Sample records for coordinate descent algorithm

  1. Scaling Up Coordinate Descent Algorithms for Large ℓ1 Regularization Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherrer, Chad; Halappanavar, Mahantesh; Tewari, Ambuj

    2012-07-03

    We present a generic framework for parallel coordinate descent (CD) algorithms that has as special cases the original sequential algorithms of Cyclic CD and Stochastic CD, as well as the recent parallel Shotgun algorithm of Bradley et al. We introduce two novel parallel algorithms that are also special cases---Thread-Greedy CD and Coloring-Based CD---and give performance measurements for an OpenMP implementation of these.

  2. Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.

    PubMed

    Simon, Noah; Friedman, Jerome; Hastie, Trevor; Tibshirani, Rob

    2011-03-01

    We introduce a pathwise algorithm for the Cox proportional hazards model, regularized by convex combinations of ℓ 1 and ℓ 2 penalties (elastic net). Our algorithm fits via cyclical coordinate descent, and employs warm starts to find a solution along a regularization path. We demonstrate the efficacy of our algorithm on real and simulated data sets, and find considerable speedup between our algorithm and competing methods.

  3. Coordinated Beamforming for MISO Interference Channel: Complexity Analysis and Efficient Algorithms

    DTIC Science & Technology

    2010-01-01

    Algorithm The cyclic coordinate descent algorithm is also known as the nonlinear Gauss - Seidel iteration [32]. There are several studies of this type of...vkρ(vi−1). It can be shown that the above BB gradient projection direction is always a descent direction. The R-linear convergence of the BB method has...KKT solution ) of the inexact pricing algorithm for MISO interference channel. The latter is interesting since the convergence of the original pricing

  4. Feature Clustering for Accelerating Parallel Coordinate Descent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherrer, Chad; Tewari, Ambuj; Halappanavar, Mahantesh

    2012-12-06

    We demonstrate an approach for accelerating calculation of the regularization path for L1 sparse logistic regression problems. We show the benefit of feature clustering as a preconditioning step for parallel block-greedy coordinate descent algorithms.

  5. Non-homogeneous updates for the iterative coordinate descent algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Zhou; Thibault, Jean-Baptiste; Bouman, Charles A.; Sauer, Ken D.; Hsieh, Jiang

    2007-02-01

    Statistical reconstruction methods show great promise for improving resolution, and reducing noise and artifacts in helical X-ray CT. In fact, statistical reconstruction seems to be particularly valuable in maintaining reconstructed image quality when the dosage is low and the noise is therefore high. However, high computational cost and long reconstruction times remain as a barrier to the use of statistical reconstruction in practical applications. Among the various iterative methods that have been studied for statistical reconstruction, iterative coordinate descent (ICD) has been found to have relatively low overall computational requirements due to its fast convergence. This paper presents a novel method for further speeding the convergence of the ICD algorithm, and therefore reducing the overall reconstruction time for statistical reconstruction. The method, which we call nonhomogeneous iterative coordinate descent (NH-ICD) uses spatially non-homogeneous updates to speed convergence by focusing computation where it is most needed. Experimental results with real data indicate that the method speeds reconstruction by roughly a factor of two for typical 3D multi-slice geometries.

  6. Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems.

    PubMed

    Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A

    2017-12-01

    The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction.

  7. Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems

    PubMed Central

    Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A.

    2017-01-01

    The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction. PMID:29376111

  8. Majorization Minimization by Coordinate Descent for Concave Penalized Generalized Linear Models

    PubMed Central

    Jiang, Dingfeng; Huang, Jian

    2013-01-01

    Recent studies have demonstrated theoretical attractiveness of a class of concave penalties in variable selection, including the smoothly clipped absolute deviation and minimax concave penalties. The computation of the concave penalized solutions in high-dimensional models, however, is a difficult task. We propose a majorization minimization by coordinate descent (MMCD) algorithm for computing the concave penalized solutions in generalized linear models. In contrast to the existing algorithms that use local quadratic or local linear approximation to the penalty function, the MMCD seeks to majorize the negative log-likelihood by a quadratic loss, but does not use any approximation to the penalty. This strategy makes it possible to avoid the computation of a scaling factor in each update of the solutions, which improves the efficiency of coordinate descent. Under certain regularity conditions, we establish theoretical convergence property of the MMCD. We implement this algorithm for a penalized logistic regression model using the SCAD and MCP penalties. Simulation studies and a data example demonstrate that the MMCD works sufficiently fast for the penalized logistic regression in high-dimensional settings where the number of covariates is much larger than the sample size. PMID:25309048

  9. Regularization Paths for Conditional Logistic Regression: The clogitL1 Package.

    PubMed

    Reid, Stephen; Tibshirani, Rob

    2014-07-01

    We apply the cyclic coordinate descent algorithm of Friedman, Hastie, and Tibshirani (2010) to the fitting of a conditional logistic regression model with lasso [Formula: see text] and elastic net penalties. The sequential strong rules of Tibshirani, Bien, Hastie, Friedman, Taylor, Simon, and Tibshirani (2012) are also used in the algorithm and it is shown that these offer a considerable speed up over the standard coordinate descent algorithm with warm starts. Once implemented, the algorithm is used in simulation studies to compare the variable selection and prediction performance of the conditional logistic regression model against that of its unconditional (standard) counterpart. We find that the conditional model performs admirably on datasets drawn from a suitable conditional distribution, outperforming its unconditional counterpart at variable selection. The conditional model is also fit to a small real world dataset, demonstrating how we obtain regularization paths for the parameters of the model and how we apply cross validation for this method where natural unconditional prediction rules are hard to come by.

  10. Regularization Paths for Conditional Logistic Regression: The clogitL1 Package

    PubMed Central

    Reid, Stephen; Tibshirani, Rob

    2014-01-01

    We apply the cyclic coordinate descent algorithm of Friedman, Hastie, and Tibshirani (2010) to the fitting of a conditional logistic regression model with lasso (ℓ1) and elastic net penalties. The sequential strong rules of Tibshirani, Bien, Hastie, Friedman, Taylor, Simon, and Tibshirani (2012) are also used in the algorithm and it is shown that these offer a considerable speed up over the standard coordinate descent algorithm with warm starts. Once implemented, the algorithm is used in simulation studies to compare the variable selection and prediction performance of the conditional logistic regression model against that of its unconditional (standard) counterpart. We find that the conditional model performs admirably on datasets drawn from a suitable conditional distribution, outperforming its unconditional counterpart at variable selection. The conditional model is also fit to a small real world dataset, demonstrating how we obtain regularization paths for the parameters of the model and how we apply cross validation for this method where natural unconditional prediction rules are hard to come by. PMID:26257587

  11. Scalable Nonparametric Low-Rank Kernel Learning Using Block Coordinate Descent.

    PubMed

    Hu, En-Liang; Kwok, James T

    2015-09-01

    Nonparametric kernel learning (NPKL) is a flexible approach to learn the kernel matrix directly without assuming any parametric form. It can be naturally formulated as a semidefinite program (SDP), which, however, is not very scalable. To address this problem, we propose the combined use of low-rank approximation and block coordinate descent (BCD). Low-rank approximation avoids the expensive positive semidefinite constraint in the SDP by replacing the kernel matrix variable with V(T)V, where V is a low-rank matrix. The resultant nonlinear optimization problem is then solved by BCD, which optimizes each column of V sequentially. It can be shown that the proposed algorithm has nice convergence properties and low computational complexities. Experiments on a number of real-world data sets show that the proposed algorithm outperforms state-of-the-art NPKL solvers.

  12. Massive parallelization of serial inference algorithms for a complex generalized linear model

    PubMed Central

    Suchard, Marc A.; Simpson, Shawn E.; Zorych, Ivan; Ryan, Patrick; Madigan, David

    2014-01-01

    Following a series of high-profile drug safety disasters in recent years, many countries are redoubling their efforts to ensure the safety of licensed medical products. Large-scale observational databases such as claims databases or electronic health record systems are attracting particular attention in this regard, but present significant methodological and computational concerns. In this paper we show how high-performance statistical computation, including graphics processing units, relatively inexpensive highly parallel computing devices, can enable complex methods in large databases. We focus on optimization and massive parallelization of cyclic coordinate descent approaches to fit a conditioned generalized linear model involving tens of millions of observations and thousands of predictors in a Bayesian context. We find orders-of-magnitude improvement in overall run-time. Coordinate descent approaches are ubiquitous in high-dimensional statistics and the algorithms we propose open up exciting new methodological possibilities with the potential to significantly improve drug safety. PMID:25328363

  13. Design optimization of single mixed refrigerant LNG process using a hybrid modified coordinate descent algorithm

    NASA Astrophysics Data System (ADS)

    Qyyum, Muhammad Abdul; Long, Nguyen Van Duc; Minh, Le Quang; Lee, Moonyong

    2018-01-01

    Design optimization of the single mixed refrigerant (SMR) natural gas liquefaction (LNG) process involves highly non-linear interactions between decision variables, constraints, and the objective function. These non-linear interactions lead to an irreversibility, which deteriorates the energy efficiency of the LNG process. In this study, a simple and highly efficient hybrid modified coordinate descent (HMCD) algorithm was proposed to cope with the optimization of the natural gas liquefaction process. The single mixed refrigerant process was modeled in Aspen Hysys® and then connected to a Microsoft Visual Studio environment. The proposed optimization algorithm provided an improved result compared to the other existing methodologies to find the optimal condition of the complex mixed refrigerant natural gas liquefaction process. By applying the proposed optimization algorithm, the SMR process can be designed with the 0.2555 kW specific compression power which is equivalent to 44.3% energy saving as compared to the base case. Furthermore, in terms of coefficient of performance (COP), it can be enhanced up to 34.7% as compared to the base case. The proposed optimization algorithm provides a deep understanding of the optimization of the liquefaction process in both technical and numerical perspectives. In addition, the HMCD algorithm can be employed to any mixed refrigerant based liquefaction process in the natural gas industry.

  14. Algorithms for Mathematical Programming with Emphasis on Bi-level Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldfarb, Donald; Iyengar, Garud

    2014-05-22

    The research supported by this grant was focused primarily on first-order methods for solving large scale and structured convex optimization problems and convex relaxations of nonconvex problems. These include optimal gradient methods, operator and variable splitting methods, alternating direction augmented Lagrangian methods, and block coordinate descent methods.

  15. Algorithms for accelerated convergence of adaptive PCA.

    PubMed

    Chatterjee, C; Kang, Z; Roychowdhury, V P

    2000-01-01

    We derive and discuss new adaptive algorithms for principal component analysis (PCA) that are shown to converge faster than the traditional PCA algorithms due to Oja, Sanger, and Xu. It is well known that traditional PCA algorithms that are derived by using gradient descent on an objective function are slow to converge. Furthermore, the convergence of these algorithms depends on appropriate choices of the gain sequences. Since online applications demand faster convergence and an automatic selection of gains, we present new adaptive algorithms to solve these problems. We first present an unconstrained objective function, which can be minimized to obtain the principal components. We derive adaptive algorithms from this objective function by using: 1) gradient descent; 2) steepest descent; 3) conjugate direction; and 4) Newton-Raphson methods. Although gradient descent produces Xu's LMSER algorithm, the steepest descent, conjugate direction, and Newton-Raphson methods produce new adaptive algorithms for PCA. We also provide a discussion on the landscape of the objective function, and present a global convergence proof of the adaptive gradient descent PCA algorithm using stochastic approximation theory. Extensive experiments with stationary and nonstationary multidimensional Gaussian sequences show faster convergence of the new algorithms over the traditional gradient descent methods.We also compare the steepest descent adaptive algorithm with state-of-the-art methods on stationary and nonstationary sequences.

  16. Camera Image Transformation and Registration for Safe Spacecraft Landing and Hazard Avoidance

    NASA Technical Reports Server (NTRS)

    Jones, Brandon M.

    2005-01-01

    Inherent geographical hazards of Martian terrain may impede a safe landing for science exploration spacecraft. Surface visualization software for hazard detection and avoidance may accordingly be applied in vehicles such as the Mars Exploration Rover (MER) to induce an autonomous and intelligent descent upon entering the planetary atmosphere. The focus of this project is to develop an image transformation algorithm for coordinate system matching between consecutive frames of terrain imagery taken throughout descent. The methodology involves integrating computer vision and graphics techniques, including affine transformation and projective geometry of an object, with the intrinsic parameters governing spacecraft dynamic motion and camera calibration.

  17. A network of spiking neurons for computing sparse representations in an energy efficient way

    PubMed Central

    Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B.

    2013-01-01

    Computing sparse redundant representations is an important problem both in applied mathematics and neuroscience. In many applications, this problem must be solved in an energy efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating via low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, such operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We compare the numerical performance of HDA with existing algorithms and show that in the asymptotic regime the representation error of HDA decays with time, t, as 1/t. We show that HDA is stable against time-varying noise, specifically, the representation error decays as 1/t for Gaussian white noise. PMID:22920853

  18. A network of spiking neurons for computing sparse representations in an energy-efficient way.

    PubMed

    Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B

    2012-11-01

    Computing sparse redundant representations is an important problem in both applied mathematics and neuroscience. In many applications, this problem must be solved in an energy-efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating by low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, the operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We show that the numerical performance of HDA is on par with existing algorithms. In the asymptotic regime, the representation error of HDA decays with time, t, as 1/t. HDA is stable against time-varying noise; specifically, the representation error decays as 1/√t for gaussian white noise.

  19. Cyclic coordinate descent: A robotics algorithm for protein loop closure.

    PubMed

    Canutescu, Adrian A; Dunbrack, Roland L

    2003-05-01

    In protein structure prediction, it is often the case that a protein segment must be adjusted to connect two fixed segments. This occurs during loop structure prediction in homology modeling as well as in ab initio structure prediction. Several algorithms for this purpose are based on the inverse Jacobian of the distance constraints with respect to dihedral angle degrees of freedom. These algorithms are sometimes unstable and fail to converge. We present an algorithm developed originally for inverse kinematics applications in robotics. In robotics, an end effector in the form of a robot hand must reach for an object in space by altering adjustable joint angles and arm lengths. In loop prediction, dihedral angles must be adjusted to move the C-terminal residue of a segment to superimpose on a fixed anchor residue in the protein structure. The algorithm, referred to as cyclic coordinate descent or CCD, involves adjusting one dihedral angle at a time to minimize the sum of the squared distances between three backbone atoms of the moving C-terminal anchor and the corresponding atoms in the fixed C-terminal anchor. The result is an equation in one variable for the proposed change in each dihedral. The algorithm proceeds iteratively through all of the adjustable dihedral angles from the N-terminal to the C-terminal end of the loop. CCD is suitable as a component of loop prediction methods that generate large numbers of trial structures. It succeeds in closing loops in a large test set 99.79% of the time, and fails occasionally only for short, highly extended loops. It is very fast, closing loops of length 8 in 0.037 sec on average.

  20. Rock climbing: A local-global algorithm to compute minimum energy and minimum free energy pathways.

    PubMed

    Templeton, Clark; Chen, Szu-Hua; Fathizadeh, Arman; Elber, Ron

    2017-10-21

    The calculation of minimum energy or minimum free energy paths is an important step in the quantitative and qualitative studies of chemical and physical processes. The computations of these coordinates present a significant challenge and have attracted considerable theoretical and computational interest. Here we present a new local-global approach to study reaction coordinates, based on a gradual optimization of an action. Like other global algorithms, it provides a path between known reactants and products, but it uses a local algorithm to extend the current path in small steps. The local-global approach does not require an initial guess to the path, a major challenge for global pathway finders. Finally, it provides an exact answer (the steepest descent path) at the end of the calculations. Numerical examples are provided for the Mueller potential and for a conformational transition in a solvated ring system.

  1. A piloted simulator evaluation of a ground-based 4-D descent advisor algorithm

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.; Erzberger, Heinz

    1990-01-01

    A ground-based, four dimensional (4D) descent-advisor algorithm is under development at NASA-Ames. The algorithm combines detailed aerodynamic, propulsive, and atmospheric models with an efficient numerical integration scheme to generate 4D descent advisories. The ability is investigated of the 4D descent advisor algorithm to provide adequate control of arrival time for aircraft not equipped with on-board 4D guidance systems. A piloted simulation was conducted to determine the precision with which the descent advisor could predict the 4D trajectories of typical straight-in descents flown by airline pilots under different wind conditions. The effects of errors in the estimation of wind and initial aircraft weight were also studied. A description of the descent advisor as well as the result of the simulation studies are presented.

  2. Planning fuel-conservative descents with or without time constraints using a small programmable calculator: Algorithm development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1983-01-01

    A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight tests flown with a T-39A (Sabreliner) airplane are presented.

  3. Engineering description of the ascent/descent bet product

    NASA Technical Reports Server (NTRS)

    Seacord, A. W., II

    1986-01-01

    The Ascent/Descent output product is produced in the OPIP routine from three files which constitute its input. One of these, OPIP.IN, contains mission specific parameters. Meteorological data, such as atmospheric wind velocities, temperatures, and density, are obtained from the second file, the Corrected Meteorological Data File (METDATA). The third file is the TRJATTDATA file which contains the time-tagged state vectors that combine trajectory information from the Best Estimate of Trajectory (BET) filter, LBRET5, and Best Estimate of Attitude (BEA) derived from IMU telemetry. Each term in the two output data files (BETDATA and the Navigation Block, or NAVBLK) are defined. The description of the BETDATA file includes an outline of the algorithm used to calculate each term. To facilitate describing the algorithms, a nomenclature is defined. The description of the nomenclature includes a definition of the coordinate systems used. The NAVBLK file contains navigation input parameters. Each term in NAVBLK is defined and its source is listed. The production of NAVBLK requires only two computational algorithms. These two algorithms, which compute the terms DELTA and RSUBO, are described. Finally, the distribution of data in the NAVBLK records is listed.

  4. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: Algorithm development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Vicroy, D. D.; Simmon, D. A.

    1985-01-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  5. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: algorithm development and flight test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, C.E.; Vicroy, D.D.; Simmon, D.A.

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, andmore » nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.« less

  6. Planning fuel-conservative descents with or without time constraints using a small programmable calculator: algorithm development and flight test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, C.E.

    A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight testsmore » flown with a T-39A (Sabreliner) airplane are presented.« less

  7. User's manual for a fuel-conservative descent planning algorithm implemented on a small programmable calculator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vicroy, D.D.

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. An explanation and examples of how the algorithm is used,more » as well as a detailed flow chart and listing of the algorithm are contained.« less

  8. Designing Feature and Data Parallel Stochastic Coordinate Descent Method forMatrix and Tensor Factorization

    DTIC Science & Technology

    2016-05-11

    AFRL-AFOSR-JP-TR-2016-0046 Designing Feature and Data Parallel Stochastic Coordinate Descent Method for Matrix and Tensor Factorization U Kang Korea...maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or   any other aspect...Designing Feature and Data Parallel Stochastic Coordinate Descent Method for Matrix and Tensor Factorization 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386

  9. Description of the computations and pilot procedures for planning fuel-conservative descents with a small programmable calculator

    NASA Technical Reports Server (NTRS)

    Vicroy, D. D.; Knox, C. E.

    1983-01-01

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modeling required for the DC-10 airplane is described.

  10. Learning Structured Classifiers with Dual Coordinate Ascent

    DTIC Science & Technology

    2010-06-01

    stochastic gradient descent (SGD) [LeCun et al., 1998], and the margin infused relaxed algorithm (MIRA) [ Crammer et al., 2006]. This paper presents a...evaluate these methods on the Prague Dependency Treebank us- ing online large-margin learning tech- niques ( Crammer et al., 2003; McDonald et al., 2005...between two kinds of factors: hard constraint factors, which are used to rule out forbidden par- tial assignments by mapping them to zero potential values

  11. Description of the computations and pilot procedures for planning fuel-conservative descents with a small programmable calculator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vicroy, D.D.; Knox, C.E.

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modelingmore » required for the DC-10 airplane is described.« less

  12. Development and test results of a flight management algorithm for fuel conservative descents in a time-based metered traffic environment

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Cannon, D. G.

    1980-01-01

    A simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control was developed and flight tested. This algorithm provides a three dimensional path with terminal area time constraints (four dimensional) for an airplane to make an idle thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithm is described. The results of the flight tests flown with the Terminal Configured Vehicle airplane are presented.

  13. Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation

    NASA Astrophysics Data System (ADS)

    Bedi, Amrit Singh; Rajawat, Ketan

    2018-05-01

    Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.

  14. Energy minimization in medical image analysis: Methodologies and applications.

    PubMed

    Zhao, Feng; Xie, Xianghua

    2016-02-01

    Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment. [flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Cannon, D. G.

    1979-01-01

    A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.

  16. Convergence Rates of Finite Difference Stochastic Approximation Algorithms

    DTIC Science & Technology

    2016-06-01

    dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It

  17. Local flow management/profile descent algorithm. Fuel-efficient, time-controlled profiles for the NASA TSRV airplane

    NASA Technical Reports Server (NTRS)

    Groce, J. L.; Izumi, K. H.; Markham, C. H.; Schwab, R. W.; Thompson, J. L.

    1986-01-01

    The Local Flow Management/Profile Descent (LFM/PD) algorithm designed for the NASA Transport System Research Vehicle program is described. The algorithm provides fuel-efficient altitude and airspeed profiles consistent with ATC restrictions in a time-based metering environment over a fixed ground track. The model design constraints include accommodation of both published profile descent procedures and unpublished profile descents, incorporation of fuel efficiency as a flight profile criterion, operation within the performance capabilities of the Boeing 737-100 airplane with JT8D-7 engines, and conformity to standard air traffic navigation and control procedures. Holding and path stretching capabilities are included for long delay situations.

  18. Gradient descent learning algorithm overview: a general dynamical systems perspective.

    PubMed

    Baldi, P

    1995-01-01

    Gives a unified treatment of gradient descent learning algorithms for neural networks using a general framework of dynamical systems. This general approach organizes and simplifies all the known algorithms and results which have been originally derived for different problems (fixed point/trajectory learning), for different models (discrete/continuous), for different architectures (forward/recurrent), and using different techniques (backpropagation, variational calculus, adjoint methods, etc.). The general approach can also be applied to derive new algorithms. The author then briefly examines some of the complexity issues and limitations intrinsic to gradient descent learning. Throughout the paper, the author focuses on the problem of trajectory learning.

  19. Fast Optimization for Aircraft Descent and Approach Trajectory

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry G.; Schuet, Stefan; Brenton, J.; Timucin, Dogan; Smith, David; Kaneshige, John

    2017-01-01

    We address problem of on-line scheduling of the aircraft descent and approach trajectory. We formulate a general multiphase optimal control problem for optimization of the descent trajectory and review available methods of its solution. We develop a fast algorithm for solution of this problem using two key components: (i) fast inference of the dynamical and control variables of the descending trajectory from the low dimensional flight profile data and (ii) efficient local search for the resulting reduced dimensionality non-linear optimization problem. We compare the performance of the proposed algorithm with numerical solution obtained using optimal control toolbox General Pseudospectral Optimal Control Software. We present results of the solution of the scheduling problem for aircraft descent using novel fast algorithm and discuss its future applications.

  20. A sampling algorithm for segregation analysis

    PubMed Central

    Tier, Bruce; Henshall, John

    2001-01-01

    Methods for detecting Quantitative Trait Loci (QTL) without markers have generally used iterative peeling algorithms for determining genotype probabilities. These algorithms have considerable shortcomings in complex pedigrees. A Monte Carlo Markov chain (MCMC) method which samples the pedigree of the whole population jointly is described. Simultaneous sampling of the pedigree was achieved by sampling descent graphs using the Metropolis-Hastings algorithm. A descent graph describes the inheritance state of each allele and provides pedigrees guaranteed to be consistent with Mendelian sampling. Sampling descent graphs overcomes most, if not all, of the limitations incurred by iterative peeling algorithms. The algorithm was able to find the QTL in most of the simulated populations. However, when the QTL was not modeled or found then its effect was ascribed to the polygenic component. No QTL were detected when they were not simulated. PMID:11742631

  1. Test results of flight guidance for fuel conservative descents in a time-based metered air traffic environment. [terminal configured vehicle

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Person, L. H., Jr.

    1981-01-01

    The NASA developed, implemented, and flight tested a flight management algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control. This algorithm provides a 3D path with time control (4D) for the TCV B-737 airplane to make an idle-thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms are described and flight test results are presented.

  2. Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation

    PubMed Central

    Zhao, Tuo; Liu, Han

    2016-01-01

    We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430

  3. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Application of the stochastic parallel gradient descent algorithm for numerical simulation and analysis of the coherent summation of radiation from fibre amplifiers

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Wang, Xiaolin; Li, Xiao; Chen, Zilum; Xu, Xiaojun; Liu, Zejin

    2009-10-01

    Coherent summation of fibre laser beams, which can be scaled to a relatively large number of elements, is simulated by using the stochastic parallel gradient descent (SPGD) algorithm. The applicability of this algorithm for coherent summation is analysed and its optimisaton parameters and bandwidth limitations are studied.

  4. Coordinated control system modelling of ultra-supercritical unit based on a new T-S fuzzy structure.

    PubMed

    Hou, Guolian; Du, Huan; Yang, Yu; Huang, Congzhi; Zhang, Jianhua

    2018-03-01

    The thermal power plant, especially the ultra-supercritical unit is featured with severe nonlinearity, strong multivariable coupling. In order to deal with these difficulties, it is of great importance to build an accurate and simple model of the coordinated control system (CCS) in the ultra-supercritical unit. In this paper, an improved T-S fuzzy model identification approach is proposed. First of all, the k-means++ algorithm is employed to identify the premise parameters so as to guarantee the number of fuzzy rules. Then, the local linearized models are determined by using the incremental historical data around the cluster centers, which are obtained via the stochastic gradient descent algorithm with momentum and variable learning rate. Finally, with the proposed method, the CCS model of a 1000 MW USC unit in Tai Zhou power plant is developed. The effectiveness of the proposed approach is validated by the given extensive simulation results, and it can be further employed to design the overall advanced controllers for the CCS in an USC unit. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. The q-G method : A q-version of the Steepest Descent method for global optimization.

    PubMed

    Soterroni, Aline C; Galski, Roberto L; Scarabello, Marluce C; Ramos, Fernando M

    2015-01-01

    In this work, the q-Gradient (q-G) method, a q-version of the Steepest Descent method, is presented. The main idea behind the q-G method is the use of the negative of the q-gradient vector of the objective function as the search direction. The q-gradient vector, or simply the q-gradient, is a generalization of the classical gradient vector based on the concept of Jackson's derivative from the q-calculus. Its use provides the algorithm an effective mechanism for escaping from local minima. The q-G method reduces to the Steepest Descent method when the parameter q tends to 1. The algorithm has three free parameters and it is implemented so that the search process gradually shifts from global exploration in the beginning to local exploitation in the end. We evaluated the q-G method on 34 test functions, and compared its performance with 34 optimization algorithms, including derivative-free algorithms and the Steepest Descent method. Our results show that the q-G method is competitive and has a great potential for solving multimodal optimization problems.

  6. Design requirements and development of an airborne descent path definition algorithm for time navigation

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Thompson, J. L.; Groce, J. L.; Schwab, R. W.

    1986-01-01

    The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described.

  7. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics.

    PubMed Central

    Sobel, E.; Lange, K.

    1996-01-01

    The introduction of stochastic methods in pedigree analysis has enabled geneticists to tackle computations intractable by standard deterministic methods. Until now these stochastic techniques have worked by running a Markov chain on the set of genetic descent states of a pedigree. Each descent state specifies the paths of gene flow in the pedigree and the founder alleles dropped down each path. The current paper follows up on a suggestion by Elizabeth Thompson that genetic descent graphs offer a more appropriate space for executing a Markov chain. A descent graph specifies the paths of gene flow but not the particular founder alleles traveling down the paths. This paper explores algorithms for implementing Thompson's suggestion for codominant markers in the context of automatic haplotyping, estimating location scores, and computing gene-clustering statistics for robust linkage analysis. Realistic numerical examples demonstrate the feasibility of the algorithms. PMID:8651310

  8. Basic Knowledge for Market Principle: Approaches to the Price Coordination Mechanism by Using Optimization Theory and Algorithm

    NASA Astrophysics Data System (ADS)

    Aiyoshi, Eitaro; Masuda, Kazuaki

    On the basis of market fundamentalism, new types of social systems with the market mechanism such as electricity trading markets and carbon dioxide (CO2) emission trading markets have been developed. However, there are few textbooks in science and technology which present the explanation that Lagrange multipliers can be interpreted as market prices. This tutorial paper explains that (1) the steepest descent method for dual problems in optimization, and (2) Gauss-Seidel method for solving the stationary conditions of Lagrange problems with market principles, can formulate the mechanism of market pricing, which works even in the information-oriented modern society. The authors expect readers to acquire basic knowledge on optimization theory and algorithms related to economics and to utilize them for designing the mechanism of more complicated markets.

  9. Analysis of Online Composite Mirror Descent Algorithm.

    PubMed

    Lei, Yunwen; Zhou, Ding-Xuan

    2017-03-01

    We study the convergence of the online composite mirror descent algorithm, which involves a mirror map to reflect the geometry of the data and a convex objective function consisting of a loss and a regularizer possibly inducing sparsity. Our error analysis provides convergence rates in terms of properties of the strongly convex differentiable mirror map and the objective function. For a class of objective functions with Hölder continuous gradients, the convergence rates of the excess (regularized) risk under polynomially decaying step sizes have the order [Formula: see text] after [Formula: see text] iterates. Our results improve the existing error analysis for the online composite mirror descent algorithm by avoiding averaging and removing boundedness assumptions, and they sharpen the existing convergence rates of the last iterate for online gradient descent without any boundedness assumptions. Our methodology mainly depends on a novel error decomposition in terms of an excess Bregman distance, refined analysis of self-bounding properties of the objective function, and the resulting one-step progress bounds.

  10. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE PAGES

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    2014-12-01

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  11. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  12. A Fast and Accurate Sparse Continuous Signal Reconstruction by Homotopy DCD with Non-Convex Regularization

    PubMed Central

    Wang, Tianyun; Lu, Xinfei; Yu, Xiaofei; Xi, Zhendong; Chen, Weidong

    2014-01-01

    In recent years, various applications regarding sparse continuous signal recovery such as source localization, radar imaging, communication channel estimation, etc., have been addressed from the perspective of compressive sensing (CS) theory. However, there are two major defects that need to be tackled when considering any practical utilization. The first issue is off-grid problem caused by the basis mismatch between arbitrary located unknowns and the pre-specified dictionary, which would make conventional CS reconstruction methods degrade considerably. The second important issue is the urgent demand for low-complexity algorithms, especially when faced with the requirement of real-time implementation. In this paper, to deal with these two problems, we have presented three fast and accurate sparse reconstruction algorithms, termed as HR-DCD, Hlog-DCD and Hlp-DCD, which are based on homotopy, dichotomous coordinate descent (DCD) iterations and non-convex regularizations, by combining with the grid refinement technique. Experimental results are provided to demonstrate the effectiveness of the proposed algorithms and related analysis. PMID:24675758

  13. Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data

    PubMed Central

    2017-01-01

    In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks. PMID:29236718

  14. Variable selection for zero-inflated and overdispersed data with application to health care demand in Germany

    PubMed Central

    Wang, Zhu; Shuangge, Ma; Wang, Ching-Yun

    2017-01-01

    In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD) and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using an open-source R package mpath. PMID:26059498

  15. RES: Regularized Stochastic BFGS Algorithm

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  16. Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Meng, Zhaohai; Li, Fengting

    2018-03-01

    Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.

  17. Enhancements on the Convex Programming Based Powered Descent Guidance Algorithm for Mars Landing

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Blackmore, Lars; Scharf, Daniel P.; Wolf, Aron

    2008-01-01

    In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimization problem via a direct numerical method. Our main contribution is to formulate the trajectory optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem, specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence, the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the feasibility/ infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain almost fuel optimal solutions in real-time.

  18. MER-DIMES : a planetary landing application of computer vision

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Johnson, Andrew; Matthies, Larry

    2005-01-01

    During the Mars Exploration Rovers (MER) landings, the Descent Image Motion Estimation System (DIMES) was used for horizontal velocity estimation. The DIMES algorithm combines measurements from a descent camera, a radar altimeter and an inertial measurement unit. To deal with large changes in scale and orientation between descent images, the algorithm uses altitude and attitude measurements to rectify image data to level ground plane. Feature selection and tracking is employed in the rectified data to compute the horizontal motion between images. Differences of motion estimates are then compared to inertial measurements to verify correct feature tracking. DIMES combines sensor data from multiple sources in a novel way to create a low-cost, robust and computationally efficient velocity estimation solution, and DIMES is the first use of computer vision to control a spacecraft during planetary landing. In this paper, the detailed implementation of the DIMES algorithm and the results from the two landings on Mars are presented.

  19. Autonomous optimal trajectory design employing convex optimization for powered descent on an asteroid

    NASA Astrophysics Data System (ADS)

    Pinson, Robin Marie

    Mission proposals that land spacecraft on asteroids are becoming increasingly popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site with pinpoint precision. The problem under investigation is how to design a propellant (fuel) optimal powered descent trajectory that can be quickly computed onboard the spacecraft, without interaction from ground control. The goal is to autonomously design the optimal powered descent trajectory onboard the spacecraft immediately prior to the descent burn for use during the burn. Compared to a planetary powered landing problem, the challenges that arise from designing an asteroid powered descent trajectory include complicated nonlinear gravity fields, small rotating bodies, and low thrust vehicles. The nonlinear gravity fields cannot be represented by a constant gravity model nor a Newtonian model. The trajectory design algorithm needs to be robust and efficient to guarantee a designed trajectory and complete the calculations in a reasonable time frame. This research investigates the following questions: Can convex optimization be used to design the minimum propellant powered descent trajectory for a soft landing on an asteroid? Is this method robust and reliable to allow autonomy onboard the spacecraft without interaction from ground control? This research designed a convex optimization based method that rapidly generates the propellant optimal asteroid powered descent trajectory. The solution to the convex optimization problem is the thrust magnitude and direction, which designs and determines the trajectory. The propellant optimal problem was formulated as a second order cone program, a subset of convex optimization, through relaxation techniques by including a slack variable, change of variables, and incorporation of the successive solution method. Convex optimization solvers, especially second order cone programs, are robust, reliable, and are guaranteed to find the global minimum provided one exists. In addition, an outer optimization loop using Brent's method determines the optimal flight time corresponding to the minimum propellant usage over all flight times. Inclusion of additional trajectory constraints, solely vertical motion near the landing site and glide slope, were evaluated. Through a theoretical proof involving the Minimum Principle from Optimal Control Theory and the Karush-Kuhn-Tucker conditions it was shown that the relaxed problem is identical to the original problem at the minimum point. Therefore, the optimal solution of the relaxed problem is an optimal solution of the original problem, referred to as lossless convexification. A key finding is that this holds for all levels of gravity model fidelity. The designed thrust magnitude profiles were the bang-bang predicted by Optimal Control Theory. The first high fidelity gravity model employed was the 2x2 spherical harmonics model assuming a perfect triaxial ellipsoid and placement of the coordinate frame at the asteroid's center of mass and aligned with the semi-major axes. The spherical harmonics model is not valid inside the Brillouin sphere and this becomes relevant for irregularly shaped asteroids. Then, a higher fidelity model was implemented combining the 4x4 spherical harmonics gravity model with the interior spherical Bessel gravity model. All gravitational terms in the equations of motion are evaluated with the position vector from the previous iteration, creating the successive solution method. Methodology success was shown by applying the algorithm to three triaxial ellipsoidal asteroids with four different rotation speeds using the 2x2 gravity model. Finally, the algorithm was tested using the irregularly shaped asteroid, Castalia.

  20. Comparative analysis of algorithms for lunar landing control

    NASA Astrophysics Data System (ADS)

    Zhukov, B. I.; Likhachev, V. N.; Sazonov, V. V.; Sikharulidze, Yu. G.; Tuchin, A. G.; Tuchin, D. A.; Fedotov, V. P.; Yaroshevskii, V. S.

    2015-11-01

    For the descent from the pericenter of a prelanding circumlunar orbit a comparison of three algorithms for the control of lander motion is performed. These algorithms use various combinations of terminal and programmed control in a trajectory including three parts: main braking, precision braking, and descent with constant velocity. In the first approximation, autonomous navigational measurements are taken into account and an estimate of the disturbances generated by movement of the fuel in the tanks was obtained. Estimates of the accuracy for landing placement, fuel consumption, and performance of the conditions for safe lunar landing are obtained.

  1. Robust camera calibration for sport videos using court models

    NASA Astrophysics Data System (ADS)

    Farin, Dirk; Krabbe, Susanne; de With, Peter H. N.; Effelsberg, Wolfgang

    2003-12-01

    We propose an automatic camera calibration algorithm for court sports. The obtained camera calibration parameters are required for applications that need to convert positions in the video frame to real-world coordinates or vice versa. Our algorithm uses a model of the arrangement of court lines for calibration. Since the court model can be specified by the user, the algorithm can be applied to a variety of different sports. The algorithm starts with a model initialization step which locates the court in the image without any user assistance or a-priori knowledge about the most probable position. Image pixels are classified as court line pixels if they pass several tests including color and local texture constraints. A Hough transform is applied to extract line elements, forming a set of court line candidates. The subsequent combinatorial search establishes correspondences between lines in the input image and lines from the court model. For the succeeding input frames, an abbreviated calibration algorithm is used, which predicts the camera parameters for the new image and optimizes the parameters using a gradient-descent algorithm. We have conducted experiments on a variety of sport videos (tennis, volleyball, and goal area sequences of soccer games). Video scenes with considerable difficulties were selected to test the robustness of the algorithm. Results show that the algorithm is very robust to occlusions, partial court views, bad lighting conditions, or shadows.

  2. Air-Traffic Controllers Evaluate The Descent Advisor

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard; Volckers, Uwe; Erzberger, Heinz

    1992-01-01

    Report describes study of Descent Advisor algorithm: software automation aid intended to assist air-traffic controllers in spacing traffic and meeting specified times or arrival. Based partly on mathematical models of weather conditions and performances of aircraft, it generates suggested clearances, including top-of-descent points and speed-profile data to attain objectives. Study focused on operational characteristics with specific attention to how it can be used for prediction, spacing, and metering.

  3. Noise-shaping gradient descent-based online adaptation algorithms for digital calibration of analog circuits.

    PubMed

    Chakrabartty, Shantanu; Shaga, Ravi K; Aono, Kenji

    2013-04-01

    Analog circuits that are calibrated using digital-to-analog converters (DACs) use a digital signal processor-based algorithm for real-time adaptation and programming of system parameters. In this paper, we first show that this conventional framework for adaptation yields suboptimal calibration properties because of artifacts introduced by quantization noise. We then propose a novel online stochastic optimization algorithm called noise-shaping or ΣΔ gradient descent, which can shape the quantization noise out of the frequency regions spanning the parameter adaptation trajectories. As a result, the proposed algorithms demonstrate superior parameter search properties compared to floating-point gradient methods and better convergence properties than conventional quantized gradient-methods. In the second part of this paper, we apply the ΣΔ gradient descent algorithm to two examples of real-time digital calibration: 1) balancing and tracking of bias currents, and 2) frequency calibration of a band-pass Gm-C biquad filter biased in weak inversion. For each of these examples, the circuits have been prototyped in a 0.5-μm complementary metal-oxide-semiconductor process, and we demonstrate that the proposed algorithm is able to find the optimal solution even in the presence of spurious local minima, which are introduced by the nonlinear and non-monotonic response of calibration DACs.

  4. The Natural-CCD Algorithm, a Novel Method to Solve the Inverse Kinematics of Hyper-redundant and Soft Robots.

    PubMed

    Martín, Andrés; Barrientos, Antonio; Del Cerro, Jaime

    2018-03-22

    This article presents a new method to solve the inverse kinematics problem of hyper-redundant and soft manipulators. From an engineering perspective, this kind of robots are underdetermined systems. Therefore, they exhibit an infinite number of solutions for the inverse kinematics problem, and to choose the best one can be a great challenge. A new algorithm based on the cyclic coordinate descent (CCD) and named as natural-CCD is proposed to solve this issue. It takes its name as a result of generating very harmonious robot movements and trajectories that also appear in nature, such as the golden spiral. In addition, it has been applied to perform continuous trajectories, to develop whole-body movements, to analyze motion planning in complex environments, and to study fault tolerance, even for both prismatic and rotational joints. The proposed algorithm is very simple, precise, and computationally efficient. It works for robots either in two or three spatial dimensions and handles a large amount of degrees-of-freedom. Because of this, it is aimed to break down barriers between discrete hyper-redundant and continuum soft robots.

  5. Variable selection for zero-inflated and overdispersed data with application to health care demand in Germany.

    PubMed

    Wang, Zhu; Ma, Shuangge; Wang, Ching-Yun

    2015-09-01

    In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD), and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, but also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using the open-source R package mpath. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Powered Descent Guidance with General Thrust-Pointing Constraints

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Acikmese, Behcet; Blackmore, Lars

    2013-01-01

    The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.

  7. Smart-Divert Powered Descent Guidance to Avoid the Backshell Landing Dispersion Ellipse

    NASA Technical Reports Server (NTRS)

    Carson, John M.; Acikmese, Behcet

    2013-01-01

    A smart-divert capability has been added into the Powered Descent Guidance (PDG) software originally developed for Mars pinpoint and precision landing. The smart-divert algorithm accounts for the landing dispersions of the entry backshell, which separates from the lander vehicle at the end of the parachute descent phase and prior to powered descent. The smart-divert PDG algorithm utilizes the onboard fuel and vehicle thrust vectoring to mitigate landing error in an intelligent way: ensuring that the lander touches down with minimum- fuel usage at the minimum distance from the desired landing location that also avoids impact by the descending backshell. The smart-divert PDG software implements a computationally efficient, convex formulation of the powered-descent guidance problem to provide pinpoint or precision-landing guidance solutions that are fuel-optimal and satisfy physical thrust bound and pointing constraints, as well as position and speed constraints. The initial smart-divert implementation enforced a lateral-divert corridor parallel to the ground velocity vector; this was based on guidance requirements for MSL (Mars Science Laboratory) landings. This initial method was overly conservative since the divert corridor was infinite in the down-range direction despite the backshell landing inside a calculable dispersion ellipse. Basing the divert constraint instead on a local tangent to the backshell dispersion ellipse in the direction of the desired landing site provides a far less conservative constraint. The resulting enhanced smart-divert PDG algorithm avoids impact with the descending backshell and has reduced conservatism.

  8. Fast and Adaptive Sparse Precision Matrix Estimation in High Dimensions

    PubMed Central

    Liu, Weidong; Luo, Xi

    2014-01-01

    This paper proposes a new method for estimating sparse precision matrices in the high dimensional setting. It has been popular to study fast computation and adaptive procedures for this problem. We propose a novel approach, called Sparse Column-wise Inverse Operator, to address these two issues. We analyze an adaptive procedure based on cross validation, and establish its convergence rate under the Frobenius norm. The convergence rates under other matrix norms are also established. This method also enjoys the advantage of fast computation for large-scale problems, via a coordinate descent algorithm. Numerical merits are illustrated using both simulated and real datasets. In particular, it performs favorably on an HIV brain tissue dataset and an ADHD resting-state fMRI dataset. PMID:25750463

  9. Development of an analytical guidance algorithm for lunar descent

    NASA Astrophysics Data System (ADS)

    Chomel, Christina Tvrdik

    In recent years, NASA has indicated a desire to return humans to the moon. With NASA planning manned missions within the next couple of decades, the concept development for these lunar vehicles has begun. The guidance, navigation, and control (GN&C) computer programs that will perform the function of safely landing a spacecraft on the moon are part of that development. The lunar descent guidance algorithm takes the horizontally oriented spacecraft from orbital speeds hundreds of kilometers from the desired landing point to the landing point at an almost vertical orientation and very low speed. Existing lunar descent GN&C algorithms date back to the Apollo era with little work available for implementation since then. Though these algorithms met the criteria of the 1960's, they are cumbersome today. At the basis of the lunar descent phase are two elements: the targeting, which generates a reference trajectory, and the real-time guidance, which forces the spacecraft to fly that trajectory. The Apollo algorithm utilizes a complex, iterative, numerical optimization scheme for developing the reference trajectory. The real-time guidance utilizes this reference trajectory in the form of a quartic rather than a more general format to force the real-time trajectory errors to converge to zero; however, there exist no guarantees under any conditions for this convergence. The proposed algorithm implements a purely analytical targeting algorithm used to generate two-dimensional trajectories "on-the-fly"' or to retarget the spacecraft to another landing site altogether. It is based on the analytical solutions to the equations for speed, downrange, and altitude as a function of flight path angle and assumes two constant thrust acceleration curves. The proposed real-time guidance algorithm has at its basis the three-dimensional non-linear equations of motion and a control law that is proven to converge under certain conditions through Lyapunov analysis to a reference trajectory formatted as a function of downrange, altitude, speed, and flight path angle. The two elements of the guidance algorithm are joined in Monte Carlo analysis to prove their robustness to initial state dispersions and mass and thrust errors. The robustness of the retargeting algorithm is also demonstrated.

  10. A Convex Formulation for Learning a Shared Predictive Structure from Multiple Tasks

    PubMed Central

    Chen, Jianhui; Tang, Lei; Liu, Jun; Ye, Jieping

    2013-01-01

    In this paper, we consider the problem of learning from multiple related tasks for improved generalization performance by extracting their shared structures. The alternating structure optimization (ASO) algorithm, which couples all tasks using a shared feature representation, has been successfully applied in various multitask learning problems. However, ASO is nonconvex and the alternating algorithm only finds a local solution. We first present an improved ASO formulation (iASO) for multitask learning based on a new regularizer. We then convert iASO, a nonconvex formulation, into a relaxed convex one (rASO). Interestingly, our theoretical analysis reveals that rASO finds a globally optimal solution to its nonconvex counterpart iASO under certain conditions. rASO can be equivalently reformulated as a semidefinite program (SDP), which is, however, not scalable to large datasets. We propose to employ the block coordinate descent (BCD) method and the accelerated projected gradient (APG) algorithm separately to find the globally optimal solution to rASO; we also develop efficient algorithms for solving the key subproblems involved in BCD and APG. The experiments on the Yahoo webpages datasets and the Drosophila gene expression pattern images datasets demonstrate the effectiveness and efficiency of the proposed algorithms and confirm our theoretical analysis. PMID:23520249

  11. Magnetotelluric inversion via reverse time migration algorithm of seismic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Taeyoung; Shin, Changsoo

    2007-07-01

    We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversionmore » algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.« less

  12. Polychromatic sparse image reconstruction and mass attenuation spectrum estimation via B-spline basis function expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Renliang, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu; Dogandžić, Aleksandar, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu

    2015-03-31

    We develop a sparse image reconstruction method for polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of themore » density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.« less

  13. Improving the Incoherence of a Learned Dictionary via Rank Shrinkage.

    PubMed

    Ubaru, Shashanka; Seghouane, Abd-Krim; Saad, Yousef

    2017-01-01

    This letter considers the problem of dictionary learning for sparse signal representation whose atoms have low mutual coherence. To learn such dictionaries, at each step, we first update the dictionary using the method of optimal directions (MOD) and then apply a dictionary rank shrinkage step to decrease its mutual coherence. In the rank shrinkage step, we first compute a rank 1 decomposition of the column-normalized least squares estimate of the dictionary obtained from the MOD step. We then shrink the rank of this learned dictionary by transforming the problem of reducing the rank to a nonnegative garrotte estimation problem and solving it using a path-wise coordinate descent approach. We establish theoretical results that show that the rank shrinkage step included will reduce the coherence of the dictionary, which is further validated by experimental results. Numerical experiments illustrating the performance of the proposed algorithm in comparison to various other well-known dictionary learning algorithms are also presented.

  14. A pipeline leakage locating method based on the gradient descent algorithm

    NASA Astrophysics Data System (ADS)

    Li, Yulong; Yang, Fan; Ni, Na

    2018-04-01

    A pipeline leakage locating method based on the gradient descent algorithm is proposed in this paper. The method has low computing complexity, which is suitable for practical application. We have built experimental environment in real underground pipeline network. A lot of real data has been gathered in the past three months. Every leak point has been certificated by excavation. Results show that positioning error is within 0.4 meter. Rate of false alarm and missing alarm are both under 20%. The calculating time is not above 5 seconds.

  15. Nonuniformity correction for an infrared focal plane array based on diamond search block matching.

    PubMed

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    In scene-based nonuniformity correction algorithms, artificial ghosting and image blurring degrade the correction quality severely. In this paper, an improved algorithm based on the diamond search block matching algorithm and the adaptive learning rate is proposed. First, accurate transform pairs between two adjacent frames are estimated by the diamond search block matching algorithm. Then, based on the error between the corresponding transform pairs, the gradient descent algorithm is applied to update correction parameters. During the process of gradient descent, the local standard deviation and a threshold are utilized to control the learning rate to avoid the accumulation of matching error. Finally, the nonuniformity correction would be realized by a linear model with updated correction parameters. The performance of the proposed algorithm is thoroughly studied with four real infrared image sequences. Experimental results indicate that the proposed algorithm can reduce the nonuniformity with less ghosting artifacts in moving areas and can also overcome the problem of image blurring in static areas.

  16. Trajectory Design Employing Convex Optimization for Landing on Irregularly Shaped Asteroids

    NASA Technical Reports Server (NTRS)

    Pinson, Robin M.; Lu, Ping

    2016-01-01

    Mission proposals that land on asteroids are becoming popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site. The problem under investigation is how to design a fuel-optimal powered descent trajectory that can be quickly computed on- board the spacecraft, without interaction from ground control. An optimal trajectory designed immediately prior to the descent burn has many advantages. These advantages include the ability to use the actual vehicle starting state as the initial condition in the trajectory design and the ease of updating the landing target site if the original landing site is no longer viable. For long trajectories, the trajectory can be updated periodically by a redesign of the optimal trajectory based on current vehicle conditions to improve the guidance performance. One of the key drivers for being completely autonomous is the infrequent and delayed communication between ground control and the vehicle. Challenges that arise from designing an asteroid powered descent trajectory include complicated nonlinear gravity fields, small rotating bodies and low thrust vehicles. There are two previous studies that form the background to the current investigation. The first set looked in-depth at applying convex optimization to a powered descent trajectory on Mars with promising results.1, 2 This showed that the powered descent equations of motion can be relaxed and formed into a convex optimization problem and that the optimal solution of the relaxed problem is indeed a feasible solution to the original problem. This analysis used a constant gravity field. The second area applied a successive solution process to formulate a second order cone program that designs rendezvous and proximity operations trajectories.3, 4 These trajectories included a Newtonian gravity model. The equivalence of the solutions between the relaxed and the original problem is theoretically established. The proposed solution for designing the asteroid powered descent trajectory is to use convex optimization, a gravity model with higher fidelity than Newtonian, and an iterative solution process to design the fuel optimal trajectory. The solution to the convex optimization problem is the thrust profile, magnitude and direction, that will yield the minimum fuel trajectory for a soft landing at the target site, subject to various mission and operational constraints. The equations of motion are formulated in a rotating coordinate system and includes a high fidelity gravity model. The vehicle's thrust magnitude can vary between maximum and minimum bounds during the burn. Also, constraints are included to ensure that the vehicle does not run out of propellant, or go below the asteroid's surface, and any vehicle pointing requirements. The equations of motion are discretized and propagated with the trapezoidal rule in order to produce equality constraints for the optimization problem. These equality constraints allow the optimization algorithm to solve the entire problem, without including a propagator inside the optimization algorithm.

  17. Trajectory Guidance for Mars Robotic Precursors: Aerocapture, Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald R.; Zumwalt, Carlie; Garcia-Llama, Eduardo; Powell, Richard; Shidner, Jeremy

    2011-01-01

    Future crewed missions to Mars require improvements in landed mass capability beyond that which is possible using state-of-the-art Mars Entry, Descent, and Landing (EDL) systems. Current systems are capable of an estimated maximum landed mass of 1-1.5 metric tons (MT), while human Mars studies require 20-40 MT. A set of technologies were investigated by the EDL Systems Analysis (SA) project to assess the performance of candidate EDL architectures. A single architecture was selected for the design of a robotic precursor mission, entitled Exploration Feed Forward (EFF), whose objective is to demonstrate these technologies. In particular, inflatable aerodynamic decelerators (IADs) and supersonic retro-propulsion (SRP) have been shown to have the greatest mass benefit and extensibility to future exploration missions. In order to evaluate these technologies and develop the mission, candidate guidance algorithms have been coded into the simulation for the purposes of studying system performance. These guidance algorithms include aerocapture, entry, and powered descent. The performance of the algorithms for each of these phases in the presence of dispersions has been assessed using a Monte Carlo technique.

  18. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis.

    PubMed

    Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas

    2013-01-01

    Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.

  19. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis

    PubMed Central

    Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas

    2013-01-01

    Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum. PMID:23766941

  20. Simulation Test Of Descent Advisor

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.

    1991-01-01

    Report describes piloted-simulation test of Descent Advisor (DA), subsystem of larger automation system being developed to assist human air-traffic controllers and pilots. Focuses on results of piloted simulation, in which airline crews executed controller-issued descent advisories along standard curved-path arrival routes. Crews able to achieve arrival-time precision of plus or minus 20 seconds at metering fix. Analysis of errors generated in turns resulted in further enhancements of algorithm to increase accuracies of its predicted trajectories. Evaluations by pilots indicate general support for DA concept and provide specific recommendations for improvement.

  1. Design of automation tools for management of descent traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1988-01-01

    The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. This paper focuses primarily on the Descent Advisor which provides automation tools for managing descent traffic. The algorithms, automation modes, and graphical interfaces incorporated in the design are described. Information generated by the Descent Advisor tools is integrated into a plan view traffic display consisting of a high-resolution color monitor. Estimated arrival times of aircraft are presented graphically on a time line, which is also used interactively in combination with a mouse input device to select and schedule arrival times. Other graphical markers indicate the location of the fuel-optimum top-of-descent point and the predicted separation distances of aircraft at a designated time-control point. Computer generated advisories provide speed and descent clearances which the controller can issue to aircraft to help them arrive at the feeder gate at the scheduled times or with specified separation distances. Two types of horizontal guidance modes, selectable by the controller, provide markers for managing the horizontal flightpaths of aircraft under various conditions. The entire system consisting of descent advisor algorithm, a library of aircraft performance models, national airspace system data bases, and interactive display software has been implemented on a workstation made by Sun Microsystems, Inc. It is planned to use this configuration in operational evaluations at an en route center.

  2. A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem.

    PubMed

    Dang, C; Xu, L

    2001-03-01

    In this paper a globally convergent Lagrange and barrier function iterative algorithm is proposed for approximating a solution of the traveling salesman problem. The algorithm employs an entropy-type barrier function to deal with nonnegativity constraints and Lagrange multipliers to handle linear equality constraints, and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the algorithm searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that the nonnegativity constraints are always satisfied automatically if the step length is a number between zero and one. At each iteration the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the algorithm converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the algorithm seems more effective and efficient than the softassign algorithm.

  3. Accelerating IMRT optimization by voxel sampling

    NASA Astrophysics Data System (ADS)

    Martin, Benjamin C.; Bortfeld, Thomas R.; Castañon, David A.

    2007-12-01

    This paper presents a new method for accelerating intensity-modulated radiation therapy (IMRT) optimization using voxel sampling. Rather than calculating the dose to the entire patient at each step in the optimization, the dose is only calculated for some randomly selected voxels. Those voxels are then used to calculate estimates of the objective and gradient which are used in a randomized version of a steepest descent algorithm. By selecting different voxels on each step, we are able to find an optimal solution to the full problem. We also present an algorithm to automatically choose the best sampling rate for each structure within the patient during the optimization. Seeking further improvements, we experimented with several other gradient-based optimization algorithms and found that the delta-bar-delta algorithm performs well despite the randomness. Overall, we were able to achieve approximately an order of magnitude speedup on our test case as compared to steepest descent.

  4. Medial orbital wall landmarks in three different North American populations.

    PubMed

    Mehta, Milap P; Perry, Julian D

    2015-04-01

    We sought to measure the medial orbital wall foramina distances in two previously unstudied populations, to describe a new bony medial wall feature, and to validate the accuracy of a new coordinate measurement device within the orbit. Dried, well-preserved, complete human skulls without orbital defects were studied. Age, gender, birthplace, ethnicity, and laterality of the orbit were recorded for each skull. Supranumerary ethmoidal foramina were recorded, and the fronto-ethmoidal groove depth was measured. The distances between the anterior lacrimal crest (ALC) - anterior ethmoidal foramen (AEF), AEF - posterior ethmoidal foramen (PEF), and PEF - optic canal (OC) were measured first by surgical ruler and wire and then by the Microscribe coordinate measurement device. One hundred and forty-six orbits were studied. Fifty-seven orbits were of European or Caucasian descent, 68 orbits of African American descent, 2 orbits of West African descent, 11 orbits of Eskimo descent, and 8 orbits of unknown origin. No significant differences existed between the manual and Microscribe measurements for the ALC-AEF, AEF-PEF, and PEF-OF distances (p < 0.0001). A significant frontoethmoidal groove was observed in 27/146 (19%) orbits, in 6/57 (11%) Caucasian orbits, in 17/70 (24%) African American orbits, and in 4/11 (36%) Eskimo orbits. Supranumerary ethmoidal foramina were found in 50/146 orbits (34.2%) and in 17/27 (63%) orbits with a significant frontoethmoidal grooves. No significant differences in medial wall foramina distances exist between African American and Caucasian orbits; however, a frontoethmoidal groove occurs more commonly in African American orbits. This groove often occurs in the presence of supernumerary ethmoidal foramina. The Microscribe coordinate measurement system represents a valid tool to measure distances within the orbit.

  5. On Target to Mars

    NASA Technical Reports Server (NTRS)

    Cheng, Yang

    2007-01-01

    This viewgraph presentation reviews the use of Descent Image Motion Estimation System (DIMES) for the descent of a spacecraft onto the surface of Mars. In the past this system was used to assist in the landing of the MER spacecraft. The overall algorithm is reviewed, and views of the hardware, and views from Spirit's descent are shown. On Spirit, had DIMES not been used, the impact velocity would have been at the limit of the airbag capability and Spirit may have bounced into Endurance Crater. By using DIMES, the velocity was reduced to well within the bounds of the airbag performance and Spirit arrived safely at Mars. Views from Oppurtunity's descent are also shown. The system to avoid and detect hazards is reviewed next. Landmark Based Spacecraft Pinpoint Landing is also reviewed. A cartoon version of a pinpoint landing and the various points is shown. Mars s surface has a large amount of craters, which are ideal landmarks . According to literatures on Martian cratering, 60 % of Martian surface is heavily cratered. The ideal (craters) landmarks for pinpoint landing will be between 1000 to 50 meters in diagonal The ideal altitude for position estimation should greater than 2 km above the ground. The algorithms used to detect and match craters are reviewed.

  6. Error analysis of stochastic gradient descent ranking.

    PubMed

    Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan

    2013-06-01

    Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.

  7. Comparison of classical reaction paths and tunneling paths studied with the semiclassical instanton theory.

    PubMed

    Meisner, Jan; Markmeyer, Max N; Bohner, Matthias U; Kästner, Johannes

    2017-08-30

    Atom tunneling in the hydrogen atom transfer reaction of the 2,4,6-tri-tert-butylphenyl radical to 3,5-di-tert-butylneophyl, which has a short but strongly curved reaction path, was investigated using instanton theory. We found the tunneling path to deviate qualitatively from the classical intrinsic reaction coordinate, the steepest-descent path in mass-weighted Cartesian coordinates. To perform that comparison, we implemented a new variant of the predictor-corrector algorithm for the calculation of the intrinsic reaction coordinate. We used the reaction force analysis method as a means to decompose the reaction barrier into structural and electronic components. Due to the narrow energy barrier, atom tunneling is important in the abovementioned reaction, even above room temperature. Our calculated rate constants between 350 K and 100 K agree well with experimental values. We found a H/D kinetic isotope effect of almost 10 6 at 100 K. Tunneling dominates the protium transfer below 400 K and the deuterium transfer below 300 K. We compared the lengths of the tunneling path and the classical path for the hydrogen atom transfer in the reaction HCl + Cl and quantified the corner cutting in this reaction. At low temperature, the tunneling path is about 40% shorter than the classical path.

  8. Mathematical simulation and optimization of cutting mode in turning of workpieces made of nickel-based heat-resistant alloy

    NASA Astrophysics Data System (ADS)

    Bogoljubova, M. N.; Afonasov, A. I.; Kozlov, B. N.; Shavdurov, D. E.

    2018-05-01

    A predictive simulation technique of optimal cutting modes in the turning of workpieces made of nickel-based heat-resistant alloys, different from the well-known ones, is proposed. The impact of various factors on the cutting process with the purpose of determining optimal parameters of machining in concordance with certain effectiveness criteria is analyzed in the paper. A mathematical model of optimization, algorithms and computer programmes, visual graphical forms reflecting dependences of the effectiveness criteria – productivity, net cost, and tool life on parameters of the technological process - have been worked out. A nonlinear model for multidimensional functions, “solution of the equation with multiple unknowns”, “a coordinate descent method” and heuristic algorithms are accepted to solve the problem of optimization of cutting mode parameters. Research shows that in machining of workpieces made from heat-resistant alloy AISI N07263, the highest possible productivity will be achieved with the following parameters: cutting speed v = 22.1 m/min., feed rate s=0.26 mm/rev; tool life T = 18 min.; net cost – 2.45 per hour.

  9. Functional Equivalence Acceptance Testing of FUN3D for Entry Descent and Landing Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Wood, William A.; Kleb, William L.; Alter, Stephen J.; Glass, Christopher E.; Padilla, Jose F.; Hammond, Dana P.; White, Jeffery A.

    2013-01-01

    The functional equivalence of the unstructured grid code FUN3D to the the structured grid code LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) is documented for applications of interest to the Entry, Descent, and Landing (EDL) community. Examples from an existing suite of regression tests are used to demonstrate the functional equivalence, encompassing various thermochemical models and vehicle configurations. Algorithm modifications required for the node-based unstructured grid code (FUN3D) to reproduce functionality of the cell-centered structured code (LAURA) are also documented. Challenges associated with computation on tetrahedral grids versus computation on structured-grid derived hexahedral systems are discussed.

  10. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Xue, Dong; Xu, Yang; Wang, JinJun; Wei, RunJie

    2015-10-01

    Lucas-Kanade (LK) algorithm, usually used in optical flow filed, has recently received increasing attention from PIV community due to its advanced calculation efficiency by GPU acceleration. Although applications of this algorithm are continuously emerging, a systematic performance evaluation is still lacking. This forms the primary aim of the present work. Three warping schemes in the family of LK algorithm: forward/inverse/symmetric warping, are evaluated in a prototype flow of a hierarchy of multiple two-dimensional vortices. Second-order Newton descent is also considered here. The accuracy & efficiency of all these LK variants are investigated under a large domain of various influential parameters. It is found that the constant displacement constraint, which is a necessary building block for GPU acceleration, is the most critical issue in affecting LK algorithm's accuracy, which can be somehow ameliorated by using second-order Newton descent. Moreover, symmetric warping outbids the other two warping schemes in accuracy level, robustness to noise, convergence speed and tolerance to displacement gradient, and might be the first choice when applying LK algorithm to PIV measurement.

  11. An Adaptive Orientation Estimation Method for Magnetic and Inertial Sensors in the Presence of Magnetic Disturbances

    PubMed Central

    Fan, Bingfei; Li, Qingguo; Wang, Chao; Liu, Tao

    2017-01-01

    Magnetic and inertial sensors have been widely used to estimate the orientation of human segments due to their low cost, compact size and light weight. However, the accuracy of the estimated orientation is easily affected by external factors, especially when the sensor is used in an environment with magnetic disturbances. In this paper, we propose an adaptive method to improve the accuracy of orientation estimations in the presence of magnetic disturbances. The method is based on existing gradient descent algorithms, and it is performed prior to sensor fusion algorithms. The proposed method includes stationary state detection and magnetic disturbance severity determination. The stationary state detection makes this method immune to magnetic disturbances in stationary state, while the magnetic disturbance severity determination helps to determine the credibility of magnetometer data under dynamic conditions, so as to mitigate the negative effect of the magnetic disturbances. The proposed method was validated through experiments performed on a customized three-axis instrumented gimbal with known orientations. The error of the proposed method and the original gradient descent algorithms were calculated and compared. Experimental results demonstrate that in stationary state, the proposed method is completely immune to magnetic disturbances, and in dynamic conditions, the error caused by magnetic disturbance is reduced by 51.2% compared with original MIMU gradient descent algorithm. PMID:28534858

  12. Effects of aircraft and flight parameters on energy-efficient profile descents in time-based metered traffic

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1984-01-01

    Concepts to save fuel while preserving airport capacity by combining time based metering with profile descent procedures were developed. A computer algorithm is developed to provide the flight crew with the information needed to fly from an entry fix to a metering fix and arrive there at a predetermined time, altitude, and airspeed. The flight from the metering fix to an aim point near the airport was calculated. The flight path is divided into several descent and deceleration segments. Descents are performed at constant Mach numbers or calibrated airspeed, whereas decelerations occur at constant altitude. The time and distance associated with each segment are calculated from point mass equations of motion for a clean configuration with idle thrust. Wind and nonstandard atmospheric properties have a large effect on the flight path. It is found that uncertainty in the descent Mach number has a large effect on the predicted flight time. Of the possible combinations of Mach number and calibrated airspeed for a descent, only small changes were observed in the fuel consumed.

  13. Mars Reconnaissance Orbiter Navigation Strategy for Dual Support of Insight and ExoMars Entry, Descent and Landing Demonstrator Module in 2016

    NASA Technical Reports Server (NTRS)

    Wagner, Sean V.; Menon, Premkumar R.; Chung, Min-Kun J.; Williams, Jessica L.

    2015-01-01

    Mars Reconnaissance Orbiter (MRO) will support NASA's InSight Mission and ESA's ExoMars Entry, Descent and Landing Demonstrator Module (EDM) in the fall of 2016 when both landers arrive at Mars. MRO provided relay support during the Entry, Descent and Landing (EDL) sequences of Mars Phoenix Lander in 2008 and the Mars Science Laboratory in 2012. Unlike these missions, MRO will coordinate between two EDL events separated by only three weeks: InSight on September 28, 2016 and EDM on October 19, 2016. This paper describes MRO Navigation's maneuver strategy to move MRO's ascending node to meet the In- Sight EDL phasing requirement and support EDM.

  14. A modified three-term PRP conjugate gradient algorithm for optimization models.

    PubMed

    Wu, Yanlin

    2017-01-01

    The nonlinear conjugate gradient (CG) algorithm is a very effective method for optimization, especially for large-scale problems, because of its low memory requirement and simplicity. Zhang et al. (IMA J. Numer. Anal. 26:629-649, 2006) firstly propose a three-term CG algorithm based on the well known Polak-Ribière-Polyak (PRP) formula for unconstrained optimization, where their method has the sufficient descent property without any line search technique. They proved the global convergence of the Armijo line search but this fails for the Wolfe line search technique. Inspired by their method, we will make a further study and give a modified three-term PRP CG algorithm. The presented method possesses the following features: (1) The sufficient descent property also holds without any line search technique; (2) the trust region property of the search direction is automatically satisfied; (3) the steplengh is bounded from below; (4) the global convergence will be established under the Wolfe line search. Numerical results show that the new algorithm is more effective than that of the normal method.

  15. On the efficiency of a randomized mirror descent algorithm in online optimization problems

    NASA Astrophysics Data System (ADS)

    Gasnikov, A. V.; Nesterov, Yu. E.; Spokoiny, V. G.

    2015-04-01

    A randomized online version of the mirror descent method is proposed. It differs from the existing versions by the randomization method. Randomization is performed at the stage of the projection of a subgradient of the function being optimized onto the unit simplex rather than at the stage of the computation of a subgradient, which is common practice. As a result, a componentwise subgradient descent with a randomly chosen component is obtained, which admits an online interpretation. This observation, for example, has made it possible to uniformly interpret results on weighting expert decisions and propose the most efficient method for searching for an equilibrium in a zero-sum two-person matrix game with sparse matrix.

  16. A flight management algorithm and guidance for fuel-conservative descents in a time-based metered air traffic environment: Development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1984-01-01

    A simple airborne flight management descent algorithm designed to define a flight profile subject to the constraints of using idle thrust, a clean airplane configuration (landing gear up, flaps zero, and speed brakes retracted), and fixed-time end conditions was developed and flight tested in the NASA TSRV B-737 research airplane. The research test flights, conducted in the Denver ARTCC automated time-based metering LFM/PD ATC environment, demonstrated that time guidance and control in the cockpit was acceptable to the pilots and ATC controllers and resulted in arrival of the airplane over the metering fix with standard deviations in airspeed error of 6.5 knots, in altitude error of 23.7 m (77.8 ft), and in arrival time accuracy of 12 sec. These accuracies indicated a good representation of airplane performance and wind modeling. Fuel savings will be obtained on a fleet-wide basis through a reduction of the time error dispersions at the metering fix and on a single-airplane basis by presenting the pilot with guidance for a fuel-efficient descent.

  17. SU-F-I-49: Vendor-Independent, Model-Based Iterative Reconstruction On a Rotating Grid with Coordinate-Descent Optimization for CT Imaging Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, S; Hoffman, J; McNitt-Gray, M

    Purpose: Iterative reconstruction methods show promise for improving image quality and lowering the dose in helical CT. We aim to develop a novel model-based reconstruction method that offers potential for dose reduction with reasonable computation speed and storage requirements for vendor-independent reconstruction from clinical data on a normal desktop computer. Methods: In 2012, Xu proposed reconstructing on rotating slices to exploit helical symmetry and reduce the storage requirements for the CT system matrix. Inspired by this concept, we have developed a novel reconstruction method incorporating the stored-system-matrix approach together with iterative coordinate-descent (ICD) optimization. A penalized-least-squares objective function with amore » quadratic penalty term is solved analytically voxel-by-voxel, sequentially iterating along the axial direction first, followed by the transaxial direction. 8 in-plane (transaxial) neighbors are used for the ICD algorithm. The forward problem is modeled via a unique approach that combines the principle of Joseph’s method with trilinear B-spline interpolation to enable accurate reconstruction with low storage requirements. Iterations are accelerated with multi-CPU OpenMP libraries. For preliminary evaluations, we reconstructed (1) a simulated 3D ellipse phantom and (2) an ACR accreditation phantom dataset exported from a clinical scanner (Definition AS, Siemens Healthcare). Image quality was evaluated in the resolution module. Results: Image quality was excellent for the ellipse phantom. For the ACR phantom, image quality was comparable to clinical reconstructions and reconstructions using open-source FreeCT-wFBP software. Also, we did not observe any deleterious impact associated with the utilization of rotating slices. The system matrix storage requirement was only 4.5GB, and reconstruction time was 50 seconds per iteration. Conclusion: Our reconstruction method shows potential for furthering research in low-dose helical CT, in particular as part of our ongoing development of an acquisition/reconstruction pipeline for generating images under a wide range of conditions. Our algorithm will be made available open-source as “FreeCT-ICD”. NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less

  18. Blind beam-hardening correction from Poisson measurements

    NASA Astrophysics Data System (ADS)

    Gu, Renliang; Dogandžić, Aleksandar

    2016-02-01

    We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements and express the mass- attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov's proximal-gradient (NPG) step for estimating the density map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. To accelerate convergence of the density- map NPG steps, we apply function restart and a step-size selection scheme that accounts for varying local Lipschitz constants of the Poisson NLL. Real X-ray CT reconstruction examples demonstrate the performance of the proposed scheme.

  19. Mathematical model and coordination algorithms for ensuring complex security of an organization

    NASA Astrophysics Data System (ADS)

    Novoseltsev, V. I.; Orlova, D. E.; Dubrovin, A. S.; Irkhin, V. P.

    2018-03-01

    The mathematical model of coordination when ensuring complex security of the organization is considered. On the basis of use of a method of casual search three types of algorithms of effective coordination adequate to mismatch level concerning security are developed: a coordination algorithm at domination of instructions of the coordinator; a coordination algorithm at domination of decisions of performers; a coordination algorithm at parity of interests of the coordinator and performers. Assessment of convergence of the algorithms considered above it was made by carrying out a computing experiment. The described algorithms of coordination have property of convergence in the sense stated above. And, the following regularity is revealed: than more simply in the structural relation the algorithm, for the smaller number of iterations is provided to those its convergence.

  20. A Revised Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2010-01-01

    This document describes an algorithm for the generation of a four dimensional trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. This version of the algorithm accommodates descent Mach values that are different from the cruise Mach values. Wind data at each waypoint are also inputs into this algorithm. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint.

  1. Iterative CT reconstruction using coordinate descent with ordered subsets of data

    NASA Astrophysics Data System (ADS)

    Noo, F.; Hahn, K.; Schöndube, H.; Stierstorfer, K.

    2016-04-01

    Image reconstruction based on iterative minimization of a penalized weighted least-square criteria has become an important topic of research in X-ray computed tomography. This topic is motivated by increasing evidence that such a formalism may enable a significant reduction in dose imparted to the patient while maintaining or improving image quality. One important issue associated with this iterative image reconstruction concept is slow convergence and the associated computational effort. For this reason, there is interest in finding methods that produce approximate versions of the targeted image with a small number of iterations and an acceptable level of discrepancy. We introduce here a novel method to produce such approximations: ordered subsets in combination with iterative coordinate descent. Preliminary results demonstrate that this method can produce, within 10 iterations and using only a constant image as initial condition, satisfactory reconstructions that retain the noise properties of the targeted image.

  2. Research on particle swarm optimization algorithm based on optimal movement probability

    NASA Astrophysics Data System (ADS)

    Ma, Jianhong; Zhang, Han; He, Baofeng

    2017-01-01

    The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.

  3. Guidance and Control Algorithms for the Mars Entry, Descent and Landing Systems Analysis

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; CwyerCianciolo, Alicia M.; Powell, Richard W.; Shidner, Jeremy D.; Garcia-Llama, Eduardo

    2010-01-01

    The purpose of the Mars Entry, Descent and Landing Systems Analysis (EDL-SA) study was to identify feasible technologies that will enable human exploration of Mars, specifically to deliver large payloads to the Martian surface. This paper focuses on the methods used to guide and control two of the contending technologies, a mid- lift-to-drag (L/D) rigid aeroshell and a hypersonic inflatable aerodynamic decelerator (HIAD), through the entry portion of the trajectory. The Program to Optimize Simulated Trajectories II (POST2) is used to simulate and analyze the trajectories of the contending technologies and guidance and control algorithms. Three guidance algorithms are discussed in this paper: EDL theoretical guidance, Numerical Predictor-Corrector (NPC) guidance and Analytical Predictor-Corrector (APC) guidance. EDL-SA also considered two forms of control: bank angle control, similar to that used by Apollo and the Space Shuttle, and a center-of-gravity (CG) offset control. This paper presents the performance comparison of these guidance algorithms and summarizes the results as they impact the technology recommendations for future study.

  4. Apollo LM guidance computer software for the final lunar descent.

    NASA Technical Reports Server (NTRS)

    Eyles, D.

    1973-01-01

    In all manned lunar landings to date, the lunar module Commander has taken partial manual control of the spacecraft during the final stage of the descent, below roughly 500 ft altitude. This report describes programs developed at the Charles Stark Draper Laboratory, MIT, for use in the LM's guidance computer during the final descent. At this time computational demands on the on-board computer are at a maximum, and particularly close interaction with the crew is necessary. The emphasis is on the design of the computer software rather than on justification of the particular guidance algorithms employed. After the computer and the mission have been introduced, the current configuration of the final landing programs and an advanced version developed experimentally by the author are described.

  5. Mapped Landmark Algorithm for Precision Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew; Ansar, Adnan; Matthies, Larry

    2007-01-01

    A report discusses a computer vision algorithm for position estimation to enable precision landing during planetary descent. The Descent Image Motion Estimation System for the Mars Exploration Rovers has been used as a starting point for creating code for precision, terrain-relative navigation during planetary landing. The algorithm is designed to be general because it handles images taken at different scales and resolutions relative to the map, and can produce mapped landmark matches for any planetary terrain of sufficient texture. These matches provide a measurement of horizontal position relative to a known landing site specified on the surface map. Multiple mapped landmarks generated per image allow for automatic detection and elimination of bad matches. Attitude and position can be generated from each image; this image-based attitude measurement can be used by the onboard navigation filter to improve the attitude estimate, which will improve the position estimates. The algorithm uses normalized correlation of grayscale images, producing precise, sub-pixel images. The algorithm has been broken into two sub-algorithms: (1) FFT Map Matching (see figure), which matches a single large template by correlation in the frequency domain, and (2) Mapped Landmark Refinement, which matches many small templates by correlation in the spatial domain. Each relies on feature selection, the homography transform, and 3D image correlation. The algorithm is implemented in C++ and is rated at Technology Readiness Level (TRL) 4.

  6. Stochastic parallel gradient descent based adaptive optics used for a high contrast imaging coronagraph

    NASA Astrophysics Data System (ADS)

    Dong, Bing; Ren, De-Qing; Zhang, Xi

    2011-08-01

    An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10-3 to 10-4.5 at an angular distance of 2λ/D after being corrected by SPGD based AO.

  7. 3D-Web-GIS RFID location sensing system for construction objects.

    PubMed

    Ko, Chien-Ho

    2013-01-01

    Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency.

  8. 3D-Web-GIS RFID Location Sensing System for Construction Objects

    PubMed Central

    2013-01-01

    Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency. PMID:23864821

  9. Stochastic Spectral Descent for Discrete Graphical Models

    DOE PAGES

    Carlson, David; Hsieh, Ya-Ping; Collins, Edo; ...

    2015-12-14

    Interest in deep probabilistic graphical models has in-creased in recent years, due to their state-of-the-art performance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly sized models, training becomes slow and practically usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten- norm. Intriguingly, the minimizers of these bounds can be interpreted asmore » gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models.« less

  10. The Cassini/Huygens Doppler Wind Experiment: Results from the Titan Descent

    NASA Technical Reports Server (NTRS)

    Bird, M. K.; Dutta-Roy, R.; Allison, M.; Asmar, S. W.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Tyler, G. L.

    2005-01-01

    The primary objective of the Doppler Wind Experiment (DWE), one of the six scientific investigations comprising the payload of the ESA Huygens Probe, is a determination of the wind velocity in Titan's atmosphere. Measurements of the Doppler shift of the S-band (2040 MHz) carrier signal to the Cassini Orbiter and to Earth were recorded during the Probe descent in order to deduce wind-induced motion of the Probe to an accuracy better than 1 m s-1. An experiment with the same scientific goal was performed with the Galileo Probe at Jupiter. Analogous to the Galileo experience, it was anticipated that the frequency of the Huygens radio signal could be measured on Earth to obtain an additional component of the horizontal winds. Specific secondary science objectives of DWE include measurements of: (a) Doppler fluctuations to determine the turbulence spectrum and possible wave activity in the Titan atmosphere; (b) Doppler and signal level modulation to monitor Probe descent dynamics (e.g., spinrate/spinphase, parachute swing); (c) Probe coordinates and orientation during descent and after impact on Titan.

  11. Gradient descent for robust kernel-based regression

    NASA Astrophysics Data System (ADS)

    Guo, Zheng-Chu; Hu, Ting; Shi, Lei

    2018-06-01

    In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.

  12. An annealed chaotic maximum neural network for bipartite subgraph problem.

    PubMed

    Wang, Jiahai; Tang, Zheng; Wang, Ronglong

    2004-04-01

    In this paper, based on maximum neural network, we propose a new parallel algorithm that can help the maximum neural network escape from local minima by including a transient chaotic neurodynamics for bipartite subgraph problem. The goal of the bipartite subgraph problem, which is an NP- complete problem, is to remove the minimum number of edges in a given graph such that the remaining graph is a bipartite graph. Lee et al. presented a parallel algorithm using the maximum neural model (winner-take-all neuron model) for this NP- complete problem. The maximum neural model always guarantees a valid solution and greatly reduces the search space without a burden on the parameter-tuning. However, the model has a tendency to converge to a local minimum easily because it is based on the steepest descent method. By adding a negative self-feedback to the maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm is then fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the maximum neural network and the chaotic neurodynamics. A large number of instances have been simulated to verify the proposed algorithm. The simulation results show that our algorithm finds the optimum or near-optimum solution for the bipartite subgraph problem superior to that of the best existing parallel algorithms.

  13. Hazard avoidance via descent images for safe landing

    NASA Astrophysics Data System (ADS)

    Yan, Ruicheng; Cao, Zhiguo; Zhu, Lei; Fang, Zhiwen

    2013-10-01

    In planetary or lunar landing missions, hazard avoidance is critical for landing safety. Therefore, it is very important to correctly detect hazards and effectively find a safe landing area during the last stage of descent. In this paper, we propose a passive sensing based HDA (hazard detection and avoidance) approach via descent images to lower the landing risk. In hazard detection stage, a statistical probability model on the basis of the hazard similarity is adopted to evaluate the image and detect hazardous areas, so that a binary hazard image can be generated. Afterwards, a safety coefficient, which jointly utilized the proportion of hazards in the local region and the inside hazard distribution, is proposed to find potential regions with less hazards in the binary hazard image. By using the safety coefficient in a coarse-to-fine procedure and combining it with the local ISD (intensity standard deviation) measure, the safe landing area is determined. The algorithm is evaluated and verified with many simulated descent downward looking images rendered from lunar orbital satellite images.

  14. Regression Analysis of Top of Descent Location for Idle-thrust Descents

    NASA Technical Reports Server (NTRS)

    Stell, Laurel; Bronsvoort, Jesper; McDonald, Greg

    2013-01-01

    In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. The independent variables cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also recorded or computed post-operations. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajec- tory parameters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowl- edge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace. In particular, a model for TOD location that is linear in the independent variables would enable decision support tool human-machine interfaces for which a kinetic approach would be computationally too slow.

  15. Reconstruction of sparse-view X-ray computed tomography using adaptive iterative algorithms.

    PubMed

    Liu, Li; Lin, Weikai; Jin, Mingwu

    2015-01-01

    In this paper, we propose two reconstruction algorithms for sparse-view X-ray computed tomography (CT). Treating the reconstruction problems as data fidelity constrained total variation (TV) minimization, both algorithms adapt the alternate two-stage strategy: projection onto convex sets (POCS) for data fidelity and non-negativity constraints and steepest descent for TV minimization. The novelty of this work is to determine iterative parameters automatically from data, thus avoiding tedious manual parameter tuning. In TV minimization, the step sizes of steepest descent are adaptively adjusted according to the difference from POCS update in either the projection domain or the image domain, while the step size of algebraic reconstruction technique (ART) in POCS is determined based on the data noise level. In addition, projection errors are used to compare with the error bound to decide whether to perform ART so as to reduce computational costs. The performance of the proposed methods is studied and evaluated using both simulated and physical phantom data. Our methods with automatic parameter tuning achieve similar, if not better, reconstruction performance compared to a representative two-stage algorithm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Integrative Analysis of Cancer Diagnosis Studies with Composite Penalization

    PubMed Central

    Liu, Jin; Huang, Jian; Ma, Shuangge

    2013-01-01

    Summary In cancer diagnosis studies, high-throughput gene profiling has been extensively conducted, searching for genes whose expressions may serve as markers. Data generated from such studies have the “large d, small n” feature, with the number of genes profiled much larger than the sample size. Penalization has been extensively adopted for simultaneous estimation and marker selection. Because of small sample sizes, markers identified from the analysis of single datasets can be unsatisfactory. A cost-effective remedy is to conduct integrative analysis of multiple heterogeneous datasets. In this article, we investigate composite penalization methods for estimation and marker selection in integrative analysis. The proposed methods use the minimax concave penalty (MCP) as the outer penalty. Under the homogeneity model, the ridge penalty is adopted as the inner penalty. Under the heterogeneity model, the Lasso penalty and MCP are adopted as the inner penalty. Effective computational algorithms based on coordinate descent are developed. Numerical studies, including simulation and analysis of practical cancer datasets, show satisfactory performance of the proposed methods. PMID:24578589

  17. The Huygens Descent Trajectory Working Group and the Reconstruction of the Huygens Probe Entry and Descent Trajectory at Titan

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Kazeminejad, Bobby; Lebreton, Jean-Pierre

    2015-04-01

    Cassini/Huygens, a flagship mission to explore the rings, atmosphere, magnetic field, and moons that make up the Saturn system, is a joint endeavor of NASA, the European Space Agency, and Agenzia Spaziale Italiana. Comprising two spacecraft - a Saturn orbiter built by NASA and a Titan entry/descent probe built by the European Space Agency - Cassini/Huygens was launched in October 1997 and arrived at Saturn in 2004. The Huygens probe parachuted to the surface of Titan in January 2005. During the descent, six science instruments provided measurements of Titan's atmosphere, clouds, and winds, and photographed Titan's surface. It was recognized early in the Huygens program that to correctly interpret and correlate results from the probe science experiments and to provide a reference set of data for ground truth calibration of the Cassini orbiter remote sensing observations, an accurate reconstruction of the probe entry and descent trajectory and surface landing location would be necessary. The Huygens Descent Trajectory Working Group (DTWG) was chartered in 1996 as a subgroup of the Huygens Science Working Team. With membership comprising representatives from all the probe engineering and instrument teams as well as representatives of industry and the Cassini and Huygens Project Scientists, the DTWG presented an organizational framework within which instrument data was shared, the entry and descent trajectory reconstruction implemented, and the trajectory reconstruction efficiently disseminated. The primary goal of the Descent Trajectory Working Group was to develop retrieval methodologies for the probe descent trajectory reconstruction from the entry interface altitude of 1270 km to the surface using navigation data, and engineering and science data acquired by the instruments on the Huygens Probe, and to provide a reconstruction of the Huygens probe trajectory from entry to the surface of Titan that is maximally consistent with all available engineering and science data sets. The official project entry and descent trajectory reconstruction effort was published by the DTWG in 2007. A revised descent trajectory was released in 2010 that accounts for updated measurements of Titan's pole coordinates derived from radar images of Titan taken during Cassini flybys after 2007. The effect of the updated pole positions on Huygens is a southward shift of the trajectory by about 0.3 degrees with a much smaller effect of less than 0.01 degree in the zonal (west to east) direction. The revised Huygens landing coordinates of 192.335 degrees West and 10.573 degrees South with longitude and latitude residuals of respectively 0.035 degrees and 0.007 degrees, respectively, are in excellent agreement with results of recent landing site investigations using visual and radar images from the Cassini VIMS instrument. Acknowledgements *J.-P.L's work was performed while at ESA/ESTEC. DA and BK would like to express appreciation to the European Space Agency's Research and Scientific Support Department for funding the Descent Trajectory Working Group. The work of the Descent Trajectory Working Group would not have been possible without the dedicated efforts of all the Huygens principal investigators and their teams, and the science and engineering data provided from each experiment team, including M. Fulchignoni and the HASI Team, H. Niemann and the GCMS Team, J. Zarnecki and the SSP Team, M. Tomasko and the DISR Team, M. Bird and the DWE Team, and G. Israel and the ACP Team. Additionally, special thanks for many years of support to D.L. Matson, R.T. Mitchell, M. Pérez-Ayúcar, O. Witasse; J. Jones, D. Roth, N. Strange on the Cassini Navigation Team at JPL; A.-M. Schipper and P. Couzin at Thales Alenia; C. Sollazzo, D. Salt, J. Wheadon and S. Standley from the Huygens Ops Team; and R. Trautner and H. Svedhem on the Radar Team at ESTEC.

  18. Methodology Development for the Reconstruction of the ESA Huygens Probe Entry and Descent Trajectory

    NASA Astrophysics Data System (ADS)

    Kazeminejad, B.

    2005-01-01

    The European Space Agency's (ESA) Huygens probe performed a successful entry and descent into Titan's atmosphere on January 14, 2005, and landed safely on the satellite's surface. A methodology was developed, implemented, and tested to reconstruct the Huygens probe trajectory from its various science and engineering measurements, which were performed during the probe's entry and descent to the surface of Titan, Saturn's largest moon. The probe trajectory reconstruction is an essential effort that has to be done as early as possible in the post-flight data analysis phase as it guarantees a correct and consistent interpretation of all the experiment data and furthermore provides a reference set of data for "ground-truthing" orbiter remote sensing measurements. The entry trajectory is reconstructed from the measured probe aerodynamic drag force, which also provides a means to derive the upper atmospheric properties like density, pressure, and temperature. The descent phase reconstruction is based upon a combination of various atmospheric measurements such as pressure, temperature, composition, speed of sound, and wind speed. A significant amount of effort was spent to outline and implement a least-squares trajectory estimation algorithm that provides a means to match the entry and descent trajectory portions in case of discontinuity. An extensive test campaign of the algorithm is presented which used the Huygens Synthetic Dataset (HSDS) developed by the Huygens Project Scientist Team at ESA/ESTEC as a test bed. This dataset comprises the simulated sensor output (and the corresponding measurement noise and uncertainty) of all the relevant probe instruments. The test campaign clearly showed that the proposed methodology is capable of utilizing all the relevant probe data, and will provide the best estimate of the probe trajectory once real instrument measurements from the actual probe mission are available. As a further test case using actual flight data the NASA Mars Pathfinder entry and descent trajectory and the space craft attitude was reconstructed from the 3-axis accelerometer measurements which are archived on the Planetary Data System. The results are consistent with previously published reconstruction efforts.

  19. Recursive least-squares learning algorithms for neural networks

    NASA Astrophysics Data System (ADS)

    Lewis, Paul S.; Hwang, Jenq N.

    1990-11-01

    This paper presents the development of a pair of recursive least squares (ItLS) algorithms for online training of multilayer perceptrons which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is 0(N2) where N is the number of network parameters. This is due to the estimation of the N x N inverse Hessian matrix. Less computationally intensive approximations of the ilLS algorithms can be easily derived by using only block diagonal elements of this matrix thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6 1 BACKGROUND Artificial neural networks (ANNs) offer an interesting and potentially useful paradigm for signal processing and pattern recognition. The majority of ANN applications employ the feed-forward multilayer perceptron (MLP) network architecture in which network parameters are " trained" by a supervised learning algorithm employing the generalized delta rule (GDIt) [1 2]. The GDR algorithm approximates a fixed step steepest descent algorithm using derivatives computed by error backpropagatiori. The GDII algorithm is sometimes referred to as the backpropagation algorithm. However in this paper we will use the term backpropagation to refer only to the process of computing error derivatives. While multilayer perceptrons provide a very powerful nonlinear modeling capability GDR training can be very slow and inefficient. In linear adaptive filtering the analog of the GDR algorithm is the leastmean- squares (LMS) algorithm. Steepest descent-based algorithms such as GDR or LMS are first order because they use only first derivative or gradient information about the training error to be minimized. To speed up the training process second order algorithms may be employed that take advantage of second derivative or Hessian matrix information. Second order information can be incorporated into MLP training in different ways. In many applications especially in the area of pattern recognition the training set is finite. In these cases block learning can be applied using standard nonlinear optimization techniques [3 4 5].

  20. A Fast Deep Learning System Using GPU

    DTIC Science & Technology

    2014-06-01

    hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...widely used in data modeling until three decades later when efficient training algorithm for RBM is invented by Hinton [3] and the computing power is...be trained using most of optimization algorithms , such as BP, conjugate gradient descent (CGD) or Levenberg-Marquardt (LM). The advantage of this

  1. Effects of aircraft and flight parameters on energy-efficient profile descents in time-based metered traffic

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1984-01-01

    Attention is given to a computer algorithm yielding the data required for a flight crew to navigate from an entry fix, about 100 nm from an airport, to a metering fix, and arrive there at a predetermined time, altitude, and airspeed. The flight path is divided into several descent and deceleration segments. Results for the case of a B-737 airliner indicate that wind and nonstandard atmospheric properties have a significant effect on the flight path and must be taken into account. While a range of combinations of Mach number and calibrated airspeed is possible for the descent segments leading to the metering fix, only small changes in the fuel consumed were observed for this range of combinations. A combination that is based on scheduling flexibility therefore seems preferable.

  2. International Space Station (ISS) Soyuz Vehicle Descent Module Evaluation of Thermal Protection System (TPS) Penetration Characteristics

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom

    2013-01-01

    The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure

  3. The relationship of heel contact in ascent and descent from jumps to the incidence of shin splints in ballet dancers.

    PubMed

    Gans, A

    1985-08-01

    I conducted a study to determine whether ballet dancers with a history of shin splints make heel contact on ascent and descent from jumps less often than dancers without this history. Sixteen dancers were filmed as they executed a sequence of jumps at two different speeds. Eight of the subjects had a history of shin-splint pain; eight had no such history. The film was viewed on a Super 8 movie projector. Heel contacts on ascent and descent from jumps were counted. Double heel strikes (heel rise between landing and pushing off) were also counted. A nonparametric t test showed no differences between the two groups in the number of contacts on ascent or descent. The dancers with a history of shin splints, however, demonstrated more double heel strikes (p = .02) than the other group. Clinically, this finding may represent a lack of control or a tight Achilles tendon or both. Further study is necessary to confirm these theories. For treatment and prevention of shin splints, a clinician must evaluate a dancer's jumping technique and then provide systematic training to develop the skin strength, flexibility, and coordination that make up control.

  4. Online learning in optical tomography: a stochastic approach

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Li, Qin; Liu, Jian-Guo

    2018-07-01

    We study the inverse problem of radiative transfer equation (RTE) using stochastic gradient descent method (SGD) in this paper. Mathematically, optical tomography amounts to recovering the optical parameters in RTE using the incoming–outgoing pair of light intensity. We formulate it as a PDE-constraint optimization problem, where the mismatch of computed and measured outgoing data is minimized with same initial data and RTE constraint. The memory and computation cost it requires, however, is typically prohibitive, especially in high dimensional space. Smart iterative solvers that only use partial information in each step is called for thereafter. Stochastic gradient descent method is an online learning algorithm that randomly selects data for minimizing the mismatch. It requires minimum memory and computation, and advances fast, therefore perfectly serves the purpose. In this paper we formulate the problem, in both nonlinear and its linearized setting, apply SGD algorithm and analyze the convergence performance.

  5. Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.

    PubMed

    Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S

    2004-01-01

    MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.

  6. Piloted simulation of a ground-based time-control concept for air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.

    1989-01-01

    A concept for aiding air traffic controllers in efficiently spacing traffic and meeting scheduled arrival times at a metering fix was developed and tested in a real time simulation. The automation aid, referred to as the ground based 4-D descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent-point and speed-profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is used by the air traffic controller to resolve conflicts and issue advisories to arrival aircraft. A joint simulation was conducted using a piloted simulator and an advanced concept air traffic control simulation to study the acceptability and accuracy of the DA automation aid from both the pilot's and the air traffic controller's perspectives. The results of the piloted simulation are examined. In the piloted simulation, airline crews executed controller issued descent advisories along standard curved path arrival routes, and were able to achieve an arrival time precision of + or - 20 sec at the metering fix. An analysis of errors generated in turns resulted in further enhancements of the algorithm to improve the predictive accuracy. Evaluations by pilots indicate general support for the concept and provide specific recommendations for improvement.

  7. WS-BP: An efficient wolf search based back-propagation algorithm

    NASA Astrophysics Data System (ADS)

    Nawi, Nazri Mohd; Rehman, M. Z.; Khan, Abdullah

    2015-05-01

    Wolf Search (WS) is a heuristic based optimization algorithm. Inspired by the preying and survival capabilities of the wolves, this algorithm is highly capable to search large spaces in the candidate solutions. This paper investigates the use of WS algorithm in combination with back-propagation neural network (BPNN) algorithm to overcome the local minima problem and to improve convergence in gradient descent. The performance of the proposed Wolf Search based Back-Propagation (WS-BP) algorithm is compared with Artificial Bee Colony Back-Propagation (ABC-BP), Bat Based Back-Propagation (Bat-BP), and conventional BPNN algorithms. Specifically, OR and XOR datasets are used for training the network. The simulation results show that the WS-BP algorithm effectively avoids the local minima and converge to global minima.

  8. A Gradient Taguchi Method for Engineering Optimization

    NASA Astrophysics Data System (ADS)

    Hwang, Shun-Fa; Wu, Jen-Chih; He, Rong-Song

    2017-10-01

    To balance the robustness and the convergence speed of optimization, a novel hybrid algorithm consisting of Taguchi method and the steepest descent method is proposed in this work. Taguchi method using orthogonal arrays could quickly find the optimum combination of the levels of various factors, even when the number of level and/or factor is quite large. This algorithm is applied to the inverse determination of elastic constants of three composite plates by combining numerical method and vibration testing. For these problems, the proposed algorithm could find better elastic constants in less computation cost. Therefore, the proposed algorithm has nice robustness and fast convergence speed as compared to some hybrid genetic algorithms.

  9. Detection of Gait Modes Using an Artificial Neural Network during Walking with a Powered Ankle-Foot Orthosis

    PubMed Central

    2016-01-01

    This paper presents an algorithm, for use with a Portable Powered Ankle-Foot Orthosis (i.e., PPAFO) that can automatically detect changes in gait modes (level ground, ascent and descent of stairs or ramps), thus allowing for appropriate ankle actuation control during swing phase. An artificial neural network (ANN) algorithm used input signals from an inertial measurement unit and foot switches, that is, vertical velocity and segment angle of the foot. Output from the ANN was filtered and adjusted to generate a final data set used to classify different gait modes. Five healthy male subjects walked with the PPAFO on the right leg for two test scenarios (walking over level ground and up and down stairs or a ramp; three trials per scenario). Success rate was quantified by the number of correctly classified steps with respect to the total number of steps. The results indicated that the proposed algorithm's success rate was high (99.3%, 100%, and 98.3% for level, ascent, and descent modes in the stairs scenario, respectively; 98.9%, 97.8%, and 100% in the ramp scenario). The proposed algorithm continuously detected each step's gait mode with faster timing and higher accuracy compared to a previous algorithm that used a decision tree based on maximizing the reliability of the mode recognition. PMID:28070188

  10. Application of the method of steepest descent to laminated shield weight optimization with several constraints: Theory

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1971-01-01

    The method of steepest descent used in optimizing one-dimensional layered radiation shields is extended to multidimensional, multiconstraint situations. The multidimensional optimization algorithm and equations are developed for the case of a dose constraint in any one direction being dependent only on the shield thicknesses in that direction and independent of shield thicknesses in other directions. Expressions are derived for one-, two-, and three-dimensional cases (one, two, and three constraints). The precedure is applicable to the optimization of shields where there are different dose constraints and layering arrangements in the principal directions.

  11. How to Compute a Slot Marker - Calculation of Controller Managed Spacing Tools for Efficient Descents with Precision Scheduling

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas

    2012-01-01

    This paper describes the underlying principles and algorithms for computing the primary controller managed spacing (CMS) tools developed at NASA for precisely spacing aircraft along efficient descent paths. The trajectory-based CMS tools include slot markers, delay indications and speed advisories. These tools are one of three core NASA technologies integrated in NASAs ATM technology demonstration-1 (ATD-1) that will operationally demonstrate the feasibility of fuel-efficient, high throughput arrival operations using Automatic Dependent Surveillance Broadcast (ADS-B) and ground-based and airborne NASA technologies for precision scheduling and spacing.

  12. Approximate solution of the p-median minimization problem

    NASA Astrophysics Data System (ADS)

    Il'ev, V. P.; Il'eva, S. D.; Navrotskaya, A. A.

    2016-09-01

    A version of the facility location problem (the well-known p-median minimization problem) and its generalization—the problem of minimizing a supermodular set function—is studied. These problems are NP-hard, and they are approximately solved by a gradient algorithm that is a discrete analog of the steepest descent algorithm. A priori bounds on the worst-case behavior of the gradient algorithm for the problems under consideration are obtained. As a consequence, a bound on the performance guarantee of the gradient algorithm for the p-median minimization problem in terms of the production and transportation cost matrix is obtained.

  13. Development of gradient descent adaptive algorithms to remove common mode artifact for improvement of cardiovascular signal quality.

    PubMed

    Ciaccio, Edward J; Micheli-Tzanakou, Evangelia

    2007-07-01

    Common-mode noise degrades cardiovascular signal quality and diminishes measurement accuracy. Filtering to remove noise components in the frequency domain often distorts the signal. Two adaptive noise canceling (ANC) algorithms were tested to adjust weighted reference signals for optimal subtraction from a primary signal. Update of weight w was based upon the gradient term of the steepest descent equation: [see text], where the error epsilon is the difference between primary and weighted reference signals. nabla was estimated from Deltaepsilon(2) and Deltaw without using a variable Deltaw in the denominator which can cause instability. The Parallel Comparison (PC) algorithm computed Deltaepsilon(2) using fixed finite differences +/- Deltaw in parallel during each discrete time k. The ALOPEX algorithm computed Deltaepsilon(2)x Deltaw from time k to k + 1 to estimate nabla, with a random number added to account for Deltaepsilon(2) . Deltaw--> 0 near the optimal weighting. Using simulated data, both algorithms stably converged to the optimal weighting within 50-2000 discrete sample points k even with a SNR = 1:8 and weights which were initialized far from the optimal. Using a sharply pulsatile cardiac electrogram signal with added noise so that the SNR = 1:5, both algorithms exhibited stable convergence within 100 ms (100 sample points). Fourier spectral analysis revealed minimal distortion when comparing the signal without added noise to the ANC restored signal. ANC algorithms based upon difference calculations can rapidly and stably converge to the optimal weighting in simulated and real cardiovascular data. Signal quality is restored with minimal distortion, increasing the accuracy of biophysical measurement.

  14. Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators.

    PubMed

    Karayiannis, N B

    2000-01-01

    This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.

  15. Minimum-fuel turning climbout and descent guidance of transport jets

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Kreindler, E.

    1983-01-01

    The complete flightpath optimization problem for minimum fuel consumption from takeoff to landing including the initial and final turns from and to the runway heading is solved. However, only the initial and final segments which contain the turns are treated, since the straight-line climbout, cruise, and descent problems have already been solved. The paths are derived by generating fields of extremals, using the necessary conditions of optimal control together with singular arcs and state constraints. Results show that the speed profiles for straight flight and turning flight are essentially identical except for the final horizontal accelerating or decelerating turns. The optimal turns require no abrupt maneuvers, and an approximation of the optimal turns could be easily integrated with present straight-line climb-cruise-descent fuel-optimization algorithms. Climbout at the optimal IAS rather than the 250-knot terminal-area speed limit would save 36 lb of fuel for the 727-100 aircraft.

  16. RCD+: Fast loop modeling server.

    PubMed

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-07-08

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Control optimization, stabilization and computer algorithms for aircraft applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research related to reliable aircraft design is summarized. Topics discussed include systems reliability optimization, failure detection algorithms, analysis of nonlinear filters, design of compensators incorporating time delays, digital compensator design, estimation for systems with echoes, low-order compensator design, descent-phase controller for 4-D navigation, infinite dimensional mathematical programming problems and optimal control problems with constraints, robust compensator design, numerical methods for the Lyapunov equations, and perturbation methods in linear filtering and control.

  18. Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.

    PubMed

    Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter

    2012-08-01

    An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  20. A hybrid Gerchberg-Saxton-like algorithm for DOE and CGH calculation

    NASA Astrophysics Data System (ADS)

    Wang, Haichao; Yue, Weirui; Song, Qiang; Liu, Jingdan; Situ, Guohai

    2017-02-01

    The Gerchberg-Saxton (GS) algorithm is widely used in various disciplines of modern sciences and technologies where phase retrieval is required. However, this legendary algorithm most likely stagnates after a few iterations. Many efforts have been taken to improve this situation. Here we propose to introduce the strategy of gradient descent and weighting technique to the GS algorithm, and demonstrate it using two examples: design of a diffractive optical element (DOE) to achieve off-axis illumination in lithographic tools, and design of a computer generated hologram (CGH) for holographic display. Both numerical simulation and optical experiments are carried out for demonstration.

  1. Tensor completion for estimating missing values in visual data.

    PubMed

    Liu, Ji; Musialski, Przemyslaw; Wonka, Peter; Ye, Jieping

    2013-01-01

    In this paper, we propose an algorithm to estimate missing values in tensors of visual data. The values can be missing due to problems in the acquisition process or because the user manually identified unwanted outliers. Our algorithm works even with a small amount of samples and it can propagate structure to fill larger missing regions. Our methodology is built on recent studies about matrix completion using the matrix trace norm. The contribution of our paper is to extend the matrix case to the tensor case by proposing the first definition of the trace norm for tensors and then by building a working algorithm. First, we propose a definition for the tensor trace norm that generalizes the established definition of the matrix trace norm. Second, similarly to matrix completion, the tensor completion is formulated as a convex optimization problem. Unfortunately, the straightforward problem extension is significantly harder to solve than the matrix case because of the dependency among multiple constraints. To tackle this problem, we developed three algorithms: simple low rank tensor completion (SiLRTC), fast low rank tensor completion (FaLRTC), and high accuracy low rank tensor completion (HaLRTC). The SiLRTC algorithm is simple to implement and employs a relaxation technique to separate the dependent relationships and uses the block coordinate descent (BCD) method to achieve a globally optimal solution; the FaLRTC algorithm utilizes a smoothing scheme to transform the original nonsmooth problem into a smooth one and can be used to solve a general tensor trace norm minimization problem; the HaLRTC algorithm applies the alternating direction method of multipliers (ADMMs) to our problem. Our experiments show potential applications of our algorithms and the quantitative evaluation indicates that our methods are more accurate and robust than heuristic approaches. The efficiency comparison indicates that FaLTRC and HaLRTC are more efficient than SiLRTC and between FaLRTC an- HaLRTC the former is more efficient to obtain a low accuracy solution and the latter is preferred if a high-accuracy solution is desired.

  2. Concave 1-norm group selection

    PubMed Central

    Jiang, Dingfeng; Huang, Jian

    2015-01-01

    Grouping structures arise naturally in many high-dimensional problems. Incorporation of such information can improve model fitting and variable selection. Existing group selection methods, such as the group Lasso, require correct membership. However, in practice it can be difficult to correctly specify group membership of all variables. Thus, it is important to develop group selection methods that are robust against group mis-specification. Also, it is desirable to select groups as well as individual variables in many applications. We propose a class of concave \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$1$\\end{document}-norm group penalties that is robust to grouping structure and can perform bi-level selection. A coordinate descent algorithm is developed to calculate solutions of the proposed group selection method. Theoretical convergence of the algorithm is proved under certain regularity conditions. Comparison with other methods suggests the proposed method is the most robust approach under membership mis-specification. Simulation studies and real data application indicate that the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$1$\\end{document}-norm concave group selection approach achieves better control of false discovery rates. An R package grppenalty implementing the proposed method is available at CRAN. PMID:25417206

  3. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection

    PubMed Central

    Chen, Yucong; Deng, Qingqiong; Duan, Fuqing

    2017-01-01

    Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate. PMID:28982117

  4. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    PubMed

    Chen, Yucong; Zhao, Junli; Deng, Qingqiong; Duan, Fuqing

    2017-01-01

    Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.

  5. Robust Gaussian Graphical Modeling via l1 Penalization

    PubMed Central

    Sun, Hokeun; Li, Hongzhe

    2012-01-01

    Summary Gaussian graphical models have been widely used as an effective method for studying the conditional independency structure among genes and for constructing genetic networks. However, gene expression data typically have heavier tails or more outlying observations than the standard Gaussian distribution. Such outliers in gene expression data can lead to wrong inference on the dependency structure among the genes. We propose a l1 penalized estimation procedure for the sparse Gaussian graphical models that is robustified against possible outliers. The likelihood function is weighted according to how the observation is deviated, where the deviation of the observation is measured based on its own likelihood. An efficient computational algorithm based on the coordinate gradient descent method is developed to obtain the minimizer of the negative penalized robustified-likelihood, where nonzero elements of the concentration matrix represents the graphical links among the genes. After the graphical structure is obtained, we re-estimate the positive definite concentration matrix using an iterative proportional fitting algorithm. Through simulations, we demonstrate that the proposed robust method performs much better than the graphical Lasso for the Gaussian graphical models in terms of both graph structure selection and estimation when outliers are present. We apply the robust estimation procedure to an analysis of yeast gene expression data and show that the resulting graph has better biological interpretation than that obtained from the graphical Lasso. PMID:23020775

  6. Generalization in Adaptation to Stable and Unstable Dynamics

    PubMed Central

    Kadiallah, Abdelhamid; Franklin, David W.; Burdet, Etienne

    2012-01-01

    Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. PMID:23056191

  7. Identity-by-Descent-Based Phasing and Imputation in Founder Populations Using Graphical Models

    PubMed Central

    Palin, Kimmo; Campbell, Harry; Wright, Alan F; Wilson, James F; Durbin, Richard

    2011-01-01

    Accurate knowledge of haplotypes, the combination of alleles co-residing on a single copy of a chromosome, enables powerful gene mapping and sequence imputation methods. Since humans are diploid, haplotypes must be derived from genotypes by a phasing process. In this study, we present a new computational model for haplotype phasing based on pairwise sharing of haplotypes inferred to be Identical-By-Descent (IBD). We apply the Bayesian network based model in a new phasing algorithm, called systematic long-range phasing (SLRP), that can capitalize on the close genetic relationships in isolated founder populations, and show with simulated and real genome-wide genotype data that SLRP substantially reduces the rate of phasing errors compared to previous phasing algorithms. Furthermore, the method accurately identifies regions of IBD, enabling linkage-like studies without pedigrees, and can be used to impute most genotypes with very low error rate. Genet. Epidemiol. 2011. © 2011 Wiley Periodicals, Inc.35:853-860, 2011 PMID:22006673

  8. Cosmic Microwave Background Mapmaking with a Messenger Field

    NASA Astrophysics Data System (ADS)

    Huffenberger, Kevin M.; Næss, Sigurd K.

    2018-01-01

    We apply a messenger field method to solve the linear minimum-variance mapmaking equation in the context of Cosmic Microwave Background (CMB) observations. In simulations, the method produces sky maps that converge significantly faster than those from a conjugate gradient descent algorithm with a diagonal preconditioner, even though the computational cost per iteration is similar. The messenger method recovers large scales in the map better than conjugate gradient descent, and yields a lower overall χ2. In the single, pencil beam approximation, each iteration of the messenger mapmaking procedure produces an unbiased map, and the iterations become more optimal as they proceed. A variant of the method can handle differential data or perform deconvolution mapmaking. The messenger method requires no preconditioner, but a high-quality solution needs a cooling parameter to control the convergence. We study the convergence properties of this new method and discuss how the algorithm is feasible for the large data sets of current and future CMB experiments.

  9. Staying in the Clinical Ballpark while Running the Evidence Bases

    ERIC Educational Resources Information Center

    Chorpita, Bruce F.; Viesselman, John O.

    2005-01-01

    Leimomi was a 16-year-old female of Asian Pacific Island descent born and raised on Oahu who was referred to the Department of Health's Child and Adolescent Mental Health Division (CAMHD) by her public school student services coordinator for running away, chronic truancy, aggressiveness, and drug abuse. She had been diagnosed with systemic lupus…

  10. Incoherent beam combining based on the momentum SPGD algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Guoqing; Liu, Lisheng; Jiang, Zhenhua; Guo, Jin; Wang, Tingfeng

    2018-05-01

    Incoherent beam combining (ICBC) technology is one of the most promising ways to achieve high-energy, near-diffraction laser output. In this paper, the momentum method is proposed as a modification of the stochastic parallel gradient descent (SPGD) algorithm. The momentum method can improve the speed of convergence of the combining system efficiently. The analytical method is employed to interpret the principle of the momentum method. Furthermore, the proposed algorithm is testified through simulations as well as experiments. The results of the simulations and the experiments show that the proposed algorithm not only accelerates the speed of the iteration, but also keeps the stability of the combining process. Therefore the feasibility of the proposed algorithm in the beam combining system is testified.

  11. State-Based Implicit Coordination and Applications

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.

    2011-01-01

    In air traffic management, pairwise coordination is the ability to achieve separation requirements when conflicting aircraft simultaneously maneuver to solve a conflict. Resolution algorithms are implicitly coordinated if they provide coordinated resolution maneuvers to conflicting aircraft when only surveillance data, e.g., position and velocity vectors, is periodically broadcast by the aircraft. This paper proposes an abstract framework for reasoning about state-based implicit coordination. The framework consists of a formalized mathematical development that enables and simplifies the design and verification of implicitly coordinated state-based resolution algorithms. The use of the framework is illustrated with several examples of algorithms and formal proofs of their coordination properties. The work presented here supports the safety case for a distributed self-separation air traffic management concept where different aircraft may use different conflict resolution algorithms and be assured that separation will be maintained.

  12. Product Distribution Theory and Semi-Coordinate Transformations

    NASA Technical Reports Server (NTRS)

    Airiau, Stephane; Wolpert, David H.

    2004-01-01

    Product Distribution (PD) theory is a new framework for doing distributed adaptive control of a multiagent system (MAS). We introduce the technique of "coordinate transformations" in PD theory gradient descent. These transformations selectively couple a few agents with each other into "meta-agents". Intuitively, this can be viewed as a generalization of forming binding contracts between those agents. Doing this sacrifices a bit of the distributed nature of the MAS, in that there must now be communication from multiple agents in determining what joint-move is finally implemented However, as we demonstrate in computer experiments, these transformations improve the performance of the MAS.

  13. A conjugate gradient method with descent properties under strong Wolfe line search

    NASA Astrophysics Data System (ADS)

    Zull, N.; ‘Aini, N.; Shoid, S.; Ghani, N. H. A.; Mohamed, N. S.; Rivaie, M.; Mamat, M.

    2017-09-01

    The conjugate gradient (CG) method is one of the optimization methods that are often used in practical applications. The continuous and numerous studies conducted on the CG method have led to vast improvements in its convergence properties and efficiency. In this paper, a new CG method possessing the sufficient descent and global convergence properties is proposed. The efficiency of the new CG algorithm relative to the existing CG methods is evaluated by testing them all on a set of test functions using MATLAB. The tests are measured in terms of iteration numbers and CPU time under strong Wolfe line search. Overall, this new method performs efficiently and comparable to the other famous methods.

  14. Precise Image-Based Motion Estimation for Autonomous Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew Edie; Matthies, Larry H.

    2000-01-01

    We have developed and tested a software algorithm that enables onboard autonomous motion estimation near small bodies using descent camera imagery and laser altimetry. Through simulation and testing, we have shown that visual feature tracking can decrease uncertainty in spacecraft motion to a level that makes landing on small, irregularly shaped, bodies feasible. Possible future work will include qualification of the algorithm as a flight experiment for the Deep Space 4/Champollion comet lander mission currently under study at the Jet Propulsion Laboratory.

  15. The Double Star Orbit Initial Value Problem

    NASA Astrophysics Data System (ADS)

    Hensley, Hagan

    2018-04-01

    Many precise algorithms exist to find a best-fit orbital solution for a double star system given a good enough initial value. Desmos is an online graphing calculator tool with extensive capabilities to support animations and defining functions. It can provide a useful visual means of analyzing double star data to arrive at a best guess approximation of the orbital solution. This is a necessary requirement before using a gradient-descent algorithm to find the best-fit orbital solution for a binary system.

  16. Discrete Analog Processing for Tracking and Guidance Control

    DTIC Science & Technology

    1980-11-01

    be called the multi- sample algorithm, satisfies -4 67 tD (Da - d) 0 (4.2.2.3) Thus, this descent algorithm will determine a coefficient vector a... flJ -TI:-* IS; 7" rR(VI Dr TH~I ("vFP)ALLCj TT$ C_ F 2C OH Til TPACK I! NC SYS TE ! f- 1I3 cc cc *’I cc. CC snUpcF FIL1j: C~T 01C 0 (1 cc CC OEJCT F I LF

  17. Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fattebert, J.-L.; Richards, D.F.; Glosli, J.N.

    2012-12-01

    We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440·10 6 particles on 65,536 MPI tasks.

  18. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.

    PubMed

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.

  19. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models

    PubMed Central

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)β k ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409

  20. A Comparative Study of Probability Collectives Based Multi-agent Systems and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Huang, Chien-Feng; Wolpert, David H.; Bieniawski, Stefan; Strauss, Charles E. M.

    2005-01-01

    We compare Genetic Algorithms (GA's) with Probability Collectives (PC), a new framework for distributed optimization and control. In contrast to GA's, PC-based methods do not update populations of solutions. Instead they update an explicitly parameterized probability distribution p over the space of solutions. That updating of p arises as the optimization of a functional of p. The functional is chosen so that any p that optimizes it should be p peaked about good solutions. The PC approach works in both continuous and discrete problems. It does not suffer from the resolution limitation of the finite bit length encoding of parameters into GA alleles. It also has deep connections with both game theory and statistical physics. We review the PC approach using its motivation as the information theoretic formulation of bounded rationality for multi-agent systems. It is then compared with GA's on a diverse set of problems. To handle high dimensional surfaces, in the PC method investigated here p is restricted to a product distribution. Each distribution in that product is controlled by a separate agent. The test functions were selected for their difficulty using either traditional gradient descent or genetic algorithms. On those functions the PC-based approach significantly outperforms traditional GA's in both rate of descent, trapping in false minima, and long term optimization.

  1. Applying Gradient Descent in Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Cui, Nan

    2018-04-01

    With the development of the integrated circuit and computer science, people become caring more about solving practical issues via information technologies. Along with that, a new subject called Artificial Intelligent (AI) comes up. One popular research interest of AI is about recognition algorithm. In this paper, one of the most common algorithms, Convolutional Neural Networks (CNNs) will be introduced, for image recognition. Understanding its theory and structure is of great significance for every scholar who is interested in this field. Convolution Neural Network is an artificial neural network which combines the mathematical method of convolution and neural network. The hieratical structure of CNN provides it reliable computer speed and reasonable error rate. The most significant characteristics of CNNs are feature extraction, weight sharing and dimension reduction. Meanwhile, combining with the Back Propagation (BP) mechanism and the Gradient Descent (GD) method, CNNs has the ability to self-study and in-depth learning. Basically, BP provides an opportunity for backwardfeedback for enhancing reliability and GD is used for self-training process. This paper mainly discusses the CNN and the related BP and GD algorithms, including the basic structure and function of CNN, details of each layer, the principles and features of BP and GD, and some examples in practice with a summary in the end.

  2. Learning maximum entropy models from finite-size data sets: A fast data-driven algorithm allows sampling from the posterior distribution.

    PubMed

    Ferrari, Ulisse

    2016-08-01

    Maximum entropy models provide the least constrained probability distributions that reproduce statistical properties of experimental datasets. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters' space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters' dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a "rectified" data-driven algorithm that is fast and by sampling from the parameters' posterior avoids both under- and overfitting along all the directions of the parameters' space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method.

  3. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.

    PubMed

    Au, Samuel; Berniker, Max; Herr, Hugh

    2008-05-01

    The human ankle varies impedance and delivers net positive work during the stance period of walking. In contrast, commercially available ankle-foot prostheses are passive during stance, causing many clinical problems for transtibial amputees, including non-symmetric gait patterns, higher gait metabolism, and poorer shock absorption. In this investigation, we develop and evaluate a myoelectric-driven, finite state controller for a powered ankle-foot prosthesis that modulates both impedance and power output during stance. The system employs both sensory inputs measured local to the external prosthesis, and myoelectric inputs measured from residual limb muscles. Using local prosthetic sensing, we first develop two finite state controllers to produce biomimetic movement patterns for level-ground and stair-descent gaits. We then employ myoelectric signals as control commands to manage the transition between these finite state controllers. To transition from level-ground to stairs, the amputee flexes the gastrocnemius muscle, triggering the prosthetic ankle to plantar flex at terminal swing, and initiating the stair-descent state machine algorithm. To transition back to level-ground walking, the amputee flexes the tibialis anterior muscle, triggering the ankle to remain dorsiflexed at terminal swing, and initiating the level-ground state machine algorithm. As a preliminary evaluation of clinical efficacy, we test the device on a transtibial amputee with both the proposed controller and a conventional passive-elastic control. We find that the amputee can robustly transition between the finite state controllers through direct muscle activation, allowing rapid transitioning from level-ground to stair walking patterns. Additionally, we find that the proposed finite state controllers result in a more biomimetic ankle response, producing net propulsive work during level-ground walking and greater shock absorption during stair descent. The results of this study highlight the potential of prosthetic leg controllers that exploit neural signals to trigger terrain-appropriate, local prosthetic leg behaviors.

  4. Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms.

    PubMed

    De Sa, Christopher; Zhang, Ce; Olukotun, Kunle; Ré, Christopher

    2015-12-01

    Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of machine learning problems. Researchers and industry have developed several techniques to optimize SGD's runtime performance, including asynchronous execution and reduced precision. Our main result is a martingale-based analysis that enables us to capture the rich noise models that may arise from such techniques. Specifically, we use our new analysis in three ways: (1) we derive convergence rates for the convex case (Hogwild!) with relaxed assumptions on the sparsity of the problem; (2) we analyze asynchronous SGD algorithms for non-convex matrix problems including matrix completion; and (3) we design and analyze an asynchronous SGD algorithm, called Buckwild!, that uses lower-precision arithmetic. We show experimentally that our algorithms run efficiently for a variety of problems on modern hardware.

  5. An Impact-Location Estimation Algorithm for Subsonic Uninhabited Aircraft

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.; Teets, Edward

    1997-01-01

    An impact-location estimation algorithm is being used at the NASA Dryden Flight Research Center to support range safety for uninhabited aerial vehicle flight tests. The algorithm computes an impact location based on the descent rate, mass, and altitude of the vehicle and current wind information. The predicted impact location is continuously displayed on the range safety officer's moving map display so that the flightpath of the vehicle can be routed to avoid ground assets if the flight must be terminated. The algorithm easily adapts to different vehicle termination techniques and has been shown to be accurate to the extent required to support range safety for subsonic uninhabited aerial vehicles. This paper describes how the algorithm functions, how the algorithm is used at NASA Dryden, and how various termination techniques are handled by the algorithm. Other approaches to predicting the impact location and the reasons why they were not selected for real-time implementation are also discussed.

  6. Exponential series approaches for nonparametric graphical models

    NASA Astrophysics Data System (ADS)

    Janofsky, Eric

    Markov Random Fields (MRFs) or undirected graphical models are parsimonious representations of joint probability distributions. This thesis studies high-dimensional, continuous-valued pairwise Markov Random Fields. We are particularly interested in approximating pairwise densities whose logarithm belongs to a Sobolev space. For this problem we propose the method of exponential series which approximates the log density by a finite-dimensional exponential family with the number of sufficient statistics increasing with the sample size. We consider two approaches to estimating these models. The first is regularized maximum likelihood. This involves optimizing the sum of the log-likelihood of the data and a sparsity-inducing regularizer. We then propose a variational approximation to the likelihood based on tree-reweighted, nonparametric message passing. This approximation allows for upper bounds on risk estimates, leverages parallelization and is scalable to densities on hundreds of nodes. We show how the regularized variational MLE may be estimated using a proximal gradient algorithm. We then consider estimation using regularized score matching. This approach uses an alternative scoring rule to the log-likelihood, which obviates the need to compute the normalizing constant of the distribution. For general continuous-valued exponential families, we provide parameter and edge consistency results. As a special case we detail a new approach to sparse precision matrix estimation which has statistical performance competitive with the graphical lasso and computational performance competitive with the state-of-the-art glasso algorithm. We then describe results for model selection in the nonparametric pairwise model using exponential series. The regularized score matching problem is shown to be a convex program; we provide scalable algorithms based on consensus alternating direction method of multipliers (ADMM) and coordinate-wise descent. We use simulations to compare our method to others in the literature as well as the aforementioned TRW estimator.

  7. Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent

    PubMed Central

    De Sa, Christopher; Feldman, Matthew; Ré, Christopher; Olukotun, Kunle

    2018-01-01

    Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in machine learning and other domains. Since this is likely to continue for the foreseeable future, it is important to study techniques that can make it run fast on parallel hardware. In this paper, we provide the first analysis of a technique called Buckwild! that uses both asynchronous execution and low-precision computation. We introduce the DMGC model, the first conceptualization of the parameter space that exists when implementing low-precision SGD, and show that it provides a way to both classify these algorithms and model their performance. We leverage this insight to propose and analyze techniques to improve the speed of low-precision SGD. First, we propose software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we propose architectural changes, including a new cache technique we call an obstinate cache, that increase throughput beyond the limits of current-generation hardware. We also implement and analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future SGD systems. PMID:29391770

  8. A Block Coordinate Descent Method for Multi-Convex Optimization with Applications to Nonnegative Tensor Factorization and Completion

    DTIC Science & Technology

    2012-08-01

    model appears in cosmic microwave background analysis [10] which solves min A,Y λ 2 trace ( (ABY − X)>C−1(ABY − X) ) + r(Y), subject to A ∈ D (1.5...and “×n” represent outer product and tensor-matrix multiplication, respectively. (The necessary background of tensor is reviewed in Sec. 3) Most

  9. Distributed Control by Lagrangian Steepest Descent

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Bieniawski, Stefan

    2004-01-01

    Often adaptive, distributed control can be viewed as an iterated game between independent players. The coupling between the players mixed strategies, arising as the system evolves from one instant to the next, is determined by the system designer. Information theory tells us that the most likely joint strategy of the players, given a value of the expectation of the overall control objective function, is the minimizer of a function o the joint strategy. So the goal of the system designer is to speed evolution of the joint strategy to that Lagrangian mhimbhgpoint,lowerthe expectated value of the control objective function, and repeat Here we elaborate the theory of algorithms that do this using local descent procedures, and that thereby achieve efficient, adaptive, distributed control.

  10. Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis

    NASA Astrophysics Data System (ADS)

    Jia, Ningning; Y Lam, Edmund

    2010-04-01

    Inverse lithography technology (ILT) synthesizes photomasks by solving an inverse imaging problem through optimization of an appropriate functional. Much effort on ILT is dedicated to deriving superior masks at a nominal process condition. However, the lower k1 factor causes the mask to be more sensitive to process variations. Robustness to major process variations, such as focus and dose variations, is desired. In this paper, we consider the focus variation as a stochastic variable, and treat the mask design as a machine learning problem. The stochastic gradient descent approach, which is a useful tool in machine learning, is adopted to train the mask design. Compared with previous work, simulation shows that the proposed algorithm is effective in producing robust masks.

  11. Fractional-order gradient descent learning of BP neural networks with Caputo derivative.

    PubMed

    Wang, Jian; Wen, Yanqing; Gou, Yida; Ye, Zhenyun; Chen, Hua

    2017-05-01

    Fractional calculus has been found to be a promising area of research for information processing and modeling of some physical systems. In this paper, we propose a fractional gradient descent method for the backpropagation (BP) training of neural networks. In particular, the Caputo derivative is employed to evaluate the fractional-order gradient of the error defined as the traditional quadratic energy function. The monotonicity and weak (strong) convergence of the proposed approach are proved in detail. Two simulations have been implemented to illustrate the performance of presented fractional-order BP algorithm on three small datasets and one large dataset. The numerical simulations effectively verify the theoretical observations of this paper as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Multiplicative Multitask Feature Learning

    PubMed Central

    Wang, Xin; Bi, Jinbo; Yu, Shipeng; Sun, Jiangwen; Song, Minghu

    2016-01-01

    We investigate a general framework of multiplicative multitask feature learning which decomposes individual task’s model parameters into a multiplication of two components. One of the components is used across all tasks and the other component is task-specific. Several previous methods can be proved to be special cases of our framework. We study the theoretical properties of this framework when different regularization conditions are applied to the two decomposed components. We prove that this framework is mathematically equivalent to the widely used multitask feature learning methods that are based on a joint regularization of all model parameters, but with a more general form of regularizers. Further, an analytical formula is derived for the across-task component as related to the task-specific component for all these regularizers, leading to a better understanding of the shrinkage effects of different regularizers. Study of this framework motivates new multitask learning algorithms. We propose two new learning formulations by varying the parameters in the proposed framework. An efficient blockwise coordinate descent algorithm is developed suitable for solving the entire family of formulations with rigorous convergence analysis. Simulation studies have identified the statistical properties of data that would be in favor of the new formulations. Extensive empirical studies on various classification and regression benchmark data sets have revealed the relative advantages of the two new formulations by comparing with the state of the art, which provides instructive insights into the feature learning problem with multiple tasks. PMID:28428735

  13. A junction-tree based learning algorithm to optimize network wide traffic control: A coordinated multi-agent framework

    DOE PAGES

    Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; ...

    2015-01-31

    Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less

  14. Human Mars Mission: Weights and Mass Properties. Pt. 1

    NASA Technical Reports Server (NTRS)

    Brothers, Bobby

    1999-01-01

    This paper presents a final report on The Human Mars Mission Weights and Measures. The topics included in this report are: 1) Trans-Earth Injection Storage Human Mars Mission (HMM) Chemical Design Reference Mission (DRM) v4.0a Weight Breakout; 2) Ascent Stage HMM Chemical DRM v4.0a Weight Breakout; 3) Descent Stages HMM Chemical DRM v4.0a Weight Breakout; 4) Trans-Mars Injection Stages HMM Chemical DRM v4.0a Weight Breakout; 5) Trans-Earth Injection Stage HMM Solar Electric Propulsion (SEP) DRM v4.0a Weight Breakout; 6) Ascent Stage HMM SEP DRM v4.0a Weight Breakout; 7) Descent Stages HMM SEP DRM v4.0a Weight Breakout; 8) Trans-Mars Injection Stages HMM SEP DRM v4.0a Weight Breakout; 9) Crew Taxi Stage HMM SEP DRM v4.0 Weight Breakout; 10)Trans-Earth Injection Stage HMM Nuclear DRM v4.0a Weight Breakout; 11) Ascent Stage HMM Nuclear DRM v4.0a Weight Breakout; 12) Descent Stages HMM Nuclear DRM v4.0a Weight Breakout; 13) Trans-Mars Injection Stages HMM Nuclear DRM v4.0a Weight Breakout; and 14) HMM Mass Properties Coordinate System.

  15. Hybrid DFP-CG method for solving unconstrained optimization problems

    NASA Astrophysics Data System (ADS)

    Osman, Wan Farah Hanan Wan; Asrul Hery Ibrahim, Mohd; Mamat, Mustafa

    2017-09-01

    The conjugate gradient (CG) method and quasi-Newton method are both well known method for solving unconstrained optimization method. In this paper, we proposed a new method by combining the search direction between conjugate gradient method and quasi-Newton method based on BFGS-CG method developed by Ibrahim et al. The Davidon-Fletcher-Powell (DFP) update formula is used as an approximation of Hessian for this new hybrid algorithm. Numerical result showed that the new algorithm perform well than the ordinary DFP method and proven to posses both sufficient descent and global convergence properties.

  16. Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms

    NASA Astrophysics Data System (ADS)

    Lohvithee, Manasavee; Biguri, Ander; Soleimani, Manuchehr

    2017-12-01

    There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.

  17. A ℓ2, 1 norm regularized multi-kernel learning for false positive reduction in Lung nodule CAD.

    PubMed

    Cao, Peng; Liu, Xiaoli; Zhang, Jian; Li, Wei; Zhao, Dazhe; Huang, Min; Zaiane, Osmar

    2017-03-01

    The aim of this paper is to describe a novel algorithm for False Positive Reduction in lung nodule Computer Aided Detection(CAD). In this paper, we describes a new CT lung CAD method which aims to detect solid nodules. Specially, we proposed a multi-kernel classifier with a ℓ 2, 1 norm regularizer for heterogeneous feature fusion and selection from the feature subset level, and designed two efficient strategies to optimize the parameters of kernel weights in non-smooth ℓ 2, 1 regularized multiple kernel learning algorithm. The first optimization algorithm adapts a proximal gradient method for solving the ℓ 2, 1 norm of kernel weights, and use an accelerated method based on FISTA; the second one employs an iterative scheme based on an approximate gradient descent method. The results demonstrates that the FISTA-style accelerated proximal descent method is efficient for the ℓ 2, 1 norm formulation of multiple kernel learning with the theoretical guarantee of the convergence rate. Moreover, the experimental results demonstrate the effectiveness of the proposed methods in terms of Geometric mean (G-mean) and Area under the ROC curve (AUC), and significantly outperforms the competing methods. The proposed approach exhibits some remarkable advantages both in heterogeneous feature subsets fusion and classification phases. Compared with the fusion strategies of feature-level and decision level, the proposed ℓ 2, 1 norm multi-kernel learning algorithm is able to accurately fuse the complementary and heterogeneous feature sets, and automatically prune the irrelevant and redundant feature subsets to form a more discriminative feature set, leading a promising classification performance. Moreover, the proposed algorithm consistently outperforms the comparable classification approaches in the literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    PubMed

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  19. Network traffic anomaly prediction using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea

    2017-03-01

    As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.

  20. Learning Maximal Entropy Models from finite size datasets: a fast Data-Driven algorithm allows to sample from the posterior distribution

    NASA Astrophysics Data System (ADS)

    Ferrari, Ulisse

    A maximal entropy model provides the least constrained probability distribution that reproduces experimental averages of an observables set. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a ``rectified'' Data-Driven algorithm that is fast and by sampling from the parameters posterior avoids both under- and over-fitting along all the directions of the parameters space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method. This research was supported by a Grant from the Human Brain Project (HBP CLAP).

  1. Region Segmentation in the Frequency Domain Applied to Upper Airway Real-Time Magnetic Resonance Images

    PubMed Central

    Narayanan, Shrikanth

    2009-01-01

    We describe a method for unsupervised region segmentation of an image using its spatial frequency domain representation. The algorithm was designed to process large sequences of real-time magnetic resonance (MR) images containing the 2-D midsagittal view of a human vocal tract airway. The segmentation algorithm uses an anatomically informed object model, whose fit to the observed image data is hierarchically optimized using a gradient descent procedure. The goal of the algorithm is to automatically extract the time-varying vocal tract outline and the position of the articulators to facilitate the study of the shaping of the vocal tract during speech production. PMID:19244005

  2. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

  3. Cooperative Optimal Coordination for Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tao; Wu, Di; Ren, Wei

    In this paper, we consider the optimal coordination problem for distributed energy resources (DERs) including distributed generators and energy storage devices. We propose an algorithm based on the push-sum and gradient method to optimally coordinate storage devices and distributed generators in a distributed manner. In the proposed algorithm, each DER only maintains a set of variables and updates them through information exchange with a few neighbors over a time-varying directed communication network. We show that the proposed distributed algorithm solves the optimal DER coordination problem if the time-varying directed communication network is uniformly jointly strongly connected, which is a mildmore » condition on the connectivity of communication topologies. The proposed distributed algorithm is illustrated and validated by numerical simulations.« less

  4. Explicitly computing geodetic coordinates from Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    Zeng, Huaien

    2013-04-01

    This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.

  5. Reactive Sequencing for Autonomous Navigation Evolving from Phoenix Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Grasso, Christopher A.; Riedel, Joseph E.; Vaughan, Andrew T.

    2010-01-01

    Virtual Machine Language (VML) is an award-winning advanced procedural sequencing language in use on NASA deep-space missions since 1997, and was used for the successful entry, descent, and landing (EDL) of the Phoenix spacecraft onto the surface of Mars. Phoenix EDL utilized a state-oriented operations architecture which executed within the constraints of the existing VML 2.0 flight capability, compatible with the linear "land or die" nature of the mission. The intricacies of Phoenix EDL included the planned discarding of portions of the vehicle, the complex communications management for relay through on-orbit assets, the presence of temporally indeterminate physical events, and the need to rapidly catch up four days of sequencing should a reboot of the spacecraft flight computer occur shortly before atmospheric entry. These formidable operational challenges led to new techniques for packaging and coordinating reusable sequences called blocks using one-way synchronization via VML sequencing global variable events. The coordinated blocks acted as an ensemble to land the spacecraft, while individually managing various elements in as simple a fashion as possible. This paper outlines prototype VML 2.1 flight capabilities that have evolved from the one-way synchronization techniques in order to implement even more ambitious autonomous mission capabilities. Target missions for these new capabilities include autonomous touch-and-go sampling of cometary and asteroidal bodies, lunar landing of robotic missions, and ultimately landing of crewed lunar vehicles. Close proximity guidance, navigation, and control operations, on-orbit rendezvous, and descent and landing events featured in these missions require elaborate abort capability, manifesting highly non-linear scenarios that are so complex as to overtax traditional sequencing, or even the sort of one-way coordinated sequencing used during EDL. Foreseeing advanced command and control needs for small body and lunar landing guidance, navigation and control scenarios, work began three years ago on substantial upgrades to VML that are now being exercised in scenarios for lunar landing and comet/asteroid rendezvous. The advanced state-based approach includes coordinated state transition machines with distributed decision-making logic. These state machines are not merely sequences - they are reactive logic constructs capable of autonomous decision making within a well-defined domain. Combined with the JPL's AutoNav software used on Deep Space 1 and Deep Impact, the system allows spacecraft to autonomously navigate to an unmapped surface, soft-contact, and either land or ascend. The state machine architecture enabled by VML 2.1 has successfully performed sampling missions and lunar descent missions in a simulated environment, and is progressing toward flight capability. The authors are also investigating using the VML 2.1 flight director architecture to perform autonomous activities like rendezvous with a passive hypothetical Mars sample return capsule. The approach being pursued is similar to the touch-and-go sampling state machines, with the added complications associated with the search for, physical capture of, and securing of a separate spacecraft. Complications include optically finding and tracking the Orbiting Sample Capsule (OSC), keeping the OSC illuminated, making orbital adjustments, and physically capturing the OSC. Other applications could include autonomous science collection and fault compensation.

  6. Integration of energy management concepts into the flight deck

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1981-01-01

    The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.

  7. Progress on a generalized coordinates tensor product finite element 3DPNS algorithm for subsonic

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Orzechowski, J. A.

    1983-01-01

    A generalized coordinates form of the penalty finite element algorithm for the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows was derived. This algorithm formulation requires only three distinct hypermatrices and is applicable using any boundary fitted coordinate transformation procedure. The tensor matrix product approximation to the Jacobian of the Newton linear algebra matrix statement was also derived. Tne Newton algorithm was restructured to replace large sparse matrix solution procedures with grid sweeping using alpha-block tridiagonal matrices, where alpha equals the number of dependent variables. Numerical experiments were conducted and the resultant data gives guidance on potentially preferred tensor product constructions for the penalty finite element 3DPNS algorithm.

  8. Seismic noise attenuation using an online subspace tracking algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang

    2018-02-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  9. Approximate description of Stokes shifts in ICT fluorescence emission

    NASA Astrophysics Data System (ADS)

    Saielli, Giacomo; Braun, David; Polimeno, Antonino; Nordio, Pier Luigi

    1996-07-01

    The time-resolved emission spectrum of a dual fluorescent prototype system like DMABN is associated with an intramolecular adiabatic charge-transfer reaction and the simultaneous relaxation of the polarization coordinate describing the dynamic behaviour of the polar solvent. The dynamic Stokes shift of the frequency maximum of the long-wavelength emission band related to the charge-transfer (CT) state towards the red region is interpreted as a consequence of a kinetic pathway which deviates from steepest descent to the CT state, the rate-determining step being the solvent relaxation. The present stochastic treatment is based on the assumption that internal and solvent coordinates could be described separately, neglecting coupling elements in the case of slow solvent relaxation.

  10. Research status of multi - robot systems task allocation and uncertainty treatment

    NASA Astrophysics Data System (ADS)

    Li, Dahui; Fan, Qi; Dai, Xuefeng

    2017-08-01

    The multi-robot coordination algorithm has become a hot research topic in the field of robotics in recent years. It has a wide range of applications and good application prospects. This paper analyzes and summarizes the current research status of multi-robot coordination algorithms at home and abroad. From task allocation and dealing with uncertainty, this paper discusses the multi-robot coordination algorithm and presents the advantages and disadvantages of each method commonly used.

  11. Modified artificial fish school algorithm for free space optical communication with sensor-less adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cao, Jingtai; Zhao, Xiaohui; Li, Zhaokun; Liu, Wei; Gu, Haijun

    2017-11-01

    The performance of free space optical (FSO) communication system is limited by atmospheric turbulent extremely. Adaptive optics (AO) is the significant method to overcome the atmosphere disturbance. Especially, for the strong scintillation effect, the sensor-less AO system plays a major role for compensation. In this paper, a modified artificial fish school (MAFS) algorithm is proposed to compensate the aberrations in the sensor-less AO system. Both the static and dynamic aberrations compensations are analyzed and the performance of FSO communication before and after aberrations compensations is compared. In addition, MAFS algorithm is compared with artificial fish school (AFS) algorithm, stochastic parallel gradient descent (SPGD) algorithm and simulated annealing (SA) algorithm. It is shown that the MAFS algorithm has a higher convergence speed than SPGD algorithm and SA algorithm, and reaches the better convergence value than AFS algorithm, SPGD algorithm and SA algorithm. The sensor-less AO system with MAFS algorithm effectively increases the coupling efficiency at the receiving terminal with fewer numbers of iterations. In conclusion, the MAFS algorithm has great significance for sensor-less AO system to compensate atmospheric turbulence in FSO communication system.

  12. REQUEST: A Recursive QUEST Algorithm for Sequential Attitude Determination

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.

    1996-01-01

    In order to find the attitude of a spacecraft with respect to a reference coordinate system, vector measurements are taken. The vectors are pairs of measurements of the same generalized vector, taken in the spacecraft body coordinates, as well as in the reference coordinate system. We are interested in finding the best estimate of the transformation between these coordinate system.s The algorithm called QUEST yields that estimate where attitude is expressed by a quarternion. Quest is an efficient algorithm which provides a least squares fit of the quaternion of rotation to the vector measurements. Quest however, is a single time point (single frame) batch algorithm, thus measurements that were taken at previous time points are discarded. The algorithm presented in this work provides a recursive routine which considers all past measurements. The algorithm is based on on the fact that the, so called, K matrix, one of whose eigenvectors is the sought quaternion, is linerly related to the measured pairs, and on the ability to propagate K. The extraction of the appropriate eigenvector is done according to the classical QUEST algorithm. This stage, however, can be eliminated, and the computation simplified, if a standard eigenvalue-eigenvector solver algorithm is used. The development of the recursive algorithm is presented and illustrated via a numerical example.

  13. Improved artificial bee colony algorithm for wavefront sensor-less system in free space optical communication

    NASA Astrophysics Data System (ADS)

    Niu, Chaojun; Han, Xiang'e.

    2015-10-01

    Adaptive optics (AO) technology is an effective way to alleviate the effect of turbulence on free space optical communication (FSO). A new adaptive compensation method can be used without a wave-front sensor. Artificial bee colony algorithm (ABC) is a population-based heuristic evolutionary algorithm inspired by the intelligent foraging behaviour of the honeybee swarm with the advantage of simple, good convergence rate, robust and less parameter setting. In this paper, we simulate the application of the improved ABC to correct the distorted wavefront and proved its effectiveness. Then we simulate the application of ABC algorithm, differential evolution (DE) algorithm and stochastic parallel gradient descent (SPGD) algorithm to the FSO system and analyze the wavefront correction capabilities by comparison of the coupling efficiency, the error rate and the intensity fluctuation in different turbulence before and after the correction. The results show that the ABC algorithm has much faster correction speed than DE algorithm and better correct ability for strong turbulence than SPGD algorithm. Intensity fluctuation can be effectively reduced in strong turbulence, but not so effective in week turbulence.

  14. Coordination Logic for Repulsive Resolution Maneuvers

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.; Dutle, Aaron M.

    2016-01-01

    This paper presents an algorithm for determining the direction an aircraft should maneuver in the event of a potential conflict with another aircraft. The algorithm is implicitly coordinated, meaning that with perfectly reliable computations and information, it will in- dependently provide directional information that is guaranteed to be coordinated without any additional information exchange or direct communication. The logic is inspired by the logic of TCAS II, the airborne system designed to reduce the risk of mid-air collisions between aircraft. TCAS II provides pilots with only vertical resolution advice, while the proposed algorithm, using a similar logic, provides implicitly coordinated vertical and horizontal directional advice.

  15. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.

    PubMed

    Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K

    2017-01-01

    The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.

  16. Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Johnson, Andrew; Cheng, Yang; Willson, Reg; Matthies, Larry H.

    2004-01-01

    In January, 2004, the Mars Exploration Rover (MER) mission landed two rovers, Spirit and Opportunity, on the surface of Mars. Several autonomous navigation capabilities were employed in space for the first time in this mission. ]n the Entry, Descent, and Landing (EDL) phase, both landers used a vision system called the, Descent Image Motion Estimation System (DIMES) to estimate horizontal velocity during the last 2000 meters (m) of descent, by tracking features on the ground with a downlooking camera, in order to control retro-rocket firing to reduce horizontal velocity before impact. During surface operations, the rovers navigate autonomously using stereo vision for local terrain mapping and a local, reactive planning algorithm called Grid-based Estimation of Surface Traversability Applied to Local Terrain (GESTALT) for obstacle avoidance. ]n areas of high slip, stereo vision-based visual odometry has been used to estimate rover motion, As of mid-June, Spirit had traversed 3405 m, of which 1253 m were done autonomously; Opportunity had traversed 1264 m, of which 224 m were autonomous. These results have contributed substantially to the success of the mission and paved the way for increased levels of autonomy in future missions.

  17. Controller evaluations of the descent advisor automation aid

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard; Volckers, Uwe; Erzberger, Heinz

    1989-01-01

    An automation aid to assist air traffic controllers in efficiently spacing traffic and meeting arrival times at a fix has been developed at NASA Ames Research Center. The automation aid, referred to as the descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent point and speed profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is interfaced with a mouse-based, menu-driven controller display that allows the air traffic controller to interactively use its accurate predictive capability to resolve conflicts and issue advisories to arrival aircraft. This paper focuses on operational issues concerning the utilization of the DA, specifically, how the DA can be used for prediction, intrail spacing, and metering. In order to evaluate the DA, a real time simulation was conducted using both current and retired controller subjects. Controllers operated in teams of two, as they do in the present environment; issues of training and team interaction will be discussed. Evaluations by controllers indicated considerable enthusiasm for the DA aid, and provided specific recommendations for using the tool effectively.

  18. Algorithm for Training a Recurrent Multilayer Perceptron

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Rais, Omar T.; Menon, Sunil K.; Atiya, Amir F.

    2004-01-01

    An improved algorithm has been devised for training a recurrent multilayer perceptron (RMLP) for optimal performance in predicting the behavior of a complex, dynamic, and noisy system multiple time steps into the future. [An RMLP is a computational neural network with self-feedback and cross-talk (both delayed by one time step) among neurons in hidden layers]. Like other neural-network-training algorithms, this algorithm adjusts network biases and synaptic-connection weights according to a gradient-descent rule. The distinguishing feature of this algorithm is a combination of global feedback (the use of predictions as well as the current output value in computing the gradient at each time step) and recursiveness. The recursive aspect of the algorithm lies in the inclusion of the gradient of predictions at each time step with respect to the predictions at the preceding time step; this recursion enables the RMLP to learn the dynamics. It has been conjectured that carrying the recursion to even earlier time steps would enable the RMLP to represent a noisier, more complex system.

  19. Application of Artificial Neural Networks in the Design and Optimization of a Nanoparticulate Fingolimod Delivery System Based on Biodegradable Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate).

    PubMed

    Shahsavari, Shadab; Rezaie Shirmard, Leila; Amini, Mohsen; Abedin Dokoosh, Farid

    2017-01-01

    Formulation of a nanoparticulate Fingolimod delivery system based on biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was optimized according to artificial neural networks (ANNs). Concentration of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PVA and amount of Fingolimod is considered as the input value, and the particle size, polydispersity index, loading capacity, and entrapment efficacy as output data in experimental design study. In vitro release study was carried out for best formulation according to statistical analysis. ANNs are employed to generate the best model to determine the relationships between various values. In order to specify the model with the best accuracy and proficiency for the in vitro release, a multilayer percepteron with different training algorithm has been examined. Three training model formulations including Levenberg-Marquardt (LM), gradient descent, and Bayesian regularization were employed for training the ANN models. It is demonstrated that the predictive ability of each training algorithm is in the order of LM > gradient descent > Bayesian regularization. Also, optimum formulation was achieved by LM training function with 15 hidden layers and 20 neurons. The transfer function of the hidden layer for this formulation and the output layer were tansig and purlin, respectively. Also, the optimization process was developed by minimizing the error among the predicted and observed values of training algorithm (about 0.0341). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Flight test experience using advanced airborne equipment in a time-based metered traffic environment

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1980-01-01

    A series of test flights have demonstrated that time-based metering guidance and control was acceptable to pilots and air traffic controllers. The descent algorithm of the technique, with good representation of aircraft performance and wind modeling, yielded arrival time accuracy within 12 sec. It is expected that this will represent significant fuel savings (1) through a reduction of the time error dispersions at the metering fix for the entire fleet, and (2) for individual aircraft as well, through the presentation of guidance for a fuel-efficient descent. Air traffic controller workloads were also reduced, in keeping with the reduction of required communications resulting from the transfer of navigation responsibilities to pilots. A second series of test flights demonstrated that an existing flight management system could be modified to operate in the new mode.

  1. Comparison of the Effects of Velocity and Range Triggers on Trajectory Dispersions for the Mars 2020 Mission

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Way, David W.

    2017-01-01

    Mars 2020, the next planned U.S. rover mission to land on Mars, is based on the design of the successful 2012 Mars Science Laboratory (MSL) mission. Mars 2020 retains most of the entry, descent, and landing (EDL) sequences of MSL, including the closed-loop entry guidance scheme based on the Apollo guidance algorithm. However, unlike MSL, Mars 2020 will trigger the parachute deployment and descent sequence on range trigger rather than the previously used velocity trigger. This difference will greatly reduce the landing ellipse sizes. Additionally, the relative contribution of each models to the total ellipse sizes have changed greatly due to the switch to range trigger. This paper considers the effect on trajectory dispersions due to changing the trigger schemes and the contributions of these various models to trajectory and EDL performance.

  2. Nonlinear Performance Seeking Control using Fuzzy Model Reference Learning Control and the Method of Steepest Descent

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.

  3. Overview of the Phoenix Entry, Descent and Landing System Architecture

    NASA Technical Reports Server (NTRS)

    Grover, Myron R., III; Cichy, Benjamin D.; Desai, Prasun N.

    2008-01-01

    NASA s Phoenix Mars Lander began its journey to Mars from Cape Canaveral, Florida in August 2007, but its journey to the launch pad began many years earlier in 1997 as NASA s Mars Surveyor Program 2001 Lander. In the intervening years, the entry, descent and landing (EDL) system architecture went through a series of changes, resulting in the system flown to the surface of Mars on May 25th, 2008. Some changes, such as entry velocity and landing site elevation, were the result of differences in mission design. Other changes, including the removal of hypersonic guidance, the reformulation of the parachute deployment algorithm, and the addition of the backshell avoidance maneuver, were driven by constant efforts to augment system robustness. An overview of the Phoenix EDL system architecture is presented along with rationales driving these architectural changes.

  4. A Relation Between the Eikonal Equation Associated to a Potential Energy Surface and a Hyperbolic Wave Equation.

    PubMed

    Bofill, Josep Maria; Quapp, Wolfgang; Caballero, Marc

    2012-12-11

    The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.

  5. Development of traffic control and queue management procedures for oversaturated arterials

    DOT National Transportation Integrated Search

    1997-01-01

    The formulation and solution of a new algorithm for queue management and coordination of traffic signals along oversaturated arterials are presented. Existing traffic-control and signal-coordination algorithms deal only with undersaturated steady-sta...

  6. Assessment of an Automated Touchdown Detection Algorithm for the Orion Crew Module

    NASA Technical Reports Server (NTRS)

    Gay, Robert S.

    2011-01-01

    Orion Crew Module (CM) touchdown detection is critical to activating the post-landing sequence that safe?s the Reaction Control Jets (RCS), ensures that the vehicle remains upright, and establishes communication with recovery forces. In order to accommodate safe landing of an unmanned vehicle or incapacitated crew, an onboard automated detection system is required. An Orion-specific touchdown detection algorithm was developed and evaluated to differentiate landing events from in-flight events. The proposed method will be used to initiate post-landing cutting of the parachute riser lines, to prevent CM rollover, and to terminate RCS jet firing prior to submersion. The RCS jets continue to fire until touchdown to maintain proper CM orientation with respect to the flight path and to limit impact loads, but have potentially hazardous consequences if submerged while firing. The time available after impact to cut risers and initiate the CM Up-righting System (CMUS) is measured in minutes, whereas the time from touchdown to RCS jet submersion is a function of descent velocity, sea state conditions, and is often less than one second. Evaluation of the detection algorithms was performed for in-flight events (e.g. descent under chutes) using hi-fidelity rigid body analyses in the Decelerator Systems Simulation (DSS), whereas water impacts were simulated using a rigid finite element model of the Orion CM in LS-DYNA. Two touchdown detection algorithms were evaluated with various thresholds: Acceleration magnitude spike detection, and Accumulated velocity changed (over a given time window) spike detection. Data for both detection methods is acquired from an onboard Inertial Measurement Unit (IMU) sensor. The detection algorithms were tested with analytically generated in-flight and landing IMU data simulations. The acceleration spike detection proved to be faster while maintaining desired safety margin. Time to RCS jet submersion was predicted analytically across a series of simulated Orion landing conditions. This paper details the touchdown detection method chosen and the analysis used to support the decision.

  7. Enhanced Fuel-Optimal Trajectory-Generation Algorithm for Planetary Pinpoint Landing

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Blackmore, James C.; Scharf, Daniel P.

    2011-01-01

    An enhanced algorithm is developed that builds on a previous innovation of fuel-optimal powered-descent guidance (PDG) for planetary pinpoint landing. The PDG problem is to compute constrained, fuel-optimal trajectories to land a craft at a prescribed target on a planetary surface, starting from a parachute cut-off point and using a throttleable descent engine. The previous innovation showed the minimal-fuel PDG problem can be posed as a convex optimization problem, in particular, as a Second-Order Cone Program, which can be solved to global optimality with deterministic convergence properties, and hence is a candidate for onboard implementation. To increase the speed and robustness of this convex PDG algorithm for possible onboard implementation, the following enhancements are incorporated: 1) Fast detection of infeasibility (i.e., control authority is not sufficient for soft-landing) for subsequent fault response. 2) The use of a piecewise-linear control parameterization, providing smooth solution trajectories and increasing computational efficiency. 3) An enhanced line-search algorithm for optimal time-of-flight, providing quicker convergence and bounding the number of path-planning iterations needed. 4) An additional constraint that analytically guarantees inter-sample satisfaction of glide-slope and non-sub-surface flight constraints, allowing larger discretizations and, hence, faster optimization. 5) Explicit incorporation of Mars rotation rate into the trajectory computation for improved targeting accuracy. These enhancements allow faster convergence to the fuel-optimal solution and, more importantly, remove the need for a "human-in-the-loop," as constraints will be satisfied over the entire path-planning interval independent of step-size (as opposed to just at the discrete time points) and infeasible initial conditions are immediately detected. Finally, while the PDG stage is typically only a few minutes, ignoring the rotation rate of Mars can introduce 10s of meters of error. By incorporating it, the enhanced PDG algorithm becomes capable of pinpoint targeting.

  8. An Airborne Conflict Resolution Approach Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Mondoloni, Stephane; Conway, Sheila

    2001-01-01

    An airborne conflict resolution approach is presented that is capable of providing flight plans forecast to be conflict-free with both area and traffic hazards. This approach is capable of meeting constraints on the flight plan such as required times of arrival (RTA) at a fix. The conflict resolution algorithm is based upon a genetic algorithm, and can thus seek conflict-free flight plans meeting broader flight planning objectives such as minimum time, fuel or total cost. The method has been applied to conflicts occurring 6 to 25 minutes in the future in climb, cruise and descent phases of flight. The conflict resolution approach separates the detection, trajectory generation and flight rules function from the resolution algorithm. The method is capable of supporting pilot-constructed resolutions, cooperative and non-cooperative maneuvers, and also providing conflict resolution on trajectories forecast by an onboard FMC.

  9. Genetic algorithm and graph theory based matrix factorization method for online friend recommendation.

    PubMed

    Li, Qu; Yao, Min; Yang, Jianhua; Xu, Ning

    2014-01-01

    Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy.

  10. Railway obstacle detection algorithm using neural network

    NASA Astrophysics Data System (ADS)

    Yu, Mingyang; Yang, Peng; Wei, Sen

    2018-05-01

    Aiming at the difficulty of detection of obstacle in outdoor railway scene, a data-oriented method based on neural network to obtain image objects is proposed. First, we mark objects of images(such as people, trains, animals) acquired on the Internet. and then use the residual learning units to build Fast R-CNN framework. Then, the neural network is trained to get the target image characteristics by using stochastic gradient descent algorithm. Finally, a well-trained model is used to identify an outdoor railway image. if it includes trains and other objects, it will issue an alert. Experiments show that the correct rate of warning reached 94.85%.

  11. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  12. Research on the electro-optical assistant landing system based on the dual camera photogrammetry algorithm

    NASA Astrophysics Data System (ADS)

    Mi, Yuhe; Huang, Yifan; Li, Lin

    2015-08-01

    Based on the location technique of beacon photogrammetry, Dual Camera Photogrammetry (DCP) algorithm was used to assist helicopters landing on the ship. In this paper, ZEMAX was used to simulate the two Charge Coupled Device (CCD) cameras imaging four beacons on both sides of the helicopter and output the image to MATLAB. Target coordinate systems, image pixel coordinate systems, world coordinate systems and camera coordinate systems were established respectively. According to the ideal pin-hole imaging model, the rotation matrix and translation vector of the target coordinate systems and the camera coordinate systems could be obtained by using MATLAB to process the image information and calculate the linear equations. On the basis mentioned above, ambient temperature and the positions of the beacons and cameras were changed in ZEMAX to test the accuracy of the DCP algorithm in complex sea status. The numerical simulation shows that in complex sea status, the position measurement accuracy can meet the requirements of the project.

  13. Integrative Analysis of High-throughput Cancer Studies with Contrasted Penalization

    PubMed Central

    Shi, Xingjie; Liu, Jin; Huang, Jian; Zhou, Yong; Shia, BenChang; Ma, Shuangge

    2015-01-01

    In cancer studies with high-throughput genetic and genomic measurements, integrative analysis provides a way to effectively pool and analyze heterogeneous raw data from multiple independent studies and outperforms “classic” meta-analysis and single-dataset analysis. When marker selection is of interest, the genetic basis of multiple datasets can be described using the homogeneity model or the heterogeneity model. In this study, we consider marker selection under the heterogeneity model, which includes the homogeneity model as a special case and can be more flexible. Penalization methods have been developed in the literature for marker selection. This study advances from the published ones by introducing the contrast penalties, which can accommodate the within- and across-dataset structures of covariates/regression coefficients and, by doing so, further improve marker selection performance. Specifically, we develop a penalization method that accommodates the across-dataset structures by smoothing over regression coefficients. An effective iterative algorithm, which calls an inner coordinate descent iteration, is developed. Simulation shows that the proposed method outperforms the benchmark with more accurate marker identification. The analysis of breast cancer and lung cancer prognosis studies with gene expression measurements shows that the proposed method identifies genes different from those using the benchmark and has better prediction performance. PMID:24395534

  14. Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression

    NASA Astrophysics Data System (ADS)

    Ndiaye, Eugene; Fercoq, Olivier; Gramfort, Alexandre; Leclère, Vincent; Salmon, Joseph

    2017-10-01

    In high dimensional settings, sparse structures are crucial for efficiency, both in term of memory, computation and performance. It is customary to consider ℓ 1 penalty to enforce sparsity in such scenarios. Sparsity enforcing methods, the Lasso being a canonical example, are popular candidates to address high dimension. For efficiency, they rely on tuning a parameter trading data fitting versus sparsity. For the Lasso theory to hold this tuning parameter should be proportional to the noise level, yet the latter is often unknown in practice. A possible remedy is to jointly optimize over the regression parameter as well as over the noise level. This has been considered under several names in the literature: Scaled-Lasso, Square-root Lasso, Concomitant Lasso estimation for instance, and could be of interest for uncertainty quantification. In this work, after illustrating numerical difficulties for the Concomitant Lasso formulation, we propose a modification we coined Smoothed Concomitant Lasso, aimed at increasing numerical stability. We propose an efficient and accurate solver leading to a computational cost no more expensive than the one for the Lasso. We leverage on standard ingredients behind the success of fast Lasso solvers: a coordinate descent algorithm, combined with safe screening rules to achieve speed efficiency, by eliminating early irrelevant features.

  15. The cross-validated AUC for MCP-logistic regression with high-dimensional data.

    PubMed

    Jiang, Dingfeng; Huang, Jian; Zhang, Ying

    2013-10-01

    We propose a cross-validated area under the receiving operator characteristic (ROC) curve (CV-AUC) criterion for tuning parameter selection for penalized methods in sparse, high-dimensional logistic regression models. We use this criterion in combination with the minimax concave penalty (MCP) method for variable selection. The CV-AUC criterion is specifically designed for optimizing the classification performance for binary outcome data. To implement the proposed approach, we derive an efficient coordinate descent algorithm to compute the MCP-logistic regression solution surface. Simulation studies are conducted to evaluate the finite sample performance of the proposed method and its comparison with the existing methods including the Akaike information criterion (AIC), Bayesian information criterion (BIC) or Extended BIC (EBIC). The model selected based on the CV-AUC criterion tends to have a larger predictive AUC and smaller classification error than those with tuning parameters selected using the AIC, BIC or EBIC. We illustrate the application of the MCP-logistic regression with the CV-AUC criterion on three microarray datasets from the studies that attempt to identify genes related to cancers. Our simulation studies and data examples demonstrate that the CV-AUC is an attractive method for tuning parameter selection for penalized methods in high-dimensional logistic regression models.

  16. Group Variable Selection Via Convex Log-Exp-Sum Penalty with Application to a Breast Cancer Survivor Study

    PubMed Central

    Geng, Zhigeng; Wang, Sijian; Yu, Menggang; Monahan, Patrick O.; Champion, Victoria; Wahba, Grace

    2017-01-01

    Summary In many scientific and engineering applications, covariates are naturally grouped. When the group structures are available among covariates, people are usually interested in identifying both important groups and important variables within the selected groups. Among existing successful group variable selection methods, some methods fail to conduct the within group selection. Some methods are able to conduct both group and within group selection, but the corresponding objective functions are non-convex. Such a non-convexity may require extra numerical effort. In this article, we propose a novel Log-Exp-Sum(LES) penalty for group variable selection. The LES penalty is strictly convex. It can identify important groups as well as select important variables within the group. We develop an efficient group-level coordinate descent algorithm to fit the model. We also derive non-asymptotic error bounds and asymptotic group selection consistency for our method in the high-dimensional setting where the number of covariates can be much larger than the sample size. Numerical results demonstrate the good performance of our method in both variable selection and prediction. We applied the proposed method to an American Cancer Society breast cancer survivor dataset. The findings are clinically meaningful and may help design intervention programs to improve the qualify of life for breast cancer survivors. PMID:25257196

  17. A Simple Algorithm for the Metric Traveling Salesman Problem

    NASA Technical Reports Server (NTRS)

    Grimm, M. J.

    1984-01-01

    An algorithm was designed for a wire list net sort problem. A branch and bound algorithm for the metric traveling salesman problem is presented for this. The algorithm is a best bound first recursive descent where the bound is based on the triangle inequality. The bounded subsets are defined by the relative order of the first K of the N cities (i.e., a K city subtour). When K equals N, the bound is the length of the tour. The algorithm is implemented as a one page subroutine written in the C programming language for the VAX 11/750. Average execution times for randomly selected planar points using the Euclidean metric are 0.01, 0.05, 0.42, and 3.13 seconds for ten, fifteen, twenty, and twenty-five cities, respectively. Maximum execution times for a hundred cases are less than eleven times the averages. The speed of the algorithms is due to an initial ordering algorithm that is a N squared operation. The algorithm also solves the related problem where the tour does not return to the starting city and the starting and/or ending cities may be specified. It is possible to extend the algorithm to solve a nonsymmetric problem satisfying the triangle inequality.

  18. Model Based Iterative Reconstruction for Bright Field Electron Tomography (Postprint)

    DTIC Science & Technology

    2013-02-01

    which is based on the iterative coordinate descent (ICD), works by constructing a substitute to the original cost4 at every point, and minimizing this...using Beer’s law. Thus the projection integral corresponding to the ith measurement is given by log ( λD λi ) . There can be cases in which the dosage λD...Inputs: Measurements g, Initial reconstruction f ′, Initial dosage d′, Fraction of entries to reject R %Outputs: Reconstruction f̂ and dosage parameter d̂

  19. A Robust Wireless Sensor Network Localization Algorithm in Mixed LOS/NLOS Scenario.

    PubMed

    Li, Bing; Cui, Wei; Wang, Bin

    2015-09-16

    Localization algorithms based on received signal strength indication (RSSI) are widely used in the field of target localization due to its advantages of convenient application and independent from hardware devices. Unfortunately, the RSSI values are susceptible to fluctuate under the influence of non-line-of-sight (NLOS) in indoor space. Existing algorithms often produce unreliable estimated distances, leading to low accuracy and low effectiveness in indoor target localization. Moreover, these approaches require extra prior knowledge about the propagation model. As such, we focus on the problem of localization in mixed LOS/NLOS scenario and propose a novel localization algorithm: Gaussian mixed model based non-metric Multidimensional (GMDS). In GMDS, the RSSI is estimated using a Gaussian mixed model (GMM). The dissimilarity matrix is built to generate relative coordinates of nodes by a multi-dimensional scaling (MDS) approach. Finally, based on the anchor nodes' actual coordinates and target's relative coordinates, the target's actual coordinates can be computed via coordinate transformation. Our algorithm could perform localization estimation well without being provided with prior knowledge. The experimental verification shows that GMDS effectively reduces NLOS error and is of higher accuracy in indoor mixed LOS/NLOS localization and still remains effective when we extend single NLOS to multiple NLOS.

  20. Quasi-conformal mapping with genetic algorithms applied to coordinate transformations

    NASA Astrophysics Data System (ADS)

    González-Matesanz, F. J.; Malpica, J. A.

    2006-11-01

    In this paper, piecewise conformal mapping for the transformation of geodetic coordinates is studied. An algorithm, which is an improved version of a previous algorithm published by Lippus [2004a. On some properties of piecewise conformal mappings. Eesti NSV Teaduste Akademmia Toimetised Füüsika-Matemaakika 53, 92-98; 2004b. Transformation of coordinates using piecewise conformal mapping. Journal of Geodesy 78 (1-2), 40] is presented; the improvement comes from using a genetic algorithm to partition the complex plane into convex polygons, whereas the original one did so manually. As a case study, the method is applied to the transformation of the Spanish datum ED50 and ETRS89, and both its advantages and disadvantages are discussed herein.

  1. On Nonconvex Decentralized Gradient Descent

    DTIC Science & Technology

    2016-08-01

    and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math . Program., 116: 5-16, 2009. [2] H...splitting, and regularized Gauss-Seidel methods, Math . Pro- gram., Ser. A, 137: 91-129, 2013. [3] P. Bianchi and J. Jakubowicz, Convergence of a multi-agent...subgradient method under random communication topologies , IEEE J. Sel. Top. Signal Process., 5:754-771, 2011. [11] A. Nedic and A. Ozdaglar, Distributed

  2. Neural network explanation using inversion.

    PubMed

    Saad, Emad W; Wunsch, Donald C

    2007-01-01

    An important drawback of many artificial neural networks (ANN) is their lack of explanation capability [Andrews, R., Diederich, J., & Tickle, A. B. (1996). A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8, 373-389]. This paper starts with a survey of algorithms which attempt to explain the ANN output. We then present HYPINV, a new explanation algorithm which relies on network inversion; i.e. calculating the ANN input which produces a desired output. HYPINV is a pedagogical algorithm, that extracts rules, in the form of hyperplanes. It is able to generate rules with arbitrarily desired fidelity, maintaining a fidelity-complexity tradeoff. To our knowledge, HYPINV is the only pedagogical rule extraction method, which extracts hyperplane rules from continuous or binary attribute neural networks. Different network inversion techniques, involving gradient descent as well as an evolutionary algorithm, are presented. An information theoretic treatment of rule extraction is presented. HYPINV is applied to example synthetic problems, to a real aerospace problem, and compared with similar algorithms using benchmark problems.

  3. Performance study of LMS based adaptive algorithms for unknown system identification

    NASA Astrophysics Data System (ADS)

    Javed, Shazia; Ahmad, Noor Atinah

    2014-07-01

    Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.

  4. Performance study of LMS based adaptive algorithms for unknown system identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javed, Shazia; Ahmad, Noor Atinah

    Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signalmore » is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.« less

  5. Real-Time Adaptive Control of Flow-Induced Cavity Tones

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; Cabell, Randolph H.; Cattafesta, Louis N.

    2004-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. The adaptive control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. The algorithm was also able t o maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Controller performance was evaluated with a measure of output disturbance rejection and an input sensitivity transfer function. The results suggest that disturbances entering the cavity flow are colocated with the control input at the cavity leading edge. In that case, only tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary broadband pressure reduction is not possible. In the control-algorithm development, the cavity dynamics are treated as linear and time invariant (LTI) for a fixed Mach number. The experimental results lend support this treatment.

  6. On the Use of a Range Trigger for the Mars Science Laboratory Entry Descent and Landing

    NASA Technical Reports Server (NTRS)

    Way, David W.

    2011-01-01

    In 2012, during the Entry, Descent, and Landing (EDL) of the Mars Science Laboratory (MSL) entry vehicle, a 21.5 m Viking-heritage, Disk-Gap-Band, supersonic parachute will be deployed at approximately Mach 2. The baseline algorithm for commanding this parachute deployment is a navigated planet-relative velocity trigger. This paper compares the performance of an alternative range-to-go trigger (sometimes referred to as Smart Chute ), which can significantly reduce the landing footprint size. Numerical Monte Carlo results, predicted by the POST2 MSL POST End-to-End EDL simulation, are corroborated and explained by applying propagation of uncertainty methods to develop an analytic estimate for the standard deviation of Mach number. A negative correlation is shown to exist between the standard deviations of wind velocity and the planet-relative velocity at parachute deploy, which mitigates the Mach number rise in the case of the range trigger.

  7. A flooding algorithm for multirobot exploration.

    PubMed

    Cabrera-Mora, Flavio; Xiao, Jizhong

    2012-06-01

    In this paper, we present a multirobot exploration algorithm that aims at reducing the exploration time and to minimize the overall traverse distance of the robots by coordinating the movement of the robots performing the exploration. Modeling the environment as a tree, we consider a coordination model that restricts the number of robots allowed to traverse an edge and to enter a vertex during each step. This coordination is achieved in a decentralized manner by the robots using a set of active landmarks that are dropped by them at explored vertices. We mathematically analyze the algorithm on trees, obtaining its main properties and specifying its bounds on the exploration time. We also define three metrics of performance for multirobot algorithms. We simulate and compare the performance of this new algorithm with those of our multirobot depth first search (MR-DFS) approach presented in our recent paper and classic single-robot DFS.

  8. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    PubMed

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  9. Pharmacogenomics of warfarin in populations of African descent

    PubMed Central

    Suarez-Kurtz, Guilherme; Botton, Mariana R

    2013-01-01

    Warfarin is the most commonly prescribed oral anticoagulant worldwide despite its narrow therapeutic index and the notorious inter- and intra-individual variability in dose required for the target clinical effect. Pharmacogenetic polymorphisms are major determinants of warfarin pharmacokinetic and dynamics and included in several warfarin dosing algorithms. This review focuses on warfarin pharmacogenomics in sub-Saharan peoples, African Americans and admixed Brazilians. These ‘Black’ populations differ in several aspects, notably their extent of recent admixture with Europeans, a factor which impacts on the frequency distribution of pharmacogenomic polymorphisms relevant to warfarin dose requirement for the target clinical effect. Whereas a small number of polymorphisms in VKORC1 (3673G > A, rs9923231), CYP2C9 (alleles *2 and *3, rs1799853 and rs1057910, respectively) and arguably CYP4F2 (rs2108622), may capture most of the pharmacogenomic influence on warfarin dose variance in White populations, additional polymorphisms in these, and in other, genes (e.g. CALU rs339097) increase the predictive power of pharmacogenetic warfarin dosing algorithms in the Black populations examined. A personalized strategy for initiation of warfarin therapy, allowing for improved safety and cost-effectiveness for populations of African descent must take into account their pharmacogenomic diversity, as well as socio-economical, cultural and medical factors. Accounting for this heterogeneity in algorithms that are ‘friendly’ enough to be adopted by warfarin prescribers worldwide requires gathering information from trials at different population levels, but demands also a critical appraisal of racial/ethnic labels that are commonly used in the clinical pharmacology literature but do not accurately reflect genetic ancestry and population diversity. PMID:22676711

  10. Intelligence system based classification approach for medical disease diagnosis

    NASA Astrophysics Data System (ADS)

    Sagir, Abdu Masanawa; Sathasivam, Saratha

    2017-08-01

    The prediction of breast cancer in women who have no signs or symptoms of the disease as well as survivability after undergone certain surgery has been a challenging problem for medical researchers. The decision about presence or absence of diseases depends on the physician's intuition, experience and skill for comparing current indicators with previous one than on knowledge rich data hidden in a database. This measure is a very crucial and challenging task. The goal is to predict patient condition by using an adaptive neuro fuzzy inference system (ANFIS) pre-processed by grid partitioning. To achieve an accurate diagnosis at this complex stage of symptom analysis, the physician may need efficient diagnosis system. A framework describes methodology for designing and evaluation of classification performances of two discrete ANFIS systems of hybrid learning algorithms least square estimates with Modified Levenberg-Marquardt and Gradient descent algorithms that can be used by physicians to accelerate diagnosis process. The proposed method's performance was evaluated based on training and test datasets with mammographic mass and Haberman's survival Datasets obtained from benchmarked datasets of University of California at Irvine's (UCI) machine learning repository. The robustness of the performance measuring total accuracy, sensitivity and specificity is examined. In comparison, the proposed method achieves superior performance when compared to conventional ANFIS based gradient descent algorithm and some related existing methods. The software used for the implementation is MATLAB R2014a (version 8.3) and executed in PC Intel Pentium IV E7400 processor with 2.80 GHz speed and 2.0 GB of RAM.

  11. Wavelet-based edge correlation incorporated iterative reconstruction for undersampled MRI.

    PubMed

    Hu, Changwei; Qu, Xiaobo; Guo, Di; Bao, Lijun; Chen, Zhong

    2011-09-01

    Undersampling k-space is an effective way to decrease acquisition time for MRI. However, aliasing artifacts introduced by undersampling may blur the edges of magnetic resonance images, which often contain important information for clinical diagnosis. Moreover, k-space data is often contaminated by the noise signals of unknown intensity. To better preserve the edge features while suppressing the aliasing artifacts and noises, we present a new wavelet-based algorithm for undersampled MRI reconstruction. The algorithm solves the image reconstruction as a standard optimization problem including a ℓ(2) data fidelity term and ℓ(1) sparsity regularization term. Rather than manually setting the regularization parameter for the ℓ(1) term, which is directly related to the threshold, an automatic estimated threshold adaptive to noise intensity is introduced in our proposed algorithm. In addition, a prior matrix based on edge correlation in wavelet domain is incorporated into the regularization term. Compared with nonlinear conjugate gradient descent algorithm, iterative shrinkage/thresholding algorithm, fast iterative soft-thresholding algorithm and the iterative thresholding algorithm using exponentially decreasing threshold, the proposed algorithm yields reconstructions with better edge recovery and noise suppression. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson Andrew; Schaefer, Jacob Robert

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.

  13. Comparison of Nonequilibrium Solution Algorithms Applied to Chemically Stiff Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Venkatapathy, Ethiraj

    1995-01-01

    Three solution algorithms, explicit under-relaxation, point implicit, and lower-upper symmetric Gauss-Seidel, are used to compute nonequilibrium flow around the Apollo 4 return capsule at the 62-km altitude point in its descent trajectory. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness.The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15 and 30, the lower-upper symmetric Gauss-Seidel method produces an eight order of magnitude drop in the energy residual in one-third to one-half the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 30 and above. At Mach 40 the performance of the lower-upper symmetric Gauss-Seidel algorithm deteriorates to the point that it is out performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.

  14. Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms

    NASA Astrophysics Data System (ADS)

    Xiao, Ying; Michalski, Darek; Censor, Yair; Galvin, James M.

    2004-07-01

    The efficient delivery of intensity modulated radiation therapy (IMRT) depends on finding optimized beam intensity patterns that produce dose distributions, which meet given constraints for the tumour as well as any critical organs to be spared. Many optimization algorithms that are used for beamlet-based inverse planning are susceptible to large variations of neighbouring intensities. Accurately delivering an intensity pattern with a large number of extrema can prove impossible given the mechanical limitations of standard multileaf collimator (MLC) delivery systems. In this study, we apply Cimmino's simultaneous projection algorithm to the beamlet-based inverse planning problem, modelled mathematically as a system of linear inequalities. We show that using this method allows us to arrive at a smoother intensity pattern. Including nonlinear terms in the simultaneous projection algorithm to deal with dose-volume histogram (DVH) constraints does not compromise this property from our experimental observation. The smoothness properties are compared with those from other optimization algorithms which include simulated annealing and the gradient descent method. The simultaneous property of these algorithms is ideally suited to parallel computing technologies.

  15. Algorithms for Maneuvering Spacecraft Around Small Bodies

    NASA Technical Reports Server (NTRS)

    Acikmese, A. Bechet; Bayard, David

    2006-01-01

    A document describes mathematical derivations and applications of autonomous guidance algorithms for maneuvering spacecraft in the vicinities of small astronomical bodies like comets or asteroids. These algorithms compute fuel- or energy-optimal trajectories for typical maneuvers by solving the associated optimal-control problems with relevant control and state constraints. In the derivations, these problems are converted from their original continuous (infinite-dimensional) forms to finite-dimensional forms through (1) discretization of the time axis and (2) spectral discretization of control inputs via a finite number of Chebyshev basis functions. In these doubly discretized problems, the Chebyshev coefficients are the variables. These problems are, variously, either convex programming problems or programming problems that can be convexified. The resulting discrete problems are convex parameter-optimization problems; this is desirable because one can take advantage of very efficient and robust algorithms that have been developed previously and are well established for solving such problems. These algorithms are fast, do not require initial guesses, and always converge to global optima. Following the derivations, the algorithms are demonstrated by applying them to numerical examples of flyby, descent-to-hover, and ascent-from-hover maneuvers.

  16. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson Andrew; Schaefer, Jacob Robert

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.

  17. A conservative finite difference algorithm for the unsteady transonic potential equation in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.

    1982-01-01

    An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.

  18. EM Adaptive LASSO—A Multilocus Modeling Strategy for Detecting SNPs Associated with Zero-inflated Count Phenotypes

    PubMed Central

    Mallick, Himel; Tiwari, Hemant K.

    2016-01-01

    Count data are increasingly ubiquitous in genetic association studies, where it is possible to observe excess zero counts as compared to what is expected based on standard assumptions. For instance, in rheumatology, data are usually collected in multiple joints within a person or multiple sub-regions of a joint, and it is not uncommon that the phenotypes contain enormous number of zeroes due to the presence of excessive zero counts in majority of patients. Most existing statistical methods assume that the count phenotypes follow one of these four distributions with appropriate dispersion-handling mechanisms: Poisson, Zero-inflated Poisson (ZIP), Negative Binomial, and Zero-inflated Negative Binomial (ZINB). However, little is known about their implications in genetic association studies. Also, there is a relative paucity of literature on their usefulness with respect to model misspecification and variable selection. In this article, we have investigated the performance of several state-of-the-art approaches for handling zero-inflated count data along with a novel penalized regression approach with an adaptive LASSO penalty, by simulating data under a variety of disease models and linkage disequilibrium patterns. By taking into account data-adaptive weights in the estimation procedure, the proposed method provides greater flexibility in multi-SNP modeling of zero-inflated count phenotypes. A fast coordinate descent algorithm nested within an EM (expectation-maximization) algorithm is implemented for estimating the model parameters and conducting variable selection simultaneously. Results show that the proposed method has optimal performance in the presence of multicollinearity, as measured by both prediction accuracy and empirical power, which is especially apparent as the sample size increases. Moreover, the Type I error rates become more or less uncontrollable for the competing methods when a model is misspecified, a phenomenon routinely encountered in practice. PMID:27066062

  19. EM Adaptive LASSO-A Multilocus Modeling Strategy for Detecting SNPs Associated with Zero-inflated Count Phenotypes.

    PubMed

    Mallick, Himel; Tiwari, Hemant K

    2016-01-01

    Count data are increasingly ubiquitous in genetic association studies, where it is possible to observe excess zero counts as compared to what is expected based on standard assumptions. For instance, in rheumatology, data are usually collected in multiple joints within a person or multiple sub-regions of a joint, and it is not uncommon that the phenotypes contain enormous number of zeroes due to the presence of excessive zero counts in majority of patients. Most existing statistical methods assume that the count phenotypes follow one of these four distributions with appropriate dispersion-handling mechanisms: Poisson, Zero-inflated Poisson (ZIP), Negative Binomial, and Zero-inflated Negative Binomial (ZINB). However, little is known about their implications in genetic association studies. Also, there is a relative paucity of literature on their usefulness with respect to model misspecification and variable selection. In this article, we have investigated the performance of several state-of-the-art approaches for handling zero-inflated count data along with a novel penalized regression approach with an adaptive LASSO penalty, by simulating data under a variety of disease models and linkage disequilibrium patterns. By taking into account data-adaptive weights in the estimation procedure, the proposed method provides greater flexibility in multi-SNP modeling of zero-inflated count phenotypes. A fast coordinate descent algorithm nested within an EM (expectation-maximization) algorithm is implemented for estimating the model parameters and conducting variable selection simultaneously. Results show that the proposed method has optimal performance in the presence of multicollinearity, as measured by both prediction accuracy and empirical power, which is especially apparent as the sample size increases. Moreover, the Type I error rates become more or less uncontrollable for the competing methods when a model is misspecified, a phenomenon routinely encountered in practice.

  20. The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection.

    PubMed

    Tang, Zaixiang; Shen, Yueping; Zhang, Xinyan; Yi, Nengjun

    2017-01-01

    Large-scale "omics" data have been increasingly used as an important resource for prognostic prediction of diseases and detection of associated genes. However, there are considerable challenges in analyzing high-dimensional molecular data, including the large number of potential molecular predictors, limited number of samples, and small effect of each predictor. We propose new Bayesian hierarchical generalized linear models, called spike-and-slab lasso GLMs, for prognostic prediction and detection of associated genes using large-scale molecular data. The proposed model employs a spike-and-slab mixture double-exponential prior for coefficients that can induce weak shrinkage on large coefficients, and strong shrinkage on irrelevant coefficients. We have developed a fast and stable algorithm to fit large-scale hierarchal GLMs by incorporating expectation-maximization (EM) steps into the fast cyclic coordinate descent algorithm. The proposed approach integrates nice features of two popular methods, i.e., penalized lasso and Bayesian spike-and-slab variable selection. The performance of the proposed method is assessed via extensive simulation studies. The results show that the proposed approach can provide not only more accurate estimates of the parameters, but also better prediction. We demonstrate the proposed procedure on two cancer data sets: a well-known breast cancer data set consisting of 295 tumors, and expression data of 4919 genes; and the ovarian cancer data set from TCGA with 362 tumors, and expression data of 5336 genes. Our analyses show that the proposed procedure can generate powerful models for predicting outcomes and detecting associated genes. The methods have been implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/). Copyright © 2017 by the Genetics Society of America.

  1. Phase imaging using shifted wavefront sensor images.

    PubMed

    Zhang, Zhengyun; Chen, Zhi; Rehman, Shakil; Barbastathis, George

    2014-11-01

    We propose a new approach to the complete retrieval of a coherent field (amplitude and phase) using the same hardware configuration as a Shack-Hartmann sensor but with two modifications: first, we add a transversally shifted measurement to resolve ambiguities in the measured phase; and second, we employ factored form descent (FFD), an inverse algorithm for coherence retrieval, with a hard rank constraint. We verified the proposed approach using both numerical simulations and experiments.

  2. Exact BPF and FBP algorithms for nonstandard saddle curves.

    PubMed

    Yu, Hengyong; Zhao, Shiying; Ye, Yangbo; Wang, Ge

    2005-11-01

    A hot topic in cone-beam CT research is exact cone-beam reconstruction from a general scanning trajectory. Particularly, a nonstandard saddle curve attracts attention, as this construct allows the continuous periodic scanning of a volume-of-interest (VOI). Here we evaluate two algorithms for reconstruction from data collected along a nonstandard saddle curve, which are in the filtered backprojection (FBP) and backprojection filtration (BPF) formats, respectively. Both the algorithms are implemented in a chord-based coordinate system. Then, a rebinning procedure is utilized to transform the reconstructed results into the natural coordinate system. The simulation results demonstrate that the FBP algorithm produces better image quality than the BPF algorithm, while both the algorithms exhibit similar noise characteristics.

  3. Linear feasibility algorithms for treatment planning in interstitial photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Rendon, A.; Beck, J. C.; Lilge, Lothar

    2008-02-01

    Interstitial Photodynamic therapy (IPDT) has been under intense investigation in recent years, with multiple clinical trials underway. This effort has demanded the development of optimization strategies that determine the best locations and output powers for light sources (cylindrical or point diffusers) to achieve an optimal light delivery. Furthermore, we have recently introduced cylindrical diffusers with customizable emission profiles, placing additional requirements on the optimization algorithms, particularly in terms of the stability of the inverse problem. Here, we present a general class of linear feasibility algorithms and their properties. Moreover, we compare two particular instances of these algorithms, which are been used in the context of IPDT: the Cimmino algorithm and a weighted gradient descent (WGD) algorithm. The algorithms were compared in terms of their convergence properties, the cost function they minimize in the infeasible case, their ability to regularize the inverse problem, and the resulting optimal light dose distributions. Our results show that the WGD algorithm overall performs slightly better than the Cimmino algorithm and that it converges to a minimizer of a clinically relevant cost function in the infeasible case. Interestingly however, treatment plans resulting from either algorithms were very similar in terms of the resulting fluence maps and dose volume histograms, once the diffuser powers adjusted to achieve equal prostate coverage.

  4. Nonlinear Semi-Supervised Metric Learning Via Multiple Kernels and Local Topology.

    PubMed

    Li, Xin; Bai, Yanqin; Peng, Yaxin; Du, Shaoyi; Ying, Shihui

    2018-03-01

    Changing the metric on the data may change the data distribution, hence a good distance metric can promote the performance of learning algorithm. In this paper, we address the semi-supervised distance metric learning (ML) problem to obtain the best nonlinear metric for the data. First, we describe the nonlinear metric by the multiple kernel representation. By this approach, we project the data into a high dimensional space, where the data can be well represented by linear ML. Then, we reformulate the linear ML by a minimization problem on the positive definite matrix group. Finally, we develop a two-step algorithm for solving this model and design an intrinsic steepest descent algorithm to learn the positive definite metric matrix. Experimental results validate that our proposed method is effective and outperforms several state-of-the-art ML methods.

  5. Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Arias, E.; Florez, E.; Pérez-Torres, J. F.

    2017-06-01

    A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu7, Cu9, and Cu11 as benchmark systems, and Cu38 and Ni9 as novel systems. New equilibrium structures for Cu9, Cu11, Cu38, and Ni9 are reported.

  6. Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters.

    PubMed

    Arias, E; Florez, E; Pérez-Torres, J F

    2017-06-28

    A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu 7 , Cu 9 , and Cu 11 as benchmark systems, and Cu 38 and Ni 9 as novel systems. New equilibrium structures for Cu 9 , Cu 11 , Cu 38 , and Ni 9 are reported.

  7. Design factors and considerations for a time-based flight management system

    NASA Technical Reports Server (NTRS)

    Vicroy, D. D.; Williams, D. H.; Sorensen, J. A.

    1986-01-01

    Recent NASA Langley Research Center research to develop a technology data base from which an advanced Flight Management System (FMS) design might evolve is reviewed. In particular, the generation of fixed range cruise/descent reference trajectories which meet predefined end conditions of altitude, speed, and time is addressed. Results on the design and theoretical basis of the trajectory generation algorithm are presented, followed by a brief discussion of a series of studies that are being conducted to determine the accuracy requirements of the aircraft and weather models resident in the trajectory generation algorithm. Finally, studies to investigate the interface requirements between the pilot and an advanced FMS are considered.

  8. Simultaneous digital super-resolution and nonuniformity correction for infrared imaging systems.

    PubMed

    Meza, Pablo; Machuca, Guillermo; Torres, Sergio; Martin, Cesar San; Vera, Esteban

    2015-07-20

    In this article, we present a novel algorithm to achieve simultaneous digital super-resolution and nonuniformity correction from a sequence of infrared images. We propose to use spatial regularization terms that exploit nonlocal means and the absence of spatial correlation between the scene and the nonuniformity noise sources. We derive an iterative optimization algorithm based on a gradient descent minimization strategy. Results from infrared image sequences corrupted with simulated and real fixed-pattern noise show a competitive performance compared with state-of-the-art methods. A qualitative analysis on the experimental results obtained with images from a variety of infrared cameras indicates that the proposed method provides super-resolution images with significantly less fixed-pattern noise.

  9. CP decomposition approach to blind separation for DS-CDMA system using a new performance index

    NASA Astrophysics Data System (ADS)

    Rouijel, Awatif; Minaoui, Khalid; Comon, Pierre; Aboutajdine, Driss

    2014-12-01

    In this paper, we present a canonical polyadic (CP) tensor decomposition isolating the scaling matrix. This has two major implications: (i) the problem conditioning shows up explicitly and could be controlled through a constraint on the so-called coherences and (ii) a performance criterion concerning the factor matrices can be exactly calculated and is more realistic than performance metrics used in the literature. Two new algorithms optimizing the CP decomposition based on gradient descent are proposed. This decomposition is illustrated by an application to direct-sequence code division multiplexing access (DS-CDMA) systems; computer simulations are provided and demonstrate the good behavior of these algorithms, compared to others in the literature.

  10. A modified conjugate gradient coefficient with inexact line search for unconstrained optimization

    NASA Astrophysics Data System (ADS)

    Aini, Nurul; Rivaie, Mohd; Mamat, Mustafa

    2016-11-01

    Conjugate gradient (CG) method is a line search algorithm mostly known for its wide application in solving unconstrained optimization problems. Its low memory requirements and global convergence properties makes it one of the most preferred method in real life application such as in engineering and business. In this paper, we present a new CG method based on AMR* and CD method for solving unconstrained optimization functions. The resulting algorithm is proven to have both the sufficient descent and global convergence properties under inexact line search. Numerical tests are conducted to assess the effectiveness of the new method in comparison to some previous CG methods. The results obtained indicate that our method is indeed superior.

  11. About the algorithm for construction of coordinated university timetables

    NASA Astrophysics Data System (ADS)

    Dobrynin, A. S.; Kulakov, S. M.; Taraborina, E. N.

    2018-05-01

    The factual description of the task and an algorithm for drawing up a coordinated timetable of academic work of the faculty and students at the level of department (local timetable) is presented, as well as the procedure for integrating private schedules, i.e. the formation of a university-wide timetable. Coordination of the latter has not only spatio-temporal in nature, but also takes into account the preferences (interests) of agents (users and performers of works).

  12. A new approach to blind deconvolution of astronomical images

    NASA Astrophysics Data System (ADS)

    Vorontsov, S. V.; Jefferies, S. M.

    2017-05-01

    We readdress the strategy of finding approximate regularized solutions to the blind deconvolution problem, when both the object and the point-spread function (PSF) have finite support. Our approach consists in addressing fixed points of an iteration in which both the object x and the PSF y are approximated in an alternating manner, discarding the previous approximation for x when updating x (similarly for y), and considering the resultant fixed points as candidates for a sensible solution. Alternating approximations are performed by truncated iterative least-squares descents. The number of descents in the object- and in the PSF-space play a role of two regularization parameters. Selection of appropriate fixed points (which may not be unique) is performed by relaxing the regularization gradually, using the previous fixed point as an initial guess for finding the next one, which brings an approximation of better spatial resolution. We report the results of artificial experiments with noise-free data, targeted at examining the potential capability of the technique to deconvolve images of high complexity. We also show the results obtained with two sets of satellite images acquired using ground-based telescopes with and without adaptive optics compensation. The new approach brings much better results when compared with an alternating minimization technique based on positivity-constrained conjugate gradients, where the iterations stagnate when addressing data of high complexity. In the alternating-approximation step, we examine the performance of three different non-blind iterative deconvolution algorithms. The best results are provided by the non-negativity-constrained successive over-relaxation technique (+SOR) supplemented with an adaptive scheduling of the relaxation parameter. Results of comparable quality are obtained with steepest descents modified by imposing the non-negativity constraint, at the expense of higher numerical costs. The Richardson-Lucy (or expectation-maximization) algorithm fails to locate stable fixed points in our experiments, due apparently to inappropriate regularization properties.

  13. Algorithms for the optimization of RBE-weighted dose in particle therapy.

    PubMed

    Horcicka, M; Meyer, C; Buschbacher, A; Durante, M; Krämer, M

    2013-01-21

    We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.

  14. A novel highly parallel algorithm for linearly unmixing hyperspectral images

    NASA Astrophysics Data System (ADS)

    Guerra, Raúl; López, Sebastián.; Callico, Gustavo M.; López, Jose F.; Sarmiento, Roberto

    2014-10-01

    Endmember extraction and abundances calculation represent critical steps within the process of linearly unmixing a given hyperspectral image because of two main reasons. The first one is due to the need of computing a set of accurate endmembers in order to further obtain confident abundance maps. The second one refers to the huge amount of operations involved in these time-consuming processes. This work proposes an algorithm to estimate the endmembers of a hyperspectral image under analysis and its abundances at the same time. The main advantage of this algorithm is its high parallelization degree and the mathematical simplicity of the operations implemented. This algorithm estimates the endmembers as virtual pixels. In particular, the proposed algorithm performs the descent gradient method to iteratively refine the endmembers and the abundances, reducing the mean square error, according with the linear unmixing model. Some mathematical restrictions must be added so the method converges in a unique and realistic solution. According with the algorithm nature, these restrictions can be easily implemented. The results obtained with synthetic images demonstrate the well behavior of the algorithm proposed. Moreover, the results obtained with the well-known Cuprite dataset also corroborate the benefits of our proposal.

  15. Algorithms for the optimization of RBE-weighted dose in particle therapy

    NASA Astrophysics Data System (ADS)

    Horcicka, M.; Meyer, C.; Buschbacher, A.; Durante, M.; Krämer, M.

    2013-01-01

    We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.

  16. Improved adaptive genetic algorithm with sparsity constraint applied to thermal neutron CT reconstruction of two-phase flow

    NASA Astrophysics Data System (ADS)

    Yan, Mingfei; Hu, Huasi; Otake, Yoshie; Taketani, Atsushi; Wakabayashi, Yasuo; Yanagimachi, Shinzo; Wang, Sheng; Pan, Ziheng; Hu, Guang

    2018-05-01

    Thermal neutron computer tomography (CT) is a useful tool for visualizing two-phase flow due to its high imaging contrast and strong penetrability of neutrons for tube walls constructed with metallic material. A novel approach for two-phase flow CT reconstruction based on an improved adaptive genetic algorithm with sparsity constraint (IAGA-SC) is proposed in this paper. In the algorithm, the neighborhood mutation operator is used to ensure the continuity of the reconstructed object. The adaptive crossover probability P c and mutation probability P m are improved to help the adaptive genetic algorithm (AGA) achieve the global optimum. The reconstructed results for projection data, obtained from Monte Carlo simulation, indicate that the comprehensive performance of the IAGA-SC algorithm exceeds the adaptive steepest descent-projection onto convex sets (ASD-POCS) algorithm in restoring typical and complex flow regimes. It especially shows great advantages in restoring the simply connected flow regimes and the shape of object. In addition, the CT experiment for two-phase flow phantoms was conducted on the accelerator-driven neutron source to verify the performance of the developed IAGA-SC algorithm.

  17. Hazardous gas detection for FTIR-based hyperspectral imaging system using DNN and CNN

    NASA Astrophysics Data System (ADS)

    Kim, Yong Chan; Yu, Hyeong-Geun; Lee, Jae-Hoon; Park, Dong-Jo; Nam, Hyun-Woo

    2017-10-01

    Recently, a hyperspectral imaging system (HIS) with a Fourier Transform InfraRed (FTIR) spectrometer has been widely used due to its strengths in detecting gaseous fumes. Even though numerous algorithms for detecting gaseous fumes have already been studied, it is still difficult to detect target gases properly because of atmospheric interference substances and unclear characteristics of low concentration gases. In this paper, we propose detection algorithms for classifying hazardous gases using a deep neural network (DNN) and a convolutional neural network (CNN). In both the DNN and CNN, spectral signal preprocessing, e.g., offset, noise, and baseline removal, are carried out. In the DNN algorithm, the preprocessed spectral signals are used as feature maps of the DNN with five layers, and it is trained by a stochastic gradient descent (SGD) algorithm (50 batch size) and dropout regularization (0.7 ratio). In the CNN algorithm, preprocessed spectral signals are trained with 1 × 3 convolution layers and 1 × 2 max-pooling layers. As a result, the proposed algorithms improve the classification accuracy rate by 1.5% over the existing support vector machine (SVM) algorithm for detecting and classifying hazardous gases.

  18. Real-Time Feedback Control of Flow-Induced Cavity Tones. Part 2; Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cabell, R. H.; Cattafesta, L. N., III

    2006-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. Past input-output data and an estimate of the open-loop pulse response sequence are all that is needed to implement the algorithm for application at fixed Mach numbers. Transient measurements made during controller adaptation revealed that the controller coefficients converged to a steady state in the mean, and this implies that adaptation can be turned off at some point with no degradation in control performance. When converged, the control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. However, as in the case of fixed-gain GPC, the adaptive GPC performance was limited by spillover in sidebands around the suppressed Rossiter modes. The algorithm was also able to maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Beyond this range, stable operation of the control algorithm was not possible due to the fixed plant model in the algorithm.

  19. On the use of harmony search algorithm in the training of wavelet neural networks

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2015-10-01

    Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.

  20. Exact BPF and FBP algorithms for nonstandard saddle curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Hengyong; Zhao Shiying; Ye Yangbo

    2005-11-15

    A hot topic in cone-beam CT research is exact cone-beam reconstruction from a general scanning trajectory. Particularly, a nonstandard saddle curve attracts attention, as this construct allows the continuous periodic scanning of a volume-of-interest (VOI). Here we evaluate two algorithms for reconstruction from data collected along a nonstandard saddle curve, which are in the filtered backprojection (FBP) and backprojection filtration (BPF) formats, respectively. Both the algorithms are implemented in a chord-based coordinate system. Then, a rebinning procedure is utilized to transform the reconstructed results into the natural coordinate system. The simulation results demonstrate that the FBP algorithm produces better imagemore » quality than the BPF algorithm, while both the algorithms exhibit similar noise characteristics.« less

  1. Optimisation des trajectoires verticales par la methode de la recherche de l'harmonie =

    NASA Astrophysics Data System (ADS)

    Ruby, Margaux

    Face au rechauffement climatique, les besoins de trouver des solutions pour reduire les emissions de CO2 sont urgentes. L'optimisation des trajectoires est un des moyens pour reduire la consommation de carburant lors d'un vol. Afin de determiner la trajectoire optimale de l'avion, differents algorithmes ont ete developpes. Le but de ces algorithmes est de reduire au maximum le cout total d'un vol d'un avion qui est directement lie a la consommation de carburant et au temps de vol. Un autre parametre, nomme l'indice de cout est considere dans la definition du cout de vol. La consommation de carburant est fournie via des donnees de performances pour chaque phase de vol. Dans le cas de ce memoire, les phases d'un vol complet, soit, une phase de montee, une phase de croisiere et une phase de descente, sont etudies. Des " marches de montee " etaient definies comme des montees de 2 000ft lors de la phase de croisiere sont egalement etudiees. L'algorithme developpe lors de ce memoire est un metaheuristique, nomme la recherche de l'harmonie, qui, concilie deux types de recherches : la recherche locale et la recherche basee sur une population. Cet algorithme se base sur l'observation des musiciens lors d'un concert, ou plus exactement sur la capacite de la musique a trouver sa meilleure harmonie, soit, en termes d'optimisation, le plus bas cout. Differentes donnees d'entrees comme le poids de l'avion, la destination, la vitesse de l'avion initiale et le nombre d'iterations doivent etre, entre autre, fournies a l'algorithme pour qu'il soit capable de determiner la solution optimale qui est definie comme : [Vitesse de montee, Altitude, Vitesse de croisiere, Vitesse de descente]. L'algorithme a ete developpe a l'aide du logiciel MATLAB et teste pour plusieurs destinations et plusieurs poids pour un seul type d'avion. Pour la validation, les resultats obtenus par cet algorithme ont ete compares dans un premier temps aux resultats obtenus suite a une recherche exhaustive qui a utilisee toutes les combinaisons possibles. Cette recherche exhaustive nous a fourni l'optimal global; ainsi, la solution de notre algorithme doit se rapprocher le plus possible de la recherche exhaustive afin de prouver qu'il donne des resultats proche de l'optimal global. Une seconde comparaison a ete effectuee entre les resultats fournis par l'algorithme et ceux du Flight Management System (FMS) qui est un systeme d'avionique situe dans le cockpit de l'avion fournissant la route a suivre afin d'optimiser la trajectoire. Le but est de prouver que l'algorithme de la recherche de l'harmonie donne de meilleurs resultats que l'algorithme implemente dans le FMS.

  2. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  3. Newman-Janis Algorithm Revisited

    NASA Astrophysics Data System (ADS)

    Brauer, O.; Camargo, H. A.; Socolovsky, M.

    2015-01-01

    The purpose of the present article is to show that the Newman-Janis and Newman et al algorithm used to derive the Kerr and Kerr-Newman metrics respectively, automatically leads to the extension of the initial non negative polar radial coordinate r to a cartesian coordinate running from to , thus introducing in a natural way the region in the above spacetimes. Using Boyer-Lindquist and ellipsoidal coordinates, we discuss some geometrical aspects of the positive and negative regions of , like horizons, ergosurfaces, and foliation structures

  4. Application of artificial neural network to predict clay sensitivity in a high landslide prone area using CPTu data- A case study in Southwest of Sweden

    NASA Astrophysics Data System (ADS)

    Shahri, Abbas; Mousavinaseri, Mahsasadat; Naderi, Shima; Espersson, Maria

    2015-04-01

    Application of Artificial Neural Networks (ANNs) in many areas of engineering, in particular to geotechnical engineering problems such as site characterization has demonstrated some degree of success. The present paper aims to evaluate the feasibility of several various types of ANN models to predict the clay sensitivity of soft clays form piezocone penetration test data (CPTu). To get the aim, a research database of CPTu data of 70 test points around the Göta River near the Lilli Edet in the southwest of Sweden which is a high prone land slide area were collected and considered as input for ANNs. For training algorithms the quick propagation, conjugate gradient descent, quasi-Newton, limited memory quasi-Newton and Levenberg-Marquardt were developed tested and trained using the CPTu data to provide a comparison between the results of field investigation and ANN models to estimate the clay sensitivity. The reason of using the clay sensitivity parameter in this study is due to its relation to landslides in Sweden.A special high sensitive clay namely quick clay is considered as the main responsible for experienced landslides in Sweden which has high sensitivity and prone to slide. The training and testing program was started with 3-2-1 ANN architecture structure. By testing and trying several various architecture structures and changing the hidden layer in order to have a higher output resolution the 3-4-4-3-1 architecture structure for ANN in this study was confirmed. The tested algorithm showed that increasing the hidden layers up to 4 layers in ANN can improve the results and the 3-4-4-3-1 architecture structure ANNs for prediction of clay sensitivity represent reliable and reasonable response. The obtained results showed that the conjugate gradient descent algorithm with R2=0.897 has the best performance among the tested algorithms. Keywords: clay sensitivity, landslide, Artificial Neural Network

  5. Powered Descent Trajectory Guidance and Some Considerations for Human Lunar Landing

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald R.

    2007-01-01

    The Autonomous Precision Landing and Hazard Detection and Avoidance Technology development (ALHAT) will enable an accurate (better than 100m) landing on the lunar surface. This technology will also permit autonomous (independent from ground) avoidance of hazards detected in real time. A preliminary trajectory guidance algorithm capable of supporting these tasks has been developed and demonstrated in simulations. Early results suggest that with expected improvements in sensor technology and lunar mapping, mission objectives are achievable.

  6. A Multi-Week Behavioral Sampling Tag for Sound Effects Studies: Design Trade-Offs and Prototype Evaluation

    DTIC Science & Technology

    2014-09-30

    to establish the performance of algorithms detecting dives, strokes , clicks, respiration and gait changes. We have also found that a combination of...whale click count, total click count, vocal duration, SOC2 depth, EOC3 depth) Descent 40 bits (duration, vertical speed, stroke count 0...100 m, stroke count 100-400 m, OBDA4, sum sr35) Bottom 26 bits (movement index6, OBDA, jerk events7, median jerk depth) Ascent

  7. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  8. Spinning BTZ black hole versus Kerr black hole: A closer look

    NASA Astrophysics Data System (ADS)

    Kim, Hongsu

    1999-03-01

    By applying Newman's algorithm, the AdS3 rotating black hole solution is ``derived'' from the nonrotating black hole solution of Bañados, Teitelboim, and Zanelli (BTZ). The rotating BTZ solution derived in this fashion is given in ``Boyer-Lindquist-type'' coordinates whereas the form of the solution originally given by BTZ is given in kind of ``unfamiliar'' coordinates which are related to each other by a transformation of time coordinate alone. The relative physical meaning between these two time coordinates is carefully studied. Since the Kerr-type and Boyer-Lindquist-type coordinates for rotating BTZ solution are newly found via Newman's algorithm, the transformation to Kerr-Schild-type coordinates is looked for. Indeed, such a transformation is found to exist. In these Kerr-Schild-type coordinates, a truly maximal extension of its global structure by analytically continuing to an ``antigravity universe'' region is carried out.

  9. A study on the performance comparison of metaheuristic algorithms on the learning of neural networks

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2017-08-01

    The learning or training process of neural networks entails the task of finding the most optimal set of parameters, which includes translation vectors, dilation parameter, synaptic weights, and bias terms. Apart from the traditional gradient descent-based methods, metaheuristic methods can also be used for this learning purpose. Since the inception of genetic algorithm half a century ago, the last decade witnessed the explosion of a variety of novel metaheuristic algorithms, such as harmony search algorithm, bat algorithm, and whale optimization algorithm. Despite the proof of the no free lunch theorem in the discipline of optimization, a survey in the literature of machine learning gives contrasting results. Some researchers report that certain metaheuristic algorithms are superior to the others, whereas some others argue that different metaheuristic algorithms give comparable performance. As such, this paper aims to investigate if a certain metaheuristic algorithm will outperform the other algorithms. In this work, three metaheuristic algorithms, namely genetic algorithms, particle swarm optimization, and harmony search algorithm are considered. The algorithms are incorporated in the learning of neural networks and their classification results on the benchmark UCI machine learning data sets are compared. It is found that all three metaheuristic algorithms give similar and comparable performance, as captured in the average overall classification accuracy. The results corroborate the findings reported in the works done by previous researchers. Several recommendations are given, which include the need of statistical analysis to verify the results and further theoretical works to support the obtained empirical results.

  10. Pharmacogenomics of warfarin in populations of African descent.

    PubMed

    Suarez-Kurtz, Guilherme; Botton, Mariana R

    2013-02-01

    Warfarin is the most commonly prescribed oral anticoagulant worldwide despite its narrow therapeutic index and the notorious inter- and intra-individual variability in dose required for the target clinical effect. Pharmacogenetic polymorphisms are major determinants of warfarin pharmacokinetic and dynamics and included in several warfarin dosing algorithms. This review focuses on warfarin pharmacogenomics in sub-Saharan peoples, African Americans and admixed Brazilians. These 'Black' populations differ in several aspects, notably their extent of recent admixture with Europeans, a factor which impacts on the frequency distribution of pharmacogenomic polymorphisms relevant to warfarin dose requirement for the target clinical effect. Whereas a small number of polymorphisms in VKORC1 (3673G > A, rs9923231), CYP2C9 (alleles *2 and *3, rs1799853 and rs1057910, respectively) and arguably CYP4F2 (rs2108622), may capture most of the pharmacogenomic influence on warfarin dose variance in White populations, additional polymorphisms in these, and in other, genes (e.g. CALU rs339097) increase the predictive power of pharmacogenetic warfarin dosing algorithms in the Black populations examined. A personalized strategy for initiation of warfarin therapy, allowing for improved safety and cost-effectiveness for populations of African descent must take into account their pharmacogenomic diversity, as well as socio-economical, cultural and medical factors. Accounting for this heterogeneity in algorithms that are 'friendly' enough to be adopted by warfarin prescribers worldwide requires gathering information from trials at different population levels, but demands also a critical appraisal of racial/ethnic labels that are commonly used in the clinical pharmacology literature but do not accurately reflect genetic ancestry and population diversity. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  11. Optimization for high-dose-rate brachytherapy of cervical cancer with adaptive simulated annealing and gradient descent.

    PubMed

    Yao, Rui; Templeton, Alistair K; Liao, Yixiang; Turian, Julius V; Kiel, Krystyna D; Chu, James C H

    2014-01-01

    To validate an in-house optimization program that uses adaptive simulated annealing (ASA) and gradient descent (GD) algorithms and investigate features of physical dose and generalized equivalent uniform dose (gEUD)-based objective functions in high-dose-rate (HDR) brachytherapy for cervical cancer. Eight Syed/Neblett template-based cervical cancer HDR interstitial brachytherapy cases were used for this study. Brachytherapy treatment plans were first generated using inverse planning simulated annealing (IPSA). Using the same dwell positions designated in IPSA, plans were then optimized with both physical dose and gEUD-based objective functions, using both ASA and GD algorithms. Comparisons were made between plans both qualitatively and based on dose-volume parameters, evaluating each optimization method and objective function. A hybrid objective function was also designed and implemented in the in-house program. The ASA plans are higher on bladder V75% and D2cc (p=0.034) and lower on rectum V75% and D2cc (p=0.034) than the IPSA plans. The ASA and GD plans are not significantly different. The gEUD-based plans have higher homogeneity index (p=0.034), lower overdose index (p=0.005), and lower rectum gEUD and normal tissue complication probability (p=0.005) than the physical dose-based plans. The hybrid function can produce a plan with dosimetric parameters between the physical dose-based and gEUD-based plans. The optimized plans with the same objective value and dose-volume histogram could have different dose distributions. Our optimization program based on ASA and GD algorithms is flexible on objective functions, optimization parameters, and can generate optimized plans comparable with IPSA. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  12. GPS-Free Localization Algorithm for Wireless Sensor Networks

    PubMed Central

    Wang, Lei; Xu, Qingzheng

    2010-01-01

    Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time. PMID:22219694

  13. Learning and optimization with cascaded VLSI neural network building-block chips

    NASA Technical Reports Server (NTRS)

    Duong, T.; Eberhardt, S. P.; Tran, M.; Daud, T.; Thakoor, A. P.

    1992-01-01

    To demonstrate the versatility of the building-block approach, two neural network applications were implemented on cascaded analog VLSI chips. Weights were implemented using 7-b multiplying digital-to-analog converter (MDAC) synapse circuits, with 31 x 32 and 32 x 32 synapses per chip. A novel learning algorithm compatible with analog VLSI was applied to the two-input parity problem. The algorithm combines dynamically evolving architecture with limited gradient-descent backpropagation for efficient and versatile supervised learning. To implement the learning algorithm in hardware, synapse circuits were paralleled for additional quantization levels. The hardware-in-the-loop learning system allocated 2-5 hidden neurons for parity problems. Also, a 7 x 7 assignment problem was mapped onto a cascaded 64-neuron fully connected feedback network. In 100 randomly selected problems, the network found optimal or good solutions in most cases, with settling times in the range of 7-100 microseconds.

  14. Off-Policy Integral Reinforcement Learning Method to Solve Nonlinear Continuous-Time Multiplayer Nonzero-Sum Games.

    PubMed

    Song, Ruizhuo; Lewis, Frank L; Wei, Qinglai

    2017-03-01

    This paper establishes an off-policy integral reinforcement learning (IRL) method to solve nonlinear continuous-time (CT) nonzero-sum (NZS) games with unknown system dynamics. The IRL algorithm is presented to obtain the iterative control and off-policy learning is used to allow the dynamics to be completely unknown. Off-policy IRL is designed to do policy evaluation and policy improvement in the policy iteration algorithm. Critic and action networks are used to obtain the performance index and control for each player. The gradient descent algorithm makes the update of critic and action weights simultaneously. The convergence analysis of the weights is given. The asymptotic stability of the closed-loop system and the existence of Nash equilibrium are proved. The simulation study demonstrates the effectiveness of the developed method for nonlinear CT NZS games with unknown system dynamics.

  15. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Shiri, Jalal

    2012-06-01

    Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.

  16. Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Motta, Mario; Zhang, Shiwei

    2018-05-01

    We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.

  17. Distributed Coordination of Energy Storage with Distributed Generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tao; Wu, Di; Stoorvogel, Antonie A.

    2016-07-18

    With a growing emphasis on energy efficiency and system flexibility, a great effort has been made recently in developing distributed energy resources (DER), including distributed generators and energy storage systems. This paper first formulates an optimal coordination problem considering constraints at both system and device levels, including power balance constraint, generator output limits, storage energy and power capacity and charging/discharging efficiencies. An algorithm is then proposed to dynamically and automatically coordinate DERs in a distributed manner. With the proposed algorithm, the agent at each DER only maintains a local incremental cost and updates it through information exchange with a fewmore » neighbors, without relying on any central decision maker. Simulation results are used to illustrate and validate the proposed algorithm.« less

  18. Maneuvering Rotorcraft Noise Prediction: A New Code for a New Problem

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Bres, Guillaume A.; Perez, Guillaume; Jones, Henry E.

    2002-01-01

    This paper presents the unique aspects of the development of an entirely new maneuver noise prediction code called PSU-WOPWOP. The main focus of the code is the aeroacoustic aspects of the maneuver noise problem, when the aeromechanical input data are provided (namely aircraft and blade motion, blade airloads). The PSU-WOPWOP noise prediction capability was developed for rotors in steady and transient maneuvering flight. Featuring an object-oriented design, the code allows great flexibility for complex rotor configuration and motion (including multiple rotors and full aircraft motion). The relative locations and number of hinges, flexures, and body motions can be arbitrarily specified to match the any specific rotorcraft. An analysis of algorithm efficiency is performed for maneuver noise prediction along with a description of the tradeoffs made specifically for the maneuvering noise problem. Noise predictions for the main rotor of a rotorcraft in steady descent, transient (arrested) descent, hover and a mild "pop-up" maneuver are demonstrated.

  19. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices

    PubMed Central

    Guiry, John J.; van de Ven, Pepijn; Nelson, John

    2014-01-01

    In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices' ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances. PMID:24662406

  20. Multi-sensor fusion for enhanced contextual awareness of everyday activities with ubiquitous devices.

    PubMed

    Guiry, John J; van de Ven, Pepijn; Nelson, John

    2014-03-21

    In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices' ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances.

  1. Learning algorithms for human-machine interfaces.

    PubMed

    Danziger, Zachary; Fishbach, Alon; Mussa-Ivaldi, Ferdinando A

    2009-05-01

    The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore-Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction.

  2. Learning Algorithms for Human–Machine Interfaces

    PubMed Central

    Fishbach, Alon; Mussa-Ivaldi, Ferdinando A.

    2012-01-01

    The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore–Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction. PMID:19203886

  3. A fast summation method for oscillatory lattice sums

    NASA Astrophysics Data System (ADS)

    Denlinger, Ryan; Gimbutas, Zydrunas; Greengard, Leslie; Rokhlin, Vladimir

    2017-02-01

    We present a fast summation method for lattice sums of the type which arise when solving wave scattering problems with periodic boundary conditions. While there are a variety of effective algorithms in the literature for such calculations, the approach presented here is new and leads to a rigorous analysis of Wood's anomalies. These arise when illuminating a grating at specific combinations of the angle of incidence and the frequency of the wave, for which the lattice sums diverge. They were discovered by Wood in 1902 as singularities in the spectral response. The primary tools in our approach are the Euler-Maclaurin formula and a steepest descent argument. The resulting algorithm has super-algebraic convergence and requires only milliseconds of CPU time.

  4. Using High Resolution Design Spaces for Aerodynamic Shape Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Li, Wu; Padula, Sharon

    2004-01-01

    This paper explains why high resolution design spaces encourage traditional airfoil optimization algorithms to generate noisy shape modifications, which lead to inaccurate linear predictions of aerodynamic coefficients and potential failure of descent methods. By using auxiliary drag constraints for a simultaneous drag reduction at all design points and the least shape distortion to achieve the targeted drag reduction, an improved algorithm generates relatively smooth optimal airfoils with no severe off-design performance degradation over a range of flight conditions, in high resolution design spaces parameterized by cubic B-spline functions. Simulation results using FUN2D in Euler flows are included to show the capability of the robust aerodynamic shape optimization method over a range of flight conditions.

  5. Dynamic metrology and data processing for precision freeform optics fabrication and testing

    NASA Astrophysics Data System (ADS)

    Aftab, Maham; Trumper, Isaac; Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan; Oh, Chang Jin; Kim, Dae Wook

    2017-06-01

    Dynamic metrology holds the key to overcoming several challenging limitations of conventional optical metrology, especially with regards to precision freeform optical elements. We present two dynamic metrology systems: 1) adaptive interferometric null testing; and 2) instantaneous phase shifting deflectometry, along with an overview of a gradient data processing and surface reconstruction technique. The adaptive null testing method, utilizing a deformable mirror, adopts a stochastic parallel gradient descent search algorithm in order to dynamically create a null testing condition for unknown freeform optics. The single-shot deflectometry system implemented on an iPhone uses a multiplexed display pattern to enable dynamic measurements of time-varying optical components or optics in vibration. Experimental data, measurement accuracy / precision, and data processing algorithms are discussed.

  6. Precise Image-Based Motion Estimation for Autonomous Small Body Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Matthies, Larry H.

    1998-01-01

    Space science and solar system exploration are driving NASA to develop an array of small body missions ranging in scope from near body flybys to complete sample return. This paper presents an algorithm for onboard motion estimation that will enable the precision guidance necessary for autonomous small body landing. Our techniques are based on automatic feature tracking between a pair of descent camera images followed by two frame motion estimation and scale recovery using laser altimetry data. The output of our algorithm is an estimate of rigid motion (attitude and position) and motion covariance between frames. This motion estimate can be passed directly to the spacecraft guidance and control system to enable rapid execution of safe and precise trajectories.

  7. Sparse Group Penalized Integrative Analysis of Multiple Cancer Prognosis Datasets

    PubMed Central

    Liu, Jin; Huang, Jian; Xie, Yang; Ma, Shuangge

    2014-01-01

    SUMMARY In cancer research, high-throughput profiling studies have been extensively conducted, searching for markers associated with prognosis. Because of the “large d, small n” characteristic, results generated from the analysis of a single dataset can be unsatisfactory. Recent studies have shown that integrative analysis, which simultaneously analyzes multiple datasets, can be more effective than single-dataset analysis and classic meta-analysis. In most of existing integrative analysis, the homogeneity model has been assumed, which postulates that different datasets share the same set of markers. Several approaches have been designed to reinforce this assumption. In practice, different datasets may differ in terms of patient selection criteria, profiling techniques, and many other aspects. Such differences may make the homogeneity model too restricted. In this study, we assume the heterogeneity model, under which different datasets are allowed to have different sets of markers. With multiple cancer prognosis datasets, we adopt the AFT (accelerated failure time) model to describe survival. This model may have the lowest computational cost among popular semiparametric survival models. For marker selection, we adopt a sparse group MCP (minimax concave penalty) approach. This approach has an intuitive formulation and can be computed using an effective group coordinate descent algorithm. Simulation study shows that it outperforms the existing approaches under both the homogeneity and heterogeneity models. Data analysis further demonstrates the merit of heterogeneity model and proposed approach. PMID:23938111

  8. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    PubMed

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  9. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method

    PubMed Central

    Liu, Fei; Luo, Jianwen; Xie, Yaoqin; Bai, Jing

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods. PMID:27576245

  10. The Mars Science Laboratory Entry, Descent, and Landing Flight Software

    NASA Technical Reports Server (NTRS)

    Gostelow, Kim P.

    2013-01-01

    This paper describes the design, development, and testing of the EDL program from the perspective of the software engineer. We briefly cover the overall MSL flight software organization, and then the organization of EDL itself. We discuss the timeline, the structure of the GNC code (but not the algorithms as they are covered elsewhere in this conference) and the command and telemetry interfaces. Finally, we cover testing and the influence that testability had on the EDL flight software design.

  11. Matrix elements of vibration kinetic energy operator of tetrahedral molecules in non-orthogonal-dependent coordinates

    NASA Astrophysics Data System (ADS)

    Protasevich, Alexander E.; Nikitin, Andrei V.

    2018-01-01

    In this work, we propose an algorithm for calculating the matrix elements of the kinetic energy operator for tetrahedral molecules. This algorithm uses the dependent six-angle coordinates (6A) and takes into account the full symmetry of molecules. Unlike A.V. Nikitin, M. Rey, and Vl. G. Tyuterev who operate with the kinetic energy operator only in Radau orthogonal coordinates, we consider a general case. The matrix elements are shown to be a sum of products of one-dimensional integrals.

  12. Multi-Agent Task Negotiation Among UAVs to Defend Against Swarm Attacks

    DTIC Science & Technology

    2012-03-01

    are based on economic models [39]. Auction methods of task coordination also attempt to deal with agents dealing with noisy, dynamic environments...August 2006. [34] M. Alighanbari, “ Robust and decentralized task assignment algorithms for uavs,” Ph.D. dissertation, Massachusetts Institute of Technology...Implicit Coordination . . . . . . . . . . . . . 12 2.4 Decentralized Algorithm B - Market- Based . . . . . . . . . . . . . . . . 12 2.5 Decentralized

  13. Advancements to the planogram frequency–distance rebinning algorithm

    PubMed Central

    Champley, Kyle M; Raylman, Raymond R; Kinahan, Paul E

    2010-01-01

    In this paper we consider the task of image reconstruction in positron emission tomography (PET) with the planogram frequency–distance rebinning (PFDR) algorithm. The PFDR algorithm is a rebinning algorithm for PET systems with panel detectors. The algorithm is derived in the planogram coordinate system which is a native data format for PET systems with panel detectors. A rebinning algorithm averages over the redundant four-dimensional set of PET data to produce a three-dimensional set of data. Images can be reconstructed from this rebinned three-dimensional set of data. This process enables one to reconstruct PET images more quickly than reconstructing directly from the four-dimensional PET data. The PFDR algorithm is an approximate rebinning algorithm. We show that implementing the PFDR algorithm followed by the (ramp) filtered backprojection (FBP) algorithm in linogram coordinates from multiple views reconstructs a filtered version of our image. We develop an explicit formula for this filter which can be used to achieve exact reconstruction by means of a modified FBP algorithm applied to the stack of rebinned linograms and can also be used to quantify the errors introduced by the PFDR algorithm. This filter is similar to the filter in the planogram filtered backprojection algorithm derived by Brasse et al. The planogram filtered backprojection and exact reconstruction with the PFDR algorithm require complete projections which can be completed with a reprojection algorithm. The PFDR algorithm is similar to the rebinning algorithm developed by Kao et al. By expressing the PFDR algorithm in detector coordinates, we provide a comparative analysis between the two algorithms. Numerical experiments using both simulated data and measured data from a positron emission mammography/tomography (PEM/PET) system are performed. Images are reconstructed by PFDR+FBP (PFDR followed by 2D FBP reconstruction), PFDRX (PFDR followed by the modified FBP algorithm for exact reconstruction) and planogram filtered backprojection image reconstruction algorithms. We show that the PFDRX algorithm produces images that are nearly as accurate as images reconstructed with the planogram filtered backprojection algorithm and more accurate than images reconstructed with the PFDR+FBP algorithm. Both the PFDR+FBP and PFDRX algorithms provide a dramatic improvement in computation time over the planogram filtered backprojection algorithm. PMID:20436790

  14. Aerosol Plume Detection Algorithm Based on Image Segmentation of Scanning Atmospheric Lidar Data

    DOE PAGES

    Weekley, R. Andrew; Goodrich, R. Kent; Cornman, Larry B.

    2016-04-06

    An image-processing algorithm has been developed to identify aerosol plumes in scanning lidar backscatter data. The images in this case consist of lidar data in a polar coordinate system. Each full lidar scan is taken as a fixed image in time, and sequences of such scans are considered functions of time. The data are analyzed in both the original backscatter polar coordinate system and a lagged coordinate system. The lagged coordinate system is a scatterplot of two datasets, such as subregions taken from the same lidar scan (spatial delay), or two sequential scans in time (time delay). The lagged coordinatemore » system processing allows for finding and classifying clusters of data. The classification step is important in determining which clusters are valid aerosol plumes and which are from artifacts such as noise, hard targets, or background fields. These cluster classification techniques have skill since both local and global properties are used. Furthermore, more information is available since both the original data and the lag data are used. Performance statistics are presented for a limited set of data processed by the algorithm, where results from the algorithm were compared to subjective truth data identified by a human.« less

  15. Algorithm design for a gun simulator based on image processing

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Wei, Ping; Ke, Jun

    2015-08-01

    In this paper, an algorithm is designed for shooting games under strong background light. Six LEDs are uniformly distributed on the edge of a game machine screen. They are located at the four corners and in the middle of the top and the bottom edges. Three LEDs are enlightened in the odd frames, and the other three are enlightened in the even frames. A simulator is furnished with one camera, which is used to obtain the image of the LEDs by applying inter-frame difference between the even and odd frames. In the resulting images, six LED are six bright spots. To obtain the LEDs' coordinates rapidly, we proposed a method based on the area of the bright spots. After calibrating the camera based on a pinhole model, four equations can be found using the relationship between the image coordinate system and the world coordinate system with perspective transformation. The center point of the image of LEDs is supposed to be at the virtual shooting point. The perspective transformation matrix is applied to the coordinate of the center point. Then we can obtain the virtual shooting point's coordinate in the world coordinate system. When a game player shoots a target about two meters away, using the method discussed in this paper, the calculated coordinate error is less than ten mm. We can obtain 65 coordinate results per second, which meets the requirement of a real-time system. It proves the algorithm is reliable and effective.

  16. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2016-01-01

    This paper describes an algorithm for atmospheric state estimation based on a coupling between inertial navigation and flush air data-sensing pressure measurements. The navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to estimate the atmosphere using a nonlinear weighted least-squares algorithm. The approach uses a high-fidelity model of atmosphere stored in table-lookup form, along with simplified models propagated along the trajectory within the algorithm to aid the solution. Thus, the method is a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content. The algorithm is applied to the design of the pressure measurement system for the Mars 2020 mission. A linear covariance analysis is performed to assess estimator performance. The results indicate that the new estimator produces more precise estimates of atmospheric states than existing algorithms.

  17. Research on large spatial coordinate automatic measuring system based on multilateral method

    NASA Astrophysics Data System (ADS)

    Miao, Dongjing; Li, Jianshuan; Li, Lianfu; Jiang, Yuanlin; Kang, Yao; He, Mingzhao; Deng, Xiangrui

    2015-10-01

    To measure the spatial coordinate accurately and efficiently in large size range, a manipulator automatic measurement system which based on multilateral method is developed. This system is divided into two parts: The coordinate measurement subsystem is consists of four laser tracers, and the trajectory generation subsystem is composed by a manipulator and a rail. To ensure that there is no laser beam break during the measurement process, an optimization function is constructed by using the vectors between the laser tracers measuring center and the cat's eye reflector measuring center, then an orientation automatically adjust algorithm for the reflector is proposed, with this algorithm, the laser tracers are always been able to track the reflector during the entire measurement process. Finally, the proposed algorithm is validated by taking the calibration of laser tracker for instance: the actual experiment is conducted in 5m × 3m × 3.2m range, the algorithm is used to plan the orientations of the reflector corresponding to the given 24 points automatically. After improving orientations of some minority points with adverse angles, the final results are used to control the manipulator's motion. During the actual movement, there are no beam break occurs. The result shows that the proposed algorithm help the developed system to measure the spatial coordinates over a large range with efficiency.

  18. A mesh gradient technique for numerical optimization

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.

    1973-01-01

    A class of successive-improvement optimization methods in which directions of descent are defined in the state space along each trial trajectory are considered. The given problem is first decomposed into two discrete levels by imposing mesh points. Level 1 consists of running optimal subarcs between each successive pair of mesh points. For normal systems, these optimal two-point boundary value problems can be solved by following a routine prescription if the mesh spacing is sufficiently close. A spacing criterion is given. Under appropriate conditions, the criterion value depends only on the coordinates of the mesh points, and its gradient with respect to those coordinates may be defined by interpreting the adjoint variables as partial derivatives of the criterion value function. In level 2, the gradient data is used to generate improvement steps or search directions in the state space which satisfy the boundary values and constraints of the given problem.

  19. Technical Note: FreeCT_ICD: An Open Source Implementation of a Model-Based Iterative Reconstruction Method using Coordinate Descent Optimization for CT Imaging Investigations.

    PubMed

    Hoffman, John M; Noo, Frédéric; Young, Stefano; Hsieh, Scott S; McNitt-Gray, Michael

    2018-06-01

    To facilitate investigations into the impacts of acquisition and reconstruction parameters on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open source implementation of a conventional weighted filtered backprojection reconstruction called FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation of a model-based iterative reconstruction method using coordinate descent optimization, called FreeCT_ICD. Model-based iterative reconstruction offers the potential for substantial radiation dose reduction, but can impose substantial computational processing and storage requirements. FreeCT_ICD is an open source implementation of a model-based iterative reconstruction method that provides a reasonable tradeoff between these requirements. This was accomplished by adapting a previously proposed method that allows the system matrix to be stored with a reasonable memory requirement. The method amounts to describing the attenuation coefficient using rotating slices that follow the helical geometry. In the initially-proposed version, the rotating slices are themselves described using blobs. We have replaced this description by a unique model that relies on tri-linear interpolation together with the principles of Joseph's method. This model offers an improvement in memory requirement while still allowing highly accurate reconstruction for conventional CT geometries. The system matrix is stored column-wise and combined with an iterative coordinate descent (ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the Linux platform using C++ libraries and the open source GNU GPL v2.0 license. The software is capable of reconstructing raw projection data of helical CT scans. In this work, the software has been described and evaluated by reconstructing datasets exported from a clinical scanner which consisted of an ACR accreditation phantom dataset and a clinical pediatric thoracic scan. For the ACR phantom, image quality was comparable to clinical reconstructions as well as reconstructions using open-source FreeCT_wFBP software. The pediatric thoracic scan also yielded acceptable results. In addition, we did not observe any deleterious impact in image quality associated with the utilization of rotating slices. These evaluations also demonstrated reasonable tradeoffs in storage requirements and computational demands. FreeCT_ICD is an open-source implementation of a model-based iterative reconstruction method that extends the capabilities of previously released open source reconstruction software and provides the ability to perform vendor-independent reconstructions of clinically acquired raw projection data. This implementation represents a reasonable tradeoff between storage and computational requirements and has demonstrated acceptable image quality in both simulated and clinical image datasets. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Algorithmic Coordination in Robotic Networks

    DTIC Science & Technology

    2010-11-29

    appropriate performance, robustness and scalability properties for various task allocation , surveillance, and information gathering applications is...networking, we envision designing and analyzing algorithms with appropriate performance, robustness and scalability properties for various task ...distributed algorithms for target assignments; based on the classic auction algorithms in static networks, we intend to design efficient algorithms in worst

  1. Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Freels, J. D.

    1989-01-01

    A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.

  2. Predictability of Top of Descent Location for Operational Idle-Thrust Descents

    NASA Technical Reports Server (NTRS)

    Stell, Laurel L.

    2010-01-01

    To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its uncertainty models, commercial flights executed idle-thrust descents at a specified descent speed, and the recorded data included the specified descent speed profile, aircraft weight, and the winds entered into the FMS as well as the radar data. The FMS computed the intended descent path assuming idle thrust after top of descent (TOD), and the controllers and pilots then endeavored to allow the FMS to fly the descent to the meter fix with minimal human intervention. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location were extracted from the radar data. Using approximately 70 descents each in Boeing 757 and Airbus 319/320 aircraft, multiple regression estimated TOD location as a linear function of the available predictive factors. The cruise and meter fix altitudes, descent speed, and wind clearly improve goodness of fit. The aircraft weight improves fit for the Airbus descents but not for the B757. Except for a few statistical outliers, the residuals have absolute value less than 5 nmi. Thus, these predictive factors adequately explain the TOD location, which indicates the data do not include excessive noise.

  3. CONCAM's Fuzzy-Logic All-Sky Star Recognition Algorithm

    NASA Astrophysics Data System (ADS)

    Shamir, L.; Nemiroff, R. J.

    2004-05-01

    One of the purposes of the global Night Sky Live (NSL) network of fisheye CONtinuous CAMeras (CONCAMs) is to monitor and archive the entire bright night sky, track stellar variability, and search for transients. The high quality of raw CONCAM data allows automation of stellar object recognition, although distortions of the fisheye lens and frequent slight shifts in CONCAM orientations can make even this seemingly simple task formidable. To meet this challenge, a fuzzy logic based algorithm has been developed that transforms (x,y) image coordinates in the CCD frame into fuzzy right ascension and declination coordinates for use in matching with star catalogs. Using a training set of reference stars, the algorithm statically builds the fuzzy logic model. At runtime, the algorithm searches for peaks, and then applies the fuzzy logic model to perform the coordinate transformation before choosing the optimal star catalog match. The present fuzzy-logic algorithm works much better than our first generation, straightforward coordinate transformation formula. Following this essential step, algorithms dealing with the higher level data products can then provide a stream of photometry for a few hundred stellar objects visible in the night sky. Accurate photometry further enables the computation of all-sky maps of skyglow and opacity, as well as a search for uncataloged transients. All information is stored in XML-like tagged ASCII files that are instantly copied to the public domain and available at http://NightSkyLive.net. Currently, the NSL software detects stars and creates all-sky image files from eight different locations around the globe every 3 minutes and 56 seconds.

  4. The MESUR Mission

    NASA Technical Reports Server (NTRS)

    Squyres, S. W.

    1993-01-01

    The MESUR mission will place a network of small, robust landers on the Martian surface, making a coordinated set of observations for at least one Martian year. MESUR presents some major challenges for development of instruments, instrument deployment systems, and on board data processing techniques. The instrument payload has not yet been selected, but the straw man payload is (1) a three-axis seismometer; (2) a meteorology package that senses pressure, temperature, wind speed and direction, humidity, and sky brightness; (3) an alphaproton-X-ray spectrometer (APXS); (4) a thermal analysis/evolved gas analysis (TA/EGA) instrument; (5) a descent imager, (6) a panoramic surface imager; (7) an atmospheric structure instrument (ASI) that senses pressure, temperature, and acceleration during descent to the surface; and (8) radio science. Because of the large number of landers to be sent (about 16), all these instruments must be very lightweight. All but the descent imager and the ASI must survive landing loads that may approach 100 g. The meteorology package, seismometer, and surface imager must be able to survive on the surface for at least one Martian year. The seismometer requires deployment off the lander body. The panoramic imager and some components of the meteorology package require deployment above the lander body. The APXS must be placed directly against one or more rocks near the lander, prompting consideration of a micro rover for deployment of this instrument. The TA/EGA requires a system to acquire, contain, and heat a soil sample. Both the imagers and, especially, the seismometer will be capable of producing large volumes of data, and will require use of sophisticated data compression techniques.

  5. Piecewise convexity of artificial neural networks.

    PubMed

    Rister, Blaine; Rubin, Daniel L

    2017-10-01

    Although artificial neural networks have shown great promise in applications including computer vision and speech recognition, there remains considerable practical and theoretical difficulty in optimizing their parameters. The seemingly unreasonable success of gradient descent methods in minimizing these non-convex functions remains poorly understood. In this work we offer some theoretical guarantees for networks with piecewise affine activation functions, which have in recent years become the norm. We prove three main results. First, that the network is piecewise convex as a function of the input data. Second, that the network, considered as a function of the parameters in a single layer, all others held constant, is again piecewise convex. Third, that the network as a function of all its parameters is piecewise multi-convex, a generalization of biconvexity. From here we characterize the local minima and stationary points of the training objective, showing that they minimize the objective on certain subsets of the parameter space. We then analyze the performance of two optimization algorithms on multi-convex problems: gradient descent, and a method which repeatedly solves a number of convex sub-problems. We prove necessary convergence conditions for the first algorithm and both necessary and sufficient conditions for the second, after introducing regularization to the objective. Finally, we remark on the remaining difficulty of the global optimization problem. Under the squared error objective, we show that by varying the training data, a single rectifier neuron admits local minima arbitrarily far apart, both in objective value and parameter space. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sparse Representation with Spatio-Temporal Online Dictionary Learning for Efficient Video Coding.

    PubMed

    Dai, Wenrui; Shen, Yangmei; Tang, Xin; Zou, Junni; Xiong, Hongkai; Chen, Chang Wen

    2016-07-27

    Classical dictionary learning methods for video coding suer from high computational complexity and interfered coding eciency by disregarding its underlying distribution. This paper proposes a spatio-temporal online dictionary learning (STOL) algorithm to speed up the convergence rate of dictionary learning with a guarantee of approximation error. The proposed algorithm incorporates stochastic gradient descents to form a dictionary of pairs of 3-D low-frequency and highfrequency spatio-temporal volumes. In each iteration of the learning process, it randomly selects one sample volume and updates the atoms of dictionary by minimizing the expected cost, rather than optimizes empirical cost over the complete training data like batch learning methods, e.g. K-SVD. Since the selected volumes are supposed to be i.i.d. samples from the underlying distribution, decomposition coecients attained from the trained dictionary are desirable for sparse representation. Theoretically, it is proved that the proposed STOL could achieve better approximation for sparse representation than K-SVD and maintain both structured sparsity and hierarchical sparsity. It is shown to outperform batch gradient descent methods (K-SVD) in the sense of convergence speed and computational complexity, and its upper bound for prediction error is asymptotically equal to the training error. With lower computational complexity, extensive experiments validate that the STOL based coding scheme achieves performance improvements than H.264/AVC or HEVC as well as existing super-resolution based methods in ratedistortion performance and visual quality.

  7. TH-AB-207A-05: A Fully-Automated Pipeline for Generating CT Images Across a Range of Doses and Reconstruction Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, S; Lo, P; Hoffman, J

    Purpose: To evaluate the robustness of CAD or Quantitative Imaging methods, they should be tested on a variety of cases and under a variety of image acquisition and reconstruction conditions that represent the heterogeneity encountered in clinical practice. The purpose of this work was to develop a fully-automated pipeline for generating CT images that represent a wide range of dose and reconstruction conditions. Methods: The pipeline consists of three main modules: reduced-dose simulation, image reconstruction, and quantitative analysis. The first two modules of the pipeline can be operated in a completely automated fashion, using configuration files and running the modulesmore » in a batch queue. The input to the pipeline is raw projection CT data; this data is used to simulate different levels of dose reduction using a previously-published algorithm. Filtered-backprojection reconstructions are then performed using FreeCT-wFBP, a freely-available reconstruction software for helical CT. We also added support for an in-house, model-based iterative reconstruction algorithm using iterative coordinate-descent optimization, which may be run in tandem with the more conventional recon methods. The reduced-dose simulations and image reconstructions are controlled automatically by a single script, and they can be run in parallel on our research cluster. The pipeline was tested on phantom and lung screening datasets from a clinical scanner (Definition AS, Siemens Healthcare). Results: The images generated from our test datasets appeared to represent a realistic range of acquisition and reconstruction conditions that we would expect to find clinically. The time to generate images was approximately 30 minutes per dose/reconstruction combination on a hybrid CPU/GPU architecture. Conclusion: The automated research pipeline promises to be a useful tool for either training or evaluating performance of quantitative imaging software such as classifiers and CAD algorithms across the range of acquisition and reconstruction parameters present in the clinical environment. Funding support: NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less

  8. A self-learning algorithm for biased molecular dynamics

    PubMed Central

    Tribello, Gareth A.; Ceriotti, Michele; Parrinello, Michele

    2010-01-01

    A new self-learning algorithm for accelerated dynamics, reconnaissance metadynamics, is proposed that is able to work with a very large number of collective coordinates. Acceleration of the dynamics is achieved by constructing a bias potential in terms of a patchwork of one-dimensional, locally valid collective coordinates. These collective coordinates are obtained from trajectory analyses so that they adapt to any new features encountered during the simulation. We show how this methodology can be used to enhance sampling in real chemical systems citing examples both from the physics of clusters and from the biological sciences. PMID:20876135

  9. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.

  10. A Model-Based Approach for the Measurement of Eye Movements Using Image Processing

    NASA Technical Reports Server (NTRS)

    Sung, Kwangjae; Reschke, Millard F.

    1997-01-01

    This paper describes a video eye-tracking algorithm which searches for the best fit of the pupil modeled as a circular disk. The algorithm is robust to common image artifacts such as the droopy eyelids and light reflections while maintaining the measurement resolution available by the centroid algorithm. The presented algorithm is used to derive the pupil size and center coordinates, and can be combined with iris-tracking techniques to measure ocular torsion. A comparison search method of pupil candidates using pixel coordinate reference lookup tables optimizes the processing requirements for a least square fit of the circular disk model. This paper includes quantitative analyses and simulation results for the resolution and the robustness of the algorithm. The algorithm presented in this paper provides a platform for a noninvasive, multidimensional eye measurement system which can be used for clinical and research applications requiring the precise recording of eye movements in three-dimensional space.

  11. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  12. Multigrid optimal mass transport for image registration and morphing

    NASA Astrophysics Data System (ADS)

    Rehman, Tauseef ur; Tannenbaum, Allen

    2007-02-01

    In this paper we present a computationally efficient Optimal Mass Transport algorithm. This method is based on the Monge-Kantorovich theory and is used for computing elastic registration and warping maps in image registration and morphing applications. This is a parameter free method which utilizes all of the grayscale data in an image pair in a symmetric fashion. No landmarks need to be specified for correspondence. In our work, we demonstrate significant improvement in computation time when our algorithm is applied as compared to the originally proposed method by Haker et al [1]. The original algorithm was based on a gradient descent method for removing the curl from an initial mass preserving map regarded as 2D vector field. This involves inverting the Laplacian in each iteration which is now computed using full multigrid technique resulting in an improvement in computational time by a factor of two. Greater improvement is achieved by decimating the curl in a multi-resolutional framework. The algorithm was applied to 2D short axis cardiac MRI images and brain MRI images for testing and comparison.

  13. Object recognition in images via a factor graph model

    NASA Astrophysics Data System (ADS)

    He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu

    2018-04-01

    Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.

  14. Algorithm for transforming the coordinates of lunar objects while changing from various coordinate systems into the selenocentric one

    NASA Astrophysics Data System (ADS)

    Mazurova, Elena; Mikhaylov, Aleksandr

    2013-04-01

    The selenocentric network of objects setting the coordinate system on the Moon, with the origin coinciding with the mass centre and axes directed along the inertia axes can become one of basic elements of the coordinate-time support for lunar navigation with use of cartographic materials and control objects. A powerful array of highly-precise and multiparameter information obtained by modern space vehicles allows one to establish Lunar Reference Frames (LRF) of an essentially another accuracy. Here, a special role is played by the results of scanning the lunar surface by the Lunar Reconnaissance Orbiter(LRO) American mission. The coordinates of points calculated only from the results of laser scanning have high enough accuracy of position definition with respect to each other, but it is possible to check up the real accuracy of spatial tie and improve the coordinates only by a network of points whose coordinates are computed both from laser scanning and other methods too, for example, by terrestrial laser location, space photogrammetry methods, and so on. The paper presents the algorithm for transforming selenocentric coordinate systems and the accuracy estimation of changing from one lunar coordinate system to another one. Keywords: selenocentric coordinate system, coordinate-time support.

  15. Agent Collaborative Target Localization and Classification in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.

  16. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.

    PubMed

    Walter, Jonathan P; Pandy, Marcus G

    2017-10-01

    The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. The coordinate system of the eye in cataract surgery: Performance comparison of the circle Hough transform and Daugman's algorithm

    NASA Astrophysics Data System (ADS)

    Vlachynska, Alzbeta; Oplatkova, Zuzana Kominkova; Sramka, Martin

    2017-07-01

    The aim of the work is to determine the coordinate system of an eye and insert a polar-axis system into images captured by a slip lamp. The image of the eye with the polar axis helps a surgeon accurately implant toric intraocular lens in the required position/rotation during the cataract surgery. In this paper, two common algorithms for pupil detection are compared: the circle Hough transform and Daugman's algorithm. The procedures were tested and analysed on the anonymous data set of 128 eyes captured at Gemini eye clinic in 2015.

  18. Tracking Objects with Networked Scattered Directional Sensors

    NASA Astrophysics Data System (ADS)

    Plarre, Kurt; Kumar, P. R.

    2007-12-01

    We study the problem of object tracking using highly directional sensors—sensors whose field of vision is a line or a line segment. A network of such sensors monitors a certain region of the plane. Sporadically, objects moving in straight lines and at a constant speed cross the region. A sensor detects an object when it crosses its line of sight, and records the time of the detection. No distance or angle measurements are available. The task of the sensors is to estimate the directions and speeds of the objects, and the sensor lines, which are unknown a priori. This estimation problem involves the minimization of a highly nonconvex cost function. To overcome this difficulty, we introduce an algorithm, which we call "adaptive basis algorithm." This algorithm is divided into three phases: in the first phase, the algorithm is initialized using data from six sensors and four objects; in the second phase, the estimates are updated as data from more sensors and objects are incorporated. The third phase is an optional coordinated transformation. The estimation is done in an "ad-hoc" coordinate system, which we call "adaptive coordinate system." When more information is available, for example, the location of six sensors, the estimates can be transformed to the "real-world" coordinate system. This constitutes the third phase.

  19. Power System Decomposition for Practical Implementation of Bulk-Grid Voltage Control Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    Power system algorithms such as AC optimal power flow and coordinated volt/var control of the bulk power system are computationally intensive and become difficult to solve in operational time frames. The computational time required to run these algorithms increases exponentially as the size of the power system increases. The solution time for multiple subsystems is less than that for solving the entire system simultaneously, and the local nature of the voltage problem lends itself to such decomposition. This paper describes an algorithm that can be used to perform power system decomposition from the point of view of the voltage controlmore » problem. Our approach takes advantage of the dominant localized effect of voltage control and is based on clustering buses according to the electrical distances between them. One of the contributions of the paper is to use multidimensional scaling to compute n-dimensional Euclidean coordinates for each bus based on electrical distance to perform algorithms like K-means clustering. A simple coordinated reactive power control of photovoltaic inverters for voltage regulation is used to demonstrate the effectiveness of the proposed decomposition algorithm and its components. The proposed decomposition method is demonstrated on the IEEE 118-bus system.« less

  20. Efficient algorithms for polyploid haplotype phasing.

    PubMed

    He, Dan; Saha, Subrata; Finkers, Richard; Parida, Laxmi

    2018-05-09

    Inference of haplotypes, or the sequence of alleles along the same chromosomes, is a fundamental problem in genetics and is a key component for many analyses including admixture mapping, identifying regions of identity by descent and imputation. Haplotype phasing based on sequencing reads has attracted lots of attentions. Diploid haplotype phasing where the two haplotypes are complimentary have been studied extensively. In this work, we focused on Polyploid haplotype phasing where we aim to phase more than two haplotypes at the same time from sequencing data. The problem is much more complicated as the search space becomes much larger and the haplotypes do not need to be complimentary any more. We proposed two algorithms, (1) Poly-Harsh, a Gibbs Sampling based algorithm which alternatively samples haplotypes and the read assignments to minimize the mismatches between the reads and the phased haplotypes, (2) An efficient algorithm to concatenate haplotype blocks into contiguous haplotypes. Our experiments showed that our method is able to improve the quality of the phased haplotypes over the state-of-the-art methods. To our knowledge, our algorithm for haplotype blocks concatenation is the first algorithm that leverages the shared information across multiple individuals to construct contiguous haplotypes. Our experiments showed that it is both efficient and effective.

  1. Optimization-based image reconstruction from sparse-view data in offset-detector CBCT

    NASA Astrophysics Data System (ADS)

    Bian, Junguo; Wang, Jiong; Han, Xiao; Sidky, Emil Y.; Shao, Lingxiong; Pan, Xiaochuan

    2013-01-01

    The field of view (FOV) of a cone-beam computed tomography (CBCT) unit in a single-photon emission computed tomography (SPECT)/CBCT system can be increased by offsetting the CBCT detector. Analytic-based algorithms have been developed for image reconstruction from data collected at a large number of densely sampled views in offset-detector CBCT. However, the radiation dose involved in a large number of projections can be of a health concern to the imaged subject. CBCT-imaging dose can be reduced by lowering the number of projections. As analytic-based algorithms are unlikely to reconstruct accurate images from sparse-view data, we investigate and characterize in the work optimization-based algorithms, including an adaptive steepest descent-weighted projection onto convex sets (ASD-WPOCS) algorithms, for image reconstruction from sparse-view data collected in offset-detector CBCT. Using simulated data and real data collected from a physical pelvis phantom and patient, we verify and characterize properties of the algorithms under study. Results of our study suggest that optimization-based algorithms such as ASD-WPOCS may be developed for yielding images of potential utility from a number of projections substantially smaller than those used currently in clinical SPECT/CBCT imaging, thus leading to a dose reduction in CBCT imaging.

  2. A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.

    PubMed

    Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe

    2018-01-01

    Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.

  3. First-charge instabilities of layered-layered lithium-ion-battery materials.

    PubMed

    Croy, Jason R; Iddir, Hakim; Gallagher, Kevin; Johnson, Christopher S; Benedek, Roy; Balasubramanian, Mahalingam

    2015-10-07

    Li- and Mn-rich layered oxides with composition xLi2MnO3·(1 -x)LiMO2 enable high capacity and energy density Li-ion batteries, but suffer from degradation with cycling. Evidence of atomic instabilities during the first charge are addressed in this work with X-ray absorption spectroscopy, first principles simulation at the GGA+U level, and existing literature. The pristine material of composition xLi2MnO3·(1 -x)LiMn0.5Ni0.5O2 is assumed in the simulations to have the form of LiMn2 stripes, alternating with NiMn stripes, in the metal layers. The charged state is simulated by removing Li from the Li layer, relaxing the resultant system by steepest descents, then allowing the structure to evolve by molecular dynamics at 1000 K, and finally relaxing the evolved system by steepest descents. The simulations show that about ¼ of the oxygen ions in the Li2MnO3 domains are displaced from their original lattice sites, and form oxygen-oxygen bonds, which significantly lowers the energy, relative to that of the starting structure in which the oxygen sublattice is intact. An important consequence of the displacement of the oxygen is that it enables about ⅓ of the (Li2MnO3 domain) Mn ions to migrate to the delithiated Li layers. The decrease in the coordination of the Mn ions is about twice that of the Ni ions. The approximate agreement of simulated coordination number deficits for Mn and Ni following the first charge with analysis of EXAFS measurements on 0.3Li2MnO3·0.7LiMn0.5Ni0.5O2 suggests that the simulation captures significant features of the real material.

  4. Optimum Strategies for Selecting Descent Flight-Path Angles

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)

    2016-01-01

    An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.

  5. A new modified conjugate gradient coefficient for solving system of linear equations

    NASA Astrophysics Data System (ADS)

    Hajar, N.; ‘Aini, N.; Shapiee, N.; Abidin, Z. Z.; Khadijah, W.; Rivaie, M.; Mamat, M.

    2017-09-01

    Conjugate gradient (CG) method is an evolution of computational method in solving unconstrained optimization problems. This approach is easy to implement due to its simplicity and has been proven to be effective in solving real-life application. Although this field has received copious amount of attentions in recent years, some of the new approaches of CG algorithm cannot surpass the efficiency of the previous versions. Therefore, in this paper, a new CG coefficient which retains the sufficient descent and global convergence properties of the original CG methods is proposed. This new CG is tested on a set of test functions under exact line search. Its performance is then compared to that of some of the well-known previous CG methods based on number of iterations and CPU time. The results show that the new CG algorithm has the best efficiency amongst all the methods tested. This paper also includes an application of the new CG algorithm for solving large system of linear equations

  6. Analysis of Air Traffic Track Data with the AutoBayes Synthesis System

    NASA Technical Reports Server (NTRS)

    Schumann, Johann Martin Philip; Cate, Karen; Lee, Alan G.

    2010-01-01

    The Next Generation Air Traffic System (NGATS) is aiming to provide substantial computer support for the air traffic controllers. Algorithms for the accurate prediction of aircraft movements are of central importance for such software systems but trajectory prediction has to work reliably in the presence of unknown parameters and uncertainties. We are using the AutoBayes program synthesis system to generate customized data analysis algorithms that process large sets of aircraft radar track data in order to estimate parameters and uncertainties. In this paper, we present, how the tasks of finding structure in track data, estimation of important parameters in climb trajectories, and the detection of continuous descent approaches can be accomplished with compact task-specific AutoBayes specifications. We present an overview of the AutoBayes architecture and describe, how its schema-based approach generates customized analysis algorithms, documented C/C++ code, and detailed mathematical derivations. Results of experiments with actual air traffic control data are discussed.

  7. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures.

    PubMed

    Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.

  8. Accurate modeling of switched reluctance machine based on hybrid trained WNN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Shoujun, E-mail: sunnyway@nwpu.edu.cn; Ge, Lefei; Ma, Shaojie

    2014-04-15

    According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, themore » nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.« less

  9. Feasibility study of low-dose intra-operative cone-beam CT for image-guided surgery

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Shi, Shuanghe; Bian, Junguo; Helm, Patrick; Sidky, Emil Y.; Pan, Xiaochuan

    2011-03-01

    Cone-beam computed tomography (CBCT) has been increasingly used during surgical procedures for providing accurate three-dimensional anatomical information for intra-operative navigation and verification. High-quality CBCT images are in general obtained through reconstruction from projection data acquired at hundreds of view angles, which is associated with a non-negligible amount of radiation exposure to the patient. In this work, we have applied a novel image-reconstruction algorithm, the adaptive-steepest-descent-POCS (ASD-POCS) algorithm, to reconstruct CBCT images from projection data at a significantly reduced number of view angles. Preliminary results from experimental studies involving both simulated data and real data show that images of comparable quality to those presently available in clinical image-guidance systems can be obtained by use of the ASD-POCS algorithm from a fraction of the projection data that are currently used. The result implies potential value of the proposed reconstruction technique for low-dose intra-operative CBCT imaging applications.

  10. About improving efficiency of the P3 M algorithms when computing the inter-particle forces in beam dynamics

    NASA Astrophysics Data System (ADS)

    Kozynchenko, Alexander I.; Kozynchenko, Sergey A.

    2017-03-01

    In the paper, a problem of improving efficiency of the particle-particle- particle-mesh (P3M) algorithm in computing the inter-particle electrostatic forces is considered. The particle-mesh (PM) part of the algorithm is modified in such a way that the space field equation is solved by the direct method of summation of potentials over the ensemble of particles lying not too close to a reference particle. For this purpose, a specific matrix "pattern" is introduced to describe the spatial field distribution of a single point charge, so the "pattern" contains pre-calculated potential values. This approach allows to reduce a set of arithmetic operations performed at the innermost of nested loops down to an addition and assignment operators and, therefore, to decrease the running time substantially. The simulation model developed in C++ substantiates this view, showing the descent accuracy acceptable in particle beam calculations together with the improved speed performance.

  11. Self-Organizing Hidden Markov Model Map (SOHMMM).

    PubMed

    Ferles, Christos; Stafylopatis, Andreas

    2013-12-01

    A hybrid approach combining the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The Self-Organizing Hidden Markov Model Map (SOHMMM) establishes a cross-section between the theoretic foundations and algorithmic realizations of its constituents. The respective architectures and learning methodologies are fused in an attempt to meet the increasing requirements imposed by the properties of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules. The fusion and synergy of the SOM unsupervised training and the HMM dynamic programming algorithms bring forth a novel on-line gradient descent unsupervised learning algorithm, which is fully integrated into the SOHMMM. Since the SOHMMM carries out probabilistic sequence analysis with little or no prior knowledge, it can have a variety of applications in clustering, dimensionality reduction and visualization of large-scale sequence spaces, and also, in sequence discrimination, search and classification. Two series of experiments based on artificial sequence data and splice junction gene sequences demonstrate the SOHMMM's characteristics and capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Evaluating and minimizing noise impact due to aircraft flyover

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Cook, G.

    1979-01-01

    Existing techniques were used to assess the noise impact on a community due to aircraft operation and to optimize the flight paths of an approaching aircraft with respect to the annoyance produced. Major achievements are: (1) the development of a population model suitable for determining the noise impact, (2) generation of a numerical computer code which uses this population model along with the steepest descent algorithm to optimize approach/landing trajectories, (3) implementation of this optimization code in several fictitious cases as well as for the community surrounding Patrick Henry International Airport, Virginia.

  13. Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam.

    PubMed

    Zhao, Haichuan; Wang, Xiaolin; Ma, Haotong; Zhou, Pu; Ma, Yanxing; Xu, Xiaojun; Zhao, Yijun

    2011-08-01

    We present a new method for efficiently transforming a high-order mode beam into a nearly Gaussian beam with much higher beam quality. The method is based on modulation of phases of different lobes by stochastic parallel gradient descent algorithm and coherent addition after phase flattening. We demonstrate the method by transforming an LP11 mode into a nearly Gaussian beam. The experimental results reveal that the power in the diffraction-limited bucket in the far field is increased by more than a factor of 1.5.

  14. Joint estimation of motion and illumination change in a sequence of images

    NASA Astrophysics Data System (ADS)

    Koo, Ja-Keoung; Kim, Hyo-Hun; Hong, Byung-Woo

    2015-09-01

    We present an algorithm that simultaneously computes optical flow and estimates illumination change from an image sequence in a unified framework. We propose an energy functional consisting of conventional optical flow energy based on Horn-Schunck method and an additional constraint that is designed to compensate for illumination changes. Any undesirable illumination change that occurs in the imaging procedure in a sequence while the optical flow is being computed is considered a nuisance factor. In contrast to the conventional optical flow algorithm based on Horn-Schunck functional, which assumes the brightness constancy constraint, our algorithm is shown to be robust with respect to temporal illumination changes in the computation of optical flows. An efficient conjugate gradient descent technique is used in the optimization procedure as a numerical scheme. The experimental results obtained from the Middlebury benchmark dataset demonstrate the robustness and the effectiveness of our algorithm. In addition, comparative analysis of our algorithm and Horn-Schunck algorithm is performed on the additional test dataset that is constructed by applying a variety of synthetic bias fields to the original image sequences in the Middlebury benchmark dataset in order to demonstrate that our algorithm outperforms the Horn-Schunck algorithm. The superior performance of the proposed method is observed in terms of both qualitative visualizations and quantitative accuracy errors when compared to Horn-Schunck optical flow algorithm that easily yields poor results in the presence of small illumination changes leading to violation of the brightness constancy constraint.

  15. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM)

    NASA Astrophysics Data System (ADS)

    Halliwell, George R.

    Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.

  16. Shape regularized active contour based on dynamic programming for anatomical structure segmentation

    NASA Astrophysics Data System (ADS)

    Yu, Tianli; Luo, Jiebo; Singhal, Amit; Ahuja, Narendra

    2005-04-01

    We present a method to incorporate nonlinear shape prior constraints into segmenting different anatomical structures in medical images. Kernel space density estimation (KSDE) is used to derive the nonlinear shape statistics and enable building a single model for a class of objects with nonlinearly varying shapes. The object contour is coerced by image-based energy into the correct shape sub-distribution (e.g., left or right lung), without the need for model selection. In contrast to an earlier algorithm that uses a local gradient-descent search (susceptible to local minima), we propose an algorithm that iterates between dynamic programming (DP) and shape regularization. DP is capable of finding an optimal contour in the search space that maximizes a cost function related to the difference between the interior and exterior of the object. To enforce the nonlinear shape prior, we propose two shape regularization methods, global and local regularization. Global regularization is applied after each DP search to move the entire shape vector in the shape space in a gradient descent fashion to the position of probable shapes learned from training. The regularized shape is used as the starting shape for the next iteration. Local regularization is accomplished through modifying the search space of the DP. The modified search space only allows a certain amount of deformation of the local shape from the starting shape. Both regularization methods ensure the consistency between the resulted shape with the training shapes, while still preserving DP"s ability to search over a large range and avoid local minima. Our algorithm was applied to two different segmentation tasks for radiographic images: lung field and clavicle segmentation. Both applications have shown that our method is effective and versatile in segmenting various anatomical structures under prior shape constraints; and it is robust to noise and local minima caused by clutter (e.g., blood vessels) and other similar structures (e.g., ribs). We believe that the proposed algorithm represents a major step in the paradigm shift to object segmentation under nonlinear shape constraints.

  17. Solvent-assisted multistage nonequilibrium electron transfer in rigid supramolecular systems: Diabatic free energy surfaces and algorithms for numerical simulations

    NASA Astrophysics Data System (ADS)

    Feskov, Serguei V.; Ivanov, Anatoly I.

    2018-03-01

    An approach to the construction of diabatic free energy surfaces (FESs) for ultrafast electron transfer (ET) in a supramolecule with an arbitrary number of electron localization centers (redox sites) is developed, supposing that the reorganization energies for the charge transfers and shifts between all these centers are known. Dimensionality of the coordinate space required for the description of multistage ET in this supramolecular system is shown to be equal to N - 1, where N is the number of the molecular centers involved in the reaction. The proposed algorithm of FES construction employs metric properties of the coordinate space, namely, relation between the solvent reorganization energy and the distance between the two FES minima. In this space, the ET reaction coordinate zn n' associated with electron transfer between the nth and n'th centers is calculated through the projection to the direction, connecting the FES minima. The energy-gap reaction coordinates zn n' corresponding to different ET processes are not in general orthogonal so that ET between two molecular centers can create nonequilibrium distribution, not only along its own reaction coordinate but along other reaction coordinates too. This results in the influence of the preceding ET steps on the kinetics of the ensuing ET. It is important for the ensuing reaction to be ultrafast to proceed in parallel with relaxation along the ET reaction coordinates. Efficient algorithms for numerical simulation of multistage ET within the stochastic point-transition model are developed. The algorithms are based on the Brownian simulation technique with the recrossing-event detection procedure. The main advantages of the numerical method are (i) its computational complexity is linear with respect to the number of electronic states involved and (ii) calculations can be naturally parallelized up to the level of individual trajectories. The efficiency of the proposed approach is demonstrated for a model supramolecular system involving four redox centers.

  18. Piloted Simulation Assessment of a High-Speed Civil Transport Configuration. [conducted with the Langley six-degree-of-freedom Visual Motion Simulator

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Raney, David L.; Glaab, Louis J.; Derry, Stephen D.

    2002-01-01

    An assessment of a proposed configuration of a high-speed civil transport was conducted by using NASA and industry research pilots. The assessment was conducted to evaluate operational aspects of the configuration from a pilot's perspective, with the primary goal being to identify potential deficiencies in the configuration. The configuration was evaluated within and at the limits of the design operating envelope to determine the suitability of the configuration to maneuver in a typical mission as well as in emergency or envelope-limit conditions. The Cooper-Harper rating scale was used to evaluate the flying qualities of the configuration. A summary flying qualities metric was also calculated. The assessment was performed in the Langley six-degree-of-freedom Visual Motion Simulator. The effect of a restricted cockpit field-of-view due to obstruction by the vehicle nose was not included in this study. Tasks include landings, takeoffs, climbs, descents, overspeeds, coordinated turns, and recoveries from envelope limit excursions. Emergencies included engine failures, loss of stability augmentation, engine inlet unstarts, and emergency descents. Minimum control speeds and takeoff decision, rotation, and safety speeds were also determined.

  19. Estimating the degree of identity by descent in consanguineous couples.

    PubMed

    Carr, Ian M; Markham, Sir Alexander F; Pena, Sérgio D J

    2011-12-01

    In some clinical and research settings, it is often necessary to identify the true level of "identity by descent" (IBD) between two individuals. However, as the individuals become more distantly related, it is increasingly difficult to accurately calculate this value. Consequently, we have developed a computer program that uses genome-wide SNP genotype data from related individuals to estimate the size and extent of IBD in their genomes. In addition, the software can compare a couple's IBD regions with either the autozygous regions of a relative affected by an autosomal recessive disease of unknown cause, or the IBD regions in the parents of the affected relative. It is then possible to calculate the probability of one of the couple's children suffering from the same disease. The software works by finding SNPs that exclude any possible IBD and then identifies regions that lack these SNPs, while exceeding a minimum size and number of SNPs. The accuracy of the algorithm was established by estimating the pairwise IBD between different members of a large pedigree with varying known coefficients of genetic relationship (CGR). © 2011 Wiley Periodicals, Inc.

  20. A Lagrange multiplier and Hopfield-type barrier function method for the traveling salesman problem.

    PubMed

    Dang, Chuangyin; Xu, Lei

    2002-02-01

    A Lagrange multiplier and Hopfield-type barrier function method is proposed for approximating a solution of the traveling salesman problem. The method is derived from applications of Lagrange multipliers and a Hopfield-type barrier function and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the method searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that lower and upper bounds on variables are always satisfied automatically if the step length is a number between zero and one. At each iteration, the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the method converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the method seems more effective and efficient than the softassign algorithm.

  1. Trajectory Design Employing Convex Optimization for Landing on Irregularly Shaped Asteroids

    NASA Technical Reports Server (NTRS)

    Pinson, Robin M.; Lu, Ping

    2016-01-01

    Mission proposals that land spacecraft on asteroids are becoming increasingly popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site with pinpoint precision. The problem under investigation is how to design a propellant optimal powered descent trajectory that can be quickly computed onboard the spacecraft, without interaction from the ground control. The propellant optimal control problem in this work is to determine the optimal finite thrust vector to land the spacecraft at a specified location, in the presence of a highly nonlinear gravity field, subject to various mission and operational constraints. The proposed solution uses convex optimization, a gravity model with higher fidelity than Newtonian, and an iterative solution process for a fixed final time problem. In addition, a second optimization method is wrapped around the convex optimization problem to determine the optimal flight time that yields the lowest propellant usage over all flight times. Gravity models designed for irregularly shaped asteroids are investigated. Success of the algorithm is demonstrated by designing powered descent trajectories for the elongated binary asteroid Castalia.

  2. Development and implementation of a navigator-facilitated care coordination algorithm to improve clinical outcomes of underserved Latino patients with uncontrolled diabetes.

    PubMed

    Congdon, Heather Brennan; Eldridge, Barbara Hoffman; Truong, Hoai-An

    2013-11-01

    Development and implementation of an interprofessional navigator-facilitated care coordination algorithm (NAVCOM) for low-income, uninsured patients with uncontrolled diabetes at a safety-net clinic resulted in improvement of disease control as evidenced by improvement in hemoglobin A1C. This report describes the process and lessons learned from the development and implementation of NAVCOM and patient success stories.

  3. Flexible Residential Smart Grid Simulation Framework

    NASA Astrophysics Data System (ADS)

    Xiang, Wang

    Different scheduling and coordination algorithms controlling household appliances' operations can potentially lead to energy consumption reduction and/or load balancing in conjunction with different electricity pricing methods used in smart grid programs. In order to easily implement different algorithms and evaluate their efficiency against other ideas, a flexible simulation framework is desirable in both research and business fields. However, such a platform is currently lacking or underdeveloped. In this thesis, we provide a simulation framework to focus on demand side residential energy consumption coordination in response to different pricing methods. This simulation framework, equipped with an appliance consumption library using realistic values, aims to closely represent the average usage of different types of appliances. The simulation results of traditional usage yield close matching values compared to surveyed real life consumption records. Several sample coordination algorithms, pricing schemes, and communication scenarios are also implemented to illustrate the use of the simulation framework.

  4. Medical image registration by combining global and local information: a chain-type diffeomorphic demons algorithm.

    PubMed

    Liu, Xiaozheng; Yuan, Zhenming; Zhu, Junming; Xu, Dongrong

    2013-12-07

    The demons algorithm is a popular algorithm for non-rigid image registration because of its computational efficiency and simple implementation. The deformation forces of the classic demons algorithm were derived from image gradients by considering the deformation to decrease the intensity dissimilarity between images. However, the methods using the difference of image intensity for medical image registration are easily affected by image artifacts, such as image noise, non-uniform imaging and partial volume effects. The gradient magnitude image is constructed from the local information of an image, so the difference in a gradient magnitude image can be regarded as more reliable and robust for these artifacts. Then, registering medical images by considering the differences in both image intensity and gradient magnitude is a straightforward selection. In this paper, based on a diffeomorphic demons algorithm, we propose a chain-type diffeomorphic demons algorithm by combining the differences in both image intensity and gradient magnitude for medical image registration. Previous work had shown that the classic demons algorithm can be considered as an approximation of a second order gradient descent on the sum of the squared intensity differences. By optimizing the new dissimilarity criteria, we also present a set of new demons forces which were derived from the gradients of the image and gradient magnitude image. We show that, in controlled experiments, this advantage is confirmed, and yields a fast convergence.

  5. Multi-agent coordination algorithms for control of distributed energy resources in smart grids

    NASA Astrophysics Data System (ADS)

    Cortes, Andres

    Sustainable energy is a top-priority for researchers these days, since electricity and transportation are pillars of modern society. Integration of clean energy technologies such as wind, solar, and plug-in electric vehicles (PEVs), is a major engineering challenge in operation and management of power systems. This is due to the uncertain nature of renewable energy technologies and the large amount of extra load that PEVs would add to the power grid. Given the networked structure of a power system, multi-agent control and optimization strategies are natural approaches to address the various problems of interest for the safe and reliable operation of the power grid. The distributed computation in multi-agent algorithms addresses three problems at the same time: i) it allows for the handling of problems with millions of variables that a single processor cannot compute, ii) it allows certain independence and privacy to electricity customers by not requiring any usage information, and iii) it is robust to localized failures in the communication network, being able to solve problems by simply neglecting the failing section of the system. We propose various algorithms to coordinate storage, generation, and demand resources in a power grid using multi-agent computation and decentralized decision making. First, we introduce a hierarchical vehicle-one-grid (V1G) algorithm for coordination of PEVs under usage constraints, where energy only flows from the grid in to the batteries of PEVs. We then present a hierarchical vehicle-to-grid (V2G) algorithm for PEV coordination that takes into consideration line capacity constraints in the distribution grid, and where energy flows both ways, from the grid in to the batteries, and from the batteries to the grid. Next, we develop a greedy-like hierarchical algorithm for management of demand response events with on/off loads. Finally, we introduce distributed algorithms for the optimal control of distributed energy resources, i.e., generation and storage in a microgrid. The algorithms we present are provably correct and tested in simulation. Each algorithm is assumed to work on a particular network topology, and simulation studies are carried out in order to demonstrate their convergence properties to a desired solution.

  6. Distributed Coordination of Heterogeneous Agents Using a Semantic Overlay Network and a Goal-Directed Graphplan Planner

    PubMed Central

    Lopes, António Luís; Botelho, Luís Miguel

    2013-01-01

    In this paper, we describe a distributed coordination system that allows agents to seamlessly cooperate in problem solving by partially contributing to a problem solution and delegating the subproblems for which they do not have the required skills or knowledge to appropriate agents. The coordination mechanism relies on a dynamically built semantic overlay network that allows the agents to efficiently locate, even in very large unstructured networks, the necessary skills for a specific problem. Each agent performs partial contributions to the problem solution using a new distributed goal-directed version of the Graphplan algorithm. This new goal-directed version of the original Graphplan algorithm provides an efficient solution to the problem of "distraction", which most forward-chaining algorithms suffer from. We also discuss a set of heuristics to be used in the backward-search process of the planning algorithm in order to distribute this process amongst idle agents in an attempt to find a solution in less time. The evaluation results show that our approach is effective in building a scalable and efficient agent society capable of solving complex distributable problems. PMID:23704885

  7. Direct Prediction of Cricondentherm and Cricondenbar Coordinates of Natural Gas Mixtures using Cubic Equation of State

    NASA Astrophysics Data System (ADS)

    Taraf, R.; Behbahani, R.; Moshfeghian, Mahmood

    2008-12-01

    A numerical algorithm is presented for direct calculation of the cricondenbar and cricondentherm coordinates of natural gas mixtures of known composition based on the Michelsen method. In the course of determination of these coordinates, the equilibrium mole fractions at these points are also calculated. In this algorithm, the property of the distance from the free energy surfaces to a tangent plane in equilibrium condition is added to saturation calculation as an additional criterion. An equation of state (EoS) was needed to calculate all required properties. Therefore, the algorithm was tested with Soave-Redlich-Kwong (SRK), Peng-Robinson (PR), and modified Nasrifar-Moshfeghian (MNM) equations of state. For different EoSs, the impact of the binary interaction coefficient ( k ij) was studied. The impact of initial guesses for temperature and pressure was also studied. The convergence speed and the accuracy of the results of this new algorithm were compared with experimental data and the results obtained from other methods and simulation softwares such as Hysys, Aspen Plus, and EzThermo.

  8. Improved genetic algorithm for the protein folding problem by use of a Cartesian combination operator.

    PubMed Central

    Rabow, A. A.; Scheraga, H. A.

    1996-01-01

    We have devised a Cartesian combination operator and coding scheme for improving the performance of genetic algorithms applied to the protein folding problem. The genetic coding consists of the C alpha Cartesian coordinates of the protein chain. The recombination of the genes of the parents is accomplished by: (1) a rigid superposition of one parent chain on the other, to make the relation of Cartesian coordinates meaningful, then, (2) the chains of the children are formed through a linear combination of the coordinates of their parents. The children produced with this Cartesian combination operator scheme have similar topology and retain the long-range contacts of their parents. The new scheme is significantly more efficient than the standard genetic algorithm methods for locating low-energy conformations of proteins. The considerable superiority of genetic algorithms over Monte Carlo optimization methods is also demonstrated. We have also devised a new dynamic programming lattice fitting procedure for use with the Cartesian combination operator method. The procedure finds excellent fits of real-space chains to the lattice while satisfying bond-length, bond-angle, and overlap constraints. PMID:8880904

  9. Fuel-Efficient Descent and Landing Guidance Logic for a Safe Lunar Touchdown

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.

    2011-01-01

    The landing of a crewed lunar lander on the surface of the Moon will be the climax of any Moon mission. At touchdown, the landing mechanism must absorb the load imparted on the lander due to the vertical component of the lander's touchdown velocity. Also, a large horizontal velocity must be avoided because it could cause the lander to tip over, risking the life of the crew. To be conservative, the worst-case lander's touchdown velocity is always assumed in designing the landing mechanism, making it very heavy. Fuel-optimal guidance algorithms for soft planetary landing have been studied extensively. In most of these studies, the lander is constrained to touchdown with zero velocity. With bounds imposed on the magnitude of the engine thrust, the optimal control solutions typically have a "bang-bang" thrust profile: the thrust magnitude "bangs" instantaneously between its maximum and minimum magnitudes. But the descent engine might not be able to throttle between its extremes instantaneously. There is also a concern about the acceptability of "bang-bang" control to the crew. In our study, the optimal control of a lander is formulated with a cost function that penalizes both the touchdown velocity and the fuel cost of the descent engine. In this formulation, there is not a requirement to achieve a zero touchdown velocity. Only a touchdown velocity that is consistent with the capability of the landing gear design is required. Also, since the nominal throttle level for the terminal descent sub-phase is well below the peak engine thrust, no bound on the engine thrust is used in our formulated problem. Instead of bangbang type solution, the optimal thrust generated is a continuous function of time. With this formulation, we can easily derive analytical expressions for the optimal thrust vector, touchdown velocity components, and other system variables. These expressions provide insights into the "physics" of the optimal landing and terminal descent maneuver. These insights could help engineers to achieve a better "balance" between the conflicting needs of achieving a safe touchdown velocity, a low-weight landing mechanism, low engine fuel cost, and other design goals. In comparing the computed optimal control results with the preflight landing trajectory design of the Apollo-11 mission, we noted interesting similarities between the two missions.

  10. Hierarchical Self Assembly of Patterns from the Robinson Tilings: DNA Tile Design in an Enhanced Tile Assembly Model

    PubMed Central

    Padilla, Jennifer E.; Liu, Wenyan; Seeman, Nadrian C.

    2012-01-01

    We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution. PMID:23226722

  11. Hierarchical Self Assembly of Patterns from the Robinson Tilings: DNA Tile Design in an Enhanced Tile Assembly Model.

    PubMed

    Padilla, Jennifer E; Liu, Wenyan; Seeman, Nadrian C

    2012-06-01

    We introduce a hierarchical self assembly algorithm that produces the quasiperiodic patterns found in the Robinson tilings and suggest a practical implementation of this algorithm using DNA origami tiles. We modify the abstract Tile Assembly Model, (aTAM), to include active signaling and glue activation in response to signals to coordinate the hierarchical assembly of Robinson patterns of arbitrary size from a small set of tiles according to the tile substitution algorithm that generates them. Enabling coordinated hierarchical assembly in the aTAM makes possible the efficient encoding of the recursive process of tile substitution.

  12. Missing Aircraft Crash Sites and Spatial Relationships to the Last Radar Fix.

    PubMed

    Koester, Robert J; Greatbatch, Ian

    2016-02-01

    Few studies have examined the spatial characteristics of missing aircraft in actual distress. No previous studies have looked at the distance from the last radar plot to the crash site. The purpose of this study was to characterize this distance and then identify environmental and flight characteristics that might be used to predict the spatial relationship and, therefore, aid search and rescue planners. Detailed records were obtained from the U.S. Air Force Rescue Coordination Center for missing aircraft in distress from 2002 to 2008. The data was combined with information from the National Transportation Safety Board (NTSB) Accident Database. The spatial relationship between the last radar plot and crash site was then determined using GIS analysis. A total of 260 missing aircraft incidents involving 509 people were examined, of which 216 (83%) contained radar information. Among the missing aircraft the mortality rate was 89%; most occurred in mountainous terrain (57%); Part 91 flight accounted for 95% of the incidents; and 50% of the aircraft were found within 0.8 nmi from the last radar plot. Flight characteristics, descent rate, icing conditions, and instrument flight rule vs. visual flight rule flight could be used to predict spatial characteristics. In most circumstances, the last radar position is an excellent predictor of the crash site. However, 5% of aircraft are found further than 45.4 nmi. The flight and environmental conditions were identified and placed into an algorithm to aid search planners in determining how factors should be prioritized.

  13. Nonlocal sparse model with adaptive structural clustering for feature extraction of aero-engine bearings

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Li, Xiang; Yan, Ruqiang

    2016-04-01

    Fault information of aero-engine bearings presents two particular phenomena, i.e., waveform distortion and impulsive feature frequency band dispersion, which leads to a challenging problem for current techniques of bearing fault diagnosis. Moreover, although many progresses of sparse representation theory have been made in feature extraction of fault information, the theory also confronts inevitable performance degradation due to the fact that relatively weak fault information has not sufficiently prominent and sparse representations. Therefore, a novel nonlocal sparse model (coined NLSM) and its algorithm framework has been proposed in this paper, which goes beyond simple sparsity by introducing more intrinsic structures of feature information. This work adequately exploits the underlying prior information that feature information exhibits nonlocal self-similarity through clustering similar signal fragments and stacking them together into groups. Within this framework, the prior information is transformed into a regularization term and a sparse optimization problem, which could be solved through block coordinate descent method (BCD), is formulated. Additionally, the adaptive structural clustering sparse dictionary learning technique, which utilizes k-Nearest-Neighbor (kNN) clustering and principal component analysis (PCA) learning, is adopted to further enable sufficient sparsity of feature information. Moreover, the selection rule of regularization parameter and computational complexity are described in detail. The performance of the proposed framework is evaluated through numerical experiment and its superiority with respect to the state-of-the-art method in the field is demonstrated through the vibration signals of experimental rig of aircraft engine bearings.

  14. Finite element method formulation in polar coordinates for transient heat conduction problems

    NASA Astrophysics Data System (ADS)

    Duda, Piotr

    2016-04-01

    The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method (FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.

  15. Flight Management System Execution of Idle-Thrust Descents in Operations

    NASA Technical Reports Server (NTRS)

    Stell, Laurel L.

    2011-01-01

    To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its error models, commercial flights executed idle-thrust descents, and the recorded data includes the target speed profile and FMS intent trajectories. The FMS computes the intended descent path assuming idle thrust after top of descent (TOD), and any intervention by the controllers that alters the FMS execution of the descent is recorded so that such flights are discarded from the analysis. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location are extracted from the radar data. Using more than 60 descents in Boeing 777 aircraft, the actual speeds are compared to the intended descent speed profile. In addition, three aspects of the accuracy of the FMS intent trajectory are analyzed: the meter fix crossing time, the TOD location, and the altitude at the meter fix. The actual TOD location is within 5 nmi of the intent location for over 95% of the descents. Roughly 90% of the time, the airspeed is within 0.01 of the target Mach number and within 10 KCAS of the target descent CAS, but the meter fix crossing time is only within 50 sec of the time computed by the FMS. Overall, the aircraft seem to be executing the descents as intended by the designers of the onboard automation.

  16. Northern Hemisphere Nitrous Oxide Morphology during the 1989 AASE and the 1991-1992 AASE 2 Campaigns

    NASA Technical Reports Server (NTRS)

    Podolske, James R.; Loewenstein, Max; Weaver, Alex; Strahan, Susan; Chan, K. Roland

    1993-01-01

    Nitrous oxide vertical profiles and latitudinal distributions for the 1989 AASE and 1992 AASE II northern polar winters are developed from the ATLAS N2O dataset, using both potential temperature and pressure as vertical coordinates. Morphologies show strong descent occurring poleward of the polar jet. The AASE II morphology shows a mid latitude 'surf zone,' characterized by strong horizontal mixing, and a horizontal gradient south of 30 deg N due to the sub-tropical jet. These features are similar to those produced by two-dimensional photochemical models which include coupling between transport, radiation, and chemistry.

  17. Northern hemisphere nitrous oxide morphology during the 1989 AASE and the 1991-1992 AASE 2 campaigns

    NASA Technical Reports Server (NTRS)

    Podolske, James R.; Loewenstein, Max; Weaver, Alex; Strahan, Susan E.; Chan, K. Roland

    1993-01-01

    Nitrous oxide vertical profiles and latitudinal distributions for the 1989 Airborne Antarctic Ozone Experiment (AASE) and 1992 AASE 2 northern polar winters are developed from the ATLAS N2O dataset, using both potential temperature and pressure as vertical coordinates. Morphologies show strong descent occuring poleward of the polar jet. The AASE 2 morphology shows a mid latitude 'surf zone', characterized by strong horizontal mixing, and a horizontal gradient south of 30 deg N due to the sub-tropical jet. These features are similar to those produced by two-dimensional photochemical models which include coupling between transport, radiation, and chemistry.

  18. VTOL shipboard letdown guidance system analysis

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Karmali, M. S.

    1983-01-01

    Alternative letdown guidance strategies are examined for landing of a VTOL aircraft onboard a small aviation ship under adverse environmental conditions. Off line computer simulation of shipboard landing task is utilized for assessing the relative merits of the proposed guidance schemes. The touchdown performance of a nominal constant rate of descent (CROD) letdown strategy serves as a benchmark for ranking the performance of the alternative letdown schemes. Analysis of ship motion time histories indicates the existence of an alternating sequence of quiescent and rough motions called lulls and swells. A real time algorithms lull/swell classification based upon ship motion pattern features is developed. The classification algorithm is used to command a go/no go signal to indicate the initiation and termination of an acceptable landing window. Simulation results show that such a go/no go pattern based letdown guidance strategy improves touchdown performance.

  19. Robotic Lunar Lander Development Project Status

    NASA Technical Reports Server (NTRS)

    Hammond, Monica; Bassler, Julie; Morse, Brian

    2010-01-01

    This slide presentation reviews the status of the development of a robotic lunar lander. The goal of the project is to perform engineering tests and risk reduction activities to support the development of a small lunar lander for lunar surface science. This includes: (1) risk reduction for the flight of the robotic lander, (i.e., testing and analyzing various phase of the project); (2) the incremental development for the design of the robotic lander, which is to demonstrate autonomous, controlled descent and landing on airless bodies, and design of thruster configuration for 1/6th of the gravity of earth; (3) cold gas test article in flight demonstration testing; (4) warm gas testing of the robotic lander design; (5) develop and test landing algorithms; (6) validate the algorithms through analysis and test; and (7) tests of the flight propulsion system.

  20. Computational method for the correction of proximity effect in electron-beam lithography (Poster Paper)

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Yuan; Owen, Gerry; Pease, Roger Fabian W.; Kailath, Thomas

    1992-07-01

    Dose correction is commonly used to compensate for the proximity effect in electron lithography. The computation of the required dose modulation is usually carried out using 'self-consistent' algorithms that work by solving a large number of simultaneous linear equations. However, there are two major drawbacks: the resulting correction is not exact, and the computation time is excessively long. A computational scheme, as shown in Figure 1, has been devised to eliminate this problem by the deconvolution of the point spread function in the pattern domain. The method is iterative, based on a steepest descent algorithm. The scheme has been successfully tested on a simple pattern with a minimum feature size 0.5 micrometers , exposed on a MEBES tool at 10 KeV in 0.2 micrometers of PMMA resist on a silicon substrate.

  1. Efficient two-dimensional compressive sensing in MIMO radar

    NASA Astrophysics Data System (ADS)

    Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad

    2017-12-01

    Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.

  2. System Verification of MSL Skycrane Using an Integrated ADAMS Simulation

    NASA Technical Reports Server (NTRS)

    White, Christopher; Antoun, George; Brugarolas, Paul; Lih, Shyh-Shiuh; Peng, Chia-Yen; Phan, Linh; San Martin, Alejandro; Sell, Steven

    2012-01-01

    Mars Science Laboratory (MSL) will use the Skycrane architecture to execute final descent and landing maneuvers. The Skycrane phase uses closed-loop feedback control throughout the entire phase, starting with rover separation, through mobility deploy, and through touchdown, ending only when the bridles have completely slacked. The integrated ADAMS simulation described in this paper couples complex dynamical models created by the mechanical subsystem with actual GNC flight software algorithms that have been compiled and linked into ADAMS. These integrated simulations provide the project with the best means to verify key Skycrane requirements which have a tightly coupled GNC-Mechanical aspect to them. It also provides the best opportunity to validate the design of the algorithm that determines when to cut the bridles. The results of the simulations show the excellent performance of the Skycrane system.

  3. A De-centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments

    NASA Technical Reports Server (NTRS)

    Arora, Manish; Das, Sajal K.; Biswas, Rupak

    2002-01-01

    In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper, we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is decentralized, scalable, and overlaps the node coordination time with that of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.

  4. A De-Centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments

    NASA Technical Reports Server (NTRS)

    Arora, Manish; Das, Sajal K.; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is de-centralized, scalable, and overlaps the node coordination time of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.

  5. Coastal Zone Color Scanner atmospheric correction algorithm - Multiple scattering effects

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Castano, Diego J.

    1987-01-01

    Errors due to multiple scattering which are expected to be encountered in application of the current Coastal Zone Color Scanner (CZCS) atmospheric correction algorithm are analyzed. The analysis is based on radiative transfer computations in model atmospheres, in which the aerosols and molecules are distributed vertically in an exponential manner, with most of the aerosol scattering located below the molecular scattering. A unique feature of the analysis is that it is carried out in scan coordinates rather than typical earth-sun coordinates, making it possible to determine the errors along typical CZCS scan lines. Information provided by the analysis makes it possible to judge the efficacy of the current algorithm with the current sensor and to estimate the impact of the algorithm-induced errors on a variety of applications.

  6. Modifications to Improve Data Acquisition and Analysis for Camouflage Design

    DTIC Science & Technology

    1983-01-01

    terrains into facsimiles of the original scenes in 3, 4# or 5 colors in CIELAB notation. Tasks that were addressed included optimization of the...a histogram algorithm (HIST) was used as a first step In the clustering of the CIELAB values of the scene pixels. This algorithm Is highly efficient...however, an optimal process and the CIELAB coordinates of the final color domains can be Influenced by the color coordinate Increments used In the

  7. Time-oriented hierarchical method for computation of principal components using subspace learning algorithm.

    PubMed

    Jankovic, Marko; Ogawa, Hidemitsu

    2004-10-01

    Principal Component Analysis (PCA) and Principal Subspace Analysis (PSA) are classic techniques in statistical data analysis, feature extraction and data compression. Given a set of multivariate measurements, PCA and PSA provide a smaller set of "basis vectors" with less redundancy, and a subspace spanned by them, respectively. Artificial neurons and neural networks have been shown to perform PSA and PCA when gradient ascent (descent) learning rules are used, which is related to the constrained maximization (minimization) of statistical objective functions. Due to their low complexity, such algorithms and their implementation in neural networks are potentially useful in cases of tracking slow changes of correlations in the input data or in updating eigenvectors with new samples. In this paper we propose PCA learning algorithm that is fully homogeneous with respect to neurons. The algorithm is obtained by modification of one of the most famous PSA learning algorithms--Subspace Learning Algorithm (SLA). Modification of the algorithm is based on Time-Oriented Hierarchical Method (TOHM). The method uses two distinct time scales. On a faster time scale PSA algorithm is responsible for the "behavior" of all output neurons. On a slower scale, output neurons will compete for fulfillment of their "own interests". On this scale, basis vectors in the principal subspace are rotated toward the principal eigenvectors. At the end of the paper it will be briefly analyzed how (or why) time-oriented hierarchical method can be used for transformation of any of the existing neural network PSA method, into PCA method.

  8. Methods for investigating the local spatial anisotropy and the preferred orientation of cones in adaptive optics retinal images

    PubMed Central

    Cooper, Robert F.; Lombardo, Marco; Carroll, Joseph; Sloan, Kenneth R.; Lombardo, Giuseppe

    2016-01-01

    The ability to non-invasively image the cone photoreceptor mosaic holds significant potential as a diagnostic for retinal disease. Central to the realization of this potential is the development of sensitive metrics for characterizing the organization of the mosaic. Here we evaluated previously-described (Pum et al., 1990) and newly-developed (Fourier- and Radon-based) methods of measuring cone orientation in both simulated and real images of the parafoveal cone mosaic. The proposed algorithms correlated well across both simulated and real mosaics, suggesting that each algorithm would provide an accurate description of individual photoreceptor orientation. Despite the high agreement between algorithms, each performed differently in response to image intensity variation and cone coordinate jitter. The integration property of the Fourier transform allowed the Fourier-based method to be resistant to cone coordinate jitter and perform the most robustly of all three algorithms. Conversely, when there is good image quality but unreliable cone identification, the Radon algorithm performed best. Finally, in cases where both the image and cone coordinate reliability was excellent, the method of Pum et al. (1990) performed best. These descriptors are complementary to conventional descriptive metrics of the cone mosaic, such as cell density and spacing, and have the potential to aid in the detection of photoreceptor pathology. PMID:27484961

  9. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    NASA Astrophysics Data System (ADS)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving, highly versatile, advanced robotic systems. Therefore, finally, a module based dynamic modeling algorithm is presented for the dynamic coordination of such reconfigurable modular robotic systems. A user interactive module based manipulator analysis program (MBMAP) has been coded in C language running on 4D/70 Silicon Graphics.

  10. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.

    PubMed

    Rodinger, Tomas; Howell, P Lynne; Pomès, Régis

    2008-10-21

    Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.

  11. Calculation of absolute protein-ligand binding free energy using distributed replica sampling

    NASA Astrophysics Data System (ADS)

    Rodinger, Tomas; Howell, P. Lynne; Pomès, Régis

    2008-10-01

    Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.

  12. Haplotype assembly in polyploid genomes and identical by descent shared tracts.

    PubMed

    Aguiar, Derek; Istrail, Sorin

    2013-07-01

    Genome-wide haplotype reconstruction from sequence data, or haplotype assembly, is at the center of major challenges in molecular biology and life sciences. For complex eukaryotic organisms like humans, the genome is vast and the population samples are growing so rapidly that algorithms processing high-throughput sequencing data must scale favorably in terms of both accuracy and computational efficiency. Furthermore, current models and methodologies for haplotype assembly (i) do not consider individuals sharing haplotypes jointly, which reduces the size and accuracy of assembled haplotypes, and (ii) are unable to model genomes having more than two sets of homologous chromosomes (polyploidy). Polyploid organisms are increasingly becoming the target of many research groups interested in the genomics of disease, phylogenetics, botany and evolution but there is an absence of theory and methods for polyploid haplotype reconstruction. In this work, we present a number of results, extensions and generalizations of compass graphs and our HapCompass framework. We prove the theoretical complexity of two haplotype assembly optimizations, thereby motivating the use of heuristics. Furthermore, we present graph theory-based algorithms for the problem of haplotype assembly using our previously developed HapCompass framework for (i) novel implementations of haplotype assembly optimizations (minimum error correction), (ii) assembly of a pair of individuals sharing a haplotype tract identical by descent and (iii) assembly of polyploid genomes. We evaluate our methods on 1000 Genomes Project, Pacific Biosciences and simulated sequence data. HapCompass is available for download at http://www.brown.edu/Research/Istrail_Lab/. Supplementary data are available at Bioinformatics online.

  13. The Clark Phase-able Sample Size Problem: Long-Range Phasing and Loss of Heterozygosity in GWAS

    NASA Astrophysics Data System (ADS)

    Halldórsson, Bjarni V.; Aguiar, Derek; Tarpine, Ryan; Istrail, Sorin

    A phase transition is taking place today. The amount of data generated by genome resequencing technologies is so large that in some cases it is now less expensive to repeat the experiment than to store the information generated by the experiment. In the next few years it is quite possible that millions of Americans will have been genotyped. The question then arises of how to make the best use of this information and jointly estimate the haplotypes of all these individuals. The premise of the paper is that long shared genomic regions (or tracts) are unlikely unless the haplotypes are identical by descent (IBD), in contrast to short shared tracts which may be identical by state (IBS). Here we estimate for populations, using the US as a model, what sample size of genotyped individuals would be necessary to have sufficiently long shared haplotype regions (tracts) that are identical by descent (IBD), at a statistically significant level. These tracts can then be used as input for a Clark-like phasing method to obtain a complete phasing solution of the sample. We estimate in this paper that for a population like the US and about 1% of the people genotyped (approximately 2 million), tracts of about 200 SNPs long are shared between pairs of individuals IBD with high probability which assures the Clark method phasing success. We show on simulated data that the algorithm will get an almost perfect solution if the number of individuals being SNP arrayed is large enough and the correctness of the algorithm grows with the number of individuals being genotyped.

  14. Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagmeijer, R.

    1994-11-01

    A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of themore » computational coordinates.« less

  15. Control algorithms for aerobraking in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Ward, Donald T.; Shipley, Buford W., Jr.

    1991-01-01

    The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.

  16. Field evaluation of flight deck procedures for flying CTAS descents

    DOT National Transportation Integrated Search

    1997-01-01

    Flight deck descent procedures were developed for a field evaluation of the CTAS Descent Advisor conducted in the fall of 1995. During this study, CTAS descent clearances were issued to 185 commercial flights at Denver International Airport. Data col...

  17. Multi-Agent Coordination Techniques for Naval Tactical Combat Resources Management

    DTIC Science & Technology

    2008-07-01

    resource coordination and cooperation problems. The combat resource allocation planning problem is treated in the companion report [2]. 2.3 Resource...report focuses on the resource coordination problem, while allocation algorithms are discussed in the companion report [2]. First, coordination in...classification of each should be indicated as with the title.) Canada’s Leader in Defence and National Security Science and Technology Chef de file au Canada en

  18. Functional Data Approximation on Bounded Domains using Polygonal Finite Elements.

    PubMed

    Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit

    2018-07-01

    We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex n -sided polygon, the quadratic serendipity elements have 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual n ( n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an L 2 -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.

  19. Automated cross-modal mapping in robotic eye/hand systems using plastic radial basis function networks

    NASA Astrophysics Data System (ADS)

    Meng, Qinggang; Lee, M. H.

    2007-03-01

    Advanced autonomous artificial systems will need incremental learning and adaptive abilities similar to those seen in humans. Knowledge from biology, psychology and neuroscience is now inspiring new approaches for systems that have sensory-motor capabilities and operate in complex environments. Eye/hand coordination is an important cross-modal cognitive function, and is also typical of many of the other coordinations that must be involved in the control and operation of embodied intelligent systems. This paper examines a biologically inspired approach for incrementally constructing compact mapping networks for eye/hand coordination. We present a simplified node-decoupled extended Kalman filter for radial basis function networks, and compare this with other learning algorithms. An experimental system consisting of a robot arm and a pan-and-tilt head with a colour camera is used to produce results and test the algorithms in this paper. We also present three approaches for adapting to structural changes during eye/hand coordination tasks, and the robustness of the algorithms under noise are investigated. The learning and adaptation approaches in this paper have similarities with current ideas about neural growth in the brains of humans and animals during tool-use, and infants during early cognitive development.

  20. Real-time path planning and autonomous control for helicopter autorotation

    NASA Astrophysics Data System (ADS)

    Yomchinda, Thanan

    Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.

  1. Vectorial mask optimization methods for robust optical lithography

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong; Arce, Gonzalo R.

    2012-10-01

    Continuous shrinkage of critical dimension in an integrated circuit impels the development of resolution enhancement techniques for low k1 lithography. Recently, several pixelated optical proximity correction (OPC) and phase-shifting mask (PSM) approaches were developed under scalar imaging models to account for the process variations. However, the lithography systems with larger-NA (NA>0.6) are predominant for current technology nodes, rendering the scalar models inadequate to describe the vector nature of the electromagnetic field that propagates through the optical lithography system. In addition, OPC and PSM algorithms based on scalar models can compensate for wavefront aberrations, but are incapable of mitigating polarization aberrations in practical lithography systems, which can only be dealt with under the vector model. To this end, we focus on developing robust pixelated gradient-based OPC and PSM optimization algorithms aimed at canceling defocus, dose variation, wavefront and polarization aberrations under a vector model. First, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. A steepest descent algorithm is then used to iteratively optimize the mask patterns. Simulations show that the proposed algorithms can effectively improve the process windows of the optical lithography systems.

  2. On the fusion of tuning parameters of fuzzy rules and neural network

    NASA Astrophysics Data System (ADS)

    Mamuda, Mamman; Sathasivam, Saratha

    2017-08-01

    Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.

  3. A Dependable Localization Algorithm for Survivable Belt-Type Sensor Networks.

    PubMed

    Zhu, Mingqiang; Song, Fei; Xu, Lei; Seo, Jung Taek; You, Ilsun

    2017-11-29

    As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks' survivability, in terms of anti-interference, network energy saving, etc.

  4. A different approach to estimate nonlinear regression model using numerical methods

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

    2017-11-01

    This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].

  5. A Dependable Localization Algorithm for Survivable Belt-Type Sensor Networks

    PubMed Central

    Zhu, Mingqiang; Song, Fei; Xu, Lei; Seo, Jung Taek

    2017-01-01

    As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks’ survivability, in terms of anti-interference, network energy saving, etc. PMID:29186072

  6. How to define pathologic pelvic floor descent in MR defecography during defecation?

    PubMed

    Schawkat, Khoschy; Heinrich, Henriette; Parker, Helen L; Barth, Borna K; Mathew, Rishi P; Weishaupt, Dominik; Fox, Mark; Reiner, Caecilia S

    2018-06-01

    To assess the extents of pelvic floor descent both during the maximal straining phase and the defecation phase in healthy volunteers and in patients with pelvic floor disorders, studied with MR defecography (MRD), and to define specific threshold values for pelvic floor descent during the defecation phase. Twenty-two patients (mean age 51 ± 19.4) with obstructed defecation and 20 healthy volunteers (mean age 33.4 ± 11.5) underwent 3.0T MRD in supine position using midsagittal T2-weighted images. Two radiologists performed measurements in reference to PCL-lines in straining and during defecation. In order to identify cutoff values of pelvic floor measurements for diagnosis of pathologic pelvic floor descent [anterior, middle, and posterior compartments (AC, MC, PC)], receiver-operating characteristic (ROC) curves were plotted. Pelvic floor descent of all three compartments was significantly larger during defecation than at straining in patients and healthy volunteers (p < 0.002). When grading pelvic floor descent in the straining phase, only two healthy volunteers showed moderate PC descent (10%), which is considered pathologic. However, when applying the grading system during defecation, PC descent was overestimated with 50% of the healthy volunteers (10 of 20) showing moderate PC descent. The AUC for PC measurements during defecation was 0.77 (p = 0.003) and suggests a cutoff value of 45 mm below the PCL to identify patients with pathologic PC descent. With the adapted cutoff, only 15% of healthy volunteers show pathologic PC descent during defecation. MRD measurements during straining and defecation can be used to differentiate patients with pelvic floor dysfunction from healthy volunteers. However, different cutoff values should be used during straining and during defecation to define normal or pathologic PC descent.

  7. Evaluation of pelvic descent disorders by dynamic contrast roentgenography.

    PubMed

    Takano, M; Hamada, A

    2000-10-01

    For precise diagnosis and rational treatment of the increasing number of patients with descent of intrapelvic organ(s) and anatomic plane(s), dynamic contrast roentgenography of multiple intrapelvic organs and planes is described. Sixty-six patients, consisting of 11 males, with a mean age (+/- standard deviation) of 65.6+/-14.2 years and with chief complaints of intrapelvic organ and perineal descent or defecation problems, were examined in this study. Dynamic contrast roentgenography was obtained by opacifying the ileum, urinary bladder, vagina, rectum, and the perineum. Films were taken at both squeeze and strain phases. On the films the lowest points of each organ and plane were plotted, and the distances from the standard line drawn at the upper surface of the sacrum were measured. The values were corrected to percentages according to the height of the sacrococcygeal bone of each patient. From these corrected values, organ or plane descents at strain and squeeze were diagnosed and graphically demonstrated as a descentgram in each patient. Among 17 cases with subjective symptoms of bladder descent, 9 cases (52.9 percent) showed roentgenographic descent. By the same token, among the cases with subjective feeling of descent of the vagina, uterus, peritoneum, perineum, rectum, and anus, roentgenographic descent was confirmed in 15 of 20 (75 percent), 7 of 9 (77.8 percent), 6 of 16 (37.5 percent), 33 of 33 (100 percent), 25 of 37 (67.6 percent), and 22 of 36 (61.6 percent), respectively. The descentgrams were divided into three patterns: anorectal descent type, female genital descent type, and total organ descent type. Dynamic contrast roentgenography and successive descentgraphy of multiple intrapelvic organs and planes are useful for objective diagnosis and rational treatment of patients with descent disorders of the intrapelvic organ(s) and plane(s).

  8. Improving Search Algorithms by Using Intelligent Coordinates

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan; Bandari, Esfandiar

    2004-01-01

    We consider algorithms that maximize a global function G in a distributed manner, using a different adaptive computational agent to set each variable of the underlying space. Each agent eta is self-interested; it sets its variable to maximize its own function g (sub eta). Three factors govern such a distributed algorithm's performance, related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit alI three factors by modifying a search algorithm's exploration stage: rather than random exploration, each coordinate of the search space is now controlled by a separate machine-learning-based player engaged in a noncooperative game. Experiments demonstrate that this modification improves simulated annealing (SA) by up to an order of magnitude for bin packing and for a model of an economic process run over an underlying network. These experiments also reveal interesting small-world phenomena.

  9. Development of a high-precision selenodetic coordinate system for the physical surface of the Moon based on LED beacons on its surface

    NASA Astrophysics Data System (ADS)

    Shirenin, A. M.; Mazurova, E. M.; Bagrov, A. V.

    2016-11-01

    The paper presents a mathematical algorithm for processing an array of angular measurements of light beacons on images of the lunar surface onboard a polar artificial lunar satellite (PALS) during the Luna-Glob mission and coordinate-time referencing of the PALS for the development of reference selenocentric coordinate systems. The algorithm makes it possible to obtain angular positions of point light beacons located on the surface of the Moon in selenocentric celestial coordinates. The operation of measurement systems that determine the position and orientation of the PALS during its active existence have been numerically simulated. Recommendations have been made for the optimal use of different types of measurements, including ground radio trajectory measurements, navigational star sensors based on the onboard star catalog, gyroscopic orientation systems, and space videos of the lunar surface.

  10. Performance Characterization of a Landmark Measurement System for ARRM Terrain Relative Navigation

    NASA Technical Reports Server (NTRS)

    Shoemaker, Michael A.; Wright, Cinnamon; Liounis, Andrew J.; Getzandanner, Kenneth M.; Van Eepoel, John M.; DeWeese, Keith D.

    2016-01-01

    This paper describes the landmark measurement system being developed for terrain relative navigation on NASAs Asteroid Redirect Robotic Mission (ARRM),and the results of a performance characterization study given realistic navigational and model errors. The system is called Retina, and is derived from the stereo-photoclinometry methods widely used on other small-body missions. The system is simulated using synthetic imagery of the asteroid surface and discussion is given on various algorithmic design choices. Unlike other missions, ARRMs Retina is the first planned autonomous use of these methods during the close-proximity and descent phase of the mission.

  11. Performance Characterization of a Landmark Measurement System for ARRM Terrain Relative Navigation

    NASA Technical Reports Server (NTRS)

    Shoemaker, Michael; Wright, Cinnamon; Liounis, Andrew; Getzandanner, Kenneth; Van Eepoel, John; Deweese, Keith

    2016-01-01

    This paper describes the landmark measurement system being developed for terrain relative navigation on NASAs Asteroid Redirect Robotic Mission (ARRM),and the results of a performance characterization study given realistic navigational and model errors. The system is called Retina, and is derived from the stereophotoclinometry methods widely used on other small-body missions. The system is simulated using synthetic imagery of the asteroid surface and discussion is given on various algorithmic design choices. Unlike other missions, ARRMs Retina is the first planned autonomous use of these methods during the close-proximity and descent phase of the mission.

  12. Kurtosis Approach for Nonlinear Blind Source Separation

    NASA Technical Reports Server (NTRS)

    Duong, Vu A.; Stubbemd, Allen R.

    2005-01-01

    In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation.

  13. Deep kernel learning method for SAR image target recognition

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao

    2017-10-01

    With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.

  14. Classification of physical activities based on body-segments coordination.

    PubMed

    Fradet, Laetitia; Marin, Frederic

    2016-09-01

    Numerous innovations based on connected objects and physical activity (PA) monitoring have been proposed. However, recognition of PAs requires robust algorithm and methodology. The current study presents an innovative approach for PA recognition. It is based on the heuristic definition of postures and the use of body-segments coordination obtained through external sensors. The first part of this study presents the methodology required to define the set of accelerations which is the most appropriate to represent the particular body-segments coordination involved in the chosen PAs (here walking, running, and cycling). For that purpose, subjects of different ages and heterogeneous physical conditions walked, ran, cycled, and performed daily activities at different paces. From the 3D motion capture, vertical and horizontal accelerations of 8 anatomical landmarks representative of the body were computed. Then, the 680 combinations from up to 3 accelerations were compared to identify the most appropriate set of acceleration to discriminate the PAs in terms of body segment coordinations. The discrimination was based on the maximal Hausdorff Distance obtained between the different set of accelerations. The vertical accelerations of both knees demonstrated the best PAs discrimination. The second step was the proof of concept, implementing the proposed algorithm to classify PAs of new group of subjects. The originality of the proposed algorithm is the possibility to use the subject's specific measures as reference data. With the proposed algorithm, 94% of the trials were correctly classified. In conclusion, our study proposed a flexible and extendable methodology. At the current stage, the algorithm has been shown to be valid for heterogeneous subjects, which suggests that it could be deployed in clinical or health-related applications regardless of the subjects' physical abilities or characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1975-01-01

    The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.

  16. Novel 3D Compression Methods for Geometry, Connectivity and Texture

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2016-06-01

    A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.

  17. STS-1 operational flight profile. Volume 5: Descent, cycle 3. Appendix C: Monte Carlo dispersion analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The results of three nonlinear the Monte Carlo dispersion analyses for the Space Transportation System 1 Flight (STS-1) Orbiter Descent Operational Flight Profile, Cycle 3 are presented. Fifty randomly selected simulation for the end of mission (EOM) descent, the abort once around (AOA) descent targeted line are steep target line, and the AOA descent targeted to the shallow target line are analyzed. These analyses compare the flight environment with system and operational constraints on the flight environment and in some cases use simplified system models as an aid in assessing the STS-1 descent flight profile. In addition, descent flight envelops are provided as a data base for use by system specialists to determine the flight readiness for STS-1. The results of these dispersion analyses supersede results of the dispersion analysis previously documented.

  18. Development of an Interval Management Algorithm Using Ground Speed Feedback for Delayed Traffic

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Swieringa, Kurt A.; Underwood, Matthew C.; Abbott, Terence; Leonard, Robert D.

    2016-01-01

    One of the goals of NextGen is to enable frequent use of Optimized Profile Descents (OPD) for aircraft, even during periods of peak traffic demand. NASA is currently testing three new technologies that enable air traffic controllers to use speed adjustments to space aircraft during arrival and approach operations. This will allow an aircraft to remain close to their OPD. During the integration of these technologies, it was discovered that, due to a lack of accurate trajectory information for the leading aircraft, Interval Management aircraft were exhibiting poor behavior. NASA's Interval Management algorithm was modified to address the impact of inaccurate trajectory information and a series of studies were performed to assess the impact of this modification. These studies show that the modification provided some improvement when the Interval Management system lacked accurate trajectory information for the leading aircraft.

  19. Material parameter estimation with terahertz time-domain spectroscopy.

    PubMed

    Dorney, T D; Baraniuk, R G; Mittleman, D M

    2001-07-01

    Imaging systems based on terahertz (THz) time-domain spectroscopy offer a range of unique modalities owing to the broad bandwidth, subpicosecond duration, and phase-sensitive detection of the THz pulses. Furthermore, the possibility exists for combining spectroscopic characterization or identification with imaging because the radiation is broadband in nature. To achieve this, we require novel methods for real-time analysis of THz waveforms. This paper describes a robust algorithm for extracting material parameters from measured THz waveforms. Our algorithm simultaneously obtains both the thickness and the complex refractive index of an unknown sample under certain conditions. In contrast, most spectroscopic transmission measurements require knowledge of the sample's thickness for an accurate determination of its optical parameters. Our approach relies on a model-based estimation, a gradient descent search, and the total variation measure. We explore the limits of this technique and compare the results with literature data for optical parameters of several different materials.

  20. First North American case of Hemoglobin Shepherds Bush (β 74[E18] Gly → Asp) in a central Pennsylvania family

    PubMed Central

    2014-01-01

    Background Hemoglobin Shepherds Bush (Human Genome Variation Society name: HBB:c.224G > A) is an unstable hemoglobin variant resulting from a β 74 GGC to GAC mutation (Gly to Asp) that manifests clinically as hemolytic anemia or gall bladder disease due to chronic subclinical hemolysis. Case presentation We report a Pennsylvania family of English descent with this condition, first noticed in a 6-year-old female. The proband presented with splenomegaly, fatigue, dark urine and an elevated indirect bilirubin. Hemoglobin identification studies and subsequent genetic testing performed according to a systematic algorithm elucidated the diagnosis of Hb Shepherds Bush. Conclusions This is the first case of this rare hemoglobin variant identified in North America to our knowledge. It was identified using a systematic algorithm of diagnostic tests that should be followed whenever considering a rare hemoglobinopathy as part of the differential diagnosis. PMID:24428873

  1. Active semi-supervised learning method with hybrid deep belief networks.

    PubMed

    Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong

    2014-01-01

    In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.

  2. Comparison of SIRT and SQS for Regularized Weighted Least Squares Image Reconstruction

    PubMed Central

    Gregor, Jens; Fessler, Jeffrey A.

    2015-01-01

    Tomographic image reconstruction is often formulated as a regularized weighted least squares (RWLS) problem optimized by iterative algorithms that are either inherently algebraic or derived from a statistical point of view. This paper compares a modified version of SIRT (Simultaneous Iterative Reconstruction Technique), which is of the former type, with a version of SQS (Separable Quadratic Surrogates), which is of the latter type. We show that the two algorithms minimize the same criterion function using similar forms of preconditioned gradient descent. We present near-optimal relaxation for both based on eigenvalue bounds and include a heuristic extension for use with ordered subsets. We provide empirical evidence that SIRT and SQS converge at the same rate for all intents and purposes. For context, we compare their performance with an implementation of preconditioned conjugate gradient. The illustrative application is X-ray CT of luggage for aviation security. PMID:26478906

  3. Multi-Sensor Registration of Earth Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Cole-Rhodes, Arlene; Eastman, Roger; Johnson, Kisha; Morisette, Jeffrey; Netanyahu, Nathan S.; Stone, Harold S.; Zavorin, Ilya; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Assuming that approximate registration is given within a few pixels by a systematic correction system, we develop automatic image registration methods for multi-sensor data with the goal of achieving sub-pixel accuracy. Automatic image registration is usually defined by three steps; feature extraction, feature matching, and data resampling or fusion. Our previous work focused on image correlation methods based on the use of different features. In this paper, we study different feature matching techniques and present five algorithms where the features are either original gray levels or wavelet-like features, and the feature matching is based on gradient descent optimization, statistical robust matching, and mutual information. These algorithms are tested and compared on several multi-sensor datasets covering one of the EOS Core Sites, the Konza Prairie in Kansas, from four different sensors: IKONOS (4m), Landsat-7/ETM+ (30m), MODIS (500m), and SeaWIFS (1000m).

  4. Nonexposure Accurate Location K-Anonymity Algorithm in LBS

    PubMed Central

    2014-01-01

    This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR. PMID:24605060

  5. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for Circular Current Loops in Cylindrical Coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell

    A numerical algorithm for computing the field components B r and B z and their r and z derivatives with open boundaries in cylindrical coordinates for circular current loops is described. An algorithm for computing the vector potential is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations (especially for the field derivatives) are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. Since cel can evaluate complete elliptic integrals of a fairlymore » general type, in some cases the elliptic integrals can be evaluated without first reducing them to forms containing standard Legendre forms. The algorithms avoid the numerical difficulties that many of the textbook solutions have for points near the axis because of explicit factors of 1=r or 1=r 2 in the some of the expressions.« less

  6. Polar decomposition for attitude determination from vector observations

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.

    1993-01-01

    This work treats the problem of weighted least squares fitting of a 3D Euclidean-coordinate transformation matrix to a set of unit vectors measured in the reference and transformed coordinates. A closed-form analytic solution to the problem is re-derived. The fact that the solution is the closest orthogonal matrix to some matrix defined on the measured vectors and their weights is clearly demonstrated. Several known algorithms for computing the analytic closed form solution are considered. An algorithm is discussed which is based on the polar decomposition of matrices into the closest unitary matrix to the decomposed matrix and a Hermitian matrix. A somewhat longer improved algorithm is suggested too. A comparison of several algorithms is carried out using simulated data as well as real data from the Upper Atmosphere Research Satellite. The comparison is based on accuracy and time consumption. It is concluded that the algorithms based on polar decomposition yield a simple although somewhat less accurate solution. The precision of the latter algorithms increase with the number of the measured vectors and with the accuracy of their measurement.

  7. Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction.

    PubMed

    Peng, Chengtao; Qiu, Bensheng; Li, Ming; Guan, Yihui; Zhang, Cheng; Wu, Zhongyi; Zheng, Jian

    2017-01-05

    Metal objects implanted in the bodies of patients usually generate severe streaking artifacts in reconstructed images of X-ray computed tomography, which degrade the image quality and affect the diagnosis of disease. Therefore, it is essential to reduce these artifacts to meet the clinical demands. In this work, we propose a Gaussian diffusion sinogram inpainting metal artifact reduction algorithm based on prior images to reduce these artifacts for fan-beam computed tomography reconstruction. In this algorithm, prior information that originated from a tissue-classified prior image is used for the inpainting of metal-corrupted projections, and it is incorporated into a Gaussian diffusion function. The prior knowledge is particularly designed to locate the diffusion position and improve the sparsity of the subtraction sinogram, which is obtained by subtracting the prior sinogram of the metal regions from the original sinogram. The sinogram inpainting algorithm is implemented through an approach of diffusing prior energy and is then solved by gradient descent. The performance of the proposed metal artifact reduction algorithm is compared with two conventional metal artifact reduction algorithms, namely the interpolation metal artifact reduction algorithm and normalized metal artifact reduction algorithm. The experimental datasets used included both simulated and clinical datasets. By evaluating the results subjectively, the proposed metal artifact reduction algorithm causes fewer secondary artifacts than the two conventional metal artifact reduction algorithms, which lead to severe secondary artifacts resulting from impertinent interpolation and normalization. Additionally, the objective evaluation shows the proposed approach has the smallest normalized mean absolute deviation and the highest signal-to-noise ratio, indicating that the proposed method has produced the image with the best quality. No matter for the simulated datasets or the clinical datasets, the proposed algorithm has reduced the metal artifacts apparently.

  8. Autonomous spacecraft landing through human pre-attentive vision.

    PubMed

    Schiavone, Giuseppina; Izzo, Dario; Simões, Luís F; de Croon, Guido C H E

    2012-06-01

    In this work, we exploit a computational model of human pre-attentive vision to guide the descent of a spacecraft on extraterrestrial bodies. Providing the spacecraft with high degrees of autonomy is a challenge for future space missions. Up to present, major effort in this research field has been concentrated in hazard avoidance algorithms and landmark detection, often by reference to a priori maps, ranked by scientists according to specific scientific criteria. Here, we present a bio-inspired approach based on the human ability to quickly select intrinsically salient targets in the visual scene; this ability is fundamental for fast decision-making processes in unpredictable and unknown circumstances. The proposed system integrates a simple model of the spacecraft and optimality principles which guarantee minimum fuel consumption during the landing procedure; detected salient sites are used for retargeting the spacecraft trajectory, under safety and reachability conditions. We compare the decisions taken by the proposed algorithm with that of a number of human subjects tested under the same conditions. Our results show how the developed algorithm is indistinguishable from the human subjects with respect to areas, occurrence and timing of the retargeting.

  9. Relative Terrain Imaging Navigation (RETINA) Tool for the Asteroid Redirect Robotic Mission (ARRM)

    NASA Technical Reports Server (NTRS)

    Wright, Cinnamon A.; Van Eepoel, John; Liounis, Andrew; Shoemaker, Michael; DeWeese, Keith; Getzandanner, Kenneth

    2016-01-01

    As a part of the NASA initiative to collect a boulder off of an asteroid and return it to Lunar orbit, the Satellite Servicing Capabilities Office (SSCO) and NASA GSFC are developing an on-board relative terrain imaging navigation algorithm for the Asteroid Redirect Robotic Mission (ARRM). After performing several flybys and dry runs to verify and refine the shape, spin, and gravity models and obtain centimeter level imagery, the spacecraft will descend to the surface of the asteroid to capture a boulder and return it to Lunar Orbit. The algorithm implements Stereophotoclinometry methods to register landmarks with images taken onboard the spacecraft, and use these measurements to estimate the position and orientation of the spacecraft with respect to the asteroid. This paper will present an overview of the ARRM GN&C system and concept of operations as well as a description of the algorithm and its implementation. These techniques will be demonstrated for the descent to the surface of the proposed asteroid of interest, 2008 EV5, and preliminary results will be shown.

  10. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks

    NASA Astrophysics Data System (ADS)

    Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong

    2017-01-01

    A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.

  11. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks

    PubMed Central

    Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong

    2017-01-01

    A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model. PMID:28120889

  12. An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min

    2014-09-01

    In this article, an effective hybrid immune algorithm (HIA) is presented to solve the distributed permutation flow-shop scheduling problem (DPFSP). First, a decoding method is proposed to transfer a job permutation sequence to a feasible schedule considering both factory dispatching and job sequencing. Secondly, a local search with four search operators is presented based on the characteristics of the problem. Thirdly, a special crossover operator is designed for the DPFSP, and mutation and vaccination operators are also applied within the framework of the HIA to perform an immune search. The influence of parameter setting on the HIA is investigated based on the Taguchi method of design of experiment. Extensive numerical testing results based on 420 small-sized instances and 720 large-sized instances are provided. The effectiveness of the HIA is demonstrated by comparison with some existing heuristic algorithms and the variable neighbourhood descent methods. New best known solutions are obtained by the HIA for 17 out of 420 small-sized instances and 585 out of 720 large-sized instances.

  13. Joint Chance-Constrained Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J. Bob

    2012-01-01

    This paper presents a novel dynamic programming algorithm with a joint chance constraint, which explicitly bounds the risk of failure in order to maintain the state within a specified feasible region. A joint chance constraint cannot be handled by existing constrained dynamic programming approaches since their application is limited to constraints in the same form as the cost function, that is, an expectation over a sum of one-stage costs. We overcome this challenge by reformulating the joint chance constraint into a constraint on an expectation over a sum of indicator functions, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the primal variables can be optimized by a standard dynamic programming, while the dual variable is optimized by a root-finding algorithm that converges exponentially. Error bounds on the primal and dual objective values are rigorously derived. We demonstrate the algorithm on a path planning problem, as well as an optimal control problem for Mars entry, descent and landing. The simulations are conducted using a real terrain data of Mars, with four million discrete states at each time step.

  14. Online Sequential Projection Vector Machine with Adaptive Data Mean Update

    PubMed Central

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958

  15. Online Sequential Projection Vector Machine with Adaptive Data Mean Update.

    PubMed

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.

  16. Impact of MPEG-4 3D mesh coding on watermarking algorithms for polygonal 3D meshes

    NASA Astrophysics Data System (ADS)

    Funk, Wolfgang

    2004-06-01

    The MPEG-4 multimedia standard addresses the scene-based composition of audiovisual objects. Natural and synthetic multimedia content can be mixed and transmitted over narrow and broadband communication channels. Synthetic natural hybrid coding (SNHC) within MPEG-4 provides tools for 3D mesh coding (3DMC). We investigate the robustness of two different 3D watermarking algorithms for polygonal meshes with respect to 3DMC. The first algorithm is a blind detection scheme designed for labelling applications that require high bandwidth and low robustness. The second algorithm is a robust non-blind one-bit watermarking scheme intended for copyright protection applications. Both algorithms have been proposed by Benedens. We expect 3DMC to have an impact on the watermarked 3D meshes, as the algorithms used for our simulations work on vertex coordinates to encode the watermark. We use the 3DMC implementation provided with the MPEG-4 reference software and the Princeton Shape Benchmark model database for our simulations. The watermarked models are sent through the 3DMC encoder and decoder, and the watermark decoding process is performed. For each algorithm under consideration we examine the detection properties as a function of the quantization of the vertex coordinates.

  17. Gait mode recognition and control for a portable-powered ankle-foot orthosis.

    PubMed

    David Li, Yifan; Hsiao-Wecksler, Elizabeth T

    2013-06-01

    Ankle foot orthoses (AFOs) are widely used as assistive/rehabilitation devices to correct the gait of people with lower leg neuromuscular dysfunction and muscle weakness. We have developed a portable powered ankle-foot orthosis (PPAFO), which uses a pneumatic bi-directional rotary actuator powered by compressed CO2 to provide untethered dorsiflexor and plantarflexor assistance at the ankle joint. Since portability is a key to the success of the PPAFO as an assist device, it is critical to recognize and control for gait modes (i.e. level walking, stair ascent/descent). While manual mode switching is implemented in most powered orthotic/prosthetic device control algorithms, we propose an automatic gait mode recognition scheme by tracking the 3D position of the PPAFO from an inertial measurement unit (IMU). The control scheme was designed to match the torque profile of physiological gait data during different gait modes. Experimental results indicate that, with an optimized threshold, the controller was able to identify the position, orientation and gait mode in real time, and properly control the actuation. It was also illustrated that during stair descent, a mode-specific actuation control scheme could better restore gait kinematic and kinetic patterns, compared to using the level ground controller.

  18. Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki

    2013-01-01

    A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach.

  19. Product Distribution Theory for Control of Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Lee, Chia Fan; Wolpert, David H.

    2004-01-01

    Product Distribution (PD) theory is a new framework for controlling Multi-Agent Systems (MAS's). First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint stare of the agents. Accordingly we can consider a team game in which the shared utility is a performance measure of the behavior of the MAS. For such a scenario the game is at equilibrium - the Lagrangian is optimized - when the joint distribution of the agents optimizes the system's expected performance. One common way to find that equilibrium is to have each agent run a reinforcement learning algorithm. Here we investigate the alternative of exploiting PD theory to run gradient descent on the Lagrangian. We present computer experiments validating some of the predictions of PD theory for how best to do that gradient descent. We also demonstrate how PD theory can improve performance even when we are not allowed to rerun the MAS from different initial conditions, a requirement implicit in some previous work.

  20. Flight Evaluation of Center-TRACON Automation System Trajectory Prediction Process

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1998-01-01

    Two flight experiments (Phase 1 in October 1992 and Phase 2 in September 1994) were conducted to evaluate the accuracy of the Center-TRACON Automation System (CTAS) trajectory prediction process. The Transport Systems Research Vehicle (TSRV) Boeing 737 based at Langley Research Center flew 57 arrival trajectories that included cruise and descent segments; at the same time, descent clearance advisories from CTAS were followed. Actual trajectories of the airplane were compared with the trajectories predicted by the CTAS trajectory synthesis algorithms and airplane Flight Management System (FMS). Trajectory prediction accuracy was evaluated over several levels of cockpit automation that ranged from a conventional cockpit to performance-based FMS vertical navigation (VNAV). Error sources and their magnitudes were identified and measured from the flight data. The major source of error during these tests was found to be the predicted winds aloft used by CTAS. The most significant effect related to flight guidance was the cross-track and turn-overshoot errors associated with conventional VOR guidance. FMS lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and airplane performance model errors.

  1. Relativistic time transfer in the vicinity of the Earth and in the solar system

    NASA Astrophysics Data System (ADS)

    Nelson, Robert A.

    2011-08-01

    The algorithms for relativistic time transfer in the vicinity of the Earth and in the solar system are derived. The concepts of proper time and coordinate time are distinguished. The coordinate time elapsed during the transport of a clock and the propagation of an electromagnetic signal is analysed in three coordinate systems: an Earth-Centred Inertial (ECI) coordinate system, an Earth-Centred Earth-Fixed (ECEF) coordinate system and a barycentric coordinate system. The timescales of Geocentric Coordinate Time (TCG), Terrestrial Time (TT) and Barycentric Coordinate Time (TCB) are defined and their relationships are discussed. Some numerical examples are provided to illustrate the magnitudes of the effects.

  2. The Yearly Variation in Fall-Winter Arctic Winter Vortex Descent

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Newman, Paul A.

    1999-01-01

    Using the change in HALOE methane profiles from early September to late March, we have estimated the minimum amount of diabatic descent within the polar which takes place during Arctic winter. The year to year variations are a result in the year to year variations in stratospheric wave activity which (1) modify the temperature of the vortex and thus the cooling rate; (2) reduce the apparent descent by mixing high amounts of methane into the vortex. The peak descent amounts from HALOE methane vary from l0km -14km near the arrival altitude of 25 km. Using a diabatic trajectory calculation, we compare forward and backward trajectories over the course of the winter using UKMO assimilated stratospheric data. The forward calculation agrees fairly well with the observed descent. The backward calculation appears to be unable to produce the observed amount of descent, but this is only an apparent effect due to the density decrease in parcels with altitude. Finally we show the results for unmixed descent experiments - where the parcels are fixed in latitude and longitude and allowed to descend based on the local cooling rate. Unmixed descent is found to always exceed mixed descent, because when normal parcel motion is included, the path average cooling is always less than the cooling at a fixed polar point.

  3. Strong parameterization and coordination encirclements of graph of Penrose tiling vertices

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Maleev, A. V.

    2017-07-01

    The coordination encirclements in a graph of Penrose tiling vertices have been investigated based on the analysis of vertice parameters. A strong parameterization of these vertices is developed in the form of a tiling of a parameter set in the region corresponding to different first coordination encirclements of vertices. An algorithm for constructing tilings of a set of parameters determining different coordination encirclements in a graph of Penrose tiling vertices of order n is proposed.

  4. Fast mapping algorithm of lighting spectrum and GPS coordinates for a large area

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Wei; Hsu, Ke-Fang; Hwang, Jung-Min

    2016-09-01

    In this study, we propose a fast rebuild technology for evaluating light quality in large areas. Outdoor light quality, which is measured by illuminance uniformity and the color rendering index, is difficult to conform after improvement. We develop an algorithm for a lighting quality mapping system and coordinates using a micro spectrometer and GPS tracker integrated with a quadcopter or unmanned aerial vehicle. After cruising at a constant altitude, lighting quality data is transmitted and immediately mapped to evaluate the light quality in a large area.

  5. KB3D Reference Manual. Version 1.a

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar; Siminiceanu, Radu; Carreno, Victor A.; Dowek, Gilles

    2005-01-01

    This paper is a reference manual describing the implementation of the KB3D conflict detection and resolution algorithm. The algorithm has been implemented in the Java and C++ programming languages. The reference manual gives a short overview of the detection and resolution functions, the structural implementation of the program, inputs and outputs to the program, and describes how the program is used. Inputs to the program can be rectangular coordinates or geodesic coordinates. The reference manual also gives examples of conflict scenarios and the resolution outputs the program produces.

  6. Automatic toilet seat lowering apparatus

    DOEpatents

    Guerty, Harold G.

    1994-09-06

    A toilet seat lowering apparatus includes a housing defining an internal cavity for receiving water from the water supply line to the toilet holding tank. A descent delay assembly of the apparatus can include a stationary dam member and a rotating dam member for dividing the internal cavity into an inlet chamber and an outlet chamber and controlling the intake and evacuation of water in a delayed fashion. A descent initiator is activated when the internal cavity is filled with pressurized water and automatically begins the lowering of the toilet seat from its upright position, which lowering is also controlled by the descent delay assembly. In an alternative embodiment, the descent initiator and the descent delay assembly can be combined in a piston linked to the rotating dam member and provided with a water channel for creating a resisting pressure to the advancing piston and thereby slowing the associated descent of the toilet seat. A toilet seat lowering apparatus includes a housing defining an internal cavity for receiving water from the water supply line to the toilet holding tank. A descent delay assembly of the apparatus can include a stationary dam member and a rotating dam member for dividing the internal cavity into an inlet chamber and an outlet chamber and controlling the intake and evacuation of water in a delayed fashion. A descent initiator is activated when the internal cavity is filled with pressurized water and automatically begins the lowering of the toilet seat from its upright position, which lowering is also controlled by the descent delay assembly. In an alternative embodiment, the descent initiator and the descent delay assembly can be combined in a piston linked to the rotating dam member and provided with a water channel for creating a resisting pressure to the advancing piston and thereby slowing the associated descent of the toilet seat.

  7. Field test of coordinated ramp metering (CRM).

    DOT National Transportation Integrated Search

    2017-03-15

    This project has focused on field implementation and testing of a Coordinated Ramp Metering (CRM) algorithm at California State Route 99 : Northbound corridor in Sacramento between Calvine Road and the SR50 interchange after 12th Ave. It is a 9 mile ...

  8. Towards a hybrid energy efficient multi-tree-based optimized routing protocol for wireless networks.

    PubMed

    Mitton, Nathalie; Razafindralambo, Tahiry; Simplot-Ryl, David; Stojmenovic, Ivan

    2012-12-13

    This paper considers the problem of designing power efficient routing with guaranteed delivery for sensor networks with unknown geographic locations. We propose HECTOR, a hybrid energy efficient tree-based optimized routing protocol, based on two sets of virtual coordinates. One set is based on rooted tree coordinates, and the other is based on hop distances toward several landmarks. In HECTOR, the node currently holding the packet forwards it to its neighbor that optimizes ratio of power cost over distance progress with landmark coordinates, among nodes that reduce landmark coordinates and do not increase distance in tree coordinates. If such a node does not exist, then forwarding is made to the neighbor that reduces tree-based distance only and optimizes power cost over tree distance progress ratio. We theoretically prove the packet delivery and propose an extension based on the use of multiple trees. Our simulations show the superiority of our algorithm over existing alternatives while guaranteeing delivery, and only up to 30% additional power compared to centralized shortest weighted path algorithm.

  9. SELF-GRAVITATIONAL FORCE CALCULATION OF SECOND-ORDER ACCURACY FOR INFINITESIMALLY THIN GASEOUS DISKS IN POLAR COORDINATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiang-Hsu; Taam, Ronald E.; Yen, David C. C., E-mail: yen@math.fju.edu.tw

    Investigating the evolution of disk galaxies and the dynamics of proto-stellar disks can involve the use of both a hydrodynamical and a Poisson solver. These systems are usually approximated as infinitesimally thin disks using two-dimensional Cartesian or polar coordinates. In Cartesian coordinates, the calculations of the hydrodynamics and self-gravitational forces are relatively straightforward for attaining second-order accuracy. However, in polar coordinates, a second-order calculation of self-gravitational forces is required for matching the second-order accuracy of hydrodynamical schemes. We present a direct algorithm for calculating self-gravitational forces with second-order accuracy without artificial boundary conditions. The Poisson integral in polar coordinates ismore » expressed in a convolution form and the corresponding numerical complexity is nearly linear using a fast Fourier transform. Examples with analytic solutions are used to verify that the truncated error of this algorithm is of second order. The kernel integral around the singularity is applied to modify the particle method. The use of a softening length is avoided and the accuracy of the particle method is significantly improved.« less

  10. Towards a Hybrid Energy Efficient Multi-Tree-Based Optimized Routing Protocol for Wireless Networks

    PubMed Central

    Mitton, Nathalie; Razafindralambo, Tahiry; Simplot-Ryl, David; Stojmenovic, Ivan

    2012-01-01

    This paper considers the problem of designing power efficient routing with guaranteed delivery for sensor networks with unknown geographic locations. We propose HECTOR, a hybrid energy efficient tree-based optimized routing protocol, based on two sets of virtual coordinates. One set is based on rooted tree coordinates, and the other is based on hop distances toward several landmarks. In HECTOR, the node currently holding the packet forwards it to its neighbor that optimizes ratio of power cost over distance progress with landmark coordinates, among nodes that reduce landmark coordinates and do not increase distance in tree coordinates. If such a node does not exist, then forwarding is made to the neighbor that reduces tree-based distance only and optimizes power cost over tree distance progress ratio. We theoretically prove the packet delivery and propose an extension based on the use of multiple trees. Our simulations show the superiority of our algorithm over existing alternatives while guaranteeing delivery, and only up to 30% additional power compared to centralized shortest weighted path algorithm. PMID:23443398

  11. Accurately Calculating the Solar Orientation of the TIANGONG-2 Ultraviolet Forward Spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Li, S.

    2018-04-01

    The Ultraviolet Forward Spectrometer is a new type of spectrometer for monitoring the vertical distribution of atmospheric trace gases in the global middle atmosphere. It is on the TianGong-2 space laboratory, which was launched on 15 September 2016. The spectrometer uses a solar calibration mode to modify its irradiance. Accurately calculating the solar orientation is a prerequisite of spectral calibration for the Ultraviolet Forward Spectrometer. In this paper, a method of calculating the solar orientation is proposed according to the imaging geometric characteristics of the spectrometer. Firstly, the solar orientation in the horizontal rectangular coordinate system is calculated based on the solar declination angle algorithm proposed by Bourges and the solar hour angle algorithm proposed by Lamm. Then, the solar orientation in the sensor coordinate system is achieved through several coordinate system transforms. Finally, we calculate the solar orientation in the sensor coordinate system and evaluate its calculation accuracy using actual orbital data of TianGong-2. The results show that the accuracy is close to the simulation method with STK (Satellite Tool Kit), and the error is not more than 2 %. The algorithm we present does not need a lot of astronomical knowledge, but only needs some observation parameters provided by TianGong-2.

  12. A Self Contained Method for Safe and Precise Lunar Landing

    NASA Technical Reports Server (NTRS)

    Paschall, Stephen C., II; Brady, Tye; Cohanim, Babak; Sostaric, Ronald

    2008-01-01

    The return of humans to the Moon will require increased capability beyond that of the previous Apollo missions. Longer stay times and a greater flexibility with regards to landing locations are among the many improvements planned. A descent and landing system that can land the vehicle more accurately than Apollo with a greater ability to detect and avoid hazards is essential to the development of a Lunar Outpost, and also for increasing the number of potentially reachable Lunar Sortie locations. This descent and landing system should allow landings in more challenging terrain and provide more flexibility with regards to mission timing and lighting considerations, while maintaining safety as the top priority. The lunar landing system under development by the ALHAT (Autonomous precision Landing and Hazard detection Avoidance Technology) project is addressing this by providing terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard-detection system to select safe landing locations, and an Autonomous GNC (Guidance, Navigation, and Control) capability to process these measurements and safely direct the vehicle to this landing location. This ALHAT landing system will enable safe and precise lunar landings without requiring lunar infrastructure in the form of navigation aids or a priori identified hazard-free landing locations. The safe landing capability provided by ALHAT uses onboard active sensing to detect hazards that are large enough to be a danger to the vehicle but too small to be detected from orbit, given currently planned orbital terrain resolution limits. Algorithms to interpret raw active sensor terrain data and generate hazard maps as well as identify safe sites and recalculate new trajectories to those sites are included as part of the ALHAT System. These improvements to descent and landing will help contribute to repeated safe and precise landings for a wide variety of terrain on the Moon.

  13. Orion MPCV Touchdown Detection Threshold Development and Testing

    NASA Technical Reports Server (NTRS)

    Daum, Jared; Gay, Robert

    2013-01-01

    A robust method of detecting Orion Multi ]Purpose Crew Vehicle (MPCV) splashdown is necessary to ensure crew and hardware safety during descent and after touchdown. The proposed method uses a triple redundant system to inhibit Reaction Control System (RCS) thruster firings, detach parachute risers from the vehicle, and transition to the post ]landing segment of the Flight Software (FSW). The vehicle crew is the prime input for touchdown detection, followed by an autonomous FSW algorithm, and finally a strictly time based backup timer. RCS thrusters must be inhibited before submersion in water to protect against possible damage due to firing these jets under water. In addition, neglecting to declare touchdown will not allow the vehicle to transition to post ]landing activities such as activating the Crew Module Up ]righting System (CMUS), resulting in possible loss of communication and difficult recovery. A previous AIAA paper gAssessment of an Automated Touchdown Detection Algorithm for the Orion Crew Module h concluded that a strictly Inertial Measurement Unit (IMU) based detection method using an acceleration spike algorithm had the highest safety margins and shortest detection times of other methods considered. That study utilized finite element simulations of vehicle splashdown, generated by LS ]DYNA, which were expanded to a larger set of results using a Kriging surface fit. The study also used the Decelerator Systems Simulation (DSS) to generate flight dynamics during vehicle descent under parachutes. Proto ]type IMU and FSW MATLAB models provided the basis for initial algorithm development and testing. This paper documents an in ]depth trade study, using the same dynamics data and MATLAB simulations as the earlier work, to further develop the acceleration detection method. By studying the combined effects of data rate, filtering on the rotational acceleration correction, data persistence limits and values of acceleration thresholds, an optimal configuration was determined. The lever arm calculation, which removes the centripetal acceleration caused by vehicle rotation, requires that the vehicle angular acceleration be derived from vehicle body rates, necessitating the addition of a 2nd order filter to smooth the data. It was determined that using 200 Hz data directly from the vehicle IMU outperforms the 40 Hz FSW data rate. Data persistence counter values and acceleration thresholds were balanced in order to meet desired safety and performance. The algorithm proved to exhibit ample safety margin against early detection while under parachutes, and adequate performance upon vehicle splashdown. Fall times from algorithm initiation were also studied, and a backup timer length was chosen to provide a large safety margin, yet still trigger detection before CMUS inflation. This timer serves as a backup to the primary acceleration detection method. Additionally, these parameters were tested for safety on actual flight test data, demonstrating expected safety margins.

  14. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2015-01-01

    This paper describes an algorithm for atmospheric state estimation that is based on a coupling between inertial navigation and flush air data sensing pressure measurements. In this approach, the full navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to directly estimate atmospheric winds and density using a nonlinear weighted least-squares algorithm. The approach uses a high fidelity model of atmosphere stored in table-look-up form, along with simplified models of that are propagated along the trajectory within the algorithm to provide prior estimates and covariances to aid the air data state solution. Thus, the method is essentially a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere and winds are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the discrete-time observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content to the system. The algorithm is then applied to the design of the pressure measurement system for the Mars 2020 mission. The pressure port layout is optimized to maximize the observability of atmospheric states along the trajectory. Linear covariance analysis is performed to assess estimator performance for a given pressure measurement uncertainty. The results indicate that the new tightly-coupled estimator can produce enhanced estimates of atmospheric states when compared with existing algorithms.

  15. Online selective kernel-based temporal difference learning.

    PubMed

    Chen, Xingguo; Gao, Yang; Wang, Ruili

    2013-12-01

    In this paper, an online selective kernel-based temporal difference (OSKTD) learning algorithm is proposed to deal with large scale and/or continuous reinforcement learning problems. OSKTD includes two online procedures: online sparsification and parameter updating for the selective kernel-based value function. A new sparsification method (i.e., a kernel distance-based online sparsification method) is proposed based on selective ensemble learning, which is computationally less complex compared with other sparsification methods. With the proposed sparsification method, the sparsified dictionary of samples is constructed online by checking if a sample needs to be added to the sparsified dictionary. In addition, based on local validity, a selective kernel-based value function is proposed to select the best samples from the sample dictionary for the selective kernel-based value function approximator. The parameters of the selective kernel-based value function are iteratively updated by using the temporal difference (TD) learning algorithm combined with the gradient descent technique. The complexity of the online sparsification procedure in the OSKTD algorithm is O(n). In addition, two typical experiments (Maze and Mountain Car) are used to compare with both traditional and up-to-date O(n) algorithms (GTD, GTD2, and TDC using the kernel-based value function), and the results demonstrate the effectiveness of our proposed algorithm. In the Maze problem, OSKTD converges to an optimal policy and converges faster than both traditional and up-to-date algorithms. In the Mountain Car problem, OSKTD converges, requires less computation time compared with other sparsification methods, gets a better local optima than the traditional algorithms, and converges much faster than the up-to-date algorithms. In addition, OSKTD can reach a competitive ultimate optima compared with the up-to-date algorithms.

  16. Operation of Power Grids with High Penetration of Wind Power

    NASA Astrophysics Data System (ADS)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus improving trading risk control. A case study comparing coordinated with uncoordinated bidding strategies depending on the trader's risk attitude is included. Simulation results show that coordinated bidding can improve the expected profits while significantly improving the CVaR.

  17. Pigeon interaction mode switch-based UAV distributed flocking control under obstacle environments.

    PubMed

    Qiu, Huaxin; Duan, Haibin

    2017-11-01

    Unmanned aerial vehicle (UAV) flocking control is a serious and challenging problem due to local interactions and changing environments. In this paper, a pigeon flocking model and a pigeon coordinated obstacle-avoiding model are proposed based on a behavior that pigeon flocks will switch between hierarchical and egalitarian interaction mode at different flight phases. Owning to the similarity between bird flocks and UAV swarms in essence, a distributed flocking control algorithm based on the proposed pigeon flocking and coordinated obstacle-avoiding models is designed to coordinate a heterogeneous UAV swarm to fly though obstacle environments with few informed individuals. The comparative simulation results are elaborated to show the feasibility, validity and superiority of our proposed algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Implementation of trigonometric function using CORDIC algorithms

    NASA Astrophysics Data System (ADS)

    Mokhtar, A. S. N.; Ayub, M. I.; Ismail, N.; Daud, N. G. Nik

    2018-02-01

    In 1959, Jack E. Volder presents a brand new formula to the real-time solution of the equation raised in navigation system. This new algorithm was the most beneficial replacement of analog navigation system by the digital. The CORDIC (Coordinate Rotation Digital Computer) algorithm are used for the rapid calculation associated with elementary operates like trigonometric function, multiplication, division and logarithm function, and also various conversions such as conversion of rectangular to polar coordinate including the conversion between binary coded information. In this current time CORDIC formula have many applications in the field of communication, signal processing, 3-D graphics, and others. This paper would be presents the trigonometric function implementation by using CORDIC algorithm in rotation mode for circular coordinate system. The CORDIC technique is used in order to generating the output angle between range 0o to 90o and error analysis is concern. The result showed that the average percentage error is about 0.042% at angles between ranges 00 to 900. But the average percentage error rose up to 45% at angle 90o and above. So, this method is very accurate at the 1st quadrant. The mirror properties method is used to find out an angle at 2nd, 3rd and 4th quadrant.

  19. An Autonomous Navigation Algorithm for High Orbit Satellite Using Star Sensor and Ultraviolet Earth Sensor

    PubMed Central

    Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu

    2013-01-01

    An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust. PMID:24250261

  20. A computer-aided detection (CAD) system with a 3D algorithm for small acute intracranial hemorrhage

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Fernandez, James; Deshpande, Ruchi; Lee, Joon K.; Chan, Tao; Liu, Brent

    2012-02-01

    Acute Intracranial hemorrhage (AIH) requires urgent diagnosis in the emergency setting to mitigate eventual sequelae. However, experienced radiologists may not always be available to make a timely diagnosis. This is especially true for small AIH, defined as lesion smaller than 10 mm in size. A computer-aided detection (CAD) system for the detection of small AIH would facilitate timely diagnosis. A previously developed 2D algorithm shows high false positive rates in the evaluation based on LAC/USC cases, due to the limitation of setting up correct coordinate system for the knowledge-based classification system. To achieve a higher sensitivity and specificity, a new 3D algorithm is developed. The algorithm utilizes a top-hat transformation and dynamic threshold map to detect small AIH lesions. Several key structures of brain are detected and are used to set up a 3D anatomical coordinate system. A rule-based classification of the lesion detected is applied based on the anatomical coordinate system. For convenient evaluation in clinical environment, the CAD module is integrated with a stand-alone system. The CAD is evaluated by small AIH cases and matched normal collected in LAC/USC. The result of 3D CAD and the previous 2D CAD has been compared.

  1. An autonomous navigation algorithm for high orbit satellite using star sensor and ultraviolet earth sensor.

    PubMed

    Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu

    2013-01-01

    An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust.

  2. Robust resolution enhancement optimization methods to process variations based on vector imaging model

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong

    2012-03-01

    Optical proximity correction (OPC) and phase shifting mask (PSM) are the most widely used resolution enhancement techniques (RET) in the semiconductor industry. Recently, a set of OPC and PSM optimization algorithms have been developed to solve for the inverse lithography problem, which are only designed for the nominal imaging parameters without giving sufficient attention to the process variations due to the aberrations, defocus and dose variation. However, the effects of process variations existing in the practical optical lithography systems become more pronounced as the critical dimension (CD) continuously shrinks. On the other hand, the lithography systems with larger NA (NA>0.6) are now extensively used, rendering the scalar imaging models inadequate to describe the vector nature of the electromagnetic field in the current optical lithography systems. In order to tackle the above problems, this paper focuses on developing robust gradient-based OPC and PSM optimization algorithms to the process variations under a vector imaging model. To achieve this goal, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. The steepest descent algorithm is used to optimize the mask iteratively. In order to improve the efficiency of the proposed algorithms, a set of algorithm acceleration techniques (AAT) are exploited during the optimization procedure.

  3. An analysis of neural receptive field plasticity by point process adaptive filtering

    PubMed Central

    Brown, Emery N.; Nguyen, David P.; Frank, Loren M.; Wilson, Matthew A.; Solo, Victor

    2001-01-01

    Neural receptive fields are plastic: with experience, neurons in many brain regions change their spiking responses to relevant stimuli. Analysis of receptive field plasticity from experimental measurements is crucial for understanding how neural systems adapt their representations of relevant biological information. Current analysis methods using histogram estimates of spike rate functions in nonoverlapping temporal windows do not track the evolution of receptive field plasticity on a fine time scale. Adaptive signal processing is an established engineering paradigm for estimating time-varying system parameters from experimental measurements. We present an adaptive filter algorithm for tracking neural receptive field plasticity based on point process models of spike train activity. We derive an instantaneous steepest descent algorithm by using as the criterion function the instantaneous log likelihood of a point process spike train model. We apply the point process adaptive filter algorithm in a study of spatial (place) receptive field properties of simulated and actual spike train data from rat CA1 hippocampal neurons. A stability analysis of the algorithm is sketched in the Appendix. The adaptive algorithm can update the place field parameter estimates on a millisecond time scale. It reliably tracked the migration, changes in scale, and changes in maximum firing rate characteristic of hippocampal place fields in a rat running on a linear track. Point process adaptive filtering offers an analytic method for studying the dynamics of neural receptive fields. PMID:11593043

  4. Validation of Genome-Wide Prostate Cancer Associations in Men of African Descent

    PubMed Central

    Chang, Bao-Li; Spangler, Elaine; Gallagher, Stephen; Haiman, Christopher A.; Henderson, Brian; Isaacs, William; Benford, Marnita L.; Kidd, LaCreis R.; Cooney, Kathleen; Strom, Sara; Ann Ingles, Sue; Stern, Mariana C.; Corral, Roman; Joshi, Amit D.; Xu, Jianfeng; Giri, Veda N.; Rybicki, Benjamin; Neslund-Dudas, Christine; Kibel, Adam S.; Thompson, Ian M.; Leach, Robin J.; Ostrander, Elaine A.; Stanford, Janet L.; Witte, John; Casey, Graham; Eeles, Rosalind; Hsing, Ann W.; Chanock, Stephen; Hu, Jennifer J.; John, Esther M.; Park, Jong; Stefflova, Klara; Zeigler-Johnson, Charnita; Rebbeck, Timothy R.

    2010-01-01

    Background Genome-wide association studies (GWAS) have identified numerous prostate cancer susceptibility alleles, but these loci have been identified primarily in men of European descent. There is limited information about the role of these loci in men of African descent. Methods We identified 7,788 prostate cancer cases and controls with genotype data for 47 GWAS-identified loci. Results We identified significant associations for SNP rs10486567 at JAZF1, rs10993994 at MSMB, rs12418451 and rs7931342 at 11q13, and rs5945572 and rs5945619 at NUDT10/11. These associations were in the same direction and of similar magnitude as those reported in men of European descent. Significance was attained at all report prostate cancer susceptibility regions at chromosome 8q24, including associations reaching genome-wide significance in region 2. Conclusion We have validated in men of African descent the associations at some, but not all, prostate cancer susceptibility loci originally identified in European descent populations. This may be due to heterogeneity in genetic etiology or in the pattern of genetic variation across populations. Impact The genetic etiology of prostate cancer in men of African descent differs from that of men of European descent. PMID:21071540

  5. Shape prior modeling using sparse representation and online dictionary learning.

    PubMed

    Zhang, Shaoting; Zhan, Yiqiang; Zhou, Yan; Uzunbas, Mustafa; Metaxas, Dimitris N

    2012-01-01

    The recently proposed sparse shape composition (SSC) opens a new avenue for shape prior modeling. Instead of assuming any parametric model of shape statistics, SSC incorporates shape priors on-the-fly by approximating a shape instance (usually derived from appearance cues) by a sparse combination of shapes in a training repository. Theoretically, one can increase the modeling capability of SSC by including as many training shapes in the repository. However, this strategy confronts two limitations in practice. First, since SSC involves an iterative sparse optimization at run-time, the more shape instances contained in the repository, the less run-time efficiency SSC has. Therefore, a compact and informative shape dictionary is preferred to a large shape repository. Second, in medical imaging applications, training shapes seldom come in one batch. It is very time consuming and sometimes infeasible to reconstruct the shape dictionary every time new training shapes appear. In this paper, we propose an online learning method to address these two limitations. Our method starts from constructing an initial shape dictionary using the K-SVD algorithm. When new training shapes come, instead of re-constructing the dictionary from the ground up, we update the existing one using a block-coordinates descent approach. Using the dynamically updated dictionary, sparse shape composition can be gracefully scaled up to model shape priors from a large number of training shapes without sacrificing run-time efficiency. Our method is validated on lung localization in X-Ray and cardiac segmentation in MRI time series. Compared to the original SSC, it shows comparable performance while being significantly more efficient.

  6. Studies of the hormonal control of postnatal testicular descent in the rat.

    PubMed

    Spencer, J R; Vaughan, E D; Imperato-McGinley, J

    1993-03-01

    Dihydrotestosterone is believed to control the transinguinal phase of testicular descent based on hormonal manipulation studies performed in postnatal rats. In the present study, these hormonal manipulation experiments were repeated, and the results were compared with those obtained using the antiandrogens flutamide and cyproterone acetate. 17 beta-estradiol completely blocked testicular descent, but testosterone and dihydrotestosterone were equally effective in reversing this inhibition. Neither flutamide nor cyproterone acetate prevented testicular descent in postnatal rats despite marked peripheral antiandrogenic action. Further analysis of the data revealed a correlation between testicular size and descent. Androgen receptor blockade did not produce a marked reduction in testicular size and consequently did not prevent testicular descent, whereas estradiol alone caused marked testicular atrophy and testicular maldescent. Reduction of the estradiol dosage or concomitant administration of androgens or human chorionic gonadotropin resulted in both increased testicular size and degree of descent. These data suggest that growth of the neonatal rat testis may contribute to its passage into the scrotum.

  7. Distributed pheromone-based swarming control of unmanned air and ground vehicles for RSTA

    NASA Astrophysics Data System (ADS)

    Sauter, John A.; Mathews, Robert S.; Yinger, Andrew; Robinson, Joshua S.; Moody, John; Riddle, Stephanie

    2008-04-01

    The use of unmanned vehicles in Reconnaissance, Surveillance, and Target Acquisition (RSTA) applications has received considerable attention recently. Cooperating land and air vehicles can support multiple sensor modalities providing pervasive and ubiquitous broad area sensor coverage. However coordination of multiple air and land vehicles serving different mission objectives in a dynamic and complex environment is a challenging problem. Swarm intelligence algorithms, inspired by the mechanisms used in natural systems to coordinate the activities of many entities provide a promising alternative to traditional command and control approaches. This paper describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of swarming unmanned systems. The results of a recent demonstration at NASA's Wallops Island of multiple Aerosonde Unmanned Air Vehicles (UAVs) and Pioneer Unmanned Ground Vehicles (UGVs) cooperating in a coordinated RSTA application are discussed. The vehicles were autonomously controlled by the onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm self-organized to perform total area surveillance, automatic target detection, sensor cueing, and automatic target recognition with no central processing or control and minimal operator input. Complete autonomy adds several safety and fault tolerance requirements which were integrated into the basic pheromone framework. The adaptive algorithms demonstrated the ability to handle some unplanned hardware failures during the demonstration without any human intervention. The paper describes lessons learned and the next steps for this promising technology.

  8. Application of multi-objective nonlinear optimization technique for coordinated ramp-metering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haj Salem, Habib; Farhi, Nadir; Lebacque, Jean Patrick, E-mail: abib.haj-salem@ifsttar.fr, E-mail: nadir.frahi@ifsttar.fr, E-mail: jean-patrick.lebacque@ifsttar.fr

    2015-03-10

    This paper aims at developing a multi-objective nonlinear optimization algorithm applied to coordinated motorway ramp metering. The multi-objective function includes two components: traffic and safety. Off-line simulation studies were performed on A4 France Motorway including 4 on-ramps.

  9. An Exponential Finite Difference Technique for Solving Partial Differential Equations. M.S. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.

  10. The Athena Astrophysical MHD Code in Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Skinner, M. A.; Ostriker, E. C.

    2011-10-01

    We have developed a method for implementing cylindrical coordinates in the Athena MHD code (Skinner & Ostriker 2010). The extension has been designed to alter the existing Cartesian-coordinates code (Stone et al. 2008) as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the eigensystems and Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we have developed a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web.

  11. exponential finite difference technique for solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less

  12. Generalized and efficient algorithm for computing multipole energies and gradients based on Cartesian tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Dejun, E-mail: dejun.lin@gmail.com

    2015-09-21

    Accurate representation of intermolecular forces has been the central task of classical atomic simulations, known as molecular mechanics. Recent advancements in molecular mechanics models have put forward the explicit representation of permanent and/or induced electric multipole (EMP) moments. The formulas developed so far to calculate EMP interactions tend to have complicated expressions, especially in Cartesian coordinates, which can only be applied to a specific kernel potential function. For example, one needs to develop a new formula each time a new kernel function is encountered. The complication of these formalisms arises from an intriguing and yet obscured mathematical relation between themore » kernel functions and the gradient operators. Here, I uncover this relation via rigorous derivation and find that the formula to calculate EMP interactions is basically invariant to the potential kernel functions as long as they are of the form f(r), i.e., any Green’s function that depends on inter-particle distance. I provide an algorithm for efficient evaluation of EMP interaction energies, forces, and torques for any kernel f(r) up to any arbitrary rank of EMP moments in Cartesian coordinates. The working equations of this algorithm are essentially the same for any kernel f(r). Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on the kernel functions, the algorithm here is about 4–16 times faster than these algorithms in terms of the required number of floating point operations and is much more memory efficient. I show that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based expression that is optimal for computer programming. The Cartesian nature of this algorithm makes it fit easily into modern molecular simulation packages as compared with spherical coordinate-based algorithms. A software library based on this algorithm has been implemented in C++11 and has been released.« less

  13. Inversion of 2-D DC resistivity data using rapid optimization and minimal complexity neural network

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Tiwari, R. K.; Singh, S. B.

    2010-02-01

    The backpropagation (BP) artificial neural network (ANN) technique of optimization based on steepest descent algorithm is known to be inept for its poor performance and does not ensure global convergence. Nonlinear and complex DC resistivity data require efficient ANN model and more intensive optimization procedures for better results and interpretations. Improvements in the computational ANN modeling process are described with the goals of enhancing the optimization process and reducing ANN model complexity. Well-established optimization methods, such as Radial basis algorithm (RBA) and Levenberg-Marquardt algorithms (LMA) have frequently been used to deal with complexity and nonlinearity in such complex geophysical records. We examined here the efficiency of trained LMA and RB networks by using 2-D synthetic resistivity data and then finally applied to the actual field vertical electrical resistivity sounding (VES) data collected from the Puga Valley, Jammu and Kashmir, India. The resulting ANN reconstruction resistivity results are compared with the result of existing inversion approaches, which are in good agreement. The depths and resistivity structures obtained by the ANN methods also correlate well with the known drilling results and geologic boundaries. The application of the above ANN algorithms proves to be robust and could be used for fast estimation of resistive structures for other complex earth model also.

  14. Learning Efficient Sparse and Low Rank Models.

    PubMed

    Sprechmann, P; Bronstein, A M; Sapiro, G

    2015-09-01

    Parsimony, including sparsity and low rank, has been shown to successfully model data in numerous machine learning and signal processing tasks. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with parsimony-promoting terms. The inherently sequential structure and data-dependent complexity and latency of iterative optimization constitute a major limitation in many applications requiring real-time performance or involving large-scale data. Another limitation encountered by these modeling techniques is the difficulty of their inclusion in discriminative learning scenarios. In this work, we propose to move the emphasis from the model to the pursuit algorithm, and develop a process-centric view of parsimonious modeling, in which a learned deterministic fixed-complexity pursuit process is used in lieu of iterative optimization. We show a principled way to construct learnable pursuit process architectures for structured sparse and robust low rank models, derived from the iteration of proximal descent algorithms. These architectures learn to approximate the exact parsimonious representation at a fraction of the complexity of the standard optimization methods. We also show that appropriate training regimes allow to naturally extend parsimonious models to discriminative settings. State-of-the-art results are demonstrated on several challenging problems in image and audio processing with several orders of magnitude speed-up compared to the exact optimization algorithms.

  15. Correlation Between Echodefecography and 3-Dimensional Vaginal Ultrasonography in the Detection of Perineal Descent in Women With Constipation Symptoms.

    PubMed

    Murad-Regadas, Sthela M; Pinheiro Regadas, Francisco Sergio; Rodrigues, Lusmar V; da Silva Vilarinho, Adjra; Buchen, Guilherme; Borges, Livia Olinda; Veras, Lara B; da Cruz, Mariana Murad

    2016-12-01

    Defecography is an established method of evaluating dynamic anorectal dysfunction, but conventional defecography does not allow for visualization of anatomic structures. The purpose of this study was to describe the use of dynamic 3-dimensional endovaginal ultrasonography for evaluating perineal descent in comparison with echodefecography (3-dimensional anorectal ultrasonography) and to study the relationship between perineal descent and symptoms and anatomic/functional abnormalities of the pelvic floor. This was a prospective study. The study was conducted at a large university tertiary care hospital. Consecutive female patients were eligible if they had pelvic floor dysfunction, obstructed defecation symptoms, and a score >6 on the Cleveland Clinic Florida Constipation Scale. Each patient underwent both echodefecography and dynamic 3-dimensional endovaginal ultrasonography to evaluate posterior pelvic floor dysfunction. Normal perineal descent was defined on echodefecography as puborectalis muscle displacement ≤2.5 cm; excessive perineal descent was defined as displacement >2.5 cm. Of 61 women, 29 (48%) had normal perineal descent; 32 (52%) had excessive perineal descent. Endovaginal ultrasonography identified 27 of the 29 patients in the normal group as having anorectal junction displacement ≤1 cm (mean = 0.6 cm; range, 0.1-1.0 cm) and a mean anorectal junction position of 0.6 cm (range, 0-2.3 cm) above the symphysis pubis during the Valsalva maneuver and correctly identified 30 of the 32 patients in the excessive perineal descent group. The κ statistic showed almost perfect agreement (κ = 0.86) between the 2 methods for categorization into the normal and excessive perineal descent groups. Perineal descent was not related to fecal or urinary incontinence or anatomic and functional factors (sphincter defects, pubovisceral muscle defects, levator hiatus area, grade II or III rectocele, intussusception, or anismus). The study did not include a control group without symptoms. Three-dimensional endovaginal ultrasonography is a reliable technique for assessment of perineal descent. Using this technique, excessive perineal descent can be defined as displacement of the anorectal junction >1 cm and/or its position below the symphysis pubis on Valsalva maneuver.

  16. Adjoint shape optimization for fluid-structure interaction of ducted flows

    NASA Astrophysics Data System (ADS)

    Heners, J. P.; Radtke, L.; Hinze, M.; Düster, A.

    2018-03-01

    Based on the coupled problem of time-dependent fluid-structure interaction, equations for an appropriate adjoint problem are derived by the consequent use of the formal Lagrange calculus. Solutions of both primal and adjoint equations are computed in a partitioned fashion and enable the formulation of a surface sensitivity. This sensitivity is used in the context of a steepest descent algorithm for the computation of the required gradient of an appropriate cost functional. The efficiency of the developed optimization approach is demonstrated by minimization of the pressure drop in a simple two-dimensional channel flow and in a three-dimensional ducted flow surrounded by a thin-walled structure.

  17. Output Feedback Stabilization for a Class of Multi-Variable Bilinear Stochastic Systems with Stochastic Coupling Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qichun; Zhou, Jinglin; Wang, Hong

    In this paper, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.

  18. Kurtosis Approach Nonlinear Blind Source Separation

    NASA Technical Reports Server (NTRS)

    Duong, Vu A.; Stubbemd, Allen R.

    2005-01-01

    In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation Keywords: Independent Component Analysis, Kurtosis, Higher order statistics.

  19. Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror.

    PubMed

    Yang, Ping; Ning, Yu; Lei, Xiang; Xu, Bing; Li, Xinyang; Dong, Lizhi; Yan, Hu; Liu, Wenjing; Jiang, Wenhan; Liu, Lei; Wang, Chao; Liang, Xingbo; Tang, Xiaojun

    2010-03-29

    We present a slab laser amplifier beam cleanup experimental system based on a 39-actuator rectangular piezoelectric deformable mirror. Rather than use a wave-front sensor to measure distortions in the wave-front and then apply a conjugation wave-front for compensating them, the system uses a Stochastic Parallel Gradient Descent algorithm to maximize the power contained within a far-field designated bucket. Experimental results demonstrate that at the output power of 335W, more than 30% energy concentrates in the 1x diffraction-limited area while the beam quality is enhanced greatly.

  20. An image morphing technique based on optimal mass preserving mapping.

    PubMed

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2007-06-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods.

  1. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    PubMed Central

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  2. A Computational Algorithm for Functional Clustering of Proteome Dynamics During Development

    PubMed Central

    Wang, Yaqun; Wang, Ningtao; Hao, Han; Guo, Yunqian; Zhen, Yan; Shi, Jisen; Wu, Rongling

    2014-01-01

    Phenotypic traits, such as seed development, are a consequence of complex biochemical interactions among genes, proteins and metabolites, but the underlying mechanisms that operate in a coordinated and sequential manner remain elusive. Here, we address this issue by developing a computational algorithm to monitor proteome changes during the course of trait development. The algorithm is built within the mixture-model framework in which each mixture component is modeled by a specific group of proteins that display a similar temporal pattern of expression in trait development. A nonparametric approach based on Legendre orthogonal polynomials was used to fit dynamic changes of protein expression, increasing the power and flexibility of protein clustering. By analyzing a dataset of proteomic dynamics during early embryogenesis of the Chinese fir, the algorithm has successfully identified several distinct types of proteins that coordinate with each other to determine seed development in this forest tree commercially and environmentally important to China. The algorithm will find its immediate applications for the characterization of mechanistic underpinnings for any other biological processes in which protein abundance plays a key role. PMID:24955031

  3. A method to align the coordinate system of accelerometers to the axes of a human body: The depitch algorithm.

    PubMed

    Gietzelt, Matthias; Schnabel, Stephan; Wolf, Klaus-Hendrik; Büsching, Felix; Song, Bianying; Rust, Stefan; Marschollek, Michael

    2012-05-01

    One of the key problems in accelerometry based gait analyses is that it may not be possible to attach an accelerometer to the lower trunk so that its axes are perfectly aligned to the axes of the subject. In this paper we will present an algorithm that was designed to virtually align the axes of the accelerometer to the axes of the subject during walking sections. This algorithm is based on a physically reasonable approach and built for measurements in unsupervised settings, where the test persons are applying the sensors by themselves. For evaluation purposes we conducted a study with 6 healthy subjects and measured their gait with a manually aligned and a skewed accelerometer attached to the subject's lower trunk. After applying the algorithm the intra-axis correlation of both sensors was on average 0.89±0.1 with a mean absolute error of 0.05g. We concluded that the algorithm was able to adjust the skewed sensor node virtually to the coordinate system of the subject. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. The performance analysis of three-dimensional track-before-detect algorithm based on Fisher-Tippett-Gnedenko theorem

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Song, Sungchan

    2016-09-01

    The dim moving target tracking from the infrared image sequence in the presence of high clutter and noise has been recently under intensive investigation. The track-before-detect (TBD) algorithm processing the image sequence over a number of frames before decisions on the target track and existence is known to be especially attractive in very low SNR environments (⩽ 3 dB). In this paper, we shortly present a three-dimensional (3-D) TBD with dynamic programming (TBD-DP) algorithm using multiple IR image sensors. Since traditional two-dimensional TBD algorithm cannot track and detect the along the viewing direction, we use 3-D TBD with multiple sensors and also strictly analyze the detection performance (false alarm and detection probabilities) based on Fisher-Tippett-Gnedenko theorem. The 3-D TBD-DP algorithm which does not require a separate image registration step uses the pixel intensity values jointly read off from multiple image frames to compute the merit function required in the DP process. Therefore, we also establish the relationship between the pixel coordinates of image frame and the reference coordinates.

  5. 14 CFR 23.69 - Enroute climb/descent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... climb/descent. (a) All engines operating. The steady gradient and rate of climb must be determined at.... The steady gradient and rate of climb/descent must be determined at each weight, altitude, and ambient...

  6. On the modeling of breath-by-breath oxygen uptake kinetics at the onset of high-intensity exercises: simulated annealing vs. GRG2 method.

    PubMed

    Bernard, Olivier; Alata, Olivier; Francaux, Marc

    2006-03-01

    Modeling in the time domain, the non-steady-state O2 uptake on-kinetics of high-intensity exercises with empirical models is commonly performed with gradient-descent-based methods. However, these procedures may impair the confidence of the parameter estimation when the modeling functions are not continuously differentiable and when the estimation corresponds to an ill-posed problem. To cope with these problems, an implementation of simulated annealing (SA) methods was compared with the GRG2 algorithm (a gradient-descent method known for its robustness). Forty simulated Vo2 on-responses were generated to mimic the real time course for transitions from light- to high-intensity exercises, with a signal-to-noise ratio equal to 20 dB. They were modeled twice with a discontinuous double-exponential function using both estimation methods. GRG2 significantly biased two estimated kinetic parameters of the first exponential (the time delay td1 and the time constant tau1) and impaired the precision (i.e., standard deviation) of the baseline A0, td1, and tau1 compared with SA. SA significantly improved the precision of the three parameters of the second exponential (the asymptotic increment A2, the time delay td2, and the time constant tau2). Nevertheless, td2 was significantly biased by both procedures, and the large confidence intervals of the whole second component parameters limit their interpretation. To compare both algorithms on experimental data, 26 subjects each performed two transitions from 80 W to 80% maximal O2 uptake on a cycle ergometer and O2 uptake was measured breath by breath. More than 88% of the kinetic parameter estimations done with the SA algorithm produced the lowest residual sum of squares between the experimental data points and the model. Repeatability coefficients were better with GRG2 for A1 although better with SA for A2 and tau2. Our results demonstrate that the implementation of SA improves significantly the estimation of most of these kinetic parameters, but a large inaccuracy remains in estimating the parameter values of the second exponential.

  7. Polar exponential sensor arrays unify iconic and Hough space representation

    NASA Technical Reports Server (NTRS)

    Weiman, Carl F. R.

    1990-01-01

    The log-polar coordinate system, inherent in both polar exponential sensor arrays and log-polar remapped video imagery, is identical to the coordinate system of its corresponding Hough transform parameter space. The resulting unification of iconic and Hough domains simplifies computation for line recognition and eliminates the slope quantization problems inherent in the classical Cartesian Hough transform. The geometric organization of the algorithm is more amenable to massively parallel architectures than that of the Cartesian version. The neural architecture of the human visual cortex meets the geometric requirements to execute 'in-place' log-Hough algorithms of the kind described here.

  8. Adaptive Feedback in Local Coordinates for Real-time Vision-Based Motion Control Over Long Distances

    NASA Astrophysics Data System (ADS)

    Aref, M. M.; Astola, P.; Vihonen, J.; Tabus, I.; Ghabcheloo, R.; Mattila, J.

    2018-03-01

    We studied the differences in noise-effects, depth-correlated behavior of sensors, and errors caused by mapping between coordinate systems in robotic applications of machine vision. In particular, the highly range-dependent noise densities for semi-unknown object detection were considered. An equation is proposed to adapt estimation rules to dramatic changes of noise over longer distances. This algorithm also benefits the smooth feedback of wheels to overcome variable latencies of visual perception feedback. Experimental evaluation of the integrated system is presented with/without the algorithm to highlight its effectiveness.

  9. Precise calculation of the local pressure tensor in Cartesian and spherical coordinates in LAMMPS

    NASA Astrophysics Data System (ADS)

    Nakamura, Takenobu; Kawamoto, Shuhei; Shinoda, Wataru

    2015-05-01

    An accurate and efficient algorithm for calculating the 3D pressure field has been developed and implemented in the open-source molecular dynamics package, LAMMPS. Additionally, an algorithm to compute the pressure profile along the radial direction in spherical coordinates has also been implemented. The latter is particularly useful for systems showing a spherical symmetry such as micelles and vesicles. These methods yield precise pressure fields based on the Irving-Kirkwood contour integration and are particularly useful for biomolecular force fields. The present methods are applied to several systems including a buckled membrane and a vesicle.

  10. Efficient Modeling of Gravity Fields Caused by Sources with Arbitrary Geometry and Arbitrary Density Distribution

    NASA Astrophysics Data System (ADS)

    Wu, Leyuan

    2018-01-01

    We present a brief review of gravity forward algorithms in Cartesian coordinate system, including both space-domain and Fourier-domain approaches, after which we introduce a truly general and efficient algorithm, namely the convolution-type Gauss fast Fourier transform (Conv-Gauss-FFT) algorithm, for 2D and 3D modeling of gravity potential and its derivatives due to sources with arbitrary geometry and arbitrary density distribution which are defined either by discrete or by continuous functions. The Conv-Gauss-FFT algorithm is based on the combined use of a hybrid rectangle-Gaussian grid and the fast Fourier transform (FFT) algorithm. Since the gravity forward problem in Cartesian coordinate system can be expressed as continuous convolution-type integrals, we first approximate the continuous convolution by a weighted sum of a series of shifted discrete convolutions, and then each shifted discrete convolution, which is essentially a Toeplitz system, is calculated efficiently and accurately by combining circulant embedding with the FFT algorithm. Synthetic and real model tests show that the Conv-Gauss-FFT algorithm can obtain high-precision forward results very efficiently for almost any practical model, and it works especially well for complex 3D models when gravity fields on large 3D regular grids are needed.

  11. Generalized Entropies and Legendre Duality

    DTIC Science & Technology

    2012-04-22

    region because of their one-to-one functional relationship. The standard algorithm using projection of a polyhedron [29, 6] commonly works well to...coordinate system is chosen to realize the corresponding Voronoi diagrams. In this coordinate system with one extra complementary coordinate the polyhedron is...dually flat. Using this property, α-Voronoi diagrams on Rn+1+ is discussed in [31]. While both of the above methods require computation of the polyhedrons

  12. Optimal Coordination of Building Loads and Energy Storage for Power Grid and End User Services

    DOE PAGES

    Hao, He; Wu, Di; Lian, Jianming; ...

    2017-01-18

    Demand response and energy storage play a profound role in the smart grid. The focus of this study is to evaluate benefits of coordinating flexible loads and energy storage to provide power grid and end user services. We present a Generalized Battery Model (GBM) to describe the flexibility of building loads and energy storage. An optimization-based approach is proposed to characterize the parameters (power and energy limits) of the GBM for flexible building loads. We then develop optimal coordination algorithms to provide power grid and end user services such as energy arbitrage, frequency regulation, spinning reserve, as well as energymore » cost and demand charge reduction. Several case studies have been performed to demonstrate the efficacy of the GBM and coordination algorithms, and evaluate the benefits of using their flexibility for power grid and end user services. We show that optimal coordination yields significant cost savings and revenue. Moreover, the best option for power grid services is to provide energy arbitrage and frequency regulation. Finally and furthermore, when coordinating flexible loads with energy storage to provide end user services, it is recommended to consider demand charge in addition to time-of-use price in order to flatten the aggregate power profile.« less

  13. Algorithms for the explicit computation of Penrose diagrams

    NASA Astrophysics Data System (ADS)

    Schindler, J. C.; Aguirre, A.

    2018-05-01

    An algorithm is given for explicitly computing Penrose diagrams for spacetimes of the form . The resulting diagram coordinates are shown to extend the metric continuously and nondegenerately across an arbitrary number of horizons. The method is extended to include piecewise approximations to dynamically evolving spacetimes using a standard hypersurface junction procedure. Examples generated by an implementation of the algorithm are shown for standard and new cases. In the appendix, this algorithm is compared to existing methods.

  14. Computer coordination of limb motion for a three-legged walking robot

    NASA Technical Reports Server (NTRS)

    Klein, C. A.; Patterson, M. R.

    1980-01-01

    Coordination of the limb motion of a vehicle which could perform assembly and maintenance operations on large structures in space is described. Manipulator kinematics and walking robots are described. The basic control scheme of the robot is described. The control of the individual arms are described. Arm velocities are generally described in Cartesian coordinates. Cartesian velocities are converted to joint velocities using the Jacobian matrix. The calculation of a trajectory for an arm given a sequence of points through which it is to pass is described. The free gait algorithm which controls the lifting and placing of legs for the robot is described. The generation of commanded velocities for the robot, and the implementation of those velocities by the algorithm are discussed. Suggestions for further work in the area of robot legged locomotion are presented.

  15. Effects of flutamide and finasteride on rat testicular descent.

    PubMed

    Spencer, J R; Torrado, T; Sanchez, R S; Vaughan, E D; Imperato-McGinley, J

    1991-08-01

    The endocrine control of descent of the testis in mammalian species is poorly understood. The androgen dependency of testicular descent was studied in the rat using an antiandrogen (flutamide) and an inhibitor of the enzyme 5 alpha-reductase (finasteride). Androgen receptor blockade inhibited testicular descent more effectively than inhibition of 5 alpha-reductase activity. Moreover, its inhibitory effect was limited to the outgrowth phase of the gubernaculum testis, particularly the earliest stages of outgrowth. Gubernacular size was also significantly reduced in fetuses exposed to flutamide during the outgrowth period. In contrast, androgen receptor blockade or 5 alpha-reductase inhibition applied after the initiation of gubernacular outgrowth or during the regression phase did not affect testicular descent. Successful inhibition of the development of epididymis and vas by prenatal flutamide did not correlate with ipsilateral testicular maldescent, suggesting that an intact epididymis is not required for descent of the testis. Plasma androgen assays confirmed significant inhibition of dihydrotestosterone formation in finasteride-treated rats. These data suggest that androgens, primarily testosterone, are required during the early phases of gubernacular outgrowth for subsequent successful completion of testicular descent.

  16. A bio-inspired swarm robot coordination algorithm for multiple target searching

    NASA Astrophysics Data System (ADS)

    Meng, Yan; Gan, Jing; Desai, Sachi

    2008-04-01

    The coordination of a multi-robot system searching for multi targets is challenging under dynamic environment since the multi-robot system demands group coherence (agents need to have the incentive to work together faithfully) and group competence (agents need to know how to work together well). In our previous proposed bio-inspired coordination method, Local Interaction through Virtual Stigmergy (LIVS), one problem is the considerable randomness of the robot movement during coordination, which may lead to more power consumption and longer searching time. To address these issues, an adaptive LIVS (ALIVS) method is proposed in this paper, which not only considers the travel cost and target weight, but also predicting the target/robot ratio and potential robot redundancy with respect to the detected targets. Furthermore, a dynamic weight adjustment is also applied to improve the searching performance. This new method a truly distributed method where each robot makes its own decision based on its local sensing information and the information from its neighbors. Basically, each robot only communicates with its neighbors through a virtual stigmergy mechanism and makes its local movement decision based on a Particle Swarm Optimization (PSO) algorithm. The proposed ALIVS algorithm has been implemented on the embodied robot simulator, Player/Stage, in a searching target. The simulation results demonstrate the efficiency and robustness in a power-efficient manner with the real-world constraints.

  17. Conception et analyse d'un systeme d'optimisation de plans de vol pour les avions

    NASA Astrophysics Data System (ADS)

    Maazoun, Wissem

    The main objective of this thesis is to develop an optimization method for the preparation of flight plans for aircrafts. The flight plan minimizes all costs associated with the flight. We determine an optimal path for an airplane from a departure airport to a destination airport. The optimal path minimizes the sum of all costs, i.e. the cost of fuel added to the cost of time (wages, rental of the aircraft, arrival delays, etc.). The optimal trajectory is obtained by considering all possible trajectories on a 3D graph (longitude, latitude and altitude) where the altitude levels are separated by 2,000 feet, and by applying a shortest path algorithm. The main task was to accurately compute fuel consumption on each edge of the graph, making sure that each arc has a minimal cost and is covered in a realistic way from the point of view of control, i.e. in accordance with the rules of navigation. To compute the cost of an arc, we take into account weather conditions (temperature, pressure, wind components, etc.). The optimization of each arc is done via the evaluation of an optimum speed that takes all costs into account. Each arc of the graph typically includes several sub-phases of the flight, e.g. altitude change, speed change, and constant speed and altitude. In the initial climb and the final descent phases, the costs are determined by considering altitude changes at constant CAS (Calibrated Air Speed) or constant Mach number. CAS and Mach number are adjusted to minimize cost. The aerodynamic model used is the one proposed by Eurocontrol, which uses the BADA (Base of Aircraft Data) tables. This model is based on the total energy equation that determines the instantaneous fuel consumption. Calculations on each arc are done by solving a system of differential equations that systematically takes all costs into account. To compute the cost of an arc, we must know the time to go through it, which is generally unknown. To have well-posed boundary conditions, we use the horizontal displacement as the independent variable of the system of differential equations. We consider the velocity components of the wind in a 3D system of coordinates to compute the instantaneous ground speed of the aircraft. To consider the cost of time, we use the cost index. The cost of an arc depends on the aircraft mass at the beginning of this arc, and this mass depends on the path. As we consider all possible paths, the cost of an arc must be computed for each trajectory to which it belongs. For a long-distance flight, the number of arcs to be considered in the graph is large and therefore the cost of an arc is typically computed many times. Our algorithm computes the costs of one million arcs in seconds while having a high accuracy. The determination of the optimal trajectory can therefore be done in a short time. To get the optimal path, the mass of the aircraft at the departure point must also be optimal. It is therefore necessary to know the optimal amount of fuel for the journey. The aircraft mass is known only at the arrival point. This mass is the mass of the aircraft including passengers, cargo and reserve fuel mass. The optimal path is determined by calculating backwards, i.e. from the arrival point to the departure point. For the determination of the optimal trajectory, we use an elliptical grid that has focal points at the departure and arrival points. The use of this grid is essential for the construction of a direct and acyclic graph. We use the Bellman-Ford algorithm on a DAG to determine the shortest path. This algorithm is easy to implement and results in short computation times. Our algorithm computes an optimal trajectory with an optimal cost for each arc. Altitude changes are done optimally with respect to the mass of the aircraft and the cost of time. Our algorithm gives the mass, speed, altitude and total cost at any point of the trajectory as well as the optimal profiles of climb and descent. A prototype has been implemented in C. We made simulations of all types of possible arcs and of several complete trajectories to illustrate the behaviour of the algorithm.

  18. Resolving Off-Nominal Situations in Schedule-Based Terminal Area Operations: Results from a Human-in-the-Loop Simulation

    NASA Technical Reports Server (NTRS)

    Mercer, Joey; Callantine, Todd; Martin, Lynne

    2012-01-01

    A recent human-in-the-loop simulation in the Airspace Operations Laboratory (AOL) at NASA's Ames Research Center investigated the robustness of Controller-Managed Spacing (CMS) operations. CMS refers to AOL-developed controller tools and procedures for enabling arrivals to conduct efficient Optimized Profile Descents with sustained high throughput. The simulation provided a rich data set for examining how a traffic management supervisor and terminal-area controller participants used the CMS tools and coordinated to respond to off-nominal events. This paper proposes quantitative measures for characterizing the participants responses. Case studies of go-around events, replicated during the simulation, provide insights into the strategies employed and the role the CMS tools played in supporting them.

  19. Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates.

    PubMed

    Subotnik, Joseph E; Dutoi, Anthony D; Head-Gordon, Martin

    2005-09-15

    We present here an algorithm for computing stable, well-defined localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. The algorithm is very fast, limited only by diagonalization of two matrices with dimension the size of the number of virtual orbitals. Furthermore, we require no more than quadratic (in the number of electrons) storage. The basic premise behind our algorithm is that one can decompose any given atomic-orbital (AO) vector space as a minimal basis space (which includes the occupied and valence virtual spaces) and a hard-virtual (HV) space (which includes everything else). The valence virtual space localizes easily with standard methods, while the hard-virtual space is constructed to be atom centered and automatically local. The orbitals presented here may be computed almost as quickly as projecting the AO basis onto the virtual space and are almost as local (according to orbital variance), while our orbitals are orthonormal (rather than redundant and nonorthogonal). We expect this algorithm to find use in local-correlation methods.

  20. Deducing chemical structure from crystallographically determined atomic coordinates

    PubMed Central

    Bruno, Ian J.; Shields, Gregory P.; Taylor, Robin

    2011-01-01

    An improved algorithm has been developed for assigning chemical structures to incoming entries to the Cambridge Structural Database, using only the information available in the deposited CIF. Steps in the algorithm include detection of bonds, selection of polymer unit, resolution of disorder, and assignment of bond types and formal charges. The chief difficulty is posed by the large number of metallo-organic crystal structures that must be processed, given our aspiration that assigned chemical structures should accurately reflect properties such as the oxidation states of metals and redox-active ligands, metal coordination numbers and hapticities, and the aromaticity or otherwise of metal ligands. Other complications arise from disorder, especially when it is symmetry imposed or modelled with the SQUEEZE algorithm. Each assigned structure is accompanied by an estimate of reliability and, where necessary, diagnostic information indicating probable points of error. Although the algorithm was written to aid building of the Cambridge Structural Database, it has the potential to develop into a general-purpose tool for adding chemical information to newly determined crystal structures. PMID:21775812

  1. An enhanced multi-view vertical line locus matching algorithm of object space ground primitives based on positioning consistency for aerial and space images

    NASA Astrophysics Data System (ADS)

    Zhang, Ka; Sheng, Yehua; Wang, Meizhen; Fu, Suxia

    2018-05-01

    The traditional multi-view vertical line locus (TMVLL) matching method is an object-space-based method that is commonly used to directly acquire spatial 3D coordinates of ground objects in photogrammetry. However, the TMVLL method can only obtain one elevation and lacks an accurate means of validating the matching results. In this paper, we propose an enhanced multi-view vertical line locus (EMVLL) matching algorithm based on positioning consistency for aerial or space images. The algorithm involves three components: confirming candidate pixels of the ground primitive in the base image, multi-view image matching based on the object space constraints for all candidate pixels, and validating the consistency of the object space coordinates with the multi-view matching result. The proposed algorithm was tested using actual aerial images and space images. Experimental results show that the EMVLL method successfully solves the problems associated with the TMVLL method, and has greater reliability, accuracy and computing efficiency.

  2. Formally Verified Practical Algorithms for Recovery from Loss of Separation

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Caesar A.

    2009-01-01

    In this paper, we develop and formally verify practical algorithms for recovery from loss of separation. The formal verification is performed in the context of a criteria-based framework. This framework provides rigorous definitions of horizontal and vertical maneuver correctness that guarantee divergence and achieve horizontal and vertical separation. The algorithms are shown to be independently correct, that is, separation is achieved when only one aircraft maneuvers, and implicitly coordinated, that is, separation is also achieved when both aircraft maneuver. In this paper we improve the horizontal criteria over our previous work. An important benefit of the criteria approach is that different aircraft can execute different algorithms and implicit coordination will still be achieved, as long as they all meet the explicit criteria of the framework. Towards this end we have sought to make the criteria as general as possible. The framework presented in this paper has been formalized and mechanically verified in the Prototype Verification System (PVS).

  3. Testicular descent related to growth hormone treatment.

    PubMed

    Papadimitriou, Anastasios; Fountzoula, Ioanna; Grigoriadou, Despina; Christianakis, Stratos; Tzortzatou, Georgia

    2003-01-01

    An 8.7 year-old boy with cryptorchidism and growth hormone (GH) deficiency due to septooptic dysplasia presented testicular descent related to the commencement of hGH treatment. This case suggests a role for GH in testicular descent.

  4. Aircraft Vortex Wake Descent and Decay under Real Atmospheric Effects

    DOT National Transportation Integrated Search

    1973-10-01

    Aircraft vortex wake descent and decay in a real atmosphere is studied analytically. Factors relating to encounter hazard, wake generation, wake descent and stability, and atmospheric dynamics are considered. Operational equations for encounter hazar...

  5. Computational and theoretical investigation of Mars's atmospheric impact on the descent module "Exomars-2018" under aerodynamic deceleration

    NASA Astrophysics Data System (ADS)

    Golomazov, M. M.; Ivankov, A. A.

    2016-12-01

    Methods for calculating the aerodynamic impact of the Martian atmosphere on the descent module "Exomars-2018" intended for solving the problem of heat protection of the descent module during aerodynamic deceleration are presented. The results of the investigation are also given. The flow field and radiative and convective heat exchange are calculated along the trajectory of the descent module until parachute system activation.

  6. Apollo lunar descent guidance

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1974-01-01

    Apollo lunar-descent guidance transfers the Lunar Module from a near-circular orbit to touchdown, traversing a 17 deg central angle and a 15 km altitude in 11 min. A group of interactive programs in an onboard computer guide the descent, controlling altitude and the descent propulsion system throttle. A ground-based program pre-computes guidance targets. The concepts involved in this guidance are described. Explicit and implicit guidance are discussed, guidance equations are derived, and the earlier Apollo explicit equation is shown to be an inferior special case of the later implicit equation. Interactive guidance, by which the two-man crew selects a landing site in favorable terrain and directs the trajectory there, is discussed. Interactive terminal-descent guidance enables the crew to control the essentially vertical descent rate in order to land in minimum time with safe contact speed. The altitude maneuver routine uses concepts that make gimbal lock inherently impossible.

  7. Vertical Descent and Landing Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane in Still Air, TED No. NACA DE 368

    NASA Technical Reports Server (NTRS)

    Smith, Charlee C., Jr.; Lovell, Powell M., Jr.

    1954-01-01

    An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of Convair XFY-1 vertically rising airplane. This paper presents the results of flight and force tests to determine the stability and control characteristics of the model in vertical descent and landings in still air. The tests indicated that landings, including vertical descent from altitudes representing up to 400 feet for the full-scale airplane and at rates of descent up to 15 or 20 feet per second (full scale), can be performed satisfactorily. Sustained vertical descent in still air probably will be more difficult to perform because of large random trim changes that become greater as the descent velocity is increased. A slight steady head wind or cross wind might be sufficient to eliminate the random trim changes.

  8. Coordinate axes, location of origin, and redundancy for the one and two-dimensional discrete Fourier transform

    NASA Technical Reports Server (NTRS)

    Ioup, G. E.; Ioup, J. W.

    1985-01-01

    Appendix 4 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer discusses coordinate axes, location of origin, and redundancy for the one- and two-dimensional Fourier transform for complex and real data.

  9. Applications of an exponential finite difference technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.; Keith, T.G. Jr.

    1988-07-01

    An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.

  10. Minerva: Cylindrical coordinate extension for Athena

    NASA Astrophysics Data System (ADS)

    Skinner, M. Aaron; Ostriker, Eve C.

    2013-02-01

    Minerva is a cylindrical coordinate extension of the Athena astrophysical MHD code of Stone, Gardiner, Teuben, and Hawley. The extension follows the approach of Athena's original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport (CT), a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully.

  11. Dynamic Power Distribution System Management With a Locally Connected Communication Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhang, Kaiqing; Basar, Tamer

    Coordinated optimization and control of distribution-level assets can enable a reliable and optimal integration of massive amount of distributed energy resources (DERs) and facilitate distribution system management (DSM). Accordingly, the objective is to coordinate the power injection at the DERs to maintain certain quantities across the network, e.g., voltage magnitude, line flows, or line losses, to be close to a desired profile. By and large, the performance of the DSM algorithms has been challenged by two factors: i) the possibly non-strongly connected communication network over DERs that hinders the coordination; ii) the dynamics of the real system caused by themore » DERs with heterogeneous capabilities, time-varying operating conditions, and real-time measurement mismatches. In this paper, we investigate the modeling and algorithm design and analysis with the consideration of these two factors. In particular, a game theoretic characterization is first proposed to account for a locally connected communication network over DERs, along with the analysis of the existence and uniqueness of the Nash equilibrium (NE) therein. To achieve the equilibrium in a distributed fashion, a projected-gradient-based asynchronous DSM algorithm is then advocated. The algorithm performance, including the convergence speed and the tracking error, is analytically guaranteed under the dynamic setting. Extensive numerical tests on both synthetic and realistic cases corroborate the analytical results derived.« less

  12. A fast fully constrained geometric unmixing of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Li, Xiao-run; Cui, Jian-tao; Zhao, Liao-ying; Zheng, Jun-peng

    2014-11-01

    A great challenge in hyperspectral image analysis is decomposing a mixed pixel into a collection of endmembers and their corresponding abundance fractions. This paper presents an improved implementation of Barycentric Coordinate approach to unmix hyperspectral images, integrating with the Most-Negative Remove Projection method to meet the abundance sum-to-one constraint (ASC) and abundance non-negativity constraint (ANC). The original barycentric coordinate approach interprets the endmember unmixing problem as a simplex volume ratio problem, which is solved by calculate the determinants of two augmented matrix. One consists of all the members and the other consist of the to-be-unmixed pixel and all the endmembers except for the one corresponding to the specific abundance that is to be estimated. In this paper, we first modified the algorithm of Barycentric Coordinate approach by bringing in the Matrix Determinant Lemma to simplify the unmixing process, which makes the calculation only contains linear matrix and vector operations. So, the matrix determinant calculation of every pixel, as the original algorithm did, is avoided. By the end of this step, the estimated abundance meet the ASC constraint. Then, the Most-Negative Remove Projection method is used to make the abundance fractions meet the full constraints. This algorithm is demonstrated both on synthetic and real images. The resulting algorithm yields the abundance maps that are similar to those obtained by FCLS, while the runtime is outperformed as its computational simplicity.

  13. Numerical Investigation of Hot Gas Ingestion by STOVL Aircraft

    NASA Technical Reports Server (NTRS)

    Vanka, S. P.

    1998-01-01

    This report compiles the various research activities conducted under the auspices of the NASA Grant NAG3-1026, "Numerical Investigation of Hot Gas Ingestion by STOVL Aircraft" during the period of April 1989 to April 1994. The effort involved the development of multigrid based algorithms and computer programs for the calculation of the flow and temperature fields generated by Short Take-off and Vertical Landing (STOVL) aircraft, while hovering in ground proximity. Of particular importance has been the interaction of the exhaust jets with the head wind which gives rise to the hot gas ingestion process. The objective of new STOVL designs to reduce the temperature of the gases ingested into the engine. The present work describes a solution algorithm for the multi-dimensional elliptic partial-differential equations governing fluid flow and heat transfer in general curvilinear coordinates. The solution algorithm is based on the multigrid technique which obtains rapid convergence of the iterative numerical procedure for the discrete equations. Initial efforts were concerned with the solution of the Cartesian form of the equations. This algorithm was applied to a simulated STOVL configuration in rectangular coordinates. In the next phase of the work, a computer code for general curvilinear coordinates was constructed. This was applied to model STOVL geometries on curvilinear grids. The code was also validated in model problems. In all these efforts, the standard k-Epsilon model was used.

  14. Improved method of step length estimation based on inverted pendulum model.

    PubMed

    Zhao, Qi; Zhang, Boxue; Wang, Jingjing; Feng, Wenquan; Jia, Wenyan; Sun, Mingui

    2017-04-01

    Step length estimation is an important issue in areas such as gait analysis, sport training, or pedestrian localization. In this article, we estimate the step length of walking using a waist-worn wearable computer named eButton. Motion sensors within this device are used to record body movement from the trunk instead of extremities. Two signal-processing techniques are applied to our algorithm design. The direction cosine matrix transforms vertical acceleration from the device coordinates to the topocentric coordinates. The empirical mode decomposition is used to remove the zero- and first-order skew effects resulting from an integration process. Our experimental results show that our algorithm performs well in step length estimation. The effectiveness of the direction cosine matrix algorithm is improved from 1.69% to 3.56% while the walking speed increased.

  15. Analysis of a new phase and height algorithm in phase measurement profilometry

    NASA Astrophysics Data System (ADS)

    Bian, Xintian; Zuo, Fen; Cheng, Ju

    2018-04-01

    Traditional phase measurement profilometry adopts divergent illumination to obtain the height distribution of a measured object accurately. However, the mapping relation between reference plane coordinates and phase distribution must be calculated before measurement. Data are then stored in a computer in the form of a data sheet for standby applications. This study improved the distribution of projected fringes and deducted the phase-height mapping algorithm when the two pupils of the projection and imaging systems are of unequal heights and when the projection and imaging axes are on different planes. With the algorithm, calculating the mapping relation between reference plane coordinates and phase distribution prior to measurement is unnecessary. Thus, the measurement process is simplified, and the construction of an experimental system is made easy. Computer simulation and experimental results confirm the effectiveness of the method.

  16. Determination of the Beagle2 landing site

    NASA Astrophysics Data System (ADS)

    Trautner, R.; Manaud, N.; Michael, G.; Griffiths, A.; Beauvivre, S.; Koschny, D.; Coates, A.; Josset, J.-L.

    2004-02-01

    Beagle2 is the UK-led lander element on ESA's Mars Express mission, which will reach Mars in late December 2003. After separation from the Mars Express orbiter 6 days before the atmospheric entry, Beagle2 will descend to the Martian surface by means of ablative heat shields and parachutes. The impact will be cushioned by a set of airbags. The selected landing site at 11.6 deg N/90.75 deg E (IAU 2000 coordinates) is situated in the south-east of the center of Isidis Planitia, a sedimentary basin which is expected to meet the requirements of Beagle's scientific mission, the lander operations, and the entry, descent and landing systems. The exact determination of the Beagle2 landing site is important not only for the Beagle2 and MEX orbiter science investigations, but also for the reconstruction of Beagle's entry and descent trajectory. A precise determination of the Beagle2 position is not possible via the MELACOM radio link. Instead, a novel method based on celestial navigation is employed, which utilizes the Stereo Camera System on the lander for imaging the Martian night sky. The position data is then refined by comparing the landing site panorama images with high resolution orbiter images and laser altimeter data. This combination of celestial navigation with image data analysis for precision position determination will be applicable for many future missions as well.

  17. Economizing Education: Assessment Algorithms and Calculative Agencies

    ERIC Educational Resources Information Center

    O'Keeffe, Cormac

    2017-01-01

    International Large Scale Assessments have been producing data about educational attainment for over 60 years. More recently however, these assessments as tests have become digitally and computationally complex and increasingly rely on the calculative work performed by algorithms. In this article I first consider the coordination of relations…

  18. Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments.

    PubMed

    Cao, Xiang; Zhu, Daqi; Yang, Simon X

    2016-11-01

    Target search in 3-D underwater environments is a challenge in multiple autonomous underwater vehicles (multi-AUVs) exploration. This paper focuses on an effective strategy for multi-AUV target search in the 3-D underwater environments with obstacles. First, the Dempster-Shafer theory of evidence is applied to extract information of environment from the sonar data to build a grid map of the underwater environments. Second, a topologically organized bioinspired neurodynamics model based on the grid map is constructed to represent the dynamic environment. The target globally attracts the AUVs through the dynamic neural activity landscape of the model, while the obstacles locally push the AUVs away to avoid collision. Finally, the AUVs plan their search path to the targets autonomously by a steepest gradient descent rule. The proposed algorithm deals with various situations, such as static targets search, dynamic targets search, and one or several AUVs break down in the 3-D underwater environments with obstacles. The simulation results show that the proposed algorithm is capable of guiding multi-AUV to achieve search task of multiple targets with higher efficiency and adaptability compared with other algorithms.

  19. Mars Entry Atmospheric Data System Trajectory Reconstruction Algorithms and Flight Results

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark; Shidner, Jeremy; Munk, Michelle

    2013-01-01

    The Mars Entry Atmospheric Data System is a part of the Mars Science Laboratory, Entry, Descent, and Landing Instrumentation project. These sensors are a system of seven pressure transducers linked to ports on the entry vehicle forebody to record the pressure distribution during atmospheric entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. Specifically, angle of attack, angle of sideslip, dynamic pressure, Mach number, and freestream atmospheric properties are reconstructed from the measured pressures. Such data allows for the aerodynamics to become decoupled from the assumed atmospheric properties, allowing for enhanced trajectory reconstruction and performance analysis as well as an aerodynamic reconstruction, which has not been possible in past Mars entry reconstructions. This paper provides details of the data processing algorithms that are utilized for this purpose. The data processing algorithms include two approaches that have commonly been utilized in past planetary entry trajectory reconstruction, and a new approach for this application that makes use of the pressure measurements. The paper describes assessments of data quality and preprocessing, and results of the flight data reduction from atmospheric entry, which occurred on August 5th, 2012.

  20. Performance Comparison of Systematic Methods for Rigorous Definition of Coarse-Grained Sites of Large Biomolecules.

    PubMed

    Zhang, Yuwei; Cao, Zexing; Zhang, John Zenghui; Xia, Fei

    2017-02-27

    Construction of coarse-grained (CG) models for large biomolecules used for multiscale simulations demands a rigorous definition of CG sites for them. Several coarse-graining methods such as the simulated annealing and steepest descent (SASD) based on the essential dynamics coarse-graining (ED-CG) or the stepwise local iterative optimization (SLIO) based on the fluctuation maximization coarse-graining (FM-CG), were developed to do it. However, the practical applications of these methods such as SASD based on ED-CG are subject to limitations because they are too expensive. In this work, we extend the applicability of ED-CG by combining it with the SLIO algorithm. A comprehensive comparison of optimized results and accuracy of various algorithms based on ED-CG show that SLIO is the fastest as well as the most accurate algorithm among them. ED-CG combined with SLIO could give converged results as the number of CG sites increases, which demonstrates that it is another efficient method for coarse-graining large biomolecules. The construction of CG sites for Ras protein by using MD fluctuations demonstrates that the CG sites derived from FM-CG can reflect the fluctuation properties of secondary structures in Ras accurately.

Top