) cooperatively produce such learning materials for use in member institutions. In less than one year of cooperation, a union list of serials and a union list of software for the area have been produced. A forum has been created in which ideas and information can be shared, and a sound/slide program has been produced. PMID:4122093

  17. Cooperation induced by wise incentive allocation in spontaneous institution

    NASA Astrophysics Data System (ADS)

    Cong, Rui; Li, Kun; Wang, Long; Zhao, Qianchuan

    2016-08-01

    Institutional incentives such as punishment and rewarding have recently received wide attention in resolving issues of public goods provision that requires collective cooperation. In this letter, we are interested in exploring the effect on cooperation of a spontaneous institution, which rewards its participants exclusively and also takes the social responsibility of punishing interior and exterior free-riders. Drawing support from evolutionary game theory, our results indicate that the splitting ratio of such institution funds plays a decisive role in determining the evolutionary outcome. Rewarding is essential in sustaining the institution, while a certain intensity of punishment ensures a high overall cooperation level. Our results may provide more insights into understanding the roles institutional incentives play in promoting social cooperation.

  18. The suppression of pulsar and gamma-ray burst annihilation lines by magnetic photon splitting

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1993-01-01

    Neutron stars, relativistic and compact by nature, show great potential for the copious creation of electron-positron pairs in the magnetospheres; these rapidly cool, thermalize, and then annihilate. It is therefore expected that many neutron sources might display evidence of pair annihilation lines in the 400-500 keV range. It is shown that magnetic photon splitting, which operates effectively at these energies and in the enormous neutron star magnetic fields, can destroy an annihilation feature by absorbing line photons and reprocessing them to lower energies. In so doing, photon splitting creates a soft gamma-ray bump and a broad quasi-power-law contribution to the X-ray continuum, which is too flat to conflict with the observed X-ray paucity in gamma-ray bursts. The destruction of the line occurs in neutron stars with surface fields of 5 x 10 exp 12 G or maybe even less, depending on the size of the emission region.

  19. Exciton Absorption in Semiconductor Quantum Wells Driven by a Strong Intersubband Pump Field

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Optical interband excitonic absorption of semiconductor quantum wells (QW's) driven by a coherent pump field is investigated based on semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW's. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron-hole pairs in the QW structure is low, the pump field induces an Autler-Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron-hole pairs is increased, the split contrast (the ratio between the maximum and minimum values) is decreased because the exciton effect is suppressed at higher densities due to the many-body screening.

  20. Split-Waveguide Mounts For Submillimeter-Wave Multipliers And Harmonic Mixers

    NASA Technical Reports Server (NTRS)

    Raisanen, Antti; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.

    1996-01-01

    Novel variation of split-waveguide mount for millimeter-and submillimeter-wavelength frequency multipliers and harmonic mixers developed. Designed to offer wide range of available matching impedances, while maintaining relatively simple fabrication sequence. Wide tuning range achieved with separate series and parallel elements, consisting of two pairs of noncontacting sliding backshorts, at fundamental and harmonic frequencies. Advantages include ease of fabrication, reliability, and tunability.

  1. From Additivity to Cooperativity in Chemistry: Can Cooperativity Be Measured?

    PubMed

    Tebben, Ludger; Mück-Lichtenfeld, Christian; Fernández, Gustavo; Grimme, Stefan; Studer, Armido

    2017-05-02

    Cooperative effects can be observed in various research areas in chemistry; cooperative catalysis is well-established, the assembly of compounds on surfaces can be steered by cooperative effects, and supramolecular polymerization can proceed in a cooperative manner. In biological systems, cooperativity is observed in protein-protein, protein-lipid and protein-molecule interactions. Synergistic effects are relevant in frustrated Lewis pairs, organic multispin systems, multimetallic clusters and also in nanoparticles. However, a general approach to determine cooperativity in the different chemical systems is currently not known. In the present concept paper it is suggested that, at least for simpler systems that can be described at the molecular level, cooperativity can be defined based on energy considerations. For systems in which no chemical transformation occurs, determination of interaction energies of the whole system with respect to the interaction energies between all individual component pairs (subsystems) will allow determination of cooperativity. For systems comprising of chemical transformations, cooperativity can be evaluated by determining the activation energy of the synergistic system and by comparing this with activation energies of the corresponding subsystems that lack an activating moiety. For more complex systems, cooperativity is generally determined at a qualitative level. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cooperative and Competitive Behavior as a Function of Self-Esteem

    ERIC Educational Resources Information Center

    Vance, John J.; Richmond, Bert O.

    1975-01-01

    Two hundred forty elementary school age children were paired on the basis of sex, race, and level of self-concept to participate in a cooperative-competitive game situation. Black children were found to be more cooperative than white children. The low self-concept subjects were more cooperative than high self-concept subjects. (Author)

  3. An Adaptive Cooperative Strategy for Underlay MIMO Cognitive Radio Networks: An Opportunistic and Low-Complexity Approach

    NASA Astrophysics Data System (ADS)

    Mazoochi, M.; Pourmina, M. A.; Bakhshi, H.

    2015-03-01

    The core aim of this work is the maximization of the achievable data rate of the secondary user pairs (SU pairs), while ensuring the QoS of primary users (PUs). All users are assumed to be equipped with multiple antennas. It is assumed that when PUs are present, the direct communications between SU pairs introduces intolerable interference to PUs and thereby SUs transmit signal using the cooperation of other SUs and avoid transmitting in the direct channel. In brief, an adaptive cooperative strategy for multiple-input/multiple-output (MIMO) cognitive radio networks is proposed. At the presence of PUs, the issue of joint relay selection and power allocation in Underlay MIMO Cooperative Cognitive Radio Networks (U-MIMO-CCRN) is addressed. The optimal approach for determining the power allocation and the cooperating SU is proposed. Besides, the outage probability of the proposed communication protocol is further derived. Due to high complexity of the optimal approach, a low-complexity approach is further proposed and its performance is evaluated using simulations. The simulation results reveal that the performance loss due to the low-complexity approach is only about 14%, while the complexity is greatly reduced.

  4. Spontaneous pairing and cooperative movements of micro-particles in a two dimensional plasma crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhdanov, S. K.; Couëdel, L., E-mail: lenaic.couedel@univ-amu.fr; Nosenko, V.

    2015-05-15

    In an argon plasma of 20 W rf discharge at a pressure of 1.38 Pa, a stable highly ordered monolayer of microparticles is suspended. We observe spontaneous particle pairing when suddenly reducing the gas pressure. Special types of dynamical activity, in particular, entanglement and cooperative movements of coupled particles have been registered. In the course of the experiment first appeared single vertical pairs of particles, in further they gradually accumulated causing melting of the entire crystal. To record pairing events, the particle suspension is side-view imaged using a vertically extended laser sheet. The long-lasting pre-melting phase assured the credible recording and identificationmore » of isolated particle pairs. The high monolayer charge density is crucial to explain the spontaneous pairing events observed in our experiments as the mutual repulsion between the particles comprising the monolayer make its vertical extend thicker.« less

  5. Possibility of Cooper-pair formation controlled by multi-terminal spin injection

    NASA Astrophysics Data System (ADS)

    Ohnishi, K.; Sakamoto, M.; Ishitaki, M.; Kimura, T.

    2018-03-01

    A multi-terminal lateral spin valve consisting of three ferromagnetic nanopillars on a Cu/Nb bilayer has been fabricated. We investigated the influence of the spin injection on the superconducting properties at the Cu/Nb interface. The non-local spin valve signal exhibits a clear spin insulation signature due to the superconducting gap of the Nb. The magnitude of the spin signal is found to show the probe configuration dependence. From the careful analysis of the bias current dependence, we found the suppression of the superconductivity due to the exchange interaction between the Cooper pair and accumulated spin plays an important role in the multi-terminal spin injections. We also discuss about the possibility of the Cooper-pair formation due to the spin injection from the two injectors with the anti-parallel alignment.

  6. Stabilizing Rabi oscillation of a charge qubit via the atomic clock technique

    NASA Astrophysics Data System (ADS)

    Yu, Deshui; Landra, Alessandro; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2018-02-01

    We propose a superconducting circuit-atom hybrid, where the Rabi oscillation of single excess Cooper pair in the island is stabilized via the common atomic clock technique. The noise in the superconducting circuit is mapped onto the voltage source which biases the Cooper-pair box via an inductor and a gate capacitor. The fast fluctuations of the gate charge are significantly suppressed by an inductor-capacitor resonator, leading to a long-relaxation-time Rabi oscillation. More importantly, the residual low-frequency fluctuations are further reduced by using the general feedback-control method, in which the voltage bias is stabilized via continuously measuring the dc-Stark-shift-induced atomic Ramsey signal. The stability and coherence time of the resulting charge-qubit Rabi oscillation are both enhanced. The principal structure of this Cooper-pair-box oscillator is studied in detail.

  7. Paired Courses: A New Paradigm for College Teaching

    ERIC Educational Resources Information Center

    Klemm, W. R.

    2017-01-01

    Instead of flipping a conventional college course, here we consider flipping part of a conventional course into a whole new course. The idea tested here for three semesters was to split a full-featured traditional course into two linked courses: a condensed, 1-credit-hour, online mass-enrollment course on core ideas and skills paired with a…

  8. Taking the High Road on Subcortical Transfer

    ERIC Educational Resources Information Center

    Miller, M.B.; Kingstone, A.

    2005-01-01

    Kingstone and Gazzaniga (1995) presented conceptually ambiguous word pairs, such as HOT-DOG, to a split-brain patient. Each hemisphere received only one of the words. With one hand, the patient drew the word pairs literally (e.g., a dog panting in the heat) but never drew the emergent object (e.g., a frankfurter in a bun). This finding suggested…

  9. Temperature Dependence of Quasiparticle Spectral Weight and Coherence in High Tc Superconductors

    NASA Astrophysics Data System (ADS)

    He, Yang; Zhang, Jessie; Hoffman, Jennifer; Hoffman Lab Team

    2014-03-01

    Superconductivity arises from the Cooper pairing of quasiparticles on the Fermi surface. Understanding the formation of Cooper pairs is an essential step towards unveiling the mechanism of high Tc superconductivity. We compare scanning tunneling microscope investigations of the temperature dependence of quasiparticle spectral weight and quasiparticle interference in several families of high Tc materials. We calculate the coherent spectral weight related to superconductivity, despite the coexistence of competing orders. The relation between pairing temperature and coherent spectral weight is discussed. We acknowledge support by the New York Community Trust-George Merck Fund.

  10. Different responses to reward comparisons by three primate species.

    PubMed

    Freeman, Hani D; Sullivan, Jennifer; Hopper, Lydia M; Talbot, Catherine F; Holmes, Andrea N; Schultz-Darken, Nancy; Williams, Lawrence E; Brosnan, Sarah F

    2013-01-01

    Recently, much attention has been paid to the role of cooperative breeding in the evolution of behavior. In many measures, cooperative breeders are more prosocial than non-cooperatively breeding species, including being more likely to actively share food. This is hypothesized to be due to selective pressures specific to the interdependency characteristic of cooperatively breeding species. Given the high costs of finding a new mate, it has been proposed that cooperative breeders, unlike primates that cooperate in other contexts, should not respond negatively to unequal outcomes between themselves and their partner. However, in this context such pressures may extend beyond cooperative breeders to other species with pair-bonding and bi-parental care. Here we test the response of two New World primate species with different parental strategies to unequal outcomes in both individual and social contrast conditions. One species tested was a cooperative breeder (Callithrix spp.) and the second practiced bi-parental care (Aotus spp.). Additionally, to verify our procedure, we tested a third confamilial species that shows no such interdependence but does respond to individual (but not social) contrast (Saimiri spp.). We tested all three genera using an established inequity paradigm in which individuals in a pair took turns to gain rewards that sometimes differed from those of their partners. None of the three species tested responded negatively to inequitable outcomes in this experimental context. Importantly, the Saimiri spp responded to individual contrast, as in earlier studies, validating our procedure. When these data are considered in relation to previous studies investigating responses to inequity in primates, they indicate that one aspect of cooperative breeding, pair-bonding or bi-parental care, may influence the evolution of these behaviors. These results emphasize the need to study a variety of species to gain insight in to how decision-making may vary across social structures.

  11. Stimulated emission of Cooper pairs in a high-temperature cuprate superconductor

    DOE PAGES

    Zhang, Wentao; Miller, Tristan; Smallwood, Christopher L.; ...

    2016-07-01

    The concept of stimulated emission of bosons has played an important role in modern science and technology, and constitutes the working principle for lasers. In a stimulated emission process, an incoming photon enhances the probability that an excited atomic state will transition to a lower energy state and generate a second photon of the same energy. It is expected, but not experimentally shown, that stimulated emission contributes significantly to the zero resistance current in a superconductor by enhancing the probability that scattered Cooper pairs will return to the macroscopically occupied condensate instead of entering any other state. Here, we usemore » time- and angle-resolved photoemission spectroscopy to study the initial rise of the non-equilibrium quasiparticle population in a Bi 2 Sr 2 CaCu 2 O 8+δ cuprate superconductor induced by an ultrashort laser pulse. Our finding reveals significantly slower buildup of quasiparticles in the superconducting state than in the normal state. The slower buildup only occurs when the pump pulse is too weak to deplete the superconducting condensate, and for cuts inside the Fermi arc region. We propose this is a manifestation of stimulated recombination of broken Cooper pairs, and signals an important momentum space dichotomy in the formation of Cooper pairs inside and outside the Fermi arc region.« less

  12. Tribological Properties of CrN Coating Under Lubrication Conditions

    NASA Astrophysics Data System (ADS)

    Lubas, Janusz

    2012-08-01

    The paper presents research results of the influence of CrN coating on the friction parameters in friction pairs under lubricated friction conditions. The formed CrN homogeneous coating and CrN-steel 46Cr2 "ring" structure coating was matched under test conditions with a counterpart made from SAE-48 and SAE-783 bearing alloys. Tested sliding pairs were lubricated with 5W/40 Lotos synthetic engine oil. The tribological test was conducted on block-on-ring tester. The applied modification technologies of the surface layer of steel allowed for obtaining construction materials with pre-determined tribological characteristics required for the elements of friction pairs in lubricated contact. The results of the tests proved the possibility of implementing CrN coating in friction pairs, which work under mixed friction conditions. The results showed differences in the wear of bearing alloy, as the effect of the interaction between the co-operating surface layers and of the physiochemical changes of their surfaces, induced by external forces. The smallest wear of the bearing alloy occurs during the cooperation with the nitrided layer, whereas the largest wear occurs during the cooperation with the homogenous CrN coating. The CrN coating-46Cr2 steel "ring structure" decreases friction resistance during the start-up of the sliding pair, as well as lowers the level of the friction force and temperature in the friction area during co-operation with SAE-783 bearing alloys.

  13. Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation.

    PubMed

    Kanayama, Masaki; Akiyama-Oda, Yasuko; Nishimura, Osamu; Tarui, Hiroshi; Agata, Kiyokazu; Oda, Hiroki

    2011-10-11

    During development segmentation is a process that generates a spatial periodic pattern. Peak splitting of waves of gene expression is a mathematically predicted, simple strategy accounting for this type of process, but it has not been well characterized biologically. Here we show temporally repeated splitting of gene expression into stripes that is associated with head axis growth in the spider Achaearanea embryo. Preceding segmentation, a wave of hedgehog homologue gene expression is observed to travel posteriorly during development stage 6. This stripe, co-expressing an orthodenticle homologue, undergoes two cycles of splitting and shifting accompanied by convergent extension, serving as a generative zone for the head segments. The two orthodenticle and odd-paired homologues are identified as targets of Hedgehog signalling, and evidence suggests that their activities mediate feedback to maintain the head generative zone and to promote stripe splitting in this zone. We propose that the 'stripe-splitting' strategy employs genetic components shared with Drosophila blastoderm subdivision, which are required for participation in an autoregulatory signalling network.

  14. Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Dong, Zhenbiao; Ding, Dongyan; Li, Ting; Ning, Congqin

    2018-06-01

    Photoelectrochemical (PEC) water splitting hydrogen production provides a promising way for sustainable development. In this work, we prepared Ni-doped TiO2 (Ti-Ni-O) nanotubes through anodizing different Ti-Ni alloys and further annealing them at elevated temperatures, and reported their PEC water splitting performance. It was found that Ni doping could improve light absorption and facilitate separation of photo-excited electron-hole pair. The nanotubes fabricated on Ti-1 wt.% Ni alloy and annealed at 550 °C exhibited better PEC water splitting performance than those on Ti-10 wt.% Ni alloy. The photoconversion efficiency was 0.67%, which was 3.35 times the photoconversion efficiency of undoped TiO2. It demonstrated that it was feasible to fabricate high-performance Ti-Ni-O nanotubes on Ti-Ni alloys and used as photoanode for improving PEC water splitting.

  15. In-gap quasiparticle excitations induced by non-magnetic Cu impurities in Na(Fe0.96Co0.03Cu0.01)As revealed by scanning tunnelling spectroscopy

    PubMed Central

    Yang, Huan; Wang, Zhenyu; Fang, Delong; Deng, Qiang; Wang, Qiang-Hua; Xiang, Yuan-Yuan; Yang, Yang; Wen, Hai-Hu

    2013-01-01

    The origin of superconductivity in the iron pnictides remains unclear. One suggestion is that superconductivity in these materials has a magnetic origin, which would imply a sign-reversal s± pairing symmetry. Another suggests it is the result of orbital fluctuations, which would imply a sign-equal s++ pairing symmetry. There is no consensus yet which of these two distinct and contrasting pairing symmetries is the right one in iron pnictide superconductors. Here we explore the nature of the pairing symmetry in the superconducting state of Na(Fe0.97−xCo0.03Cux)As by probing the effect of scattering of Cooper pairs by non-magnetic Cu impurities. Using scanning tunnelling spectroscopy, we identify the in-gap quasiparticle states induced by the Cu impurities, showing signatures of Cooper pair breaking by these non-magnetic impurities–a process that is only consistent with s± pairing. This experiment provides strong evidence for the s± pairing. PMID:24248097

  16. Discovery of orbital-selective Cooper pairing in FeSe

    DOE PAGES

    Sprau, P. O.; Kostin, A.; Kreisel, A.; ...

    2017-07-07

    The superconductor iron selenide (FeSe) is of intense interest owing to its unusual nonmagnetic nematic state and potential for high-temperature superconductivity. But its Cooper pairing mechanism has not been determined. Here, we used Bogoliubov quasiparticle interference imaging to determine the Fermi surface geometry of the electronic bands surrounding the Γ = (0,0) and X = (π/a Fe, 0) points of FeSe and to measure the corresponding superconducting energy gaps. We show that both gaps are extremely anisotropic but nodeless and that they exhibit gap maxima oriented orthogonally in momentum space. Moreover, by implementing a novel technique, we demonstrate that thesemore » gaps have opposite sign with respect to each other. This complex gap configuration reveals the existence of orbital-selective Cooper pairing that, in FeSe, is based preferentially on electrons from the d yz orbitals of the iron atoms.« less

  17. Very high frequency spectroscopy and tuning of a single-cooper-pair transistor with an on-chip generator.

    PubMed

    Billangeon, P-M; Pierre, F; Bouchiat, H; Deblock, R

    2007-03-23

    A single-Cooper-pair transistor (SCPT) is coupled capacitively to a voltage biased Josephson junction, used as a high-frequency generator. Thanks to the high energy of photons generated by the Josephson junction, transitions between energy levels, not limited to the first two levels, were induced and the effect of this irradiation on the dc Josephson current of the SCPT was measured. The phase and gate bias dependence of energy levels of the SCPT at high energy is probed. Because the energies of photons can be higher than the superconducting gap we can induce not only transfer of Cooper pairs but also transfer of quasiparticles through the island of the SCPT, thus controlling the poisoning of the SCPT. This can both decrease and increase the average Josephson energy of the SCPT: its supercurrent is then controlled by high-frequency irradiation.

  18. Resonant tunneling of fluctuation Cooper pairs

    DOE PAGES

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, T c, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at T c. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to T c. This striking effect offers anmore » unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Lastly, our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.« less

  19. Discovery of orbital-selective Cooper pairing in FeSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprau, P. O.; Kostin, A.; Kreisel, A.

    The superconductor iron selenide (FeSe) is of intense interest owing to its unusual nonmagnetic nematic state and potential for high-temperature superconductivity. But its Cooper pairing mechanism has not been determined. Here, we used Bogoliubov quasiparticle interference imaging to determine the Fermi surface geometry of the electronic bands surrounding the Γ = (0,0) and X = (π/a Fe, 0) points of FeSe and to measure the corresponding superconducting energy gaps. We show that both gaps are extremely anisotropic but nodeless and that they exhibit gap maxima oriented orthogonally in momentum space. Moreover, by implementing a novel technique, we demonstrate that thesemore » gaps have opposite sign with respect to each other. This complex gap configuration reveals the existence of orbital-selective Cooper pairing that, in FeSe, is based preferentially on electrons from the d yz orbitals of the iron atoms.« less

  20. Resonant tunneling of fluctuation Cooper pairs

    PubMed Central

    Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.

    2015-01-01

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon. PMID:25661237

  1. Resonant tunneling of fluctuation Cooper pairs.

    PubMed

    Galda, Alexey; Mel'nikov, A S; Vinokur, V M

    2015-02-09

    Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool for direct measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.

  2. Nonequilibrium Second-Order Phase Transition in a Cooper-Pair Insulator.

    PubMed

    Doron, A; Tamir, I; Mitra, S; Zeltzer, G; Ovadia, M; Shahar, D

    2016-02-05

    In certain disordered superconductors, upon increasing the magnetic field, superconductivity terminates with a direct transition into an insulating phase. This phase is comprised of localized Cooper pairs and is termed a Cooper-pair insulator. The current-voltage characteristics measured in this insulating phase are highly nonlinear and, at low temperatures, exhibit abrupt current jumps. Increasing the temperature diminishes the jumps until the current-voltage characteristics become continuous. We show that a direct correspondence exists between our system and systems that undergo an equilibrium, second-order, phase transition. We illustrate this correspondence by comparing our results to the van der Waals equation of state for the liquid-gas mixture. We use the similarities to identify a critical point where an out of equilibrium second-order-like phase transition occurs in our system. Approaching the critical point, we find a power-law behavior with critical exponents that characterizes the transition.

  3. Drive the Dirac electrons into Cooper pairs in SrxBi2Se3.

    PubMed

    Du, Guan; Shao, Jifeng; Yang, Xiong; Du, Zengyi; Fang, Delong; Wang, Jinghui; Ran, Kejing; Wen, Jinsheng; Zhang, Changjin; Yang, Huan; Zhang, Yuheng; Wen, Hai-Hu

    2017-02-15

    Topological superconductors are a very interesting and frontier topic in condensed matter physics. Despite the tremendous efforts in exploring topological superconductivity, its presence is however still under heavy debate. The Dirac electrons have been proven to exist on the surface of a topological insulator. It remains unclear whether and how the Dirac electrons fall into Cooper pairing in an intrinsic superconductor with the topological surface states. Here we show the systematic study of scanning tunnelling microscope/spectroscopy on the possible topological superconductor Sr x Bi 2 Se 3 . We first demonstrate that only the intercalated Sr atoms can induce superconductivity. Then we show the full superconducting gaps without any in-gap density of states as expected theoretically for a bulk topological superconductor. Finally, we find that the surface Dirac electrons will simultaneously condense into the superconducting state within the superconducting gap. This vividly demonstrates how the surface Dirac electrons are driven into Cooper pairs.

  4. Multiplying and detecting propagating microwave photons using inelastic Cooper-pair tunneling

    NASA Astrophysics Data System (ADS)

    Leppäkangas, Juha; Marthaler, Michael; Hazra, Dibyendu; Jebari, Salha; Albert, Romain; Blanchet, Florian; Johansson, Göran; Hofheinz, Max

    2018-01-01

    The interaction between propagating microwave fields and Cooper-pair tunneling across a DC-voltage-biased Josephson junction can be highly nonlinear. We show theoretically that this nonlinearity can be used to convert an incoming single microwave photon into an outgoing n -photon Fock state in a different mode. In this process, the electrostatic energy released in a Cooper-pair tunneling event is transferred to the outgoing Fock state, providing energy gain. The created multiphoton Fock state is frequency entangled and highly bunched. The conversion can be made reflectionless (impedance matched) so that all incoming photons are converted to n -photon states. With realistic parameters, multiplication ratios n >2 can be reached. By two consecutive multiplications, the outgoing Fock-state number can get sufficiently large to accurately discriminate it from vacuum with linear postamplification and power measurement. Therefore, this amplification scheme can be used as a single-photon detector without dead time.

  5. Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons

    NASA Astrophysics Data System (ADS)

    Chanyal, B. C.

    2017-12-01

    In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.

  6. Quasi-Dirac neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Anamiati, Gaetana; Fonseca, Renato M.; Hirsch, Martin

    2018-05-01

    Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.

  7. Landau-Zener interferometry in a Cooper pair box

    NASA Astrophysics Data System (ADS)

    Sillanpää, Mika; Lehtinen, Teijo; Paila, Antti; Makhlin, Yuriy; Hakonen, Pertti

    2006-03-01

    Quantum-mechanical systems having two crossing energy levels are ubiquitous in nature. The rate v = d (E1- E0)/dt at which such levels in a driven system approach each other determines the probability PLZ of a Landau-Zener (LZ) tunneling between them. The traditional treatment of the LZ process, however, ignores quantum-mechanical interference. Here we report an observation of phase-sensitive interference between consecutive LZ tunneling attempts in an artificial two-state system, a superconducting charge qubit. We interpret the experiment in terms of a multi-pass analog to the optical Mach- Zehnder interferometer: The beam splitting occurs by LZ tunneling at the charge degeneracy, while the arms of the Mach- Zehnder interferometer in energy space are represented by the ground and excited state. In accord with theory, we observe constructive interference when the Stokes phase φS picked up during the LZ interaction, and the dynamical phase of one drive period φ= (E1- E0) dt satisfy the condition: (φ- 2 φS) = m .2π. Our LZ interferometer can be used as a high-resolution detector for phase and charge owing to interferometric sensitivity- enhancement.

  8. Lowermost mantle anisotropy near the eastern edge of the Pacific LLSVP: constraints from SKS-SKKS splitting intensity measurements

    NASA Astrophysics Data System (ADS)

    Deng, Jie; Long, Maureen D.; Creasy, Neala; Wagner, Lara; Beck, Susan; Zandt, George; Tavera, Hernando; Minaya, Estela

    2017-08-01

    Seismic anisotropy has been documented in many portions of the lowermost mantle, with particularly strong anisotropy thought to be present along the edges of large low shear velocity provinces (LLSVPs). The region surrounding the Pacific LLSVP, however, has not yet been studied extensively in terms of its anisotropic structure. In this study, we use seismic data from southern Peru, northern Bolivia and Easter Island to probe lowermost mantle anisotropy beneath the eastern Pacific Ocean, mostly relying on data from the Peru Lithosphere and Slab Experiment and Central Andean Uplift and Geodynamics of High Topography experiments. Differential shear wave splitting measurements from phases that have similar ray paths in the upper mantle but different ray paths in the lowermost mantle, such as SKS and SKKS, are used to constrain anisotropy in D″. We measured splitting for 215 same station-event SKS-SKKS pairs that sample the eastern Pacific LLSVP at the base of the mantle. We used measurements of splitting intensity(SI), a measure of the amount of energy on the transverse component, to objectively and quantitatively analyse any discrepancies between SKS and SKKS phases. While the overall splitting signal is dominated by the upper-mantle anisotropy, a minority of SKS-SKKS pairs (∼10 per cent) exhibit strongly discrepant splitting between the phases (i.e. the waveforms require a difference in SI of at least 0.4), indicating a likely contribution from lowermost mantle anisotropy. In order to enhance lower mantle signals, we also stacked waveforms within individual subregions and applied a waveform differencing technique to isolate the signal from the lowermost mantle. Our stacking procedure yields evidence for substantial splitting due to lowermost mantle anisotropy only for a specific region that likely straddles the edge of Pacific LLSVP. Our observations are consistent with the localization of deformation and anisotropy near the eastern boundary of the Pacific LLSVP, similar to previous observations for the African LLSVP.

  9. The oxidative costs of parental care in cooperative and pair-breeding African starlings.

    PubMed

    Guindre-Parker, Sarah; Rubenstein, Dustin R

    2018-06-01

    The cost of parental care has long been thought to favor the evolution of cooperative breeding, because breeders can provide reduced parental care when aided by alloparents. Oxidative stress-the imbalance between reactive oxygen species and neutralizing antioxidants-has been proposed to mediate the cost of parental care, though results from empirical studies remain equivocal. We measured changes in oxidative status during reproduction in cooperatively breeding superb starlings (Lamprotornis superbus) to gain insight into the relationships among breeding status, parental care, and oxidative stress. We also compared the oxidative cost of reproduction in the cooperatively breeding superb starling to that in a sympatric non-cooperatively breeding species, the greater blue-eared glossy starling (L. chalybaeus), to determine whether cooperatively breeding individuals face reduced oxidative costs of parental care relative to non-cooperatively breeding individuals. Breeders and alloparents of the cooperative species did not differ in oxidative status throughout a breeding attempt. However, individuals of the non-cooperative species incurred an increase in reactive oxygen metabolites proportionally to an individual's workload during offspring care. These findings suggest that non-cooperative starlings experience an oxidative cost of parental care, whereas cooperatively breeding starlings do not. It is possible that high nest predation risk and multi-brooding in the cooperatively breeding species may have favored reduced physiological costs of parental care more strongly compared to pair-breeding starlings. Reduced physiological costs of caring for young may thus represent a direct benefit that promotes cooperative breeding.

  10. Co-operation and conflict under hard and soft contracting regimes: case studies from England and Wales

    PubMed Central

    2013-01-01

    Background This paper examines NHS secondary care contracting in England and Wales in a period which saw increasing policy divergence between the two systems. At face value, England was making greater use of market levers and utilising harder-edged service contracts incorporating financial penalties and incentives, while Wales was retreating from the 1990s internal market and emphasising cooperation and flexibility in the contracting process. But there were also cross-border spill-overs involving common contracting technologies and management cultures that meant that differences in on-the-ground contracting practices might be smaller than headline policy differences suggested. Methods The nature of real-world contracting behaviour was investigated by undertaking two qualitative case studies in England and two in Wales, each based on a local purchaser/provider network. The case studies involved ethnographic observations and interviews with staff in primary care trusts (PCTs) or local health boards (LHBs), NHS or Foundation trusts, and the overseeing Strategic Health Authority or NHS Wales regional office, as well as scrutiny of relevant documents. Results Wider policy differences between the two NHS systems were reflected in differing contracting frameworks, involving regional commissioning in Wales and commissioning by either a PCT, or co-operating pair of PCTs in our English case studies, and also in different oversight arrangements by higher tiers of the service. However, long-term relationships and trust between purchasers and providers had an important role in both systems when the financial viability of organisations was at risk. In England, the study found examples where both PCTs and trusts relaxed contractual requirements to assist partners faced with deficits. In Wales, news of plans to end the purchaser/provider split meant a return to less precisely-specified block contracts and a renewed concern to build cooperation between LHB and trust staff. Conclusions The interdependency of local purchasers and providers fostered long-term relationships and co-operation that shaped contracting behaviour, just as much as the design of contracts and the presence or absence of contractual penalties and incentives. Although conflict and tensions between contracting partners sometimes surfaced in both the English and Welsh case studies, cooperative behaviour became crucial in times of trouble. PMID:23734604

  11. Pairing in a dry Fermi sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Thomas A.; Staar, Peter; Mishra, V.

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  12. Pairing in a dry Fermi sea

    DOE PAGES

    Maier, Thomas A.; Staar, Peter; Mishra, V.; ...

    2016-06-17

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  13. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development

    PubMed Central

    Kazemian, Majid; Pham, Hannah; Wolfe, Scot A.; Brodsky, Michael H.; Sinha, Saurabh

    2013-01-01

    Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein–protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action. PMID:23847101

  14. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development.

    PubMed

    Kazemian, Majid; Pham, Hannah; Wolfe, Scot A; Brodsky, Michael H; Sinha, Saurabh

    2013-09-01

    Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein-protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action.

  15. Leon Cooper, Cooper Pairs, and the BCS Theory

    Science.gov Websites

    , psychology, mathematics, engineering, physics, linguistics and computer science. An Institute objective is to pave the way for the next generation of cognitive pharmaceuticals and intelligent systems for use in

  16. Double Negative Materials (DNM), Phenomena and Applications

    DTIC Science & Technology

    2009-07-01

    Nanoparticles Formed by Pairs Of Concentric Double-Negative (DNG), Single-Negative ( SNG ) and/or Double-Positive (DPS) Metamaterial Layers.” J. Appl...material RRL Rapid Research Letters SHG second-harmonic generation SNG single-negative SSR split-ring resonator A-1 Appendix A. October 2008...Pairs of Concentric Double-Negative (DNG), Single-Negative ( SNG ), and/or Double-Positive (DPS) Metamaterial Layers.” J. Appl. Phys. 97, no. 9 (May

  17. Phases of a fermionic model with chiral condensates and Cooper pairs in 1+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihaila, Bogdan; Blagoev, Krastan B.; MIND Institute, Albuquerque, New Mexico 87131

    2006-01-01

    We study the phase structure of a 4-fermi model with three bare coupling constants, which potentially has three types of bound states. This model is a generalization of the model discussed previously by [A. Chodos, F. Cooper, W. Mao, H. Minakata, and A. Singh, Phys. Rev. D 61, 045011 (2000).], which contained both chiral condensates and Cooper pairs. For this generalization we find that there are two independent renormalized coupling constants which determine the phase structure at finite density and temperature. We find that the vacuum can be in one of three distinct phases depending on the value of thesemore » two renormalized coupling constants.« less

  18. Evaluating the Cooperative Component in Cooperative Learning: A Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Emerson, Tisha L. N.; English, Linda K.; McGoldrick, KimMarie

    2015-01-01

    In this study, the authors employed a quasi-experimental research design to examine the efficacy of a cooperative learning pedagogy (i.e., think-pair-share exercises) integrated into sections of microeconomic principles. Materials, exercises, and assessment instruments for all study sections are identical except for the nature of the…

  19. Control of lasing from a highly photoexcited semiconductor microcavity

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Kuo

    Technological advances in the fabrication of optical cavities and crystal growth have enabled the studies on macroscopic quantum states and emergent nonequilibrium phenomena of light-matter hybrids in condensed matter. Optical excitations in a semiconductor microcavity can result in a coupled electron-hole-photon (e-h-gamma) system, in which various many-body physics can be studied by varying particle densities and particle-particle interactions. Recently there have been reports of phenomena analogous to Bose-Einstein condensates or superfluids for exciton-polaritons in a microcavity. An exciton-polariton is a quasiparticle resulting from strong coupling between the cavity light field and the exciton (e-h pair) transition, and typically is only stable at a low density ( 10 11 to 1012 cm-2 or less). At a higher density, it has been theoretically predicted that pairing of electrons and holes can result in a BCS-like state at cryogenic temperatures, which can produce cooperative radiation known as superradiance. In this work, we explore cooperative phenomena caused by e-h correlation and many-body effect in a highly photoexcited microcavity at room temperature. High-density e-h plasmas in a photoexcited microcavity are studied under the following conditions: (1) the sample is photoexcited GaAs-based microcavity with large detuning between the band gap Eg of quantum well and cavity resonance to prevent carriers from radiative loss, (2) the density of e-h pairs is high enough to build long-range correlation with the assistance of cavity light field. The Fermi level of electron-hole pairs is about 80 meV above Eg, and (3) the e-h correlation is stabilized through thermal management, which includes modulating the excitation pulse laser temporally and spatially to reduce the heating and carrier diffusion effect. We have observed ultrafast (sub-10 picoseconds) spin-polarized lasing with sizable energy shifts and linewidth broadenings as pump flux is increased. With optically induced confinement, multiple-lasing modes were produced, with sequential lasing time depending on energies. These phenomena are attributed to the spin-dependent stimulated emission from correlated e-h pairs. We further performed a non-degenerate pump-probe spectroscopy to investigate dynamic carrier relaxation. We find transient resonances with significant changes in differential reflectivity that can last more than 1 ns. The resonance exhibits a polarization-dependent splitting in about 1 meV under circularly polarized pumping. All the aforementioned phenomena can be explained by the combination effect of carrier-induced refractive index change and the light-induced e-h correlation. Our research enriches the studies of coupled e-h-gamma systems at room temperature and a high-density regime; however, further experiments and theoretical works are required to claim and clarify the formation of such correlated e-h pairs in a highly photoexcited microcavity. Nonetheless, we have demonstrated that many-body effects can be harnessed to control lasing dynamics and energies in highly photoexcited semiconductor microcavities. We expect an improved understanding of the many-body effect resulted from e-h pairing to help the development of polarization-controlled and wavelength-tunable lasers.

  20. Cooperative motion of intrinsic and actuated semiflexible swimmers

    NASA Astrophysics Data System (ADS)

    Llopis, I.; Pagonabarraga, I.; Cosentino Lagomarsino, M.; Lowe, C. P.

    2013-03-01

    We examine the phenomenon of hydrodynamic-induced cooperativity for pairs of flagellated micro-organism swimmers, of which spermatozoa cells are an example. We consider semiflexible swimmers, where inextensible filaments are driven by an internal intrinsic force and torque-free mechanism (intrinsic swimmers). The velocity gain for swimming cooperatively, which depends on both the geometry and the driving, develops as a result of the near-field coupling of bending and hydrodynamic stresses. We identify the regimes where hydrodynamic cooperativity is advantageous and quantify the change in efficiency. When the filaments' axes are parallel, hydrodynamic interaction induces a directional instability that causes semiflexible swimmers that profit from swimming together to move apart from each other. Biologically, this implies that flagella need to select different synchronized collective states and to compensate for directional instabilities (e.g., by binding) in order to profit from swimming together. By analyzing the cooperative motion of pairs of externally actuated filaments, we assess the impact that stress distribution along the filaments has on their collective displacements.

  1. Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadry, Heba, E-mail: hkadry1@yahoo.com; Abdel-Aty, Abdel-Haleem, E-mail: hkadry1@yahoo.com; Zakaria, Nordin, E-mail: hkadry1@yahoo.com

    2014-10-24

    We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters.

  2. Narrow-band microwave radiation from a biased single-Cooper-pair transistor.

    PubMed

    Naaman, O; Aumentado, J

    2007-06-01

    We show that a single-Cooper-pair transistor (SCPT) electrometer emits narrow-band microwave radiation when biased in its subgap region. Photoexcitation of quasiparticle tunneling in a nearby SCPT is used to spectroscopically detect this radiation in a configuration that closely mimics a qubit-electrometer integrated circuit. We identify emission lines due to Josephson radiation and radiative transport processes in the electrometer and argue that a dissipative superconducting electrometer can severely disrupt the system it attempts to measure.

  3. Bad splits in bilateral sagittal split osteotomy: systematic review and meta-analysis of reported risk factors.

    PubMed

    Steenen, S A; van Wijk, A J; Becking, A G

    2016-08-01

    An unfavourable and unanticipated pattern of the bilateral sagittal split osteotomy (BSSO) is generally referred to as a 'bad split'. Patient factors predictive of a bad split reported in the literature are controversial. Suggested risk factors are reviewed in this article. A systematic review was undertaken, yielding a total of 30 studies published between 1971 and 2015 reporting the incidence of bad split and patient age, and/or surgical technique employed, and/or the presence of third molars. These included 22 retrospective cohort studies, six prospective cohort studies, one matched-pair analysis, and one case series. Spearman's rank correlation showed a statistically significant but weak correlation between increasing average age and increasing occurrence of bad splits in 18 studies (ρ=0.229; P<0.01). No comparative studies were found that assessed the incidence of bad split among the different splitting techniques. A meta-analysis pooling the effect sizes of seven cohort studies showed no significant difference in the incidence of bad split between cohorts of patients with third molars present and concomitantly removed during surgery, and patients in whom third molars were removed at least 6 months preoperatively (odds ratio 1.16, 95% confidence interval 0.73-1.85, Z=0.64, P=0.52). In summary, there is no robust evidence to date to show that any risk factor influences the incidence of bad split. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Modeling the cooperative and competitive contagions in online social networks

    NASA Astrophysics Data System (ADS)

    Zhuang, Yun-Bei; Chen, J. J.; Li, Zhi-hong

    2017-10-01

    The wide adoption of social media has increased the interaction among different pieces of information, and this interaction includes cooperation and competition for our finite attention. While previous research focus on fully competition, this paper extends the interaction to be both "cooperation" and "competition", by employing an IS1S2 R model. To explore how two different pieces of information interact with each other, the IS1S2 R model splits the agents into four parts-(Ignorant-Spreader I-Spreader II-Stifler), based on SIR epidemic spreading model. Using real data from Weibo.com, a social network site similar to Twitter, we find some parameters, like decaying rates, can both influence the cooperative diffusion process and the competitive process, while other parameters, like infectious rates only have influence on the competitive diffusion process. Besides, the parameters' effect are more significant in the competitive diffusion than in the cooperative diffusion.

  5. Measurement of kT splitting scales in W→ℓν events at [Formula: see text] with the ATLAS detector.

    PubMed

    Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdelalim, A A; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Åkesson, T P A; Akimoto, G; Akimov, A V; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Argyropoulos, S; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Astbury, A; Atkinson, M; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Balek, P; Balli, F; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartsch, V; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behar Harpaz, S; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellomo, M; Belloni, A; Beloborodova, O; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Bernlochner, F U; Berry, T; Bertella, C; Bertin, A; Bertolucci, F; Besana, M I; Besjes, G J; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bittner, B; Black, C W; Black, J E; Black, K M; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Boelaert, N; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brown, G; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Chapman, J W; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Chen, Y; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choudalakis, G; Chouridou, S; Chow, B K B; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirilli, M; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Colas, J; Cole, S; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Courneyea, L; Cowan, G; Cox, B E; Cranmer, K; Crépé-Renaudin, S; Crescioli, F; Cristinziani, M; Crosetti, G; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallaire, F; Dallapiccola, C; Dam, M; Damiani, D S; Danielsson, H O; Dao, V; Darbo, G; Darlea, G L; Darmora, S; Dassoulas, J A; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dinut, F; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Dohmae, T; Doi, Y; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doyle, A T; Dressnandt, N; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Duda, D; Dudarev, A; Dudziak, F; Duerdoth, I P; Duflot, L; Dufour, M-A; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Duxfield, R; Dwuznik, M; Ebenstein, W L; Ebke, J; Eckweiler, S; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Engelmann, R; Engl, A; Epp, B; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Facini, G; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, J; Fisher, M J; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fowler, A J; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Frank, T; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gadatsch, S; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gandrajula, R P; Gao, Y S; Gaponenko, A; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Göpfert, T; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gunther, J; Guo, B; Guo, J; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hajduk, Z; Hakobyan, H; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayakawa, T; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Hernandez, C M; Hernández Jiménez, Y; Herrberg, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holmgren, S O; Holy, T; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikematsu, K; Ikeno, M; Iliadis, D; Ilic, N; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jeng, G-Y; Jen-La Plante, I; Jennens, D; Jenni, P; Jeske, C; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Joram, C; Jorge, P M; Joshi, K D; Jovicevic, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karagounis, M; Karakostas, K; Karnevskiy, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Keller, J S; Kenyon, M; Keoshkerian, H; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koenig, S; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Köneke, K; König, A C; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Krejci, F; Kretzschmar, J; Kreutzfeldt, K; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, M K; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lambourne, L; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Lepold, F; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, D; Liu, J B; Liu, L; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Lukas, W; Luminari, L; Lund, E; Lundberg, B; Lundberg, J; Lundberg, O; Lund-Jensen, B; Lundquist, J; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Macina, D; Mackeprang, R; Madar, R; Madaras, R J; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V; Malyukov, S; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marroquim, F; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martinez Outschoorn, V; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matsunaga, H; Matsushita, T; Mättig, P; Mättig, S; Mattravers, C; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazur, M; Mazzaferro, L; Mazzanti, M; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meehan, S; Meera-Lebbai, R; Meguro, T; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mohapatra, S; Mohr, W; Moles-Valls, R; Molfetas, A; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Möser, N; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Muenstermann, D; Müller, T A; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen, D H; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Niedercorn, F; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novakova, J; Nozaki, M; Nozka, L; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero Y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Paredes Hernandez, D; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pizio, C; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poblaguev, A; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Poll, J; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quilty, D; Raas, M; Radeka, V; Radescu, V; Radloff, P; Ragusa, F; Rahal, G; Rahimi, A M; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinsch, A; Reisinger, I; Relich, M; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rieck, P; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Ritsch, E; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosendahl, P L; Rosenthal, O; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarrazin, B; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaelicke, A; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schultens, M J; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherwood, P; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snow, S W; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sood, A; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A; South, D; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Su, D; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A; Tam, J Y C; Tamsett, M C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorwerk, V; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, W; Wagner, P; Wahlen, H; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M S; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Weydert, C; Whalen, K; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Williams, S; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xu, C; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yasu, Y; Yatsenko, E; Ye, J; Ye, S; Yen, A L; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D; Yu, D R; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zambito, S; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, L; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zibell, A; Zieminska, D; Zimin, N I; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zitoun, R; Živković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zutshi, V; Zwalinski, L

    A measurement of splitting scales, as defined by the k T clustering algorithm, is presented for final states containing a W boson produced in proton-proton collisions at a centre-of-mass energy of 7 TeV. The measurement is based on the full 2010 data sample corresponding to an integrated luminosity of 36 pb -1 which was collected using the ATLAS detector at the CERN Large Hadron Collider. Cluster splitting scales are measured in events containing W bosons decaying to electrons or muons. The measurement comprises the four hardest splitting scales in a k T cluster sequence of the hadronic activity accompanying the W boson, and ratios of these splitting scales. Backgrounds such as multi-jet and top-quark-pair production are subtracted and the results are corrected for detector effects. Predictions from various Monte Carlo event generators at particle level are compared to the data. Overall, reasonable agreement is found with all generators, but larger deviations between the predictions and the data are evident in the soft regions of the splitting scales.

  6. Shot noise as a measure of the lifetime and energy splitting of Majorana bound states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Hai-Feng; Guo, Zhen; Ke, Sha-Sha

    We propose a scheme to measure the lifetime and energy splitting of a pair of Majorana bound states at the ends of a superconducting nanowire by using the shot noise in a dynamical channel blockade system. A quantum dot is coupled to one end of the wire and connected with two electron reservoirs. It is found that a finite Majorana energy splitting tends to produce a super-Poissonian shot noise, while Majorana relaxation process relieves the dynamical channel blockade and suppresses the noise Fano factor. When the dot energy level locates in the middle of the gap of topological superconductor, themore » Fano factor is independent on Majorana lifetime and Majorana energy splitting is thus extracted. For a finite energy splitting, we could evaluate the Majorana relaxation rate from the suppression of Fano factor. Under a realistic condition, the expected resolution of Majorana energy splitting and its relaxation rate calculated from our model are about 1μeV and 0.01−1μeV, respectively.« less

  7. Impulsiveness does not prevent cooperation from emerging but reduces its occurrence: an experiment with zebra finches.

    PubMed

    Chia, Camille; Dubois, Frédérique

    2017-08-17

    Reciprocal altruism, the most probable mechanism for cooperation among unrelated individuals, can be modelled as a Prisoner's Dilemma. This game predicts that cooperation should evolve whenever the players, who expect to interact repeatedly, make choices contingent to their partner's behaviour. Experimental evidence, however, indicates that reciprocity is rare among animals. One reason for this would be that animals are very impulsive compared to humans. Several studies have reported that temporal discounting (that is, strong preferences for immediate benefits) has indeed a negative impact on the occurrence of cooperation. Yet, the role of impulsive action, another facet of impulsiveness, remains unexplored. Here, we conducted a laboratory experiment in which male and female zebra finches (Taenyopigia guttata) were paired assortatively with respect to their level of impulsive action and then played an alternating Prisoner's Dilemma. As anticipated, we found that self-controlled pairs achieved high levels of cooperation by using a Generous Tit-for-Tat strategy, while impulsive birds that cooperated at a lower level, chose to cooperate with a fixed probability. If the inability of impulsive individuals to use reactive strategies are due to their reduced working memory capacity, thus our findings might contribute to explaining interspecific differences in cooperative behaviour.

  8. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    PubMed

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Siblings in dyads: relationships among perceptions and behavior.

    PubMed

    Graham-Bermann, S A

    1991-06-01

    The ways in which middle-childhood siblings perceive themselves as similar or different was assessed with a sample of 40 pairs of 9- to 11-year-old (younger) and 12- to 14-year-old (older) siblings. Each child was interviewed and completed a card sort procedure and a measure of self-competence. Sibling pairs participated in three behavioral tasks coded for cooperation and conflict. Self-ratings, self-perceptions, and sibling behavior were analyzed for their association with the perceived similarity construct. Siblings perceived themselves as being more like one another than did their mothers. Forty-one percent of the variance in their perceived similarity was accounted for by paired self-cooperation ratings, social competence, and behavioral task scores.

  10. Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system.

    PubMed

    Kakimoto, Yuriko; Tashiro, Shinya; Kojima, Rieko; Morozumi, Yuki; Endo, Toshiya; Tamura, Yasushi

    2018-04-18

    Functional integrity of eukaryotic organelles relies on direct physical contacts between distinct organelles. However, the entity of organelle-tethering factors is not well understood due to lack of means to analyze inter-organelle interactions in living cells. Here we evaluate the split-GFP system for visualizing organelle contact sites in vivo and show its advantages and disadvantages. We observed punctate GFP signals from the split-GFP fragments targeted to any pairs of organelles among the ER, mitochondria, peroxisomes, vacuole and lipid droplets in yeast cells, which suggests that these organelles form contact sites with multiple organelles simultaneously although it is difficult to rule out the possibilities that these organelle contacts sites are artificially formed by the irreversible associations of the split-GFP probes. Importantly, split-GFP signals in the overlapped regions of the ER and mitochondria were mainly co-localized with ERMES, an authentic ER-mitochondria tethering structure, suggesting that split-GFP assembly depends on the preexisting inter-organelle contact sites. We also confirmed that the split-GFP system can be applied to detection of the ER-mitochondria contact sites in HeLa cells. We thus propose that the split-GFP system is a potential tool to observe and analyze inter-organelle contact sites in living yeast and mammalian cells.

  11. Split-plot microarray experiments: issues of design, power and sample size.

    PubMed

    Tsai, Pi-Wen; Lee, Mei-Ling Ting

    2005-01-01

    This article focuses on microarray experiments with two or more factors in which treatment combinations of the factors corresponding to the samples paired together onto arrays are not completely random. A main effect of one (or more) factor(s) is confounded with arrays (the experimental blocks). This is called a split-plot microarray experiment. We utilise an analysis of variance (ANOVA) model to assess differentially expressed genes for between-array and within-array comparisons that are generic under a split-plot microarray experiment. Instead of standard t- or F-test statistics that rely on mean square errors of the ANOVA model, we use a robust method, referred to as 'a pooled percentile estimator', to identify genes that are differentially expressed across different treatment conditions. We illustrate the design and analysis of split-plot microarray experiments based on a case application described by Jin et al. A brief discussion of power and sample size for split-plot microarray experiments is also presented.

  12. Drive the Dirac electrons into Cooper pairs in SrxBi2Se3

    PubMed Central

    Du, Guan; Shao, Jifeng; Yang, Xiong; Du, Zengyi; Fang, Delong; Wang, Jinghui; Ran, Kejing; Wen, Jinsheng; Zhang, Changjin; Yang, Huan; Zhang, Yuheng; Wen, Hai-Hu

    2017-01-01

    Topological superconductors are a very interesting and frontier topic in condensed matter physics. Despite the tremendous efforts in exploring topological superconductivity, its presence is however still under heavy debate. The Dirac electrons have been proven to exist on the surface of a topological insulator. It remains unclear whether and how the Dirac electrons fall into Cooper pairing in an intrinsic superconductor with the topological surface states. Here we show the systematic study of scanning tunnelling microscope/spectroscopy on the possible topological superconductor SrxBi2Se3. We first demonstrate that only the intercalated Sr atoms can induce superconductivity. Then we show the full superconducting gaps without any in-gap density of states as expected theoretically for a bulk topological superconductor. Finally, we find that the surface Dirac electrons will simultaneously condense into the superconducting state within the superconducting gap. This vividly demonstrates how the surface Dirac electrons are driven into Cooper pairs. PMID:28198378

  13. Detecting cooperative sequences in the binding of RNA Polymerase-II

    NASA Astrophysics Data System (ADS)

    Glass, Kimberly; Rozenberg, Julian; Girvan, Michelle; Losert, Wolfgang; Ott, Ed; Vinson, Charles

    2008-03-01

    Regulation of the expression level of genes is a key biological process controlled largely by the 1000 base pair (bp) sequence preceding each gene (the promoter region). Within that region transcription factor binding sites (TFBS), 5-10 bp long sequences, act individually or cooperate together in the recruitment of, and therefore subsequent gene transcription by, RNA Polymerase-II (RNAP). We have measured the binding of RNAP to promoters on a genome-wide basis using Chromatin Immunoprecipitation (ChIP-on-Chip) microarray assays. Using all 8-base pair long sequences as a test set, we have identified the DNA sequences that are enriched in promoters with high RNAP binding values. We are able to demonstrate that virtually all sequences enriched in such promoters contain a CpG dinucleotide, indicating that TFBS that contain the CpG dinucleotide are involved in RNAP binding to promoters. Further analysis shows that the presence of pairs of CpG containing sequences cooperate to enhance the binding of RNAP to the promoter.

  14. The ambivalent effect of lattice structure on a spatial game

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Gao, Meng; Li, Zizhen; Maa, Zhihui; Wang, Hailong

    2011-06-01

    The evolution of cooperation is studied in lattice-structured populations, in which each individual who adopts one of the following strategies ‘always defect' (ALLD), ‘tit-for-tat' (TFT), and ‘always cooperate' (ALLC) plays the repeated Prisoner's Dilemma game with its neighbors according to an asynchronous update rule. Computer simulations are applied to analyse the dynamics depending on major parameters. Mathematical analyses based on invasion probability analysis, mean-field approximation, as well as pair approximation are also used. We find that the lattice structure promotes the evolution of cooperation compared with a non-spatial population, this is also confirmed by invasion probability analysis in one dimension. Meanwhile, it also inhibits the evolution of cooperation due to the advantage of being spiteful, which indicates the key role of specific life-history assumptions. Mean-field approximation fails to predict the outcome of computer simulations. Pair approximation is accurate in two dimensions but fails in one dimension.

  15. Extortion can outperform generosity in the iterated prisoner's dilemma

    PubMed Central

    Wang, Zhijian; Zhou, Yanran; Lien, Jaimie W.; Zheng, Jie; Xu, Bin

    2016-01-01

    Zero-determinant (ZD) strategies, as discovered by Press and Dyson, can enforce a linear relationship between a pair of players' scores in the iterated prisoner's dilemma. Particularly, the extortionate ZD strategies can enforce and exploit cooperation, providing a player with a score advantage, and consequently higher scores than those from either mutual cooperation or generous ZD strategies. In laboratory experiments in which human subjects were paired with computer co-players, we demonstrate that both the generous and the extortionate ZD strategies indeed enforce a unilateral control of the reward. When the experimental setting is sufficiently long and the computerized nature of the opponent is known to human subjects, the extortionate strategy outperforms the generous strategy. Human subjects' cooperation rates when playing against extortionate and generous ZD strategies are similar after learning has occurred. More than half of extortionate strategists finally obtain an average score higher than that from mutual cooperation. PMID:27067513

  16. Auction-based Security Game for Multiuser Cooperative Networks

    NASA Astrophysics Data System (ADS)

    Wang, An; Cai, Yueming; Yang, Wendong; Cheng, Yunpeng

    2013-04-01

    In this paper, we develop an auction-based algorithm to allocate the relay power efficiently to improve the system secrecy rate in a cooperative network, where several source-destination pairs and one cooperative relay are involved. On the one hand, the cooperative relay assists these pairs to transmit under a peak power constraint. On the other hand, the relay is untrusty and is also a passive eavesdropper. The whole auction process is completely distributed and no instantaneous channel state information exchange is needed. We also prove the existence and uniqueness of the Nash Equilibrium (NE) for the proposed power auction game. Moreover, the Pareto optimality is also validated. Simulation results show that our proposed auction-based algorithm can effectively improve the system secrecy rate. Besides, the proposed auction-based algorithm can converge to the unique NE point within a finite number of iterations. More interestingly, we also find that the proposed power auction mechanism is cheat-proof.

  17. Tolerance-based punishment in continuous public goods game

    NASA Astrophysics Data System (ADS)

    Gao, Jia; Li, Zhi; Cong, Rui; Wang, Long

    2012-08-01

    Altruistic punishment for defectors is considered as a key motive for the explanation of cooperation. However, there is no clear border between the cooperative and defective behaviors in a continuous strategy game. We propose a model to study the effect of punishment on the evolution of cooperation in continuous public goods game, wherein individuals have the traits to punish the co-players based on social tolerance. We show that a reasonable punishment with a uniform tolerance can spur individuals to make more investments. Additionally, for a fixed punishment cost and a fixed fine, a moderate value of tolerance can result in the best promotion of cooperation. Furthermore, we investigate the coevolutionary dynamics of investment and tolerance. We find that the population splits into two branches: high-tolerance individuals who make high investments and low-tolerance individuals who make low investments. A dynamic equilibrium is achieved between these two types of individuals. Our work extends punishment to continuous cooperative behaviors and the results may enhance the understanding of altruistic punishment in the evolution of human cooperation.

  18. Analysis of selected volatile organic compounds in split and nonsplit swiss cheese samples using selected-ion flow tube mass spectrometry (SIFT-MS).

    PubMed

    Castada, Hardy Z; Wick, Cheryl; Taylor, Kaitlyn; Harper, W James

    2014-04-01

    Splits/cracks are recurring product defects that negatively affect the Swiss cheese industry. Investigations to understand the biophysicochemical aspects of these defects, and thus determine preventive measures against their occurrence, are underway. In this study, selected-ion, flow tube mass spectrometry was employed to determine the volatile organic compound (VOC) profiles present in the headspace of split compared with nonsplit cheeses. Two sampling methodologies were employed: split compared with nonsplit cheese vat pair blocks; and comparison of blind, eye, and split segments within cheese blocks. The variability in VOC profiles was examined to evaluate the potential biochemical pathway chemistry differences within and between cheese samples. VOC profile inhomogeneity was most evident in cheeses between factories. Evaluation of biochemical pathways leading to the formation of key VOCs differentiating the split from the blind and eye segments within factories indicated release of additional carbon dioxide by-product. These results suggest a factory-dependent cause of split formation that could develop from varied fermentation pathways in the blind, eye, and split areas within a cheese block. The variability of VOC profiles within and between factories exhibit varied biochemical fermentation pathways that could conceivably be traced back in the making process to identify parameters responsible for split defect. © 2014 Institute of Food Technologists®

  19. High-speed volume measurement system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Michael H.; Doyle, Jr., James L.; Brinkman, Michael J.

    2017-12-12

    Disclosed is a volume sensor having first, second, and third laser sources emitting first, second, and third laser beams; first, second, and third beam splitters splitting the first, second, and third laser beams into first, second, and third beam pairs; first, second, and third optical assemblies expanding the first, second, and third beam pairs into first, second, and third pairs of parallel beam sheets; fourth, fifth, and sixth optical assemblies focusing the first, second, and third beam sheet pairs into fourth, fifth, and sixth beam pairs; and first, second, and third detector pairs receiving the fourth, fifth, and sixth beammore » pairs and converting a change in intensity of at least one of the beam pairs resulting from an object passing through at least one of the first, second, and third parallel beam sheets into at least one electrical signal proportional to a three-dimensional representation of the object.« less

  20. Multiparticle instability in a spin-imbalanced Fermi gas

    NASA Astrophysics Data System (ADS)

    Whitehead, T. M.; Conduit, G. J.

    2018-01-01

    Weak attractive interactions in a spin-imbalanced Fermi gas induce a multiparticle instability, binding multiple fermions together. The maximum binding energy per particle is achieved when the ratio of the number of up- and down-spin particles in the instability is equal to the ratio of the up- and down-spin densities of states in momentum at the Fermi surfaces, to utilize the variational freedom of all available momentum states. We derive this result using an analytical approach, and verify it using exact diagonalization. The multiparticle instability extends the Cooper pairing instability of balanced Fermi gases to the imbalanced case, and could form the basis of a many-body state, analogously to the construction of the Bardeen-Cooper-Schrieffer theory of superconductivity out of Cooper pairs.

  1. Dual origin of pairing in nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  2. Fermion Cooper pairing with unequal masses: Standard field theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Lianyi; Jin Meng; Zhuang Pengfei

    Fermion Cooper pairing with unequal masses is investigated in a standard field theory approach. We derived the superfluid density and Meissner mass squared of the U(1) gauge field in a general two-species model and found that the often used proportional relation between the two quantities is broken when the fermion masses are unequal. In the weak-coupling region, the superfluid density is always negative but the Meissner mass squared becomes mostly positive when the mass ratio between the pairing fermions is large enough. We established a proper momentum configuration of the LOFF pairing with unequal masses and showed that the LOFFmore » state is energetically favored due to the negative superfluid density. The single-plane-wave LOFF state is physically equivalent to an anisotropic state with a spontaneously generated superflow. The extension to a finite-range interaction is briefly discussed.« less

  3. Cooperatively coupled motion with superradiant and subradiant atoms

    NASA Astrophysics Data System (ADS)

    Lin, Guin-Dar; Lin, Kuan-Ting; Tang, Er-Siang

    2017-04-01

    We investigate the coupled motion of cooperative atoms subjected to the Doppler dissipative force. The dipole-dipole interaction introduces mutual decay channel and splits the super-radiant and sub-radiant states. The Doppler force is thus modified due to the collective emission and coupled recoil. Such a cooperative effect is more evident when the inter-atom separation is less than or comparable to a wavelength. In an optical molasses, we find that, along the axis of two atoms, there presents an effective potential with mechanically stable and unstable regions alternatively as their separation increases. Taking the cooperative Lamb shift into account, we map out the stability diagram and investigate the blockade effect. We thank the support from MOST of Taiwan under Grant No. 105-2112-M-002-015-MY3 and National Taiwan University under Grant No. NTU-ERP-105R891401.

  4. Identifying cooperative transcriptional regulations using protein–protein interactions

    PubMed Central

    Nagamine, Nobuyoshi; Kawada, Yuji; Sakakibara, Yasubumi

    2005-01-01

    Cooperative transcriptional activations among multiple transcription factors (TFs) are important to understand the mechanisms of complex transcriptional regulations in eukaryotes. Previous studies have attempted to find cooperative TFs based on gene expression data with gene expression profiles as a measure of similarity of gene regulations. In this paper, we use protein–protein interaction data to infer synergistic binding of cooperative TFs. Our fundamental idea is based on the assumption that genes contributing to a similar biological process are regulated under the same control mechanism. First, the protein–protein interaction networks are used to calculate the similarity of biological processes among genes. Second, we integrate this similarity and the chromatin immuno-precipitation data to identify cooperative TFs. Our computational experiments in yeast show that predictions made by our method have successfully identified eight pairs of cooperative TFs that have literature evidences but could not be identified by the previous method. Further, 12 new possible pairs have been inferred and we have examined the biological relevances for them. However, since a typical problem using protein–protein interaction data is that many false-positive data are contained, we propose a method combining various biological data to increase the prediction accuracy. PMID:16126847

  5. Dynamical Cooper pairing in nonequilibrium electron-phonon systems

    DOE PAGES

    Knap, Michael; Babadi, Mehrtash; Refael, Gil; ...

    2016-12-08

    In this paper, we analyze Cooper pairing instabilities in strongly driven electron-phonon systems. The light-induced nonequilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We demonstrate that the competition between these effects leads to an enhanced superconducting transition temperature in a broad range of parameters. Finally, our results may explain the observed transient enhancement of superconductivity in several classes of materials upon irradiation with high intensity pulses of terahertz light, and may pave new ways for engineering high-temperature light-induced superconducting states.

  6. Experimental methods of post-growth tuning of the excitonic fine structure splitting in semiconductor quantum dots

    PubMed Central

    2012-01-01

    Deterministic sources of polarization entangled photon pairs on demand are considered as important building blocks for quantum communication technology. It has been demonstrated that semiconductor quantum dots (QDs), which exhibit a sufficiently small excitonic fine structure splitting (FSS) can be used as triggered, on-chip sources of polarization entangled photon pairs. As-grown QDs usually do not have the required values of the FSS, making the availability of post-growth tuning techniques highly desired. This article reviews the effect of different post-growth treatments and external fields on the FSS such as thermal annealing, magnetic fields, the optical Stark effect, electric fields, and anisotropic stress. As a consequence of the tuning of the FSS, for some tuning techniques a rotation of the polarization of the emitted light is observed. The joint modification of polarization orientation and FSS can be described by an anticrossing of the bright excitonic states. PMID:22726724

  7. Job Sharing for Administrators: A Consideration for Public Schools.

    ERIC Educational Resources Information Center

    Muffs, Michael I.; Schmitz, Laura Ann

    1999-01-01

    To retain an exemplary dean of students with heavy caregiving responsibilities, a Poughkeepsie, New York, high school adopted a plan to split her job responsibilities with an educational administration student beginning his career. Job-sharing success hinged on strong cooperation among the district, the individual administrators, and local…

  8. Seismic anisotropy beneath the southeastern margin of the Tibetan Plateau and adjacent regions revealed by shear-wave splitting analyses

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Kong, F.; Wu, J.; Liu, L.; Liu, K. H.

    2017-12-01

    Seismic azimuthal anisotropy is measured at 83 stations situated at the southeastern margin of the Tibetan Plateau and adjacent regions based on shear-wave splitting analyses. A total of 1701 individual pairs of splitting parameters (fast polarization orientations and splitting delay times) are obtained using the PKS, SKKS, and SKS phases. The splitting parameters from 21 stations exhibit systematic back-azimuthal variations with a 90° periodicity, which is consistent with a two-layer anisotropy model. The resulting upper-layer splitting parameters computed based on a grid-search algorithm are comparable with crustal anisotropy measurements obtained independently based on the sinusoidal moveout of P-to-S conversions from the Moho. The fast orientations of the upper layer anisotropy, which is mostly parallel with major shear zones, are associated with crustal fabrics with a vertical foliation plane. The lower layer anisotropy and the station averaged splitting parameters at stations with azimuthally invariant splitting parameters can be adequately explained by the differential movement between the lithosphere and asthenosphere. The NW-SE fast orientations obtained in the northern part of the study area probably reflect the southeastward extruded mantle flow from central Tibet. In contrast, the NE-SW to E-W fast orientations observed in the southern part of the study area are most likely related to the northeastward to eastward mantle flow induced by the subduction of the Burma microplate.

  9. Heteroditopic receptors for ion-pair recognition.

    PubMed

    McConnell, Anna J; Beer, Paul D

    2012-05-21

    Ion-pair recognition is a new field of research emerging from cation and anion coordination chemistry. Specific types of heteroditopic receptor designs for ion pairs and the complexity of ion-pair binding are discussed to illustrate key concepts such as cooperativity. The importance of this area of research is reflected by the wide variety of potential applications of ion-pair receptors, including applications as membrane transport and salt solubilization agents and sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Measurement of k T splitting scales in W→ℓν events at $$\\sqrt{s} = 7\\ \\mathrm{TeV}$$ with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abajyan, T.; Abbott, B.

    2013-05-15

    A measurement of splitting scales, as defined by the k T clustering algorithm, is presented for final states containing a W boson produced in proton–proton collisions at a centre-of-mass energy of 7 TeV. The measurement is based on the full 2010 data sample corresponding to an integrated luminosity of 36 pb -1 which was collected using the ATLAS detector at the CERN Large Hadron Collider. Cluster splitting scales are measured in events containing W bosons decaying to electrons or muons. The measurement comprises the four hardest splitting scales in a k T cluster sequence of the hadronic activity accompanying themore » W boson, and ratios of these splitting scales. Backgrounds such as multi-jet and top-quark-pair production are subtracted and the results are corrected for detector effects. Predictions from various Monte Carlo event generators at particle level are compared to the data. Overall, reasonable agreement is found with all generators, but larger deviations between the predictions and the data are evident in the soft regions of the splitting scales.« less

  11. Paired split-plot designs of multireader multicase studies.

    PubMed

    Chen, Weijie; Gong, Qi; Gallas, Brandon D

    2018-07-01

    The widely used multireader multicase ROC study design for comparing imaging modalities is the fully crossed (FC) design: every reader reads every case of both modalities. We investigate paired split-plot (PSP) designs that may allow for reduced cost and increased flexibility compared with the FC design. In the PSP design, case images from two modalities are read by the same readers, thereby the readings are paired across modalities. However, within each modality, not every reader reads every case. Instead, both the readers and the cases are partitioned into a fixed number of groups and each group of readers reads its own group of cases-a split-plot design. Using a [Formula: see text]-statistic based variance analysis for AUC (i.e., area under the ROC curve), we show analytically that precision can be gained by the PSP design as compared with the FC design with the same number of readers and readings. Equivalently, we show that the PSP design can achieve the same statistical power as the FC design with a reduced number of readings. The trade-off for the increased precision in the PSP design is the cost of collecting a larger number of truth-verified patient cases than the FC design. This means that one can trade-off between different sources of cost and choose a least burdensome design. We provide a validation study to show the iMRMC software can be reliably used for analyzing data from both FC and PSP designs. Finally, we demonstrate the advantages of the PSP design with a reader study comparing full-field digital mammography with screen-film mammography.

  12. Reversible Hydrogen Activation by a Pyridonate Borane Complex: Combining Frustrated Lewis Pair Reactivity with Boron-Ligand Cooperation.

    PubMed

    Gellrich, Urs

    2018-04-16

    A pyridone borane complex that liberates dihydrogen under mild conditions is described. The reverse reaction, dihydrogen activation by the formed pyridonate borane complex, is achieved under moderate H 2 pressure (2 bar) at room temperature. DFT and DLPNO-CCSD(T) computations reveal that the active form of the pyridonate borane complex is a boroxypyridine that can be described as a single component frustrated Lewis pair (FLP). Significantly, the boroxypyridine undergoes a chemical transformation to a neutral pyridone donor ligand in the course of the hydrogen activation. This unprecedented mode of action may thus, in analogy to metal-ligand cooperation, be regarded as an example of boron-ligand cooperation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electron and Cooper-pair transport across a single magnetic molecule explored with a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Brand, J.; Gozdzik, S.; Néel, N.; Lado, J. L.; Fernández-Rossier, J.; Kröger, J.

    2018-05-01

    A scanning tunneling microscope is used to explore the evolution of electron and Cooper-pair transport across single Mn-phthalocyanine molecules adsorbed on Pb(111) from tunneling to contact ranges. Normal-metal as well as superconducting tips give rise to a gradual transition of the Bardeen-Cooper-Schrieffer energy gap in the tunneling range into a zero-energy resonance close to and at contact. Supporting transport calculations show that in the normal-metal-superconductor junctions this resonance reflects the merging of in-gap Yu-Shiba-Rusinov states as well as the onset of Andreev reflection. For the superconductor-superconductor contacts, the zero-energy resonance is rationalized in terms of a finite Josephson current that is carried by phase-dependent Andreev and Yu-Shiba-Rusinov levels.

  14. Competing pseudogap and impurity effects on the normal-state specific heat properties of cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Dzhumanov, S.; Karimboev, E. X.

    2014-07-01

    In this paper, we show that the pseudogap in the excitation spectra of high-Tc cuprates together with the impurity phase and charge inhomogeneity plays key roles in determining the essential features of their anomalous specific heat properties observed above Tc. We consider the doped cuprate superconductor as a multi-carrier model system (which consists of intrinsic and extrinsic polarons and pre-formed bosonic Cooper pairs) and study the competing pseudogap and impurity effects on the normal-state electronic specific heat of high-Tc cuprates taking into account charge inhomogeneities. We argue that unconventional electron-phonon interactions are responsible for the precursor Cooper pairing in the polaronic band below a mean-field temperature T∗ and the existence of a pseudogap above Tc in the cuprates. The electronic specific heat Ce(T) of doped cuprates below T∗ is calculated taking into account three contributions coming from the excited components of Cooper pairs, the ideal Bose-gas of incoherent Cooper pairs and the unpaired carriers in the impurity band. Above T∗, two contributions to Ce(T) coming from the unpaired intrinsic and extrinsic polarons are calculated within the two-component degenerate Fermi-gas model. By comparing our results with the experimental Ce(T) data obtained for La- and Y-based cuprates, we find that the observed behaviors of Ce(T) (below and above T∗) are similar to the calculated results for Ce(T) and the BCS-type jumps of Ce(T) at T∗ may be depressed by the impurity effects and may become more or less pronounced BCS-type anomalies in Ce(T) .

  15. Phase-driven collapse of the Cooper condensate in a nanosized superconductor

    NASA Astrophysics Data System (ADS)

    Ronzani, Alberto; D'Ambrosio, Sophie; Virtanen, Pauli; Giazotto, Francesco; Altimiras, Carles

    2017-12-01

    Superconductivity can be understood in terms of a phase transition from an uncorrelated electron gas to a condensate of Cooper pairs in which the relative phases of the constituent electrons are coherent over macroscopic length scales. The degree of correlation is quantified by a complex-valued order parameter, whose amplitude is proportional to the strength of the pairing potential in the condensate. Supercurrent-carrying states are associated with nonzero values of the spatial gradient of the phase. The pairing potential and several physical observables of the Cooper condensate can be manipulated by means of temperature, current bias, dishomogeneities in the chemical composition, or application of a magnetic field. Here we show evidence of complete suppression of the energy gap in the local density of quasiparticle states (DOS) of a superconducting nanowire upon establishing a phase difference equal to π over a length scale comparable to the superconducting coherence length. These observations are consistent with a complete collapse of the pairing potential in the center of the wire, in accordance with theoretical modeling based on the quasiclassical theory of superconductivity in diffusive systems. Our spectroscopic data, fully exploring the phase-biased states of the condensate, highlight the profound effect that extreme phase gradients exert on the amplitude of the pairing potential. Moreover, the sharp magnetic response (up to 27 mV/Φ0) observed near the onset of the superconducting gap collapse regime is exploited to realize magnetic flux detectors with noise-equivalent resolution as low as 260 n Φ0/√{Hz} .

  16. Helping enhances productivity in campo flicker ( Colaptes campestris) cooperative groups

    NASA Astrophysics Data System (ADS)

    Dias, Raphael Igor; Webster, Michael S.; Macedo, Regina H.

    2015-06-01

    Reproductive adults in many bird species are assisted by non-breeding auxiliary helpers at the nest, yet the impact of auxiliaries on reproduction is variable and not always obvious. In this study, we tested Hamilton's rule and evaluated the effect of auxiliaries on productivity in the facultative cooperative breeder campo flicker ( Colaptes campestris campestris). Campo flickers have a variable mating system, with some groups having auxiliaries and others lacking them (i.e., unassisted pairs). Most auxiliaries are closely related to the breeding pair (primary auxiliaries), but some auxiliaries (secondary auxiliaries) are unrelated females that joined established groups. We found no effect of breeder quality (body condition) or territory quality (food availability) on group productivity, but the presence of auxiliaries increased the number of fledglings produced relative to unassisted pairs. Nonetheless, the indirect benefit of helping was small and did not outweigh the costs of delayed breeding and so seemed insufficient to explain the evolution of cooperative breeding in campo flickers. We concluded that some ecological constraints must limit dispersal or independent breeding, making staying in the group a "best-of-a-bad-job" situation for auxiliaries.

  17. Helping enhances productivity in campo flicker (Colaptes campestris) cooperative groups.

    PubMed

    Dias, Raphael Igor; Webster, Michael S; Macedo, Regina H

    2015-06-01

    Reproductive adults in many bird species are assisted by non-breeding auxiliary helpers at the nest, yet the impact of auxiliaries on reproduction is variable and not always obvious. In this study, we tested Hamilton's rule and evaluated the effect of auxiliaries on productivity in the facultative cooperative breeder campo flicker (Colaptes campestris campestris). Campo flickers have a variable mating system, with some groups having auxiliaries and others lacking them (i.e., unassisted pairs). Most auxiliaries are closely related to the breeding pair (primary auxiliaries), but some auxiliaries (secondary auxiliaries) are unrelated females that joined established groups. We found no effect of breeder quality (body condition) or territory quality (food availability) on group productivity, but the presence of auxiliaries increased the number of fledglings produced relative to unassisted pairs. Nonetheless, the indirect benefit of helping was small and did not outweigh the costs of delayed breeding and so seemed insufficient to explain the evolution of cooperative breeding in campo flickers. We concluded that some ecological constraints must limit dispersal or independent breeding, making staying in the group a "best-of-a-bad-job" situation for auxiliaries.

  18. An Ultra-Sensitive Electrometer based on the Cavity-Embedded Cooper-Pair Transistor

    NASA Astrophysics Data System (ADS)

    Li, Juliang; Miller, Marco; Rimberg, Alex

    2015-03-01

    We discuss use of a cavity-embedded Cooper-pair transistor (cCPT) as a potentially quantum-limited electrometer. The cCPT consists of a Cooper pair transistor placed at the voltage antinode of a 5.7 GHz shorted quarter-wave resonator so that the CPT provides a galvanic connection between the cavity's central conductor and ground plane. The quantum inductance of the CPT, which appears in parallel with the effective inductance of the cavity resonance, can be modulated by application of either a gate voltage to the CPT island or a flux bias to the CPT/cavity loop. Changes in the CPT inductance shift the cavity resonant frequency, and therefore the phase of a microwave signal reflected from the cavity. The reflected wave is amplified by both SLUG and HEMT amplifiers before its phase is measured. Results of recent measurements on the cCPT electrometer will be compared with theoretical predictions. This work was supported by the NSF under Grant No. DMR-1104821, by the ARO under Contract No, W911NF-13-1-0377 and by AFOSR/DARPA under Agreement No. FA8750-12-2-0339.

  19. Neutron-proton effective mass splitting in terms of symmetry energy and its density slope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.; Sahoo, B.; Sahoo, S., E-mail: sukadevsahoo@yahoo.com

    2015-01-15

    Using a simple density-dependent finite-range effective interaction having Yukawa form, the density dependence of isoscalar and isovector effective masses is studied. The isovector effective mass is found to be different for different pairs of like and unlike nucleons. Using HVH theorem, the neutron-proton effective mass splitting is represented in terms of symmetry energy and its density slope. It is again observed that the neutron-proton effective mass splitting has got a positive value when isoscalar effective mass is greater than the isovector effective mass and has a negative value for the opposite case. Furthermore, the neutron-proton effective mass splitting is foundmore » to have a linear dependence on asymmetry β. The second-order symmetry potential has a vital role in the determination of density slope of symmetry energy but it does not have any contribution on neutron-proton effective mass splitting. The finite-range effective interaction is compared with the SLy2, SKM, f{sub −}, f{sub 0}, and f{sub +} forms of interactions.« less

  20. Stability and migration of large oxygen clusters in UO(2+x): density functional theory calculations.

    PubMed

    Andersson, D A; Espinosa-Faller, F J; Uberuaga, B P; Conradson, S D

    2012-06-21

    Using ab initio molecular dynamics simulations and nudged elastic band calculations we examine the finite temperature stability, transition pathways, and migration mechanisms of large oxygen clusters in UO(2+x). Here we specifically consider the recently proposed split quad-interstitial and cuboctahedral oxygen clusters. It is shown that isolated cuboctahedral clusters may transform into more stable configurations that are closely linked to the split quad-interstitial. The split quad-interstitial is stable with respect to single interstitials occupying the empty octahedral holes of the UO(2) lattice. In order to better understand discrepancies between theory and experiments, the simulated atomic pair distribution functions for the split quad-interstitial structures are analyzed with respect to the distribution function for U(4)O(9) previously obtained from neutron diffraction data. Our nudged elastic band calculations suggest that the split quad-interstitial may migrate by translating one of its constituent di-interstitial clusters via a barrier that is lower than the corresponding barrier for individual interstitials, but higher than the barrier for the most stable di-interstitial cluster.

  1. High-resolution laser spectroscopy and magnetic effect of the B{sup ~2}E′ ← X{sup ~2}A{sub 2}′ transition of {sup 14}NO{sub 3} radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tada, Kohei; Kashihara, Wataru; Baba, Masaaki

    2014-11-14

    Rotationally resolved high-resolution fluorescence excitation spectra of {sup 14}NO{sub 3} radical have been observed for the 662 nm band, which is assigned as the 0–0 band of the B{sup ~2}E′ ←X{sup ~2}A{sub 2}′ transition, by crossing a single-mode laser beam perpendicularly to a collimated molecular beam. More than 3000 rotational lines were detected in 15 070–15 145 cm{sup −1} region, but it is difficult to find the rotational line series. Remarkable rotational line pairs, whose interval is about 0.0246 cm{sup −1}, were found in the observed spectrum. This interval is the same amount with the spin-rotation splitting of the X{sup ~2}A{sub 2}′more » (υ = 0, k = 0, N = 1) level. From this interval and the observed Zeeman splitting up to 360 G, seven line pairs were assigned as the transitions to the {sup 2}E′{sub 3/2} (J′ = 1.5) levels and 15 line pairs were assigned as the transitions to the {sup 2}E′{sub 1/2} (J′ = 0.5) levels. From the rotational analysis, we recognized that the {sup 2}E′ state splits into {sup 2}E′{sub 3/2} and {sup 2}E′{sub 1/2} by the spin-orbit interaction and the effective spin-orbit interaction constant was roughly estimated as –21 cm{sup −1}. From the number of the rotational line pairs, we concluded that the complicated rotational structure of this 662 nm band of {sup 14}NO{sub 3} mainly owes to the vibronic interaction between the B{sup ~2}E′ state and the dark A{sup ~2}E″ state through the a{sub 2}″ symmetry vibrational mode.« less

  2. Human pair walking behavior: evaluation of cooperation strategies

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Bodova, Katarina; Kollar, Richard; Erban, Radek

    2015-03-01

    Human walkers are notoriously poor at keeping a direction without external cues: Experimental work by Souman et al. with blindfolded subjects told to walk in a straight line revealed intriguing circular and spiraling trajectories, which can be approximated by a stochastic process. In this work, motivated by pair walking experiments by Miglierini et al., we introduce an analysis of various strategies employed by a pair of blindfolded walkers, who are communicating via auditory cues, to maximize their efficiency at walking straight. To this end, we characterize pairs of strategies such as free walking, side-by-side walking and unconditional following from data generated by robot pair walking experiments (using computer vision techniques) and numerical simulations. We extract the mean exit distances of walker pairs from a corridor with finite width to construct phase portraits of the walking performance. We find intriguing cooperative effects leading to non-trivial enhancements of the efficiency at walking straight. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement No. 239870; and from the Royal Society through a Research Grant.

  3. Revealing the magnetic proximity effect in EuS/Al bilayers through superconducting tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Strambini, E.; Golovach, V. N.; De Simoni, G.; Moodera, J. S.; Bergeret, F. S.; Giazotto, F.

    2017-10-01

    A ferromagnetic insulator in contact with a superconductor is known to induce an exchange splitting of the singularity in the Bardeen-Cooper-Schrieffer (BCS) density of states (DoS). The magnitude of the splitting is proportional to the exchange field that penetrates into the superconductor to a depth comparable with the superconducting coherence length and which ranges in magnitude from a few to a few tens of tesla. We study this magnetic proximity effect in EuS/Al bilayers and show that the domain structure of the EuS affects the positions and the line shapes of the exchange-split BCS peaks. Remarkably, a clear exchange splitting is observed even in the unmagnetized state of the EuS layer, suggesting that the domain size of the EuS is comparable with the superconducting coherence length. Upon magnetizing the EuS layer, the splitting increases while the peaks change shape. Conductance measurements as a function of bias voltage at the lowest temperatures allowed us to relate the line shape of the split BCS DoS to the characteristic domain structure in the ultrathin EuS layer. These results pave the way to engineering triplet superconducting correlations at domain walls in EuS/Al bilayers. Furthermore, the hard gap and large splitting observed in our tunneling spectroscopy measurements make EuS/Al an excellent candidate for substituting strong magnetic fields in experiments studying Majorana bound states.

  4. Cooperative breeding in South American hunter-gatherers.

    PubMed

    Hill, Kim; Hurtado, A Magdalena

    2009-11-07

    Evolutionary researchers have recently suggested that pre-modern human societies habitually practised cooperative breeding and that this feature helps explain human prosocial tendencies. Despite circumstantial evidence that post-reproductive females and extra-pair males both provide resources required for successful reproduction by mated pairs, no study has yet provided details about the flow of food resources by different age and sex categories to breeders and offspring, nor documented the ratio of helpers to breeders. Here, we show in two hunter-gatherer societies of South America that each breeding pair with dependent offspring on average obtained help from approximately 1.3 non-reproductive adults. Young married males and unmarried males of all ages were the main food providers, accounting for 93-100% of all excess food production available to breeding pairs and their offspring. Thus, each breeding pair with dependants was provisioned on average by 0.8 adult male helpers. The data provide no support for the hypothesis that post-reproductive females are the main provisioners of younger reproductive-aged kin in hunter-gatherer societies. Demographic and food acquisition data show that most breeding pairs can expect food deficits owing to foraging luck, health disabilities and accumulating dependency ratio of offspring in middle age, and that extra-pair provisioning may be essential to the evolved human life history.

  5. Cooperative breeding in South American hunter–gatherers

    PubMed Central

    Hill, Kim; Hurtado, A. Magdalena

    2009-01-01

    Evolutionary researchers have recently suggested that pre-modern human societies habitually practised cooperative breeding and that this feature helps explain human prosocial tendencies. Despite circumstantial evidence that post-reproductive females and extra-pair males both provide resources required for successful reproduction by mated pairs, no study has yet provided details about the flow of food resources by different age and sex categories to breeders and offspring, nor documented the ratio of helpers to breeders. Here, we show in two hunter–gatherer societies of South America that each breeding pair with dependent offspring on average obtained help from approximately 1.3 non-reproductive adults. Young married males and unmarried males of all ages were the main food providers, accounting for 93–100% of all excess food production available to breeding pairs and their offspring. Thus, each breeding pair with dependants was provisioned on average by 0.8 adult male helpers. The data provide no support for the hypothesis that post-reproductive females are the main provisioners of younger reproductive-aged kin in hunter–gatherer societies. Demographic and food acquisition data show that most breeding pairs can expect food deficits owing to foraging luck, health disabilities and accumulating dependency ratio of offspring in middle age, and that extra-pair provisioning may be essential to the evolved human life history. PMID:19692401

  6. MiR-205-5p and miR-342-3p cooperate in the repression of the E2F1 transcription factor in the context of anticancer chemotherapy resistance

    PubMed Central

    Lai, Xin; Gupta, Shailendra K; Schmitz, Ulf; Marquardt, Stephan; Knoll, Susanne; Spitschak, Alf; Wolkenhauer, Olaf; Pützer, Brigitte M; Vera, Julio

    2018-01-01

    High rates of lethal outcome in tumour metastasis are associated with the acquisition of invasiveness and chemoresistance. Several clinical studies indicate that E2F1 overexpression across high-grade tumours culminates in unfavourable prognosis and chemoresistance in patients. Thus, fine-tuning the expression of E2F1 could be a promising approach for treating patients showing chemoresistance. Methods: We integrated bioinformatics, structural and kinetic modelling, and experiments to study cooperative regulation of E2F1 by microRNA (miRNA) pairs in the context of anticancer chemotherapy resistance. Results: We showed that an enhanced E2F1 repression efficiency can be achieved in chemoresistant tumour cells through two cooperating miRNAs. Sequence and structural information were used to identify potential miRNA pairs that can form tertiary structures with E2F1 mRNA. We then employed molecular dynamics simulations to show that among the identified triplexes, miR-205-5p and miR-342-3p can form the most stable triplex with E2F1 mRNA. A mathematical model simulating the E2F1 regulation by the cooperative miRNAs predicted enhanced E2F1 repression, a feature that was verified by in vitro experiments. Finally, we integrated this cooperative miRNA regulation into a more comprehensive network to account for E2F1-related chemoresistance in tumour cells. The network model simulations and experimental data indicate the ability of enhanced expression of both miR-205-5p and miR-342-3p to decrease tumour chemoresistance by cooperatively repressing E2F1. Conclusions: Our results suggest that pairs of cooperating miRNAs could be used as potential RNA therapeutics to reduce E2F1-related chemoresistance. PMID:29464002

  7. Alarm sensor apparatus for closures

    DOEpatents

    Carlson, J.A.; Stoddard, L.M.

    1984-01-31

    An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or framework and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

  8. Alarm sensor apparatus for closures

    DOEpatents

    Carlson, James A.; Stoddard, Lawrence M.

    1986-01-01

    An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or frame work and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

  9. 500-Gray γ-Irradiation May Increase Adhesion Strength of Lyophilized Cadaveric Split-Thickness Skin Graft to Wound Bed.

    PubMed

    Wei, Lin-Gwei; Chen, Chieh-Feng; Wang, Chi-Hsien; Cheng, Ya-Chen; Li, Chun-Chang; Chiu, Wen-Kuan; Wang, Hsian-Jenn

    2017-03-01

    Human cadaveric skin grafts are considered as the "gold standard" for temporary wound coverage because they provide a more conductive environment for natural wound healing. Lyophilization, packing, and terminal sterilization with gamma-ray can facilitate the application of cadaveric split-thickness skin grafts, but may alter the adhesion properties of the grafts. In a pilot study, we found that 500 Gy γ-irradiation seemed not to reduce the adherence between the grafts and wound beds. We conducted this experiment to compare the adherences of lyophilized, 500-Gy γ-irradiated skin grafts to that of lyophilized, nonirradiated grafts. Pairs of wounds were created over the backs of Sprague- Dawley rats. Pairs of "lyophilized, 500-Gy γ-irradiated" and "lyophilized, nonirradiated" cadaveric split-thickness skin grafts were fixed to the wound beds. Adhesion strength between the grafts and the wound beds was measured and compared. On post-skin-graft day 7 and day 10, the adhesion strength of γ-irradiated grafts was greater than that of the nonirradiated grafts. Because lyophilized cadaveric skin grafts can be vascularized and the collagen of its dermal component can be remodeled after grafting, the superior adhesion strength of 500-Gy γ-irradiated grafts can be explained by the collagen changes from irradiation.

  10. 30 CFR 936.30 - State-Federal Cooperative Agreement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and (c) provide uniform and effective application of the Program on all non-Indian lands in Oklahoma... administration and enforcement activities of the Program on non-Federal and non-Indian lands during the same time period. The ratio or cost split of Federal to non-Federal dollars allocated under this Agreement will be...

  11. 30 CFR 936.30 - State-Federal Cooperative Agreement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and (c) provide uniform and effective application of the Program on all non-Indian lands in Oklahoma... administration and enforcement activities of the Program on non-Federal and non-Indian lands during the same time period. The ratio or cost split of Federal to non-Federal dollars allocated under this Agreement will be...

  12. 30 CFR 936.30 - State-Federal Cooperative Agreement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and (c) provide uniform and effective application of the Program on all non-Indian lands in Oklahoma... administration and enforcement activities of the Program on non-Federal and non-Indian lands during the same time period. The ratio or cost split of Federal to non-Federal dollars allocated under this Agreement will be...

  13. 30 CFR 936.30 - State-Federal Cooperative Agreement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and (c) provide uniform and effective application of the Program on all non-Indian lands in Oklahoma... administration and enforcement activities of the Program on non-Federal and non-Indian lands during the same time period. The ratio or cost split of Federal to non-Federal dollars allocated under this Agreement will be...

  14. LDA merging and splitting with applications to multiagent cooperative learning and system alteration.

    PubMed

    Pang, Shaoning; Ban, Tao; Kadobayashi, Youki; Kasabov, Nikola K

    2012-04-01

    To adapt linear discriminant analysis (LDA) to real-world applications, there is a pressing need to equip it with an incremental learning ability to integrate knowledge presented by one-pass data streams, a functionality to join multiple LDA models to make the knowledge sharing between independent learning agents more efficient, and a forgetting functionality to avoid reconstruction of the overall discriminant eigenspace caused by some irregular changes. To this end, we introduce two adaptive LDA learning methods: LDA merging and LDA splitting. These provide the benefits of ability of online learning with one-pass data streams, retained class separability identical to the batch learning method, high efficiency for knowledge sharing due to condensed knowledge representation by the eigenspace model, and more preferable time and storage costs than traditional approaches under common application conditions. These properties are validated by experiments on a benchmark face image data set. By a case study on the application of the proposed method to multiagent cooperative learning and system alternation of a face recognition system, we further clarified the adaptability of the proposed methods to complex dynamic learning tasks.

  15. Tracking the coherent generation of polaron pairs in conjugated polymers

    NASA Astrophysics Data System (ADS)

    de Sio, Antonietta; Troiani, Filippo; Maiuri, Margherita; Réhault, Julien; Sommer, Ephraim; Lim, James; Huelga, Susana F.; Plenio, Martin B.; Rozzi, Carlo Andrea; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph

    2016-12-01

    The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.

  16. HAL-2 Promotes Homologous Pairing during Caenorhabditis elegans Meiosis by Antagonizing Inhibitory Effects of Synaptonemal Complex Precursors

    PubMed Central

    Zhang, Weibin; Miley, Natasha; Zastrow, Michael S.; MacQueen, Amy J.; Sato, Aya; Nabeshima, Kentaro; Martinez-Perez, Enrique; Mlynarczyk-Evans, Susanna; Carlton, Peter M.; Villeneuve, Anne M.

    2012-01-01

    During meiosis, chromosomes align with their homologous pairing partners and stabilize this alignment through assembly of the synaptonemal complex (SC). Since the SC assembles cooperatively yet is indifferent to homology, pairing and SC assembly must be tightly coordinated. We identify HAL-2 as a key mediator in this coordination, showing that HAL-2 promotes pairing largely by preventing detrimental effects of SC precursors (SYP proteins). hal-2 mutants fail to establish pairing and lack multiple markers of chromosome movement mediated by pairing centers (PCs), chromosome sites that link chromosomes to cytoplasmic microtubules through nuclear envelope-spanning complexes. Moreover, SYP proteins load inappropriately along individual unpaired chromosomes in hal-2 mutants, and markers of PC-dependent movement and function are restored in hal-2; syp double mutants. These and other data indicate that SYP proteins can impede pairing and that HAL-2 promotes pairing predominantly but not exclusively by counteracting this inhibition, thereby enabling activation and regulation of PC function. HAL-2 concentrates in the germ cell nucleoplasm and colocalizes with SYP proteins in nuclear aggregates when SC assembly is prevented. We propose that HAL-2 functions to shepherd SYP proteins prior to licensing of SC assembly, preventing untimely interactions between SC precursors and chromosomes and allowing sufficient accumulation of precursors for rapid cooperative assembly upon homology verification. PMID:22912597

  17. HAL-2 promotes homologous pairing during Caenorhabditis elegans meiosis by antagonizing inhibitory effects of synaptonemal complex precursors.

    PubMed

    Zhang, Weibin; Miley, Natasha; Zastrow, Michael S; MacQueen, Amy J; Sato, Aya; Nabeshima, Kentaro; Martinez-Perez, Enrique; Mlynarczyk-Evans, Susanna; Carlton, Peter M; Villeneuve, Anne M

    2012-01-01

    During meiosis, chromosomes align with their homologous pairing partners and stabilize this alignment through assembly of the synaptonemal complex (SC). Since the SC assembles cooperatively yet is indifferent to homology, pairing and SC assembly must be tightly coordinated. We identify HAL-2 as a key mediator in this coordination, showing that HAL-2 promotes pairing largely by preventing detrimental effects of SC precursors (SYP proteins). hal-2 mutants fail to establish pairing and lack multiple markers of chromosome movement mediated by pairing centers (PCs), chromosome sites that link chromosomes to cytoplasmic microtubules through nuclear envelope-spanning complexes. Moreover, SYP proteins load inappropriately along individual unpaired chromosomes in hal-2 mutants, and markers of PC-dependent movement and function are restored in hal-2; syp double mutants. These and other data indicate that SYP proteins can impede pairing and that HAL-2 promotes pairing predominantly but not exclusively by counteracting this inhibition, thereby enabling activation and regulation of PC function. HAL-2 concentrates in the germ cell nucleoplasm and colocalizes with SYP proteins in nuclear aggregates when SC assembly is prevented. We propose that HAL-2 functions to shepherd SYP proteins prior to licensing of SC assembly, preventing untimely interactions between SC precursors and chromosomes and allowing sufficient accumulation of precursors for rapid cooperative assembly upon homology verification.

  18. SCB Quantum Computers Using iSWAP and 1-Qubit Rotations

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Echtemach, Pierre

    2005-01-01

    Units of superconducting circuitry that exploit the concept of the single- Cooper-pair box (SCB) have been built and are undergoing testing as prototypes of logic gates that could, in principle, constitute building blocks of clocked quantum computers. These units utilize quantized charge states as the quantum information-bearing degrees of freedom. An SCB is an artificial two-level quantum system that comprises a nanoscale superconducting electrode connected to a reservoir of Cooper-pair charges via a Josephson junction. The logical quantum states of the device, .0. and .1., are implemented physically as a pair of charge-number states that differ by 2e (where e is the charge of an electron). Typically, some 109 Cooper pairs are involved. Transitions between the logical states are accomplished by tunneling of Cooper pairs through the Josephson junction. Although the two-level system contains a macroscopic number of charges, in the superconducting regime, they behave collectively, as a Bose-Einstein condensate, making possible a coherent superposition of the two logical states. This possibility makes the SCB a candidate for the physical implementation of a qubit. A set of quantum logic operations and the gates that implement them is characterized as universal if, in principle, one can form combinations of the operations in the set to implement any desired quantum computation. To be able to design a practical quantum computer, one must first specify how to decompose any valid quantum computation into a sequence of elementary 1- and 2-qubit quantum gates that are universal and that can be realized in hardware that is feasible to fabricate. Traditionally, the set of universal gates has been taken to be the set of all 1-qubit quantum gates in conjunction with the controlled-NOT (CNOT) gate, which is a 2-qubit gate. Also, it has been known for some time that the SWAP gate, which implements square root of the simple 2-qubit exchange interaction, is as computationally universal as is the CNOT operation.

  19. Systematics of ground state multiplets of atomic nuclei in the delta-interaction approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imasheva, L. T.; Ishkhanov, B. S.; Stepanov, M. E., E-mail: stepanov@depni.sinp.msu.ru

    2015-12-15

    Pairing forces between nucleons in an atomic nucleus strongly influence its structure. One of the manifestations of pair interaction is the ground state multiplet (GSM) formation in the spectrum of low-lying excited states of even–even nuclei. The value of GSM splitting is determined by the value of pair interaction of nucleons; for each isotope, it can be estimated on the basis of experimental nuclear masses. The quality of this estimate is characterized by the degree of reproduction of GSM levels in the nucleus. The GSM systematics in even–even nuclei with a pair of identical nucleons in addition to the filledmore » nuclear core is considered on the basis of delta interaction.« less

  20. A uniform database of teleseismic shear wave splitting measurements for the western and central United States

    NASA Astrophysics Data System (ADS)

    Liu, Kelly H.; Elsheikh, Ahmed; Lemnifi, Awad; Purevsuren, Uranbaigal; Ray, Melissa; Refayee, Hesham; Yang, Bin B.; Yu, Youqiang; Gao, Stephen S.

    2014-05-01

    We present a shear wave splitting (SWS) database for the western and central United States as part of a lasting effort to build a uniform SWS database for the entire North America. The SWS measurements were obtained by minimizing the energy on the transverse component of the PKS, SKKS, and SKS phases. Each of the individual measurements was visually checked to ensure quality. This version of the database contains 16,105 pairs of splitting parameters. The data used to generate the parameters were recorded by 1774 digital broadband seismic stations over the period of 1989-2012, and represented all the available data from both permanent and portable seismic networks archived at the Incorporated Research Institutions for Seismology Data Management Center in the area of 26.00°N to 50.00°N and 125.00°W to 90.00°W. About 10,000 pairs of the measurements were from the 1092 USArray Transportable Array stations. The results show that approximately 2/3 of the fast orientations are within 30° from the absolute plate motion (APM) direction of the North American plate, and most of the largest departures with the APM are located along the eastern boundary of the western US orogenic zone and in the central Great Basins. The splitting times observed in the western US are larger than, and those in the central US are comparable with the global average of 1.0 s. The uniform database has an unprecedented spatial coverage and can be used for various investigations of the structure and dynamics of the Earth.

  1. Anomalous torsional tripling in the ν9 and ν10 CH3-deformation modes of ethane 12CH313CH3

    NASA Astrophysics Data System (ADS)

    Lattanzi, F.; di Lauro, C.

    2017-12-01

    We have investigated the anomalous torsional behavior in the coupled ν9 and ν10 vibrational fundamentals of 12CH313CH3, both states exhibiting a splitting into three components, instead of two, only in those rotational levels which are very close to resonance. We conclude that the intrinsic additional splitting, which occurs in the E-torsional components, for these two vibrational states is too small to be detected in the high resolution infrared spectrum, but it is substantively enhanced by their coupling. It is shown that this effect requires the simultaneous action of torsion independent operators, such as Fermi-type and z-Coriolis, not allowed in the more symmetric isotopologue 12CH312CH3, and torsion dependent operators, such as torsional-Coriolis, connecting the two vibrational states. Our conclusions lead to a simple model for the coupling of ν9 and ν10, with effective Fermi-type matrix elements W for the A-torsional components, and W ± w for the two pairs of E-torsional components. This causes the additional splitting in the E-pairs. This model is consistent with the mechanism causing the Coriolis-dependent decrease of the A-E torsional splitting in degenerate vibrational states. Exploratory calculations were performed making use of results from a normal mode analysis, showing that the effects predictable by the proposed model are of the correct order of magnitude compared to the observed features, with coupling parameter values reasonably consistent with those determined by the least squares fit of the observed transition wavenumbers.

  2. Nonequilibrium enhancement of Cooper pairing in cold fermion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Andrew; Galitski, Victor M.

    2009-12-15

    Nonequilibrium stimulation of superfluidity in trapped Fermi gases is discussed by analogy to the work of Eliashberg [Nonequilibrium Superconductivity, edited by D. N. Langenberg and A. I. Larkin (North-Holland, New York, 1986)] on the microwave enhancement of superconductivity. Optical excitation of the fermions balanced by heat loss due to thermal contact with a boson bath and/or evaporative cooling enables stationary nonequilibrium states to exist. Such a state manifests as a shift of the quasiparticle spectrum to higher energies and this effectively raises the pairing transition temperature. As an illustration, we calculate the effective enhancement of Cooper pairing and superfluidity inmore » both the normal and superfluid phases for a mixture of {sup 87}Rb and {sup 6}Li in the limit of small departure from equilibrium. It is argued that in experiment the desirable effect is not limited to such small perturbations and the effective enhancement of the pairing temperature may be quite large.« less

  3. Dual origin of pairing in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idini, A.; Potel, G.; Barranco, F.

    The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairingmore » interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.« less

  4. A non-multimacrocyclic heteroditopic receptor that cooperatively binds and effectively extracts KAcO salt.

    PubMed

    Zakrzewski, Maciej; Kwietniewska, Natalia; Walczak, Wojciech; Piątek, Piotr

    2018-06-06

    Prepared in only three synthetic steps, a non-multimacrocyclic heteroditopic receptor binds potassium salts of halides and carboxylates with unusually high cooperativity, suggesting salt binding as associated ion-pairs. Unprecedented extraction of highly hydrophilic KAcO salt from water to organic solution is also demonstrated.

  5. A Study of the Attitudes of Married Minuteman Crewmembers and Their Wives Concerning Female Minuteman Crewmembers

    DTIC Science & Technology

    1978-12-01

    female crew. The crewmembers were about evenly split as to type of crew pairing. The author recommended using an all-female crew pairing plan when...obtained so that the respondents could be assigned to various subpopulations during the analysis. Data ob- tained provided information about: Type of...respondent is made. There are many types of correlations that can be calculated but the parti- cular one employed by SPSS is Pearson’s correlation. A

  6. Evolution of entanglement between distinguishable light states.

    PubMed

    Stevenson, R Mark; Hudson, Andrew J; Bennett, Anthony J; Young, Robert J; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J

    2008-10-24

    We investigate the evolution of quantum correlations over the lifetime of a multiphoton state. Measurements reveal time-dependent oscillations of the entanglement fidelity for photon pairs created by a single semiconductor quantum dot. The oscillations are attributed to the phase acquired in the intermediate, nondegenerate, exciton-photon state and are consistent with simulations. We conclude that emission of photon pairs by a typical quantum dot with finite polarization splitting is in fact entangled in a time-evolving state, and not classically correlated as previously regarded.

  7. A numerical study of the contrarotating vortex pair associated with a jet in a crossflow

    NASA Technical Reports Server (NTRS)

    Roth, Karlin R.; Fearn, Richard L.; Thakur, Siddharth S.

    1989-01-01

    An implicit two-factor partially flux split solver for the thin-layer Navier-Stokes equations is used to solve the aerodynamic/propulsive interaction between a subsonic jet exhausting perpendicularly through a flat plat plate into a crossflow. The algorithm is applied to flows with a range of jet to crossflow velocity ratios between 4 and 8. The computed velocity field is analyzed and comparisons are made with experimentally determined properties of the contrarotating vortex pair.

  8. Activation of different split functionalities upon re-association of RNA-DNA hybrids

    PubMed Central

    Afonin, Kirill A.; Viard, Mathias; Martins, Angelica N.; Lockett, Stephen J.; Maciag, Anna E.; Freed, Eric O.; Heldman, Eliahu; Jaeger, Luc; Blumenthal, Robert; Shapiro, Bruce A.

    2013-01-01

    Split-protein systems, an approach that relies on fragmentation of proteins with their further conditional re-association to form functional complexes, are increasingly used for various biomedical applications. This approach offers tight control of the protein functions and improved detection sensitivity. Here we show a similar technique based on a pair of RNA-DNA hybrids that can be generally used for triggering different split functionalities. Individually, each hybrid is inactive but when two cognate hybrids re-associate, different functionalities are triggered inside mammalian cells. As a proof of concept this work is mainly focused on activation of RNA interference; however the release of other functionalities (resonance energy transfer and RNA aptamer) is also shown. Furthermore, in vivo studies demonstrate a significant uptake of the hybrids by tumors together with specific gene silencing. This split-functionality approach presents a new route in the development of “smart” nucleic acids based nanoparticles and switches for various biomedical applications. PMID:23542902

  9. Measurement of the Splitting Function in p p and Pb-Pb Collisions at √{sN N }=5.02 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Haitz, D.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Markin, O.; Parygin, P.; Philippov, D.; Polikarpov, S.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-04-01

    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in p p and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and p p collisions.. The measurements are compared to various predictions from event generators and analytical calculations.

  10. Measurement of the Splitting Function in p p and Pb-Pb Collisions at s N N = 5.02 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at amore » center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions. Furthermore, the measurements are compared to various predictions from event generators and analytical calculations.« less

  11. Measurement of the Splitting Function in p p and Pb-Pb Collisions at s N N = 5.02 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-04-03

    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at amore » center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions. Furthermore, the measurements are compared to various predictions from event generators and analytical calculations.« less

  12. Measurement of the Splitting Function in pp and Pb-Pb Collisions at sqrt[s_{NN}]=5.02  TeV.

    PubMed

    Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Grossmann, J; Hrubec, J; Jeitler, M; König, A; Krammer, N; Krätschmer, I; Liko, D; Madlener, T; Mikulec, I; Pree, E; Rad, N; Rohringer, H; Schieck, J; Schöfbeck, R; Spanring, M; Spitzbart, D; Waltenberger, W; Wittmann, J; Wulz, C-E; Zarucki, M; Chekhovsky, V; Mossolov, V; Suarez Gonzalez, J; De Wolf, E A; Di Croce, D; Janssen, X; Lauwers, J; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Abu Zeid, S; Blekman, F; D'Hondt, J; De Bruyn, I; De Clercq, J; Deroover, K; Flouris, G; Lontkovskyi, D; Lowette, S; Moortgat, S; Moreels, L; Python, Q; Skovpen, K; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Beghin, D; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Dorney, B; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Starling, E; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Cornelis, T; Dobur, D; Fagot, A; Gul, M; Khvastunov, I; Poyraz, D; Roskas, C; Salva, S; Tytgat, M; Verbeke, W; Zaganidis, N; Bakhshiansohi, H; Bondu, O; Brochet, S; Bruno, G; Caputo, C; Caudron, A; David, P; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Piotrzkowski, K; Quertenmont, L; Saggio, A; Vidal Marono, M; Wertz, S; Zobec, J; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Coelho, E; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Melo De Almeida, M; Mora Herrera, C; Mundim, L; Nogima, H; Sanchez Rosas, L J; Santoro, A; Sznajder, A; Thiel, M; Tonelli Manganote, E J; Torres Da Silva De Araujo, F; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Tomei, T R Fernandez Perez; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Misheva, M; Rodozov, M; Shopova, M; Sultanov, G; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Gao, X; Yuan, L; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Jiang, C H; Leggat, D; Liao, H; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Yazgan, E; Zhang, H; Zhang, S; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; González Hernández, C F; Ruiz Alvarez, J D; Courbon, B; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Starodumov, A; Susa, T; Ather, M W; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; Mohammed, Y; Salama, E; Dewanjee, R K; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Kirschenmann, H; Pekkanen, J; Voutilainen, M; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominen, E; Tuominiemi, J; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Faure, J L; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Leloup, C; Locci, E; Machet, M; Malcles, J; Negro, G; Rander, J; Rosowsky, A; Sahin, M Ö; Titov, M; Abdulsalam, A; Amendola, C; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Charlot, C; Granier de Cassagnac, R; Jo, M; Lisniak, S; Lobanov, A; Martin Blanco, J; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Salerno, R; Sauvan, J B; Sirois, Y; Stahl Leiton, A G; Strebler, T; Yilmaz, Y; Zabi, A; Zghiche, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Jansová, M; Le Bihan, A-C; Tonon, N; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Finco, L; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sordini, V; Vander Donckt, M; Viret, S; Khvedelidze, A; Tsamalaidze, Z; Autermann, C; Feld, L; Kiesel, M K; Klein, K; Lipinski, M; Preuten, M; Schomakers, C; Schulz, J; Zhukov, V; Albert, A; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Teyssier, D; Thüer, S; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bermúdez Martínez, A; Bin Anuar, A A; Borras, K; Botta, V; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Grohsjean, A; Gunnellini, P; Guthoff, M; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Lenz, T; Leonard, J; Lipka, K; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Raspereza, A; Roland, B; Savitskyi, M; Saxena, P; Shevchenko, R; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wen, Y; Wichmann, K; Wissing, C; Zenaiev, O; Aggleton, R; Bein, S; Blobel, V; Centis Vignali, M; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hinzmann, A; Hoffmann, M; Karavdina, A; Klanner, R; Kogler, R; Kovalchuk, N; Kurz, S; Lapsien, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Sonneveld, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Freund, B; Friese, R; Giffels, M; Haitz, D; Harrendorf, M A; Hartmann, F; Heindl, S M; Husemann, U; Kassel, F; Kudella, S; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Karathanasis, G; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Kousouris, K; Evangelou, I; Foudas, C; Kokkas, P; Mallios, S; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Triantis, F A; Csanad, M; Filipovic, N; Pasztor, G; Surányi, O; Veres, G I; Bencze, G; Hajdu, C; Horvath, D; Hunyadi, Á; Sikler, F; Veszpremi, V; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Komaragiri, J R; Bahinipati, S; Bhowmik, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Dhingra, N; Kalsi, A K; Kaur, A; Kaur, M; Kaur, S; Kumar, R; Kumari, P; Mehta, A; Singh, J B; Walia, G; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A; Chauhan, S; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, R; Bhardwaj, R; Bhattacharya, R; Bhattacharya, S; Bhawandeep, U; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Mahakud, B; Mitra, S; Mohanty, G B; Sur, N; Sutar, B; Banerjee, S; Bhattacharya, S; Chatterjee, S; Das, P; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Errico, F; Fiore, L; Iaselli, G; Lezki, S; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Borgonovi, L; Braibant-Giacomelli, S; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Chatterjee, K; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Russo, L; Sguazzoni, G; Strom, D; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Robutti, E; Tosi, S; Benaglia, A; Brianza, L; Brivio, F; Ciriolo, V; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pauwels, K; Pedrini, D; Pigazzini, S; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Fienga, F; Iorio, A O M; Khan, W A; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gozzelino, A; Lacaprara, S; Lujan, P; Margoni, M; Meneguzzo, A T; Montecassiano, F; Pozzobon, N; Ronchese, P; Rossin, R; Simonetto, F; Torassa, E; Zanetti, M; Zotto, P; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Ressegotti, M; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Biasini, M; Bilei, G M; Cecchi, C; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Manoni, E; Mantovani, G; Mariani, V; Menichelli, M; Rossi, A; Santocchia, A; Spiga, D; Androsov, K; Azzurri, P; Bagliesi, G; Boccali, T; Borrello, L; Castaldi, R; Ciocci, M A; Dell'Orso, R; Fedi, G; Giannini, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Manca, E; Mandorli, G; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Daci, N; Del Re, D; Di Marco, E; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, J; Lee, S; Lee, S W; Moon, C S; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Moon, D H; Oh, G; Brochero Cifuentes, J A; Goh, J; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Kim, J S; Lee, H; Lee, K; Nam, K; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Choi, Y; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Reyes-Almanza, R; Ramirez-Sanchez, G; Duran-Osuna, M C; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Rabadan-Trejo, R I; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Pyskir, A; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Galinhas, B; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Seixas, J; Strong, G; Toldaiev, O; Vadruccio, D; Varela, J; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Stepennov, A; Toms, M; Vlasov, E; Zhokin, A; Aushev, T; Bylinkin, A; Chadeeva, M; Markin, O; Parygin, P; Philippov, D; Polikarpov, S; Rusinov, V; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Demiyanov, A; Ershov, A; Gribushin, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Mandrik, P; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Cerrada, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Moran, D; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Álvarez Fernández, A; de Trocóniz, J F; Missiroli, M; Cuevas, J; Erice, C; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Vischia, P; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chazin Quero, B; Curras, E; Duarte Campderros, J; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Martinez Ruiz Del Arbol, P; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Akgun, B; Auffray, E; Baillon, P; Ball, A H; Barney, D; Bianco, M; Bloch, P; Bocci, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; Chapon, E; Chen, Y; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Deelen, N; Dobson, M; du Pree, T; Dünser, M; Dupont, N; Elliott-Peisert, A; Everaerts, P; Fallavollita, F; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gilbert, A; Gill, K; Glege, F; Gulhan, D; Harris, P; Hegeman, J; Innocente, V; Jafari, A; Janot, P; Karacheban, O; Kieseler, J; Knünz, V; Kornmayer, A; Kortelainen, M J; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Mulders, M; Neugebauer, H; Ngadiuba, J; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Rabady, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Selvaggi, M; Sharma, A; Silva, P; Sphicas, P; Stakia, A; Steggemann, J; Stoye, M; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Verweij, M; Zeuner, W D; Bertl, W; Caminada, L; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Wiederkehr, S A; Backhaus, M; Bäni, L; Berger, P; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Dorfer, C; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Klijnsma, T; Lustermann, W; Mangano, B; Marionneau, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Reichmann, M; Sanz Becerra, D A; Schönenberger, M; Shchutska, L; Tavolaro, V R; Theofilatos, K; Vesterbacka Olsson, M L; Wallny, R; Zhu, D H; Aarrestad, T K; Amsler, C; Canelli, M F; De Cosa, A; Del Burgo, R; Donato, S; Galloni, C; Hreus, T; Kilminster, B; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Schweiger, K; Seitz, C; Takahashi, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Kuo, C M; Lin, W; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chao, Y; Chen, K F; Chen, P H; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Paganis, E; Psallidas, A; Steen, A; Tsai, J F; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Boran, F; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Karapinar, G; Ocalan, K; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Tekten, S; Yetkin, E A; Agaras, M N; Atay, S; Cakir, A; Cankocak, K; Grynyov, B; Levchuk, L; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Davignon, O; Flacher, H; Goldstein, J; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Newbold, D M; Paramesvaran, S; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Auzinger, G; Bainbridge, R; Borg, J; Breeze, S; Buchmuller, O; Bundock, A; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Elwood, A; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Matsushita, T; Nash, J; Nikitenko, A; Palladino, V; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Scott, E; Seez, C; Shtipliyski, A; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wardle, N; Winterbottom, D; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Zahid, S; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Smith, C; Bartek, R; Dominguez, A; Buccilli, A; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Cutts, D; Garabedian, A; Hadley, M; Hakala, J; Heintz, U; Hogan, J M; Kwok, K H M; Laird, E; Landsberg, G; Lee, J; Mao, Z; Narain, M; Pazzini, J; Piperov, S; Sagir, S; Syarif, R; Yu, D; Band, R; Brainerd, C; Burns, D; Calderon De La Barca Sanchez, M; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Shi, M; Smith, J; Stolp, D; Tos, K; Tripathi, M; Wang, Z; Bachtis, M; Bravo, C; Cousins, R; Dasgupta, A; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Regnard, S; Saltzberg, D; Schnaible, C; Valuev, V; Bouvier, E; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Si, W; Wang, L; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cittolin, S; Derdzinski, M; Gerosa, R; Gilbert, D; Hashemi, B; Holzner, A; Klein, D; Kole, G; Krutelyov, V; Letts, J; Macneill, I; Masciovecchio, M; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Bendavid, J; Bornheim, A; Lawhorn, J M; Newman, H B; Nguyen, T; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhang, Z; Zhu, R Y; Andrews, M B; Ferguson, T; Mudholkar, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Leontsinis, S; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Patterson, J R; Quach, D; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Abdullin, S; Albrow, M; Alyari, M; Apollinari, G; Apresyan, A; Apyan, A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Canepa, A; Cerati, G B; Cheung, H W K; Chlebana, F; Cremonesi, M; Duarte, J; Elvira, V D; Freeman, J; Gecse, Z; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Lincoln, D; Lipton, R; Liu, M; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Schneider, B; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strait, J; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Field, R D; Furic, I K; Gleyzer, S V; Joshi, B M; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shi, K; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Joshi, Y R; Linn, S; Markowitz, P; Rodriguez, J L; Ackert, A; Adams, T; Askew, A; Hagopian, S; Hagopian, V; Johnson, K F; Kolberg, T; Martinez, G; Perry, T; Prosper, H; Saha, A; Santra, A; Sharma, V; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Cavanaugh, R; Chen, X; Evdokimov, O; Gerber, C E; Hangal, D A; Hofman, D J; Jung, K; Kamin, J; Sandoval Gonzalez, I D; Tonjes, M B; Trauger, H; Varelas, N; Wang, H; Wu, Z; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Roskes, J; Sarica, U; Swartz, M; Xiao, M; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Castle, J; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Royon, C; Sanders, S; Schmitz, E; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Feng, Y; Ferraioli, C; Hadley, N J; Jabeen, S; Jeng, G Y; Kellogg, R G; Kunkle, J; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonwar, S C; Abercrombie, D; Allen, B; Azzolini, V; Barbieri, R; Baty, A; Bi, R; Brandt, S; Busza, W; Cali, I A; D'Alfonso, M; Demiragli, Z; Gomez Ceballos, G; Goncharov, M; Hsu, D; Hu, M; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Tatar, K; Velicanu, D; Wang, J; Wang, T W; Wyslouch, B; Benvenuti, A C; Chatterjee, R M; Evans, A; Hansen, P; Hiltbrand, J; Kalafut, S; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Turkewitz, J; Wadud, M A; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Claes, D R; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Dolen, J; Godshalk, A; Harrington, C; Iashvili, I; Nguyen, D; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Loukas, N; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Higginbotham, S; Lange, D; Luo, J; Marlow, D; Mei, K; Ojalvo, I; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Malik, S; Norberg, S; Barker, A; Barnes, V E; Das, S; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Khatiwada, A; Miller, D H; Neumeister, N; Peng, C C; Qiu, H; Schulte, J F; Sun, J; Wang, F; Xie, W; Cheng, T; Parashar, N; Stupak, J; Adair, A; Chen, Z; Ecklund, K M; Freed, S; Geurts, F J M; Guilbaud, M; Kilpatrick, M; Li, W; Michlin, B; Northup, M; Padley, B P; Roberts, J; Rorie, J; Shi, W; Tu, Z; Zabel, J; Zhang, A; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Ciesielski, R; Goulianos, K; Mesropian, C; Agapitos, A; Chou, J P; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Montalvo, R; Nash, K; Osherson, M; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Damgov, J; De Guio, F; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Mengke, T; Muthumuni, S; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Padeken, K; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Hirosky, R; Joyce, M; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Wang, Y; Wolfe, E; Xia, F; Harr, R; Karchin, P E; Poudyal, N; Sturdy, J; Thapa, P; Zaleski, S; Brodski, M; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Hussain, U; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2018-04-06

    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.

  13. Seismic anisotropy and subduction-induced mantle fabrics beneath the Arabian and Nubian Plates adjacent to the Red Sea

    NASA Astrophysics Data System (ADS)

    Elsheikh, Ahmed A.; Gao, Stephen S.; Liu, Kelly H.; Mohamed, Abdelnasser A.; Yu, Youqiang; Fat-Helbary, Raafat E.

    2014-04-01

    For most continental areas, the mechanisms leading to mantle fabrics responsible for the observed anisotropy remain ambiguous, partially due to the lack of sufficient spatial coverage of reliable seismological observations. Here we report the first joint analysis of shear-wave splitting measurements obtained at stations on the Arabian and Nubian Plates adjacent to the Red Sea. More than 1100 pairs of high-quality splitting parameters show dominantly N-S fast orientations at all 47 stations and larger-than-normal splitting times beneath the Afro-Arabian Dome (AAD). The uniformly N-S fast orientations and large splitting times up to 1.5 s are inconsistent with significant contributions from the lithosphere, which is about 50-80 km thick beneath the AAD and even thinner beneath the Red Sea. The results can best be explained by simple shear between the lithosphere and the asthenosphere associated with northward subduction of the African/Arabian Plates over the past 150 Ma.

  14. Measurement of the Splitting Function in $pp$ and Pb-Pb Collisions at $$\\sqrt{s_{_{\\mathrm{NN}}}} =$$ 5.02 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    2018-04-03

    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at amore » center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.« less

  15. Surgical management of insertional calcific achilles tendinosis with a central tendon splitting approach.

    PubMed

    Johnson, Keith W; Zalavras, Charalampos; Thordarson, David B

    2006-04-01

    Insertional calcific Achilles tendinosis is a painful, frequently disabling condition. Numerous operative approaches for this problem have been described. This study evaluated the outcome of a central tendon splitting approach. Twenty-two patients were evaluated after a central tendon splitting approach for persistent insertional calcific Achilles tendinosis. Followup averaged 34 (11 to 64) months. Suture anchors were routinely used to augment the tendon insertion after debridement. An American Orthopaedic Foot and Ankle Society (AOFAS) hindfoot score, shoewear comfort, and return to work were evaluated. A paired t-test was used to evaluate the results. Pain significantly improved from 7 points preoperatively to 33 points postoperatively (p < 0.001). Function improved significantly from 36 points to 46 points (p < 0.001). The ankle-hindfoot score improved from 53 points to 89 points (p < 0.001). Age older or younger than 50 years did not affect outcome. A central tendon splitting approach yielded good relief of pain with improved function, shoewear, and ability to work without painful postoperative scars.

  16. Living with strangers: direct benefits favour non-kin cooperation in a communally nesting bird.

    PubMed

    Riehl, Christina

    2011-06-07

    The greater ani (Crotophaga major), a Neotropical cuckoo, exhibits an unusual breeding system in which several socially monogamous pairs lay eggs in a single nest and contribute care to the communal clutch. Cooperative nesting is costly-females compete for reproduction by ejecting each other's eggs-but the potential direct or indirect fitness benefits that might accrue to group members have not been identified. In this study, I used molecular genotyping to quantify patterns of genetic relatedness and individual reproductive success within social groups in a single colour-banded population. Microsatellite analysis of 122 individuals in 49 groups revealed that group members are not genetic relatives. Group size was strongly correlated with individual reproductive success: solitary pairs were extremely rare and never successful, and nests attended by two pairs were significantly more likely to be depredated than were nests attended by three pairs. Egg loss, a consequence of reproductive competition, was greater in large groups and disproportionately affected females that initiated laying. However, early-laying females compensated for egg losses by laying larger clutches, and female group members switched positions in the laying order across nesting attempts. The greater ani, therefore, appears to be one of the few species in which cooperative breeding among unrelated individuals is favoured by direct, shared benefits that outweigh the substantial costs of reproductive competition.

  17. Distributed polar-coded OFDM based on Plotkin's construction for half duplex wireless communication

    NASA Astrophysics Data System (ADS)

    Umar, Rahim; Yang, Fengfan; Mughal, Shoaib; Xu, HongJun

    2018-07-01

    A Plotkin-based polar-coded orthogonal frequency division multiplexing (P-PC-OFDM) scheme is proposed and its bit error rate (BER) performance over additive white gaussian noise (AWGN), frequency selective Rayleigh, Rician and Nakagami-m fading channels has been evaluated. The considered Plotkin's construction possesses a parallel split in its structure, which motivated us to extend the proposed P-PC-OFDM scheme in a coded cooperative scenario. As the relay's effective collaboration has always been pivotal in the design of cooperative communication therefore, an efficient selection criterion for choosing the information bits has been inculcated at the relay node. To assess the BER performance of the proposed cooperative scheme, we have also upgraded conventional polar-coded cooperative scheme in the context of OFDM as an appropriate bench marker. The Monte Carlo simulated results revealed that the proposed Plotkin-based polar-coded cooperative OFDM scheme convincingly outperforms the conventional polar-coded cooperative OFDM scheme by 0.5 0.6 dBs over AWGN channel. This prominent gain in BER performance is made possible due to the bit-selection criteria and the joint successive cancellation decoding adopted at the relay and the destination nodes, respectively. Furthermore, the proposed coded cooperative schemes outperform their corresponding non-cooperative schemes by a gain of 1 dB under an identical condition.

  18. Observation of direct hadronic pairs in nucleus-nucleus collisions in JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.

    1985-01-01

    In a number of high energy ( or = 1 TeV/amu) nucleus-nucleus collisions observed in Japanese-American Cooperative Emulsion Experiment (JACEE) emulsion chambers, nonrandom spatial association of produced charged particles, mostly hadronic pairs, are observed. Similar narrow pairs are observed in about 100 events at much low energy (20 to 60 GeV/amu). Analysis shows that 30 to 50% of Pair abundances are understood by the Hambury-Brown-Twiss effect, and the remainder seems to require other explanations.

  19. Torque Splitting by a Concentric Face Gear Transmission

    NASA Technical Reports Server (NTRS)

    Filler, Robert R.; Heath, Gregory F.; Slaughter, Stephen C.; Lewicki, David G.

    2002-01-01

    Tests of a 167 Kilowatt (224 Horsepower) split torque face gearbox were performed by the Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP). This paper provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA. Design, manufacture and testing of the scaled-power TRP proof-of-concept (POC) split torque gearbox followed preliminary evaluations of the concept performed early in the program. The split torque tests were run using 200 N-m (1767 in-lbs) torque input to each side of the transmission. During tests, two input pinions were slow rolled while in mesh with the two face gears. Two idler gears were also used in the configuration to recombine torque near the output. Resistance was applied at the output face gear to create the required loading conditions in the gear teeth. A system of weights, pulleys and cables were used in the test rig to provide both the input and output loading. Strain gages applied in the tooth root fillets provided strain indication used to determine torque splitting conditions at the input pinions. The final two pinion-two idler tests indicated 52% to 48% average torque split capabilities for the two pinions. During the same tests, a 57% to 43% average distribution of the torque being recombined to the upper face gear from the lower face gear was measured between the two idlers. The POC split torque tests demonstrated that face gears can be applied effectively in split torque rotorcraft transmissions, yielding good potential for significant weight, cost and reliability improvements over existing equipment using spiral bevel gearing.

  20. Emission spectroscopy of divalent-cation-doped GaN photocatalysts

    NASA Astrophysics Data System (ADS)

    Hirai, Takeshi; Harada, Takashi; Ikeda, Shigeru; Matsumura, Michio; Saito, Nobuo; Nishiyama, Hiroshi; Inoue, Yasunobu; Harada, Yoshiyuki; Ohno, Nobuhito; Maeda, Kazuhiko; Kubota, Jun; Domen, Kazunari

    2011-12-01

    Photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra of GaN particles doped with divalent cations (Mg2+, Zn2+, and Be2+), which promote photocatalytic overall water splitting, were investigated. The PL and TRPL spectra were mainly attributed to donor-acceptor pair recombination between the divalent cation dopants and divalent anion impurities (O2- and S2-) unintentionally introduced from raw materials, which form acceptor and donor levels, respectively. These levels are likely to provide holes and electrons required for photocatalytic reactions, contributing to the photocatalytic activity of the GaN-based photocatalysts for overall water splitting.

  1. Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting.

    PubMed

    Schumacher, Stefan; Förstner, Jens; Zrenner, Artur; Florian, Matthias; Gies, Christopher; Gartner, Paul; Jahnke, Frank

    2012-02-27

    We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.

  2. Decay of superconducting correlations for gauged electrons in dimensions D ≤ 4

    NASA Astrophysics Data System (ADS)

    Tada, Yasuhiro; Koma, Tohru

    2018-03-01

    We study lattice superconductors coupled to gauge fields, such as an attractive Hubbard model in electromagnetic fields, with a standard gauge fixing. We prove upper bounds for a two-point Cooper pair correlation at finite temperatures in spatial dimensions D ≤ 4. The upper bounds decay exponentially in three dimensions and by power law in four dimensions. These imply the absence of the superconducting long-range order for the Cooper pair amplitude as a consequence of fluctuations of the gauge fields. Since our results hold for the gauge fixing Hamiltonian, they cannot be obtained as a corollary of Elitzur's theorem.

  3. Cooper pair induced frustration and nematicity of two-dimensional magnetic adatom lattices

    NASA Astrophysics Data System (ADS)

    Schecter, Michael; Syljuâsen, Olav F.; Paaske, Jens

    2018-05-01

    We propose utilizing the Cooper pair to induce magnetic frustration in systems of two-dimensional (2D) magnetic adatom lattices on s -wave superconducting surfaces. The competition between singlet electron correlations and the RKKY coupling is shown to lead to a variety of hidden-order states that break the point-group symmetry of the 2D adatom lattice at finite temperature. The phase diagram is constructed using a newly developed effective bond theory [M. Schecter et al., Phys. Rev. Lett. 119, 157202 (2017), 10.1103/PhysRevLett.119.157202], and exhibits broad regions of long-range vestigial nematic order.

  4. Salmon fishing by bears and the dawn of cooperative predation.

    PubMed

    Stringham, Stephen F

    2012-11-01

    Although bears are an epitome of solitary predation, black (Ursus americanus) and brown bears (U. arctos) occasionally act in pairs to capture salmon (Onchorynchous spp.). I sought to identify conditions that promote pairing and how this relates to optimal foraging. This study on Alaskan black bears assessed whether each mode of fishing (solo vs. paired) occurs mainly where it is most efficient at harvesting salmon--that is, whether modal group size (1 vs. 2) is also optimal size. Not in this case. Pairing increased captures per attempt (benefit/cost ratio = profitability) by up to 47% and captures per minute by up to 5.2-fold. Yet, the ratio of paired versus solo fishing was significantly lower than either profitability or chance explains. Modal group size was 1, optimal size was 2. This discrepancy did not result from intervention by other current benefits and costs, but from unnecessary defensiveness toward any rapidly approaching conspecific, even though it was chasing salmon, not threatening. For bears to regularly hunt cooperatively, they would have to more readily habituate to agonistic-like predatory actions, communicate intentions from > 10 m apart, and assess situational variations in benefit/cost ratios for solo versus paired hunting. It would be revealing to discover how social carnivores overcame these challenges.

  5. Josephson Parametric Amplifer Based on a Cavity-Embedded Cooper Pair Transistor

    NASA Astrophysics Data System (ADS)

    Li, Juliang; Rimberg, A. J.

    In this experiment a cavity-embedded Cooper-pair transistor (cCPT) is used as a Josephson parametric amplifier. The cCPT consists of a Cooper pair transistor placed at the voltage antinode of a 5.7 GHz shorted quarter-wave resonator so that the CPT provides a galvanic connection between the cavity's central conductor and ground plane, which forms a SQUID loop. Both the flux threading the loop as well as the gate charge can be modulated, and each can provide the parametric pumping. The reflected signal from the cCPT is further amplified by both SLUG and HEMT amplifiers for characterizing the parametric amplification. A first application of the parametric amplification is to improve the charge sensitivity of a single electron charge detector. This can be done either by pumping on a side band or by shifting the charge state of the cCPT near a bifurcation point. Stimulated emission has been also observed when the cCPT is pumped at twice the resonant frequency in the absence of an input signal. This could allow investigation of the dynamic Casimir effect as well as generation of non-classical photon states. Supported by Grants ARO W911NF-13-10377 and NSF DMR 1507400.

  6. Matter distribution and spin-orbit force in spherical nuclei

    NASA Astrophysics Data System (ADS)

    Co', G.; Anguiano, M.; De Donno, V.; Lallena, A. M.

    2018-03-01

    We investigate the possibility that some nuclei show density distributions with a depletion in the center, a semibubble structure, by using a Hartree-Fock plus Bardeen-Cooper-Schrieffer approach. We separately study the proton, neutron, and matter distributions in 37 spherical nuclei mainly in the s -d shell region. We found a relation between the semibubble structure and the energy splitting of spin-orbit partner single particle levels. The presence of semibubble structure reduces this splitting, and we study its consequences on the excitation spectrum of the nuclei under investigation by using a quasiparticle random-phase-approximation approach. The excitation energies of the low-lying 4+ states can be related to the presence of semibubble structure in nuclei.

  7. Learning with repeated-game strategies

    PubMed Central

    Ioannou, Christos A.; Romero, Julian

    2014-01-01

    We use the self-tuning Experience Weighted Attraction model with repeated-game strategies as a computer testbed to examine the relative frequency, speed of convergence and progression of a set of repeated-game strategies in four symmetric 2 × 2 games: Prisoner's Dilemma, Battle of the Sexes, Stag-Hunt, and Chicken. In the Prisoner's Dilemma game, we find that the strategy with the most occurrences is the “Grim-Trigger.” In the Battle of the Sexes game, a cooperative pair that alternates between the two pure-strategy Nash equilibria emerges as the one with the most occurrences. In the Stag-Hunt and Chicken games, the “Win-Stay, Lose-Shift” and “Grim-Trigger” strategies are the ones with the most occurrences. Overall, the pairs that converged quickly ended up at the cooperative outcomes, whereas the ones that were extremely slow to reach convergence ended up at non-cooperative outcomes. PMID:25126053

  8. [Accuracy of judgment about others' cooperative behavior: effects of attractiveness and facial expressiveness].

    PubMed

    Shinada, Mizuho; Yamagishi, Toshio; Tanida, Shigehito; Takahashi, Chisato; Inukai, Keigo; Koizumi, Michiko; Yokota, Kunihiro; Mifune, Nobuhiro; Takagishi, Haruto; Horita, Yutaka; Hashimoto, Hirofumi

    2010-06-01

    Cooperation in interdependent relationships is based on reciprocity in repeated interactions. However, cooperation in one-shot relationships cannot be explained by reciprocity. Frank, Gilovich, & Regan (1993) argued that cooperative behavior in one-shot interactions can be adaptive if cooperators displayed particular signals and people were able to distinguish cooperators from non-cooperators by decoding these signals. We argue that attractiveness and facial expressiveness are signals of cooperators. We conducted an experiment to examine if these signals influence the detection accuracy of cooperative behavior. Our participants (blind to the target's behavior in a Trust Game) viewed 30-seconds video-clips. Each video-clip was comprised of a cooperator and a non-cooperator in a Trust Game. The participants judged which one of the pair gave more money to the other participant. We found that participants were able to detect cooperators with a higher accuracy than chance. Furthermore, participants rated male non-cooperators as more attractive than male cooperators, and rated cooperators more expressive than non-cooperators. Further analyses showed that attractiveness inhibited detection accuracy while facial expressiveness fostered it.

  9. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    PubMed

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  10. A Novel Optimal Joint Resource Allocation Method in Cooperative Multicarrier Networks: Theory and Practice

    PubMed Central

    Gao, Yuan; Zhou, Weigui; Ao, Hong; Chu, Jian; Zhou, Quan; Zhou, Bo; Wang, Kang; Li, Yi; Xue, Peng

    2016-01-01

    With the increasing demands for better transmission speed and robust quality of service (QoS), the capacity constrained backhaul gradually becomes a bottleneck in cooperative wireless networks, e.g., in the Internet of Things (IoT) scenario in joint processing mode of LTE-Advanced Pro. This paper focuses on resource allocation within capacity constrained backhaul in uplink cooperative wireless networks, where two base stations (BSs) equipped with single antennae serve multiple single-antennae users via multi-carrier transmission mode. In this work, we propose a novel cooperative transmission scheme based on compress-and-forward with user pairing to solve the joint mixed integer programming problem. To maximize the system capacity under the limited backhaul, we formulate the joint optimization problem of user sorting, subcarrier mapping and backhaul resource sharing among different pairs (subcarriers for users). A novel robust and efficient centralized algorithm based on alternating optimization strategy and perfect mapping is proposed. Simulations show that our novel method can improve the system capacity significantly under the constraint of the backhaul resource compared with the blind alternatives. PMID:27077865

  11. The telltale face: possible mechanisms behind defector and cooperator recognition revealed by emotional facial expression metrics.

    PubMed

    Kovács-Bálint, Zsófia; Bereczkei, Tamás; Hernádi, István

    2013-11-01

    In this study, we investigated the role of facial cues in cooperator and defector recognition. First, a face image database was constructed from pairs of full face portraits of target subjects taken at the moment of decision-making in a prisoner's dilemma game (PDG) and in a preceding neutral task. Image pairs with no deficiencies (n = 67) were standardized for orientation and luminance. Then, confidence in defector and cooperator recognition was tested with image rating in a different group of lay judges (n = 62). Results indicate that (1) defectors were better recognized (58% vs. 47%), (2) they looked different from cooperators (p < .01), (3) males but not females evaluated the images with a relative bias towards the cooperator category (p < .01), and (4) females were more confident in detecting defectors (p < .05). According to facial microexpression analysis, defection was strongly linked with depressed lower lips and less opened eyes. Significant correlation was found between the intensity of micromimics and the rating of images in the cooperator-defector dimension. In summary, facial expressions can be considered as reliable indicators of momentary social dispositions in the PDG. Females may exhibit an evolutionary-based overestimation bias to detecting social visual cues of the defector face. © 2012 The British Psychological Society.

  12. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels †

    PubMed Central

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-01-01

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source’s radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks. PMID:26927119

  13. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels.

    PubMed

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-02-26

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks.

  14. On Stochastic Dependence

    ERIC Educational Resources Information Center

    Meyer, Joerg M.

    2018-01-01

    The contrary of stochastic independence splits up into two cases: pairs of events being favourable or being unfavourable. Examples show that both notions have quite unexpected properties, some of them being opposite to intuition. For example, transitivity does not hold. Stochastic dependence is also useful to explain cases of Simpson's paradox.

  15. Doing the Meiosis Shuffle.

    ERIC Educational Resources Information Center

    Krauskopf, Sara

    1999-01-01

    Presents a game called the Meiosis Shuffle that helps students simulate the process of meiosis in which homologous cards representing chromosomes pair up, line up, and split apart. Students respond well to the simulation and are better able to conceptualize what chromosomes do and how independent assortment causes genetic variation. (CCM)

  16. Conformational Characteristics of Poly(tetrafluoroethylene) (PTFE) Based Upon Ab Initio Electronic Structure Calculations on Model Molecules

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.

  17. Localization enhanced and degraded topological order in interacting p -wave wires

    NASA Astrophysics Data System (ADS)

    Kells, G.; Moran, N.; Meidan, D.

    2018-02-01

    We numerically study the effect of disorder on the stability of the many-body zero mode in a Kitaev chain with local interactions. Our numerical procedure allows us to resolve the position space and multiparticle structure of the zero modes, as well as providing estimates for the mean energy splitting between pairs of states of opposite fermion parity, over the full many-body spectrum. We find that the parameter space of a clean system can be divided into regions where interaction induced decay transitions are suppressed (region I) and where they are not (region II). In region I we observe that disorder has an adverse effect on the zero mode, which extends further into the bulk and is accompanied by an increased energy splitting between pairs of states of opposite parity. Conversely region II sees a more intricate effect of disorder, showing an enhancement of localization at the system's end accompanied by a reduction in the mean pairwise energy splitting. We discuss our results in the context of the many-body localization (MBL). We show that while the mechanism that drives the MBL transition also contributes to the fock-space localization of the many-body zero modes, measures that characterize the degree of MBL do not necessarily correlate with an enhancement of the zero mode or an improved stability of the topological region.

  18. Site-Specific Photoconjugation of Beta-Lactamase Fragments to Monoclonal Antibodies Enables Sensitive Analyte Detection via Split-Enzyme Complementation.

    PubMed

    Yu, Feifan; Alesand, Veronica; Nygren, Per-Åke

    2018-02-27

    Protein fragment complementation assays (PCA) rely on a proximity-driven reconstitution of a split reporter protein activity, typically via interaction between bait and prey units separately fused to the reporter protein halves. The PCA principle can also be formatted for use in immunossays for analyte detection, e.g., via the use of small immunoglobulin binding proteins (IgBp) as fusion partners to split-reporter protein fragments for conversion of pairs of antibodies into split-protein half-probes. However, the non-covalent binding between IgBp and antibodies is not ideal for development of robust assays. Here, the authors describe how split-enzyme reporter halves can be both site-specifically and covalently photoconjugated at antibody Fc-parts for use in homogeneous dual-antibody in vitro immunoassays based on analyte-dependent split-enzyme fragment complementation. The half-probes consist of parts of a beta-lactamase split-protein reporter fused to an immunoglobulin Fc binding domain equipped with a unique cysteine residue at which a photoactivable maleimide benzophenone group (MBP) is attached. Using such antibody conjugates the authors obtain an analyte-driven complementation of the reporter enzyme fragments monitored via conversion of a chromogenic substrate. Results from detection of human interferon-gamma and the extracellular domain of HER2 is shown. The described principles for site-specific conjugation of proteins to antibodies should be broadly applicable. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cooperative Behavior in the Ultimatum Game and Prisoner's Dilemma Depends on Players' Contributions.

    PubMed

    Bland, Amy R; Roiser, Jonathan P; Mehta, Mitul A; Schei, Thea; Sahakian, Barbara J; Robbins, Trevor W; Elliott, Rebecca

    2017-01-01

    Economic games such as the Ultimatum Game (UG) and Prisoner's Dilemma (PD) are widely used paradigms for studying fairness and cooperation. Monetary versions of these games involve two players splitting an arbitrary sum of money. In real life, however, people's propensity to engage in cooperative behavior depends on their effort and contribution; factors that are well known to affect perceptions of fairness. We therefore sought to explore the impact of relative monetary contributions by players in the UG and PD. Adapted computerized UG and PD games, in which relative contributions from each player were manipulated, were administered to 200 participants aged 18-50 years old (50% female). We found that players' contribution had large effects on cooperative behavior. Specifically, cooperation was greater amongst participants when their opponent had contributed more to joint earnings. This was manifested as higher acceptance rates and higher offers in the UG; and fewer defects in the PD compared to when the participant contributed more. Interestingly, equal contributions elicited the greatest sensitivity to fairness in the UG, and least frequent defection in the PD. Acceptance rates correlated positively with anxiety and sex differences were found in defection behavior. This study highlights the feasibility of computerized games to assess cooperative behavior and the importance of considering cooperation within the context of effortful contribution.

  20. Cooperation under predation risk: experiments on costs and benefits

    PubMed Central

    Milinski, M.; Lüthi, J. H.; Eggler, R.; Parker, G. A.

    1997-01-01

    Two fish that cooperatively inspect a predator may have negotiated the share of the risk that each takes. A test of both the costs of predator inspection dependent on the distance from which the predator is approached and the potential benefits of cooperation was carried out strictly experimentally. We made either singletons or pairs of dead sticklebacks, Gasterosteus aculeatus, approach hungry pike, Esox lucius, by remote control according to an algorithm that mimicked natural inspection. The predation risk of both single inspectors and parallel inspecting pairs increased with closer inspection distances. A member of an inspecting pair had only about half the risk of that of a single inspector. In pairs, a companion diluted the lead fish's risk of being caught, depending on its distance behind the leader. The absolute risk difference between leader and follower was greatest for close inspection distances and decreased further away from the predator. The leader's relative risk increased with its distance ahead of the laggard. However, for a given distance between leader and laggard, the relative risks of the two fish remained similar with distance from the predator. The cost side of the inequalities that define a 'Prisoner's Dilemma' has thus been measured for this system. In a second experiment the 'attack deterrence hypothesis' of predator inspection (i.e. inspection decreases attack probability) was tested. The pike was offered a choice between two sticklebacks, one of which had carried out a predator inspection visit. There was no indication of attack deterrence through predator inspection.

  1. Cooperation under Predation Risk: Experiments on Costs and Benefits

    NASA Astrophysics Data System (ADS)

    Milinski, Manfred; Luthi, Jean H.; Eggler, Rolf; Parker, Geoffrey A.

    1997-06-01

    Two fish that cooperatively inspect a predator may have negotiated the share of the risk that each takes. A test of both the costs of predator inspection dependent on the distance from which the predator is approached and the potential benefits of cooperation was carried out strictly experimentally. We made either singletons or pairs of dead sticklebacks, Gasterosteus aculeatus, approach hungry pike, Esox lucius, by remote control according to an algorithm that mimicked natural inspection. The predation risk of both single inspectors and parallel inspecting pairs increased with closer inspection distances. A member of an inspecting pair had only about half the risk of that of a single inspector. In pairs, a companion diluted the lead fish's risk of being caught, depending on its distance behind the leader. The absolute risk difference between leader and follower was greatest for close inspection distances and decreased further away from the predator. The leader's relative risk increased with its distance ahead of the laggard. However, for a given distance between leader and laggard, the relative risks to the two fish remained similar with distance from the predator. The cost side of the inequalities that define a 'Prisoner's Dilemma' has thus been measured for this system. In a second experiment the 'attack deterrence hypothesis' of predator inspection (i.e. inspection decreases attack probability) was tested. The pike was offered a choice between two sticklebacks, one of which had carried out a predator inspection visit. There was no indication of attack deterrence through predator inspection.

  2. Cooperative Interactions in Peer Tutoring: Patterns and Sequences in Paired Writing

    ERIC Educational Resources Information Center

    Duran, David

    2010-01-01

    The research analyzes the interaction of 24 students (12 pairs) of secondary students when using peer tutoring techniques to learn Catalan. Students worked together in a program to produce an authentic writing experience. Significant increases were observed in pre- and posttest Catalan attainment scores of students. An analysis of the…

  3. Pair Programming and LSs in Computing Education: Its Impact on Students' Performances

    ERIC Educational Resources Information Center

    Hui, Tie Hui; Umar, Irfan Naufal

    2011-01-01

    Learning to programme requires complex cognitive skills that computing students find it arduous in comprehension. PP (pair programming) is an intensive style of programme cooperation where two people working together in resolving programming scenarios. It begins to draw the interests of educators as a teaching approach to facilitate learning and…

  4. Star formation history: Modeling of visual binaries

    NASA Astrophysics Data System (ADS)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  5. Comparison of CNVs in Buffalo with other species

    USDA-ARS?s Scientific Manuscript database

    Using a read-depth (RD) and a hybrid read-pair, split-read (RAPTR-SV) CNV detection method, we identified over 1425 unique CNVs in 14 Water Buffalo individual compared to the cattle genome sequence. Total variable sequence of the CNV regions (CNVR) from the RD method approached 59 megabases (~ 2% of...

  6. Comparative ruminant genomics highlights segmental duplication and mobile element insertion diversity

    USDA-ARS?s Scientific Manuscript database

    We have expanded upon a previously reported comparative genomics approach using a read-depth (JaRMs) and a hybrid read-pair, split-read (RAPTR-SV) copy number variation (CNV) detection method that uses read alignments to the cattle reference genome in order to identify species-specific genomic rearr...

  7. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Butler; J Wang; Y Xiong

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  8. Quantum cryptography using entangled photons in energy-time bell states

    PubMed

    Tittel; Brendel; Zbinden; Gisin

    2000-05-15

    We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasibility in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long distances. Moreover, using four-dimensional energy-time states, no fast random change of bases is required in our setup: Nature itself decides whether to measure in the energy or in the time base, thus rendering eavesdropper attacks based on "photon number splitting" less efficient.

  9. Figure Caption for pair of images of 'Comet Nucleus Q

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Figure Caption for pair of images of 'Comet Nucleus Q'. 21Jul94 Last Look at the Q-nuclei First image - March 30, 1994. Two Q-nuclei and a split nucleus, P. Second image - July 20, 1994. at T - 10 hours. Both nuclei still show no sign of further fragmentation, although the coma near each is being stretched out along the direction of motion. Both images were taken with the WFPC2 Planetary Camera using a red filter. Credit: H. A. Weaver and T. E. Smith

  10. Forms of Cooperative Learning in Language Teaching in Slovenian Language Classes at the Primary School Level

    ERIC Educational Resources Information Center

    Vrhovec, Alenka Rot

    2015-01-01

    In the Slovenian language syllabus, teachers are recommended to provide a greater share of group work during class. During types of learning such as cooperative learning in smaller groups or pairs, students actively develop communicative competence. The present article presents a survey that attempted to determine whether teachers from the first…

  11. Quasi-chemical theory of F-(aq): The "no split occupancies rule" revisited

    NASA Astrophysics Data System (ADS)

    Chaudhari, Mangesh I.; Rempe, Susan B.; Pratt, Lawrence R.

    2017-10-01

    We use ab initio molecular dynamics (AIMD) calculations and quasi-chemical theory (QCT) to study the inner-shell structure of F-(aq) and to evaluate that single-ion free energy under standard conditions. Following the "no split occupancies" rule, QCT calculations yield a free energy value of -101 kcal/mol under these conditions, in encouraging agreement with tabulated values (-111 kcal/mol). The AIMD calculations served only to guide the definition of an effective inner-shell constraint. QCT naturally includes quantum mechanical effects that can be concerning in more primitive calculations, including electronic polarizability and induction, electron density transfer, electron correlation, molecular/atomic cooperative interactions generally, molecular flexibility, and zero-point motion. No direct assessment of the contribution of dispersion contributions to the internal energies has been attempted here, however. We anticipate that other aqueous halide ions might be treated successfully with QCT, provided that the structure of the underlying statistical mechanical theory is absorbed, i.e., that the "no split occupancies" rule is recognized.

  12. Continuous-Time Monitoring of Landau-Zener Interference in a Cooper-Pair Box

    NASA Astrophysics Data System (ADS)

    Sillanpää, Mika; Lehtinen, Teijo; Paila, Antti; Makhlin, Yuriy; Hakonen, Pertti

    2006-05-01

    Landau-Zener (LZ) tunneling can occur with a certain probability when crossing energy levels of a quantum two-level system are swept across the minimum energy separation. Here we present experimental evidence of quantum interference effects in solid-state LZ tunneling. We used a Cooper-pair box qubit where the LZ tunneling occurs at the charge degeneracy. By employing a weak nondemolition monitoring, we observe interference between consecutive LZ-tunneling events; we find that the average level occupancies depend on the dynamical phase. The system’s unusually strong linear response is explained by interband relaxation. Our interferometer can be used as a high-resolution Mach-Zehnder type detector for phase and charge.

  13. Continuous-time monitoring of Landau-Zener interference in a cooper-pair box.

    PubMed

    Sillanpää, Mika; Lehtinen, Teijo; Paila, Antti; Makhlin, Yuriy; Hakonen, Pertti

    2006-05-12

    Landau-Zener (LZ) tunneling can occur with a certain probability when crossing energy levels of a quantum two-level system are swept across the minimum energy separation. Here we present experimental evidence of quantum interference effects in solid-state LZ tunneling. We used a Cooper-pair box qubit where the LZ tunneling occurs at the charge degeneracy. By employing a weak nondemolition monitoring, we observe interference between consecutive LZ-tunneling events; we find that the average level occupancies depend on the dynamical phase. The system's unusually strong linear response is explained by interband relaxation. Our interferometer can be used as a high-resolution Mach-Zehnder-type detector for phase and charge.

  14. Cooperation driven coherence: Brains working hard together.

    PubMed

    Bezerianos, Anastasios; Sun, Yu; Chen, Yu; Woong, Kian Fong; Taya, Fumihiko; Arico, Pietro; Borghini, Gianluca; Babiloni, Fabio; Thakor, Nitish

    2015-01-01

    The current study aims to look at the difference in coupling of EEG activity of participant pairs while they perform a cooperative, concurrent, independent yet different task at high and low difficulty levels. Participants performed the National Aeronautics and Space Administration (NASA) designed Multi-Attribute Task Battery (MATB-II) task which simulates a pilot and copilot operating an aircraft. Each participant in the pair was responsible for 2 out of 4 subtasks which were independent and different from one another while all tasks occurs concurrently in real time with difficulty levels being the frequency that adjustments are required for each subtask. We found that as the task become more difficult, there was more coupling between the pilot and copilot.

  15. Mean-field description of topological charge 4e superconductors

    NASA Astrophysics Data System (ADS)

    Gabriele, Victoria; Luo, Jing; Teo, Jeffrey C. Y.

    BCS superconductors can be understood by a mean-field approximation of two-body interacting Hamiltonians, whose ground states break charge conservation spontaneously by allowing non-vanishing expectation values of charge 2e Cooper pairs. Topological superconductors, such as one-dimensional p-wave wires, have non-trivial ground states that support robust gapless boundary excitations. We construct a four-body Hamiltonian in one dimension and perform a mean-field analysis. The mean-field Hamiltonian is now quartic in fermions but is still exactly solvable. The ground state exhibits 4-fermion expectation values instead of Cooper pair ones. There also exists a topological phase, where the charge 4e superconductor carries exotic zero energy boundary excitations.

  16. Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip.

  17. Crossover from BCS to Bose superconductivity: A functional integral approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randeria, M.; Sa de Melo, C.A.R.; Engelbrecht, J.R.

    1993-04-01

    We use a functional integral formulation to study the crossover from cooperative Cooper pairing to the formation and condensation of tightly bound pairs in a 3D continuum model of fermions with attractive interactions. The inadequacy of a saddle point approximation with increasing coupling is pointed out, and the importance of temporal (quantum) fluctuations for normal state properties at intermediate and strong coupling is emphasized. In addition to recovering the Nozieres-Schmitt-Pink interpolation scheme for T{sub c}, and the Leggett variational results for T = 0, we also present results for evolution of the time-dependent Ginzburg-Landau equation and collective mode spectrum asmore » a function of the coupling.« less

  18. Doping dependence of the anisotropic quasiparticle interference in NaFe(1-x)Co(x)As iron-based superconductors.

    PubMed

    Cai, Peng; Ruan, Wei; Zhou, Xiaodong; Ye, Cun; Wang, Aifeng; Chen, Xianhui; Lee, Dung-Hai; Wang, Yayu

    2014-03-28

    We use scanning tunneling microscopy to investigate the doping dependence of quasiparticle interference (QPI) in NaFe1-xCoxAs iron-based superconductors. The goal is to study the relation between nematic fluctuations and Cooper pairing. In the parent and underdoped compounds, where fourfold rotational symmetry is broken macroscopically, the QPI patterns reveal strong rotational anisotropy. At optimal doping, however, the QPI patterns are always fourfold symmetric. We argue this implies small nematic susceptibility and, hence, insignificant nematic fluctuation in optimally doped iron pnictides. Since TC is the highest this suggests nematic fluctuation is not a prerequistite for strong Cooper pairing.

  19. Superfluidity in the Core of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2013-04-01

    The year (1958) after the publication of the BCS theory, Bohr, Mottelson & Pines showed that nuclei should also contain superfluid neutrons and superconducting protons. In 1959, A. Migdal proposed that neutron superfluidity should also occur in the interior of neutron stars. Pairing in nuclei forms Cooper pairs with zero spin, but the relevant component of the nuclear interaction becomes repulsive at densities larger than the nuclear matter density. It has been proposed that neutron-neutron interaction in the spin-triplet state, and L=1 orbital angular momentum, that is known to be attractive from laboratory experiments, may result in a new form of neutron superfluidity in the neutron star interior. I will review our present understanding of the structure of neutron stars and describe how superfluidity strongly affects their thermal evolution. I will show how a ``Minimal Model'' that excludes the presence of ``exotic'' matter (Bose condensates, quarks, etc.) is compatible with most observations of the surface temperatures of young isolated neutron stars in the case this neutron superfluid exists. Compared to the case of isotropic spin-zero Cooper pairs, the formation of anisotropic spin-one Cooper pairs results in a strong neutrino emission that leads to an enhanced cooling of neutron stars after the onset of the pairing phase transition and allows the Minimal Cooling scenario to be compatible with most observations. In the case the pairing critical temperature Tc is less than about 6 x10^8 K, the resulting rapid cooling of the neutron star may be observable. It was recently reported that 10 years of Chandra observations of the 333 year young neutron star in the Cassiopeia A supernova remnant revealed that its temperature has dropped by about 5%. This result indicates that neutrons in this star are presently becoming superfluid and, if confirmed, provides us with the first direct observational evidence for neutron superfluidity at supra-nuclear densities.

  20. The LPM effect in sequential bremsstrahlung 2: factorization

    DOE PAGES

    Arnold, Peter; Chang, Han-Chih; Iqbal, Shahin

    2016-09-13

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. In this paper, we continue analysis of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-gluon approximations. In particular, this paper analyzes the subtle problem of how to precisely separate overlapping double splitting (e.g. overlapping double bremsstrahlung) from the case of consecutive, independent bremsstrahlung (which is themore » case that would be implemented in a Monte Carlo simulation based solely on single splitting rates). As an example of the method, we consider the rate of real double gluon bremsstrahlung from an initial gluon with various simplifying assumptions (thick media; q approximation; large N c; and neglect for the moment of processes involving 4-gluon ver-tices) and explicitly compute the correction Δ dΓ/dx dy due to overlapping formation times.« less

  1. Investigation of the Presence of Charge Order in Magnetite by Measurement of the Sprin Wave Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQueeny, R. J.; Yethiraj, Mohana; Montfrooij, W.

    Inelastic neutron scattering results on magnetite (Fe{sub 3}O{sub 4}) show a large splitting in the acoustic spin wave branch, producing a 7 meV gap midway to the Brillouin zone boundary at q = (0,0,1/2) and {h_bar}{omega} = 43 meV. The splitting occurs below the Verwey transition temperature, where a metal-insulator transition occurs simultaneously with a structural transformation, supposedly caused by the charge ordering on the iron sublattice. The wavevector (0,0,1/2) corresponds to the superlattice peak in the low symmetry structure. The dependence of the magnetic superexchange on changes in the crystal structure and ionic configurations that occur below the Verweymore » transition affect the spin wave dispersion. To better understand the origin of the observed splitting, several Heisenberg models intended to reproduce the pair-wise variation of the magnetic superexchange arising from both small crystalline distortions and charge ordering were studied. None of the models studied predicts the observed splitting, whose origin may arise from charge-density wave formation or magnetoelastic coupling.« less

  2. Diiridium Bimetallic Complexes Function as a Redox Switch To Directly Split Carbonate into Carbon Monoxide and Oxygen.

    PubMed

    Chen, Tsun-Ren; Wu, Fang-Siou; Lee, Hsiu-Pen; Chen, Kelvin H-C

    2016-03-23

    A pair of diiridium bimetallic complexes exhibit a special type of oxidation-reduction reaction that could directly split carbonate into carbon monoxide and molecular oxygen via a low-energy pathway needing no sacrificial reagent. One of the bimetallic complexes, Ir(III)(μ-Cl)2Ir(III), can catch carbonato group from carbonate and reduce it to CO. The second complex, the rare bimetallic complex Ir(IV)(μ-oxo)2Ir(IV), can react with chlorine to release O2 by the oxidation of oxygen ions with synergistic oxidative effect of iridium ions and chlorine atoms. The activation energy needed for the key reaction is quite low (∼20 kJ/mol), which is far less than the dissociation energy of the C═O bond in CO2 (∼750 kJ/mol). These diiridium bimetallic complexes could be applied as a redox switch to split carbonate or combined with well-known processes in the chemical industry to build up a catalytic system to directly split CO2 into CO and O2.

  3. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C.; Golberg, D., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3058577

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structuremore » of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.« less

  4. Electrodeposited-film electrodes derived from a precursor dinitrosyl iron complex for electrocatalytic water splitting.

    PubMed

    Li, Wei-Liang; Chiou, Tzung-Wen; Chen, Chien-Hong; Yu, Yi-Ju; Chu, Li-Kang; Liaw, Wen-Feng

    2018-05-29

    In artificial photosynthesis, water splitting plays an important role for the conversion and storage of renewable energy sources. Here, we report a study on the electrocatalytic properties of the electrodeposited-film electrodes derived from irreversible electro-reduction/-oxidation of a molecular dinitrosyl iron complex (DNIC) {Fe(NO)2}9 [(Me6tren)Fe(NO)2]+ (Me6tren = tris[2-(dimethylamino)ethyl]amine) for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline solution, individually. For HER, the overpotential and Tafel slope for the electrodeposited-film cathode are lower than those of the equiv.-weight Pt/C electrode. The electrodeposited-film anode for the OER is stable for 139 h. Integration of the electrodeposited-film cathode and anode into a single electrode-pair device for electrocatalytic water splitting exhibits an onset voltage of 1.77 V, achieving a geometrical current density of 10 mA cm-2.

  5. A Heterogeneous Metal-Free Catalyst for Hydrogenation: Lewis Acid-Base Pairs Integrated into a Carbon Lattice.

    PubMed

    Ding, Yuxiao; Huang, Xing; Yi, Xianfeng; Qiao, Yunxiang; Sun, Xiaoyan; Zheng, Anmin; Su, Dang Sheng

    2018-06-04

    Designing heterogeneous metal-free catalysts for hydrogenation is a long-standing challenge in catalysis. Nanodiamond-based carbon materials were prepared that are surface-doped with electron-rich nitrogen and electron-deficient boron. The two heteroatoms are directly bonded to each other to form unquenched Lewis pairs with infinite π-electron donation from the surrounding graphitic structure. Remarkably, these Lewis pairs can split H 2 to form H + /H - pairs, which subsequently serve as the active species for hydrogenation of different substrates. This unprecedented finding sheds light on the uptake of H 2 across carbon-based materials and suggests that dual Lewis acidity-basicity on the carbon surface may be used to heterogeneously activate a variety of small molecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dual-Use Partnership Addresses Performance Problems with "Y" Pattern Control Valves

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    A Dual-Use Cooperative Agreement between the Propulsion Test Directorate (PTD) at Stennis Space Center (SSC) and Oceaneering Reflange, Inc. of Houston, TX has produced an improved 'Y' pattern split-body control valve for use in the propulsion test facilities at Stennis Space Center. The split-body, or clamped bonnet technology, provides for a 'cleaner' valve design featuring enhanced performance and increased flow capacity with extended life expectancy. Other points addressed by the partnership include size, weight and costs. Overall size and weight of each valve will be reduced by 50% compared to valves currently in use at SSC. An initial procurement of two 10 inch valves will result in an overall cost reduction of 15% or approximately $50,000 per valve.

  7. Reproductive partitioning and the assumptions of reproductive skew models in the cooperatively breeding American crow

    PubMed Central

    Townsend, Andrea K.; Clark, Anne B.; McGowan, Kevin J.; Lovette, Irby J.

    2009-01-01

    Understanding the benefits of cooperative breeding for group members of different social and demographic classes requires knowledge of their reproductive partitioning and genetic relatedness. From 2004-2007, we examined parentage as a function of relatedness and social interactions among members of 21 American crow (Corvus brachyrhynchos) family groups. Paired female breeders monopolized maternity of all offspring in their broods, whereas paired male breeders sired 82.7% of offspring, within-group auxiliary males sired 6.9% of offspring, and extragroup males sired 10.4% of offspring. Although adult females had fewer opportunities for direct reproduction as auxiliaries than males, they appeared to have earlier opportunities for independent breeding. These different opportunities for direct reproduction probably contributed to the male biased adult auxiliary sex ratio. Patterns of reproductive partitioning and conflict among males were most consistent with a synthetic reproductive skew model, in which auxiliaries struggled with breeders for a limited reproductive share, beyond which breeders could evict them. Counter to a frequent assumption of reproductive skew models, female breeders appeared to influence paternity, although their interests might have agreed with the interests of their paired males. Unusual among cooperative breeders, close inbreeding and incest occurred in this population. Incest avoidance between potential breeders did not significantly affect reproductive skew. PMID:20126287

  8. Ultrasensitive Electrometry with a Cavity-Embedded Cooper Pair Transistor

    NASA Astrophysics Data System (ADS)

    Rimberg, A. J.; Li, Juliang

    In this experiment a cavity-embedded Cooper-pair transistor (cCPT) is used as a potentially quantum-limited electrometer. The cCPT consists of a Cooper pair transistor placed at the voltage antinode of a 5.7 GHz shorted quarter-wave resonator so that the CPT provides a galvanic connection between the cavity's central conductor and ground plane. The quantum inductance of the CPT, which appears in parallel with the effective inductance of the cavity resonance, can be modulated by application of either a gate voltage to the CPT island or a flux bias to the CPT/cavity loop. Changes in the CPT inductance shift the cavity resonant frequency, and therefore the phase of a microwave signal reflected from the cavity. The reflected wave is amplified by both SLUG and HEMT amplifiers before its phase is measured. The cCPT can also be operated as a Josephson parametric amplifier (JPA). A pump tone at 11.4 GHz sent into the flux bias line has been shown to provide about 10dB gain. The possibility of parametrically amplifying the side bands produced by a charge detection measurement, thereby increasing the overall sensitivity of the cCPT, will also be investigated. Supported by Grants ARO W911NF-13-10377 and NSF DMR 1507400.

  9. A dynamical system perspective to understanding badminton singles game play.

    PubMed

    Chow, Jia Yi; Seifert, Ludovic; Hérault, Romain; Chia, Shannon Jing Yi; Lee, Miriam Chang Yi

    2014-02-01

    By altering the task constraints of cooperative and competitive game contexts in badminton, insights can be obtained from a dynamical systems perspective to investigate the underlying processes that results in either a gradual shift or transition of playing patterns. Positional data of three pairs of skilled female badminton players (average age 20.5±1.38years) were captured and analyzed. Local correlation coefficient, which provides information on the relationship of players' displacement data, between each pair of players was computed for angle and distance from base position. Speed scalar product was in turn established from speed vectors of the players. The results revealed two patterns of playing behaviors (i.e., in-phase and anti-phase patterns) for movement displacement. Anti-phase relation was the dominant coupling pattern for speed scalar relationships among the pairs of players. Speed scalar product, as a collective variable, was different between cooperative and competitive plays with a greater variability in amplitude seen in competitive plays leading to a winning point. The findings from this study provide evidence for increasing stroke variability to perturb existing stable patterns of play and highlights the potential for speed scalar product to be a collective variable to distinguish different patterns of play (e.g., cooperative and competitive). Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Pair bond characteristics and maintenance in free-flying jackdaws Corvus monedula: effects of social context and season

    PubMed Central

    Kubitza, Robin J.; Bugnyar, Thomas; Schwab, Christine

    2015-01-01

    Most birds rely on cooperation between pair partners for breeding. In long-term monogamous species, pair bonds are considered the basic units of social organization, albeit these birds often form foraging, roosting or breeding groups in which they repeatedly interact with numerous conspecifics. Focusing on jackdaws Corvus monedula, we here investigated 1) the interplay between pair bond and group dynamics in several social contexts and 2) how pair partners differ in individual effort of pair bond maintenance. Based on long-term data on free-flying birds, we quantified social interactions between group members within three positive contexts (spatial proximity, feeding and sociopositive interactions) for different periods of the year (non-breeding, pre-breeding, parental care). On the group level, we found that the number of interaction partners was highest in the spatial proximity context while in the feeding and sociopositive contexts the number of interaction partners was low and moderately low, respectively. Interactions were reciprocated within almost all contexts and periods. Investigating subgrouping within the flock, results showed that interactions were preferentially directed towards the respective pair partner compared to unmated adults. When determining pair partner effort, both sexes similarly invested most into mutual proximity during late winter, thereby refreshing their bond before the onset of breeding. Paired males fed their mates over the entire year at similar rates while paired females hardly fed their mates at all but engaged in sociopositive behaviors instead. We conclude that jackdaws actively seek out positive social ties to flock members (close proximity, sociopositive behavior), at certain times of the year. Thus, the group functions as a dynamic social unit, nested within are highly cooperative pair bonds. Both sexes invested into the bond with different social behaviors and different levels of effort, yet these are likely male and female proximate mechanisms aimed at maintaining and perpetuating the pair bond. PMID:25892848

  11. Origin of the U(1) field mass in superconductors

    NASA Astrophysics Data System (ADS)

    Koizumi, Hiroyasu

    2017-05-01

    Recently, a new theory for superconductivity has been put forward, in which the persistent current generation is attributed to the emergent singularities of the electronic wave function that are created by the spin-twisting itinerant circular motion of electrons. The persistent current generated by this mechanism behaves in every respect like supercurrent in superconductors, yielding the flux quantum h/2e and the Josephson frequency 2eV/h, where h is Planck’s constant, -e is the electron charge, and V is the voltage across the Josephson junction. The mass generation of the U(1) gauge field (or the Meissner effect) in the new theory is due to the emergence of topological objects, ‘instantons’ generated by the single-valued requirement of the wave function in the presence of the emergent singularities. The current standard theory of superconductivity is based on the BCS theory, and explains the emergence of superconductivity as due to the global U(1) gauge symmetry breaking realized by the Cooper pair formation. The U(1) field mass generation is believed to be due to this global U(1) gauge symmetry breaking. However, the feasibility of this mechanism has been questioned since no known interaction can prepare the global U(1) symmetry broken state from the normal state. We argue here that the U(1) mass generation in the BCS superconductor can be attributed to the one by the instanton mentioned above if the Rashba spin-orbit interaction is added. Then, the occurrence of persistent current generation becomes due to the instanton formation, and the role of the Cooper pair formation is to stabilize the instanton by providing an energy gap for perturbative excitations. Upon forming the Cooper pair, the instanton is stabilized and persistent current generation becomes possible. Thus, the superconducting transition temperature coincides with the Cooper pair formation temperature.

  12. Upper and lower mantle anisotropy inferred from comprehensive SKS and SKKS splitting measurements from India

    NASA Astrophysics Data System (ADS)

    Roy, Sunil K.; Ravi Kumar, M.; Srinagesh, D.

    2014-04-01

    In this study, we investigate the upper mantle anisotropy beneath India using high quality SKS and SKKS waveforms from 382 teleseismic earthquakes recorded at 119 broadband seismic stations. In addition, we present evidence for anisotropy in the D″ layer beneath southeast Asia using SKS and SKKS splitting discrepancies on the same seismogram. During this exercise, we obtain 200 new splitting measurements from 35 stations recently deployed in the Indo-Gangetic plains (IGP), central India and northeast India. While the delay times between the fast and slow axes of anisotropy (δt) range from 0.3 to 1.7 s, the fast polarization azimuths (Φ) at a majority of stations in the IGP and central India coincide with the absolute plate motion of India implying shear at the base of the lithosphere as the dominant mechanism for forging anisotropy. However, stations in NE India reveal fast polarization azimuths mainly in the ENE-WSW direction suggestive of lithospheric strain induced by the ongoing Indo-Eurasian collision. Our analysis for D″ anisotropy yielded a total of 100 SKS-SKKS pairs, which can be categorized into those exhibiting (I) null measurements for one phase and significant splitting for the other phase, (II) null measurement for both the phases, (III) significant splitting for both the phases. A pair is considered to be anomalous if the splitting difference between SKS and SKKS is ⩾0.5 s and the individual split time is ⩾0.5 s. Using this criterion, we obtain 12 measurements under category III and 9 under category I that show a null measurement for SKS and large splitting for the SKKS phase. Further, we quantify the strength of the lower mantle anisotropy by correcting the SKKS measurement for the upper mantle anisotropy obtained by the SKS phase on the same seismogram. The SKS delay times are found to be consistently less than SKKS times, suggesting that the SKS phases do not capture the lower mantle anisotropy in comparison to their SKKS counterparts. Seven coherent measurements thus obtained reveal measurable D″ anisotropy, with fast polarization azimuths oriented mainly in the ENE-WSW direction. These results suggest presence of a large region of deformation in the lowermost mantle beneath southeast Asia. A possible model for anisotropy in these regions could be the presence of slab material that pounded upon the core mantle boundary (CMB) and is experiencing large shear deformation, resulting in lattice preferred orientation (LPO) of the lower mantle (Van der Hilst and Kárason, 1999; Long, 2009). The other possibility is the phase transformation from MgSiO3 perovskite to a more stable post-perovskite phase under favorable conditions, which results in LPO of the lower mantle.

  13. The Microgenetic Emergence of Cooperative Play in 6-Year-Olds Developmentally At-Risk

    ERIC Educational Resources Information Center

    van der Aalsvoort, Geerdina M.; van der Leeden, Rien

    2009-01-01

    Cooperative play was investigated by a controlled pre/post-test intervention design with 28 dyads of 6-year-old students developmentally at-risk. Selection was based upon cut-off scores on a language development test and a nonverbal IQ test, and same-sex pairs were matched within classrooms. Co-variables were: socio economic status, free play time…

  14. Fair and unfair punishers coexist in the Ultimatum Game

    PubMed Central

    Brañas-Garza, Pablo; Espín, Antonio M.; Exadaktylos, Filippos; Herrmann, Benedikt

    2014-01-01

    In the Ultimatum Game, a proposer suggests how to split a sum of money with a responder. If the responder rejects the proposal, both players get nothing. Rejection of unfair offers is regarded as a form of punishment implemented by fair-minded individuals, who are willing to impose the cooperation norm at a personal cost. However, recent research using other experimental frameworks has observed non-negligible levels of antisocial punishment by competitive, spiteful individuals, which can eventually undermine cooperation. Using two large-scale experiments, this note explores the nature of Ultimatum Game punishers by analyzing their behavior in a Dictator Game. In both studies, the coexistence of two entirely different sub-populations is confirmed: prosocial punishers on the one hand, who behave fairly as dictators, and spiteful (antisocial) punishers on the other, who are totally unfair. The finding has important implications regarding the evolution of cooperation and the behavioral underpinnings of stable social systems. PMID:25113502

  15. Fair and unfair punishers coexist in the Ultimatum Game.

    PubMed

    Brañas-Garza, Pablo; Espín, Antonio M; Exadaktylos, Filippos; Herrmann, Benedikt

    2014-08-12

    In the Ultimatum Game, a proposer suggests how to split a sum of money with a responder. If the responder rejects the proposal, both players get nothing. Rejection of unfair offers is regarded as a form of punishment implemented by fair-minded individuals, who are willing to impose the cooperation norm at a personal cost. However, recent research using other experimental frameworks has observed non-negligible levels of antisocial punishment by competitive, spiteful individuals, which can eventually undermine cooperation. Using two large-scale experiments, this note explores the nature of Ultimatum Game punishers by analyzing their behavior in a Dictator Game. In both studies, the coexistence of two entirely different sub-populations is confirmed: prosocial punishers on the one hand, who behave fairly as dictators, and spiteful (antisocial) punishers on the other, who are totally unfair. The finding has important implications regarding the evolution of cooperation and the behavioral underpinnings of stable social systems.

  16. Power corrupts co-operation: cognitive and motivational effects in a double EEG paradigm.

    PubMed

    Kanso, Riam; Hewstone, Miles; Hawkins, Erin; Waszczuk, Monika; Nobre, Anna Christina

    2014-02-01

    This study investigated the effect of interpersonal power on co-operative performance. We used a paired electro-encephalogram paradigm: pairs of participants performed an attention task, followed by feedback indicating monetary loss or gain on every trial. Participants were randomly allocated to the power-holder, subordinate or neutral group by creating different levels of control over how a joint monetary reward would be allocated. We found that power was associated with reduced behavioural accuracy. Event-related potential analysis showed that power-holders devoted less motivational resources to their targets than did subordinates or neutrals, but did not differ at the level of early conflict detection. Their feedback potential results showed a greater expectation of rewards but reduced subjective magnitude attributed to losses. Subordinates, on the other hand, were asymmetrically sensitive to power-holders' targets. They expected fewer rewards, but attributed greater significance to losses. Our study shows that power corrupts balanced co-operation with subordinates.

  17. Power corrupts co-operation: cognitive and motivational effects in a double EEG paradigm

    PubMed Central

    Kanso, Riam; Hewstone, Miles; Hawkins, Erin; Waszczuk, Monika; Nobre, Anna Christina

    2014-01-01

    This study investigated the effect of interpersonal power on co-operative performance. We used a paired electro-encephalogram paradigm: pairs of participants performed an attention task, followed by feedback indicating monetary loss or gain on every trial. Participants were randomly allocated to the power-holder, subordinate or neutral group by creating different levels of control over how a joint monetary reward would be allocated. We found that power was associated with reduced behavioural accuracy. Event-related potential analysis showed that power-holders devoted less motivational resources to their targets than did subordinates or neutrals, but did not differ at the level of early conflict detection. Their feedback potential results showed a greater expectation of rewards but reduced subjective magnitude attributed to losses. Subordinates, on the other hand, were asymmetrically sensitive to power-holders’ targets. They expected fewer rewards, but attributed greater significance to losses. Our study shows that power corrupts balanced co-operation with subordinates. PMID:23160813

  18. NMR evidence for static local nematicity and its cooperative interplay with low-energy magnetic fluctuations in FeSe under pressure

    DOE PAGES

    Wiecki, P.; Nandi, M.; Bohmer, Anna; ...

    2017-11-13

    Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.

  19. NMR evidence for static local nematicity and its cooperative interplay with low-energy magnetic fluctuations in FeSe under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiecki, P.; Nandi, M.; Bohmer, Anna

    Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.

  20. Near-infrared left-handed metamaterials made of arrays of upright split-ring pairs

    NASA Astrophysics Data System (ADS)

    Chan, Hsun-Chi; Sun, Shulin; Guo, Guang-Yu

    2018-07-01

    Electromagnetic metamaterials are man-made structures that have novel properties such as a negative refraction index, not attainable in naturally occurring materials. Although negative index materials (NIMs) in microwave frequencies were demonstrated in 2001, it is still challenging to design NIMs for optical frequencies especially those with both negative permittivity and negative permeability (known as left-handed metamaterials (LHMs)). Here, by going beyond the traditional concept of the combination of artificial electronic and magnetic meta-atoms to design NIMs, we propose a novel LHM composed of an array of upright split-ring pairs working in the near-infrared region. Our electromagnetic simulations reveal the underlying mechanism that the coupling of the two rings can stimulate simultaneously both the electric and magnetic resonances. The proposed structure has a highest refractive index of  ‑2, a highest figure of merit of 21, good air-matched impedance and 180 nm double negative bandwidth, which excel the performances of many previous proposals. We also numerically demonstrate the negative refraction of this metamaterial in both the single-layer form and wedge-shaped lens.

  1. Cooperative Behavior in the Ultimatum Game and Prisoner’s Dilemma Depends on Players’ Contributions

    PubMed Central

    Bland, Amy R.; Roiser, Jonathan P.; Mehta, Mitul A.; Schei, Thea; Sahakian, Barbara J.; Robbins, Trevor W.; Elliott, Rebecca

    2017-01-01

    Economic games such as the Ultimatum Game (UG) and Prisoner’s Dilemma (PD) are widely used paradigms for studying fairness and cooperation. Monetary versions of these games involve two players splitting an arbitrary sum of money. In real life, however, people’s propensity to engage in cooperative behavior depends on their effort and contribution; factors that are well known to affect perceptions of fairness. We therefore sought to explore the impact of relative monetary contributions by players in the UG and PD. Adapted computerized UG and PD games, in which relative contributions from each player were manipulated, were administered to 200 participants aged 18–50 years old (50% female). We found that players’ contribution had large effects on cooperative behavior. Specifically, cooperation was greater amongst participants when their opponent had contributed more to joint earnings. This was manifested as higher acceptance rates and higher offers in the UG; and fewer defects in the PD compared to when the participant contributed more. Interestingly, equal contributions elicited the greatest sensitivity to fairness in the UG, and least frequent defection in the PD. Acceptance rates correlated positively with anxiety and sex differences were found in defection behavior. This study highlights the feasibility of computerized games to assess cooperative behavior and the importance of considering cooperation within the context of effortful contribution. PMID:28670295

  2. Evolutionary Games of Multiplayer Cooperation on Graphs

    PubMed Central

    Arranz, Jordi; Traulsen, Arne

    2016-01-01

    There has been much interest in studying evolutionary games in structured populations, often modeled as graphs. However, most analytical results so far have only been obtained for two-player or linear games, while the study of more complex multiplayer games has been usually tackled by computer simulations. Here we investigate evolutionary multiplayer games on graphs updated with a Moran death-Birth process. For cycles, we obtain an exact analytical condition for cooperation to be favored by natural selection, given in terms of the payoffs of the game and a set of structure coefficients. For regular graphs of degree three and larger, we estimate this condition using a combination of pair approximation and diffusion approximation. For a large class of cooperation games, our approximations suggest that graph-structured populations are stronger promoters of cooperation than populations lacking spatial structure. Computer simulations validate our analytical approximations for random regular graphs and cycles, but show systematic differences for graphs with many loops such as lattices. In particular, our simulation results show that these kinds of graphs can even lead to more stringent conditions for the evolution of cooperation than well-mixed populations. Overall, we provide evidence suggesting that the complexity arising from many-player interactions and spatial structure can be captured by pair approximation in the case of random graphs, but that it need to be handled with care for graphs with high clustering. PMID:27513946

  3. Boxer crabs induce asexual reproduction of their associated sea anemones by splitting and intraspecific theft.

    PubMed

    Schnytzer, Yisrael; Giman, Yaniv; Karplus, Ilan; Achituv, Yair

    2017-01-01

    Crabs of the genus Lybia have the remarkable habit of holding a sea anemone in each of their claws. This partnership appears to be obligate, at least on the part of the crab. The present study focuses on Lybia leptochelis from the Red Sea holding anemones of the genus Alicia (family Aliciidae). These anemones have not been found free living, only in association with L. leptochelis . In an attempt to understand how the crabs acquire them, we conducted a series of behavioral experiments and molecular analyses. Laboratory observations showed that the removal of one anemone from a crab induces a "splitting" behavior, whereby the crab tears the remaining anemone into two similar parts, resulting in a complete anemone in each claw after regeneration. Furthermore, when two crabs, one holding anemones and one lacking them, are confronted, the crabs fight, almost always leading to the "theft" of a complete anemone or anemone fragment by the crab without them. Following this, crabs "split" their lone anemone into two. Individuals of Alicia sp. removed from freshly collected L. leptochelis were used for DNA analysis. By employing AFLP (Fluorescence Amplified Fragments Length Polymorphism) it was shown that each pair of anemones from a given crab is genetically identical. Furthermore, there is genetic identity between most pairs of anemone held by different crabs, with the others showing slight genetic differences. This is a unique case in which one animal induces asexual reproduction of another, consequently also affecting its genetic diversity.

  4. Effect on signal-to-noise ratio of splitting the continuous contacts of cuff electrodes into smaller recording areas

    PubMed Central

    2013-01-01

    Background Cuff electrodes have been widely used chronically in different clinical applications. This neural interface has been dominantly used for nerve stimulation while interfering noise is the major issue when employed for recording purposes. Advancements have been made in rejecting extra-neural interference by using continuous ring contacts in tripolar topologies. Ring contacts provide an average of the neural activity, and thus reduce the information retrieved. Splitting these contacts into smaller recording areas could potentially increase the information content. In this study, we investigate the impact of such discretization on the Signal-to-Noise Ratio (SNR). The effect of contacts positioning and an additional short circuited pair of electrodes were also addressed. Methods Different recording configurations using ring, dot, and a mixed of both contacts were studied in vitro in a frog model. An interfering signal was induced in the medium to simulate myoelectric noise. The experimental setup was design in such a way that the only difference between recordings was the configuration used. The inter-session experimental differences were taken care of by a common configuration that allowed normalization between electrode designs. Results It was found that splitting all contacts into small recording areas had negative effects on noise rejection. However, if this is only applied to the central contact creating a mixed tripole configuration, a considerable and statistically significant improvement was observed. Moreover, the signal to noise ratio was equal or larger than what can be achieved with the best known configuration, namely the short circuited tripole. This suggests that for recording purposes, any tripole topology would benefit from splitting the central contact into one or more discrete contacts. Conclusions Our results showed that a mixed tripole configuration performs better than the configuration including only ring contacts. Therefore, splitting the central ring contact of a cuff electrode into a number of dot contacts not only provides additional information but also an improved SNR. In addition, the effect of an additional pair of short circuited electrodes and the “end effect” observed with the presented method are in line with previous findings by other authors. PMID:23433089

  5. Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces

    PubMed Central

    Di Bernardo, A.; Diesch, S.; Gu, Y.; Linder, J.; Divitini, G.; Ducati, C.; Scheer, E.; Blamire, M.G.; Robinson, J.W.A.

    2015-01-01

    The theory of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS) explains the stabilization of electron pairs into a spin-singlet, even frequency, state by the formation of an energy gap within which the density of states is zero. At a superconductor interface with an inhomogeneous ferromagnet, a gapless odd frequency superconducting state is predicted, in which the Cooper pairs are in a spin-triplet state. Although indirect evidence for such a state has been obtained, the gap structure and pairing symmetry have not so far been determined. Here we report scanning tunnelling spectroscopy of Nb superconducting films proximity coupled to epitaxial Ho. These measurements reveal pronounced changes to the Nb subgap superconducting density of states on driving the Ho through a metamagnetic transition from a helical antiferromagnetic to a homogeneous ferromagnetic state for which a BCS-like gap is recovered. The results prove odd frequency spin-triplet superconductivity at superconductor/inhomogeneous magnet interfaces. PMID:26329811

  6. Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Courtney M.; Hu, Jianxin; Thomas, Reuben

    2017-03-28

    Enhancers frequently contain multiple binding sites for the same transcription factor. These homotypic binding sites often exhibit synergy, whereby the transcriptional output from two or more binding sites is greater than the sum of the contributions of the individual binding sites alone. Although this phenomenon is frequently observed, the mechanistic basis for homotypic binding site synergy is poorly understood. Here in this paper, we identify a bona fide cardiac-specific Prkaa2 enhancer that is synergistically activated by homotypic MEF2 binding sites. We show that two MEF2 sites in the enhancer function cooperatively due to bridging of the MEF2C-bound sites by themore » SAP domain-containing co-activator protein myocardin, and we show that paired sites buffer the enhancer from integration site-dependent effects on transcription in vivo. Paired MEF2 sites are prevalent in cardiac enhancers, suggesting that this might be a common mechanism underlying synergy in the control of cardiac gene expression in vivo.« less

  7. Biexciton emission from single isoelectronic traps formed by nitrogen-nitrogen pairs in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamiya, Kengo; Fukushima, Toshiyuki; Yagi, Shuhei

    2013-12-04

    We have studied photoluminescence (PL) from individual isoelectronic traps formed by nitrogen-nitrogen (NN) pairs in GaAs. Sharp emission lines due to exciton and biexciton were observed from individual isoelectronic traps in nitrogen atomic-layer doped (ALD) GaAs. The binding energy of biexciton bound to individual isoelectronic traps was approximately 8 meV. Both the exciton and biexciton luminescence lines show completely random polarization and no fine-structure splitting. These results are desirable to the application to the quantum cryptography used in the field of quantum information technology.

  8. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation.

    PubMed

    Levy, Roie; Carr, Rogan; Kreimer, Anat; Freilich, Shiri; Borenstein, Elhanan

    2015-05-17

    Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm. NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms' niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds. The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.

  9. Teaching Adolescents EFL by Integrating Think-Pair-Share and Reading Strategy Instruction: A Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Shih, Ying-Chun; Reynolds, Barry Lee

    2015-01-01

    Think-Pair-Share, a cooperative discussion strategy developed by Frank Lyman and colleagues (1981), is often utilized in first language contexts but rarely in second language (L2) contexts. To investigate its usefulness in the L2 context, a traditional English as a Foreign Language (EFL) reading class was transformed by integrating…

  10. Concealed d -wave pairs in the s ± condensate of iron-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Tzen; Coleman, Piers; Schmalian, Jörg

    A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave (s ±) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. In this paper, we propose a new class of s ± statemore » containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave (L=2) motion of the pairs with the internal angular momenta I =2 of the iron orbitals to make a singlet (J =L+I =0), an s ± superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba 1$-$xK XFe 2As 2 as a reconfiguration of the orbital and internal angular momentum into a high spin (J =L+I =4) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. Finally, the formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.« less

  11. Concealed d -wave pairs in the s ± condensate of iron-based superconductors

    DOE PAGES

    Ong, Tzen; Coleman, Piers; Schmalian, Jörg

    2016-05-02

    A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave (s ±) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. In this paper, we propose a new class of s ± statemore » containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave (L=2) motion of the pairs with the internal angular momenta I =2 of the iron orbitals to make a singlet (J =L+I =0), an s ± superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba 1$-$xK XFe 2As 2 as a reconfiguration of the orbital and internal angular momentum into a high spin (J =L+I =4) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. Finally, the formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.« less

  12. Concealed d-wave pairs in the s± condensate of iron-based superconductors.

    PubMed

    Ong, Tzen; Coleman, Piers; Schmalian, Jörg

    2016-05-17

    A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave ([Formula: see text]) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. Here, we propose a new class of [Formula: see text] state containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave ([Formula: see text]) motion of the pairs with the internal angular momenta [Formula: see text] of the iron orbitals to make a singlet ([Formula: see text]), an [Formula: see text] superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba1-x KXFe2As2 as a reconfiguration of the orbital and internal angular momentum into a high spin ([Formula: see text]) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. The formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.

  13. Combination radial and thrust magnetic bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor)

    2002-01-01

    A combination radial and thrust magnetic bearing is disclosed that allows for both radial and thrust axes control of an associated shaft. The combination radial and thrust magnetic bearing comprises a rotor and a stator. The rotor comprises a shaft, and first and second rotor pairs each having respective rotor elements. The stator comprises first and second stator elements and a magnet-sensor disk. In one embodiment, each stator element has a plurality of split-poles and a corresponding plurality of radial force coils and, in another embodiment, each stator element does not require thrust force coils, and radial force coils are replaced by double the plurality of coils serving as an outer member of each split-pole half.

  14. Humans expect generosity

    NASA Astrophysics Data System (ADS)

    Brañas-Garza, Pablo; Rodríguez-Lara, Ismael; Sánchez, Angel

    2017-02-01

    Mechanisms supporting human ultra-cooperativeness are very much subject to debate. One psychological feature likely to be relevant is the formation of expectations, particularly about receiving cooperative or generous behavior from others. Without such expectations, social life will be seriously impeded and, in turn, expectations leading to satisfactory interactions can become norms and institutionalize cooperation. In this paper, we assess people’s expectations of generosity in a series of controlled experiments using the dictator game. Despite differences in respective roles, involvement in the game, degree of social distance or variation of stakes, the results are conclusive: subjects seldom predict that dictators will behave selfishly (by choosing the Nash equilibrium action, namely giving nothing). The majority of subjects expect that dictators will choose the equal split. This implies that generous behavior is not only observed in the lab, but also expected by subjects. In addition, expectations are accurate, matching closely the donations observed and showing that as a society we have a good grasp of how we interact. Finally, correlation between expectations and actual behavior suggests that expectations can be an important ingredient of generous or cooperative behavior.

  15. Cooperative breeding and monogamy in mammalian societies

    PubMed Central

    Lukas, Dieter; Clutton-Brock, Tim

    2012-01-01

    Comparative studies of social insects and birds show that the evolution of cooperative and eusocial breeding systems has been confined to species where females mate completely or almost exclusively with a single male, indicating that high levels of average kinship between group members are necessary for the evolution of reproductive altruism. In this paper, we show that in mammals, the evolution of cooperative breeding has been restricted to socially monogamous species which currently represent 5 per cent of all mammalian species. Since extra-pair paternity is relatively uncommon in socially monogamous and cooperatively breeding mammals, our analyses support the suggestion that high levels of average kinship between group members have played an important role in the evolution of cooperative breeding in non-human mammals, as well as in birds and insects. PMID:22279167

  16. Fermion Superfluidity

    NASA Technical Reports Server (NTRS)

    Strecker, Kevin; Truscott, Andrew; Partridge, Guthrie; Chen, Ying-Cheng

    2003-01-01

    Dual evaporation gives 50 million fermions at T = 0.1 T(sub F). Demonstrated suppression of interactions by coherent superposition - applicable to atomic clocks. Looking for evidence of Cooper pairing and superfluidity.

  17. Pairs of Asteroids Probably of a Common Origin

    NASA Astrophysics Data System (ADS)

    Vokrouhlický, David; Nesvorný, David

    2008-07-01

    We report the first observational evidence for pairs of main-belt asteroids with bodies in each pair having nearly identical orbits. The existence of ~60 pairs identified here cannot be reconciled with random fluctuations of the asteroid orbit density and rather suggests a common origin of the paired objects. We propose that the identified pairs formed by (i) collisional disruptions of km-sized and larger parent asteroids, (ii) Yarkovsky-O'Keefe-Radzievski-Paddack (YORP)-induced spin-up and rotational fission of fast-rotating objects, and/or (iii) splitting of unstable asteroid binaries. In case (i), the pairs would be parts of compact collisional families with many km- and sub-km-size members that should be found by future asteroid surveys. Our dynamical analysis suggests that most identified pairs formed within the past lsim1 Myr, in several cases even much more recently. For example, paired asteroids (6070) Rheinland and (54827) 2001 NQ8 probably separated from their common ancestor only 16.5-19 kyr ago. Given their putatively very recent formation, the identified objects are prime candidates for astronomical observations. The title paraphrases that of Hirayama's 1918 paper "Groups of asteroids probably of a common origin," where the first evidence was given for groups of asteroid fragments produced by disruptive collisions.

  18. Plasmonic resonance in planer split ring trimer

    NASA Astrophysics Data System (ADS)

    Xu, Haiqing; Li, Hongjian; Xiao, Gang

    2014-12-01

    We have numerically investigated the plasmon properties supported by asymmetry planer split ring trimer structures. We investigate the modification of gap distance, thickness and gap width on the transmission properties of the weak coupling model (g is larger than or equal to 120 nm, d=48 nm, t is larger than 30 nm, w1=200 nm, and w2=40 nm), as the coupling becomes weaker, the first peak sharply attenuates, the second peak slightly decreases, the transmission dip in the near-infrared region becomes shallow, and they are very sensitive to the gap distance between two small split ring pairs and the thickness and gap width of the big split ring. We also study the change of gap distance on the strong coupling model (g is smaller than or equal to 40 nm, d=24 nm, t=10 nm, w1=80 nm, and w2=20 nm), there exists a new Fano resonance peak, the strongest peak in visible region becomes symmetry, while the peak in near-infrared region becomes asymmetry. The resonator design strategy opens up a rich pathway for the implementation of optimized optical properties for specific applications.

  19. PROFILING GLYCOL-SPLIT HEPARINS BY HPLC/MS ANALYSIS OF THEIR HEPARINASE-GENERATED OLIGOSACCHARIDES1

    PubMed Central

    Alekseeva, Anna; Casu, Benito; Torri, Giangiacomo; Pierro, Sabrina; Naggi, Annamaria

    2012-01-01

    Glycol-split (gs) heparins, obtained by periodate oxidation / borohydride reduction of heparin currently used as anticoagulant and antithrombotic drug, are arousing increasing interest in anti-cancer and anti-inflammation therapies. These new medical uses are favored by the loss of anticoagulant activity associated with glycol-splitting-induced inactivation of the antithrombin III (AT) binding site. The structure of gs-heparins has not been studied yet in detail. In this work, an ion-pair reversed-phase chromatography (IPRP-HPLC) coupled with electrospray ionization mass spectrometry (ESI-MS) widely used for unmodified heparin has been adapted to the analysis of oligosaccharides generated by digestion with heparinases of gs-heparins usually prepared from porcine mucosal heparin. The method has been also found very effective in analyzing glycol-split derivatives obtained from heparins of different animal and tissue origin. Besides the major 2-O-sulfated disaccharides, heparinase digests of gs-heparins mainly contain tetra- and hexasaccharides incorporating one or two gs residues, with distribution patterns typical for individual gs-heparins. A heptasulfated, mono-N-acetylated hexasaccharide with two gs residues has been shown to be a marker of the gs-modified AT binding site within heparin chains. PMID:23201389

  20. TIT FOR TAT in sticklebacks and the evolution of cooperation

    NASA Astrophysics Data System (ADS)

    Milinski, Manfred

    1987-01-01

    The problems of achieving mutual cooperation can be formalized in a game called the Prisoner's Dilemma in which selfish defection is always more rewarding than cooperation1. If the two protagonists have a certain minimum probability of meeting again a strategy called TIT FOR TAT is very successful2. In TIT FOR TAT the player cooperates on the first move and thereafter does whatever the opponent did on the previous move. I have studied the behaviour of fish when confronting a potential predator, because conflicts can arise within pairs of fish in these circumstances which I argue resemble a series of games of Prisoner's Dilemma. Using a system of mirrors, single three-spined sticklebacks (Gasterosteus aculeatus) approaching a live predator were provided with either a simulated cooperating companion or a simulated defecting one. In both cases the test fish behaved according to TIT FOR TAT supporting the hypothesis that cooperation can evolve among egoists.

  1. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    PubMed Central

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; Lupton, John M.; Boehme, Christoph

    2015-01-01

    Weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices, which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair's zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm. PMID:25868686

  2. Visible light induction of an electron paramagnetic resonance split signal in Photosystem II in the S(2) state reveals the importance of charges in the oxygen-evolving center during catalysis: a unifying model.

    PubMed

    Sjöholm, Johannes; Styring, Stenbjörn; Havelius, Kajsa G V; Ho, Felix M

    2012-03-13

    Cryogenic illumination of Photosystem II (PSII) can lead to the trapping of the metastable radical Y(Z)(•), the radical form of the redox-active tyrosine residue D1-Tyr161 (known as Y(Z)). Magnetic interaction between this radical and the CaMn(4) cluster of PSII gives rise to so-called split electron paramagnetic resonance (EPR) signals with characteristics that are dependent on the S state. We report here the observation and characterization of a split EPR signal that can be directly induced from PSII centers in the S(2) state through visible light illumination at 10 K. We further show that the induction of this split signal takes place via a Mn-centered mechanism, in the same way as when using near-infrared light illumination [Koulougliotis, D., et al. (2003) Biochemistry 42, 3045-3053]. On the basis of interpretations of these results, and in combination with literature data for other split signals induced under a variety of conditions (temperature and light quality), we propose a unified model for the mechanisms of split signal induction across the four S states (S(0), S(1), S(2), and S(3)). At the heart of this model is the stability or instability of the Y(Z)(•)(D1-His190)(+) pair that would be formed during cryogenic oxidation of Y(Z). Furthermore, the model is closely related to the sequence of transfers of protons and electrons from the CaMn(4) cluster during the S cycle and further demonstrates the utility of the split signals in probing the immediate environment of the oxygen-evolving center in PSII.

  3. Azimuthal Anisotropy beneath the Contiguous United States Revealed by Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Liu, K. H.; Yang, B.; Liu, Y.; Dahm, H. H.; Refayee, H. A.; Gao, S. S.

    2017-12-01

    We have produced a uniformly-measured XKS (including SKS, SKKS, and PKS) splitting database for the contiguous United States and adjacent areas. The database consists of about 30,000 pairs of splitting parameters from 3185 stations. Both the fast orientations and splitting times show systematic spatial variations. The vast majority of the fast orientations are in agreement with the absolute plate motion (APM) direction computed under a fixed hot-spot reference frame. Spatial coherency analysis of the splitting parameters indicates that for the majority of the study area, where a single layer of anisotropy with a horizontal axis of symmetry is inferred, the source of anisotropy is located in the rheologically transitional zone between the lithosphere and asthenosphere. Beneath the western U.S., the previously recognized semi-circular feature of the fast orientations has a much greater spatial coverage, extending to northern Mexico and the Rio Grande Rift. The fast orientations are parallel to the western, southern, and southeastern edges of the North American Craton and can be interpreted by simple shear strain associated with mantle flow around the cratonic keel. The combination of anisotropy induced by this around keel flow and the APM can effectively explain the E-W fast orientations beneath the southern margin of the North American Craton and NE U.S., as well as the nearly N-S fast orientations and small splitting times observed in the SE U.S. The splitting times show a systematic decrease from both the western and eastern U.S. toward the central U.S., where the thickness of the lithosphere is the largest in the study area. This trend can be explained by the reduced efficiency of anisotropy development at greater depth, as well as by the lack of around keel flow in the continental interior.

  4. Dialogue in the Support of Learning to Teach: A Case Study of a Mentor/Mentee Pair in a Teacher Education Programme

    ERIC Educational Resources Information Center

    Mosley Wetzel, Melissa; Taylor, Laura A.; Vlach, Saba Khan

    2017-01-01

    In this paper, we examine the role of reflection in teacher preparation, specifically within a mentoring relationship between cooperating and preservice teacher. We report findings from a case analysis of this pair who engaged in problem-posing dialogue within pre- and post-conferences around practice over one year of their work together in an…

  5. A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting

    NASA Astrophysics Data System (ADS)

    Dos Santos, Wayler S.; Rodriguez, Mariandry; Afonso, André S.; Mesquita, João P.; Nascimento, Lucas L.; Patrocínio, Antônio O. T.; Silva, Adilson C.; Oliveira, Luiz C. A.; Fabris, José D.; Pereira, Márcio C.

    2016-08-01

    The conversion of solar energy into hydrogen fuel by splitting water into photoelectrochemical cells (PEC) is an appealing strategy to store energy and minimize the extensive use of fossil fuels. The key requirement for efficient water splitting is producing a large band bending (photovoltage) at the semiconductor to improve the separation of the photogenerated charge carriers. Therefore, an attractive method consists in creating internal electrical fields inside the PEC to render more favorable band bending for water splitting. Coupling ferroelectric materials exhibiting spontaneous polarization with visible light photoactive semiconductors can be a likely approach to getting higher photovoltage outputs. The spontaneous electric polarization tends to promote the desirable separation of photogenerated electron- hole pairs and can produce photovoltages higher than that obtained from a conventional p-n heterojunction. Herein, we demonstrate that a hole inversion layer induced by a ferroelectric Bi4V2O11 perovskite at the n-type BiVO4 interface creates a virtual p-n junction with high photovoltage, which is suitable for water splitting. The photovoltage output can be boosted by changing the polarization by doping the ferroelectric material with tungsten in order to produce the relatively large photovoltage of 1.39 V, decreasing the surface recombination and enhancing the photocurrent as much as 180%.

  6. High spin states in 162Lu

    NASA Astrophysics Data System (ADS)

    Gupta, S. L.; Pancholi, S. C.; Juneja, P.; Mehta, D.; Kumar, Ashok; Bhowmik, R. K.; Muralithar, S.; Rodrigues, G.; Singh, R. P.

    1997-09-01

    An experimental investigation of the odd-odd 162Lu nucleus, following the 148Sm(19F,5n) reaction at beam energy Elab=112 MeV, has been performed through in-beam gamma-ray spectroscopy. It revealed three signature-split bands. The yrast band based on πh11/2⊗νi13/2 configuration exhibits anomalous signature splitting (the unfavored signature Routhian lying lower than the favored one) whose magnitude Δe'~25 keV, is considerably reduced in contrast to sizable normal signature splitting Δe'~125 and 60 keV observed in the yrast πh11/2 bands of the neighboring odd-A 161,163Lu nuclei, respectively. The signature inversion in this band occurs at spin ~20ħ (frequency=0.37 MeV). The second signature-split band, observed above the band crossing associated with the alignment of a pair of i13/2 quasineutrons, is a band based on the four-quasiparticle [πh11/2[523]7/2-⊗νh9/2[521]3/2-⊗(νi13/2)2], i.e., EABAp(Bp), configuration. The third signature-split band is also likely to be a four-quasiparticle band with configuration similar to the second band but involving F quasineutron, i.e., FABAp(Bp). The experimental results are discussed in comparison with the existing data in the neighboring nuclei and in the framework of the cranking shell model.

  7. A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting

    PubMed Central

    dos Santos, Wayler S.; Rodriguez, Mariandry; Afonso, André S.; Mesquita, João P.; Nascimento, Lucas L.; Patrocínio, Antônio O. T.; Silva, Adilson C.; Oliveira, Luiz C. A.; Fabris, José D.; Pereira, Márcio C.

    2016-01-01

    The conversion of solar energy into hydrogen fuel by splitting water into photoelectrochemical cells (PEC) is an appealing strategy to store energy and minimize the extensive use of fossil fuels. The key requirement for efficient water splitting is producing a large band bending (photovoltage) at the semiconductor to improve the separation of the photogenerated charge carriers. Therefore, an attractive method consists in creating internal electrical fields inside the PEC to render more favorable band bending for water splitting. Coupling ferroelectric materials exhibiting spontaneous polarization with visible light photoactive semiconductors can be a likely approach to getting higher photovoltage outputs. The spontaneous electric polarization tends to promote the desirable separation of photogenerated electron- hole pairs and can produce photovoltages higher than that obtained from a conventional p-n heterojunction. Herein, we demonstrate that a hole inversion layer induced by a ferroelectric Bi4V2O11 perovskite at the n-type BiVO4 interface creates a virtual p-n junction with high photovoltage, which is suitable for water splitting. The photovoltage output can be boosted by changing the polarization by doping the ferroelectric material with tungsten in order to produce the relatively large photovoltage of 1.39 V, decreasing the surface recombination and enhancing the photocurrent as much as 180%. PMID:27503274

  8. Completion of the mitochondrial genome sequence of onion (Allium cepa L.) containing the CMS-S male-sterile cytoplasm and identification of an independent event of the ccmF N gene split.

    PubMed

    Kim, Bongju; Kim, Kyunghee; Yang, Tae-Jin; Kim, Sunggil

    2016-11-01

    Cytoplasmic male-sterility (CMS) conferred by the CMS-S cytoplasm has been most commonly used for onion (Allium cepa L.) F 1 hybrid seed production. We first report the complete mitochondrial genome sequence containing CMS-S cytoplasm in this study. Initially, seven contigs were de novo assembled from 150-bp paired-end raw reads produced from the total genomic DNA using the Illumina NextSeq500 platform. These contigs were connected into a single circular genome consisting of 316,363 bp (GenBank accession: KU318712) by PCR amplification. Although all 24 core protein-coding genes were present, no ribosomal protein-coding genes, except rps12, were identified in the onion mitochondrial genome. Unusual trans-splicing of the cox2 gene was verified, and the cox1 gene was identified as part of the chimeric orf725 gene, which is a candidate gene responsible for inducing CMS. In addition to orf725, two small chimeric genes were identified, but no transcripts were detected for these two open reading frames. Thirteen chloroplast-derived sequences, with sizes of 126-13,986 bp, were identified in the intergenic regions. Almost 10 % of the onion mitochondrial genome was composed of repeat sequences. The vast majority of repeats were short repeats of <100 base pairs. Interestingly, the gene encoding ccmF N was split into two genes. The ccmF N gene split is first identified outside the Brassicaceae family. The breakpoint in the onion ccmF N gene was different from that of other Brassicaceae species. This split of the ccmF N gene was also present in 30 other Allium species. The complete onion mitochondrial genome sequence reported in this study would be fundamental information for elucidation of onion CMS evolution.

  9. [The study of complex-formation of DNA with the antimicrobial drug decamethoxine].

    PubMed

    Sorokin, V A; Blagoĭ, Iu P; Valeev, V A; Gladchenko, G O; Sukhodub, L F; Volianskiĭ, Iu L

    1990-01-01

    The interaction of effective antibacterial drug decametoxyn with natural DNA was studied by UV-spectroscopy. Decametoxyn shows a specificity to nucleotides: it decreases the cooperativity of melting and the thermal stability of DNA parts enriched by AT pairs. The characteristics of the helix-coil transition on the DNA parts enriched by GC-pairs are invariable. Interaction with AT-pairs results in their partial or complete melting at room temperature, followed by intermolecule aggregation. Interacting with phosphates decametoxyn manifests itself not as a dication but as two single-charged ions.

  10. Novel voltage signal at proximity-induced superconducting transition temperature in gold nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Tang, JunXiong; Wang, ZiQiao; Sun, Yi; Sun, QingFeng; Chan, Moses H. W.

    2018-08-01

    We observed a novel voltage peak in the proximity-induced superconducting gold (Au) nanowire while cooling the sample through the superconducting transition temperature. The voltage peak turned dip during warming. The voltage peak or dip was found to originate respectively from the emergence or vanishing of the proximity-induced superconductivity in the Au nanowire. The amplitude of the voltage signal depends on the temperature scanning rate, and it cannot be detected when the temperature is changed slower than 0.03 K/min. This transient feature suggests the non-equilibrium property of the effect. Ginzburg-Landau model clarified the voltage peak by considering the emergence of Cooper pairs of relatively lower free energy in superconducting W contact and the non-equilibrium diffusion of Cooper pairs and quasiparticles.

  11. A new approach to detecting gravitational waves via the coupling of gravity to the zero-point energy of the phonon modes of a superconductor

    NASA Astrophysics Data System (ADS)

    Inan, Nader A.

    The response of a superconductor to a gravitational wave is shown to obey a London-like constituent equation. The Cooper pairs are described by the Ginzburg-Landau free energy density embedded in curved spacetime. The lattice ions are modeled by quantum harmonic oscillators characterized by quasi-energy eigenvalues. This formulation is shown to predict a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is modulated by the gravitational wave. It is also shown that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a “charge separation effect” which can be used to detect the passage of a gravitational wave.

  12. Mesoscopic pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes

    2017-12-01

    We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.

  13. New predictions on meson decays from string splitting

    NASA Astrophysics Data System (ADS)

    Bigazzi, Francesco; Cotrone, Aldo L.

    2006-11-01

    We study certain exclusive decays of high spin mesons into mesons in models of large Nc Yang-Mills with few flavors at strong coupling using string theory. The rate of the process is calculated by studying the splitting of a macroscopic string on the relevant dual gravity backgrounds. In the leading channel for the decay of heavy quarkonium into two open-heavy quark states, one of the two produced mesons has much larger spin than the other. In this channel the decay rate is practically independent on the spin and has a mild dependence on the mass of the heavy quarks. Moreover, it is only power-like suppressed with the mass of the produced quark-anti quark pair. We also reconsider decays of high spin mesons made up of light quarks, confirming the linear dependence of the rate on the mass of the decaying meson. As a bonus of our computation, we provide a formula for the splitting rate of a macroscopic string lying on a Dp-brane in flat space.

  14. Role of superconducting energy gap in extended BCS-Bose crossover theory

    NASA Astrophysics Data System (ADS)

    Chávez, I.; García, L. A.; de Llano, M.; Grether, M.

    2017-10-01

    The generalized Bose-Einstein condensation (GBEC) theory of superconductivity (SC) is briefly surveyed. It hinges on three distinct new ingredients: (i) Treatment of Cooper pairs (CPs) as actual bosons since they obey Bose statistics, in contrast to BCS pairs which do not obey Bose commutation relations; (ii) inclusion of two-hole Cooper pairs (2hCPs) on an equal footing with two-electron Cooper pairs (2eCPs), thus making this a complete boson-fermion (BF) model; and (iii) inclusion in the resulting ternary ideal BF gas with particular BF vertex interactions that drive boson formation/disintegration processes. GBEC subsumes as special cases both BCS (having its 50-50 symmetry of both kinds of CPs) and ordinary BEC theories (having no 2hCPs), as well as the now familiar BCS-Bose crossover theory. We extended the crossover theory with the explicit inclusion of 2hCPs and construct a phase diagram of Tc/TF versus n/nf, where Tc and TF are the critical and Fermi temperatures, n is the total number density and nf that of unbound electrons at T = 0. Also, with this extended crossover one can construct the energy gap Δ(T)/Δ(0) versus T/Tc for some elemental SCs by solving at least two equations numerically: a gap-like and a number equation. In 50-50 symmetry, the energy gap curve agrees quite well with experimental data. But ignoring 2hCPs altogether leads to the gap curve falling substantially below that with 50-50 symmetry which already fits the data quite well, showing that 2hCPs are indispensable to describe SCs.

  15. Effects of Individual's Self-Examination on Cooperation in Prisoner's Dilemma Game

    NASA Astrophysics Data System (ADS)

    Guan, Jian-Yue; Sun, Jin-Tu; Wang, Ying-Hai

    We study a spatial evolutionary prisoner's dilemma game on regular network's one-dimensional regular ring and two-dimensional square lattice. The individuals located on the sites of networks can either cooperate with their neighbors or defect. The effects of individual's self-examination are introduced. Using Monte Carlo simulations and pair approximation method, we investigate the average density of cooperators in the stationary state for various values of payoff parameters b and the time interval Δt. The effects of the fraction p of players in the system who are using the self-examination on cooperation are also discussed. It is shown that compared with the case of no individual's self-examination, the persistence of cooperation is inhibited when the payoff parameter b is small and at certain Δt (Δt > 0) or p (p > 0), cooperation is mostly inhibited, while when b is large, the emergence of cooperation can be remarkably enhanced and mostly enhanced at Δt = 0 or p = 1.

  16. Strong inter-population cooperation leads to partner intermixing in microbial communities

    DOE PAGES

    Momeni, Babak; Brileya, Kristen A.; Fields, Matthew W.; ...

    2013-01-22

    Patterns of spatial positioning of individuals within microbial communities are often critical to community function. However, understanding patterning in natural communities is hampered by the multitude of cell–cell and cell–environment interactions as well as environmental variability. Here, through simulations and experiments on communities in defined environments, we examined how ecological interactions between two distinct partners impacted community patterning. We found that in strong cooperation with spatially localized large fitness benefits to both partners, a unique pattern is generated: partners spatially intermixed by appearing successively on top of each other, insensitive to initial conditions and interaction dynamics. Intermixing was experimentally observedmore » in two obligatory cooperative systems: an engineered yeast community cooperating through metabolite-exchanges and a methane-producing community cooperating through redox-coupling. Even in simulated communities consisting of several species, most of the strongly-cooperating pairs appeared intermixed. Thus, when ecological interactions are the major patterning force, strong cooperation leads to partner intermixing.« less

  17. Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki

    In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less

  18. Superconducting proximity in three-dimensional Dirac materials: Odd-frequency, pseudoscalar, pseudovector, and tensor-valued superconducting orders

    NASA Astrophysics Data System (ADS)

    Faraei, Zahra; Jafari, S. A.

    2017-10-01

    We find that a conventional s -wave superconductor in proximity to a three-dimensional Dirac material (3DDM), to all orders of perturbation in tunneling, induces a combination of s - and p -wave pairing only. We show that the Lorentz invariance of the superconducting pairing prevents the formation of Cooper pairs with higher orbital angular momenta in the 3DDM. This no-go theorem acquires stronger form when the probability of tunneling from the conventional superconductor to positive and negative energy states of 3DDM are equal. In this case, all the p -wave contribution except for the lowest order, identically vanish and hence we obtain an exact result for the induced p -wave superconductivity in 3DDM. Fierz decomposing the superconducting matrix we find that the temporal component of the vector superconducting order and the spatial components of the pseudovector order have odd-frequency pairing symmetry. We find that the latter is odd with respect to exchange of position and chirality of the electrons in the Cooper pair and is a spin-triplet, which is necessary for NMR detection of such an exotic pseudovector pairing. Moreover, we show that the tensorial order breaks into a polar vector and an axial vector and both of them have conventional pairing symmetry except for being a spin triplet. According to our study, for gapless 3DDM, the tensorial superconducting order will be the only order that is odd with respect to the chemical potential μ . Therefore we predict that a transverse p -n junction binds Majorana fermions. This effect can be used to control the neutral Majorana fermions with electric fields.

  19. Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal

    DOE PAGES

    Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki; ...

    2018-04-06

    In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less

  20. Pairing versus phase coherence of doped holes in distinct quantum spin backgrounds

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Sheng, D. N.; Weng, Zheng-Yu

    2018-03-01

    We examine the pairing structure of holes injected into two distinct spin backgrounds: a short-range antiferromagnetic phase versus a symmetry protected topological phase. Based on density matrix renormalization group (DMRG) simulation, we find that although there is a strong binding between two holes in both phases, phase fluctuations can significantly influence the pair-pair correlation depending on the spin-spin correlation in the background. Here the phase fluctuation is identified as an intrinsic string operator nonlocally controlled by the spins. We show that while the pairing amplitude is generally large, the coherent Cooper pairing can be substantially weakened by the phase fluctuation in the symmetry-protected topological phase, in contrast to the short-range antiferromagnetic phase. It provides an example of a non-BCS mechanism for pairing, in which the paring phase coherence is determined by the underlying spin state self-consistently, bearing an interesting resemblance to the pseudogap physics in the cuprate.

  1. Lower extremity sagittal joint moment production during split-belt treadmill walking

    PubMed Central

    Roemmich, Ryan T.; Stegemöller, Elizabeth L.; Hass, Chris J.

    2012-01-01

    The split-belt treadmill (SBT) has recently been used to rehabilitate locomotor asymmetries in clinical populations. However, the joint mechanics produced while walking on a SBT are not well-understood. The purpose of this study was to investigate the lower extremity sagittal joint moments produced by each limb during SBT walking and provide insight as to how these joint moment patterns may be useful in rehabilitating unilateral gait deficits. Thirteen healthy young volunteers walked on the SBT with the belts tied and in a “SPLIT” session in which one belt moved twice as fast as the other. Sagittal lower extremity joint moment and ground reaction force impulses were then calculated over the braking and propulsive phases of the gait cycle. Paired t-tests were performed to analyze magnitude differences between conditions (i.e. the fast and slow limbs during SPLIT vs. the same limb during tied-belt walking) and between the fast and slow limbs during SPLIT. During the SPLIT session, the fast limb produced higher ground reaction force and ankle moment impulses during the propulsive and braking phases, and lower knee moment impulses during the propulsive phase when compared to the slow limb. The knee moment impulse was also significantly higher during braking in the slow limb than in the fast limb. The mechanics of each limb during the SPLIT session also differed from the mechanics observed when the belt speeds were tied. Based on these findings, we suggest that each belt may have intrinsic value in rehabilitating specific unilateral locomotor deficits. PMID:22985473

  2. Eu/RG absorption and excitation spectroscopy in the solid rare gases: state dependence of crystal field splitting and Jahn-Teller coupling.

    PubMed

    Byrne, Owen; McCaffrey, John G

    2011-03-28

    Absorption spectroscopy recorded for annealed samples of matrix-isolated atomic europium reveals a pair of thermally stable sites in Ar and Kr while a single site exists in Xe. Plots of the matrix shifts of the visible s → p bands versus host polarizability, allowed the association of the single site in Xe and the blue sites in Ar and Kr. On the basis of the similar ground state bond lengths expected for the Eu-rare gas (RG) diatomics and the known Na-RG molecules, the blue sites are attributed to Eu occupancy in the smaller tetra-vacancy while the red sites are proposed to arise from hexa-vacancy sites. Both sites are of cubic symmetry, consistent with the pronounced Jahn-Teller structure present on the y(8)P ← a(8)S(7/2) transition for these bands in the three hosts studied. Site-selective excitation spectroscopy has been used to reanalyze complex absorption spectra previously published by Jakob et al. [Phys. Lett. A 57, 67 (1976)] for the near-UV f → d transitions. On the basis that a pair of thermally stable sites exist in solid argon, the occurrence of crystal field splitting has been identified to occur for the J ≥ 5/2 level of the (8)P state when isolated in these two sites with cubic symmetry. From a detailed lineshape analysis, the magnitude of the crystal field splittings on the J = 5/2 level in Ar is found to be 105 and 123 cm(-1) for the red and blue sites, respectively.

  3. [Late results following surgical correction of syndactyly and symbrachydactyly].

    PubMed

    Deutinger, M; Mandl, H; Frey, M; Holle, J; Freilinger, G

    1989-02-01

    Growth and the type of surgical treatment of the hand play an important role in the results of surgery in children. 29 patients have been operated on because of syndactyly and symbrachydactyly and were controlled. The following parameters were assessed: kind of incision and skin graft, functional results, x-ray to examine the skeleton and the depth of the commissure, colour of the skin graft and use of the hand. After operation of syndactyly all patients were able to use their hands normally, although full extend of flexion and extension was achieved only in 20 of 22 hands. In 5 divided pairs of fingers there was recurrence of syndactyly. In all cases except one, a split thickness skin graft has been used. After operative treatment of symbrachydactyly and complex syndactyly, full extent of flexion was achieved in 13 of 19 hands, in 6 hands the range of flexion was incomplete because of skeleton abnormalities. Recurrence occurred in 9 divided pairs of fingers; in 7 cases, a split thickness skin graft had been used. Despite this, all patients were able to use their hands normally. The use of split thickness skin grafts resulted in a 60% recurrence rate, whereas the use of full thickness skin graft led merely to 7.5% recurrence rate. Our results show the advantage of the full thickness skin graft. As a consequence, full thickness skin graft should be used in all cases. Furthermore, the operation should be performed at an early age, if fingers of unequal length have to be separated. Zig-zag incision should be used in all cases.

  4. Improving detection of copy-number variation by simultaneous bias correction and read-depth segmentation.

    PubMed

    Szatkiewicz, Jin P; Wang, WeiBo; Sullivan, Patrick F; Wang, Wei; Sun, Wei

    2013-02-01

    Structural variation is an important class of genetic variation in mammals. High-throughput sequencing (HTS) technologies promise to revolutionize copy-number variation (CNV) detection but present substantial analytic challenges. Converging evidence suggests that multiple types of CNV-informative data (e.g. read-depth, read-pair, split-read) need be considered, and that sophisticated methods are needed for more accurate CNV detection. We observed that various sources of experimental biases in HTS confound read-depth estimation, and note that bias correction has not been adequately addressed by existing methods. We present a novel read-depth-based method, GENSENG, which uses a hidden Markov model and negative binomial regression framework to identify regions of discrete copy-number changes while simultaneously accounting for the effects of multiple confounders. Based on extensive calibration using multiple HTS data sets, we conclude that our method outperforms existing read-depth-based CNV detection algorithms. The concept of simultaneous bias correction and CNV detection can serve as a basis for combining read-depth with other types of information such as read-pair or split-read in a single analysis. A user-friendly and computationally efficient implementation of our method is freely available.

  5. Ion Pairs or Neutral Molecule Adducts? Cooperativity in Hydrogen Bonding

    ERIC Educational Resources Information Center

    DeKock, Roger L.; Schipper, Laura A.; Dykhouse, Stephanie C.; Heeringa, Lee P.; Brandsen, Benjamin M.

    2009-01-01

    We performed theoretical studies on the systems NH[subscript 3] times HF times mH[subscript 2]O, NH[subscript 3] times HCl times mH[subscript 2]O, with m = 0, 1, 2, and 6. The molecules with m = 0 form hydrogen-bonded adducts with little tendency to form an ion-pair structure. The molecule NH[subscript 3] times HCl times H[subscript 2]O cannot be…

  6. Photocrystallographic observation of halide-bridged intermediates in halogen photoeliminations.

    PubMed

    Powers, David C; Anderson, Bryce L; Hwang, Seung Jun; Powers, Tamara M; Pérez, Lisa M; Hall, Michael B; Zheng, Shao-Liang; Chen, Yu-Sheng; Nocera, Daniel G

    2014-10-29

    Polynuclear transition metal complexes, which frequently constitute the active sites of both biological and chemical catalysts, provide access to unique chemical transformations that are derived from metal-metal cooperation. Reductive elimination via ligand-bridged binuclear intermediates from bimetallic cores is one mechanism by which metals may cooperate during catalysis. We have established families of Rh2 complexes that participate in HX-splitting photocatalysis in which metal-metal cooperation is credited with the ability to achieve multielectron photochemical reactions in preference to single-electron transformations. Nanosecond-resolved transient absorption spectroscopy, steady-state photocrystallography, and computational modeling have allowed direct observation and characterization of Cl-bridged intermediates (intramolecular analogues of classical ligand-bridged intermediates in binuclear eliminations) in halogen elimination reactions. On the basis of these observations, a new class of Rh2 complexes, supported by CO ligands, has been prepared, allowing for the isolation and independent characterization of the proposed halide-bridged intermediates. Direct observation of halide-bridged structures establishes binuclear reductive elimination as a viable mechanism for photogenerating energetic bonds.

  7. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure.

    PubMed

    Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S

    2016-05-21

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  8. Understanding Fomalhaut as a Cooper pair

    NASA Astrophysics Data System (ADS)

    Feng, F.; Jones, H. R. A.

    2018-03-01

    Fomalhaut is a nearby stellar system and has been found to be a triple based on astrometric observations. With new radial velocity and astrometric data, we study the association between Fomalhaut A, B, and C in a Bayesian framework, finding that the system is gravitationally bound or at least associated. Based on simulations of the system, we find that Fomalhaut C can be easily destabilized through combined perturbations from the Galactic tide and stellar encounters. Considering that observing the disruption of a triple is probably rare in the solar neighbourhood, we conclude that Fomalhaut C is a so-called `gravitational pair' of Fomalhaut A and B. Like the Cooper pair mechanism in superconductors, this phenomenon only appears once the orbital energy of a component becomes comparable with the energy fluctuations caused by the environment. Based on our simulations, we find (1) an upper limit of 8 km s-1 velocity difference is appropriate when selecting binary candidates, and (2) an empirical formula for the escape radius, which is more appropriate than tidal radius when measuring the stability of wide binaries.

  9. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    DOE PAGES

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; ...

    2015-04-14

    Here, weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices,more » which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair’s zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm.« less

  10. NOD-like receptor cooperativity in effector-triggered immunity.

    PubMed

    Griebel, Thomas; Maekawa, Takaki; Parker, Jane E

    2014-11-01

    Intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are basic elements of innate immunity in plants and animals. Whereas animal NLRs react to conserved microbe- or damage-associated molecular patterns, plant NLRs intercept the actions of diverse pathogen virulence factors (effectors). In this review, we discuss recent genetic and molecular evidence for functional NLR pairs, and discuss the significance of NLR self-association and heteromeric NLR assemblies in the triggering of downstream signaling pathways. We highlight the versatility and impact of cooperating NLR pairs that combine pathogen sensing with the initiation of defense signaling in both plant and animal immunity. We propose that different NLR receptor molecular configurations provide opportunities for fine-tuning resistance pathways and enhancing the host's pathogen recognition spectrum to keep pace with rapidly evolving microbial populations. Copyright © 2014. Published by Elsevier Ltd.

  11. Low-noise current amplifier based on mesoscopic Josephson junction.

    PubMed

    Delahaye, J; Hassel, J; Lindell, R; Sillanpää, M; Paalanen, M; Seppä, H; Hakonen, P

    2003-02-14

    We used the band structure of a mesoscopic Josephson junction to construct low-noise amplifiers. By taking advantage of the quantum dynamics of a Josephson junction, i.e., the interplay of interlevel transitions and the Coulomb blockade of Cooper pairs, we created transistor-like devices, Bloch oscillating transistors, with considerable current gain and high-input impedance. In these transistors, the correlated supercurrent of Cooper pairs is controlled by a small base current made up of single electrons. Our devices reached current and power gains on the order of 30 and 5, respectively. The noise temperature was estimated to be around 1 kelvin, but noise temperatures of less than 0.1 kelvin can be realistically achieved. These devices provide quantum-electronic building blocks that will be useful at low temperatures in low-noise circuit applications with an intermediate impedance level.

  12. Controlling the superconducting transition by spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Banerjee, N.; Ouassou, J. A.; Zhu, Y.; Stelmashenko, N. A.; Linder, J.; Blamire, M. G.

    2018-05-01

    Whereas considerable evidence exists for the conversion of singlet Cooper pairs into triplet Cooper pairs in the presence of inhomogeneous magnetic fields, recent theoretical proposals have suggested an alternative way to exert control over triplet generation: intrinsic spin-orbit coupling in a homogeneous ferromagnet coupled to a superconductor. Here, we proximity couple Nb to an asymmetric Pt/Co/Pt trilayer, which acts as an effective spin-orbit-coupled ferromagnet owing to structural inversion asymmetry. Unconventional modulation of the superconducting critical temperature as a function of in-plane and out-of-plane applied magnetic fields suggests the presence of triplets that can be controlled by the magnetic orientation of a single homogeneous ferromagnet. Our studies demonstrate an active role of spin-orbit coupling in controlling the triplets, an important step towards the realization of novel superconducting spintronic devices.

  13. Reproducing sterile neutrinos and the behavior of flavor oscillations with superconducting-magnetic proximity effects

    NASA Astrophysics Data System (ADS)

    Baker, Thomas E.

    2016-03-01

    The physics of a superconductor subjected to a magnetic field is known to be equivalent to neutrino oscillations. Examining the properties of singlet-triplet oscillations in the magnetic field, a sterile neutrino is suggested to be represented by singlet Cooper pairs and moderates flavor oscillations between three flavor neutrinos (triplet Cooper pairs). A superconductor-exchange spring system's rotating magnetization profile is used to simulate the mass-flavor oscillations in the neutrino case and the physics of neutrino oscillations are discussed. Connecting the condensed matter system and the particle physics system with this analogy may allow for the properties of the condensed matter system to inform neutrino experiments. Support is graciously acknowledged from the Pat Beckman Memorial Scholarship from the Orange County Chapter of the Achievement Rewards for College Scientists Foundation.

  14. dREAM co-operates with insulator-binding proteins and regulates expression at divergently paired genes

    PubMed Central

    Korenjak, Michael; Kwon, Eunjeong; Morris, Robert T.; Anderssen, Endre; Amzallag, Arnaud; Ramaswamy, Sridhar; Dyson, Nicholas J.

    2014-01-01

    dREAM complexes represent the predominant form of E2F/RBF repressor complexes in Drosophila. dREAM associates with thousands of sites in the fly genome but its mechanism of action is unknown. To understand the genomic context in which dREAM acts we examined the distribution and localization of Drosophila E2F and dREAM proteins. Here we report a striking and unexpected overlap between dE2F2/dREAM sites and binding sites for the insulator-binding proteins CP190 and Beaf-32. Genetic assays show that these components functionally co-operate and chromatin immunoprecipitation experiments on mutant animals demonstrate that dE2F2 is important for association of CP190 with chromatin. dE2F2/dREAM binding sites are enriched at divergently transcribed genes, and the majority of genes upregulated by dE2F2 depletion represent the repressed half of a differentially expressed, divergently transcribed pair of genes. Analysis of mutant animals confirms that dREAM and CP190 are similarly required for transcriptional integrity at these gene pairs and suggest that dREAM functions in concert with CP190 to establish boundaries between repressed/activated genes. Consistent with the idea that dREAM co-operates with insulator-binding proteins, genomic regions bound by dREAM possess enhancer-blocking activity that depends on multiple dREAM components. These findings suggest that dREAM functions in the organization of transcriptional domains. PMID:25053843

  15. Semantic processing in native and second language: evidence from hemispheric differences in fine and coarse semantic coding.

    PubMed

    Faust, Miriam; Ben-Artzi, Elisheva; Vardi, Nili

    2012-12-01

    Previous studies suggest that whereas the left hemisphere (LH) is involved in fine semantic processing, the right hemisphere (RH) is uniquely engaged in coarse semantic coding including the comprehension of distinct types of language such as figurative language, lexical ambiguity and verbal humor (e.g., Chiarello, 2003; Faust, 2012). The present study examined the patterns of hemispheric involvement in fine/coarse semantic processing in native and non-native languages using a split visual field priming paradigm. Thirty native Hebrew speaking students made lexical decision judgments of Hebrew and English target words preceded by strongly, weakly, or unrelated primes. Results indicated that whereas for Hebrew pairs, priming effect for the weakly-related word pairs was obtained only for RH presented target words, for English pairs, no priming effect for the weakly-related pairs emerged for either LH or RH presented targets, suggesting that coarse semantic coding is much weaker for a non-native than native language. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Contingent movement and cooperation evolve under generalized reciprocity

    PubMed Central

    Hamilton, Ian M; Taborsky, Michael

    2005-01-01

    How cooperation and altruism among non-relatives can persist in the face of cheating remains a key puzzle in evolutionary biology. Although mechanisms such as direct and indirect reciprocity and limited movement have been put forward to explain such cooperation, they cannot explain cooperation among unfamiliar, highly mobile individuals. Here we show that cooperation may be evolutionarily stable if decisions taken to cooperate and to change group membership are both dependent on anonymous social experience (generalized reciprocity). We find that a win–stay, lose–shift rule (where shifting is either moving away from the group or changing tactics within the group after receiving defection) evolves in evolutionary simulations when group leaving is moderately costly (i.e. the current payoff to being alone is low, but still higher than that in a mutually defecting group, and new groups are rarely encountered). This leads to the establishment of widespread cooperation in the population. If the costs of group leaving are reduced, a similar group-leaving rule evolves in association with cooperation in pairs and exploitation of larger anonymous groups. We emphasize that mechanisms of assortment within populations are often behavioural decisions and should not be considered independently of the evolution of cooperation. PMID:16191638

  17. Costly Advertising and the Evolution of Cooperation

    PubMed Central

    Brede, Markus

    2013-01-01

    In this paper, I investigate the co-evolution of fast and slow strategy spread and game strategies in populations of spatially distributed agents engaged in a one off evolutionary dilemma game. Agents are characterized by a pair of traits, a game strategy (cooperate or defect) and a binary ‘advertising’ strategy (advertise or don’t advertise). Advertising, which comes at a cost , allows investment into faster propagation of the agents’ traits to adjacent individuals. Importantly, game strategy and advertising strategy are subject to the same evolutionary mechanism. Via analytical reasoning and numerical simulations I demonstrate that a range of advertising costs exists, such that the prevalence of cooperation is significantly enhanced through co-evolution. Linking costly replication to the success of cooperators exposes a novel co-evolutionary mechanism that might contribute towards a better understanding of the origins of cooperation-supporting heterogeneity in agent populations. PMID:23861752

  18. Costly advertising and the evolution of cooperation.

    PubMed

    Brede, Markus

    2013-01-01

    In this paper, I investigate the co-evolution of fast and slow strategy spread and game strategies in populations of spatially distributed agents engaged in a one off evolutionary dilemma game. Agents are characterized by a pair of traits, a game strategy (cooperate or defect) and a binary 'advertising' strategy (advertise or don't advertise). Advertising, which comes at a cost [Formula: see text], allows investment into faster propagation of the agents' traits to adjacent individuals. Importantly, game strategy and advertising strategy are subject to the same evolutionary mechanism. Via analytical reasoning and numerical simulations I demonstrate that a range of advertising costs exists, such that the prevalence of cooperation is significantly enhanced through co-evolution. Linking costly replication to the success of cooperators exposes a novel co-evolutionary mechanism that might contribute towards a better understanding of the origins of cooperation-supporting heterogeneity in agent populations.

  19. Learning to Teach as Situated Learning: An Examination of Student Teachers as Legitimate Peripheral Participants in Cooperating Teachers' Classrooms

    NASA Astrophysics Data System (ADS)

    McDonald, Eric J.

    Learning to teach science well is a complex endeavor and student teaching provides a time for emerging teachers to learn how to reason in this uncertain landscape. Many pre-service teachers have rated student teaching as a very important part of their teacher education program (Koerner, Rust, & Baumgartner, 2002; Levine, 2006) and there is little doubt that this aspect of teacher preparation has a great impact (Wilson, Floden, Ferrinin-Mundy, 2001). It is surprising, therefore, that the interaction between the cooperating teacher and student teacher represents a gap in the literature (Cochran-Smith & Zeichner, 2005). In fact, little effort has been made in science education "to understand the contributions of cooperating teachers and teacher educators" (p. 322). Research is needed into not only how teacher preparation programs can help pre-service teachers make this transition from student teacher to effective teacher but also how the expertise of the cooperating teacher can be a better articulated part of the development of the student teacher. This instrumental case study examines the nature and substance of the cooperating teacher/student teacher conversations and the changes in those conversations over time. Using the theoretical framework of situated learning (Lave & Wenger, 1991; Lave, 1996) the movement of the student teacher from their position on the periphery of practice toward a more central role is examined. Three cooperating teacher/student teacher pairs provided insight into this important time with case data coming from pre and post interviews, baseline surveys, weekly update surveys, and recorded conversations from the pair during their time together. Four major themes emerged from the cases and from cross case comparisons with implications for student teachers regarding how they react to greater responsibility, cooperating teachers regarding how they give access to the community of practice, and the teacher preparation community regarding the role it plays in helping to facilitate this process.

  20. A Keplerian-based Hamiltonian splitting for gravitational N-body simulations

    NASA Astrophysics Data System (ADS)

    Gonçalves Ferrari, G.; Boekholt, T.; Portegies Zwart, S. F.

    2014-05-01

    We developed a Keplerian-based Hamiltonian splitting for solving the gravitational N-body problem. This splitting allows us to approximate the solution of a general N-body problem by a composition of multiple, independently evolved two-body problems. While the Hamiltonian splitting is exact, we show that the composition of independent two-body problems results in a non-symplectic non-time-symmetric first-order map. A time-symmetric second-order map is then constructed by composing this basic first-order map with its self-adjoint. The resulting method is precise for each individual two-body solution and produces quick and accurate results for near-Keplerian N-body systems, like planetary systems or a cluster of stars that orbit a supermassive black hole. The method is also suitable for integration of N-body systems with intrinsic hierarchies, like a star cluster with primordial binaries. The superposition of Kepler solutions for each pair of particles makes the method excellently suited for parallel computing; we achieve ≳64 per cent efficiency for only eight particles per core, but close to perfect scaling for 16 384 particles on a 128 core distributed-memory computer. We present several implementations in SAKURA, one of which is publicly available via the AMUSE framework.

  1. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia.

    PubMed

    Campbell, Matthew A; Van Leuven, James T; Meister, Russell C; Carey, Kaitlin M; Simon, Chris; McCutcheon, John P

    2015-08-18

    Comparative genomics from mitochondria, plastids, and mutualistic endosymbiotic bacteria has shown that the stable establishment of a bacterium in a host cell results in genome reduction. Although many highly reduced genomes from endosymbiotic bacteria are stable in gene content and genome structure, organelle genomes are sometimes characterized by dramatic structural diversity. Previous results from Candidatus Hodgkinia cicadicola, an endosymbiont of cicadas, revealed that some lineages of this bacterium had split into two new cytologically distinct yet genetically interdependent species. It was hypothesized that the long life cycle of cicadas in part enabled this unusual lineage-splitting event. Here we test this hypothesis by investigating the structure of the Ca. Hodgkinia genome in one of the longest-lived cicadas, Magicicada tredecim. We show that the Ca. Hodgkinia genome from M. tredecim has fragmented into multiple new chromosomes or genomes, with at least some remaining partitioned into discrete cells. We also show that this lineage-splitting process has resulted in a complex of Ca. Hodgkinia genomes that are 1.1-Mb pairs in length when considered together, an almost 10-fold increase in size from the hypothetical single-genome ancestor. These results parallel some examples of genome fragmentation and expansion in organelles, although the mechanisms that give rise to these extreme genome instabilities are likely different.

  2. Efficient Visible-Light-Driven Z-Scheme Overall Water Splitting Using a MgTa2O(6-x)N(y)/TaON Heterostructure Photocatalyst for H2 Evolution.

    PubMed

    Chen, Shanshan; Qi, Yu; Hisatomi, Takashi; Ding, Qian; Asai, Tomohiro; Li, Zheng; Ma, Su Su Khine; Zhang, Fuxiang; Domen, Kazunari; Li, Can

    2015-07-13

    An (oxy)nitride-based heterostructure for powdered Z-scheme overall water splitting is presented. Compared with the single MgTa2O(6-x)N(y) or TaON photocatalyst, a MgTa2O(6-x)N(y)/TaON heterostructure fabricated by a simple one-pot nitridation route was demonstrated to effectively suppress the recombination of carriers by efficient spatial charge separation and decreased defect density. By employing Pt-loaded MgTa2O(6-x)N(y)/TaON as a H2-evolving photocatalyst, a Z-scheme overall water splitting system with an apparent quantum efficiency (AQE) of 6.8% at 420 nm was constructed (PtO(x)-WO3 and IO3(-)/I(-) pairs were used as an O2-evolving photocatalyst and a redox mediator, respectively), the activity of which is circa 7 or 360 times of that using Pt-TaON or Pt-MgTa2O(6-x)N)y) as a H2-evolving photocatalyst, respectively. To the best of our knowledge, this is the highest AQE among the powdered Z-scheme overall water splitting systems ever reported. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation.

    PubMed

    Chung, Hung-Pin; Huang, Kuang-Hsu; Wang, Kai; Yang, Sung-Lin; Yang, Shih-Yuan; Sung, Chun-I; Solntsev, Alexander S; Sukhorukov, Andrey A; Neshev, Dragomir N; Chen, Yen-Hung

    2017-12-04

    Spontaneous parametric down-conversion (SPDC) is a widely used method to generate entangled photons, enabling a range of applications from secure communication to tests of quantum physics. Integrating SPDC on a chip provides interferometric stability, allows to reduce a physical footprint, and opens a pathway to true scalability. However, dealing with different photon polarizations and wavelengths on a chip presents a number of challenging problems. In this work, we demonstrate an on-chip polarization beam-splitter based on z-cut titanium-diffused lithium niobate asymmetric adiabatic couplers (AAC) designed for integration with a type-II SPDC source. Our experimental measurements reveal unique polarization beam-splitting regime with the ability to tune the splitting ratios based on wavelength. In particular, we measured a splitting ratio of 17 dB over broadband regions (>60 nm) for both H- and V-polarized lights and a specific 50%/50% splitting ratio for a cross-polarized photon pair from the AAC. The results show that such a system can be used for preparing different quantum polarization-path states that are controllable by changing the phase-matching conditions in the SPDC over a broad band. Furthermore, we propose a fully integrated electro-optically tunable type-II SPDC polarization-path-entangled state preparation circuit on a single lithium niobate photonic chip.

  4. Pairing induced superconductivity in holography

    NASA Astrophysics Data System (ADS)

    Bagrov, Andrey; Meszena, Balazs; Schalm, Koenraad

    2014-09-01

    We study pairing induced superconductivity in large N strongly coupled systems at finite density using holography. In the weakly coupled dual gravitational theory the mechanism is conventional BCS theory. An IR hard wall cut-off is included to ensure that we can controllably address the dynamics of a single confined Fermi surface. We address in detail the interplay between the scalar order parameter field and fermion pairing. Adding an explicitly dynamical scalar operator with the same quantum numbers as the fermion-pair, the theory experiences a BCS/BEC crossover controlled by the relative scaling dimensions. We find the novel result that this BCS/BEC crossover exposes resonances in the canonical expectation value of the scalar operator. This occurs not only when the scaling dimension is degenerate with the Cooper pair, but also with that of higher derivative paired operators. We speculate that a proper definition of the order parameter which takes mixing with these operators into account stays finite nevertheless.

  5. Universal spectral signatures in pnictides and cuprates: the role of quasiparticle-pair coupling.

    PubMed

    Sacks, William; Mauger, Alain; Noat, Yves

    2017-11-08

    Understanding the physical properties of a large variety of high-T c superconductors (SC), the cuprate family as well as the more recent iron-based superconductors, is still a major challenge. In particular, these materials exhibit the 'peak-dip-hump' structure in the quasiparticle density of states (DOS). The origin of this structure is explained within our pair-pair interaction (PPI) model: The non-superconducting state consists of incoherent pairs, a 'Cooper-pair glass' which, due to the PPI, undergoes a Bose-like condensation below T c to the coherent SC state. We derive the equations of motion for the quasiparticle operators showing that the DOS 'peak-dip-hump' is caused by the coupling between quasiparticles and excited pair states, or 'super-quasiparticles'. The renormalized SC gap function becomes energy-dependent and non retarded, reproducing accurately the experimental spectra of both pnictides and cuprates, despite the large difference in gap value.

  6. Electronic spectrum of non-tetrahedral acceptors in CdTe:Cl and CdTe:Bi,Cl single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivobok, V. S., E-mail: krivobok@lebedev.ru; Moscow Institute of Physics and Technology; Nikolaev, S. N.

    2016-02-07

    The electronic spectra of complex acceptors in compensated CdTe:Cl, CdTe:Ag,Cl, and CdTe:Bi,Cl single crystals are studied using low-temperature photoluminescence (PL) measurements under both nonresonant and resonant excitation of distant donor–acceptor pairs (DAP). The wavelength modulation of the excitation source combined with the analysis of the differential PL signal is used to enhance narrow spectral features obscured because of inhomogeneous line broadening and/or excitation transfer for selectively excited DAPs. For the well-known tetrahedral (T{sub D}) Ag{sub Cd} acceptor, the energies of four excited states are measured, and the values obtained are shown to be in perfect agreement with the previous data.more » Moreover, splitting between the 2P{sub 3/2} (Γ{sub 8}) and 2S{sub 3/2} (Γ{sub 8}) states is clearly observed for Ag{sub Cd} centers located at a short distance (5–7 nm) from a hydrogen-like donor (Cl{sub Te}). This splitting results from the reduction of the T{sub D} symmetry taking place when the acceptor is a member of a donor–acceptor pair. For the Cl-related complex acceptor with an activation energy of ∼121 meV (A-center), the energies of eight excited states are measured. It is shown that this defect produces low-symmetry central-cell correction responsible for the strong splitting of S-like T{sub D} shells. The energy spectrum of the Bi-related shallow acceptor with an activation energy of ∼36 meV is measured as well. The spectrum obtained differs drastically from the hydrogen-like set of levels, which indicates the existence of repulsive low-symmetry perturbation of the hydrogen-like Coulomb potential. It is also shown that the spectra of selectively excited PL recorded for a macroscopic ensemble of distant donor–acceptor pairs allow one to detect the low symmetry of acceptors of a given type caused by their complex nature or by the Jahn–Teller distortion. This method does not require any additional (external) field and is applicable to acceptors in diverse zinc-blende compound semiconductors.« less

  7. Kinematics of reflections in subsurface offset and angle-domain image gathers

    NASA Astrophysics Data System (ADS)

    Dafni, Raanan; Symes, William W.

    2018-05-01

    Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry in the inversion scheme for a robust and successful convergence at the optimal velocity model.

  8. The Multiplicity of the Mitotic Centers and the Time-Course of Their Duplication and Separation

    PubMed Central

    Mazia, Daniel; Harris, Patricia J.; Bibring, Thomas

    1960-01-01

    In this study, the reproduction of the mitotic centers in the eggs of a sea urchin, Strongylocentrotus purpuratus and a sand dollar Dendraster excentricus has been studied by means of experimental designs that do not depend on the actual visualization of centrioles. The centers are defined in operational terms as potential poles. Blockage of mitosis by mercaptoethanol, it was found, inhibits the duplication of the centers, but does not inhibit the splitting and separation of centers that have already duplicated and thus potential poles could be realized as actual poles in multipolar divisions. At all times, the center is at least a duplex structure; that is, it contains two potential poles. The actual duplication process is the earliest event in a given mitotic cycle, taking place at very early interphase or in late telophase of the previous division. The splitting of the centers following duplication is a distinct process, dissociable from the duplication as such. Duplication and splitting normally occur at about the same time in the mitotic cycle, with a precession of the former. That is, as the two members of a pair of "old" centers split, each one gives rise to a new one, which remains associated with it until the next phase of splitting and duplication occurs. The results are consistent with what is termed a "generative" model of the self-reproduction of an intracellular body. According to this, the body does not immediately produce a full-fledged copy of itself, with simultaneous fission, but the primary duplication event involves only a part of the parent structure. This gives rise to a "germ" or "seed" which then grows to be equivalent to the parent body, and finally splits from it. PMID:19866563

  9. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  10. Split-Ring Resonator-Based Strain Sensor on Flexible Substrates for Glaucoma Detection

    NASA Astrophysics Data System (ADS)

    Ekinci, Gizem; Deniz Yalcinkaya, Arda; Dundar, Gunhan; Torun, Hamdi

    2016-10-01

    This paper presents split-ring resonator-based strain sensors designed and characterized for glaucoma detection application. The geometry of the sensor is optimized such that it can be embedded in a contact lens. Silver conductive paint is to form the sensors realized on flexible substrates made of cellulose acetate and latex rubber. The devices are excited and interrogated using a pair of monopole antennas and the characteristics of devices with different curvature profiles are obtained. The sensitivity of the device, i.e. the change in resonant frequency for a unit change in radius of curvature, on acetate film is calculated as -4.73 MHz/mm and the sensitivity of the device on latex is 33.2 MHz/mm. The results indicate that the demonstrated device is suitable for glaucoma diagnosis.

  11. MC-PDFT can calculate singlet-triplet splittings of organic diradicals

    NASA Astrophysics Data System (ADS)

    Stoneburner, Samuel J.; Truhlar, Donald G.; Gagliardi, Laura

    2018-02-01

    The singlet-triplet splittings of a set of diradical organic molecules are calculated using multiconfiguration pair-density functional theory (MC-PDFT), and the results are compared with those obtained by Kohn-Sham density functional theory (KS-DFT) and complete active space second-order perturbation theory (CASPT2) calculations. We found that MC-PDFT, even with small and systematically defined active spaces, is competitive in accuracy with CASPT2, and it yields results with greater accuracy and precision than Kohn-Sham DFT with the parent functional. MC-PDFT also avoids the challenges associated with spin contamination in KS-DFT. It is also shown that MC-PDFT is much less computationally expensive than CASPT2 when applied to larger active spaces, and this illustrates the promise of this method for larger diradical organic systems.

  12. Beyond BCS pairing in high-density neutron matter

    NASA Astrophysics Data System (ADS)

    Rios, A.; Ding, D.; Dussan, H.; Dickhoff, W. H.; Witte, S. J.; Polls, A.

    2018-01-01

    Pairing gaps in neutron matter need to be computed in a wide range of densities to address open questions in neutron star phenomenology. Traditionally, the Bardeen-Cooper-Schrieffer approach has been used to compute gaps from bare nucleon-nucleon interactions. Here, we incorporate the influence of short- and long-range correlations into pairing properties. Short-range correlations are treated including the appropriate fragmentation of single-particle states, and they suppress the gaps substantially. Long-range correlations dress the pairing interaction via density and spin modes, and provide a relatively small correction. We use three different interactions as a starting point to control for any systematic effects. Results are relevant for neutron-star cooling scenarios, in particular in view of the recent observational data on Cassiopeia A.

  13. Quad-Chip Double-Balanced Frequency Tripler

    NASA Technical Reports Server (NTRS)

    Lin, Robert H.; Ward, John S.; Bruneau, Peter J.; Mehdi, Imran; Thomas, Bertrand C.; Maestrini, Alain

    2010-01-01

    Solid-state frequency multipliers are used to produce tunable broadband sources at millimeter and submillimeter wavelengths. The maximum power produced by a single chip is limited by the electrical breakdown of the semiconductor and by the thermal management properties of the chip. The solution is to split the drive power to a frequency tripler using waveguides to divide the power among four chips, then recombine the output power from the four chips back into a single waveguide. To achieve this, a waveguide branchline quadrature hybrid coupler splits a 100-GHz input signal into two paths with a 90 relative phase shift. These two paths are split again by a pair of waveguide Y-junctions. The signals from the four outputs of the Y-junctions are tripled in frequency using balanced Schottky diode frequency triplers before being recombined with another pair of Y-junctions. A final waveguide branchline quadrature hybrid coupler completes the combination. Using four chips instead of one enables using four-times higher power input, and produces a nearly four-fold power output as compared to using a single chip. The phase shifts introduced by the quadrature hybrid couplers provide isolation for the input and output waveguides, effectively eliminating standing waves between it and surrounding components. This is accomplished without introducing the high losses and expense of ferrite isolators. A practical use of this technology is to drive local oscillators as was demonstrated around 300 GHz for a heterodyne spectrometer operating in the 2-3-THz band. Heterodyne spectroscopy in this frequency band is especially valuable for astrophysics due to the presence of a very large number of molecular spectral lines. Besides high-resolution radar and spectrographic screening applications, this technology could also be useful for laboratory spectroscopy.

  14. Determination of single-kidney glomerular filtration rate (GFR) with CT urography versus renal dynamic imaging Gates method.

    PubMed

    You, Shan; Ma, XianWu; Zhang, ChangZhu; Li, Qiang; Shi, WenWei; Zhang, Jing; Yuan, XiaoDong

    2018-03-01

    To present a single-kidney CT-GFR measurement and compare it with the renal dynamic imaging Gates-GFR. Thirty-six patients with hydronephrosis referred for CT urography and 99mTc-DTPA renal dynamic imaging were prospectively included. Informed consent was obtained from all patients. The CT urography protocol included non-contrast, nephrographic, and excretory phase imaging. The total CT-GFR was calculated by dividing the CT number increments of the total urinary system between the nephrographic and excretory phase by the products of iodine concentration in the aorta and the elapsed time, then multiplied by (1- Haematocrit). The total CT-GFR was then split into single-kidney CT-GFR by a left and right kidney proportionality factor. The results were compared with single-kidney Gates-GFR by using paired t-test, correlation analysis, and Bland-Altman plots. Paired difference between single-kidney CT-GFR (45.02 ± 13.91) and single-kidney Gates-GFR (51.21 ± 14.76) was 6.19 ± 5.63 ml/min, p<0.001, demonstrating 12.1% systematic underestimation with ±11.03 ml/min (±21.5%) measurement deviation. A good correlation was revealed between both measurements (r=0.87, p<0.001). The proposed single-kidney CT-GFR correlates and agrees well with the reference standard despite a systematic underestimation, therefore it could be a one-stop-shop for evaluating urinary tract morphology and split renal function. • A new CT method can assess split renal function • Only using images from CT urography and the value of haematocrit • A one-stop-shop CT technique without additional radiation dose.

  15. A non-canonical site reveals the cooperative mechanisms of microRNA-mediated silencing.

    PubMed

    Flamand, Mathieu N; Gan, Hin Hark; Mayya, Vinay K; Gunsalus, Kristin C; Duchaine, Thomas F

    2017-07-07

    Although strong evidence supports the importance of their cooperative interactions, microRNA (miRNA)-binding sites are still largely investigated as functionally independent regulatory units. Here, a survey of alternative 3΄UTR isoforms implicates a non-canonical seedless site in cooperative miRNA-mediated silencing. While required for target mRNA deadenylation and silencing, this site is not sufficient on its own to physically recruit miRISC. Instead, it relies on facilitating interactions with a nearby canonical seed-pairing site to recruit the Argonaute complexes. We further show that cooperation between miRNA target sites is necessary for silencing in vivo in the C. elegans embryo, and for the recruitment of the Ccr4-Not effector complex. Using a structural model of cooperating miRISCs, we identified allosteric determinants of cooperative miRNA-mediated silencing that are required for both embryonic and larval miRNA functions. Our results delineate multiple cooperative mechanisms in miRNA-mediated silencing and further support the consideration of target site cooperation as a fundamental characteristic of miRNA function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. A Subcarrier-Pair Based Resource Allocation Scheme Using Proportional Fairness for Cooperative OFDM-Based Cognitive Radio Networks

    PubMed Central

    Ma, Yongtao; Zhou, Liuji; Liu, Kaihua

    2013-01-01

    The paper presents a joint subcarrier-pair based resource allocation algorithm in order to improve the efficiency and fairness of cooperative multiuser orthogonal frequency division multiplexing (MU-OFDM) cognitive radio (CR) systems. A communication model where one source node communicates with one destination node assisted by one half-duplex decode-and-forward (DF) relay is considered in the paper. An interference-limited environment is considered, with the constraint of transmitted sum-power over all channels and aggregate average interference towards multiple primary users (PUs). The proposed resource allocation algorithm is capable of maximizing both the system transmission efficiency and fairness among secondary users (SUs). Besides, the proposed algorithm can also keep the interference introduced to the PU bands below a threshold. A proportional fairness constraint is used to assure that each SU can achieve a required data rate, with quality of service guarantees. Moreover, we extend the analysis to the scenario where each cooperative SU has no channel state information (CSI) about non-adjacent links. We analyzed the throughput and fairness tradeoff in CR system. A detailed analysis of the performance of the proposed algorithm is presented with the simulation results. PMID:23939586

  17. Structures with negative index of refraction

    DOEpatents

    Soukoulis, Costas M [Ames, IA; Zhou, Jiangfeng [Ames, IA; Koschny, Thomas [Ames, IA; Zhang, Lei [Ames, IA; Tuttle, Gary [Ames, IA

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  18. Tobacco chloroplast tRNALys(UUU) gene contains a 2.5-kilobase-pair intron: An open reading frame and a conserved boundary sequence in the intron

    PubMed Central

    Sugita, Mamoru; Shinozaki, Kazuo; Sugiura, Masahiro

    1985-01-01

    The nucleotide sequence of a tRNALys(UUU) gene on tobacco (Nicotiana tabacum) chloroplast DNA has been determined. This gene is located 215 base pairs upstream from the gene for the 32,000-dalton thylakoid membrane protein on the same DNA strand and has a 2526-base-pair intron in the anticodon loop. The intron boundary sequence does not follow the G-U/A-G rule but is similar to those of tobacco chloroplast split genes for tRNAGly(UCC) and ribosomal proteins L2 and S12. The intron contains one major open reading frame of 509 codons. The codon usage in the open reading frame resembles those observed in the genes for tobacco chloroplast proteins so far analyzed. The primary transcript of this tRNA gene is 2.7 kilobases long. Images PMID:16593561

  19. Tobacco chloroplast tRNA(UUU) gene contains a 2.5-kilobase-pair intron: An open reading frame and a conserved boundary sequence in the intron.

    PubMed

    Sugita, M; Shinozaki, K; Sugiura, M

    1985-06-01

    The nucleotide sequence of a tRNA(Lys)(UUU) gene on tobacco (Nicotiana tabacum) chloroplast DNA has been determined. This gene is located 215 base pairs upstream from the gene for the 32,000-dalton thylakoid membrane protein on the same DNA strand and has a 2526-base-pair intron in the anticodon loop. The intron boundary sequence does not follow the G-U/A-G rule but is similar to those of tobacco chloroplast split genes for tRNA(Gly)(UCC) and ribosomal proteins L2 and S12. The intron contains one major open reading frame of 509 codons. The codon usage in the open reading frame resembles those observed in the genes for tobacco chloroplast proteins so far analyzed. The primary transcript of this tRNA gene is 2.7 kilobases long.

  20. Evidence of Spin-Injection-Induced Cooper Pair Breaking in Perovskite Ferromagnet-Insulator-Superconductor Heterostructures via Pulsed Current Measurements

    NASA Technical Reports Server (NTRS)

    Yeh, N. C.; Samoilov, A. V.; Veasquez, R. P.; Li, Y.

    1998-01-01

    The effect of spin-polarized currents on the critical current densities of cuprate superconductors is investigated in perovskite ferromagnet-insulator-superconductor heterostructures with a pulsed current technique.

  1. Evidence for charge-vortex duality at the LaAlO3/SrTiO3 interface.

    PubMed

    Mehta, M M; Dikin, D A; Bark, C W; Ryu, S; Folkman, C M; Eom, C B; Chandrasekhar, V

    2012-07-17

    The concept of duality has proved extremely powerful in extending our understanding in many areas of physics. Charge-vortex duality has been proposed as a model to understand the superconductor to insulator transition in disordered thin films and Josephson junction arrays. In this model, on the superconducting side, one has delocalized Cooper pairs but localized vortices; while on the insulating side, one has localized Cooper pairs but mobile vortices. Here we show a new experimental manifestation of this duality in the electron gas that forms at the interface between LaAlO(3) and SrTiO(3). The effect is due to the motion of vortices generated by the magnetization dynamics of the ferromagnet that also forms at the same interface, which results in an increase in resistance on the superconducting side of the transition, but an increase in conductance on the insulating side.

  2. Bosonic Confinement and Coherence in Disordered Nanodiamond Arrays.

    PubMed

    Zhang, Gufei; Samuely, Tomas; Du, Hongchu; Xu, Zheng; Liu, Liwang; Onufriienko, Oleksandr; May, Paul W; Vanacken, Johan; Szabó, Pavol; Kačmarčík, Jozef; Yuan, Haifeng; Samuely, Peter; Dunin-Borkowski, Rafal E; Hofkens, Johan; Moshchalkov, Victor V

    2017-11-28

    In the presence of disorder, superconductivity exhibits short-range characteristics linked to localized Cooper pairs which are responsible for anomalous phase transitions and the emergence of quantum states such as the bosonic insulating state. Complementary to well-studied homogeneously disordered superconductors, superconductor-normal hybrid arrays provide tunable realizations of the degree of granular disorder for studying anomalous quantum phase transitions. Here, we investigate the superconductor-bosonic dirty metal transition in disordered nanodiamond arrays as a function of the dispersion of intergrain spacing, which ranges from angstroms to micrometers. By monitoring the evolved superconducting gaps and diminished coherence peaks in the single-quasiparticle density of states, we link the destruction of the superconducting state and the emergence of bosonic dirty metallic state to breaking of the global phase coherence and persistence of the localized Cooper pairs. The observed resistive bosonic phase transitions are well modeled using a series-parallel circuit in the framework of bosonic confinement and coherence.

  3. Data for a regional approach to the development of an effects-based nutrient criterion for wadable streams

    USGS Publications Warehouse

    Crawford, J. Kent; Loper, Connie A.; Beaman, Joseph R.; Soehl, Anna G.; Brown, Will S.

    2007-01-01

    States are required by the U.S. Environmental Protection Agency to establish nutrient criteria (concentrations of nutrients above which water quality is deteriorated) as part of their water-quality regulations. A study of wadable streams in the Mid-Atlantic Region was undertaken by the U.S. Geological Survey, the U.S. Environmental Protection Agency, and the Maryland Department of the Environment, with assistance from the Pennsylvania Department of Environmental Protection, to help define current concentrations of nutrients in streams with the goal of associating different nutrient-concentration levels with their effects on water quality. During the summers of 2004 and 2005, diel concentrations of dissolved oxygen, nutrient concentrations, concentrations of chlorophyll a in attached algae, and algal-community structure were measured at 46 stream sites in Maryland, Pennsylvania, Virginia, and West Virginia. Data from this work can be used by individual state agencies to define nutrient criteria. Quality-control measures for the study included submitting blank samples, duplicate samples, and reference samples for analysis of nutrients, total organic carbon, chlorophyll a, and algal biomass. Duplicate and split samples were submitted for periphyton identifications. Three periphyton split samples were sent to an independent lab for a check on periphyton identifications. Neither total organic carbon nor nutrients were detected in blank samples. Concentrations of nutrients and total organic carbon were similar for most duplicate sample pairs, with the exception of a duplicate pair from Western Run. Concentrations of ammonia plus organic nitrogen for this duplicate pair differed by as much as 34 percent. Total organic carbon for the duplicate pair from Western Run differed by 102 percent. The U.S. Geological Survey National Water Quality Laboratory performance on the only valid reference sample submitted was excellent; the relative percent difference values were no larger than 5 percent for any constituent analyzed. For periphyton identifications, duplicate samples had Jaccard Coefficient of Community values slightly greater than 0.5. This indicates the periphyton sampling protocol used provided a sample that was only moderately reproducible. Jaccard Coefficients for three periphyton samples split between two independent labs were 0.2, 0.11, and 0.08. These very low values suggest a poor concurrence on species identifications performed by the two labs. As a result of these quality-control samples, the slides prepared for diatom identifications were sent to the Academy of Natural Sciences for re-identification. Caution is urged when interpreting periphyton-community information from this study. This report and the raw data from the study are available online at http://pubs.usgs.gov/ds257

  4. Kinetics and reaction coordinates of the reassembly of protein fragments via forward flux sampling.

    PubMed

    Borrero, Ernesto E; Contreras Martínez, Lydia M; DeLisa, Matthew P; Escobedo, Fernando A

    2010-05-19

    We studied the mechanism of the reassembly and folding process of two fragments of a split lattice protein by using forward flux sampling (FFS). Our results confirmed previous thermodynamics and kinetics analyses that suggested that the disruption of the critical core (of an unsplit protein that folds by a nucleation mechanism) plays a key role in the reassembly mechanism of the split system. For several split systems derived from a parent 48-mer model, we estimated the reaction coordinates in terms of collective variables by using the FFS least-square estimation method and found that the reassembly transition is best described by a combination of the total number of native contacts, the number of interchain native contacts, and the total conformational energy of the split system. We also analyzed the transition path ensemble obtained from FFS simulations using the estimated reaction coordinates as order parameters to identify the microscopic features that differentiate the reassembly of the different split systems studied. We found that in the fastest folding split system, a balanced distribution of the original-core amino acids (of the unsplit system) between protein fragments propitiates interchain interactions at early stages of the folding process. Only this system exhibits a different reassembly mechanism from that of the unsplit protein, involving the formation of a different folding nucleus. In the slowest folding system, the concentration of the folding nucleus in one fragment causes its early prefolding, whereas the second fragment tends to remain as a detached random coil. We also show that the reassembly rate can be either increased or decreased by tuning interchain cooperativeness via the introduction of a single point mutation that either strengthens or weakens one of the native interchain contacts (prevalent in the transition state ensemble). Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Addressing the military gap in the western Balkans and closing the gap through regional cooperation

    DTIC Science & Technology

    2017-06-09

    service so they use the services in Zagreb and Beograd.140 Croatia Based on Jane’s assessment (census in 2011), the Croatian population was estimated at...Another significant capability in the CAF is the Air Force and air defense system. The headquarters is in Zagreb and they provide control authority...New recruits and specialists are trained at the Naval Training Centre in Split (an integral part of the Croatian Military Academy [CMA] in Zagreb

  6. Wireless Powered Cooperative Communications: Power-Splitting Relaying With Energy Accumulation (Author’s Manuscript)

    DTIC Science & Technology

    2016-03-21

    2016 2 i.e., wireless power transfer (WPT) and wireless information transfer (WIT), fundamental changes to the designs of green communication networks...simulta- neous wireless information and power transfer ,” IEEE Commun. Mag., vol. 53, no. 4, pp. 86–93, Apr. 2015. [6] H. Tabassum, E. Hossain, A...broadcasting for simultaneous wire- less information and power transfer ,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 1989–2001, May 2013. [9] K. Huang

  7. Optical microphone

    DOEpatents

    Veligdan, James T.

    2000-01-11

    An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.

  8. [The administration of a clinical department].

    PubMed

    Vandenbroucke, J P

    1998-12-19

    The head of a clinical department, more than formerly, is a jack-of-all-trades: he leads his department, teaches, stimulates scientific research, arranges funding and administers clinical care. For the creative and renewing management nowadays required of him, he does not split off tasks, but he attempts to integrate them. Fritts' On leading a clinical department describes the position of today's manager, his style of leading and the various power strategies with which he can survive, for instance cooperative and delegating leadership.

  9. Quantifying Hydrogen Bond Cooperativity in Water: VRT Spectroscopy of the Water Tetramer

    NASA Astrophysics Data System (ADS)

    Cruzan, J. D.; Braly, L. B.; Liu, Kun; Brown, M. G.; Loeser, J. G.; Saykally, R. J.

    1996-01-01

    Measurement of the far-infrared vibration-rotation tunneling spectrum of the perdeuterated water tetramer is described. Precisely determined rotational constants and relative intensity measurements indicate a cyclic quasi-planar minimum energy structure, which is in agreement with recent ab initio calculations. The O-O separation deduced from the data indicates a rapid exponential convergence to the ordered bulk value with increasing cluster size. Observed quantum tunneling splittings are interpreted in terms of hydrogen bond rearrangements connecting two degenerate structures.

  10. The road to superconducting spintronics

    NASA Astrophysics Data System (ADS)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  11. Theory of superconductivity with non-Hermitian and parity-time reversal symmetric Cooper pairing symmetry

    NASA Astrophysics Data System (ADS)

    Ghatak, Ananya; Das, Tanmoy

    2018-01-01

    Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.

  12. Vasopressin increases human risky cooperative behavior

    PubMed Central

    Brunnlieb, Claudia; Nave, Gideon; Camerer, Colin F.; Schosser, Stephan; Vogt, Bodo; Münte, Thomas F.; Heldmann, Marcus

    2016-01-01

    The history of humankind is an epic of cooperation, which is ubiquitous across societies and increasing in scale. Much human cooperation occurs where it is risky to cooperate for mutual benefit because successful cooperation depends on a sufficient level of cooperation by others. Here we show that arginine vasopressin (AVP), a neuropeptide that mediates complex mammalian social behaviors such as pair bonding, social recognition and aggression causally increases humans’ willingness to engage in risky, mutually beneficial cooperation. In two double-blind experiments, male participants received either AVP or placebo intranasally and made decisions with financial consequences in the “Stag hunt” cooperation game. AVP increases humans’ willingness to cooperate. That increase is not due to an increase in the general willingness to bear risks or to altruistically help others. Using functional brain imaging, we show that, when subjects make the risky Stag choice, AVP down-regulates the BOLD signal in the left dorsolateral prefrontal cortex (dlPFC), a risk-integration region, and increases the left dlPFC functional connectivity with the ventral pallidum, an AVP receptor-rich region previously associated with AVP-mediated social reward processing in mammals. These findings show a previously unidentified causal role for AVP in social approach behavior in humans, as established by animal research. PMID:26858433

  13. Spillover modes in multiplex games: double-edged effects on cooperation and their coevolution.

    PubMed

    Khoo, Tommy; Fu, Feng; Pauls, Scott

    2018-05-02

    In recent years, there has been growing interest in studying games on multiplex networks that account for interactions across linked social contexts. However, little is known about how potential cross-context interference, or spillover, of individual behavioural strategy impact overall cooperation. We consider three plausible spillover modes, quantifying and comparing their effects on the evolution of cooperation. In our model, social interactions take place on two network layers: repeated interactions with close neighbours in a lattice, and one-shot interactions with random individuals. Spillover can occur during the learning process with accidental cross-layer strategy transfer, or during social interactions with errors in implementation. Our analytical results, using extended pair approximation, are in good agreement with extensive simulations. We find double-edged effects of spillover: increasing the intensity of spillover can promote cooperation provided cooperation is favoured in one layer, but too much spillover is detrimental. We also discover a bistability phenomenon: spillover hinders or promotes cooperation depending on initial frequencies of cooperation in each layer. Furthermore, comparing strategy combinations emerging in each spillover mode provides good indication of their co-evolutionary dynamics with cooperation. Our results make testable predictions that inspire future research, and sheds light on human cooperation across social domains.

  14. Split-personality transmission: shifts like an automatic, saves fuel like a manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, D.

    1981-11-01

    The design, operation and performance of a British-invented automatic transmission which claims to result in fuel economy valves equal to those attained with manual shifts are described. Developed for both 4-speed and 6-speed transmissions, this transmission uses standard parts made for existing manual transmissions, rearranges the gear pairings, and relies on a microcomputer to pick the optimal shift points according to load requirements. (LCL)

  15. The Effect of High Versus Low Teacher Affect and Passive Versus Active Student Activity During Music Listening on Preschool Children's Attention, Piece Preference, Time Spent Listening, and Piece Recognition.

    ERIC Educational Resources Information Center

    Sims, Wendy L.

    1986-01-01

    Small-group listening lessons and subsequent individual posttests were used to judge 94 three- through five-year-old subjects' attention, paired-comparison piece preference, time spent listening, and piece recognition. Research procedures included a modified multiple baseline design and split-screen video taping of instructional sessions.…

  16. Exotic colored scalars at the LHC

    NASA Astrophysics Data System (ADS)

    Blum, Kfir; Efrati, Aielet; Frugiuele, Claudia; Nir, Yosef

    2017-02-01

    We study the phenomenology of exotic color-triplet scalar particles X with charge | Q| = 2 /3 , 4 /3 , 5 /3 , 7 /3 , 8 /3 and 10 /3. If X is an SU(2) W -non-singlet, mass splitting within the multiplet allows for cascade decays of the members into the lightest state. We study examples where the lightest state, in turn, decays into a three-body W ± jj final state, and show that in such case the entire multiplet is compatible with indirect precision tests and with direct collider searches for continuum pair production of X down to m X ˜ 250 GeV. However, bound states S, made of XX † pairs at m S ≈ 2 m X , form under rather generic conditions and their decay to diphoton can be the first discovery channel of the model. Furthermore, for SU(2) W -non-singlets, the mode S → W + W - may be observable and the width of S → γγ and S → jj may appear large as a consequence of mass splittings within the X-multiplet. As an example we study in detail the case of an SU(2) W -quartet, finding that m X ≃ 450 GeV is allowed by all current searches.

  17. Meeting No Resistance.

    ERIC Educational Resources Information Center

    Buzdin, Alexander; Varlamov, Andrey

    1991-01-01

    Describes the history and the development of the field of superconductivity. Identifies the significant interaction of electrons to form Cooper pairs. Presents background theory, describes approaches, and discusses problems encountered in the search for better high temperature superconducting materials. Provides technological applications of…

  18. A model of spin crossover in manganese(III) compounds: effects of intra- and intercenter interactions.

    PubMed

    Klokishner, Sophia I; Roman, Marianna A; Reu, Oleg S

    2011-11-21

    A microscopic approach to the problem of cooperative spin crossover in the [MnL2]NO3 crystal, which contains Mn(III) ions as structural units, is elaborated on, and the main mechanisms governing this effect are revealed. The proposed model also takes into account the splitting of the low-spin 3T1 (t(2)(4)) and high-spin 5E (t(2)(3)e) terms by the low-symmetry crystal field. The low-spin → high-spin transition has been considered as a cooperative phenomenon driven by interaction of the electronic shells of the Mn(III) ions with the all-around full-symmetric deformation that is extended over the crystal lattice via the acoustic phonon field. The model well explains the observed thermal dependencies of the magnetic susceptibility and the effective magnetic moment.

  19. Saddle clamp assembly

    NASA Technical Reports Server (NTRS)

    Belrose, Charles R. (Inventor)

    1994-01-01

    A saddle clamp assembly is presented. The assembly is comprised of a hollow cylindrical body centered about a longitudinal axis and being diametrically split into semicircular top and bottom sections. Each section has a pair of connection flanges, at opposite ends, that project radially outward. A pair of bolts are retained on the top section flanges and are threadable into nuts retained on the bottom section flanges. A base member is anchored to a central underside portion of the bottom clamp body section and has a pair of connection tabs positioned beneath the bottom clamp body section connection flanges on opposite sides of the clamp axis. A pair of bolts are retained on the base member connection tabs and are threadable into a pair of nuts retainable on a support structure. The connection tab and connection flanges on each side of the clamp body are axially offset in a manner permitting downward installation/removable tool access to the lower bolts past the connection flanges. An elongated retention tether is used to connect the top clamp body section to the balance of the clamp assembly. This prevents loss of the top clamp body section when it is removed from the bottom clamp body section.

  20. Design of a dual linear polarization antenna using split ring resonators at X-band

    NASA Astrophysics Data System (ADS)

    Ahmed, Sadiq; Chandra, Madhukar

    2017-11-01

    Dual linear polarization microstrip antenna configurations are very suitable for high-performance satellites, wireless communication and radar applications. This paper presents a new method to improve the co-cross polarization discrimination (XPD) for dual linear polarized microstrip antennas at 10 GHz. For this, three various configurations of a dual linear polarization antenna utilizing metamaterial unit cells are shown. In the first layout, the microstrip patch antenna is loaded with two pairs of spiral ring resonators, in the second model, a split ring resonator is placed between two microstrip feed lines, and in the third design, a complementary split ring resonators are etched in the ground plane. This work has two primary goals: the first is related to the addition of metamaterial unit cells to the antenna structure which permits compensation for an asymmetric current distribution flow on the microstrip antenna and thus yields a symmetrical current distribution on it. This compensation leads to an important enhancement in the XPD in comparison to a conventional dual linear polarized microstrip patch antenna. The simulation reveals an improvement of 7.9, 8.8, and 4 dB in the E and H planes for the three designs, respectively, in the XPD as compared to the conventional dual linear polarized patch antenna. The second objective of this paper is to present the characteristics and performances of the designs of the spiral ring resonator (S-RR), split ring resonator (SRR), and complementary split ring resonator (CSRR) metamaterial unit cells. The simulations are evaluated using the commercial full-wave simulator, Ansoft High-Frequency Structure Simulator (HFSS).

  1. Dirty two-band superconductivity with interband pairing order

    NASA Astrophysics Data System (ADS)

    Asano, Yasuhiro; Sasaki, Akihiro; Golubov, Alexander A.

    2018-04-01

    We study theoretically the effects of random nonmagnetic impurities on the superconducting transition temperature T c in a two-band superconductor characterized by an equal-time s-wave interband pairing order parameter. Because of the two-band degree of freedom, it is possible to define a spin-triplet s-wave pairing order parameter as well as a spin-singlet s-wave order parameter. The former belongs to odd-band-parity symmetry class, whereas the latter belongs to even-band-parity symmetry class. In a spin-singlet superconductor, T c is insensitive to the impurity concentration when we estimate the self-energy due to the random impurity potential within the Born approximation. On the other hand in a spin-triplet superconductor, T c decreases with the increase of the impurity concentration. We conclude that Cooper pairs belonging to odd-band-parity symmetry class are fragile under the random impurity potential even though they have s-wave pairing symmetry.

  2. Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars

    NASA Astrophysics Data System (ADS)

    Pastore, A.; Margueron, J.; Schuck, P.; Viñas, X.

    2013-09-01

    Exotic and drip-line nuclei as well as nuclei immersed in a low-density gas of neutrons in the inner crust of neutron stars are systematically investigated with respect to their neutron pairing properties. This is done using Skyrme density-functional and different pairing forces such as a density-dependent contact interaction and a separable form of a finite-range Gogny interaction. Hartree-Fock-Bogoliubov (HFB) and Bardeen-Cooper-Schrieffer (BCS) theories are compared. It is found that neutron pairing is reduced towards the drip line while overcast by strong shell effects. Furthermore, resonances in the continuum can have an important effect counterbalancing the tendency of reduction and leading to a persistence of pairing at the drip line. It is also shown that in these systems the difference between HFB and BCS approaches can be quantitatively large.

  3. Pentopyranosyl Oligonucleotide Systems. Part 11: Systems with Shortened Backbones: D)-beta-Ribopyranosyl-(4 yields 3 )- and (L)-alpha - Lyxopyranosyl-(4 yields 3 )-oligonucleotides

    NASA Technical Reports Server (NTRS)

    Wippo, Harald; Reck, Folkert; Kudick, Rene; Ramaseshan, Mahesh; Ceulemans, Griet; Bolli, Martin; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert

    2001-01-01

    The (L)-a-lyxopyranosyl-(4'yields 3')-oligonucleotide system-a member of a pentopyranosyl oligonucleotide family containing a shortened backbone-is capable of cooperative base-pairing and of cross-pairing with DNA and RNA. In contrast, corresponding (D)-beta-ribopyransoyl-(4' yields 3')-oligonucleotides do not show base-pairing under similar conditions. We conclude that oligonucleotide systems can violate the six-bonds-per-backbone-unit rule by having five bonds instead, if their vicinally bound phosphodiester bridges can assume an antiperiplanar conformation. An additional structural feature that seems relevant to the cross-pairing capability of the (L)-a-lyxopyranosyl-(4' yields 3')-oligonucleotide system is its (small) backbone/basepair axes inclination. An inclination which is similar to that in B-DNA seems to be a prerequisite for an oligonucleotide system s capability to cross-pair with DNA.

  4. Regime of validity of the pairing Hamiltonian in the study of Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S. Y.; Pandharipande, V. R.

    2006-06-01

    The ground state energy and pairing gap of the interacting Fermi gases calculated by the ab initio stochastic method are compared with those estimated from the Bardeen-Cooper-Schrieffer pairing Hamiltonian. We discuss the ingredients of this Hamiltonian in various regimes of interaction strength. In the weakly interacting (1/ak{sub F}<<0) regime the BCS Hamiltonian should describe Landau quasiparticle energies and interactions, on the other hand, in the strongly pairing regime, that is, 1/ak{sub F} > or approx. 0, it becomes part of the bare Hamiltonian. However, the bare BCS Hamiltonian is not adequate for describing atomic gases in the regime of weakmore » to moderate interaction strength -{infinity}<1/ak{sub F}<0 such as ak{sub F}{approx}-1.« less

  5. Selective Cooperation in Early Childhood – How to Choose Models and Partners

    PubMed Central

    Hermes, Jonas; Behne, Tanya; Studte, Kristin; Zeyen, Anna-Maria; Gräfenhain, Maria; Rakoczy, Hannes

    2016-01-01

    Cooperation is essential for human society, and children engage in cooperation from early on. It is unclear, however, how children select their partners for cooperation. We know that children choose selectively whom to learn from (e.g. preferring reliable over unreliable models) on a rational basis. The present study investigated whether children (and adults) also choose their cooperative partners selectively and what model characteristics they regard as important for cooperative partners and for informants about novel words. Three- and four-year-old children (N = 64) and adults (N = 14) saw contrasting pairs of models differing either in physical strength or in accuracy (in labeling known objects). Participants then performed different tasks (cooperative problem solving and word learning) requiring the choice of a partner or informant. Both children and adults chose their cooperative partners selectively. Moreover they showed the same pattern of selective model choice, regarding a wide range of model characteristics as important for cooperation (preferring both the strong and the accurate model for a strength-requiring cooperation tasks), but only prior knowledge as important for word learning (preferring the knowledgeable but not the strong model for word learning tasks). Young children’s selective model choice thus reveals an early rational competence: They infer characteristics from past behavior and flexibly consider what characteristics are relevant for certain tasks. PMID:27505043

  6. Conditional imitation might promote cooperation under high temptations to defect

    NASA Astrophysics Data System (ADS)

    Dai, Qionglin; Li, Haihong; Cheng, Hongyan; Qian, Xiaolan; Zhang, Mei; Yang, Junzhong

    2012-07-01

    In this paper we introduce a conditional imitation rule into an evolutionary game, in which the imitation probabilities of individuals are determined by a function of payoff difference and two crucial parameters μ and σ. The parameter μ characterizes the most adequate goal for individuals and the parameter σ characterizes the tolerance of individuals. By using the pair approximation method and numerical simulations, we find an anomalous cooperation enhancement in which the cooperation level shows a nonmonotonic variation with the increase of temptation. The parameter μ affects the regime of the payoff parameter which supports the anomalous cooperation enhancement, whereas the parameter σ plays a decisive role on the appearance of the nonmonotonic variation of the cooperation level. Furthermore, to give explicit implications for the parameters μ and σ we present an alterative form of the conditional imitation rule based on the benefit and the cost incurred to individuals during strategy updates. In this way, we also provide a phenomenological interpretation for the nonmonotonic behavior of cooperation with the increase of temptation. The results give a clue that a higher cooperation level could be obtained under adverse environments for cooperation by applying the conditional imitation rule, which is possible to be manipulated in real life. More generally, the results in this work might point out an efficient way to maintain cooperation in the risky environments to cooperators.

  7. A study on crustal shear wave splitting in the western part of the Banda arc-continent collision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syuhada, E-mail: hadda9@gmail.com; Research Centre for Physics - Indonesian Institute of Sciences; Hananto, Nugroho D.

    2016-03-11

    We analyzed shear wave splitting parameters from local shallow (< 30 km) earthquakes recorded at six seismic stations in the western part of the Banda arc-continent collision. We determined fast polarization and delay time for 195 event-stations pairs calculated from good signal-to-noise ratio waveforms. We observed that there is evidence for shear wave splitting at all stations with dominant fast polarization directions oriented about NE-SW, which are parallel to the collision direction of the Australian plate. However, minor fast polarization directions are oriented around NW-SE being perpendicular to the strike of Timor through. Furthermore, the changes in fast azimuths with themore » earthquake-station back azimuth suggest that the crustal anisotropy in the study area is not uniform. Splitting delay times are within the range of 0.05 s to 0.8 s, with a mean value of 0.29±0.18 s. Major seismic stations exhibit a weak tendency increasing of delay times with increasing hypocentral distance suggesting the main anisotropy contribution of the shallow crust. In addition, these variations in fast azimuths and delay times indicate that the crustal anisotropy in this region might not only be caused by extensive dilatancy anisotropy (EDA), but also by heterogeneity shallow structure such as the presence of foliations in the rock fabric and the fracture zones associated with active faults.« less

  8. Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator.

    PubMed

    Fujiwara, Mikio; Wakabayashi, Ryota; Sasaki, Masahide; Takeoka, Masahiro

    2017-02-20

    We report a wavelength division multiplexed time-bin entangled photon pair source in telecom wavelength using a 10 μm radius Si ring resonator. This compact resonator has two add ports and two drop ports. By pumping one add port by a continuous laser, we demonstrate an efficient generation of two-wavelength division multiplexed time-bin entangled photon pairs in the telecom C-band, which come out of one drop port, and are then split into the signal and idler photons via a wavelength filter. The resonator structure enhances four-wave mixing for pair generation. Moreover, we demonstrate the double-port pumping where two counter propagating pump lights are injected to generate entanglement from the two drop ports simultaneously. We successfully observe the highly entangled outputs from both two drop ports. Surprisingly, the count rate at each drop port is even increased by twice that of the single-port pumping. Possible mechanisms of this observation are discussed. Our technique allows for the efficient use of the Si ring resonator and widens its functionality for variety of applications.

  9. The increased risk of predation enhances cooperation

    PubMed Central

    Krams, Indrikis; Bērziņš, Arnis; Krama, Tatjana; Wheatcroft, David; Igaune, Kristīne; Rantala, Markus J.

    2010-01-01

    Theory predicts that animals in adverse conditions can decrease individual risks and increase long-term benefits by cooperating with neighbours. However, some empirical studies suggest that animals often focus on short-term benefits, which can reduce the likelihood that they will cooperate with others. In this experimental study, we tested between these two alternatives by evaluating whether increased predation risk (as a correlate of environmental adversity) enhances or diminishes the occurrence of cooperation in mobbing, a common anti-predator behaviour, among breeding pied flycatchers Ficedula hypoleuca. We tested whether birds would join their mobbing neighbours more often and harass a stuffed predator placed near their neighbours' nests more intensely in areas with a higher perceived risk of predation. Our results show that birds attended mobs initiated by their neighbours more often, approached the stuffed predator significantly more closely, and mobbed it at a higher intensity in areas where the perceived risk of predation was experimentally increased. In such high-risk areas, birds also were more often involved in between-pair cooperation. This study demonstrates the positive impact of predation risk on cooperation in breeding songbirds, which might help in explaining the emergence and evolution of cooperation. PMID:19846454

  10. The entangled triplet pair state in acene and heteroacene materials

    PubMed Central

    Yong, Chaw Keong; Musser, Andrew J.; Bayliss, Sam L.; Lukman, Steven; Tamura, Hiroyuki; Bubnova, Olga; Hallani, Rawad K.; Meneau, Aurélie; Resel, Roland; Maruyama, Munetaka; Hotta, Shu; Herz, Laura M.; Beljonne, David; Anthony, John E.; Clark, Jenny; Sirringhaus, Henning

    2017-01-01

    Entanglement of states is one of the most surprising and counter-intuitive consequences of quantum mechanics, with potent applications in cryptography and computing. In organic materials, one particularly significant manifestation is the spin-entangled triplet-pair state, which mediates the spin-conserving fission of one spin-0 singlet exciton into two spin-1 triplet excitons. Despite long theoretical and experimental exploration, the nature of the triplet-pair state and inter-triplet interactions have proved elusive. Here we use a range of organic semiconductors that undergo singlet exciton fission to reveal the photophysical properties of entangled triplet-pair states. We find that the triplet pair is bound with respect to free triplets with an energy that is largely material independent (∼30 meV). During its lifetime, the component triplets behave cooperatively as a singlet and emit light through a Herzberg–Teller-type mechanism, resulting in vibronically structured photoluminescence. In photovoltaic blends, charge transfer can occur from the bound triplet pairs with >100% photon-to-charge conversion efficiency. PMID:28699637

  11. The entangled triplet pair state in acene and heteroacene materials

    NASA Astrophysics Data System (ADS)

    Yong, Chaw Keong; Musser, Andrew J.; Bayliss, Sam L.; Lukman, Steven; Tamura, Hiroyuki; Bubnova, Olga; Hallani, Rawad K.; Meneau, Aurélie; Resel, Roland; Maruyama, Munetaka; Hotta, Shu; Herz, Laura M.; Beljonne, David; Anthony, John E.; Clark, Jenny; Sirringhaus, Henning

    2017-07-01

    Entanglement of states is one of the most surprising and counter-intuitive consequences of quantum mechanics, with potent applications in cryptography and computing. In organic materials, one particularly significant manifestation is the spin-entangled triplet-pair state, which mediates the spin-conserving fission of one spin-0 singlet exciton into two spin-1 triplet excitons. Despite long theoretical and experimental exploration, the nature of the triplet-pair state and inter-triplet interactions have proved elusive. Here we use a range of organic semiconductors that undergo singlet exciton fission to reveal the photophysical properties of entangled triplet-pair states. We find that the triplet pair is bound with respect to free triplets with an energy that is largely material independent (~30 meV). During its lifetime, the component triplets behave cooperatively as a singlet and emit light through a Herzberg-Teller-type mechanism, resulting in vibronically structured photoluminescence. In photovoltaic blends, charge transfer can occur from the bound triplet pairs with >100% photon-to-charge conversion efficiency.

  12. Pairing and (9/2)n configuration in nuclei in the 208Pb region

    NASA Astrophysics Data System (ADS)

    Stepanov, M.; Imasheva, L.; Ishkhanov, B.; Tretyakova, T.

    2018-04-01

    Excited states in low-energy spectra in nuclei near 208Pb are considered. The pure (j = 9/2)n configuration approximation with delta-force is used for ground state multiplet calculations. The multiplet splitting is determined by the pairing energy, which can be defined from the even-odd straggering of the nuclear masses. For the configurations with more than two valence nucleons, the seniority scheme is used. The results of the calculations agree with the experimental data for both stable and exotic nuclei within 0.06-6.16%. Due to simplicity and absence of the fitted parameters, the model can be easily applied for studies of nature of the excited states in a wide range of nuclei.

  13. A Simple Constant-Current Neural Stimulator With Accurate Pulse-Amplitude Control

    DTIC Science & Technology

    2001-10-25

    STIMULATOR The block diagram of the proposed neurostimulator is displayed in Figure 1. It consists of a pair of transformers followed by full-bridge...to 6%. Pulse-repetition ranges from 1Hz to 10Hz. Figure 1. Block diagram of the neurostimulator Voltage Regulator T 1 Astable T 2 V/I...discrete transistors. For explanatory reasons, the neurostimulator schematic is split into three main elements: the oscillator, the output V/I converter

  14. Use of Modality and Negation in Semantically-Informed Syntactic MT

    DTIC Science & Technology

    2012-06-01

    Longman Dictionary of Contemporary English (LDOCE). 422 Baker et al. Modality and Negation in SIMT We produced the full English MN lexicon semi...English sentence pairs, and a bilingual dictionary with 113,911 entries. For our development and test sets, we split the NIST MT-08 test set into two...for combining MT and semantics (termed distillation) to answer the informa- tion needs of monolingual speakers using multilingual sources. Proper

  15. Dating furniture and coopered vessels without waney edge - Reconstructing historical wood-working in Austria with the help of dendrochronology.

    PubMed

    Klein, Andrea; Nemestothy, Sebastian; Kadnar, Julia; Grabner, Michael

    In the present study, 208 furniture and 168 coopered vessels from three Austrian museums were examined. Dendrochronology was used to date objects and to extract further information such as the necessary time for seasoning, wood loss through wood-working and methods of construction. In most cases sampling was done by sanding the cross section and making digital photographs using a picture frame and measuring digitally. The dendrochronological dates of the sampled furniture range between 1524 and 1937. The group of furniture includes cupboards, chests, tables, benches, commodes and beds. In many cases furniture was artfully painted and sometimes even shows a painted year. With the help of dendrochronology it was proved that some objects had been painted for some time after construction, or had been over-painted. Most furniture, however, was painted immediately after completion. In this case, the seasoning and storage time of the boards and the wood loss due to shaping can be verified. As an average value, 14 years have passed between the dendrochronological date of the outermost ring and the painting. The time span includes time of seasoning and storage and the rings lost by wood-working. This leads, on the one hand to a short storage time of less than 10 years and on the other hand to very little wood loss due to manufacturing. Those boards being less shaped turned out to be back panels of cupboards, therefore they are recommended to be sampled for dating. Coopered vessels were dated between 1612 and 1940. There was evidence that staves were split and not sawn in many cases. The staves were often split out of the outermost part of the tree and hardly any wood was worked away which was proved by the close dendrochronological dates of the single staves of a vessel. Since there is a short time of storage and only little wood loss through wood-working, dating of objects without a waney edge becomes reasonable.

  16. Highly Efficient Cooperative Catalysis by Co III (Porphyrin) Pairs in Interpenetrating Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zekai; Zhang, Zhi-Ming; Chen, Yu-Sheng

    2016-12-02

    A series of porous twofold interpenetrated In-Co III(porphyrin) metal–organic frameworks (MOFs) were constructed by in situ metalation of porphyrin bridging ligands and used as efficient cooperative catalysts for the hydration of terminal alkynes. The twofold interpenetrating structure brings adjacent Co III(porphyrins) in the two networks parallel to each other with a distance of about 8.8 Å, an ideal distance for the simultaneous activation of both substrates in alkyne hydration reactions. As a result, the In-Co III(porphyrin) MOFs exhibit much higher (up to 38 times) catalytic activity than either homogeneous catalysts or MOF controls with isolated Co III(porphyrin) centers, thus highlightingmore » the potential application of MOFs in cooperative catalysis.« less

  17. Testing the role of climate in speciation: new methods and applications to squamate reptiles (lizards and snakes).

    PubMed

    Jezkova, Tereza; Wiens, John J

    2018-05-19

    Climate may play important roles in speciation, such as causing the range fragmentation that underlies allopatric speciation (through niche conservatism) or driving divergence of parapatric populations along climatic gradients (through niche divergence). Here, we developed new methods to test the frequency of climate niche conservatism and divergence in speciation, and applied it to species pairs of squamate reptiles (lizards and snakes). We used a large-scale phylogeny to identify 242 sister-species pairs for analysis. From these, we selected all terrestrial allopatric pairs with sufficient occurrence records (n=49 pairs) and inferred whether each originated via climatic niche conservatism or climatic niche divergence. Among the 242 pairs, allopatric pairs were most common (41.3%), rather than parapatric (19.4%), partially sympatric (17.7%), or fully sympatric species pairs (21.5%). Among the 49 selected allopatric pairs, most appeared to have originated via climatic niche divergence (61-76%, depending on the details of the methods). Surprisingly, we found greater climatic niche divergence between allopatric sister species than between parapatric pairs, even after correcting for geographic distance. We also found that niche divergence did not increase with time, further implicating niche divergence in driving lineage splitting. Overall, our results suggest that climatic niche divergence may often play an important role in allopatric speciation, and the methodology developed here can be used to address the generality of these findings in other organisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Entanglement of a laser-driven pair of two-level qubits via its phonon environment

    NASA Astrophysics Data System (ADS)

    Cecoi, Elena; Ciornea, Viorel; Isar, Aurelian; Macovei, Mihai A.

    2018-05-01

    The entanglement dynamics of a laser-pumped two-level quantum dot pair is investigated in the steady-state. The closely spaced two-level emitters, embedded in a semiconductor substrate, interact with both the environmental vacuum modes of the electromagnetic field reservoir as well as with the lattice vibrational phonon thermostat. We have found that the entanglement among the pair's components is substantially enhanced due to presence of the phonon subsystem. The reason is phonon induced decay among the symmetrical and antisymmetrical two-qubit collective states and, consequently, the population of the latter one. This also means that through thermal phonon bath engineering one can access the subradiant two-particle cooperative state.

  19. Fractional quantization of the magnetic flux in cylindrical unconventional superconductors.

    PubMed

    Loder, F; Kampf, A P; Kopp, T

    2013-07-26

    The magnetic flux threading a conventional superconducting ring is typically quantized in units of Φ0=hc/2e. The factor of 2 in the denominator of Φ0 originates from the existence of two different types of pairing states with minima of the free energy at even and odd multiples of Φ0. Here we show that spatially modulated pairing states exist with energy minima at fractional flux values, in particular, at multiples of Φ0/2. In such states, condensates with different center-of-mass momenta of the Cooper pairs coexist. The proposed mechanism for fractional flux quantization is discussed in the context of cuprate superconductors, where hc/4e flux periodicities were observed.

  20. The Human Communication Research Centre dialogue database.

    PubMed

    Anderson, A H; Garrod, S C; Clark, A; Boyle, E; Mullin, J

    1992-10-01

    The HCRC dialogue database consists of over 700 transcribed and coded dialogues from pairs of speakers aged from seven to fourteen. The speakers are recorded while tackling co-operative problem-solving tasks and the same pairs of speakers are recorded over two years tackling 10 different versions of our two tasks. In addition there are over 200 dialogues recorded between pairs of undergraduate speakers engaged on versions of the same tasks. Access to the database, and to its accompanying custom-built search software, is available electronically over the JANET system by contacting liz@psy.glasgow.ac.uk, from whom further information about the database and a user's guide to the database can be obtained.

  1. From bare to renormalized order parameter in gauge space: Structure and reactions

    NASA Astrophysics Data System (ADS)

    Potel, G.; Idini, A.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2017-09-01

    It is not physically obvious why one can calculate with similar accuracy, as compared to the experimental data, the absolute cross section associated with two-nucleon transfer processes between members of pairing rotational bands, making use of simple BCS (constant matrix elements) or of many-body [Nambu-Gorkov (NG), nuclear field theory (NFT)] spectroscopic amplitudes. Restoration of spontaneous symmetry breaking and associated emergent generalized rigidity in gauge space provides the answer and points to a new emergence: A physical sum rule resulting from the intertwining of structure and reaction processes, closely connected with the central role induced pairing interaction plays in structure, together with the fact that successive transfer dominates Cooper pair tunneling.

  2. Investigation of mantle kinematics beneath the Hellenic-subduction zone with teleseismic direct shear waves

    NASA Astrophysics Data System (ADS)

    Confal, Judith M.; Eken, Tuna; Tilmann, Frederik; Yolsal-Çevikbilen, Seda; Çubuk-Sabuncu, Yeşim; Saygin, Erdinc; Taymaz, Tuncay

    2016-12-01

    The subduction and roll-back of the African plate beneath the Eurasian plate along the arcuate Hellenic trench is the dominant geodynamic process in the Aegean and western Anatolia. Mantle flow and lithospheric kinematics in this region can potentially be understood better by mapping seismic anisotropy. This study uses direct shear-wave splitting measurements based on the Reference Station Technique in the southern Aegean Sea to reveal seismic anisotropy in the mantle. The technique overcomes possible contamination from source-side anisotropy on direct S-wave signals recorded at a station pair by maximizing the correlation between the seismic traces at reference and target stations after correcting the reference stations for known receiver-side anisotropy and the target stations for arbitrary splitting parameters probed via a grid search. We obtained splitting parameters at 35 stations with good-quality S-wave signals extracted from 81 teleseismic events. Employing direct S-waves enabled more stable and reliable splitting measurements than previously possible, based on sparse SKS data at temporary stations, with one to five events for local SKS studies, compared with an average of 12 events for each station in this study. The fast polarization directions mostly show NNE-SSW orientation with splitting time delays between 1.15 s and 1.62 s. Two stations in the west close to the Hellenic Trench and one in the east show N-S oriented fast polarizations. In the back-arc region three stations exhibit NE-SW orientation. The overall fast polarization variations tend to be similar to those obtained from previous SKS splitting studies in the region but indicate a more consistent pattern, most likely due to the usage of a larger number of individual observations in direct S-wave derived splitting measurements. Splitting analysis on direct shear waves typically resulted in larger split time delays compared to previous studies, possibly because S-waves travel along a longer path in the same anisotropic structure. Considering the S-derived splitting measurements of this study together with earlier SKS and Rayleigh wave anisotropy modelling results we suggest that the very consistent direct S-derived fast shear wave directions can be explained by the lattice-preferred orientation of olivine in the asthenospheric mantle due to mantle flow induced by the roll-back of the slab. It is possible that a small contribution originated in the lower crust beneath the study region where anisotropic fabric might have formed in response to extension in the Miocene.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fistul, M. V.; Vinokur, V. M.; Baturina, T. I.

    M.V. Fistul, V.M. Vinokur, and T.I. Baturina wrote a paper titled 'Collective Cooper-Pair Transport in the Insulating State of Josephson-Junction Arrays' which K.B. Efetov, M.V. Feigelman, and P.B. Wiegmann then made comments on that paper and this is Fistul, Vinokur, and Baturina's reply.

  4. Sons learn songs from their social fathers in a cooperatively breeding bird

    PubMed Central

    Greig, Emma I.; Taft, Benjamin N.; Pruett-Jones, Stephen

    2012-01-01

    Song learning is hypothesized to allow social adaptation to a local song neighbourhood. Maintaining social associations is particularly important in cooperative breeders, yet vocal learning in such species has only been assessed in systems where social association was correlated with relatedness. Thus, benefits of vocal learning as a means of maintaining social associations could not be disentangled from benefits of kin recognition. We assessed genetic and cultural contributions to song in a species where social association was not strongly correlated with kinship: the cooperatively breeding, reproductively promiscuous splendid fairy-wren (Malurus splendens). We found that song characters of socially associated father–son pairs were more strongly correlated (and thus songs were more similar) than songs of father–son pairs with a genetic, but no social, association (i.e. cuckolding fathers). Song transmission was, therefore, vertical and cultural, with minimal signatures of kinship. Additionally, song characters were not correlated with several phenotypic indicators of male quality, supporting the idea that there may be a tradeoff between accurate copying of tutors and quality signalling via maximizing song performance, particularly when social and genetic relationships are decoupled. Our results lend support to the hypothesis that song learning facilitates the maintenance of social associations by permitting unrelated individuals to acquire similar signal phenotypes. PMID:22593105

  5. Sons learn songs from their social fathers in a cooperatively breeding bird.

    PubMed

    Greig, Emma I; Taft, Benjamin N; Pruett-Jones, Stephen

    2012-08-22

    Song learning is hypothesized to allow social adaptation to a local song neighbourhood. Maintaining social associations is particularly important in cooperative breeders, yet vocal learning in such species has only been assessed in systems where social association was correlated with relatedness. Thus, benefits of vocal learning as a means of maintaining social associations could not be disentangled from benefits of kin recognition. We assessed genetic and cultural contributions to song in a species where social association was not strongly correlated with kinship: the cooperatively breeding, reproductively promiscuous splendid fairy-wren (Malurus splendens). We found that song characters of socially associated father-son pairs were more strongly correlated (and thus songs were more similar) than songs of father-son pairs with a genetic, but no social, association (i.e. cuckolding fathers). Song transmission was, therefore, vertical and cultural, with minimal signatures of kinship. Additionally, song characters were not correlated with several phenotypic indicators of male quality, supporting the idea that there may be a tradeoff between accurate copying of tutors and quality signalling via maximizing song performance, particularly when social and genetic relationships are decoupled. Our results lend support to the hypothesis that song learning facilitates the maintenance of social associations by permitting unrelated individuals to acquire similar signal phenotypes.

  6. Cross disease analysis of co-functional microRNA pairs on a reconstructed network of disease-gene-microRNA tripartite.

    PubMed

    Peng, Hui; Lan, Chaowang; Zheng, Yi; Hutvagner, Gyorgy; Tao, Dacheng; Li, Jinyan

    2017-03-24

    MicroRNAs always function cooperatively in their regulation of gene expression. Dysfunctions of these co-functional microRNAs can play significant roles in disease development. We are interested in those multi-disease associated co-functional microRNAs that regulate their common dysfunctional target genes cooperatively in the development of multiple diseases. The research is potentially useful for human disease studies at the transcriptional level and for the study of multi-purpose microRNA therapeutics. We designed a computational method to detect multi-disease associated co-functional microRNA pairs and conducted cross disease analysis on a reconstructed disease-gene-microRNA (DGR) tripartite network. The construction of the DGR tripartite network is by the integration of newly predicted disease-microRNA associations with those relationships of diseases, microRNAs and genes maintained by existing databases. The prediction method uses a set of reliable negative samples of disease-microRNA association and a pre-computed kernel matrix instead of kernel functions. From this reconstructed DGR tripartite network, multi-disease associated co-functional microRNA pairs are detected together with their common dysfunctional target genes and ranked by a novel scoring method. We also conducted proof-of-concept case studies on cancer-related co-functional microRNA pairs as well as on non-cancer disease-related microRNA pairs. With the prioritization of the co-functional microRNAs that relate to a series of diseases, we found that the co-function phenomenon is not unusual. We also confirmed that the regulation of the microRNAs for the development of cancers is more complex and have more unique properties than those of non-cancer diseases.

  7. Bacterial cooperative organization under antibiotic stress

    NASA Astrophysics Data System (ADS)

    Ben-Jacob, Eshel; Cohen, Inon; Golding, Ido; Gutnick, David L.; Tcherpakov, Marianna; Helbing, Dirk; Ron, Ilan G.

    2000-07-01

    Bacteria have developed sophisticated modes of cooperative behavior to cope with unfavorable environmental conditions. Here we report the effect of antibiotic stress on the colonial development of Paenibacillus dendritiformis and P. vortex. We focus on the effect of co-trimoxazole on the colonial organization of P. dendritiformis. We find that the exposure to non-lethal concentrations of antibiotic leads to dramatic changes in the colonial growth patterns. Branching, tip-splitting patterns are affected by reduction in the colonial fractal dimension from Df=2.0 to 1.7, appearance of pronounced weak chirality and pronounced radial orientation of the growth. We combine the experimental observations with numerical studies of both discrete and continuous generic models to reveal the causes for the modifications in the patterns. We conclude that the bacteria adjust their chemotactic signaling together with variations in the bacteria length and increase in the metabolic load.

  8. Shear-Wave Splitting and Crustal Anisotropy in the Shillong-Mikir Plateau of Northeast India

    NASA Astrophysics Data System (ADS)

    Bora, Dipok K.; Hazarika, Devajit; Paul, Arpita; Borah, Kajaljyoti; Borgohain, Jayanta Madhab

    2018-01-01

    Seismic anisotropy of crust beneath the Shillong-Mikir Plateau and the surrounding regions of northeast India have been investigated with the help of splitting analysis of S-wave of local earthquakes. We estimate a total 83 pairs of splitting parameters ( Φ and δt) from 67 local shallow focus earthquakes (depth ≤ 32 km) recorded by the 10 broadband seismological stations operated in the study region. The results show delay times ranging from 0.02 to 0.2 s, which correspond to anisotropy up to 4%, suggesting significant strength of anisotropy in the study region. Fast polarization direction ( Φ) in the Shillong Plateau shows mostly NW-SE trend in the western part and NE-SW trend in the northern part. Φs near Kopili fault (KF) follows NW-SE trend. Φ at most of the stations in the study region is consistent with the local stress orientation, suggesting that the anisotropy is mainly caused by preferentially aligned cracks responding to the stress field. On the other hand, anisotropy observed near the KF is due to aligned macroscopic fracture related to strike-slip movement in the fault zone.

  9. Implicit-Explicit Time Integration Methods for Non-hydrostatic Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Gardner, D. J.; Guerra, J. E.; Hamon, F. P.; Reynolds, D. R.; Ullrich, P. A.; Woodward, C. S.

    2016-12-01

    The Accelerated Climate Modeling for Energy (ACME) project is developing a non-hydrostatic atmospheric dynamical core for high-resolution coupled climate simulations on Department of Energy leadership class supercomputers. An important factor in computational efficiency is avoiding the overly restrictive time step size limitations of fully explicit time integration methods due to the stiffest modes present in the model (acoustic waves). In this work we compare the accuracy and performance of different Implicit-Explicit (IMEX) splittings of the non-hydrostatic equations and various Additive Runge-Kutta (ARK) time integration methods. Results utilizing the Tempest non-hydrostatic atmospheric model and the ARKode package show that the choice of IMEX splitting and ARK scheme has a significant impact on the maximum stable time step size as well as solution quality. Horizontally Explicit Vertically Implicit (HEVI) approaches paired with certain ARK methods lead to greatly improved runtimes. With effective preconditioning IMEX splittings that incorporate some implicit horizontal dynamics can be competitive with HEVI results. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-699187

  10. Comparison effectiveness of cooperative learning type STAD with cooperative learning type TPS in terms of mathematical method of Junior High School students

    NASA Astrophysics Data System (ADS)

    Wahyuni, A.

    2018-05-01

    This research is aimed to find out whether the model of cooperative learning type Student Team Achievement Division (STAD) is more effective than cooperative learning type Think-Pair-Share in SMP Negeri 7 Yogyakarta. This research was a quasi-experimental research, using two experimental groups. The population of research was all students of 7thclass in SMP Negeri 7 Yogyakarta that consists of 5 Classes. From the population were taken 2 classes randomly which used as sample. The instrument to collect data was a description test. Measurement of instrument validity use content validity and construct validity, while measuring instrument reliability use Cronbach Alpha formula. To investigate the effectiveness of cooperative learning type STAD and cooperative learning type TPS on the aspect of student’s mathematical method, the datas were analyzed by one sample test. Comparing the effectiveness of cooperative learning type STAD and TPS in terms of mathematical communication skills by using t-test. Normality test was not conducted because the sample of research more than 30 students, while homogeneity tested by using Kolmogorov Smirnov test. The analysis was performed at 5% confidence level.The results show as follows : 1) The model of cooperative learning type STAD and TPS are effective in terms of mathematical method of junior high school students. 2). STAD type cooperative learning model is more effective than TPS type cooperative learning model in terms of mathematical methods of junior high school students.

  11. Analysis of Septin Reorganization at Cytokinesis Using Polarized Fluorescence Microscopy

    PubMed Central

    McQuilken, Molly; Jentzsch, Maximilian S.; Verma, Amitabh; Mehta, Shalin B.; Oldenbourg, Rudolf; Gladfelter, Amy S.

    2017-01-01

    Septins are conserved filament-forming proteins that act in diverse cellular processes. They closely associate with membranes and, in some systems, components of the cytoskeleton. It is not well understood how filaments assemble into higher-order structures in vivo or how they are remodeled throughout the cell cycle. In the budding yeast S. cerevisiae, septins are found through most of the cell cycle in an hourglass organization at the mother-bud neck until cytokinesis when the collar splits into two rings that disassemble prior to the next cell cycle. Experiments using polarized fluorescence microscopy have suggested that septins are arranged in ordered, paired filaments in the hourglass and undergo a coordinated 90° reorientation during splitting at cytokinesis. This apparent reorganization could be due to two orthogonal populations of filaments disassembling and reassembling or being preferentially retained at cytokinesis. In support of this idea, we report a decrease in septin concentration at the mother-bud neck during cytokinesis consistent with other reports and the timing of the decrease depends on known septin regulators including the Gin4 kinase. We took a candidate-based approach to examine what factors control reorientation during splitting and used polarized fluorescence microscopy to screen mutant yeast strains deficient in septin interacting proteins. Using this method, we have linked known septin regulators to different aspects of the assembly, stability, and reorganization of septin assemblies. The data support that ring splitting requires Gin4 activity and an anillin-like protein Bud4, and normal accumulation of septins at the ring requires phosphorylation of Shs1. We found distinct regulatory requirements for septin organization in the hourglass compared to split rings. We propose that septin subpopulations can vary in their localization and assembly/disassembly behavior in a cell-cycle dependent manner at cytokinesis. PMID:28516085

  12. Educational Considerations for Children with Tourette's Syndrome.

    ERIC Educational Resources Information Center

    Jones, Kevin; Johnson, Genevieve Marie

    1993-01-01

    This paper describes the prevalence of Tourette's Syndrome and its characteristics. Instructional strategies for students with Tourette's Syndrome are discussed, including a flexible teaching style, a warm and supportive classroom environment, paired and cooperative learning strategies, frequent breaks during instruction, and a safe place to…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukhovoj, A. M., E-mail: suchovoj@nf.jinr.ru; Mitsyna, L. V., E-mail: mitsyna@nf.jinr.ru; Jovancevic, N., E-mail: nikola.jovancevic@uns.ac.rs

    The intensities of two-step cascades in 43 nuclei of mass number in the range of 28 ≤ A ≤ 200 were approximated to a high degree of precision within a modified version of the practical cascade-gammadecay model introduced earlier. In this version, the rate of the decrease in the model-dependent density of vibrational levels has the same value for any Cooper pair undergoing breakdown. The most probable values of radiative strength functions both for E1 and for M1 transitions are determined by using one or two peaks against a smooth model dependence on the gamma-transition energy. The statement that themore » thresholds for the breaking of Cooper pairs are higher for spherical than for deformed nuclei is a basic result of the respective analysis. The parameters of the cascade-decay process are now determined to a precision that makes it possible to observe the systematic distinctions between them for nuclei characterized by different parities of neutrons and protons.« less

  14. Theory of superconductivity in a three-orbital model of Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Wang, Q. H.; Platt, C.; Yang, Y.; Honerkamp, C.; Zhang, F. C.; Hanke, W.; Rice, T. M.; Thomale, R.

    2013-10-01

    In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr2RuO4 is the first prime candidate for topological chiral p-wave superconductivity, which has time-reversal breaking odd-parity Cooper pairs known to exist before only in the neutral superfluid 3He. However, there are several key unresolved issues hampering the microscopic description of the unconventional superconductivity. Spin fluctuations at both large and small wave vectors are present in experiments, but how they arise and drive superconductivity is not yet clear. Spontaneous edge current is expected but not observed conclusively. Specific experiments point to highly band- and/or momentum-dependent energy gaps for quasiparticle excitations in the superconducting state. Here, by comprehensive functional renormalization group calculations with all relevant bands, we disentangle the various competing possibilities. In particular, we show the small wave vector spin fluctuations, driven by a single two-dimensional band, trigger p-wave superconductivity with quasi-nodal energy gaps.

  15. Superconducting parity effect across the Anderson limit

    PubMed Central

    Vlaic, Sergio; Pons, Stéphane; Zhang, Tianzhen; Assouline, Alexandre; Zimmers, Alexandre; David, Christophe; Rodary, Guillemin; Girard, Jean-Christophe; Roditchev, Dimitri; Aubin, Hervé

    2017-01-01

    How small can superconductors be? For isolated nanoparticles subject to quantum size effects, P.W. Anderson in 1959 conjectured that superconductivity could only exist when the electronic level spacing δ is smaller than the superconducting gap energy Δ. Here we report a scanning tunnelling spectroscopy study of superconducting lead (Pb) nanocrystals grown on the (110) surface of InAs. We find that for nanocrystals of lateral size smaller than the Fermi wavelength of the 2D electron gas at the surface of InAs, the electronic transmission of the interface is weak; this leads to Coulomb blockade and enables the extraction of electron addition energy of the nanocrystals. For large nanocrystals, the addition energy displays superconducting parity effect, a direct consequence of Cooper pairing. Studying this parity effect as a function of nanocrystal volume, we find the suppression of Cooper pairing when the mean electronic level spacing overcomes the superconducting gap energy, thus demonstrating unambiguously the validity of the Anderson criterion. PMID:28240294

  16. Charge/spin supercurrent and the Fulde-Ferrell state induced by crystal deformation in Weyl/Dirac superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, Taiki; Liu, Tianyu; Mizushima, Takeshi; Fujimoto, Satoshi

    2018-04-01

    It has been predicted that emergent chiral magnetic fields can be generated by crystal deformation in Weyl/Dirac metals and superconductors. The emergent fields give rise to chiral anomaly phenomena as in the case of Weyl semimetals with usual electromagnetic fields. Here, we clarify effects of the chiral magnetic field on Cooper pairs in Weyl/Dirac superconductors on the basis of the Ginzburg-Landau equation microscopically derived from the quasiclassical Eilenberger formalism. It is found that Cooper pairs are affected by the emergent chiral magnetic field in a dramatic way, and the pseudo-Lorentz force due to the chiral magnetic field stabilizes the Fulde-Ferrell state and causes a charge/spin supercurrent, which flows parallel to the chiral magnetic field in the case of Weyl/Dirac superconductors. This effect is in analogy with the chiral magnetic effect of Weyl semimetals. In addition, we elucidate that neither Meissner effect nor vortex state due to chiral magnetic fields occurs.

  17. Superconductivity in metal coated graphene

    NASA Astrophysics Data System (ADS)

    Uchoa, Bruno; Castro Neto, Antonio

    2007-03-01

    Graphene, a single atomic layer of graphite, is a two dimensional (2D) zero gap insulator with a high electronic mobility between nearest neighbor carbon sites. The unique electronic properties of graphene, from the semi-metallic behavior to the observation of an anomalous quantum Hall effect and a zero field quantized minimum of conductivity derive from the relativistic nature of its quasiparticles. By doping graphene, it behaves in several aspects as a conventional Fermi liquid, where electrons may form Cooper pairs by coupling with a bosonic mode. In this talk, we develop a mean-field phenomenology of superconductivity in a honeycomb lattice. We predict the possibility of two distinct phases, a singlet s-wave phase and a novel p+ip wave phase in the singlet channel. At half filling, the p+ip phase is gapless and superconductivity is a hidden order. We propose a few possible sources of Cooper pairing instability in graphene coated with alkaline and transition metals, and similar low dimensional graphene based devices.

  18. High-temperature superconductivity using a model of hydrogen bonds.

    PubMed

    Kaplan, Daniel; Imry, Yoseph

    2018-05-29

    Recently, there has been much interest in high-temperature superconductors and more recently in hydrogen-based superconductors. This work offers a simple model that explains the behavior of the superconducting gap based on naive BCS (Bardeen-Cooper-Schrieffer) theory and reproduces most effects seen in experiments, including the isotope effect and [Formula: see text] enhancement as a function of pressure. We show that this is due to a combination of the factors appearing in the gap equation: the matrix element between the proton states and the level splitting of the proton.

  19. Capturing the radical ion-pair intermediate in DNA guanine oxidation

    PubMed Central

    Jie, Jialong; Liu, Kunhui; Wu, Lidan; Zhao, Hongmei; Song, Di; Su, Hongmei

    2017-01-01

    Although the radical ion pair has been frequently invoked as a key intermediate in DNA oxidative damage reactions and photoinduced electron transfer processes, the unambiguous detection and characterization of this species remain formidable and unresolved due to its extremely unstable nature and low concentration. We use the strategy that, at cryogenic temperatures, the transient species could be sufficiently stabilized to be detectable spectroscopically. By coupling the two techniques (the cryogenic stabilization and the time-resolved laser flash photolysis spectroscopy) together, we are able to capture the ion-pair transient G+•⋯Cl− in the chlorine radical–initiated DNA guanine (G) oxidation reaction, and provide direct evidence to ascertain the intricate type of addition/charge separation mechanism underlying guanine oxidation. The unique spectral signature of the radical ion-pair G+•⋯Cl− is identified, revealing a markedly intense absorption feature peaking at 570 nm that is distinctive from G+• alone. Moreover, the ion-pair spectrum is found to be highly sensitive to the protonation equilibria within guanine-cytosine base pair (G:C), which splits into two resolved bands at 480 and 610 nm as the acidic proton transfers along the central hydrogen bond from G+• to C. We thus use this exquisite sensitivity to track the intrabase-pair proton transfer dynamics in the double-stranded DNA oligonucleotides, which is of critical importance for the description of the proton-coupled charge transfer mechanisms in DNA. PMID:28630924

  20. Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas; Nastar, Maylise

    2016-06-01

    We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.

  1. Prediction of Spin-Polarization Effects in Quantum Wire Transport

    NASA Astrophysics Data System (ADS)

    Fasol, Gerhard; Sakaki, Hiroyuki

    1994-01-01

    We predict a new effect for transport in quantum wires: spontaneous spin polarization. Most work on transport in mesoscopic devices has assumed a model of non interacting, spin-free electrons. We introduce spin, electron pair scattering and microscopic crystal properties into the design of mesoscopic devices. The new spin polarization effect results from the fact that in a single mode quantum wire, electron and hole bands still have two spin subbands. In general, these two spin subbands are expected to be split even in zero magnetic field. At sufficiently low temperatures the electron pair scattering rates for one spin subband ( e.g., the spin-down) can be much larger than for the other spin subband. This effect can be used for an active spin polarizer device: hot electrons in one subband ( e.g., `spin up') pass with weak pair scattering, while electrons in the opposite subband ( e.g., `spin down'), have high probability of scattering into the `spin-up' subband, resulting in spin polarization of a hot electron beam.

  2. Gamow-Teller transitions and neutron-proton-pair transfer reactions

    NASA Astrophysics Data System (ADS)

    Van Isacker, P.; Macchiavelli, A. O.

    2018-05-01

    We propose a schematic model of nucleons moving in spin-orbit partner levels, j = l ± 1/2, to explain Gamow-Teller and two-nucleon transfer data in N = Z nuclei above 40Ca. Use of the LS coupling scheme provides a more transparent approach to interpret the structure and reaction data. We apply the model to the analysis of charge-exchange, 42Ca(3He,t)42Sc, and np-transfer, 40Ca(3He,p)42Sc, reactions data to define the elementary modes of excitation in terms of both isovector and isoscalar pairs, whose properties can be determined by adjusting the parameters of the model (spin-orbit splitting, isovector pairing strength and quadrupole matrix element) to the available data. The overall agreement with experiment suggests that the approach captures the main physics ingredients and provides the basis for a boson approximation that can be extended to heavier nuclei. Our analysis also reveals that the SU(4)-symmetry limit is not realized in 42Sc.

  3. Exactly solvable model of transitional nuclei based on dual algebraic structure for the three level pairing model in the framework of sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Ranjbar, Z.; Fouladi, N.; Ghapanvari, M.

    2018-01-01

    In this paper, a successful algebraic method based on the dual algebraic structure for three level pairing model in the framework of sdg IBM is proposed for transitional nuclei which show transitional behavior from spherical to gamma-unstable quantum shape phase transition. In this method complicated sdg Hamiltonian, which is a three level pairing Hamiltonian is determined easily via the exactly solvable method. This description provides a better interpretation of some observables such as BE (4) in nuclei which exhibits the necessity of inclusion of g boson in the sd IBM, while BE (4) cannot be explained in the sd boson model. Some observables such as Energy levels, BE (2), BE (4), the two neutron separation energies signature splitting of the γ-vibrational band and expectation values of the g-boson number operator are calculated and examined for 46 104 - 110Pd isotopes.

  4. Electron Heating and Quasiparticle Tunnelling in Superconducting Charge Qubits

    NASA Technical Reports Server (NTRS)

    Shaw, M. D.; Bueno, J.; Delsing, P.; Echternach, P. M.

    2008-01-01

    We have directly measured non-equilibrium quasiparticle tunnelling in the time domain as a function of temperature and RF carrier power for a pair of charge qubits based on the single Cooper-pair box, where the readout is performed with a multiplexed quantum capacitance technique. We have extracted an effective electron temperature for each applied RF power, using the data taken at the lowest power as a reference curve. This data has been fit to a standard T? electron heating model, with a reasonable correspondence with established material parameters.

  5. Excitation energies of particle-hole states in {sup 208}Pb and the surface delta interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heusler, A., E-mail: A.Heusler@mpi-hd.mpg.de; Jolos, R. V., E-mail: Jolos@theor.jinr.ru; Brentano, P. von, E-mail: Brentano@ikp.uni-koeln.de

    2013-07-15

    The schematic shell model without residual interaction (SSM) assumes the same excitation energy for all spins in each particle-hole configuration multiplet. In {sup 208}Pb, more than forty states are known to contain almost the full strength of a single particle-hole configuration. The experimental excitation energy for a state with a certain spin differs from the energy predicted by the SSM by -0.2 to +0.6 MeV. The multiplet splitting is calculated with the surface delta interaction; it corresponds to the diagonal matrix element of the residual interaction in the SSM. For states containing more than 90% strength of a certain configurationmore » and for the centroid of several completely observed configurations, the calculated multiplet splitting often approximates the experimental excitation energy within 30 keV. The strong mixing within some pairs of states containing the full strengths of two configurations is explained.« less

  6. Mo and P co-doped Ba5Ta4O15 for hydrogen evolution under solar light

    NASA Astrophysics Data System (ADS)

    Li, Songjie; Cao, Wenbo; Wang, Chengduo; Du, Xueshan; Lu, Shufen

    2018-07-01

    Based on density functional calculations, Mo and P co-doped Ba5Ta4O15 compared with their mono-doping was studied for splitting water. The results showed that Mo-P co-doping significantly reduced the energy gap of Ba5Ta4O15 from 4.05 eV to 2.15 eV, being almost the optimum value for utilizing solar energy as much as possible. The top of valence band and the bottom of conduction band are both compatible with the oxidation-reduction potentials of water. More importantly, Mo-P co-doping prevents the filled spin-down states of Mo and the empty spin-down states of P from arising due to the charge compensation of Mo-P pairs. We propose that Mo-P co-doped Ba5Ta4O15 is one of the most promising photocatalyst candidates for solar water splitting.

  7. Dynamics of nonlinear Schrödinger breathers in a potential trap

    NASA Astrophysics Data System (ADS)

    Malomed, B. A.; Rosanov, N. N.; Fedorov, S. V.

    2018-05-01

    We consider the evolution of the 2-soliton (breather) of the nonlinear Schrödinger equation on a semi-infinite line with the zero boundary condition and a linear potential, which corresponds to the gravity field in the presence of a hard floor. This setting can be implemented in atomic Bose-Einstein condensates, and in a nonlinear planar waveguide in optics. In the absence of the gravity, repulsion of the breather from the floor leads to its splitting into constituent fundamental solitons, if the initial distance from the floor is smaller than a critical value; otherwise, the moving breather persists. In the presence of gravity, the breather always splits into a pair of "co-hopping" fundamental solitons, which may be frequency locked in the form of a quasi-breather, or unlocked, forming an incoherent pseudo-breather. Some essential results are obtained in an analytical form, in addition to the systematic numerical investigation.

  8. The LPM effect in sequential bremsstrahlung: dimensional regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Peter; Chang, Han-Chih; Iqbal, Shahin

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. Of recent interest is the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD). In previous papers, we have developed methods for computing such corrections without making soft-gluon approximations. However, our methods require consistent treatment of canceling ultraviolet (UV) divergences associated with coincident emission times, even for processes with tree-levelmore » amplitudes. In this paper, we show how to use dimensional regularization to properly handle the UV contributions. We also present a simple diagnostic test that any consistent UV regularization method for this problem needs to pass.« less

  9. On the dual-cone nature of the conical refraction phenomenon.

    PubMed

    Turpin, A; Loiko, Yu; Kalkandjiev, T K; Tomizawa, H; Mompart, J

    2015-04-15

    In conical refraction (CR), a focused Gaussian input beam passing through a biaxial crystal and parallel to one of the optic axes is transformed into a pair of concentric bright rings split by a dark (Poggendorff) ring at the focal plane. Here, we show the generation of a CR transverse pattern that does not present the Poggendorff fine splitting at the focal plane, i.e., it forms a single light ring. This light ring is generated from a nonhomogeneously polarized input light beam obtained by using a spatially inhomogeneous polarizer that mimics the characteristic CR polarization distribution. This polarizer allows modulating the relative intensity between the two CR light cones in accordance with the recently proposed dual-cone model of the CR phenomenon. We show that the absence of interfering rings at the focal plane is caused by the selection of one of the two CR cones.

  10. Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO2

    NASA Astrophysics Data System (ADS)

    Yin, Wan-Jian; Tang, Houwen; Wei, Su-Huai; Al-Jassim, Mowafak M.; Turner, John; Yan, Yanfa

    2010-07-01

    Here, we propose general strategies for the rational design of semiconductors to simultaneously meet all of the requirements for a high-efficiency, solar-driven photoelectrochemical (PEC) water-splitting device. As a case study, we apply our strategies for engineering the popular semiconductor, anatase TiO2 . Previous attempts to modify known semiconductors such as TiO2 have often focused on a particular individual criterion such as band gap, neglecting the possible detrimental consequence to other important criteria. Density-functional theory calculations reveal that with appropriate donor-acceptor coincorporation alloys with anatase TiO2 hold great potential to satisfy all of the criteria for a viable PEC device. We predict that (Mo, 2N) and (W, 2N) are the best donor-acceptor combinations in the low-alloy concentration regime whereas (Nb, N) and (Ta, N) are the best choice of donor-acceptor pairs in the high-alloy concentration regime.

  11. Spin-polarized current in Zeeman-split d-wave superconductor/quantum wire junctions

    NASA Astrophysics Data System (ADS)

    Emamipour, Hamidreza

    2016-06-01

    We study a thin-film quantum wire/unconventional superconductor junction in the presence of an intrinsic exchange field for a d-wave symmetry of the superconducting order parameter. A strongly spin-polarized current is generated due to an interplay between Zeeman splitting of bands and the nodal structure of the superconducting order parameter. We show that strongly spin-polarized current is achievable for both metallic and tunnel junctions. This is because of the presence of a quantum wire (one-dimensional metal) in our junction. While in two-dimensional junctions with both conventional [F. Giazotto, F. Taddei, Phys. Rev. B 77 (2008) 132501] and unconventional [J. Linder, T. Yokoyama, Y. Tanaka, A. Sudbo, Phys. Rev. B 78 (2008) 014516] pairing states, highly spin polarized current takes place just for a tunnel junction. Also, the obtained spin-polarized current is tunable in sign and magnitude in terms of exchange field and applied bias voltage.

  12. Enhanced photoelectrochemical water splitting by oxides heterojunction photocathode coupled with Ag.

    PubMed

    Lu, Xue; Liu, Zhifeng

    2017-08-14

    A novel one-dimensional Co 3 O 4 /CuO/Ag composite structure film was directly grown on indium tin oxide glass substrate by a simple hydrothermal method and electrodeposition method. The film was employed for the first time as a photocathode for photoelectrochemical (PEC) water splitting to generate hydrogen. The photocurrent density of the Co 3 O 4 /CuO/Ag composite structure achieved -5.13 mA cm -2 at -0.2 V vs. RHE, which is roughly 12.8 times that of 1D Co 3 O 4 nanowires and 3.31 times Co 3 O 4 /CuO heterojunction photocathodes. The enhanced PEC performance of this Co 3 O 4 /CuO/Ag composite structure ascribes increased light-harvesting and light-absorption, distensible photoresponse range, decreased interface charge transfer resistance, and improved photogenerated electron-hole pairs transfer and separation.

  13. Anisotropic superconductivity and elongated vortices with unusual bound states in quasi-one-dimensional nickel-bismuth compounds

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Lin; Zhang, Yi-Min; Lv, Yan-Feng; Ding, Hao; Wang, Lili; Li, Wei; He, Ke; Song, Can-Li; Ma, Xu-Cun; Xue, Qi-Kun

    2018-04-01

    We report low-temperature scanning tunneling microscopy and spectroscopy studies of Ni-Bi films grown by molecular beam epitaxy. Highly anisotropic and twofold symmetric superconducting gaps are revealed in two distinct composites, Bi-rich NiBi3 and near-equimolar NixBi , both sharing quasi-one-dimensional crystal structure. We further reveal axially elongated vortices in both phases, but Caroli-de Gennes-Matricon states solely within the vortex cores of NiBi3. Intriguingly, although the localized bound state splits energetically off at a finite distance ˜10 nm away from a vortex center along the minor axis of elliptic vortex, no splitting is found along the major axis. We attribute the elongated vortices and unusual vortex behaviors to the combined effects of twofold superconducting gap and Fermi velocity. The findings provide a comprehensive understanding of the electron pairing and vortex matter in quasi-one-dimensional superconductors.

  14. The LPM effect in sequential bremsstrahlung: dimensional regularization

    DOE PAGES

    Arnold, Peter; Chang, Han-Chih; Iqbal, Shahin

    2016-10-19

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. Of recent interest is the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD). In previous papers, we have developed methods for computing such corrections without making soft-gluon approximations. However, our methods require consistent treatment of canceling ultraviolet (UV) divergences associated with coincident emission times, even for processes with tree-levelmore » amplitudes. In this paper, we show how to use dimensional regularization to properly handle the UV contributions. We also present a simple diagnostic test that any consistent UV regularization method for this problem needs to pass.« less

  15. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 4: Markets

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A marketing study to determine the acceptance and utilization of a STOL aircraft short-haul air transportation system was conducted. The relationship between STOL characteristics and the economic and social viability of STOL as a short-haul reliever system was examined. A study flow chart was prepared to show the city pair and traffic split analysis. The national demand for STOL aircraft, as well as the foreign and military markets, were analyzed.

  16. On the Shapley Value of Unrooted Phylogenetic Trees.

    PubMed

    Wicke, Kristina; Fischer, Mareike

    2018-01-17

    The Shapley value, a solution concept from cooperative game theory, has recently been considered for both unrooted and rooted phylogenetic trees. Here, we focus on the Shapley value of unrooted trees and first revisit the so-called split counts of a phylogenetic tree and the Shapley transformation matrix that allows for the calculation of the Shapley value from the edge lengths of a tree. We show that non-isomorphic trees may have permutation-equivalent Shapley transformation matrices and permutation-equivalent null spaces. This implies that estimating the split counts associated with a tree or the Shapley values of its leaves does not suffice to reconstruct the correct tree topology. We then turn to the use of the Shapley value as a prioritization criterion in biodiversity conservation and compare it to a greedy solution concept. Here, we show that for certain phylogenetic trees, the Shapley value may fail as a prioritization criterion, meaning that the diversity spanned by the top k species (ranked by their Shapley values) cannot approximate the total diversity of all n species.

  17. Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting.

    PubMed

    Zhou, Min; Bao, Jian; Xu, Yang; Zhang, Jiajia; Xie, Junfeng; Guan, Meili; Wang, Chengliang; Wen, Liaoyong; Lei, Yong; Xie, Yi

    2014-07-22

    BiVO4 has been regarded as a promising material for photoelectrochemical water splitting, but it suffers from a major challenge on charge collection and utilization. In order to meet this challenge, we design a nanoengineered three-dimensional (3D) ordered macro-mesoporous architecture (a kind of inverse opal) of Mo:BiVO4 through a controllable colloidal crystal template method with the help of a sandwich solution infiltration method and adjustable post-heating time. Within expectation, a superior photocurrent density is achieved in return for this design. This enhancement originates primarily from effective charge collection and utilization according to the analysis of electrochemical impedance spectroscopy and so on. All the results highlight the great significance of the 3D ordered macro-mesoporous architecture as a promising photoelectrode model for the application in solar conversion. The cooperating amplification effects of nanoengineering from composition regulation and morphology innovation are helpful for creating more purpose-designed photoelectrodes with highly efficient performance.

  18. Review of high field superconducting magnet development at Oxford Instruments

    NASA Astrophysics Data System (ADS)

    Brown, F. J.; Kerley, N. W.; Knox, R. B.; Timms, K. W.

    1996-02-01

    Present commercial development activity for high field superconducting magnets is focused clearly in three directions. The development of solenoid magnets with flux densities in excess of 20 T, the production of highly homogeneous fields at 20 T, and development of large split pair magnets in excess of 12 T. Recent developments in split pair technology allows us to build magnets with useful access, transverse to the field, up to 15 T. Compact solenoid magnets to 20 T have been available commercially for over 3 yr now with a progressive increment in bore size, providing associated engineering challenges. A 20 T solenoid with a clear bore of 52 mm and a homogeneity of 0.1% is now a standard production item. Improving the homogeneity to the 1 ppm level involves re-assessment of critical design parameters and choice of materials. Our development over the last twelve months has culminated in a 20 T solenoid with base homogeneity of 5 ppm over a 10 mm sphere. In order to realise persistent fields in excess of 20 T, requires the priority on development to be switched from engineering and manufacturing towards material development and enhancement. We present the findings and conclusions of our high field development program over the last 3 yr, together with an outline of our requirements and activities in materials and engineering leading to the next step in high field magnet manufacture, using conventional low Tc conductors.

  19. Simplified phenomenology for colored dark sectors

    NASA Astrophysics Data System (ADS)

    El Hedri, Sonia; Kaminska, Anna; de Vries, Maikel; Zurita, Jose

    2017-04-01

    We perform a general study of the relic density and LHC constraints on simplified models where the dark matter coannihilates with a strongly interacting particle X. In these models, the dark matter depletion is driven by the self-annihilation of X to pairs of quarks and gluons through the strong interaction. The phenomenology of these scenarios therefore only depends on the dark matter mass and the mass splitting between dark matter and X as well as the quantum numbers of X. In this paper, we consider simplified models where X can be either a scalar, a fermion or a vector, as well as a color triplet, sextet or octet. We compute the dark matter relic density constraints taking into account Sommerfeld corrections and bound state formation. Furthermore, we examine the restrictions from thermal equilibrium, the lifetime of X and the current and future LHC bounds on X pair production. All constraints are comprehensively presented in the mass splitting versus dark matter mass plane. While the relic density constraints can lead to upper bounds on the dark matter mass ranging from 2 TeV to more than 10 TeV across our models, the prospective LHC bounds range from 800 to 1500 GeV. A full coverage of the strongly coannihilating dark matter parameter space would therefore require hadron colliders with significantly higher center-of-mass energies.

  20. Accurate indel prediction using paired-end short reads

    PubMed Central

    2013-01-01

    Background One of the major open challenges in next generation sequencing (NGS) is the accurate identification of structural variants such as insertions and deletions (indels). Current methods for indel calling assign scores to different types of evidence or counter-evidence for the presence of an indel, such as the number of split read alignments spanning the boundaries of a deletion candidate or reads that map within a putative deletion. Candidates with a score above a manually defined threshold are then predicted to be true indels. As a consequence, structural variants detected in this manner contain many false positives. Results Here, we present a machine learning based method which is able to discover and distinguish true from false indel candidates in order to reduce the false positive rate. Our method identifies indel candidates using a discriminative classifier based on features of split read alignment profiles and trained on true and false indel candidates that were validated by Sanger sequencing. We demonstrate the usefulness of our method with paired-end Illumina reads from 80 genomes of the first phase of the 1001 Genomes Project ( http://www.1001genomes.org) in Arabidopsis thaliana. Conclusion In this work we show that indel classification is a necessary step to reduce the number of false positive candidates. We demonstrate that missing classification may lead to spurious biological interpretations. The software is available at: http://agkb.is.tuebingen.mpg.de/Forschung/SV-M/. PMID:23442375

  1. Quantitative and Dynamic Imaging of ATM Kinase Activity by Bioluminescence Imaging.

    PubMed

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA damage response, including DNA double strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter-expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  2. Quantitative and Dynamic Imaging of ATM Kinase Activity.

    PubMed

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including DNA double-strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  3. Testing the myth: tolerant dogs and aggressive wolves.

    PubMed

    Range, Friederike; Ritter, Caroline; Virányi, Zsófia

    2015-05-22

    Cooperation is thought to be highly dependent on tolerance. For example, it has been suggested that dog-human cooperation has been enabled by selecting dogs for increased tolerance and reduced aggression during the course of domestication ('emotional reactivity hypothesis'). However, based on observations of social interactions among members of captive packs, a few dog-wolf comparisons found contradictory results. In this study, we compared intraspecies aggression and tolerance of dogs and wolves raised and kept under identical conditions by investigating their agonistic behaviours and cofeeding during pair-wise food competition tests, a situation that has been directly linked to cooperation. We found that in wolves, dominant and subordinate members of the dyads monopolized the food and showed agonistic behaviours to a similar extent, whereas in dogs these behaviours were privileges of the high-ranking individuals. The fact that subordinate dogs rarely challenged their higher-ranking partners suggests a steeper dominance hierarchy in dogs than in wolves. Finally, wolves as well as dogs showed only rare and weak aggression towards each other. Therefore, we suggest that wolves are sufficiently tolerant to enable wolf-wolf cooperation, which in turn might have been the basis for the evolution of dog-human cooperation (canine cooperation hypothesis).

  4. Testing the myth: tolerant dogs and aggressive wolves

    PubMed Central

    Range, Friederike; Ritter, Caroline; Virányi, Zsófia

    2015-01-01

    Cooperation is thought to be highly dependent on tolerance. For example, it has been suggested that dog–human cooperation has been enabled by selecting dogs for increased tolerance and reduced aggression during the course of domestication (‘emotional reactivity hypothesis’). However, based on observations of social interactions among members of captive packs, a few dog–wolf comparisons found contradictory results. In this study, we compared intraspecies aggression and tolerance of dogs and wolves raised and kept under identical conditions by investigating their agonistic behaviours and cofeeding during pair-wise food competition tests, a situation that has been directly linked to cooperation. We found that in wolves, dominant and subordinate members of the dyads monopolized the food and showed agonistic behaviours to a similar extent, whereas in dogs these behaviours were privileges of the high-ranking individuals. The fact that subordinate dogs rarely challenged their higher-ranking partners suggests a steeper dominance hierarchy in dogs than in wolves. Finally, wolves as well as dogs showed only rare and weak aggression towards each other. Therefore, we suggest that wolves are sufficiently tolerant to enable wolf–wolf cooperation, which in turn might have been the basis for the evolution of dog–human cooperation (canine cooperation hypothesis). PMID:25904666

  5. Friendship, cliquishness, and the emergence of cooperation.

    PubMed

    Hruschka, Daniel J; Henrich, Joseph

    2006-03-07

    The evolution of cooperation is a central problem in biology and the social sciences. While theoretical work using the iterated prisoner's dilemma (IPD) has shown that cooperation among non-kin can be sustained among reciprocal strategies (i.e. tit-for-tat), these results are sensitive to errors in strategy execution, cyclical invasions by free riders, and the specific ecology of strategies. Moreover, the IPD assumes that a strategy's probability of playing the PD game with other individuals is independent of the decisions made by others. Here, we remove the assumption of independent pairing by studying a more plausible cooperative dilemma in which players can preferentially interact with a limited set of known partners and also deploy longer-term accounting strategies that can counteract the effects of random errors. We show that cooperative strategies readily emerge and persist in a range of noisy environments, with successful cooperative strategies (henceforth, cliquers) maintaining medium-term memories for partners and low thresholds for acceptable cooperation (i.e. forgiveness). The success of these strategies relies on their cliquishness-a propensity to defect with strangers if they already have an adequate number of partners. Notably, this combination of medium-term accounting, forgiveness, and cliquishness fits with empirical studies of friendship and other long-term relationships among humans.

  6. Ambiphilic Frustrated Lewis Pair Exhibiting High Robustness and Reversible Water Activation: Towards the Metal-Free Hydrogenation of Carbon Dioxide.

    PubMed

    Rochette, Étienne; Courtemanche, Marc-André; Pulis, Alexander P; Bi, Wenhua; Fontaine, Frédéric-Georges

    2015-06-29

    The synthesis and structural characterization of a phenylene-bridged Frustrated Lewis Pair (FLP) having a 2,2,6,6‑tetramethylpiperidine (TMP) as the Lewis base and a 9-borabicyclo[3.3.1]nonane (BBN) as the Lewis acid is reported. This FLP exhibits unique robustness towards the products of carbon dioxide hydrogenation. The compound shows reversible splitting of water, formic acid and methanol while no reaction is observed in the presence of excess formaldehyde. The molecule is incredibly robust, showing little sign of degradation after heating at 80 °C in benzene with 10 equiv. of formic acid for 24 h. The robustness of the system could be exploited in the design of metal-free catalysts for the hydrogenation of carbon dioxide.

  7. Exit and Voice: Organizational Loyalty and Dispute Resolution Strategies

    ERIC Educational Resources Information Center

    Hoffmann, Elizabeth A.

    2006-01-01

    This study compares workplace dispute resolution strategies (exit, voice and toleration) in matched pairs of conventional and worker-owned cooperative organizations operating in three industries--coal mining, taxicab driving and organic food distribution. Building on Hirschman's classic exit, voice and loyalty thesis, this research demonstrates…

  8. Interaction Quality During Partner Reading

    ERIC Educational Resources Information Center

    Meisinger, Elizabeth B.; Schwanenflugel, Paula J.; Bradley, Barbara A.; Stahl, Steven A.

    2004-01-01

    The influence of social relationships, positive interdependence, and teacher structure on the quality of partner reading interactions was examined. Partner reading, a scripted cooperative learning strategy, is often used in classrooms to promote the development of fluent and automatic reading skills. Forty-three pairs of second grade children were…

  9. Atomic-scale Visualization of Electronic Nematicity and Cooper Pairing in Iron-based Superconductors

    NASA Astrophysics Data System (ADS)

    Allan, Milan P.

    2013-03-01

    The mechanism of high-temperature superconductivity in the relatively novel iron-based high-Tc superconductors is unresolved, both in terms of how the phases evolve with doping, and in terms of the actual Cooper pairing process. To explore these issues, we used spectroscopic-imaging scanning tunneling microscopy to study the electronic structure of CaFe2As2 in the antiferromagnetic-orthorhombic `parent' state from which the superconductivity emerges. We discovered and visualized the now widely studied electronic `nematicity' of this phase, whose suppression is associated with the emergence of superconductivity (Science 327, 181, 2010). As subsequent transport experiments discovered a related anisotropic conductance which increases with dopant concentration, the interplay between the electronic structure surrounding each dopant atom, quasiparticle scattering therefrom, and the transport nematicity has become a pivotal focus of research. We find that substituting Co for Fe atoms in underdoped Ca(Fe1-xCox)2As2 generates a dense population of identical and strongly anisotropic impurity states that are distributed randomly but aligned with the antiferromagnetic a-axis. We also demonstrate, by imaging their surrounding interference patterns, that these impurity states scatter quasiparticles and thus influence transport in a highly anisotropic manner (M.P. Allan et al., 2013). Next, we studied the momentum dependence of the energy gaps of iron-based superconductivity, now focusing on LiFeAs. If strong electron-electron interactions mediate the Cooper pairing, then momentum-space anisotropic superconducting energy gaps Δi (k) were predicted by multiple techniques to appear on the different electronic bands i. We introduced intraband Bogoliubov quasiparticle scattering interference (QPI) techniques for the determination of anisotropic energy gaps to test these hypotheses and discovered the anisotropy, magnitude, and relative orientations of the energy gaps on multiple bands (Science 336, 563 (2012)). Finally, the electron-electron interactions generating Cooper pairing are often conjectured to involve bosonic spin fluctuations generated by interband scattering of electrons. We explore the STM signatures of both the interband scattering and the electron-boson coupling self-energy in LiFeAs, and detect the signatures of the electron-boson coupling (M.P. Allan et al., in preparation). In collaboration with A.W. Rost, T.-M. Chuang, F. Massee, M.S. Golden, Y. Xie, M.H. Fisher, E.-A. Kim, K. Lee, Ni Ni, S.L. Bud'ko, P.C. Canfield, Q. Wang, D.S. Dessau, K. Kihou, C.H. Lee, A. Iyo, H. Eisaki, D.J. Scalapino, A.P. Mackenzie and J.C. Davis

  10. Discriminative Cooperative Networks for Detecting Phase Transitions

    NASA Astrophysics Data System (ADS)

    Liu, Ye-Hua; van Nieuwenburg, Evert P. L.

    2018-04-01

    The classification of states of matter and their corresponding phase transitions is a special kind of machine-learning task, where physical data allow for the analysis of new algorithms, which have not been considered in the general computer-science setting so far. Here we introduce an unsupervised machine-learning scheme for detecting phase transitions with a pair of discriminative cooperative networks (DCNs). In this scheme, a guesser network and a learner network cooperate to detect phase transitions from fully unlabeled data. The new scheme is efficient enough for dealing with phase diagrams in two-dimensional parameter spaces, where we can utilize an active contour model—the snake—from computer vision to host the two networks. The snake, with a DCN "brain," moves and learns actively in the parameter space, and locates phase boundaries automatically.

  11. Stability of the Superconducting d-Wave Pairing Toward the Intersite Coulomb Repulsion in CuO_2 Plane

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Dzebisashvili, D. M.; Korovushkin, M. M.; Barabanov, A. F.

    2018-06-01

    Taking into account the real crystalline structure of the CuO_2 plane and the strong spin-fermion coupling, we study the influence of the intersite Coulomb repulsion between holes on the Cooper instability of the spin-polaron quasiparticles in cuprate superconductors. The analysis shows that only the superconducting d-wave pairing is implemented in the whole region of doping, whereas the solutions of the self-consistent equations for the s-wave pairing are absent. It is shown that intersite Coulomb interaction V_1 between the holes located at the nearest oxygen ions does not affect the d-wave pairing, because its Fourier transform V_q vanishes in the kernel of the corresponding integral equation. The intersite Coulomb interaction V_2 of quasiparticles located at the next-nearest oxygen ions does not vanish in the integral equations, however, but it is also shown that the d-wave pairing is robust toward this interaction for physically reasonable values of V_2.

  12. Stability of the Superconducting d-Wave Pairing Toward the Intersite Coulomb Repulsion in CuO_2 Plane

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Dzebisashvili, D. M.; Korovushkin, M. M.; Barabanov, A. F.

    2018-03-01

    Taking into account the real crystalline structure of the CuO_2 plane and the strong spin-fermion coupling, we study the influence of the intersite Coulomb repulsion between holes on the Cooper instability of the spin-polaron quasiparticles in cuprate superconductors. The analysis shows that only the superconducting d-wave pairing is implemented in the whole region of doping, whereas the solutions of the self-consistent equations for the s-wave pairing are absent. It is shown that intersite Coulomb interaction V_1 between the holes located at the nearest oxygen ions does not affect the d-wave pairing, because its Fourier transform V_q vanishes in the kernel of the corresponding integral equation. The intersite Coulomb interaction V_2 of quasiparticles located at the next-nearest oxygen ions does not vanish in the integral equations, however, but it is also shown that the d-wave pairing is robust toward this interaction for physically reasonable values of V_2.

  13. Conformity hinders the evolution of cooperation on scale-free networks

    NASA Astrophysics Data System (ADS)

    Peña, Jorge; Volken, Henri; Pestelacci, Enea; Tomassini, Marco

    2009-07-01

    We study the effects of conformity, the tendency of humans to imitate locally common behaviors, in the evolution of cooperation when individuals occupy the vertices of a graph and engage in the one-shot prisoner’s dilemma or the snowdrift game with their neighbors. Two different graphs are studied: rings (one-dimensional lattices with cyclic boundary conditions) and scale-free networks of the Barabási-Albert type. The proposed evolutionary-graph model is studied both by means of Monte Carlo simulations and an extended pair-approximation technique. We find improved levels of cooperation when evolution is carried on rings and individuals imitate according to both the traditional payoff bias and a conformist bias. More importantly, we show that scale-free networks are no longer powerful amplifiers of cooperation when fair amounts of conformity are introduced in the imitation rules of the players. Such weakening of the cooperation-promoting abilities of scale-free networks is the result of a less biased flow of information in scale-free topologies, making hubs more susceptible of being influenced by less-connected neighbors.

  14. Selection of arboreal termitaria for nesting by cooperatively breeding Micronesian Kingfishers Todiramphus cinnamominus reichenbachii

    USGS Publications Warehouse

    Kesler, Dylan C.; Haig, Susan M.

    2005-01-01

    Limited nest-site availability appears to be an important factor in the evolution of delayed dispersal and cooperative breeding in some cavity-nesting species. The cooperatively breeding Pohnpei subspecies of Micronesian Kingfisher Todiramphus cinnamominus reichenbachii excavates nest cavities from the nests of arboreal termites Nasutitermes spp., or termitaria. In this first published description of nest-sites for this subspecies, we used surveys, remote sensing and radiotelemetry to evaluate the relationship between nest-site availability and co-operation. Results illustrate that nest termitaria are higher in the forest canopy, larger in volume and occur in areas with more contiguous canopy cover than unused termitaria. Nest termitaria were selected independently of the proximity to forest edges and territory boundaries, and we found no difference in characteristics of termitaria used by cooperative groups and breeding pairs. Logistic regression modelling indicated that termitaria with nest-like characteristics were not limited in abundance, suggesting that neither the prospects of inheriting nesting resources nor limited nest-site abundance are probable explanations for delayed dispersal in the Pohnpei subspecies of Micronesian Kingfisher.

  15. The physico-chemical "anatomy" of the tautomerization through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives.

    PubMed

    Brovarets', Ol'ha O; Zhurakivsky, Roman O; Hovorun, Dmytro M

    2013-10-01

    The biologically important tautomerization of the Hyp·Cyt, Hyp·Thy and Hyp·Hyp base pairs to the Hyp·Cyt, Hyp·Thy and Hyp·Hyp base pairs, respectively, by the double proton transfer (DPT) was comprehensively studied in vacuo and in the continuum with a low dielectric constant (ε = 4) corresponding to hydrophobic interfaces of protein-nucleic acid interactions by combining theoretical investigations at the B3LYP/6-311++G(d,p) level of QM theory with QTAIM topological analysis. Based on the sweeps of the energetic, electron-topological, geometric and polar parameters, which describe the course of the tautomerization along the intrinsic reaction coordinate (IRC), it was proved that the tautomerization through the DPT is concerted and asynchronous process for the Hyp·Cyt and Hyp·Thy base pairs, while concerted and synchronous for the Hyp·Hyp homodimer. The continuum with ε = 4 does not affect qualitatively the course of the tautomerization reaction for all studied complexes. The nine key points along the IRC of the Hyp·Cyt↔Hyp·Cyt and Hyp·Thy↔Hyp·Thy tautomerizations and the six key points of the Hyp·Hyp↔Hyp·Hyp tautomerization have been identified and fully characterized. These key points could be considered as electron-topological "fingerprints" of concerted asynchronous (for Hyp·Cyt and Hyp·Thy) or synchronous (for Hyp·Hyp) tautomerization process via the DPT. It was found, that in the Hyp·Cyt, Hyp·Thy, Hyp·Hyp and Hyp·Hyp base pairs all H-bonds are significantly cooperative and mutually reinforce each other, while the C2H…O2 H-bond in the Hyp·Cyt base pair and the O6H…O4 H-bond in the Hyp·Thy base pair behave anti-cooperatively, i.e., they become weakened, while two others become strengthened.

  16. A structure-preserving split finite element discretization of the split 1D linear shallow-water equations

    NASA Astrophysics Data System (ADS)

    Bauer, Werner; Behrens, Jörn

    2017-04-01

    We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger absolute error values, it shows similar convergence rates as the other split schemes, but does not provide a satisfactory approximation of the dispersion relation as short waves are propagated much to fast. Despite this, the finding of this new scheme illustrates the potential of our discretization framework as a toolbox to find and to study new FE schemes based on new combinations of FE spaces. [1] Bauer, W. [2016], A new hierarchically-structured n-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM - International Journal on Geomathematics, 7(1), 31-101.

  17. Investigating Cooperative Behavior in Ecological Settings: An EEG Hyperscanning Study.

    PubMed

    Toppi, Jlenia; Borghini, Gianluca; Petti, Manuela; He, Eric J; De Giusti, Vittorio; He, Bin; Astolfi, Laura; Babiloni, Fabio

    2016-01-01

    The coordinated interactions between individuals are fundamental for the success of the activities in some professional categories. We reported on brain-to-brain cooperative interactions between civil pilots during a simulated flight. We demonstrated for the first time how the combination of neuroelectrical hyperscanning and intersubject connectivity could provide indicators sensitive to the humans' degree of synchronization under a highly demanding task performed in an ecological environment. Our results showed how intersubject connectivity was able to i) characterize the degree of cooperation between pilots in different phases of the flight, and ii) to highlight the role of specific brain macro areas in cooperative behavior. During the most cooperative flight phases pilots showed, in fact, dense patterns of interbrain connectivity, mainly linking frontal and parietal brain areas. On the contrary, the amount of interbrain connections went close to zero in the non-cooperative phase. The reliability of the interbrain connectivity patterns was verified by means of a baseline condition represented by formal couples, i.e. pilots paired offline for the connectivity analysis but not simultaneously recorded during the flight. Interbrain density was, in fact, significantly higher in real couples with respect to formal couples in the cooperative flight phases. All the achieved results demonstrated how the description of brain networks at the basis of cooperation could effectively benefit from a hyperscanning approach. Interbrain connectivity was, in fact, more informative in the investigation of cooperative behavior with respect to established EEG signal processing methodologies applied at a single subject level.

  18. Investigating Cooperative Behavior in Ecological Settings: An EEG Hyperscanning Study

    PubMed Central

    Petti, Manuela; He, Eric J.; De Giusti, Vittorio; He, Bin; Astolfi, Laura; Babiloni, Fabio

    2016-01-01

    The coordinated interactions between individuals are fundamental for the success of the activities in some professional categories. We reported on brain-to-brain cooperative interactions between civil pilots during a simulated flight. We demonstrated for the first time how the combination of neuroelectrical hyperscanning and intersubject connectivity could provide indicators sensitive to the humans’ degree of synchronization under a highly demanding task performed in an ecological environment. Our results showed how intersubject connectivity was able to i) characterize the degree of cooperation between pilots in different phases of the flight, and ii) to highlight the role of specific brain macro areas in cooperative behavior. During the most cooperative flight phases pilots showed, in fact, dense patterns of interbrain connectivity, mainly linking frontal and parietal brain areas. On the contrary, the amount of interbrain connections went close to zero in the non-cooperative phase. The reliability of the interbrain connectivity patterns was verified by means of a baseline condition represented by formal couples, i.e. pilots paired offline for the connectivity analysis but not simultaneously recorded during the flight. Interbrain density was, in fact, significantly higher in real couples with respect to formal couples in the cooperative flight phases. All the achieved results demonstrated how the description of brain networks at the basis of cooperation could effectively benefit from a hyperscanning approach. Interbrain connectivity was, in fact, more informative in the investigation of cooperative behavior with respect to established EEG signal processing methodologies applied at a single subject level. PMID:27124558

  19. A Two-Echelon Cooperated Routing Problem for a Ground Vehicle and Its Carried Unmanned Aerial Vehicle.

    PubMed

    Luo, Zhihao; Liu, Zhong; Shi, Jianmai

    2017-05-17

    In this paper, a two-echelon cooperated routing problem for the ground vehicle (GV) and its carried unmanned aerial vehicle (UAV) is investigated, where the GV travels on the road network and its UAV travels in areas beyond the road to visit a number of targets unreached by the GV. In contrast to the classical two-echelon routing problem, the UAV has to launch and land on the GV frequently to change or charge its battery while the GV is moving on the road network. A new 0-1 integer programming model is developed to formulate the problem, where the constraints on the spatial and temporal cooperation of GV and UAV routes are included. Two heuristics are proposed to solve the model: the first heuristic (H1) constructs a complete tour for all targets and splits it by GV routes, while the second heuristic (H2) constructs the GV tour and assigns UAV flights to it. Random instances with six different sizes (25-200 targets, 12-80 rendezvous nodes) are used to test the algorithms. Computational results show that H1 performs slightly better than H2, while H2 uses less time and is more stable.

  20. Dark soliton pair of ultracold Fermi gases for a generalized Gross-Pitaevskii equation model.

    PubMed

    Wang, Ying; Zhou, Yu; Zhou, Shuyu; Zhang, Yongsheng

    2016-07-01

    We present the theoretical investigation of dark soliton pair solutions for one-dimensional as well as three-dimensional generalized Gross-Pitaevskii equation (GGPE) which models the ultracold Fermi gas during Bardeen-Cooper-Schrieffer-Bose-Einstein condensates crossover. Without introducing any integrability constraint and via the self-similar approach, the three-dimensional solution of GGPE is derived based on the one-dimensional dark soliton pair solution, which is obtained through a modified F-expansion method combined with a coupled modulus-phase transformation technique. We discovered the oscillatory behavior of the dark soliton pair from the theoretical results obtained for the three-dimensional case. The calculated period agrees very well with the corresponding reported experimental result [Weller et al., Phys. Rev. Lett. 101, 130401 (2008)PRLTAO0031-900710.1103/PhysRevLett.101.130401], demonstrating the applicability of the theoretical treatment presented in this work.

  1. Kosterlitz-Thouless transition and vortex-antivortex lattice melting in two-dimensional Fermi gases with p - or d -wave pairing

    NASA Astrophysics Data System (ADS)

    Cao, Gaoqing; He, Lianyi; Huang, Xu-Guang

    2017-12-01

    We present a theoretical study of the finite-temperature Kosterlitz-Thouless (KT) and vortex-antivortex lattice (VAL) melting transitions in two-dimensional Fermi gases with p - or d -wave pairing. For both pairings, when the interaction is tuned from weak to strong attractions, we observe a quantum phase transition from the Bardeen-Cooper-Schrieffer (BCS) superfluidity to the Bose-Einstein condensation (BEC) of difermions. The KT and VAL transition temperatures increase during this BCS-BEC transition and approach constant values in the deep BEC region. The BCS-BEC transition is characterized by the nonanalyticities of the chemical potential, the superfluid order parameter, and the sound velocities as functions of the interaction strength at both zero and finite temperatures; however, the temperature effect tends to weaken the nonanalyticities compared to the zero-temperature case. The effect of mismatched Fermi surfaces on the d -wave pairing is also studied.

  2. Surveying woodland hawks with broadcasts of great horned owl vocalization

    USGS Publications Warehouse

    Mosher, James A.; Fuller, Mark R.

    1996-01-01

    Pre-recorded vocalizations of great horned owls (Bubo virginianus) broadcast into predominantly wooded habitat along roadside survey routes resulted in as many detections of resident red-shouldered hawks (Buteo lineatus) and Cooper's hawks (Accipiter cooperii) as broadcasts of each conspecific calls. Survey results for 3 species, expressed as average number of contacts/route, were directly related to the number of resident pairs located during systematic searches conducted on foot across the study area. Regression models based on road-transect counts were significant for predicting abundance of red-shouldered hawks, broad-winged hawks (Buteo platypterus), and Cooper's hawks from our study areas.

  3. Teaching calculus using module based on cooperative learning strategy

    NASA Astrophysics Data System (ADS)

    Arbin, Norazman; Ghani, Sazelli Abdul; Hamzah, Firdaus Mohamad

    2014-06-01

    The purpose of the research is to evaluate the effectiveness of a module which utilizes the cooperative learning for teaching Calculus for limit, derivative and integral. The sample consists of 50 semester 1 students from the Science Programme (AT 16) Sultan Idris Education University. A set of questions of related topics (pre and post) has been used as an instrument to collect data. The data is analyzed using inferential statistics involving the paired sample t-test and the independent t-test. The result shows that students have positive inclination towards the modulein terms of understanding.

  4. How to test for partially predictable chaos.

    PubMed

    Wernecke, Hendrik; Sándor, Bulcsú; Gros, Claudius

    2017-04-24

    For a chaotic system pairs of initially close-by trajectories become eventually fully uncorrelated on the attracting set. This process of decorrelation can split into an initial exponential decrease and a subsequent diffusive process on the chaotic attractor causing the final loss of predictability. Both processes can be either of the same or of very different time scales. In the latter case the two trajectories linger within a finite but small distance (with respect to the overall extent of the attractor) for exceedingly long times and remain partially predictable. Standard tests for chaos widely use inter-orbital correlations as an indicator. However, testing partially predictable chaos yields mostly ambiguous results, as this type of chaos is characterized by attractors of fractally broadened braids. For a resolution we introduce a novel 0-1 indicator for chaos based on the cross-distance scaling of pairs of initially close trajectories. This test robustly discriminates chaos, including partially predictable chaos, from laminar flow. Additionally using the finite time cross-correlation of pairs of initially close trajectories, we are able to identify laminar flow as well as strong and partially predictable chaos in a 0-1 manner solely from the properties of pairs of trajectories.

  5. Trans-Metal-Trapping Meets Frustrated-Lewis-Pair Chemistry: Ga(CH2SiMe3)3-Induced C–H Functionalizations

    PubMed Central

    2017-01-01

    Merging two topical themes in main-group chemistry, namely, cooperative bimetallics and frustrated-Lewis-pair (FLP) activity, this Forum Article focuses on the cooperativity-induced outcomes observed when the tris(alkyl)gallium compound GaR3 (R = CH2SiMe3) is paired with the lithium amide LiTMP (TMP = 2,2,6,6-tetramethylpiperidide) or the sterically hindered N-heterocyclic carbene (NHC) 1,3-bis(tert-butyl)imidazol-2-ylidene (ItBu). When some previously published work are drawn together with new results, unique tandem reactivities are presented that are driven by the steric mismatch between the individual reagents of these multicomponent reagents. Thus, the LiTMP/GaR3 combination, which on its own fails to form a cocomplex, functions as a highly regioselective base (LiTMP)/trap (GaR3) partnership for the metalation of N-heterocycles such as diazines, 1,3-benzoazoles, and 2-picolines in a trans-metal-trapping (TMT) process that stabilizes the emerging sensitive carbanions. Taking advantage of related steric incompatibility, a novel monometallic FLP system pairing GaR3 with ItBu has been developed for the activation of carbonyl compounds (via C=O insertion) and other molecules with acidic hydrogen atoms such as phenol and phenylacetylene. Shedding new light on how these non-cocomplexing partnerships operate and showcasing the potential of gallium reagents to engage in metalation reactions or FLP activations, areas where the use of this group 13 metal is scant, this Forum Article aims to stimulate more interest and activity toward the advancement of organogallium chemistry. PMID:28485929

  6. Improving strand pairing prediction through exploring folding cooperativity

    PubMed Central

    Jeong, Jieun; Berman, Piotr; Przytycka, Teresa M.

    2008-01-01

    The topology of β-sheets is defined by the pattern of hydrogen-bonded strand pairing. Therefore, predicting hydrogen bonded strand partners is a fundamental step towards predicting β-sheet topology. At the same time, finding the correct partners is very difficult due to long range interactions involved in strand pairing. Additionally, patterns of aminoacids observed in β-sheet formations are very general and therefore difficult to use for computational recognition of specific contacts between strands. In this work, we report a new strand pairing algorithm. To address above mentioned difficulties, our algorithm attempts to mimic elements of the folding process. Namely, in addition to ensuring that the predicted hydrogen bonded strand pairs satisfy basic global consistency constraints, it takes into account hypothetical folding pathways. Consistently with this view, introducing hydrogen bonds between a pair of strands changes the probabilities of forming hydrogen bonds between other pairs of strand. We demonstrate that this approach provides an improvement over previously proposed algorithms. We also compare the performance of this method to that of a global optimization algorithm that poses the problem as integer linear programming optimization problem and solves it using ILOG CPLEX™ package. PMID:18989036

  7. Peer Learning Network: Implementing and Sustaining Cooperative Learning by Teacher Collaboration

    ERIC Educational Resources Information Center

    Miquel, Ester; Duran, David

    2017-01-01

    This article describes an in-service teachers', staff-development model "Peer Learning Network" and presents results about its efficiency. "Peer Learning Network" promotes three levels of peer learning simultaneously (among pupils, teachers, and schools). It supports pairs of teachers from several schools, who are linked…

  8. Enhancing Students' Understanding of Algebra Concepts through Cooperative Computer Instruction

    ERIC Educational Resources Information Center

    Gambari, Amos Isiaka; Shittu, Ahmed Tajudeen; Taiwo, Oladipupo Abimbola

    2016-01-01

    Values are the personal convictions which one finds important. Three different aspects which are associated with mathematics education differently are identified, namely, values through mathematics education, values of mathematics education, and values for mathematics. These are paired with Bishop's (1996) conceptions of general educational,…

  9. Tutoring with Alphie: Evaluation Report and Executive Summary

    ERIC Educational Resources Information Center

    Biggart, Andy; O'Hare, Liam; Miller, Sarah

    2015-01-01

    Tutoring with Alphie is a computer-assisted programme that aims to improve the literacy skills of struggling readers. The programme combines elements of collaborative (or 'cooperative') learning, computer-assisted instruction and small group support. Participating pupils are grouped in pairs and follow a series of activities that seek to improve…

  10. Using Independent Research Projects to Foster Learning in the Comparative Vertebrate Anatomy Laboratory

    ERIC Educational Resources Information Center

    Ghedotti, Michael J.; Fielitz, Christopher; Leonard, Daniel J.

    2005-01-01

    This paper presents a teaching methodology involving an independent research project component for use in undergraduate Comparative Vertebrate Anatomy laboratory courses. The proposed project introduces cooperative, active learning in a research context to comparative vertebrate anatomy. This project involves pairs or groups of three students…

  11. The role of autoshaping in cooperative two-player games between starlings.

    PubMed

    Reboreda, J C; Kacelnik, A

    1993-07-01

    We report a study of the behavior of starlings in laboratory situations inspired by the "prisoner's dilemma." Our purpose is to investigate some possible mechanisms for the maintenance of cooperation by reciprocity and to investigate the process of autoshaping at a trial-by-trial level. In Experiment 1, pairs of starlings housed in adjacent cages played a discrete-trial "game" in which food could be obtained only by "cooperation." In this game, pecking at a response key eliminated the opportunity to obtain food but produced food for the partner. If neither bird pecked, neither had the opportunity to obtain food in that trial. Some level of cooperation persisted for several sessions whether the birds had been pretrained for a high or low probability of pecking at the key. The probability of a cooperative response was higher after trials in which the partner responded (and a reward was obtained) than after trials in which neither bird responded (and no reward was obtained), but the probability of a response was even higher after trials in which the same bird had responded, even though no reward was obtained by the actor in these trials. This behavior did not require visual presence of another player, because similar results were obtained in Experiment 2 (a replicate of Experiment 1 in which the members of the pair could not see each other) and in Experiment 3, a game in which each starling played with a computer responding with "tit for tat." Using an omission schedule, in which food was given in all trials in which the bird did not peck, Experiment 4 showed that pecking could be maintained by autoshaping. In this experiment, overall probability of pecking decreased with experience, due to a drop in the tendency to peck in consecutive trials. The probability of pecking in trials following a reinforced trial did not decrease with experience. An implementation of the Rescorla-Wagner model for this situation was capable of reproducing molar, but not molecular, aspects of our results. The results violate the predictions of several game-theoretical models for the evolution of cooperation, including tit for tat, generous tit for tat, and the superior win-stay-lose-shift.

  12. Development of hardware accelerator for molecular dynamics simulations: a computation board that calculates nonbonded interactions in cooperation with fast multipole method.

    PubMed

    Amisaki, Takashi; Toyoda, Shinjiro; Miyagawa, Hiroh; Kitamura, Kunihiro

    2003-04-15

    Evaluation of long-range Coulombic interactions still represents a bottleneck in the molecular dynamics (MD) simulations of biological macromolecules. Despite the advent of sophisticated fast algorithms, such as the fast multipole method (FMM), accurate simulations still demand a great amount of computation time due to the accuracy/speed trade-off inherently involved in these algorithms. Unless higher order multipole expansions, which are extremely expensive to evaluate, are employed, a large amount of the execution time is still spent in directly calculating particle-particle interactions within the nearby region of each particle. To reduce this execution time for pair interactions, we developed a computation unit (board), called MD-Engine II, that calculates nonbonded pairwise interactions using a specially designed hardware. Four custom arithmetic-processors and a processor for memory manipulation ("particle processor") are mounted on the computation board. The arithmetic processors are responsible for calculation of the pair interactions. The particle processor plays a central role in realizing efficient cooperation with the FMM. The results of a series of 50-ps MD simulations of a protein-water system (50,764 atoms) indicated that a more stringent setting of accuracy in FMM computation, compared with those previously reported, was required for accurate simulations over long time periods. Such a level of accuracy was efficiently achieved using the cooperative calculations of the FMM and MD-Engine II. On an Alpha 21264 PC, the FMM computation at a moderate but tolerable level of accuracy was accelerated by a factor of 16.0 using three boards. At a high level of accuracy, the cooperative calculation achieved a 22.7-fold acceleration over the corresponding conventional FMM calculation. In the cooperative calculations of the FMM and MD-Engine II, it was possible to achieve more accurate computation at a comparable execution time by incorporating larger nearby regions. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 582-592, 2003

  13. Coding Instead of Splitting - Algebraic Combinations in Time and Space

    DTIC Science & Technology

    2016-06-09

    sources message. For certain classes of two-unicast-Z networks, we show that the rate-tuple ( N ,1) is achievable as long as the individual source...destination cuts for the two source-destination pairs are respectively at least as large as N and 1, and the generalized network sharing cut - a bound...previously defined by Kamath et. al. - is at least as large as N + 1. We show this through a novel achievable scheme which is based on random linear coding at

  14. Control of secondary electrons from ion beam impact using a positive potential electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, T. P., E-mail: tpcrowley@xanthotechnologies.com; Demers, D. R.; Fimognari, P. J.

    2016-11-15

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  15. The effect of homogeneous and heterogeneous review pairs on student achievement and attitude when utilizing computer-assisted instruction in middle-level Earth science classes

    NASA Astrophysics Data System (ADS)

    Lyon, Ellen Beth

    1998-09-01

    This research project investigated the influence of homogeneous (like-ability) review pairs coupled with heterogeneous (mixed-ability) cooperative learning groups using computer-assisted instruction (CAI) on academic achievement and attitude toward science in eighth grade Earth science students. Subjects were placed into academic quartiles (Hi, Med-Hi, Med-Lo, and Lo) based on achievement. Cooperative learning groups of four (one student from each academic quartile) were formed in all classes, within which students completed CAI through a software package entitled Geoscience Education Through Interactive Technology, or GETITspTM. Each day, when computer activities were completed, students in the experimental classes were divided into homogeneous review pairs to review their work. The students in the control classes were divided into heterogeneous review pairs to review their work. The effects of the experimental treatment were measured by pretest, posttest, and delayed posttest measures, by pre- and post-student attitude scales, and by evaluation of amendments students made to their work during the time spent in review pairs. Results showed that student achievement was not significantly influenced by placement in homogeneous or heterogeneous review pairs, regardless of academic quartile assignment. Student attitude toward science as a school subject did not change significantly due to experimental treatment. Achievement retention of students in experimental and control groups within each quartile showed no significant difference. Notebook amendment patterns showed some significant differences in a few categories. For the Hi quartile, there were significant differences in numbers of deletion amendments and substitution amendments between the experimental and the control group. In both cases, subjects in the experimental group (homogeneous review pairs) made greater number of amendments then those in the control group (heterogeneous review pairs). For the Lo quartile, there was a significant difference in the number of grammar/usage/mechanics (GUM) amendments between the experimental and control groups. The experimental group made far more GUM amendments than the control group. This research highlights the fact that many factors may influence a successful learning environment in which CAI is successfully implemented. Educational research projects should be designed and used to help teachers create learning environments in which CAI is maximized.

  16. A Novel X-ray Diffractometer for the Florida Split Coil 25 Tesla Magnet

    NASA Astrophysics Data System (ADS)

    Wang, Shengyu; Kovalev, Alexey; Suslov, Alexey; Siegrist, Theo

    2014-03-01

    At National High Magnetic Field Laboratory (NHMFL), we are developing a unique X-ray diffractometer for the 25 Tesla Florida Split Coil Magnet for scattering experiments under extremely high static magnetic fields. The X-ray source is a sealed tube (copper or molybdenum anode), connected to the magnet by an evacuated beam tunnel. The detectors are either an image plate or a silicon drift detector, with the data acquisition system based on LabVIEW. Our preliminary experimental results showed that the performance of the detector electronics and the X-ray generator is reliable in the fringe magnetic fields produced at the highest field of 25 T. Using this diffractometer, we will make measurements on standard samples, such as LaB6, Al2O3 and Si, to calibrate the diffraction system. Magnetic samples, such as single crystal HoMnO3 and stainless steel 301 alloys will be measured subsequently. The addition of X-ray diffraction to the unique split coil magnet will significantly expand the NHMFL experimental capabilities. Therefore, external users will be able to probe spin - lattice interactions at static magnetic fields up to 25T. This project is supported by NSF-DMR Award No.1257649. NHMFL is supported by NSF Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. DoE.

  17. An fMRI study of joint action–varying levels of cooperation correlates with activity in control networks

    PubMed Central

    Chaminade, Thierry; Marchant, Jennifer L.; Kilner, James; Frith, Christopher D.

    2012-01-01

    As social agents, humans continually interact with the people around them. Here, motor cooperation was investigated using a paradigm in which pairs of participants, one being scanned with fMRI, jointly controlled a visually presented object with joystick movements. The object oscillated dynamically along two dimensions, color and width of gratings, corresponding to the two cardinal directions of joystick movements. While the overall control of each participant on the object was kept constant, the amount of cooperation along the two dimensions varied along four levels, from no (each participant controlled one dimension exclusively) to full (each participant controlled half of each dimension) cooperation. Increasing cooperation correlated with BOLD signal in the left parietal operculum and anterior cingulate cortex (ACC), while decreasing cooperation correlated with activity in the right inferior frontal and superior temporal gyri, the intraparietal sulci and inferior temporal gyri bilaterally, and the dorsomedial prefrontal cortex. As joint performance improved with the level of cooperation, we assessed the brain responses correlating with behavior, and found that activity in most of the areas associated with levels of cooperation also correlated with the joint performance. The only brain area found exclusively in the negative correlation with cooperation was in the dorso medial frontal cortex, involved in monitoring action outcome. Given the cluster location and condition-related signal change, we propose that this region monitored actions to extract the level of cooperation in order to optimize the joint response. Our results, therefore, indicate that, in the current experimental paradigm involving joint control of a visually presented object with joystick movements, the level of cooperation affected brain networks involved in action control, but not mentalizing. PMID:22715326

  18. Superfluid transition in the attractive Hofstadter-Hubbard model

    NASA Astrophysics Data System (ADS)

    Umucalılar, R. O.; Iskin, M.

    2016-08-01

    We consider a Fermi gas that is loaded onto a square optical lattice and subjected to a perpendicular artificial magnetic field, and determine its superfluid transition boundary by adopting a BCS-like mean-field approach in momentum space. The multiband structure of the single-particle Hofstadter spectrum is taken explicitly into account while deriving a generalized pairing equation. We present the numerical solutions as functions of the artificial magnetic flux, interaction strength, Zeeman field, chemical potential, and temperature, with a special emphasis on the roles played by the density of single-particle states and center-of-mass momentum of Cooper pairs.

  19. Theoretical study on the cooperative exciton dissociation process based on dimensional and hot charge-transfer state effects in an organic photocell

    NASA Astrophysics Data System (ADS)

    Shimazaki, Tomomi; Nakajima, Takahito

    2016-06-01

    This paper discusses the exciton dissociation process at the donor-acceptor interface in organic photocells. In our previous study, we introduced a local temperature to handle the hot charge-transfer (CT) state and calculated the exciton dissociation probability based on the 1D organic semiconductor model [T. Shimazaki and T. Nakajima, Phys. Chem. Chem. Phys. 17, 12538 (2015)]. Although the hot CT state plays an essential role in exciton dissociations, the probabilities calculated are not high enough to efficiently separate bound electron-hole pairs. This paper focuses on the dimensional (entropy) effect together with the hot CT state effect and shows that cooperative behavior between both effects can improve the exciton dissociation process. In addition, we discuss cooperative effects with site-disorders and external-electric-fields.

  20. Cooperative interactions between paired domain and homeodomain.

    PubMed

    Jun, S; Desplan, C

    1996-09-01

    The Pax proteins are a family of transcriptional regulators involved in many developmental processes in all higher eukaryotes. They are characterized by the presence of a paired domain (PD), a bipartite DNA binding domain composed of two helix-turn-helix (HTH) motifs,the PAI and RED domains. The PD is also often associated with a homeodomain (HD) which is itself able to form homo- and hetero-dimers on DNA. Many of these proteins therefore contain three HTH motifs each able to recognize DNA. However, all PDs recognize highly related DNA sequences, and most HDs also recognize almost identical sites. We show here that different Pax proteins use multiple combinations of their HTHs to recognize several types of target sites. For instance, the Drosophila Paired protein can bind, in vitro, exclusively through its PAI domain, or through a dimer of its HD, or through cooperative interaction between PAI domain and HD. However, prd function in vivo requires the synergistic action of both the PAI domain and the HD. Pax proteins with only a PD appear to require both PAI and RED domains, while a Pax-6 isoform and a new Pax protein, Lune, may rely on the RED domain and HD. We propose a model by which Pax proteins recognize different target genes in vivo through various combinations of their DNA binding domains, thus expanding their recognition repertoire.

  1. Dissipationless transport of spin-polarized electrons and Cooper pairs in an electron waveguide

    NASA Astrophysics Data System (ADS)

    Levy, J.; Annadi, A.; Lu, S.; Cheng, G.; Tylan-Tyler, A.; Briggeman, M.; Tomczyk, M.; Huang, M.; Pekker, D.; Irvin, P.; Lee, H.; Lee, J.-W.; Eom, C.-B.

    Electron systems undergo profound changes in their behavior when constrained to move along a single axis. To date, clean one-dimensional (1D) electron transport has only been observed in carbon-based nanotubes and nanoribbons, and compound semiconductor nanowires. Complex-oxide heterostructures can possess conductive two-dimensional (2D) interfaces with much richer chemistries and properties, e.g., superconductivity, but with mobilities that appear to preclude ballistic transport in 1D. Here we show that nearly ideal 1D electron waveguides exhibiting ballistic transport of electrons and non-superconducting Cooper pairs can be formed at the interface between the two band insulators LaAlO3 and SrTiO3. The electron waveguides possess gate and magnetic-field selectable spin and charge degrees of freedom, and can be tuned to the one-dimensional limit of a single spin-polarized quantum channel. The strong attractive electron-electron interactions enable a new mode of dissipationless transport of electron pairs that is not superconducting. The selectable spin and subband quantum numbers of these electron waveguides may be useful for quantum simulation, quantum informatio We gratefully acknowledge financial support from ONR N00014-15-1-2847 (JL), AFOSR (FA9550-15-1-0334 (CBE) and FA9550-12-1-0057 (JL, CBE)), AOARD FA2386-15-1-4046 (CBE) and NSF (DMR-1104191 (JL), DMR-1124131 (CBE, JL) and DMR-1234096 (CBE)).

  2. A new approach to estimate parameters of speciation models with application to apes.

    PubMed

    Becquet, Celine; Przeworski, Molly

    2007-10-01

    How populations diverge and give rise to distinct species remains a fundamental question in evolutionary biology, with important implications for a wide range of fields, from conservation genetics to human evolution. A promising approach is to estimate parameters of simple speciation models using polymorphism data from multiple loci. Existing methods, however, make a number of assumptions that severely limit their applicability, notably, no gene flow after the populations split and no intralocus recombination. To overcome these limitations, we developed a new Markov chain Monte Carlo method to estimate parameters of an isolation-migration model. The approach uses summaries of polymorphism data at multiple loci surveyed in a pair of diverging populations or closely related species and, importantly, allows for intralocus recombination. To illustrate its potential, we applied it to extensive polymorphism data from populations and species of apes, whose demographic histories are largely unknown. The isolation-migration model appears to provide a reasonable fit to the data. It suggests that the two chimpanzee species became reproductively isolated in allopatry approximately 850 Kya, while Western and Central chimpanzee populations split approximately 440 Kya but continued to exchange migrants. Similarly, Eastern and Western gorillas and Sumatran and Bornean orangutans appear to have experienced gene flow since their splits approximately 90 and over 250 Kya, respectively.

  3. Synthesis and crystal structure of the solid solution Co3(SeO3)3-x(PO3OH)x(H2O) involving crystallographic split positions of Se4+ and P5+.

    PubMed

    Zimmermann, Iwan; Johnsson, Mats

    2013-10-21

    Three new cobalt selenite hydroxo-phosphates laying in the solid solution Co3(SeO3)3-x(PO3OH)x(H2O), with x = 0.8, x = 1.0, and x = 1.2 are reported. Single crystals were obtained by hydrothermal synthesis and the crystal structure was determined by single crystal X-ray diffraction. The structure can be described as a 3D framework having selenite and hydroxo-phosphate groups protruding into channels in the crystal structure. Se(4+) and P(5+) share a split position in the structure so that either SeO3 groups having a stereochemically active lone pair or tetrahedrally coordinated PO3OH groups are present. The OH-group is thus only present when the split position is occupied by P(5+). The crystal water is coordinated to a cobalt atom and TG and IR measurements show that the water and hydroxyl groups leave the structure at unusually high temperatures (>450 °C). Magnetic susceptibility measurements show antiferromagnetic coupling below 16 K and a magnetic moment of 4.02(3) μB per Co atom was observed.

  4. Nanoprobe-Enhanced, Split Aptamer-Based Electrochemical Sandwich Assay for Ultrasensitive Detection of Small Molecules.

    PubMed

    Zhao, Tao; Liu, Ran; Ding, Xiaofan; Zhao, Juncai; Yu, Haixiang; Wang, Lei; Xu, Qing; Wang, Xuan; Lou, Xinhui; He, Miao; Xiao, Yi

    2015-08-04

    It is quite challenging to improve the binding affinity of antismall molecule aptamers. We report that the binding affinity of anticocaine split aptamer pairs improved by up to 66-fold by gold nanoparticles (AuNP)-attached aptamers due to the substantially increased local concentration of aptamers and multiple and simultaneous ligand interactions. The significantly improved binding affinity enables the detection of small molecule targets with unprecedented sensitivity, as demonstrated in nanoprobe-enhanced split aptamer-based electrochemical sandwich assays (NE-SAESA). NE-SAESA replaces the traditional molecular reporter probe with AuNPs conjugated to multiple reporter probes. The increased binding affinity allowed us to use 1,000-fold lower reporter probe concentrations relative to those employed in SAESA. We show that the near-elimination of background in NE-SAESA effectively improves assay sensitivity by ∼1,000-100,000-fold for ATP and cocaine detection, relative to equivalent SAESA. With the ongoing development of new strategies for the selection of aptamers, we anticipate that our sensor platform should offer a generalizable approach for the high-sensitivity detection of diverse targets. More importantly, we believe that NE-SAESA represents a novel strategy to improve the binding affinity between a small molecule and its aptamer and potentially can be extended to other detection platforms.

  5. A splitting integration scheme for the SPH simulation of concentrated particle suspensions

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Ellero, Marco

    2014-01-01

    Simulating nearly contacting solid particles in suspension is a challenging task due to the diverging behavior of short-range lubrication forces, which pose a serious time-step limitation for explicit integration schemes. This general difficulty limits severely the total duration of simulations of concentrated suspensions. Inspired by the ideas developed in [S. Litvinov, M. Ellero, X.Y. Hu, N.A. Adams, J. Comput. Phys. 229 (2010) 5457-5464] for the simulation of highly dissipative fluids, we propose in this work a splitting integration scheme for the direct simulation of solid particles suspended in a Newtonian liquid. The scheme separates the contributions of different forces acting on the solid particles. In particular, intermediate- and long-range multi-body hydrodynamic forces, which are computed from the discretization of the Navier-Stokes equations using the smoothed particle hydrodynamics (SPH) method, are taken into account using an explicit integration; for short-range lubrication forces, velocities of pairwise interacting solid particles are updated implicitly by sweeping over all the neighboring pairs iteratively, until convergence in the solution is obtained. By using the splitting integration, simulations can be run stably and efficiently up to very large solid particle concentrations. Moreover, the proposed scheme is not limited to the SPH method presented here, but can be easily applied to other simulation techniques employed for particulate suspensions.

  6. Distinctive orbital anisotropy observed in the nematic state of a FeSe thin film

    DOE PAGES

    Zhang, Y.; Yi, M.; Liu, Z. -K.; ...

    2016-09-26

    Nematic state, where the system is translationally invariant but breaks the rotational symmetry, has drawn great attentions recently due to experimental observations of such a state in both cuprates and iron-based superconductors. The mechanism of nematicity that is likely tied to the pairing mechanism of high-T c, however, still remains controversial. Here, we studied the electronic structure of multilayer FeSe film by angle-resolved photoemission spectroscopy (ARPES). We found that the FeSe film enters the nematic state around 125 K, while the electronic signature of long range magnetic order has not been observed down to 20K indicating the non-magnetic origin ofmore » the nematicity. The band reconstruction in the nematic state is characterized by the splitting of the d xz and d yz bands. More intriguingly, such energy splitting is strong momentum dependent with the largest band splitting of ~80 meV at the zone corner. The simple on-site ferro-orbital ordering is insufficient to reproduce the nontrivial momentum dependence of the band reconstruction. Instead, our results suggest that the nearest-neighbor hopping of d xz and d yz is highly anisotropic in the nematic state, the origin of which holds the key in understanding the nematicity in iron-based superconductors.« less

  7. Tele-Manipulation with Two Asymmetric Slaves: Two Operators Perform Better Than One.

    PubMed

    van Oosterhout, Jeroen; Heemskerk, Cock J M; de Baar, Marco R; van der Helm, Frans C T; Abbink, David A

    2018-01-01

    Certain tele-manipulation tasks require manipulation by two asymmetric slaves, for example, a crane for hoisting and a dexterous robotic arm for fine manipulation. It is unclear how to best design human-in-the-loop control over two asymmetric slaves. The goal of this paper is to quantitatively compare the standard approach of two co-operating operators that each control a single subtask, to a single operator performing bi-manual control over the two subtasks, and a uni-manual control approach. In a human factors experiment, participants performed a heavy load maneuvering and mounting task using a vertical crane and a robotic arm. We hypothesize that bi-manual control yields worse task performance and control activity compared to co-operation, because of conflicting spatial and temporal constraints. Literature suggests that uni-manual operators should perform better than co-operation, as co-operators critically depend on each other's actions. However, other literature provides evidence that individual operators have limited capabilities in controlling asymmetric axes of two dynamic systems. The results show that the two co-operators perform the maneuvering and mounting task faster than either bi- or uni-manual operators. Compared to co-operators, uni-manual operators required more control activity for the vertical crane and less for the robotic arm. In conclusion, this study suggests that when controlling two asymmetric slaves, a co-operating pair of operators performs better than a single operator.

  8. Evidence for Spin Singlet Pairing with Strong Uniaxial Anisotropy in URu2Si2 Using Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Hattori, T.; Sakai, H.; Tokunaga, Y.; Kambe, S.; Matsuda, T. D.; Haga, Y.

    2018-01-01

    In order to identify the spin contribution to superconducting pairing compatible with the so-called "hidden order", Si 29 nuclear magnetic resonance measurements have been performed using a high-quality single crystal of URu2 Si2 . A clear reduction of the Si 29 Knight shift in the superconducting state has been observed under a magnetic field applied along the crystalline c axis, corresponding to the magnetic easy axis. These results provide direct evidence for the formation of spin-singlet Cooper pairs. Consequently, results indicating a very tiny change of the in-plane Knight shift reported previously demonstrate extreme uniaxial anisotropy for the spin susceptibility in the hidden order state.

  9. REVIEWS OF TOPICAL PROBLEMS: Cooling of neutron stars and superfluidity in their cores

    NASA Astrophysics Data System (ADS)

    Yakovlev, Dmitrii G.; Levenfish, Kseniya P.; Shibanov, Yurii A.

    1999-08-01

    We study the heat capacity and neutrino emission reactions (direct and modified Urca processes, nucleon-nucleon bremsstrahlung, Cooper pairing of nucleons) in the supranuclear density matter of neutron star cores with superfluid neutrons and protons. Various superfluidity types are analysed (singlet-state pairing and two types of triplet-state pairing, without and with gap nodes at the nucleon Fermi surface). The results are used for cooling simulations of isolated neutron stars. Both the standard cooling and the cooling enhanced by the direct Urca process are strongly affected by nucleon superfluidity. Comparison of the cooling theory of isolated neutron stars with observations of their thermal radiation may give stringent constraints on the critical temperatures of the neutron and proton superfluidities in the neutron star cores.

  10. Social Value Induction and Cooperation in the Centipede Game

    PubMed Central

    2016-01-01

    The Centipede game provides a dynamic model of cooperation and competition in repeated dyadic interactions. Two experiments investigated psychological factors driving cooperation in 20 rounds of a Centipede game with significant monetary incentives and anonymous and random re-pairing of players after every round. The main purpose of the research was to determine whether the pattern of strategic choices observed when no specific social value orientation is experimentally induced—the standard condition in all previous investigations of behavior in the Centipede and most other experimental games—is essentially individualistic, the orthodox game-theoretic assumption being that players are individualistically motivated in the absence of any specific motivational induction. Participants in whom no specific state social value orientation was induced exhibited moderately non-cooperative play that differed significantly from the pattern found when an individualistic orientation was induced. In both experiments, the neutral treatment condition, in which no orientation was induced, elicited competitive behavior resembling behavior in the condition in which a competitive orientation was explicitly induced. Trait social value orientation, measured with a questionnaire, influenced cooperation differently depending on the experimentally induced state social value orientation. Cooperative trait social value orientation was a significant predictor of cooperation and, to a lesser degree, experimentally induced competitive orientation was a significant predictor of non-cooperation. The experimental results imply that the standard assumption of individualistic motivation in experimental games may not be valid, and that the results of such investigations need to take into account the possibility that players are competitively motivated. PMID:27010385

  11. Multiple effect of social influence on cooperation in interdependent network games.

    PubMed

    Jiang, Luo-Luo; Li, Wen-Jing; Wang, Zhen

    2015-10-01

    The social influence exists widely in the human society, where individual decision-making process (from congressional election to electronic commerce) may be affected by the attitude and behavior of others belonging to different social networks. Here, we couple the snowdrift (SD) game and the prisoner's dilemma (PD) game on two interdependent networks, where strategies in both games are associated by social influence to mimick the majority rule. More accurately, individuals' strategies updating refers to social learning (based on payoff difference) and above-mentioned social influence (related with environment of interdependent group), which is controlled by social influence strength s. Setting s = 0 decouples the networks and returns the traditional network game; while its increase involves the interactions between networks. By means of numerous Monte Carlo simulations, we find that such a mechanism brings multiple influence to the evolution of cooperation. Small s leads to unequal cooperation level in both games, because social learning is still the main updating rule for most players. Though intermediate and large s guarantees the synchronized evolution of strategy pairs, cooperation finally dies out and reaches a completely dominance in both cases. Interestingly, these observations are attributed to the expansion of cooperation clusters. Our work may provide a new understanding to the emergence of cooperation in intercorrelated social systems.

  12. Multiple effect of social influence on cooperation in interdependent network games

    NASA Astrophysics Data System (ADS)

    Jiang, Luo-Luo; Li, Wen-Jing; Wang, Zhen

    2015-10-01

    The social influence exists widely in the human society, where individual decision-making process (from congressional election to electronic commerce) may be affected by the attitude and behavior of others belonging to different social networks. Here, we couple the snowdrift (SD) game and the prisoner’s dilemma (PD) game on two interdependent networks, where strategies in both games are associated by social influence to mimick the majority rule. More accurately, individuals’ strategies updating refers to social learning (based on payoff difference) and above-mentioned social influence (related with environment of interdependent group), which is controlled by social influence strength s. Setting s = 0 decouples the networks and returns the traditional network game; while its increase involves the interactions between networks. By means of numerous Monte Carlo simulations, we find that such a mechanism brings multiple influence to the evolution of cooperation. Small s leads to unequal cooperation level in both games, because social learning is still the main updating rule for most players. Though intermediate and large s guarantees the synchronized evolution of strategy pairs, cooperation finally dies out and reaches a completely dominance in both cases. Interestingly, these observations are attributed to the expansion of cooperation clusters. Our work may provide a new understanding to the emergence of cooperation in intercorrelated social systems.

  13. Heterogeneity of allocation promotes cooperation in public goods games

    NASA Astrophysics Data System (ADS)

    Lei, Chuang; Wu, Te; Jia, Jian-Yuan; Cong, Rui; Wang, Long

    2010-11-01

    We investigate the effects of heterogeneous investment and distribution on the evolution of cooperation in the context of the public goods games. To do this, we develop a simple model in which each individual allocates differing funds to his direct neighbors based upon their difference in connectivity, because of the heterogeneity of real social ties. This difference is characterized by the weight of the link between paired individuals, with an adjustable parameter precisely controlling the heterogeneous level of ties. By numerical simulations, it is found that allocating both too much and too little funds to diverse neighbors can remarkably improve the cooperation level. However, there exists a worst mode of funds allocation leading to the most unfavorable cooperation induced by the moderate values of the parameter. In order to better reveal the potential causes behind these nontrivial phenomena we probe the microscopic characteristics including the average payoff and the cooperator density for individuals of different degrees. It demonstrates rather different dynamical behaviors between the modes of these two types of cooperation promoter. Besides, we also investigate the total link weights of individuals numerically and theoretically for negative values of the parameter, and conclude that the payoff magnitude of middle-degree nodes plays a crucial role in determining the cooperators’ fate.

  14. Towards Scalable Entangled Photon Sources with Self-Assembled InAs /GaAs Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Gong, Ming; Guo, G.-C.; He, Lixin

    2015-08-01

    The biexciton cascade process in self-assembled quantum dots (QDs) provides an ideal system for realizing deterministic entangled photon-pair sources, which are essential to quantum information science. The entangled photon pairs have recently been generated in experiments after eliminating the fine-structure splitting (FSS) of excitons using a number of different methods. Thus far, however, QD-based sources of entangled photons have not been scalable because the wavelengths of QDs differ from dot to dot. Here, we propose a wavelength-tunable entangled photon emitter mounted on a three-dimensional stressor, in which the FSS and exciton energy can be tuned independently, thereby enabling photon entanglement between dissimilar QDs. We confirm these results via atomistic pseudopotential calculations. This provides a first step towards future realization of scalable entangled photon generators for quantum information applications.

  15. Recursive model for the fragmentation of polarized quarks

    NASA Astrophysics Data System (ADS)

    Kerbizi, A.; Artru, X.; Belghobsi, Z.; Bradamante, F.; Martin, A.

    2018-04-01

    We present a model for Monte Carlo simulation of the fragmentation of a polarized quark. The model is based on string dynamics and the 3P0 mechanism of quark pair creation at string breaking. The fragmentation is treated as a recursive process, where the splitting function of the subprocess q →h +q' depends on the spin density matrix of the quark q . The 3P0 mechanism is parametrized by a complex mass parameter μ , the imaginary part of which is responsible for single spin asymmetries. The model has been implemented in a Monte Carlo program to simulate jets made of pseudoscalar mesons. Results for single hadron and hadron pair transverse-spin asymmetries are found to be in agreement with experimental data from SIDIS and e+e- annihilation. The model predictions on the jet-handedness are also discussed.

  16. MSuPDA: A Memory Efficient Algorithm for Sequence Alignment.

    PubMed

    Khan, Mohammad Ibrahim; Kamal, Md Sarwar; Chowdhury, Linkon

    2016-03-01

    Space complexity is a million dollar question in DNA sequence alignments. In this regard, memory saving under pushdown automata can help to reduce the occupied spaces in computer memory. Our proposed process is that anchor seed (AS) will be selected from given data set of nucleotide base pairs for local sequence alignment. Quick splitting techniques will separate the AS from all the DNA genome segments. Selected AS will be placed to pushdown automata's (PDA) input unit. Whole DNA genome segments will be placed into PDA's stack. AS from input unit will be matched with the DNA genome segments from stack of PDA. Match, mismatch and indel of nucleotides will be popped from the stack under the control unit of pushdown automata. During the POP operation on stack, it will free the memory cell occupied by the nucleotide base pair.

  17. Superfluidity and BCS-BEC crossover of ultracold atomic Fermi gases in mixed dimensions

    NASA Astrophysics Data System (ADS)

    Zhang, Leifeng; Chen, Qijin

    Atomic Fermi gases have been under active investigation in the past decade. Here we study the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas in the presence of mixed dimensionality, in which one component is confined on a 1D optical lattice whereas the other is free in the 3D continuum. We assume a short-range pairing interaction and determine the superfluid transition temperature Tc and the phase diagram for the entire BCS-BEC crossover, using a pairing fluctuation theory which includes self-consistently the contributions of finite momentum pairs. We find that, as the lattice depth increases and the lattice spacing decreases, the behavior of Tc becomes very similar to that of a population imbalance Fermi gas in a simple 3D continuum. There is no superfluidity even at T = 0 below certain threshold of pairing strength in the BCS regime. Nonmonotonic Tc behavior and intermediate temperature superfluidity emerge, and for deep enough lattice, the Tc curve will split into two parts. Implications for experiment will be discussed. References: 1. Q.J. Chen, Ioan Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59, 7083 (1999). 2. Chih-Chun Chien, Qijin Chen, Yan He, and K. Levin, Phys. Rev. Lett. 97, 090402(2006). Work supported by NSF of China and the National Basic Research Program of China.

  18. Children's Discourse in Cooperative and Didactic Interaction: Developmental Patterns in Effective Learning.

    ERIC Educational Resources Information Center

    Cooper, Catherine R.; And Others

    Experimental and supplementary observational studies of how children help one another learn are reported. In the experiment, developmental patterns in children's discourse in two common peer-learning situations were investigated. Sixty-four pairs of children, drawn equally from kindergarten and second grade, participated in the study. Dyads,…

  19. Cooperative Autonomy in Online Lingua Franca Exchanges: A Case Study on Foreign Language Education in Secondary Schools

    ERIC Educational Resources Information Center

    Hoffstaedter, Petra; Kohn, Kurt

    2016-01-01

    We report on a case study on pedagogical affordances of intercultural telecollaboration for authentic communication practice and competence development in the local foreign language. Focus is on spoken and written conversations involving pairs of secondary school pupils of different linguacultural backgrounds. Particular attention is given to…

  20. Collaborative Strategic Reading (CSR): Improving Secondary Students' Reading Comprehension Skills. Research to Practice Brief: Improving Secondary Education and Transition Services through Research.

    ERIC Educational Resources Information Center

    Bremer, Christine D.; Vaughn, Sharon; Clapper, Ann T.; Kim, Ae-Hwa

    This brief introduces a research-based practice, Collaborative Strategic Reading (CSR). This reading comprehension practice, designed to improve secondary students reading comprehension skills, combines two instructional elements: modified reciprocal teaching and cooperative learning or student pairing. In reciprocal teaching, teachers and…

Top