Coordinate alignment of combined measurement systems using a modified common points method
NASA Astrophysics Data System (ADS)
Zhao, G.; Zhang, P.; Xiao, W.
2018-03-01
The co-ordinate metrology has been extensively researched for its outstanding advantages in measurement range and accuracy. The alignment of different measurement systems is usually achieved by integrating local coordinates via common points before measurement. The alignment errors would accumulate and significantly reduce the global accuracy, thus need to be minimized. In this thesis, a modified common points method (MCPM) is proposed to combine different traceable system errors of the cooperating machines, and optimize the global accuracy by introducing mutual geometric constraints. The geometric constraints, obtained by measuring the common points in individual local coordinate systems, provide the possibility to reduce the local measuring uncertainty whereby enhance the global measuring certainty. A simulation system is developed in Matlab to analyze the feature of MCPM using the Monto-Carlo method. An exemplary setup is constructed to verify the feasibility and efficiency of the proposed method associated with laser tracker and indoor iGPS systems. Experimental results show that MCPM could significantly improve the alignment accuracy.
Secure alignment of coordinate systems using quantum correlation
NASA Astrophysics Data System (ADS)
Rezazadeh, F.; Mani, A.; Karimipour, V.
2017-08-01
We show that two parties far apart can use shared entangled states and classical communication to align their coordinate systems with a very high fidelity. Moreover, compared with previous methods proposed for such a task, i.e., sending parallel or antiparallel pairs or groups of spin states, our method has the extra advantages of using single-qubit measurements and also being secure, so that third parties do not extract any information about the aligned coordinate system established between the two parties. The latter property is important in many other quantum information protocols in which measurements inevitably play a significant role.
Null test fourier domain alignment technique for phase-shifting point diffraction interferometer
Naulleau, Patrick; Goldberg, Kenneth Alan
2000-01-01
Alignment technique for calibrating a phase-shifting point diffraction interferometer involves three independent steps where the first two steps independently align the image points and pinholes in rotation and separation to a fixed reference coordinate system, e.g, CCD. Once the two sub-elements have been properly aligned to the reference in two parameters (separation and orientation), the third step is to align the two sub-element coordinate systems to each other in the two remaining parameters (x,y) using standard methods of locating the pinholes relative to some easy to find reference point.
NASA Astrophysics Data System (ADS)
Shimanskii, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.
2017-03-01
A method is developed to ensure precise alignment of the origin of a polar coordinate system in which the laser beam position is defined in writing diffractive optical elements with the optical workpiece rotation axis. This method is used to improve the accuracy of a circular laser writing system in writing large-scale diffractive optical elements in a polar coordinate system. Results of studying new algorithms of detection and correction of positioning errors of the circular laser writing system in the course of writing are reported.
Baumer, Timothy G; Giles, Joshua W; Drake, Anne; Zauel, Roger; Bey, Michael J
2016-01-01
Measures of scapulothoracic motion are dependent on accurate imaging of the scapula and thorax. Advanced radiographic techniques can provide accurate measures of scapular motion, but the limited 3D imaging volume of these techniques often precludes measurement of thorax motion. To overcome this, a thorax coordinate system was defined based on the position of rib pairs and then compared to a conventional sternum/spine-based thorax coordinate system. Alignment of the rib-based coordinate system was dependent on the rib pairs used, with the rib3:rib4 pairing aligned to within 4.4 ± 2.1 deg of the conventional thorax coordinate system.
Interpolation schemes for peptide rearrangements.
Bauer, Marianne S; Strodel, Birgit; Fejer, Szilard N; Koslover, Elena F; Wales, David J
2010-02-07
A variety of methods (in total seven) comprising different combinations of internal and Cartesian coordinates are tested for interpolation and alignment in connection attempts for polypeptide rearrangements. We consider Cartesian coordinates, the internal coordinates used in CHARMM, and natural internal coordinates, each of which has been interfaced to the OPTIM code and compared with the corresponding results for united-atom force fields. We show that aligning the methylene hydrogens to preserve the sign of a local dihedral angle, rather than minimizing a distance metric, provides significant improvements with respect to connection times and failures. We also demonstrate the superiority of natural coordinate methods in conjunction with internal alignment. Checking the potential energy of the interpolated structures can act as a criterion for the choice of the interpolation coordinate system, which reduces failures and connection times significantly.
NASA Technical Reports Server (NTRS)
Coulter, Phillip; Beaton, Alexander; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael;
2014-01-01
The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed.
Alignment of angular velocity sensors for a vestibular prosthesis.
Digiovanna, Jack; Carpaneto, Jacopo; Micera, Silvestro; Merfeld, Daniel M
2012-02-13
Vestibular prosthetics transmit angular velocities to the nervous system via electrical stimulation. Head-fixed gyroscopes measure angular motion, but the gyroscope coordinate system will not be coincident with the sensory organs the prosthetic replaces. Here we show a simple calibration method to align gyroscope measurements with the anatomical coordinate system. We benchmarked the method with simulated movements and obtain proof-of-concept with one healthy subject. The method was robust to misalignment, required little data, and minimal processing.
Banarsee, Ricky; Kelly, Cornelius; El-Osta, Austen; Thomas, Paul; Brophy, Chris
2018-03-01
The rapidly increasing number of people who have long-term conditions requires a system of coordinated support for self-care throughout the NHS. A system to support self-care needs to be aligned to systems that support shared-care and community development, making it easier for the multidisciplinary teams who provide care to also help patients and populations to help themselves. Public health practitioners need to work closely with clinicians to achieve this. The best place to coordinate this partnership is a community-based coordinating hub, or local health community - a geographic area of about 50,000 population where different contributions to self-care can be aligned. A shared vision for both health and disease management is needed to ensure consistent messaging by all. A three tier system of shared care can help to combine vertical and horizontal integration. This paper uses severe and enduring mental illness as an exemplar to anticipate the design of such a system.
Compensation of Horizontal Gravity Disturbances for High Precision Inertial Navigation
Cao, Juliang; Wu, Meiping; Lian, Junxiang; Cai, Shaokun; Wang, Lin
2018-01-01
Horizontal gravity disturbances are an important factor that affects the accuracy of inertial navigation systems in long-duration ship navigation. In this paper, from the perspective of the coordinate system and vector calculation, the effects of horizontal gravity disturbance on the initial alignment and navigation calculation are simultaneously analyzed. Horizontal gravity disturbances cause the navigation coordinate frame built in initial alignment to not be consistent with the navigation coordinate frame in which the navigation calculation is implemented. The mismatching of coordinate frame violates the vector calculation law, which will have an adverse effect on the precision of the inertial navigation system. To address this issue, two compensation methods suitable for two different navigation coordinate frames are proposed, one of the methods implements the compensation in velocity calculation, and the other does the compensation in attitude calculation. Finally, simulations and ship navigation experiments confirm the effectiveness of the proposed methods. PMID:29562653
Advanced Weapon System (AWS) Sensor Prediction Techniques Study. Volume I
1981-09-01
row and column rather than random. The efficiency of the aigorithm depends on the fact that the grid coordinate system is aligned with the viewray ...pixels. Since the viewscreen is aligned with data base coordinates, the viewray intersections with a row of elevation posts are equally spaced at any...Surface Topography If a viewray strikes but a single terrain face, the viewray will be assigned the color of the face. If the viewray strikes two or
A line-source method for aligning on-board and other pinhole SPECT systems.
Yan, Susu; Bowsher, James; Yin, Fang-Fang
2013-12-01
In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system-to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)-is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems. An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot. In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist. Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC.
Evaluation of Eight Methods for Aligning Orientation of Two Coordinate Systems.
Mecheri, Hakim; Robert-Lachaine, Xavier; Larue, Christian; Plamondon, André
2016-08-01
The aim of this study was to evaluate eight methods for aligning the orientation of two different local coordinate systems. Alignment is very important when combining two different systems of motion analysis. Two of the methods were developed specifically for biomechanical studies, and because there have been at least three decades of algorithm development in robotics, it was decided to include six methods from this field. To compare these methods, an Xsens sensor and two Optotrak clusters were attached to a Plexiglas plate. The first optical marker cluster was fixed on the sensor and 20 trials were recorded. The error of alignment was calculated for each trial, and the mean, the standard deviation, and the maximum values of this error over all trials were reported. One-way repeated measures analysis of variance revealed that the alignment error differed significantly across the eight methods. Post-hoc tests showed that the alignment error from the methods based on angular velocities was significantly lower than for the other methods. The method using angular velocities performed the best, with an average error of 0.17 ± 0.08 deg. We therefore recommend this method, which is easy to perform and provides accurate alignment.
NASA Astrophysics Data System (ADS)
Collart, T. G.; Stacey, W. M.
2015-11-01
Several methods are presented for extending the traditional analytic ``circular'' representation of flux-surface aligned curvilinear coordinate systems to more accurately describe equilibrium plasma geometry and magnetic fields in DIII-D. The formalism originally presented by Miller is extended to include different poloidal variations in the upper and lower hemispheres. A coordinate system based on separate Fourier expansions of major radius and vertical position greatly improves accuracy in edge plasma structure representation. Scale factors and basis vectors for a system formed by expanding the circular model minor radius can be represented using linear combinations of Fourier basis functions. A general method for coordinate system orthogonalization is presented and applied to all curvilinear models. A formalism for the magnetic field structure in these curvilinear models is presented, and the resulting magnetic field predictions are compared against calculations performed in a Cartesian system using an experimentally based EFIT prediction for the Grad-Shafranov equilibrium. Supported by: US DOE under DE-FG02-00ER54538.
A line-source method for aligning on-board and other pinhole SPECT systems
Yan, Susu; Bowsher, James; Yin, Fang-Fang
2013-01-01
Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems. Methods: An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot. Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist. Conclusions: Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC. PMID:24320537
A line-source method for aligning on-board and other pinhole SPECT systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Susu; Bowsher, James; Yin, Fang-Fang
2013-12-15
Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system—to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)—is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems.Methods: An alignment model consisting of multiple alignmentmore » parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot.Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist.Conclusions: Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC.« less
Quantifying alignment effects in 3D coordinate measurement.
DOT National Transportation Integrated Search
2009-10-01
The use of fixtureless, non-contact coordinate measurement has become increasingly prevalent in manufacturing : problem solving. Manufacturers now routinely use measurement systems such as white light area scanners, photogrammetry, : laser trackers, ...
Franck, J.V.; Broadhead, P.S.; Skiff, E.W.
1959-07-14
A semiautomatic measuring projector particularly adapted for measurement of the coordinates of photographic images of particle tracks as prcduced in a bubble or cloud chamber is presented. A viewing screen aids the operator in selecting a particle track for measurement. After approximate manual alignment, an image scanning system coupled to a servo control provides automatic exact alignment of a track image with a reference point. The apparatus can follow along a track with a continuous motion while recording coordinate data at various selected points along the track. The coordinate data is recorded on punched cards for subsequent computer calculation of particle trajectory, momentum, etc.
A novel flexible field-aligned coordinate system for tokamak edge plasma simulation
NASA Astrophysics Data System (ADS)
Leddy, J.; Dudson, B.; Romanelli, M.; Shanahan, B.; Walkden, N.
2017-03-01
Tokamak plasmas are confined by a magnetic field that limits the particle and heat transport perpendicular to the field. Parallel to the field the ionised particles can move freely, so to obtain confinement the field lines are "closed" (i.e. form closed surfaces of constant poloidal flux) in the core of a tokamak. Towards, the edge, however, the field lines intersect physical surfaces, leading to interaction between neutral and ionised particles, and the potential melting of the material surface. Simulation of this interaction is important for predicting the performance and lifetime of future tokamak devices such as ITER. Field-aligned coordinates are commonly used in the simulation of tokamak plasmas due to the geometry and magnetic topology of the system. However, these coordinates are limited in the geometry they allow in the poloidal plane due to orthogonality requirements. A novel 3D coordinate system is proposed herein that relaxes this constraint so that any arbitrary, smoothly varying geometry can be matched in the poloidal plane while maintaining a field-aligned coordinate. This system is implemented in BOUT++ and tested for accuracy using the method of manufactured solutions. A MAST edge cross-section is simulated using a fluid plasma model and the results show expected behaviour for density, temperature, and velocity. Finally, simulations of an isolated divertor leg are conducted with and without neutrals to demonstrate the ion-neutral interaction near the divertor plate and the corresponding beneficial decrease in plasma temperature.
Herawati, Elisa; Kanoh, Hatsuho
2016-01-01
Multiciliated cells (MCCs) promote fluid flow through coordinated ciliary beating, which requires properly organized basal bodies (BBs). Airway MCCs have large numbers of BBs, which are uniformly oriented and, as we show here, align linearly. The mechanism for BB alignment is unexplored. To study this mechanism, we developed a long-term and high-resolution live-imaging system and used it to observe green fluorescent protein–centrin2–labeled BBs in cultured mouse tracheal MCCs. During MCC differentiation, the BB array adopted four stereotypical patterns, from a clustering “floret” pattern to the linear “alignment.” This alignment process was correlated with BB orientations, revealed by double immunostaining for BBs and their asymmetrically associated basal feet (BF). The BB alignment was disrupted by disturbing apical microtubules with nocodazole and by a BF-depleting Odf2 mutation. We constructed a theoretical model, which indicated that the apical cytoskeleton, acting like a viscoelastic fluid, provides a self-organizing mechanism in tracheal MCCs to align BBs linearly for mucociliary transport. PMID:27573463
Impact and Estimation of Balance Coordinate System Rotations and Translations in Wind-Tunnel Testing
NASA Technical Reports Server (NTRS)
Toro, Kenneth G.; Parker, Peter A.
2017-01-01
Discrepancies between the model and balance coordinate systems lead to biases in the aerodynamic measurements during wind-tunnel testing. The reference coordinate system relative to the calibration coordinate system at which the forces and moments are resolved is crucial to the overall accuracy of force measurements. This paper discusses sources of discrepancies and estimates of coordinate system rotation and translation due to machining and assembly differences. A methodology for numerically estimating the coordinate system biases will be discussed and developed. Two case studies are presented using this methodology to estimate the model alignment. Examples span from angle measurement system shifts on the calibration system to discrepancies in actual wind-tunnel data. The results from these case-studies will help aerodynamic researchers and force balance engineers to better the understand and identify potential differences in calibration systems due to coordinate system rotation and translation.
An isocenter estimation tool for proton gantry alignment
NASA Astrophysics Data System (ADS)
Hansen, Peter; Hu, Dongming
2017-12-01
A novel tool has been developed to automate the process of locating the isocenter, center of rotation, and sphere of confusion of a proton therapy gantry. The tool uses a Radian laser tracker to estimate how the coordinate frame of the front-end beam-line components changes as the gantry rotates. The coordinate frames serve as an empirical model of gantry flexing. Using this model, the alignment of the front and back-end beam-line components can be chosen to minimize the sphere of confusion, improving the overall beam positioning accuracy of the gantry. This alignment can be performed without the beam active, improving the efficiency of installing new systems at customer sites.
Gietzelt, Matthias; Schnabel, Stephan; Wolf, Klaus-Hendrik; Büsching, Felix; Song, Bianying; Rust, Stefan; Marschollek, Michael
2012-05-01
One of the key problems in accelerometry based gait analyses is that it may not be possible to attach an accelerometer to the lower trunk so that its axes are perfectly aligned to the axes of the subject. In this paper we will present an algorithm that was designed to virtually align the axes of the accelerometer to the axes of the subject during walking sections. This algorithm is based on a physically reasonable approach and built for measurements in unsupervised settings, where the test persons are applying the sensors by themselves. For evaluation purposes we conducted a study with 6 healthy subjects and measured their gait with a manually aligned and a skewed accelerometer attached to the subject's lower trunk. After applying the algorithm the intra-axis correlation of both sensors was on average 0.89±0.1 with a mean absolute error of 0.05g. We concluded that the algorithm was able to adjust the skewed sensor node virtually to the coordinate system of the subject. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Guidi, G; Beraldin, J A; Ciofi, S; Atzeni, C
2003-01-01
The generation of three-dimensional (3-D) digital models produced by optical technologies in some cases involves metric errors. This happens when small high-resolution 3-D images are assembled together in order to model a large object. In some applications, as for example 3-D modeling of Cultural Heritage, the problem of metric accuracy is a major issue and no methods are currently available for enhancing it. The authors present a procedure by which the metric reliability of the 3-D model, obtained through iterative alignments of many range maps, can be guaranteed to a known acceptable level. The goal is the integration of the 3-D range camera system with a close range digital photogrammetry technique. The basic idea is to generate a global coordinate system determined by the digital photogrammetric procedure, measuring the spatial coordinates of optical targets placed around the object to be modeled. Such coordinates, set as reference points, allow the proper rigid motion of few key range maps, including a portion of the targets, in the global reference system defined by photogrammetry. The other 3-D images are normally aligned around these locked images with usual iterative algorithms. Experimental results on an anthropomorphic test object, comparing the conventional and the proposed alignment method, are finally reported.
Video image position determination
Christensen, Wynn; Anderson, Forrest L.; Kortegaard, Birchard L.
1991-01-01
An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.
Stakeholder perceptions of aid coordination implementation in the Zambian health sector.
Sundewall, Jesper; Jönsson, Kristina; Cheelo, Caesar; Tomson, Göran
2010-05-01
In this study, we analysed stakeholder perceptions of the process of implementing the coordination of health-sector aid in Zambia, Africa. The aim of coordination of health aid is to increase the effectiveness of health systems and to ensure that donors comply with national priorities. With increases in the number of donors involved and resources available for health aid globally, the attention devoted to coordination worldwide has risen. While the theoretical basis of coordination has been relatively well-explored, less research has been carried out on the practicalities of how such coordination is to be implemented. In our study, we focused on potential differences between the views of the stakeholders, both government and donors, on the systems by which health aid is coordinated. A qualitative case study was conducted comprising interviews with government and donor stakeholders in the health sector, as well as document review and observations of meetings. Results suggested that stakeholders are generally satisfied with the implementation of health-sector aid coordination in Zambia. However, there were differences in perceptions of the level of coordination of plans and agreements, which can be attributed to difficulties in harmonizing and aligning organizational requirements with the Zambian health-sector plans. In order to achieve the aims of the Paris Declaration; to increase harmonization, alignment and ownership--resources from donors must be better coordinated in the health sector planning process. This requires careful consideration of contextual constraints surrounding each donor. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Aligning with physicians to regionalize services.
Fink, John
2014-11-01
When effectively designed and implemented, regionalization allows a health system to coordinate care, eliminate redundancies, reduce costs, optimize resource utilization, and improve outcomes. The preferred model to manage service lines regionally will depend on each facility's capabilities and the willingness of physicians to accept changes in clinical delivery. Health systems can overcome physicians' objections to regionalization by implementing a hospital-physician alignment structure that gives a measure of shared control in the management of the organization.
AF-Geospace User’s Manual Version 2.5.1 and Version 2.51P
2012-08-01
system of the grid. The choices are: GEOC: Geocentric coordinate system: The Z axis is aligned with the north rotational pole, the X axis pierces...the Greenwich Meridian on the equator (0 o Long, 0 o Lat), and the Y axis is minus the cross-product of X and Z. GSM: Geocentric solar magnetospheric...handed system and is positive towards dusk. GEI: Geocentric equatorial inertial coordinate system: The Z axis is the same as for the geocentric
Hastings, Mary K; Woodburn, James; Mueller, Michael J; Strube, Michael J; Johnson, Jeffrey E; Beckert, Krista S; Stein, Michelle L; Sinacore, David R
2014-01-01
Diabetic foot deformity onset and progression maybe associated with abnormal foot and ankle motion. The modified Oxford multi-segmental foot model allows kinematic assessment of inter-segmental foot motion. However, there are insufficient anatomical landmarks to accurately representation the alignment of the hindfoot and forefoot segments during model construction. This is most notable for the sagittal plane which is referenced parallel to the floor, allowing comparison of inter-segmental excursion but not capturing important sagittal hind-to-forefoot deformity associated with diabetic foot disease and can potentially underestimate true kinematic differences. The purpose of the study was to compare walking kinematics using local coordinate systems derived from the modified Oxford model and the radiographic directed model which incorporated individual calcaneal and 1st metatarsal declination pitch angles for the hindfoot and forefoot. We studied twelve participants in each of the following groups: (1) diabetes mellitus, peripheral neuropathy and medial column foot deformity (DMPN+), (2) DMPN without medial column deformity (DMPN-) and (3) age- and weight-match controls. The modified Oxford model coordinate system did not identify differences between groups in the initial, peak, final, or excursion hindfoot relative to shank or forefoot relative to hindfoot dorsiflexion/plantarflexion during walking. The radiographic coordinate system identified the DMPN+ group to have an initial, peak and final position of the forefoot relative to hindfoot that was more dorsiflexed (lower arch phenotype) than the DMPN- group (p<.05). Use of radiographic alignment in kinematic modeling of those with foot deformity reveals segmental motion occurring upon alignment indicative of a lower arch. Copyright © 2014 Elsevier B.V. All rights reserved.
Aligning Secondary and Postsecondary Education: Lessons from the Past. WISCAPE Policy Brief
ERIC Educational Resources Information Center
VanOverbeke, Marc
2009-01-01
Educators, reformers, and commissions have long underscored the need to align all levels of education and build a seamless, coordinated P-16 system. Failing to do so, they have argued, has kept too many students from pursuing an advanced education and the nation from benefiting from a more educated populace. Such was the case in the late…
Using Quasi-Horizontal Alignment in the absence of the actual alignment.
Banihashemi, Mohamadreza
2016-10-01
Horizontal alignment is a major roadway characteristic used in safety and operational evaluations of many facility types. The Highway Safety Manual (HSM) uses this characteristic in crash prediction models for rural two-lane highways, freeway segments, and freeway ramps/C-D roads. Traffic simulation models use this characteristic in their processes on almost all types of facilities. However, a good portion of roadway databases do not include horizontal alignment data; instead, many contain point coordinate data along the roadways. SHRP 2 Roadway Information Database (RID) is a good example of this type of data. Only about 5% of this geodatabase contains alignment information and for the rest, point data can easily be produced. Even though the point data can be used to extract actual horizontal alignment data but, extracting horizontal alignment is a cumbersome and costly process, especially for a database of miles and miles of highways. This research introduces a so called "Quasi-Horizontal Alignment" that can be produced easily and automatically from point coordinate data and can be used in the safety and operational evaluations of highways. SHRP 2 RID for rural two-lane highways in Washington State is used in this study. This paper presents a process through which Quasi-Horizontal Alignments are produced from point coordinates along highways by using spreadsheet software such as MS EXCEL. It is shown that the safety and operational evaluations of the highways with Quasi-Horizontal Alignments are almost identical to the ones with the actual alignments. In the absence of actual alignment the Quasi-Horizontal Alignment can easily be produced from any type of databases that contain highway coordinates such geodatabases and digital maps. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adult Basic Education: Aligning Adult Basic Education and Postsecondary Education
ERIC Educational Resources Information Center
Texas Higher Education Coordinating Board, 2008
2008-01-01
In 2007, the 80th Texas Legislature included a rider to the General Appropriations Act for the Texas Higher Education Coordinating Board. The rider directed the agency to coordinate with the Texas Education Agency to develop and implement plans to align adult basic education with postsecondary education. The Coordinating Board, in collaboration…
Automatic alignment of double optical paths in excimer laser amplifier
NASA Astrophysics Data System (ADS)
Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun
2013-05-01
A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.
NASA Astrophysics Data System (ADS)
Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam
2017-09-01
This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.
Optical Testing Using Portable Laser Coordinate Measuring Instruments
NASA Technical Reports Server (NTRS)
Khreishi, Manal; Ohl, Raymond G.; Mclean, Kyle F.; Hadjimichael, Theodore J.; Hayden, Joseph E.
2017-01-01
High precision, portable coordinate measuring instruments (CMI) such as laser radars (LR) and laser trackers (LT) have been used for optical system alignment and integration. The LR's ability to perform a non-contact scan of surfaces was previously utilized to characterize large spherical and aspheric mirrors. In this paper, we explore the use of a CMI as an accurate, fast, robust, and non-contact tool for prescription characterization of powered optical surfaces. Using Nikon's MV-224/350 LR and Leica's Absolute Tracker AT401/402 instruments, proof of concept measurements were performed to characterize a variety of optical components by measuring the actual and apparent, or equivalently the "direct and through" (D&T), coordinates of calibrated metrology targets. Custom macros in metrology software and other data reduction code were developed to compute surface-ray intercepts and surface slopes from the D&T shots. The calculated data is fit to an aspheric surface formula to obtain the optimum prescription. The results were compared to the nominal parameters and were crosschecked using LR scans or other approaches. We discuss potential applications across the fields of optical component fabrication and system alignment and testing.
Optical Testing Using Portable Laser Coordinate Measuring Instruments
NASA Technical Reports Server (NTRS)
Khreishi, M.; Ohl, R.; Mclean, K.; Hadjimichael, T.; Hayden, J.
2017-01-01
High precision, portable coordinate measuring instruments (CMI) such as laser radars (LR) and laser trackers (LT) have been used for optical system alignment and integration. The LRs ability to perform a non-contact scan of surfaces was previously utilized to characterize large spherical and aspheric mirrors. In this paper, we explore the use of a CMI as an accurate, fast, robust, and non-contact tool for prescription characterization of powered optical surfaces. Using Nikons MV-224350 LR and Leicas Absolute Tracker AT401402 instruments, proof of concept measurements were performed to characterize a variety of optical components by measuring the actual and apparent, or equivalently the direct and through (DT), coordinates of calibrated metrology targets. Custom macros in metrology software and other data reduction code were developed to compute surface-ray intercepts and surface slopes from the DT shots. The calculated data is fit to an aspheric surface formula to obtain the optimum prescription. The results were compared to the nominal parameters and were crosschecked using LR scans or other approaches. We discuss potential applications across the fields of optical component fabrication and system alignment and testing.
Laser beam centering and pointing system
Rushford, Michael Charles
2015-01-13
An optical instrument aligns an optical beam without the need for physical intervention of the instrument within the apparatus or platforms from which the trajectory of the beam to be ascertained. The alignment apparatus and method enable the desired function to be realized without the placement of physical apertures or sensors directly in the path of the beam through the system whose spatial position and slope is to be sought. An image plane provides the observer with a pair of well-defined images that are indicative of the beam centering and pointing alignment parameters. The optical alignment can be realized without the need for referencing to an external or fixed set of coordinates or fiducials. The instrument can therefore service situations where adverse environments would otherwise prohibit the use of such instruments, including regions of high radiation, high temperature, vacuum and/or cryogenic atmospheres.
DOT National Transportation Integrated Search
1996-02-01
This study reviewed the low volume road (LVR) classifications in Kansas in conjunction with the State A, B, C, D, E road classification system and addressed alignment of these differences. As an extension to the State system, an F, G, H classificatio...
NASA Astrophysics Data System (ADS)
Deng, Zhengping; Li, Shuanggao; Huang, Xiang
2018-06-01
In the assembly process of large-size aerospace products, the leveling and horizontal alignment of large components are essential prior to the installation of an inertial navigation system (INS) and the final quality inspection. In general, the inherent coordinate systems of large-scale coordinate measuring devices are not coincident with the geodetic horizontal system, and a dual-axis compensation system is commonly required for the measurement of difference in heights. These compensation systems are expensive and dedicated designs for different devices at present. Considering that a large-size assembly site usually needs more than one measuring device, a compensation approach which is versatile for different devices would be a more convenient and economic choice for manufacturers. In this paper, a flexible and cost-effective compensation method is proposed. Firstly, an auxiliary measuring device called a versatile compensation fixture (VCF) is designed, which mainly comprises reference points for coordinate transformation and a dual-axis inclinometer, and a kind of network tighten points (NTPs) are introduced and temporarily deployed in the large measuring space to further reduce transformation error. Secondly, the measuring principle of height difference is studied, based on coordinate transformation theory and trigonometry while considering the effects of earth curvature, and the coordinate transformation parameters are derived by least squares adjustment. Thirdly, the analytical solution of leveling uncertainty is analyzed, based on which the key parameters of the VCF and the proper deployment of NTPs are determined according to the leveling accuracy requirement. Furthermore, the proposed method is practically applied to the assembly of a large helicopter by developing an automatic leveling and alignment system. By measuring four NTPs, the leveling uncertainty (2σ) is reduced by 29.4% to about 0.12 mm, compared with that without NTPs.
Using Stars to Align a Steered Laser System for Cosmic Ray Simulation
NASA Astrophysics Data System (ADS)
Krantz, Harry; Wiencke, Lawrence
2016-03-01
Ultra high energy cosmic rays (UHECRs) are the highest energy cosmic particles with kinetic energy above 1018eV . UHECRs are detected from the air shower of secondary particles and UV florescence that results from interaction with the atmosphere. A high power UV laser beam can be used to simulate the optical signature of a UHCER air shower. The Global Light System (GLS) is a planned network of ground-based light sources including lasers to support the planned space-based Extreme Universe Space Observatory (EUSO). A portable prototype GLS laser station has been constructed at the Colorado School of Mines. Currently the laser system uses reference targets on the ground but stars can be used to better align the beam by providing a complete hemisphere of targets. In this work, a CCD camera is used to capture images of known stars through the steering head optics. The images are analyzed to find the steering head coordinates of the target star. The true coordinates of the star are calculated from the location and time of observation. A universal adjustment for the steering head is determined from the differences between the two pairs of coordinates across multiple stars. This laser system prototype will also be used for preflight tests of the ESUO Super Pressure Balloon mission.
Retinoic acid regulates size, pattern and alignment of tissues at the head-trunk transition.
Lee, Keun; Skromne, Isaac
2014-11-01
At the head-trunk transition, hindbrain and spinal cord alignment to occipital and vertebral bones is crucial for coherent neural and skeletal system organization. Changes in neural or mesodermal tissue configuration arising from defects in the specification, patterning or relative axial placement of territories can severely compromise their integration and function. Here, we show that coordination of neural and mesodermal tissue at the zebrafish head-trunk transition crucially depends on two novel activities of the signaling factor retinoic acid (RA): one specifying the size and the other specifying the axial position relative to mesodermal structures of the hindbrain territory. These activities are each independent but coordinated with the well-established function of RA in hindbrain patterning. Using neural and mesodermal landmarks we demonstrate that the functions of RA in aligning neural and mesodermal tissues temporally precede the specification of hindbrain and spinal cord territories and the activation of hox transcription. Using cell transplantation assays we show that RA activity in the neuroepithelium regulates hindbrain patterning directly and territory size specification indirectly. This indirect function is partially dependent on Wnts but independent of FGFs. Importantly, RA specifies and patterns the hindbrain territory by antagonizing the activity of the spinal cord specification gene cdx4; loss of Cdx4 rescues the defects associated with the loss of RA, including the reduction in hindbrain size and the loss of posterior rhombomeres. We propose that at the head-trunk transition, RA coordinates specification, patterning and alignment of neural and mesodermal tissues that are essential for the organization and function of the neural and skeletal systems. © 2014. Published by The Company of Biologists Ltd.
Ramsay, Angus; Perry, Catherine; Boaden, Ruth; McKevitt, Christopher; Morris, Stephen; Pursani, Nanik; Rudd, Anthony; Tyrrell, Pippa; Wolfe, Charles; Fulop, Naomi
2016-01-01
Objectives Our aim was to identify the factors influencing the selection of a model of acute stroke service centralization to create fewer high-volume specialist units in two metropolitan areas of England (London and Greater Manchester). It considers the reasons why services were more fully centralized in London than in Greater Manchester. Methods In both areas, we analysed 316 documents and conducted 45 interviews with people leading transformation, service user organizations, providers and commissioners. Inductive and deductive analyses were used to compare the processes underpinning change in each area, with reference to propositions for achieving major system change taken from a realist review of the existing literature (the Best framework), which we critique and develop further. Results In London, system leadership was used to overcome resistance to centralization and align stakeholders to implement a centralized service model. In Greater Manchester, programme leaders relied on achieving change by consensus and, lacking decision-making authority over providers, accommodated rather than challenged resistance by implementing a less radical transformation of services. Conclusions A combination of system (top-down) and distributed (bottom-up) leadership is important in enabling change. System leadership provides the political authority required to coordinate stakeholders and to capitalize on clinical leadership by aligning it with transformation goals. Policy makers should examine how the structures of system authority, with performance management and financial levers, can be employed to coordinate transformation by aligning the disparate interests of providers and commissioners. PMID:26811375
Turner, Simon; Ramsay, Angus; Perry, Catherine; Boaden, Ruth; McKevitt, Christopher; Morris, Stephen; Pursani, Nanik; Rudd, Anthony; Tyrrell, Pippa; Wolfe, Charles; Fulop, Naomi
2016-07-01
Our aim was to identify the factors influencing the selection of a model of acute stroke service centralization to create fewer high-volume specialist units in two metropolitan areas of England (London and Greater Manchester). It considers the reasons why services were more fully centralized in London than in Greater Manchester. In both areas, we analysed 316 documents and conducted 45 interviews with people leading transformation, service user organizations, providers and commissioners. Inductive and deductive analyses were used to compare the processes underpinning change in each area, with reference to propositions for achieving major system change taken from a realist review of the existing literature (the Best framework), which we critique and develop further. In London, system leadership was used to overcome resistance to centralization and align stakeholders to implement a centralized service model. In Greater Manchester, programme leaders relied on achieving change by consensus and, lacking decision-making authority over providers, accommodated rather than challenged resistance by implementing a less radical transformation of services. A combination of system (top-down) and distributed (bottom-up) leadership is important in enabling change. System leadership provides the political authority required to coordinate stakeholders and to capitalize on clinical leadership by aligning it with transformation goals. Policy makers should examine how the structures of system authority, with performance management and financial levers, can be employed to coordinate transformation by aligning the disparate interests of providers and commissioners. © The Author(s) 2016.
ERIC Educational Resources Information Center
Bracco, Kathy Reeves; Klarin, Becca; Broek, Marie; Austin, Kim; Finkelstein, Neal; Bugler, Daniel; Mundry, Susan
2014-01-01
The Core to College initiative aims to facilitate greater coordination between K-12 and postsecondary education systems around implementation of the Common Core State Standards and aligned assessments. Core to College grants have been awarded to teams in Colorado, Florida, Hawaii, Kentucky, Louisiana, Massachusetts, North Carolina, Oregon,…
Xu, Xu; McGorry, Raymond W
2015-07-01
The Kinect™ sensor released by Microsoft is a low-cost, portable, and marker-less motion tracking system for the video game industry. Since the first generation Kinect sensor was released in 2010, many studies have been conducted to examine the validity of this sensor when used to measure body movement in different research areas. In 2014, Microsoft released the computer-used second generation Kinect sensor with a better resolution for the depth sensor. However, very few studies have performed a direct comparison between all the Kinect sensor-identified joint center locations and their corresponding motion tracking system-identified counterparts, the result of which may provide some insight into the error of the Kinect-identified segment length, joint angles, as well as the feasibility of adapting inverse dynamics to Kinect-identified joint centers. The purpose of the current study is to first propose a method to align the coordinate system of the Kinect sensor with respect to the global coordinate system of a motion tracking system, and then to examine the accuracy of the Kinect sensor-identified coordinates of joint locations during 8 standing and 8 sitting postures of daily activities. The results indicate the proposed alignment method can effectively align the Kinect sensor with respect to the motion tracking system. The accuracy level of the Kinect-identified joint center location is posture-dependent and joint-dependent. For upright standing posture, the average error across all the participants and all Kinect-identified joint centers is 76 mm and 87 mm for the first and second generation Kinect sensor, respectively. In general, standing postures can be identified with better accuracy than sitting postures, and the identification accuracy of the joints of the upper extremities is better than for the lower extremities. This result may provide some information regarding the feasibility of using the Kinect sensor in future studies. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Walker, Raymond J.; Ogino, Tatsuki
1988-01-01
A time-dependent three-dimensional MHD model was used to investigate the magnetospheric configuration as a function of the interplanetary magnetic field direction when it was in the y-z plane in geocentric solar magnetospheric coordinates. The model results show large global convection cells, tail lobe cells, high-latitude polarcap cells, and low latitude cells. The field-aligned currents generated in the model magnetosphere and the model convection system are compared with observations from low-altitude polar orbiting satellites.
Towards nonaxisymmetry; initial results using the Flux Coordinate Independent method in BOUT++
NASA Astrophysics Data System (ADS)
Shanahan, B. W.; Hill, P.; Dudson, B. D.
2016-11-01
Fluid simulation of stellarator edge transport is difficult due to the complexities of mesh generation; the stochastic edge and strong nonaxisymmetry inhibit the use of field aligned coordinate systems. The recent implementation of the Flux Coordinate Independent method for calculating parallel derivatives in BOUT++ has allowed for more complex geometries. Here we present initial results of nonaxisymmetric diffusion modelling as a step towards stellarator turbulence modelling. We then present initial (non-turbulent) transport modelling using the FCI method and compare the results with analytical calculations. The prospects for future stellarator transport and turbulence modelling are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornwell, Paris A; Bunn, Jeffrey R; Schmidlin, Joshua E
The December 2010 version of the guide, ORNL/TM-2008/159, by Jeff Bunn, Josh Schmidlin, Camden Hubbard, and Paris Cornwell, has been further revised due to a major change in the GeoMagic Studio software for constructing a surface model. The Studio software update also includes a plug-in module to operate the FARO Scan Arm. Other revisions for clarity were also made. The purpose of this revision document is to guide the reader through the process of laser alignment used by NRSF2 at HFIR and VULCAN at SNS. This system was created to increase the spatial accuracy of the measurement points in amore » sample, reduce the use of neutron time used for alignment, improve experiment planning, and reduce operator error. The need for spatial resolution has been driven by the reduction in gauge volumes to the sub-millimeter level, steep strain gradients in some samples, and requests to mount multiple samples within a few days for relating data from each sample to a common sample coordinate system. The first step in this process involves mounting the sample on an indexer table in a laboratory set up for offline sample mounting and alignment in the same manner it would be mounted at either instrument. In the shared laboratory, a FARO ScanArm is used to measure the coordinates of points on the sample surface ('point cloud'), specific features and fiducial points. A Sample Coordinate System (SCS) needs to be established first. This is an advantage of the technique because the SCS can be defined in such a way to facilitate simple definition of measurement points within the sample. Next, samples are typically mounted to a frame of 80/20 and fiducial points are attached to the sample or frame then measured in the established sample coordinate system. The laser scan probe on the ScanArm can then be used to scan in an 'as-is' model of the sample as well as mounting hardware. GeoMagic Studio 12 is the software package used to construct the model from the point cloud the scan arm creates. Once a model, fiducial, and measurement files are created, a special program, called SScanSS combines the information and by simulation of the sample on the diffractometer can help plan the experiment before using neutron time. Finally, the sample is mounted on the relevant stress measurement instrument and the fiducial points are measured again. In the HFIR beam room, a laser tracker is used in conjunction with a program called CAM2 to measure the fiducial points in the NRSF2 instrument's sample positioner coordinate system. SScanSS is then used again to perform a coordinate system transformation of the measurement file locations to the sample positioner coordinate system. A procedure file is then written with the coordinates in the sample positioner coordinate system for the desired measurement locations. This file is often called a script or command file and can be further modified using excel. It is very important to note that this process is not a linear one, but rather, it often is iterative. Many of the steps in this guide are interdependent on one another. It is very important to discuss the process as it pertains to the specific sample being measured. What works with one sample may not necessarily work for another. This guide attempts to provide a typical work flow that has been successful in most cases.« less
Lessons Learned from Developing and Implementing the Qatar Student Assessment System. Research Brief
ERIC Educational Resources Information Center
Gonzalez, Gabriella; Le, Vi-Nhuan; Broer, Markus; Mariano, Louis T.; Froemel, J. Enrique; Goldman, Charles A.; DaVanzo, Julie
2009-01-01
Analysis of Qatar's standards-based student assessment system, the first in the region, offers several lessons for other nations instituting similar reforms. These include the need to coordinate on standards and assessment development, allow sufficient time for a fully aligned assessment, and communicate about the purposes and uses of testing.…
Theoferometer for the Construction of Precision Optomechanical Assemblies
NASA Technical Reports Server (NTRS)
Korzun, Ashley M.
2006-01-01
The increasing difficulty of metrology requirements on projects involving optics and the alignment of instrumentation on spacecraft has reached a turning point. Requirements as low as 0.1 arcseconds for the static, rotational alignment of components within a coordinate system cannot be met with a theodolite, the alignment tool currently in use. A "theoferometer" is an interferometer mounted on a rotation stage with degrees of freedom in azimuth and elevation for metrology and alignment applications. The success of a prototype theoferometer in approaching these metrology requirements led to a redesign stressing mechanical, optical, and software changes to increase the sensitivity and portability of the unit. This paper covers the improvements made to the first prototype theoferometer, characteristic testing, and demonstration of the redesigned theoferometer s capabilities as a "theodolite replacement" and low-uncertainty metrology tool.
An optimal beam alignment method for large-scale distributed space surveillance radar system
NASA Astrophysics Data System (ADS)
Huang, Jian; Wang, Dongya; Xia, Shuangzhi
2018-06-01
Large-scale distributed space surveillance radar is a very important ground-based equipment to maintain a complete catalogue for Low Earth Orbit (LEO) space debris. However, due to the thousands of kilometers distance between each sites of the distributed radar system, how to optimally implement the Transmitting/Receiving (T/R) beams alignment in a great space using the narrow beam, which proposed a special and considerable technical challenge in the space surveillance area. According to the common coordinate transformation model and the radar beam space model, we presented a two dimensional projection algorithm for T/R beam using the direction angles, which could visually describe and assess the beam alignment performance. Subsequently, the optimal mathematical models for the orientation angle of the antenna array, the site location and the T/R beam coverage are constructed, and also the beam alignment parameters are precisely solved. At last, we conducted the optimal beam alignment experiments base on the site parameters of Air Force Space Surveillance System (AFSSS). The simulation results demonstrate the correctness and effectiveness of our novel method, which can significantly stimulate the construction for the LEO space debris surveillance equipment.
ERIC Educational Resources Information Center
Shaha, Steven H.; Glassett, Kelly F.; Copas, Aimee
2015-01-01
The impact of teacher observations in alignment with professional development (PD) on teacher efficacy was quantified for 292 schools in 110 districts within 27 U.S. States. Teacher observations conducted by school leaders or designated internal coaches were coordinated with PD offerings aligned with intended teacher improvements. The PD involved…
Naval Biodynamics Laboratory 1993 Command History
1993-01-01
position and alignment, camera optical calibration, photo target position, and standard anatomical coordinate systems based upon X-rays of each HRV...safety range. Before, during, and after each sled run, a physiological data acquisition system is used to collect and analyze physiological measurements ...experimental devices. It is also responsible for the configuring of field data measuring and acquisition systems for use aboard ships or at other field
Concept of AHRS Algorithm Designed for Platform Independent Imu Attitude Alignment
NASA Astrophysics Data System (ADS)
Tomaszewski, Dariusz; Rapiński, Jacek; Pelc-Mieczkowska, Renata
2017-12-01
Nowadays, along with the advancement of technology one can notice the rapid development of various types of navigation systems. So far the most popular satellite navigation, is now supported by positioning results calculated with use of other measurement system. The method and manner of integration will depend directly on the destination of system being developed. To increase the frequency of readings and improve the operation of outdoor navigation systems, one will support satellite navigation systems (GPS, GLONASS ect.) with inertial navigation. Such method of navigation consists of several steps. The first stage is the determination of initial orientation of inertial measurement unit, called INS alignment. During this process, on the basis of acceleration and the angular velocity readings, values of Euler angles (pitch, roll, yaw) are calculated allowing for unambiguous orientation of the sensor coordinate system relative to external coordinate system. The following study presents the concept of AHRS (Attitude and heading reference system) algorithm, allowing to define the Euler angles.The study were conducted with the use of readings from low-cost MEMS cell phone sensors. Subsequently the results of the study were analyzed to determine the accuracy of featured algorithm. On the basis of performed experiments the legitimacy of developed algorithm was stated.
Human Movement Potential: Its Ideokinetic Facilitation.
ERIC Educational Resources Information Center
Sweigard, Lulu E.
This book focuses on the interdependence of postural alignment and the performance of movement. It provides an educational method (ideokinesis), which stresses the inherent capacity of the nervous system to determine the most efficient neuromuscular coordination for each movement. This method of teaching body balance and efficient movement has…
DuGoff, Eva H; Dy, Sydney; Giovannetti, Erin R; Leff, Bruce; Boyd, Cynthia M
2013-01-01
The primary study objective is to assess how three major health reform care coordination initiatives (Accountable Care Organizations, Independence at Home, and Community-Based Care Transitions) measure concepts critical to care coordination for people with multiple chronic conditions. We find that there are major differences in quality measurement across these three large and politically important programs. Quality measures currently used or proposed for these new health reform-related programs addressing care coordination primarily capture continuity of care. Other key areas of care coordination, such as care transitions, patient-centeredness, and cross-cutting care across multiple conditions are infrequently addressed. The lack of a comprehensive and consistent measure set for care coordination will pose challenges for healthcare providers and policy makers who seek, respectively, to provide and reward well-coordinated care. In addition, this heterogeneity in measuring care coordination quality will generate new information, but will inhibit comparisons between these care coordination programs. © 2013 National Association for Healthcare Quality.
DuGoff, Eva H.; Dy, Sydney; Giovannetti, Erin R.; Leff, Bruce; Boyd, Cynthia M.
2015-01-01
The primary study objective is to assess how three major health reform care coordination initiatives (Accountable Care Organizations, Independence at Home, and Community-based Care Transitions) measure concepts critical to care coordination for people with multiple chronic conditions. We find that there are major differences in quality measurement across these three large and politically important programs. Quality measures currently used or proposed for these new health reform-related programs addressing care coordination primarily capture continuity of care. Other key areas of care coordination, such as care transitions, patient-centeredness, and cross-cutting care across multiple conditions are infrequently addressed. The lack of a comprehensive and consistent measure set for care coordination will pose challenges for health care providers and policymakers who seek, respectively, to provide and reward well-coordinated care. In addition, this heterogeneity in measuring care coordination quality will generate new information, but will inhibit comparisons between these care coordination programs. PMID:24004040
NASA Astrophysics Data System (ADS)
Lawrence, G.; Barnard, C.; Viswanathan, V.
1986-11-01
Historically, wave optics computer codes have been paraxial in nature. Folded systems could be modeled by "unfolding" the optical system. Calculation of optical aberrations is, in general, left for the analyst to do with off-line codes. While such paraxial codes were adequate for the simpler systems being studied 10 years ago, current problems such as phased arrays, ring resonators, coupled resonators, and grazing incidence optics require a major advance in analytical capability. This paper describes extension of the physical optics codes GLAD and GLAD V to include a global coordinate system and exact ray aberration calculations. The global coordinate system allows components to be positioned and rotated arbitrarily. Exact aberrations are calculated for components in aligned or misaligned configurations by using ray tracing to compute optical path differences and diffraction propagation. Optical path lengths between components and beam rotations in complex mirror systems are calculated accurately so that coherent interactions in phased arrays and coupled devices may be treated correctly.
Location memory biases reveal the challenges of coordinating visual and kinesthetic reference frames
Simmering, Vanessa R.; Peterson, Clayton; Darling, Warren; Spencer, John P.
2008-01-01
Five experiments explored the influence of visual and kinesthetic/proprioceptive reference frames on location memory. Experiments 1 and 2 compared visual and kinesthetic reference frames in a memory task using visually-specified locations and a visually-guided response. When the environment was visible, results replicated previous findings of biases away from the midline symmetry axis of the task space, with stability for targets aligned with this axis. When the environment was not visible, results showed some evidence of bias away from a kinesthetically-specified midline (trunk anterior–posterior [a–p] axis), but there was little evidence of stability when targets were aligned with body midline. This lack of stability may reflect the challenges of coordinating visual and kinesthetic information in the absence of an environmental reference frame. Thus, Experiments 3–5 examined kinesthetic guidance of hand movement to kinesthetically-defined targets. Performance in these experiments was generally accurate with no evidence of consistent biases away from the trunk a–p axis. We discuss these results in the context of the challenges of coordinating reference frames within versus between multiple sensori-motor systems. PMID:17703284
Railway Tunnel Clearance Inspection Method Based on 3D Point Cloud from Mobile Laser Scanning
Zhou, Yuhui; Wang, Shaohua; Mei, Xi; Yin, Wangling; Lin, Chunfeng; Mao, Qingzhou
2017-01-01
Railway tunnel clearance is directly related to the safe operation of trains and upgrading of freight capacity. As more and more railway are put into operation and the operation is continuously becoming faster, the railway tunnel clearance inspection should be more precise and efficient. In view of the problems existing in traditional tunnel clearance inspection methods, such as low density, slow speed and a lot of manual operations, this paper proposes a tunnel clearance inspection approach based on 3D point clouds obtained by a mobile laser scanning system (MLS). First, a dynamic coordinate system for railway tunnel clearance inspection has been proposed. A rail line extraction algorithm based on 3D linear fitting is implemented from the segmented point cloud to establish a dynamic clearance coordinate system. Second, a method to seamlessly connect all rail segments based on the railway clearance restrictions, and a seamless rail alignment is formed sequentially from the middle tunnel section to both ends. Finally, based on the rail alignment and the track clearance coordinate system, different types of clearance frames are introduced for intrusion operation with the tunnel section to realize the tunnel clearance inspection. By taking the Shuanghekou Tunnel of the Chengdu–Kunming Railway as an example, when the clearance inspection is carried out by the method mentioned herein, its precision can reach 0.03 m, and difference types of clearances can be effectively calculated. This method has a wide application prospects. PMID:28880232
NASA Astrophysics Data System (ADS)
Collymore, Jennifer C.
In a 21st century knowledge society individuals are expected to use their knowledge and skills to think critically, problem solve, make decisions, comprehend new ideas, communicate, and collaborate effectively with others. Helping students achieve this level of performance is no easy task and it brings into focus the fact that the effectiveness of any education system rests on the systemic coordination or alignment of three crucial components: curriculum, instruction and assessment (referred to as the CIA). These components must work in concert to facilitate and enhance student performance. However, educational reform typically targets these components in isolation, often treating only one component, rather than the system as a whole. The misalignment of these components can adversely affect student performance in any discipline. When the CIA components are out of alignment, it is difficult to evaluate student and system performance and achieve improvement in an educational system. Therefore, using geography education in Trinidad & Tobago as a case study, this study examined the nature of the alignment among the CIA components in the advanced geography system in the English- Speaking Caribbean and the extent to which the alignment may be affecting student performance. The study sought to determine the possible sources and causes of misalignment, the challenges to achieving alignment, and ways of achieving greater coordination among the CIA components of the system. The methodology employed in the study involved the use of classroom observations, interviews, and the Surveys of Enacted Curriculum Alignment Model which uses content analyses and surveys. The results showed that there were varying degrees of alignment among the components. There was acceptable alignment (Alignment Index ≥ 0.25) between the curriculum and assessment. However, the alignment between curriculum and instruction or assessment and instruction was poor (Alignment Index ≤ 0.12). The baseline threshold for acceptable alignment was 0.25. The misalignment between the curriculum and assessment stemmed from the fact that there were items tested in the assessment that were not identified in the examination syllabus. In terms of the misalignment between the curriculum/assessment and instruction, teachers were misallocating their teaching time and efforts; spending too much time teaching the skills and practices of the discipline rather than the core content areas and they were spending too much time teaching the content at the lower order cognitive level of recall. In addition, while research promotes student-centered approaches, cooperative learning, dialogic discourse, open informal questioning and discursive forms of writing, teachers still primarily use teacher-centered approaches, individualize instruction, monologic discourse and closed recall questions. The teachers' instructional practices are not affording students the opportunity to acquire and display their knowledge at the higher levels of cognition. The cause of the misalignment was attributed to a vague, overloaded syllabus and limited teaching time; vague evaluative criteria and feedback from the Examination Council; inadequate and insufficient teacher training and professional development; a lack of administrative support and mentorship for inexperienced teachers; and teacher frustration. Subsequently, the study offers a number of evidence based recommendations that range from the modification and refinement of the geography CIA triad to professional development programs and the design of interventions that can advance the teaching and learning of the discipline. Though the study is undertaken in a specific context, the educational issues addressed in the study transcend time, scale, and geographic boundaries and the results can inform the decision-making and practices of educators and education policy-makers everywhere.
Physically motivated global alignment method for electron tomography
Sanders, Toby; Prange, Micah; Akatay, Cem; ...
2015-04-08
Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science. Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data. The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is crucial to have a robust and dependable alignment method. In this paper, we develop amore » new alignment method which avoids the use of markers and instead traces the computed paths of many identifiable ‘local’ center-of-mass points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of the reconstruction and confidence in the scientific results.« less
Blob dynamics in TORPEX poloidal null configurations
NASA Astrophysics Data System (ADS)
Shanahan, B. W.; Dudson, B. D.
2016-12-01
3D blob dynamics are simulated in X-point magnetic configurations in the TORPEX device via a non-field-aligned coordinate system, using an isothermal model which evolves density, vorticity, parallel velocity and parallel current density. By modifying the parallel gradient operator to include perpendicular perturbations from poloidal field coils, numerical singularities associated with field aligned coordinates are avoided. A comparison with a previously developed analytical model (Avino 2016 Phys. Rev. Lett. 116 105001) is performed and an agreement is found with minimal modification. Experimental comparison determines that the null region can cause an acceleration of filaments due to increasing connection length, but this acceleration is small relative to other effects, which we quantify. Experimental measurements (Avino 2016 Phys. Rev. Lett. 116 105001) are reproduced, and the dominant acceleration mechanism is identified as that of a developing dipole in a moving background. Contributions from increasing connection length close to the null point are a small correction.
Laurent, Heidemarie K; Powers, Sally I; Granger, Douglas A
2013-07-02
This study investigated associations among young adults' hypothalamic-pituitary-adrenal axis activity, autonomic nervous system activity, and subjective stress in response to interpersonal conflict to better characterize coordination across stress systems. Seven saliva samples were collected from 199 young adult opposite-sex couples before, during, and after they discussed an unresolved relationship conflict. Samples were later assayed for cortisol and alpha-amylase (sAA). Couples rated anticipatory stress prior to the conflict and perceived stress immediately following the task. Growth curve modeling was used to examine two possible levels of within-person coordination across physiological systems: alignment between cortisol and sAA responses throughout the sampling period ("matched phase coordination"), and association between overall levels of cortisol and sAA in response to conflict ("average level coordination"). Whereas both partners showed the former type of coordination, only women showed the latter type. Positive anticipation of the stressor predicted stronger cortisol-sAA matched phase coordination for women. Pre-task ratings related to women's sAA, and post-task ratings related to both partners' cortisol responses. Implications for a multisystem interpretation of normal and pathological responses to daily stress are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
2015-06-01
kinematic viscocity , and speed-of-sound; wing geometric characteristics (area, mean aerodynamic chord and taper ratio); and its motion (free-stream...computed by integrating the vehicle’s velocity components expressed in a "trajectory" coordinate system which is fixed in space and aligned with the system...yawing motion is superfluous . The pitching motion results presented in Table 3-5 are interesting, though. Recall that the rotation rates are body
Wever, Mark; Wognum, Nel; Trienekens, Jacques; Omta, Onno
2010-02-01
Although inter-firm coordination of quality management is increasingly important for meeting end-customer demand in agri-food chains, few researchers focus on the relation between inter-firm quality management systems (QMS) and inter-firm governance structures (GS). However, failure to align QMSs and GSs may lead to inefficiencies in quality management because of high transaction-costs. In addition, misalignment is likely to reduce the quality of end-customer products. This paper addresses this gap in research by empirically examining the relation between QMSs and GSs in pork meat supply chains. Transaction-Cost-Economic theory is used to develop propositions about the relation between three aspects of QMSs--ownership, vertical scope and scale of adoption--and the use of different types of GSs in pork meat supply chains. To validate the propositions, seven cases are examined from four different countries. The results show that the different aspects of QMSs largely relate to specific GSs used in chains in the manner predicted by the propositions. This supports the view that alignment between QMSs and GSs is important for the efficient coordination of quality management in (pork meat) supply chains.
FSO tracking and auto-alignment transceiver system
NASA Astrophysics Data System (ADS)
Cap, Gabriel A.; Refai, Hakki H.; Sluss, James J., Jr.
2008-10-01
Free-space optics (FSO) technology utilizes a modulated light beam to transmit information through the atmosphere. Due to reduced size and cost, and higher data rates, FSO can be more effective than wireless communication. Although atmospheric conditions can affect FSO communication, a line-of-sight connection between FSO transceivers is a necessary condition to maintain continuous exchange of data, voice, and video information. To date, the primary concentration of mobile FSO research and development has been toward accurate alignment between two transceivers. This study introduces a fully automatic, advanced alignment system that will maintain a line of sight connection for any FSO transceiver system. A complete transceiver system includes a position-sensing detector (PSD) to receive the signal, a laser to transmit the signal, a gimbal to move the transceiver to maintain alignment, and a computer to coordinate the necessary movements during motion. The FSO system was tested for mobility by employing one gimbal as a mobile unit and establishing another as a base station. Tests were performed to establish that alignment between two transceivers could be maintained during a given period of experiments and to determine the maximum speeds tolerated by the system. Implementation of the transceiver system can be realized in many ways, including vehicle-to-base station communication or vehicle-to-vehicle communication. This study is especially promising in that it suggests such a system is able to provide high-speed data in many applications where current wireless technology may not be effective. This phenomenon, coupled with the ability to maintain an autonomously realigned connection, opens the possibility of endless applications for both military and civilian use.
Branduardi, Davide; Faraldo-Gómez, José D
2013-09-10
The string method is a molecular-simulation technique that aims to calculate the minimum free-energy path of a chemical reaction or conformational transition, in the space of a pre-defined set of reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction coordinate, but arguably the Cartesian coordinates of the atoms involved are the most unprejudiced and intuitive choice. Cartesian coordinates, however, present a non-trivial problem, in that they are not invariant to rigid-body molecular rotations and translations, which ideally ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the framework of the string method to integrate an on-the-fly structural-alignment algorithm. This approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this scheme permits the dissection of the free-energy change along the most probable path into individual atomic contributions, thus revealing the dominant mechanism of the simulated process. This detailed analysis also provides a physically-meaningful criterion to coarse-grain the representation of the path. To demonstrate the accuracy of the method we analyze the isomerization of the alanine dipeptide in vacuum and the chair-to-inverted-chair transition of β -D mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we find that the dynamics and the energetics of these processes are controlled by interactions involving only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-grained SOMA calculation defined in terms of these subsets of atoms yields nearidentical minimum free-energy paths and committor distributions to those obtained via a highly-dimensional string.
Branduardi, Davide; Faraldo-Gómez, José D.
2014-01-01
The string method is a molecular-simulation technique that aims to calculate the minimum free-energy path of a chemical reaction or conformational transition, in the space of a pre-defined set of reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction coordinate, but arguably the Cartesian coordinates of the atoms involved are the most unprejudiced and intuitive choice. Cartesian coordinates, however, present a non-trivial problem, in that they are not invariant to rigid-body molecular rotations and translations, which ideally ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the framework of the string method to integrate an on-the-fly structural-alignment algorithm. This approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this scheme permits the dissection of the free-energy change along the most probable path into individual atomic contributions, thus revealing the dominant mechanism of the simulated process. This detailed analysis also provides a physically-meaningful criterion to coarse-grain the representation of the path. To demonstrate the accuracy of the method we analyze the isomerization of the alanine dipeptide in vacuum and the chair-to-inverted-chair transition of β-D mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we find that the dynamics and the energetics of these processes are controlled by interactions involving only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-grained SOMA calculation defined in terms of these subsets of atoms yields nearidentical minimum free-energy paths and committor distributions to those obtained via a highly-dimensional string. PMID:24729762
GNSS RTK-networks: The significance and issues to realize a recent reference coordinate system
NASA Astrophysics Data System (ADS)
Umnig, Elke; Möller, Gregor; Weber, Robert
2014-05-01
The upcoming release of the new global reference frame ITRF2013 will provide high accurate reference station positions and station velocities at the mm- and mm/year level, respectively. ITRF users benefit from this development in various ways. For example, this new frame allows for embedding high accurate GNSS baseline observations to an underlying reference of at least the same accuracy. Another advantage is that the IGS products are fully consistent with this frame and therefore all GNSS based zero-difference positioning results (Precise Point Positioning (PPP)) will be aligned to the ITRF2013. Unfortunately the transistion to a new frame (or just to a new epoch) implies also issues in particular for providers and users of real time positioning services. Thus providers have to perform arrangements, such as the readjustment of the reference station coordinates and the update of the transformation parameters from the homogenous GNSS coordinate frame into the national datum. Finally providers have to inform their clients appropriately about these changes and significant adjustments. Furthermore the aspect of the continental reference frame has to be considered: In Europe the use of the continental reference system/reference frame ETRS89/ETRF2000 is, due to cross-national guidelines, recommend by most national mapping authorities. Subsequently GNSS post-processing applications are degraded by the concurrent use of the reference systems and reference frames, to which terrestrial site coordinates and satellite coordinates are aligned. In this presentation we highlight all significant steps and hurdles which have to be jumped over when introducing a new reference frame from point of view of a typical regional RTK-reference station network provider. This network is located in Austria and parts of the neighbouring countries and consists of about 40 reference stations. Moreover, we discuss the significance of permanently monitoring the stability of the reference network sites and the determination of station velocities/rates for geodynamical investigations.
Interactive Alignment: A Teaching-Friendly View of Second Language Pronunciation Learning
ERIC Educational Resources Information Center
Trofimovich, Pavel
2016-01-01
Interactive alignment is a phenomenon whereby interlocutors adopt and re-use each other's language patterns in the course of authentic interaction. According to the interactive alignment model, originally proposed by Pickering & Garrod (2004), this linguistic coordination is one way in which interlocutors achieve understanding in dialogue,…
Statistical inference of protein structural alignments using information and compression.
Collier, James H; Allison, Lloyd; Lesk, Arthur M; Stuckey, Peter J; Garcia de la Banda, Maria; Konagurthu, Arun S
2017-04-01
Structural molecular biology depends crucially on computational techniques that compare protein three-dimensional structures and generate structural alignments (the assignment of one-to-one correspondences between subsets of amino acids based on atomic coordinates). Despite its importance, the structural alignment problem has not been formulated, much less solved, in a consistent and reliable way. To overcome these difficulties, we present here a statistical framework for the precise inference of structural alignments, built on the Bayesian and information-theoretic principle of Minimum Message Length (MML). The quality of any alignment is measured by its explanatory power-the amount of lossless compression achieved to explain the protein coordinates using that alignment. We have implemented this approach in MMLigner , the first program able to infer statistically significant structural alignments. We also demonstrate the reliability of MMLigner 's alignment results when compared with the state of the art. Importantly, MMLigner can also discover different structural alignments of comparable quality, a challenging problem for oligomers and protein complexes. Source code, binaries and an interactive web version are available at http://lcb.infotech.monash.edu.au/mmligner . arun.konagurthu@monash.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Powers, Sally I.; Granger, Douglas A.
2013-01-01
This study investigated associations among young adults' hypothalamic-pituitary-adrenal axis activity, autonomic nervous system activity, and subjective stress in response to interpersonal conflict to better characterize coordination across stress systems. Seven saliva samples were collected from 199 young adult opposite-sex couples before, during, and after they discussed an unresolved relationship conflict. Samples were later assayed for cortisol and alpha-amylase (sAA). Couples rated anticipatory stress prior to the conflict and perceived stress immediately following the task. Growth curve modeling was used to examine two possible levels of within-person coordination across physiological systems: alignment between cortisol and sAA responses throughout the sampling period (“matched phase coordination”), and association between overall levels of cortisol and sAA in response to conflict (“average level coordination”). Whereas both partners showed the former type of coordination, only women showed the latter type. Positive anticipation of the stressor predicted stronger cortisol-sAA matched phase coordination for women. Pre-task ratings related to women's sAA, and post-task ratings related to both partners' cortisol responses. Implications for a multisystem interpretation of normal and pathological responses to daily stress are discussed. PMID:23684904
Lucas, Todd; Wegner, Rhiana; Pierce, Jennifer; Lumley, Mark A; Laurent, Heidemarie K; Granger, Douglas A
2017-04-01
Understanding individual differences in the psychobiology of the stress response is critical to grasping how psychosocial factors contribute to racial and ethnic health disparities. However, the ways in which environmentally sensitive biological systems coordinate in response to acute stress is not well understood. We used a social-evaluative stress task to investigate coordination among the autonomic nervous system, hypothalamic-pituitary-adrenal axis, and immune/inflammatory system in a community sample of 85 healthy African American men and women. Six saliva samples, 2 at each of baseline, event, and recovery phases of the stressor task, were assayed for cortisol, dehydroepiandrosterone-sulfate, salivary alpha-amylase, and salivary C-reactive protein. Individual differences in perceived discrimination and racial identity were also measured. Factor analysis demonstrated that stress systems were largely dissociated before stressor exposure but became aligned during event and recovery phases into functional biological stress responses (factor loadings ≥ .58). Coordinated responses were related to interactions of perceived discrimination and racial identity: when racial identity was strong, highly perceived discrimination was associated with low hypothalamic-pituitary-adrenal axis activity at baseline (B's = .68-.72, p < .001), low stress mobilization during the task (B's = .46-.62, p < .049), and a robust inflammatory response (salivary C-reactive protein) during recovery (B's = .72-.94, p < .002). Culturally relevant social perceptions may be linked to a specific pattern of changing alignment in biological components of the stress response. Better understanding these links may significantly advance understanding of stress-related illnesses and disparities.
Graf, M; Kaping, D; Bülthoff, H H
2005-03-01
How do observers recognize objects after spatial transformations? Recent neurocomputational models have proposed that object recognition is based on coordinate transformations that align memory and stimulus representations. If the recognition of a misoriented object is achieved by adjusting a coordinate system (or reference frame), then recognition should be facilitated when the object is preceded by a different object in the same orientation. In the two experiments reported here, two objects were presented in brief masked displays that were in close temporal contiguity; the objects were in either congruent or incongruent picture-plane orientations. Results showed that naming accuracy was higher for congruent than for incongruent orientations. The congruency effect was independent of superordinate category membership (Experiment 1) and was found for objects with different main axes of elongation (Experiment 2). The results indicate congruency effects for common familiar objects even when they have dissimilar shapes. These findings are compatible with models in which object recognition is achieved by an adjustment of a perceptual coordinate system.
Alignment of the Pixel and SCT Modules for the 2004 ATLAS Combined Test Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
ATLAS Collaboration; Ahmad, A.; Andreazza, A.
2008-06-02
A small set of final prototypes of the ATLAS Inner Detector silicon tracking system(Pixel Detector and SemiConductor Tracker), were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained inmore » the alignmentof the silicon modules is of the order of 5 mm in their most precise coordinate.« less
A Thumb Carpometacarpal Joint Coordinate System Based on Articular Surface Geometry
Halilaj, Eni; Rainbow, Michael J.; Got, Christopher; Moore, Douglas C.; Crisco, Joseph J.
2013-01-01
The thumb carpometacarpal (CMC) joint is a saddle-shaped articulation whose in vivo kinematics can be explored more accurately with computed tomography (CT) imaging methods than with previously used skin-based marker systems. These CT-based methods permit a detailed analysis of the morphology of the joint, and thus the prominent saddle-shaped geometry can be used to define a coordinate system that is inherently aligned with the primary directions of motion at the joint. The purpose of this study was to develop a CMC joint coordinate systems that is based on the computed principal directions of curvature on the trapezium and the first metacarpal. We evaluated the new coordinate system using bone surface models segmented from the CT scans of twenty-four healthy subjects. An analysis of sensitivity to the manual selection of articular surfaces resulted in mean orientation differences of 0.7±0.7° and mean location differences of 0.2±0.1mm. Inter-subject variability, which mostly emanates from anatomical differences, was evaluated with whole bone registration and resulted in mean orientation differences of 3.1±2.7° and mean location differences of 0.9±0.5mm. The proposed joint coordinate system addresses concerns of repeatability associated with bony landmark identification and provides a robust platform for describing the complex kinematics of the CMC joint. PMID:23357698
Lucas, Todd; Wegner, Rhiana; Pierce, Jennifer; Lumley, Mark A.; Laurent, Heidemarie K.; Granger, Douglas A.
2015-01-01
Objective Understanding individual differences in the psychobiology of the stress response is critical to grasping how psychosocial factors contribute to racial and ethnic health disparities. However, the ways in which environmentally sensitive biological systems coordinate in response to acute stress is not well understood. We employed a social-evaluative stressor task to investigate coordination among the autonomic nervous system (ANS), hypothalamic-pituitary-adrenal (HPA) axis, immune/inflammatory system, and neurotrophic response system in a community sample of 85 healthy African American men and women. Methods Six saliva samples – two collected before and four collected during and after the stressor – were assayed for cortisol and dehydroepiandrosterone-sulfate (DHEAs; HPA-axis markers), salivary α amylase (sAA; ANS marker), salivary c-reactive protein (sCRP; inflammatory/immune marker), and salivary nerve growth factor (sNGF; neurotrophic marker). Individual differences in perceived discrimination and racial identity were also measured. Results Factor analysis demonstrated that stress systems were largely dissociated before stressor exposure, but became aligned during event and recovery phases into functional biological stress responses (factor loadings .71to.96). Coordinated responses were related to interactions of perceived discrimination and racial identity: when racial identity was strong, high perceived discrimination was associated with low hypothalamic-pituitary-adrenal (HPA) axis arousal at baseline (B’s = .68 to.72, p < .001) and during the task (B’s =.46 to .62, p ≤ .049), and a robust inflammatory response (sCRP) during recovery (B’s =.72 to.94, p ≤ .002). Conclusion Culturally-relevant social perceptions are linked to a specific pattern of changing alignment in biological stress responses. Better understanding these links may significantly advance understanding of stress-related illnesses and health disparities. PMID:27806018
Kinjo, Akira R.; Nakamura, Haruki
2012-01-01
Comparison and classification of protein structures are fundamental means to understand protein functions. Due to the computational difficulty and the ever-increasing amount of structural data, however, it is in general not feasible to perform exhaustive all-against-all structure comparisons necessary for comprehensive classifications. To efficiently handle such situations, we have previously proposed a method, now called GIRAF. We herein describe further improvements in the GIRAF protein structure search and alignment method. The GIRAF method achieves extremely efficient search of similar structures of ligand binding sites of proteins by exploiting database indexing of structural features of local coordinate frames. In addition, it produces refined atom-wise alignments by iterative applications of the Hungarian method to the bipartite graph defined for a pair of superimposed structures. By combining the refined alignments based on different local coordinate frames, it is made possible to align structures involving domain movements. We provide detailed accounts for the database design, the search and alignment algorithms as well as some benchmark results. PMID:27493524
CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.
Terashi, Genki; Takeda-Shitaka, Mayuko
2015-01-01
Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be observed in loop regions, rearrangements between secondary structure elements, and conformational changes between entire domains. However, most protein structure alignment methods treat protein structures as rigid bodies. Thus, these methods fail to identify the equivalences of residue pairs in regions with flexibility. In this study, we considered that the evolutionary relationship between proteins corresponds directly to the residue-residue physical contacts rather than the three-dimensional (3D) coordinates of proteins. Thus, we developed a new protein structure alignment method, contact area-based alignment (CAB-align), which uses the residue-residue contact area to identify regions of similarity. The main purpose of CAB-align is to identify homologous relationships at the residue level between related protein structures. The CAB-align procedure comprises two main steps: First, a rigid-body alignment method based on local and global 3D structure superposition is employed to generate a sufficient number of initial alignments. Then, iterative dynamic programming is executed to find the optimal alignment. We evaluated the performance and advantages of CAB-align based on four main points: (1) agreement with the gold standard alignment, (2) alignment quality based on an evolutionary relationship without 3D coordinate superposition, (3) consistency of the multiple alignments, and (4) classification agreement with the gold standard classification. Comparisons of CAB-align with other state-of-the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite) using our benchmark dataset showed that CAB-align performed robustly in obtaining high-quality alignments and generating consistent multiple alignments with high coverage and accuracy rates, and it performed extremely well when discriminating between homologous and nonhomologous pairs of proteins in both single and multi-domain comparisons. The CAB-align software is freely available to academic users as stand-alone software at http://www.pharm.kitasato-u.ac.jp/bmd/bmd/Publications.html.
Coordination of care by primary care practices: strategies, lessons and implications.
O'Malley, Ann S; Tynan, Ann; Cohen, Genna R; Kemper, Nicole; Davis, Matthew M
2009-04-01
Despite calls from numerous organizations and payers to improve coordination of care, there are few published accounts of how care is coordinated in real-world primary care practices. This study by the Center for Studying Health System Change (HSC) documents strategies that a range of physician practices use to coordinate care for their patients. While there was no single recipe for coordination given the variety of patient, physician, practice and market factors, some cross-cutting lessons were identified, such as the value of a commitment to interpersonal continuity of care as a foundation for coordination. Respondents also identified the importance of system support for the standardization of office processes to foster care coordination. While larger practices may have more resources to invest, many of the innovations described could be scaled to smaller practices. Some coordination strategies resulted in improved efficiency over time for practices, but by and large, physician practices currently pursue these efforts at their own expense. In addition to sharing information on effective strategies among practices, the findings also provide policy makers with a snapshot of the current care coordination landscape and implications for initiatives to improve coordination. Efforts to provide technical support to practices to improve coordination, for example, through medical-home initiatives, need to consider the baseline more typical practices may be starting from and tailor their support to practices ranging widely in size, resources and presence of standardized care processes. If aligned with payment incentives, some of these strategies have the potential to increase quality and satisfaction among patients and providers by helping to move the health care delivery system toward better coordinated care.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... nation's health care expenditures in 2006.\\7\\ Furthermore, dual eligibles account for a..., Federal Coordinated Health Care Office, at (410) 786-8911 or [email protected] . SUPPLEMENTARY... Coordinated Health Care Office (``Medicare-Medicaid Coordination Office'') and charged the new office with...
ERIC Educational Resources Information Center
Department of Education, Washington, DC.
Noting evidence that many American children and youth are at risk, this report suggests ways to build effective communities through effective partnerships and services that are coordinated across systems and aligned across levels of government. The report discusses the efforts of the Working Group formed to consider how federal, state, and local…
Determination of transverse elastic constants of wood using a cylindrically orthotropic model
John C. Hermanson
2003-01-01
The arrangement of anatomical elements in the cross section of a tree can be characterized, at least to a first approximation, with a cylindrical coordinate system. It seems reasonable that the physical properties of wood in the transverse plane, therefore, would exhibit behaviour that is associated with this anatomical alignment. Most of the transverse properties of...
Coordinating Multi-Rover Systems: Evaluation Functions for Dynamic and Noisy Environments
NASA Technical Reports Server (NTRS)
Turner, Kagan; Agogino, Adrian
2005-01-01
This paper addresses the evolution of control strategies for a collective: a set of entities that collectively strives to maximize a global evaluation function that rates the performance of the full system. Directly addressing such problems by having a population of collectives and applying the evolutionary algorithm to that population is appealing, but the search space is prohibitively large in most cases. Instead, we focus on evolving control policies for each member of the collective. The fundamental issue in this approach is how to create an evaluation function for each member of the collective that is both aligned with the global evaluation function and is sensitive to the fitness changes of the member, while relatively insensitive to the fitness changes of other members. We show how to construct evaluation functions in dynamic, noisy and communication-limited collective environments. On a rover coordination problem, a control policy evolved using aligned and member-sensitive evaluations outperfoms global evaluation methods by up to 400%. More notably, in the presence of a larger number of rovers or rovers with noisy and communication limited sensors, the proposed method outperforms global evaluation by a higher percentage than in noise-free conditions with a small number of rovers.
NASA Astrophysics Data System (ADS)
Couture, Jean; Boily, Edouard; Simard, Marc-Alain
1996-05-01
The research and development group at Loral Canada is now at the second phase of the development of a data fusion demonstration model (DFDM) for a naval anti-air warfare to be used as a workbench tool to perform exploratory research. This project has emphatically addressed how the concepts related to fusion could be implemented within the Canadian Patrol Frigate (CPF) software environment. The project has been designed to read data passively on the CPF bus without any modification to the CPF software. This has brought to light important time alignment issues since the CPF sensors and the CPF command and control system were not important time alignment issues since the CPF sensors and the CPF command and control system were not originally designed to support a track management function which fuses information. The fusion of data from non-organic sensors with the tactical Link-11 data has produced stimulating spatial alignment problems which have been overcome by the use of a geodetic referencing coordinate system. Some benchmark scenarios have been selected to quantitatively demonstrate the capabilities of this fusion implementation. This paper describes the implementation design of DFDM (version 2), and summarizes the results obtained so far when fusing the scenarios simulated data.
Coordinated Flexibility: How Initial Gaze Position Modulates Eye-Hand Coordination and Reaching
ERIC Educational Resources Information Center
Adam, Jos J.; Buetti, Simona; Kerzel, Dirk
2012-01-01
Reaching to targets in space requires the coordination of eye and hand movements. In two experiments, we recorded eye and hand kinematics to examine the role of gaze position at target onset on eye-hand coordination and reaching performance. Experiment 1 showed that with eyes and hand aligned on the same peripheral start location, time lags…
AXAF Coordinate Transformation at XRCF
NASA Technical Reports Server (NTRS)
He, Helen; McDowell, Jonathan; Conroy, Maureen
1997-01-01
Coordinate transformation between focal plane and detector pixel systems must be handled carefully at the X-ray Calibration Facility (XRCF) as it will be during flight. The High Resolution Mirror Assembly (HRMA) X-ray Detection System (HXDS) stage dithers, and the five-axis mount (FAM) attachment points underwent various types of motion during testing. At the XRCF when the FAM moved, the Science Instrument Module (SIM) travel direction was not necessarily aligned with the mirror axis motion, and, in addition, an arbitrary position offset had to be calibrated. Misalignment from the mirror axis was assessed by measuring its displacement from the boresight configuration of the default FAM frame, and the HXDS stage was monitored for motion from the default FAM reference point. Mirror position, prescribed in a mirror modal coordinate system, was measured in HRMA pitch and yaw axes. Prior to corrections for dithering and FAM movement, the coordinate data at XRCF also had to be corrected for possible misalignments of the mirror mount relative to XRCF and the default FAM axes due to the movement of the FAM feet. Those misalignments were processed in terms of yaw-pitch-roll Euler angles in the mirror nodal coordinate, and in the default FAM frame, respectively. An AXAF Science Center (ASC) coordinate library, pixlib, has been built to support these coordinate transformations and was used during x-ray calibration at the George C. Marshall Space Flight Center, Huntsville, AL. The design and implementation of this library will be discussed.
New installation for inclined EAS investigations
NASA Astrophysics Data System (ADS)
Zadeba, E. A.; Ampilogov, N. V.; Barbashina, N. S.; Bogdanov, A. G.; Borisov, A. A.; Chernov, D. V.; Dushkin, L. I.; Fakhrutdinov, R. M.; Kokoulin, R. P.; Kompaniets, K. G.; Kozhin, A. S.; Ovchinnikov, V. V.; Ovechkin, A. S.; Petrukhin, A. A.; Shutenko, V. V.; Volkov, N. S.; Vorobjev, V. S.; Yashin, I. I.
2017-06-01
The large-scale coordinate-tracking detector TREK for registration of inclined EAS is being developed in MEPhI. The detector is based on multiwire drift chambers from the neutrino experiment at the IHEP U-70 accelerator. Their key advantages are a large effective area (1.85 m2), a good coordinate and angular resolution with a small number of measuring channels. The detector will be operated as part of the experimental complex NEVOD, in particular, jointly with a Cherenkov water detector (CWD) with a volume of 2000 cubic meters and the coordinate detector DECOR. The first part of the detector named Coordinate-Tracking Unit based on the Drift Chambers (CTUDC), representing two coordinate planes of 8 drift chambers in each, has been developed and mounted on opposite sides of the CWD. It has the same principle of joint operation with the NEVOD-DECOR triggering system and the same drift chambers alignment, so the main features of the TREK detector will be examined. Results of the CTUDC development and a joint operation with NEVOD-DECOR complex are presented.
Koehler-McNicholas, Sara R.; Lipschutz, Robert D.; Gard, Steven A.
2017-01-01
Prosthetic alignment is an important factor in the overall fit and performance of a lower-limb prosthesis. However, the association between prosthetic alignment and control strategies used by persons with transfemoral amputation to coordinate the movement of a passive prosthetic knee is poorly understood. This study investigated the biomechanical response of persons with transfemoral amputation to systematic perturbations in knee joint alignment during a level walking task. Quantitative gait data were collected for three alignment conditions: bench alignment, 2 cm anterior knee translation (ANT), and 2 cm posterior knee translation (POST). In response to a destabilizing alignment perturbation (ANT), subjects significantly increased their early-stance hip extension moment, confirming that persons with transfemoral amputation rely on a hip extensor strategy to maintain knee joint stability. However, subjects also decreased the rate at which they loaded their prosthesis, decreased their step length, increased their trunk flexion, and maintained their limb in a more vertical posture at the time of opposite toe off. Collectively, these results suggest that persons with transfemoral amputation rely on a combination of strategies to coordinate stance-phase knee flexion. Further, no significant changes were observed in response to the POST condition, suggesting that a bias toward posterior alignment may have fewer implications in terms of stance-phase, knee-joint control. PMID:28355034
Koehler-McNicholas, Sara R; Lipschutz, Robert D; Gard, Steven A
2016-01-01
Prosthetic alignment is an important factor in the overall fit and performance of a lower-limb prosthesis. However, the association between prosthetic alignment and control strategies used by persons with transfemoral amputation to coordinate the movement of a passive prosthetic knee is poorly understood. This study investigated the biomechanical response of persons with transfemoral amputation to systematic perturbations in knee joint alignment during a level walking task. Quantitative gait data were collected for three alignment conditions: bench alignment, 2 cm anterior knee translation (ANT), and 2 cm posterior knee translation (POST). In response to a destabilizing alignment perturbation (i.e., the ANT condition), participants significantly increased their early-stance hip extension moment, confirming that persons with transfemoral amputation rely on a hip extensor strategy to maintain knee joint stability. However, participants also decreased the rate at which they loaded their prosthesis, decreased their affected-side step length, increased their trunk flexion, and maintained their prosthesis in a more vertical posture at the time of opposite toe off. Collectively, these results suggest that persons with transfemoral amputation rely on a combination of strategies to coordinate stance-phase knee flexion. Further, comparatively few significant changes were observed in response to the POST condition, suggesting that a bias toward posterior alignment may have fewer implications in terms of stance-phase, knee joint control.
Bruns, Eric J.; Walker, Janet S.; Bernstein, Adam; Daleiden, Eric; Pullmann, Michael D.; Chorpita, Bruce F.
2014-01-01
The wraparound process is a type of individualized, team-based care coordination that has become central to many state and system efforts to reform children’s mental health service delivery for youths with the most complex needs and their families. Although the emerging wraparound research base is generally positive regarding placements and costs, effect sizes are smaller for clinical and functional outcomes. This paper presents a review of literature on care coordination and wraparound models, with a focus on theory and research that indicates the need to better connect wraparound-enrolled children and adolescents to evidence-based treatment (EBT). The paper goes on to describe how recently developed applications of EBT that are based on quality improvement and flexible application of “common elements” of research-based care may provide a more individualized approach that better aligns with the philosophy and procedures of the wraparound process. Finally, this paper presents preliminary studies that show the feasibility and potential effectiveness of coordinating wraparound with the Managing and Adapting Practice (MAP) system, and discusses intervention development and research options that are currently underway. PMID:24325146
Hysong, Sylvia J; Thomas, Candice L; Spitzmüller, Christiane; Amspoker, Amber B; Woodard, LeChauncy; Modi, Varsha; Naik, Aanand D
2016-01-15
Team coordination within clinical care settings is a critical component of effective patient care. Less is known about the extent, effectiveness, and impact of coordination activities among professionals within VA Patient-Aligned Care Teams (PACTs). This study will address these gaps by describing the specific, fundamental tasks and practices involved in PACT coordination, their impact on performance measures, and the role of coordination task complexity. First, we will use a web-based survey of coordination practices among 1600 PACTs in the national VHA. Survey findings will characterize PACT coordination practices and assess their association with clinical performance measures. Functional job analysis, using 6-8 subject matter experts who are 3rd and 4th year residents in VA Primary Care rotations, will be utilized to identify the tasks involved in completing clinical performance measures to standard. From this, expert ratings of coordination complexity will be used to determine the level of coordinative complexity required for each of the clinical performance measures drawn from the VA External Peer Review Program (EPRP). For objective 3, data collected from the first two methods will evaluate the effect of clinical complexity on the relationships between measures of PACT coordination and their ratings on the clinical performance measures. Results from this study will support successful implementation of coordinated team-based work in clinical settings by providing knowledge regarding which aspects of care require the most complex levels of coordination and how specific coordination practices impact clinical performance.
Effects of alignment on the roll-over shapes of prosthetic feet.
Hansen, Andrew
2008-12-01
Recent work suggests that a prosthetic ankle-foot component's roll-over shape - the effective rocker it conforms to between initial contact and opposite initial contact (the 'roll-over' interval of walking) - is closely linked to its final alignment in the prosthesis (as determined by a skilled prosthetist using heuristic techniques). If true, this information may help to determine the appropriate alignment for a lower limb prosthesis before it is built, or a priori. Knowledge is needed for future models that will incorporate the roll-over shape including the relative effect of alignment on the roll-over shape's radius of curvature and arc length. The purpose of this study was to evaluate the hypotheses that: (i) Changes in prosthesis alignment alter the position and orientation of a foot's roll-over shape in prosthesis-based coordinates, and (ii) these changes occur without changing the radius of curvature or arc length of the roll-over shape. To examine the hypotheses, this study examined the effects of nine alignment settings on the roll-over shapes of two prosthetic feet. The idea that alignment changes move and rotate roll-over shapes of prosthetic feet in prosthesis coordinates is supported by this work, but the hypothesis that the radius of curvature and arc length do not change for different alignments is not strongly supported by the data. A revised approach is presented that explains some of the changes to the roll-over shape parameters due to changes in rotational alignment.
2010-12-27
z are aligned with those of the usual Geocentric Sun - Earth (aSE) coordinates. In this frame, +x points from the Earth to the Sun , +y points out of...current sheet (box) in the solar wind. x, y, and z are aligned with the aSE coordinates, with +X pointing from the Earth toward the Sun , +y out of the...account the exact ion orbits and such properties as the anisotropic and nondiagonal pressure tensor and sheared ion flows. Figure 1a shows a schematic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, Simon; Lei, CM; Menasce, Dario
An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm 2more » pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less
ERIC Educational Resources Information Center
Bracco, Kathy Reeves; Dadgar, Mina; Austin, Kim; Klarin, Becca; Broek, Marie; Finkelstein, Neal; Mundry, Susan; Bugler, Dan
2014-01-01
"Core to College: Preparing Students for College Readiness and Success" is a three-year initiative. The initiative's mission is to "facilitate greater coordination between K-12 and postsecondary education systems around implementation of the Common Core State Standards (CCSS) and aligned assessments." Its aim is to foster…
An Automatic Registration Algorithm for 3D Maxillofacial Model
NASA Astrophysics Data System (ADS)
Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng
2016-09-01
3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.
The speech focus position effect on jaw-finger coordination in a pointing task.
Rochet-Capellan, Amélie; Laboissière, Rafael; Galván, Arturo; Schwartz, Jean-Luc
2008-12-01
This article investigates jaw-finger coordination in a task involving pointing to a target while naming it with a CVCV (e.g., /papa/) versus CVCV (e.g., /papa/) word. According to the authors' working hypothesis, the pointing apex (gesture extremum) would be synchronized with the apex of the jaw-opening gesture corresponding to the stressed syllable. Jaw and finger motions were recorded using Optotrak (Northern Digital, Waterloo, Ontario, Canada). The effects of stress position on jaw-finger coordination were tested across different target positions (near vs. far) and different consonants in the target word (/t/ vs. /p/). Twenty native Portuguese Brazilian speakers participated in the experiment (all conditions). Jaw response starts earlier, and finger-target alignment period is longer for CVCV words than for CVCV ones. The apex of the jaw-opening gesture for the stressed syllable appears synchronized with the onset of the finger-target alignment period (corresponding to the pointing apex) for CVCV words and with the offset of that period for CVCV words. For both stress conditions, the stressed syllable occurs within the finger-target alignment period because of tight finger-jaw coordination. This result is interpreted as evidence for an anchoring of the speech deictic site (part of speech that shows) in the pointing gesture.
A coupled duration-focused architecture for real-time music-to-score alignment.
Cont, Arshia
2010-06-01
The capacity for real-time synchronization and coordination is a common ability among trained musicians performing a music score that presents an interesting challenge for machine intelligence. Compared to speech recognition, which has influenced many music information retrieval systems, music's temporal dynamics and complexity pose challenging problems to common approximations regarding time modeling of data streams. In this paper, we propose a design for a real-time music-to-score alignment system. Given a live recording of a musician playing a music score, the system is capable of following the musician in real time within the score and decoding the tempo (or pace) of its performance. The proposed design features two coupled audio and tempo agents within a unique probabilistic inference framework that adaptively updates its parameters based on the real-time context. Online decoding is achieved through the collaboration of the coupled agents in a Hidden Hybrid Markov/semi-Markov framework, where prediction feedback of one agent affects the behavior of the other. We perform evaluations for both real-time alignment and the proposed temporal model. An implementation of the presented system has been widely used in real concert situations worldwide and the readers are encouraged to access the actual system and experiment the results.
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
2015-11-19
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. This database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.
Cheong, Vee San; Bull, Anthony M J
2015-12-16
The choice of coordinate system and alignment of bone will affect the quantification of mechanical properties obtained during in-vitro biomechanical testing. Where these are used in predictive models, such as finite element analysis, the fidelic description of these properties is paramount. Currently in bending and torsional tests, bones are aligned on a pre-defined fixed span based on the reference system marked out. However, large inter-specimen differences have been reported. This suggests a need for the development of a specimen-specific alignment system for use in experimental work. Eleven ovine tibiae were used in this study and three-dimensional surface meshes were constructed from micro-Computed Tomography scan images. A novel, semi-automated algorithm was developed and applied to the surface meshes to align the whole bone based on its calculated principal directions. Thereafter, the code isolates the optimised location and length of each bone for experimental testing. This resulted in a lowering of the second moment of area about the chosen bending axis in the central region. More importantly, the optimisation method decreases the irregularity of the shape of the cross-sectional slices as the unbiased estimate of the population coefficient of variation of the second moment of area decreased from a range of (0.210-0.435) to (0.145-0.317) in the longitudinal direction, indicating a minimisation of the product moment, which causes eccentric loading. Thus, this methodology serves as an important pre-step to align the bone for mechanical tests or simulation work, is optimised for each specimen, ensures repeatability, and is general enough to be applied to any long bone. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, H. J.; Lee, S. B.; Lee, H. G.; Y Back, S.; Kim, S. H.; Kang, H. S.
2017-07-01
Several parts that comprise the large scientific device should be installed and operated at the accurate three-dimensional location coordinates (X, Y, and Z) where they should be subjected to survey and alignment. The location of the aligned parts should not be changed in order to ensure that the electron beam parameters (Energy 10 GeV, Charge 200 pC, and Bunch Length 60 fs, Emittance X/Y 0.481 μm/0.256 μm) of PAL-XFEL (X-ray Free Electron Laser of the Pohang Accelerator Laboratory) remain stable and can be operated without any problems. As time goes by, however, the ground goes through uplift and subsidence, which consequently deforms building floors. The deformation of the ground and buildings changes the location of several devices including magnets and RF accelerator tubes, which eventually leads to alignment errors (∆X, ∆Y, and ∆Z). Once alignment errors occur with regard to these parts, the electron beam deviates from its course and beam parameters change accordingly. PAL-XFEL has installed the Hydrostatic Leveling System (HLS) to measure and record the vertical change of buildings and ground consistently and systematically and the Wire Position System (WPS) to measure the two dimensional changes of girders. This paper is designed to introduce the operating principle and design concept of WPS and discuss the current situation regarding installation and operation.
Surface-Constrained Volumetric Brain Registration Using Harmonic Mappings
Joshi, Anand A.; Shattuck, David W.; Thompson, Paul M.; Leahy, Richard M.
2015-01-01
In order to compare anatomical and functional brain imaging data across subjects, the images must first be registered to a common coordinate system in which anatomical features are aligned. Intensity-based volume registration methods can align subcortical structures well, but the variability in sulcal folding patterns typically results in misalignment of the cortical surface. Conversely, surface-based registration using sulcal features can produce excellent cortical alignment but the mapping between brains is restricted to the cortical surface. Here we describe a method for volumetric registration that also produces an accurate one-to-one point correspondence between cortical surfaces. This is achieved by first parameterizing and aligning the cortical surfaces using sulcal landmarks. We then use a constrained harmonic mapping to extend this surface correspondence to the entire cortical volume. Finally, this mapping is refined using an intensity-based warp. We demonstrate the utility of the method by applying it to T1-weighted magnetic resonance images (MRI). We evaluate the performance of our proposed method relative to existing methods that use only intensity information; for this comparison we compute the inter-subject alignment of expert-labeled sub-cortical structures after registration. PMID:18092736
Development of one-shot aspheric measurement system with a Shack-Hartmann sensor.
Furukawa, Yasunori; Takaie, Yuichi; Maeda, Yoshiki; Ohsaki, Yumiko; Takeuchi, Seiji; Hasegawa, Masanobu
2016-10-10
We present a measurement system for a rotationally symmetric aspheric surface that is designed for accurate and high-volume measurements. The system uses the Shack-Hartmann sensor and is capable of measuring aspheres with a maximum diameter of 90 mm in one shot. In our system, a reference surface, made with the same aspheric parameter as the test surface, is prepared. The test surface is recovered as the deviation from the reference surface using a figure-error reconstruction algorithm with a ray coordinate and angle variant table. In addition, we developed a method to calibrate the rotationally symmetric system error. These techniques produce stable measurements and high accuracy. For high-throughput measurements, a single measurement scheme and auto alignment are implemented; they produce a 4.5 min measurement time, including calibration and alignment. In this paper, we introduce the principle and calibration method of our system. We also demonstrate that our system achieved an accuracy better than 5.8 nm RMS and a repeatability of 0.75 nm RMS by comparing our system's aspheric measurement results with those of a probe measurement machine.
Method for protein structure alignment
Blankenbecler, Richard; Ohlsson, Mattias; Peterson, Carsten; Ringner, Markus
2005-02-22
This invention provides a method for protein structure alignment. More particularly, the present invention provides a method for identification, classification and prediction of protein structures. The present invention involves two key ingredients. First, an energy or cost function formulation of the problem simultaneously in terms of binary (Potts) assignment variables and real-valued atomic coordinates. Second, a minimization of the energy or cost function by an iterative method, where in each iteration (1) a mean field method is employed for the assignment variables and (2) exact rotation and/or translation of atomic coordinates is performed, weighted with the corresponding assignment variables.
Melo, Renato de Souza; Amorim da Silva, Polyanna Waleska; Souza, Robson Arruda; Raposo, Maria Cristina Falcão; Ferraz, Karla Mônica
2013-10-01
Introduction Head sense position is coordinated by sensory activity of the vestibular system, located in the inner ear. Children with sensorineural hearing loss may show changes in the vestibular system as a result of injury to the inner ear, which can alter the sense of head position in this population. Aim Analyze the head alignment in students with normal hearing and students with sensorineural hearing loss and compare the data between groups. Methods This prospective cross-sectional study examined the head alignment of 96 students, 48 with normal hearing and 48 with sensorineural hearing loss, aged between 7 and 18 years. The analysis of head alignment occurred through postural assessment performed according to the criteria proposed by Kendall et al. For data analysis we used the chi-square test or Fisher exact test. Results The students with hearing loss had a higher occurrence of changes in the alignment of the head than normally hearing students (p < 0.001). Forward head posture was the type of postural change observed most, occurring in greater proportion in children with hearing loss (p < 0.001), followed by the side slope head posture (p < 0.001). Conclusion Children with sensorineural hearing loss showed more changes in the head posture compared with children with normal hearing.
Melo, Renato de Souza; Amorim da Silva, Polyanna Waleska; Souza, Robson Arruda; Raposo, Maria Cristina Falcão; Ferraz, Karla Mônica
2013-01-01
Introduction Head sense position is coordinated by sensory activity of the vestibular system, located in the inner ear. Children with sensorineural hearing loss may show changes in the vestibular system as a result of injury to the inner ear, which can alter the sense of head position in this population. Aim Analyze the head alignment in students with normal hearing and students with sensorineural hearing loss and compare the data between groups. Methods This prospective cross-sectional study examined the head alignment of 96 students, 48 with normal hearing and 48 with sensorineural hearing loss, aged between 7 and 18 years. The analysis of head alignment occurred through postural assessment performed according to the criteria proposed by Kendall et al. For data analysis we used the chi-square test or Fisher exact test. Results The students with hearing loss had a higher occurrence of changes in the alignment of the head than normally hearing students (p < 0.001). Forward head posture was the type of postural change observed most, occurring in greater proportion in children with hearing loss (p < 0.001), followed by the side slope head posture (p < 0.001). Conclusion Children with sensorineural hearing loss showed more changes in the head posture compared with children with normal hearing. PMID:25992037
[Monitoring evaluation system for high-specialty hospitals].
Fajardo Dolci, Germán; Aguirre Gas, Héctor G; Robledo Galván, Héctor
2011-01-01
Hospital evaluation is a fundamental process to identify medical units' objective compliance, to analyze efficiency of resource use and allocation, institutional values and mission alignment, patient safety and quality standards, contributions to research and medical education, and the degree of coordination among medical units and the health system as a whole. We propose an evaluation system for highly specialized regional hospitals through the monitoring of performance indicators. The following are established as base thematic elements in the construction of indicators: safe facilities and equipment, financial situation, human resources management, policy management, organizational climate, clinical activity, quality and patient safety, continuity of care, patients' and providers' rights and obligations, teaching, research, social responsibility, coordination mechanisms. Monitoring refers to the planned and systematic evaluation of valid and reliable indicators, aimed at identifying problems and opportunity areas. Moreover, evaluation is a powerful tool to strengthen decision-making and accountability in medical units.
Ultrafast fingerprint indexing for embedded systems
NASA Astrophysics Data System (ADS)
Zhou, Ru; Sin, Sang Woo; Li, Dongju; Isshiki, Tsuyoshi; Kunieda, Hiroaki
2011-10-01
A novel core-based fingerprint indexing scheme for embedded systems is presented in this paper. Our approach is enabled by our new precise and fast core-detection algorithm with the direction map. It introduces the feature of CMP (core minutiae pair), which describes the coordinates of minutiae and the direction of ridges associated with the minutiae based on the uniquely defined core coordinates. Since each CMP is identical against the shift and rotation of the fingerprint image, the CMP comparison between a template and an input image can be performed without any alignment. The proposed indexing algorithm based on CMP is suitable for embedded systems because the tremendous speed up and the memory reduction are achieved. In fact, the experiments with the fingerprint database FVC2002 show that its speed for the identifications becomes about 40 times faster than conventional approaches, even though the database includes fingerprints with no core.
Modeling of connections between substructures
NASA Technical Reports Server (NTRS)
Butler, Thomas G.
1991-01-01
It is demonstrated here that complete checkout of a basic substructure can be done under the special circumstance of a sliding connection with offsets. Stiff bar connectors make this possible so long as the bar coordinates are aligned with the displacement coordinates at the sliding surface.
Health IT-Enabled Care Coordination: A National Survey of Patient-Centered Medical Home Clinicians.
Morton, Suzanne; Shih, Sarah C; Winther, Chloe H; Tinoco, Aldo; Kessler, Rodger S; Scholle, Sarah Hudson
2015-01-01
Health information technology (IT) offers promising tools for improving care coordination. We assessed the feasibility and acceptability of 6 proposed care coordination objectives for stage 3 of the Centers for Medicare and Medicaid Services electronic health record incentive program (Meaningful Use) related to referrals, notification of care from other facilities, patient clinical summaries, and patient dashboards. We surveyed physician-owned and hospital/health system-affiliated primary care practices that achieved patient-centered medical home recognition and participated in the Meaningful Use program, and community health clinics with patient-centered medical home recognition (most with certified electronic health record systems). The response rate was 35.1%. We ascertained whether practices had implemented proposed objectives and perceptions of their importance. We analyzed the association of organizational and contextual factors with self-reported use of health IT to support care coordination activities. Although 78% of the 350 respondents viewed timely notification of hospital discharges as very important, only 48.7% used health IT systems to accomplish this task. The activity most frequently supported by health IT was providing clinical summaries to patients, in 76.6% of practices; however, merely 47.7% considered this activity very important. Greater use of health IT to support care coordination activities was positively associated with the presence of a nonclinician responsible for care coordination and the practice's capacity for systematic change. Even among practices having a strong commitment to the medical home model, the use of health IT to support care coordination objectives is not consistent. Health IT capabilities are not currently aligned with clinicians' priorities. Many practices will need financial and technical assistance for health IT to enhance care coordination. © 2015 Annals of Family Medicine, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syh, J; Wu, H
2015-06-15
Purpose This study is to implement a homemade novel device with surface locking couch index to check daily radiograph (DR) function of adaPTInsight™, stereoscopic image guided system (SIGS), for proton therapy. The comprehensive daily QA checks of proton pencil beam output, field size, flatness and symmetry of spots and energy layers will be followed by using MatriXX dosimetry device. Methods The iBa MatriXX device was used to perform daily dosimetry which is also used to perform SIGS checks. A set of markers were attached to surface of MatriXX device in alignment of DRR of reconstructed CT images and daily DR.more » The novel device allows MatriXX to be fit into the cradle which was locked by couch index bars on couch surface. This will keep the MatriXX at same XY plane daily with exact coordinates. Couch height Z will be adjusted according to imaging to check isocenter-laser coincidence accuracy. Results adaPTInsight™ provides robotic couch to move in 6-degree coordinate system to align the dosimetry device to be within 1.0 mm / 1.0°. The daily constancy was tightened to be ± 0.5 mm / 0.3° compared to 1.0 mm / 1.0° before. For gantry at 0° and couch all 0° angles (@ Rt ARM 0 setting), offsets measured of the couch systems were ≤ 0.5° in roll, yaw and pitch dimensions. Conclusion Simplicity of novel device made daily image guided QA consistent with accuracy. The offset of the MatriXX isocenter-laser coincident was reproducible. Such easy task not only speeds up the setup, but it increases confidence level in detailed daily comprehensive measurements. The total SIGS alignment time has been shortened with less setup error. This device will enhance our experiences for the future QA when cone beam CT imaging modality becomes available at proton therapy center.« less
Tsuneda, Masato; Nishio, Teiji; Saito, Akito; Tanaka, Sodai; Suzuki, Tatsuhiko; Kawahara, Daisuke; Matsushita, Keiichiro; Nishio, Aya; Ozawa, Shuichi; Karasawa, Kumiko; Nagata, Yasushi
2018-06-01
High accuracy of the beam-irradiated position is required for high-precision radiation therapy such as stereotactic body radiation therapy (SBRT), volumetric modulated arc therapy (VMAT), and intensity modulated radiation therapy (IMRT). Users generally perform the verification of the mechanical and radiation isocenters using the star shot test and the Winston Lutz test that allow evaluation of the displacement at the isocenter. However, these methods are unable to evaluate directly and quantitatively the sagging angle that is caused by the weight of the gantry itself along the gantry rotation axis. In addition, the verification of the central axis of the irradiated beam that is not dependent at the isocenter is needed for the mechanical quality assurance of a nonisocentric irradiation technique. In this study, we have developed a prototype system for the verification of three-dimensional (3D) beam alignment and we have verified the system concept for 3D isocentricity. Our system allows detection of the central axis in 3D coordinates and evaluation of the irradiated oblique angle to the gantry rotation axis, i.e., the sagging angle. In order to measure the central axis of the irradiated beam in 3D coordinates, we constructed the prototype verification system consisting of a column-shaped plastic scintillator (CoPS), a truncated cone-shaped mirror (TCsM), and a cooled charged-coupled device (CCD) camera. This verification system was irradiated with 6-MV photon beams and the scintillation light was measured using the CCD camera. The central axis on the axial plane (two-dimensional (2D) central axis) was acquired from the integration of the scintillation light along the major axis of the CoPS, and the central axis in 3D coordinates (3D central axis) was acquired from two curve-shaped profiles which were reflected by the TCsM. We verified the calculation accuracy of the gantry rotation axis, θ z . Additionally, we calculated the 3D central axis and the sagging angle at each gantry angle. We acquired the measurement images composed of the 2D central axis and the two curve-shaped profiles. The relationship between the irradiated and measured angles with respect to the gantry rotation axis had good linearity. The mean and standard deviation of the difference between the irradiated and measured angles were 0.012 and 0.078 degrees, respectively. The size of the 2D and 3D radiation isocenters were 0.470 and 0.652 mm on the axial plane and in 3D coordinates, respectively. The sagging angles were -0.31, 0.39, and 0.38 degrees at the gantry angles of 0, 180, and 180E degrees, respectively. We developed a novel verification system, designated as the "kompeito shot test system," to verify the 3D beam alignment. This system concept works for both verification of the 3D isocentricity and the direct evaluation of the sagging angle. Next, we want to improve the aspects of this system, such as the shape and the type of scintillator, to increase the system accuracy and nonisocentric beam alignment performance. © 2018 American Association of Physicists in Medicine.
42 CFR 435.1205 - Alignment with exchange initial open enrollment period.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 4 2013-10-01 2013-10-01 false Alignment with exchange initial open enrollment... exchange initial open enrollment period. (a) Definitions. For purposes of this section— Eligibility based... 435.119, 435.218 and 435.603. (b) Medicaid agency responsibilities to achieve coordinated open...
Xiao, Jun
2007-05-15
Traditionally, the skull landmarks, i.e., bregma, lambda, and the interaural line, are the origins of the coordinate system for almost all rodent brain atlases. The disadvantages of using a skull landmark as an origin are: (i) there are differences among individuals in the alignment between the skull and the brain; (ii) the shapes of sutures, on which a skull landmark is determined, are different for different animals; (iii) the skull landmark is not clear for some animals. Recently, the extreme point of the entire brain (the tip of the olfactory bulb) has also been used as the origin for an atlas coordinate system. The accuracy of stereotaxically locating a brain structure depends on the relative distance between the structure and the reference point of the coordinate. The disadvantages of using the brain extreme as an origin are that it is located far from most brain structures and is not readily exposed during most in vivo procedures. To overcome these disadvantages, this paper introduces a new coordinate system for the brain of the naked mole-rat. The origin of this new coordinate system is a landmark directly on the brain: the intersection point of the posterior edges of the two cerebral hemispheres. This new coordinate system is readily applicable to other rodent species and is statistically better than using bragma and lambda as reference points. It is found that the body weight of old naked mole-rats is significantly bigger than that of young animals. However, the old naked mole-rat brain is not significantly heavier than that of young animal. Both brain weight and brain length vary little among animals of different weights. The disadvantages of current definition of "significant" are briefly discussed and a new expression that describes more objectively the result of statistical test is brought up and used.
A retinal code for motion along the gravitational and body axes
Sabbah, Shai; Gemmer, John A.; Bhatia-Lin, Ananya; Manoff, Gabrielle; Castro, Gabriel; Siegel, Jesse K.; Jeffery, Nathan; Berson, David M.
2017-01-01
Summary Self-motion triggers complementary visual and vestibular reflexes supporting image-stabilization and balance. Translation through space produces one global pattern of retinal image motion (optic flow), rotation another. We show that each subtype of direction-selective ganglion cell (DSGC) adjusts its direction preference topographically to align with specific translatory optic flow fields, creating a neural ensemble tuned for a specific direction of motion through space. Four cardinal translatory directions are represented, aligned with two axes of high adaptive relevance: the body and gravitational axes. One subtype maximizes its output when the mouse advances, others when it retreats, rises, or falls. ON-DSGCs and ON-OFF-DSGCs share the same spatial geometry but weight the four channels differently. Each subtype ensemble is also tuned for rotation. The relative activation of DSGC channels uniquely encodes every translation and rotation. Though retinal and vestibular systems both encode translatory and rotatory self-motion, their coordinate systems differ. PMID:28607486
Aligning HST Images to Gaia: A Faster Mosaicking Workflow
NASA Astrophysics Data System (ADS)
Bajaj, V.
2017-11-01
We present a fully programmatic workflow for aligning HST images using the high-quality astrometry provided by Gaia Data Release 1. Code provided in a Jupyter Notebook works through this procedure, including parsing the data to determine the query area parameters, querying Gaia for the coordinate catalog, and using the catalog with TweakReg as reference catalog. This workflow greatly simplifies the normally time-consuming process of aligning HST images, especially those taken as part of mosaics.
Rudi, Knut; Zimonja, Monika; Kvenshagen, Bente; Rugtveit, Jarle; Midtvedt, Tore; Eggesbø, Merete
2007-01-01
We present a novel approach for comparing 16S rRNA gene clone libraries that is independent of both DNA sequence alignment and definition of bacterial phylogroups. These steps are the major bottlenecks in current microbial comparative analyses. We used direct comparisons of taxon density distributions in an absolute evolutionary coordinate space. The coordinate space was generated by using alignment-independent bilinear multivariate modeling. Statistical analyses for clone library comparisons were based on multivariate analysis of variance, partial least-squares regression, and permutations. Clone libraries from both adult and infant gastrointestinal tract microbial communities were used as biological models. We reanalyzed a library consisting of 11,831 clones covering complete colons from three healthy adults in addition to a smaller 390-clone library from infant feces. We show that it is possible to extract detailed information about microbial community structures using our alignment-independent method. Our density distribution analysis is also very efficient with respect to computer operation time, meeting the future requirements of large-scale screenings to understand the diversity and dynamics of microbial communities. PMID:17337554
An efficient and accurate molecular alignment and docking technique using ab initio quality scoring
Füsti-Molnár, László; Merz, Kenneth M.
2008-01-01
An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561
Self-organization of vertebrate mesoderm based on simple boundary conditions.
Green, Jeremy B A; Dominguez, Isabel; Davidson, Lance A
2004-11-01
Embryonic development requires cell movements whose coordination is robust and reproducible. A dramatic example is the primary body axis of vertebrates: despite perturbation, cells in prospective axial tissue coordinate their movements to make an elongated body axis. The spatial cues coordinating these movements are not known. We show here that cells deprived of preexisting spatial cues by physical dissociation and reaggregation nonetheless organize themselves into an axis. Activin-induced cells that are reaggregated into a flat disc initially round up into a ball before elongating perpendicular to the disc. Manipulations of the geometry of the disc and immunofluorescence micrography reveal that the edge of the disc provides a circumferential alignment zone. This finding indicates that physical boundaries provide alignment cues and that circumferential "hoop stress" drives the axial extrusion in a manner resembling late-involuting mesoderm of Xenopus and archenteron elongation in other deuterostome species such as sea urchins. Thus, a population of cells finds its own midline based on the form of the population's boundaries using an edge-aligning mechanism. This process provides a remarkably simple organizing principle that contributes to the reliability of embryonic development as a whole. (c) 2004 Wiley-Liss, Inc.
The pixel tracking telescope at the Fermilab Test Beam Facility
Kwan, Simon; Lei, CM; Menasce, Dario; ...
2016-03-01
An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm 2more » pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Matthias; Fittinghoff, David N.; Bower, Dan E.
2011-05-13
This report describes line-of-sight (LOS) measurements for the NIF Neutron Imaging System (NIS) and a characterization of the NIS LOS relative to OPAS 90-135 that were performed during the NIS commissioning Nov. 2010 – Jan. 2011. As described here, data from those measurements were used to determine the relative offsets between the TCC position (x and y pixel coordinates in OPAS images) and the NIS LOS as functions of the OPAS focal distance. This data is needed to place the NIS pinhole array (PHA) onto the NIS LOS with high precision using OPAS imaging of alignment fiducials attached to themore » front and the back of the PHA. (A description of the PHA alignment fiducials, data from metrology performed on the fiducials and a description on how these fiducials were used to align the PHA for the first NIS imaging shot on Feb,. 17, 2011 will be summarized in an upcoming separate report. This report consists of an overview given in this document and a main body that consists of a set of viewgraphs (see Appendix 1) that were iterated and refined within the NIS team and with the Alignment Working Group and that contain more detailed information, schematics and calculations of the NIS line of sight offset from the OPAS LOS. See also Drury, “OPAS 90-135 Registration of Neutron Imaging System Line of Sight,” January 2011, NIF-5035484.« less
Cao, Hu; Lu, Yonggang
2017-01-01
With the rapid growth of known protein 3D structures in number, how to efficiently compare protein structures becomes an essential and challenging problem in computational structural biology. At present, many protein structure alignment methods have been developed. Among all these methods, flexible structure alignment methods are shown to be superior to rigid structure alignment methods in identifying structure similarities between proteins, which have gone through conformational changes. It is also found that the methods based on aligned fragment pairs (AFPs) have a special advantage over other approaches in balancing global structure similarities and local structure similarities. Accordingly, we propose a new flexible protein structure alignment method based on variable-length AFPs. Compared with other methods, the proposed method possesses three main advantages. First, it is based on variable-length AFPs. The length of each AFP is separately determined to maximally represent a local similar structure fragment, which reduces the number of AFPs. Second, it uses local coordinate systems, which simplify the computation at each step of the expansion of AFPs during the AFP identification. Third, it decreases the number of twists by rewarding the situation where nonconsecutive AFPs share the same transformation in the alignment, which is realized by dynamic programming with an improved transition function. The experimental data show that compared with FlexProt, FATCAT, and FlexSnap, the proposed method can achieve comparable results by introducing fewer twists. Meanwhile, it can generate results similar to those of the FATCAT method in much less running time due to the reduced number of AFPs.
Bonneville, Power Administration Timing System
NASA Technical Reports Server (NTRS)
Martin, Kenneth E.
1996-01-01
Time is an integral part of the Bonneville Power Administration's (BPA) operational systems. Generation and power transfers are planned in advance. Utilities coordinate with each other by making these adjustments on a timed schedule. Price varies with demand, so billing is based on time. Outages for maintenance are scheduled to assure they do not interrupt reliable power delivery. Disturbance records are aligned with recorded timetags for analysis and comparison with related information. Advanced applications like traveling wave fault location and real-time phase measurement require continuous timing with high precision. Most of BPA is served by a Central Time System (CTS) at the Dittmer Control Center near Portland, OR. This system keeps time locally and supplies time to both the control center systems and field locations via a microwave signal. It is kept synchronized to national standard time and coordinated with interconnected utilities. It is the official BPA time. Powwer system control and operation is described, followed by a description of BPA timing systems including CTS, the Fault Location Acquisition Reporter, time dissemination, and phasor measurements. References are provided for further reading.
Tello-Leal, Edgar; Chiotti, Omar; Villarreal, Pablo David
2012-12-01
The paper presents a methodology that follows a top-down approach based on a Model-Driven Architecture for integrating and coordinating healthcare services through cross-organizational processes to enable organizations providing high quality healthcare services and continuous process improvements. The methodology provides a modeling language that enables organizations conceptualizing an integration agreement, and identifying and designing cross-organizational process models. These models are used for the automatic generation of: the private view of processes each organization should perform to fulfill its role in cross-organizational processes, and Colored Petri Net specifications to implement these processes. A multi-agent system platform provides agents able to interpret Colored Petri-Nets to enable the communication between the Healthcare Information Systems for executing the cross-organizational processes. Clinical documents are defined using the HL7 Clinical Document Architecture. This methodology guarantees that important requirements for healthcare services integration and coordination are fulfilled: interoperability between heterogeneous Healthcare Information Systems; ability to cope with changes in cross-organizational processes; guarantee of alignment between the integrated healthcare service solution defined at the organizational level and the solution defined at technological level; and the distributed execution of cross-organizational processes keeping the organizations autonomy.
Photoactive devices including porphyrinoids with coordinating additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K
Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths,more » increase the external quantum efficiency of the material, or both.« less
Simple turbulence models and their application to boundary layer separation
NASA Technical Reports Server (NTRS)
Wadcock, A. J.
1980-01-01
Measurements in the boundary layer and wake of a stalled airfoil are presented in two coordinate systems, one aligned with the airfoil chord, the other being conventional boundary layer coordinates. The NACA 4412 airfoil is studied at a single angle of attack corresponding to maximum lift, the Reynolds number based on chord being 1.5 x 10 to the 6th power. Turbulent boundary layer separation occurred at the 85 percent chord position. The two-dimensionality of the flow was documented and the momentum integral equation studied to illustrate the importance of turbulence contributions as separation is approached. The assumptions of simple eddy-viscosity and mixing-length turbulence models are checked directly against experiment. Curvature effects are found to be important as separation is approached.
Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality
Raymond, Michael J.; Ray, Poulomi; Kaur, Gurleen; Fredericks, Michael; Singh, Ajay V.; Wan, Leo Q.
2016-01-01
Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels. PMID:28360944
Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality.
Raymond, Michael J; Ray, Poulomi; Kaur, Gurleen; Fredericks, Michael; Singh, Ajay V; Wan, Leo Q
2017-02-01
Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.
Effect of Alignment on L2 Written Production
ERIC Educational Resources Information Center
Wang, Chuming; Wang, Min
2015-01-01
This article aims to uncover how L2 writing is affected by alignment, a socio-cognitive process involving dynamic coordination and adaptation. For this, two studies were conducted. Study 1 required two groups of 24 learners of English as a foreign language (EFL) to continue in English two stories with their endings removed, both of which had a…
Prosodic Structure Shapes the Temporal Realization of Intonation and Manual Gesture Movements
ERIC Educational Resources Information Center
Esteve-Gibert, Nuria; Prieto, Pilar
2013-01-01
Purpose: Previous work on the temporal coordination between gesture and speech found that the prominence in gesture coordinates with speech prominence. In this study, the authors investigated the anchoring regions in speech and pointing gesture that align with each other. The authors hypothesized that (a) in contrastive focus conditions, the…
Impact of RFID Information-Sharing Coordination over a Supply Chain with Reverse Logistics
ERIC Educational Resources Information Center
Nativi Nicolau, Juan Jose
2016-01-01
Companies have adopted environmental practices such as reverse logistics over the past few decades. However, studies show that aligning partners inside the green supply chain can be a substantial problem. This lack of coordination can increase overall supply chain cost. Information technology such as Radio Frequency Identification (RFID) has the…
Nelson, Karin; Sun, Haili; Dolan, Emily; Maynard, Charles; Beste, Laruen; Bryson, Christopher; Schectman, Gordon; Fihn, Stephan D
2014-01-01
Care continuity, access, and coordination are important features of the patient-centered medical home model and have been emphasized in the Veterans Health Administration patient-centered medical home implementation, called the Patient Aligned Care Team. Data from more than 4.3 million Veterans were used to assess the relationship between these attributes of Patient Aligned Care Team and Veterans Health Administration hospitalization and mortality. Controlling for demographics and comorbidity, we found that continuity with a primary care provider was associated with a lower likelihood of hospitalization and mortality among a large population of Veterans receiving VA primary care.
Physician clinical alignment and integration: a community-academic hospital approach.
Salas-Lopez, Debbie; Weiss, Sandra Jarva; Nester, Brian; Whalen, Thomas
2014-01-01
An overwhelming need for change in the U.S. healthcare delivery system, coupled with the need to improve clinical and financial outcomes, has prompted hospitals to direct renewed efforts toward achieving high quality and cost-effectiveness. Additionally, with the dawn of accountable care organizations and increasing focus on patient expectations, hospitals have begun to seek physician partners through clinical alignment. Contrary to the unsuccessful alignment strategies of the 1990s, today's efforts are more mutually beneficial, driven by the need to achieve better care coordination, increased access to infrastructure, improved quality, and lower costs. In this article, we describe a large, academic, tertiary care hospital's approach to developing and implementing alignment and integration models with its collaboration-ready physicians and physician groups. We developed four models--short of physicians' employment with the organization--tailored to meet the needs of both the physician group and the hospital: (1) medical directorship (group physicians are appointed to serve as medical directors of a clinical area), (2) professional services agreement (specific clinical services, such as overnight admissions help, are contracted), (3) co-management services agreement (one specialty group co-manages all services within the specialty service lines), and (4) lease arrangement (closest in scope to employment, in which the hospital pays all expenses and receives all revenue). Successful hospital-physician alignment requires careful planning and the early engagement of legal counsel to ensure compliance with federal statutes. Establishing an integrated system with mutually identified goals better positions hospitals to deliver cost-effective and high-quality care under the new paradigm of healthcare reform.
Health IT–Enabled Care Coordination: A National Survey of Patient-Centered Medical Home Clinicians
Morton, Suzanne; Shih, Sarah C.; Winther, Chloe H.; Tinoco, Aldo; Kessler, Rodger S.; Scholle, Sarah Hudson
2015-01-01
PURPOSE Health information technology (IT) offers promising tools for improving care coordination. We assessed the feasibility and acceptability of 6 proposed care coordination objectives for stage 3 of the Centers for Medicare and Medicaid Services electronic health record incentive program (Meaningful Use) related to referrals, notification of care from other facilities, patient clinical summaries, and patient dashboards. METHODS We surveyed physician-owned and hospital/health system–affiliated primary care practices that achieved patient-centered medical home recognition and participated in the Meaningful Use program, and community health clinics with patient-centered medical home recognition (most with certified electronic health record systems). The response rate was 35.1%. We ascertained whether practices had implemented proposed objectives and perceptions of their importance. We analyzed the association of organizational and contextual factors with self-reported use of health IT to support care coordination activities. RESULTS Although 78% of the 350 respondents viewed timely notification of hospital discharges as very important, only 48.7% used health IT systems to accomplish this task. The activity most frequently supported by health IT was providing clinical summaries to patients, in 76.6% of practices; however, merely 47.7% considered this activity very important. Greater use of health IT to support care coordination activities was positively associated with the presence of a nonclinician responsible for care coordination and the practice’s capacity for systematic change. CONCLUSIONS Even among practices having a strong commitment to the medical home model, the use of health IT to support care coordination objectives is not consistent. Health IT capabilities are not currently aligned with clinicians’ priorities. Many practices will need financial and technical assistance for health IT to enhance care coordination. PMID:25964403
An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system
DOE Office of Scientific and Technical Information (OSTI.GOV)
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less
An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
2015-11-19
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Matthews
This Erratum is being issued to DOE/NV--1185 ROTC-1 for the CAU 538 Closure Report to correct three items. The original ROTC which was issued on November 30, 2011 corrected the Use Restriction for CAS 12-29-06 to remove a coordinate point from the Use Restriction. However, the ROTC contained three errors as follows: 1. The number of digits after the decimal place on the UR form was one while the map displayed two digits after the decimal place. The UR form and map were aligned as part of this Erratum so that only a single digit was shown after the decimalmore » place. 2. On the figure (Figure 1) included with the UR form issued as part of ROTC-1, CAU 538 was incorrectly called out as CAU 583. This error was corrected as part of this Erratum. 3. The coordinates on the UR form were developed from NAD 27 while the coordinate system stated on the form was UTM, Zone 11, NAD 83 meters. The coordinates were corrected on the UR form, developed as part of this Erratum, to reflect the UTM, Zone 11, NAD 83 meters system.« less
Linear magnetic spring and spring/motor combination
NASA Technical Reports Server (NTRS)
Patt, Paul J. (Inventor); Stolfi, Fred R. (Inventor)
1991-01-01
A magnetic spring, or a spring and motor combination, providing a linear spring force characteristic in each direction from a neutral position, in which the spring action may occur for any desired coordinate of a typical orthogonal coordinate system. A set of magnets are disposed, preferably symmetrically about a coordinate axis, poled orthogonally to the desired force direction. A second set of magnets, respectively poled opposite the first set, are arranged on the sprung article. The magnets of one of the sets are spaced a greater distance apart than those of the other, such that an end magnet from each set forms a pair having preferably planar faces parallel to the direction of spring force, the faces being offset so that in a neutral position the outer edge of the closer spaced magnet set is aligned with the inner edge of the greater spaced magnet set. For use as a motor, a coil can be arranged with conductors orthogonal to both the magnet pole directions and the direction of desired spring force, located across from the magnets of one set and fixed with respect to the magnets of the other set. In a cylindrical coordinate system having axial spring force, the magnets are radially poled and motor coils are concentric with the cylinder axis.
NASA Astrophysics Data System (ADS)
Harp, D. Isaiah; Liebe, Carl Christian; Craig, William; Harrison, Fiona; Kruse-Madsen, Kristin; Zoglauer, Andreas
2010-07-01
The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will make the first sensitive images of the sky in the high energy X-ray band (6 - 80 keV). The NuSTAR observatory consists of two co-aligned grazing incidence hard X-ray telescopes with a ~10 meter focal length, achieved by the on-orbit extension of a deployable mast. A principal science objective of the mission is to locate previously unknown high-energy X-ray sources to an accuracy of 10 arcseconds (3-sigma), sufficient to uniquely identify counterparts at other wavelengths. In order to achieve this, a star tracker and laser metrology system are an integral part of the instrument; in conjunction, they will determine the orientation of the optics bench in celestial coordinates and also measure the flexures in the deployable mast as it responds to the varying on-orbit thermal environment, as well as aerodynamic and control torques. The architecture of the NuSTAR system for solving the attitude and aspect problems differs from that of previous X-ray telescopes, which did not require ex post facto reconstruction of the instantaneous observatory alignment on-orbit. In this paper we describe the NuSTAR instrument metrology system architecture and implementation, focusing on the systems engineering challenges associated with validating the instantaneous transformations between focal plane and celestial coordinates to within the required accuracy. We present a mathematical solution to photon source reconstruction, along with a detailed error budget that relates component errors to science performance. We also describe the architecture of the instrument simulation software being used to validate the end-to-end performance model.
Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit
NASA Technical Reports Server (NTRS)
Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.
2013-01-01
This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.
[Challenges of the right to health in the Colombian model].
Bernal, Oscar; Barbosa, Samuel
2015-01-01
Health in Colombia is now a fundamental right that has to be provided and protected by the government. We evaluated the strengths and difficulties of the health system with respect to the statutory law enacted in February 2015, using methodologies for analysis of health systems proposed by the WHO and the World Bank. The challenges include the fragmentation and specialization of services, access barriers and incentives that are not aligned with the quality, weak governance, multiple actors with little coordination and information system that does not measure results. The government needs to find a necessary social agreement, a balance between the particular and the collective benefit.
Program Implementation Approaches to Build and Sustain Health Care Coordination for Type 2 Diabetes.
Fitzgerald, Tania M; Williams, Pam A; Dodge, Julia A; Quinn, Martha; Heminger, Christina L; Moultrie, Rebecca; Taylor, Olivia; Nelson, Belinda W; Lewis, Megan A
2017-03-01
As more people enter the U.S. health care system under the Affordable Care Act (ACA), it is increasingly critical to deliver coordinated, high-quality health care. The ACA supports implementation and sustainability of efficient health care models, given expected limits in available resources. This article highlights implementation strategies to build and sustain care coordination, particularly ones consistent with and reinforced by the ACA. It focuses on disease self-management programs to improve the health of patients with type 2 diabetes, exemplified by grantees of the Alliance to Reduce Disparities in Diabetes. We conducted interviews with grantee program representatives throughout their 5-year programs and conducted a qualitative framework analysis of data to identify key themes related to care coordination. The most promising care coordination strategies that grantee programs described included establishing clinic-community collaborations, embedding community health workers within care management teams, and sharing electronic data. Establishing provider buy-in was crucial for these strategies to be effective. This article adds new insights into strategies promoting effective care coordination. The strategies that grantees implemented throughout the program align with ACA requirements, underscoring their relevance to the changing U.S. health care environment and the likelihood of further support for program sustainability.
ERIC Educational Resources Information Center
Penuel, William R.; Riel, Margaret; Joshi, Aasha; Pearlman, Leslie; Kim, Chong Min; Frank, Kenneth A.
2010-01-01
Previous qualitative studies show that when the formal organization of a school and patterns of informal interaction are aligned, faculty and leaders in a school are better able to coordinate instructional change. This article combines social network analysis with interview data to analyze how well the formal and informal aspects of a school's…
System for inspecting large size structural components
Birks, Albert S.; Skorpik, James R.
1990-01-01
The present invention relates to a system for inspecting large scale structural components such as concrete walls or the like. The system includes a mobile gamma radiation source and a mobile gamma radiation detector. The source and detector are constructed and arranged for simultaneous movement along parallel paths in alignment with one another on opposite sides of a structural component being inspected. A control system provides signals which coordinate the movements of the source and detector and receives and records the radiation level data developed by the detector as a function of source and detector positions. The radiation level data is then analyzed to identify areas containing defects corresponding to unexpected variations in the radiation levels detected.
Structuring payment to medical homes after the affordable care act.
Edwards, Samuel T; Abrams, Melinda K; Baron, Richard J; Berenson, Robert A; Rich, Eugene C; Rosenthal, Gary E; Rosenthal, Meredith B; Landon, Bruce E
2014-10-01
The Patient-Centered Medical Home (PCMH) is a leading model of primary care reform, a critical element of which is payment reform for primary care services. With the passage of the Affordable Care Act, the Accountable Care Organization (ACO) has emerged as a model of delivery system reform, and while there is theoretical alignment between the PCMH and ACOs, the discussion of physician payment within each model has remained distinct. Here we compare payment for medical homes with that for accountable care organizations, consider opportunities for integration, and discuss implications for policy makers and payers considering ACO models. The PCMH and ACO are complementary approaches to reformed care delivery: the PCMH ultimately requires strong integration with specialists and hospitals as seen under ACOs, and ACOs likely will require a high functioning primary care system as embodied by the PCMH. Aligning payment incentives within the ACO will be critical to achieving this integration and enhancing the care coordination role of primary care in these settings.
Formation Flying Control of Multiple Spacecraft
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Lau, Kenneth; Wang, P. K. C.
1997-01-01
The problem of coordination and control of multiple spacecraft (MS) moving in formation is considered. Here, each MS is modeled by a rigid body with fixed center of mass. First, various schemes for generating the desired formation patterns are discussed, Then, explicit control laws for formation-keeping and relative attitude alignment based on nearest neighbor-tracking are derived. The necessary data which must be communicated between the MS to achieve effective control are examined. The time-domain behavior of the feedback-controlled MS formation for typical low-Earth orbits is studied both analytically and via computer simulation. The paper concludes with a discussion of the implementation of the derived control laws, and the integration of the MS formation coordination and control system with a proposed inter-spacecraft communication/computing network.
Pettorossi, V E; Errico, P; Ferraresi, A; Barmack, N H
1999-02-15
Prolonged binocular optokinetic stimulation (OKS) in the rabbit induces a high-velocity negative optokinetic afternystagmus (OKAN II) that persists for several hours. We have taken advantage of this uniform nystagmus to study how changes in static head orientation in the pitch plane might influence the orientation of the nystagmus. After horizontal OKS, the rotation axis of the OKAN II remained almost constant in space as it was kept aligned with the gravity vector when the head was pitched by as much as 80 degrees up and 35 degrees down. Moreover, during reorientation, slow-phase eye velocity decreased according to the head pitch angle. Thereafter, we analyzed the space orientation of OKAN II after optokinetic stimulation during which the head and/or the OKS were pitched upward and downward. The rotation axis of OKAN II did not remain aligned with an earth vertical axis nor a head vertical axis, but it tended to be aligned with that of the OKS respace. The slow-phase eye velocity of OKAN II was also affected by the head pitch angle during OKS, because maximal OKAN II velocity occurred at the same head pitch angle as that during optokinetic stimulation. We suggest that OKAN II is coded in gravity-centered rather than in head-centered coordinates, but that this coordinate system may be influenced by optokinetic and vestibular stimulation. Moreover, the velocity attenuation of OKAN II seems to depend on the mismatch between the space-centered nystagmus rotation axis orientation and that of the "remembered" head-centered optokinetic pathway activated by OKS.
2015-06-01
Designated Leader, GAO-10-645 (Washington, D.C.: June 30, 2010). 35See GAO, Biological Defense: DOD Has Strengthened Coordination on Medical... on track to be designated a Leadership in Energy and Environmental Design facility. metabolic poisons, and pulmonary toxicants; nerve agent...CHEMICAL AND BIOLOGICAL DEFENSE Designated Entity Needed to Identify, Align, and Manage DOD’s Infrastructure
FLASHFLOOD: A 3D Field-based similarity search and alignment method for flexible molecules
NASA Astrophysics Data System (ADS)
Pitman, Michael C.; Huber, Wolfgang K.; Horn, Hans; Krämer, Andreas; Rice, Julia E.; Swope, William C.
2001-07-01
A three-dimensional field-based similarity search and alignment method for flexible molecules is introduced. The conformational space of a flexible molecule is represented in terms of fragments and torsional angles of allowed conformations. A user-definable property field is used to compute features of fragment pairs. Features are generalizations of CoMMA descriptors (Silverman, B.D. and Platt, D.E., J. Med. Chem., 39 (1996) 2129.) that characterize local regions of the property field by its local moments. The features are invariant under coordinate system transformations. Features taken from a query molecule are used to form alignments with fragment pairs in the database. An assembly algorithm is then used to merge the fragment pairs into full structures, aligned to the query. Key to the method is the use of a context adaptive descriptor scaling procedure as the basis for similarity. This allows the user to tune the weights of the various feature components based on examples relevant to the particular context under investigation. The property fields may range from simple, phenomenological fields, to fields derived from quantum mechanical calculations. We apply the method to the dihydrofolate/methotrexate benchmark system, and show that when one injects relevant contextual information into the descriptor scaling procedure, better results are obtained more efficiently. We also show how the method works and include computer times for a query from a database that represents approximately 23 million conformers of seventeen flexible molecules.
Samal, Lipika; Dykes, Patricia C; Greenberg, Jeffrey O; Hasan, Omar; Venkatesh, Arjun K; Volk, Lynn A; Bates, David W
2016-04-22
Health information technology (HIT) could improve care coordination by providing clinicians remote access to information, improving legibility, and allowing asynchronous communication, among other mechanisms. We sought to determine, from a clinician perspective, how care is coordinated and to what extent HIT is involved when transitioning patients between emergency departments, acute care hospitals, skilled nursing facilities, and home health agencies in settings across the United States. We performed a qualitative study with clinicians and information technology professionals from six regions of the U.S. which were chosen as national leaders in HIT. We analyzed data through a two person consensus approach, assigning responses to each of nine care coordination activities. We also conducted a literature review of MEDLINE®, CINAHL®, and Embase, analyzing results of studies that examined interventions to improve information transfer during transitions of care. We enrolled 29 respondents from 17 organizations and conducted six focus groups. Respondents reported how HIT is currently used for care coordination activities. HIT is currently used to monitor patients and to align systems-level resources with population needs. However, we identified multiple areas where the lack of interoperability leads to inefficient processes and missing data. Additionally, the literature review identified ten intervention studies that address information transfer, seven of which employed HIT and three of which utilized other communication methods such as telephone calls, faxed records, and nurse case management. Significant care coordination gaps exist due to the lack of interoperability across the United States. We must design, evaluate, and incentivize the use of HIT for care coordination. We should focus on the domains where we found the largest gaps: information transfer, systems to monitor patients, tools to support patients' self-management goals, and tools to link patients and their caregivers with community resources.
Ulikpan, Anar; Narula, Indermohan; Malik, Asmat; Hill, Peter
2014-04-03
In 2005, the Ministry of Health (MoH) in Mongolia initiated the process of developing its Health Sector Strategic Master Plan (HSSMP), using a wide-ranging consultative process, driven by the MoH, and requiring participation from all levels of health facilities, other ministries, donor agencies and NGOs. Among other objectives, the MoH sought to coordinate the disparate inputs from key donors through the HSSMP, aligning them with the Plan's structure. This research explores the extent to which the HSSMP process served as a mechanism for effective aid coordination while promoting ownership and capacity building and the lessons learned for the wider international development community. The study is based on document review, key-informant interviews and authors' experience and participation in the MoH planning processes. The HSSMP process improved alignment and harmonisation. It enabled a better local understanding of the benefits of aid coordination, and the recognition that aid coordination as not only a mere administrative task, but a strategic step towards comprehensive management of both domestic and external resources. The process was not challenge free; the fractious political environment, the frequent turnover of key MoH staff, the resistance of some donors towards MoH scrutiny over their programmes and the dismantling of the central coordination and return of seconded staff following completion of the HSSMP, has slowed the pace of reform. Despite the challenges, the approach resulted in positive outcomes in the areas of ownership and better aid coordination, with HSSMP development emphasising ownership and capacity building. This contrasted with the usual outcomes focus, and neglect of the capacity building learning processes and structural and policy changes needed to ensure sustainable change. The largest and most influential programmes in the health sector are now largely aligned with HSSMP strategies, enabling the MoH to utilize these opportunities to optimise the HSSMP outcomes. The lessons for Ministries of Health in similar Post-Soviet countries--or other emerging economies where government capacity and local policy processes are relatively strong--are clear: the development of solid governance and technical infrastructure in terms of planning and evaluation provide a solid structure for donor coordination and insure against local political change.
2014-01-01
In 2005, the Ministry of Health (MoH) in Mongolia initiated the process of developing its Health Sector Strategic Master Plan (HSSMP), using a wide-ranging consultative process, driven by the MoH, and requiring participation from all levels of health facilities, other ministries, donor agencies and NGOs. Among other objectives, the MoH sought to coordinate the disparate inputs from key donors through the HSSMP, aligning them with the Plan’s structure. This research explores the extent to which the HSSMP process served as a mechanism for effective aid coordination while promoting ownership and capacity building and the lessons learned for the wider international development community. The study is based on document review, key-informant interviews and authors’ experience and participation in the MoH planning processes. The HSSMP process improved alignment and harmonisation. It enabled a better local understanding of the benefits of aid coordination, and the recognition that aid coordination as not only a mere administrative task, but a strategic step towards comprehensive management of both domestic and external resources. The process was not challenge free; the fractious political environment, the frequent turnover of key MoH staff, the resistance of some donors towards MoH scrutiny over their programmes and the dismantling of the central coordination and return of seconded staff following completion of the HSSMP, has slowed the pace of reform. Despite the challenges, the approach resulted in positive outcomes in the areas of ownership and better aid coordination, with HSSMP development emphasising ownership and capacity building. This contrasted with the usual outcomes focus, and neglect of the capacity building learning processes and structural and policy changes needed to ensure sustainable change. The largest and most influential programmes in the health sector are now largely aligned with HSSMP strategies, enabling the MoH to utilize these opportunities to optimise the HSSMP outcomes. The lessons for Ministries of Health in similar Post-Soviet countries--or other emerging economies where government capacity and local policy processes are relatively strong--are clear: the development of solid governance and technical infrastructure in terms of planning and evaluation provide a solid structure for donor coordination and insure against local political change. PMID:24708860
ERIC Educational Resources Information Center
Barth-Cohen, Lauren A.; Wittmann, Michael C.
2017-01-01
This article presents an empirical analysis of conceptual difficulties encountered and ways students made progress in learning at both individual and group levels in a classroom environment in which the students used an embodied modeling activity to make sense of a specific scientific scenario. The theoretical framework, coordination class theory,…
Delayed response and biosonar perception explain movement coordination in trawling bats.
Giuggioli, Luca; McKetterick, Thomas J; Holderied, Marc
2015-03-01
Animal coordinated movement interactions are commonly explained by assuming unspecified social forces of attraction, repulsion and alignment with parameters drawn from observed movement data. Here we propose and test a biologically realistic and quantifiable biosonar movement interaction mechanism for echolocating bats based on spatial perceptual bias, i.e. actual sound field, a reaction delay, and observed motor constraints in speed and acceleration. We found that foraging pairs of bats flying over a water surface swapped leader-follower roles and performed chases or coordinated manoeuvres by copying the heading a nearby individual has had up to 500 ms earlier. Our proposed mechanism based on the interplay between sensory-motor constraints and delayed alignment was able to recreate the observed spatial actor-reactor patterns. Remarkably, when we varied model parameters (response delay, hearing threshold and echolocation directionality) beyond those observed in nature, the spatio-temporal interaction patterns created by the model only recreated the observed interactions, i.e. chases, and best matched the observed spatial patterns for just those response delays, hearing thresholds and echolocation directionalities found to be used by bats. This supports the validity of our sensory ecology approach of movement coordination, where interacting bats localise each other by active echolocation rather than eavesdropping.
Accuracy of the HST Standard Astrometric Catalogs w.r.t. Gaia
NASA Astrophysics Data System (ADS)
Kozhurina-Platais, V.; Grogin, N.; Sabbi, E.
2018-02-01
The goal of astrometric calibration of the HST ACS/WFC and WFC3/UVIS imaging instruments is to provide a coordinate system free of distortion to the precision level of 0.1 pixel 4-5 mas or better. This astrometric calibration is based on two HST astrometric standard fields in the vicinity of the globular clusters, 47 Tuc and omega Cen, respectively. The derived calibration of the geometric distortion is assumed to be accurate down to 2-3 mas. Is this accuracy in agreement with the true value? Now, with the access to globally accurate positions from the first Gaia data release (DR1), we found that there are measurable offsets, rotation, scale and other deviations of distortion parameters in two HST standard astrometric catalogs. These deviations from the distortion-free and properly aligned coordinate system should be accounted and corrected for, so that the high precision HST positions are free of any systematic errors. We also found that the precision of the HST pixel coordinates is substantially better than the accuracy listed in the Gaia DR1. Therefore, in order to finalize the components of distortion in the HST standard catalogs, the next release of Gaia data is needed.
Ibarra, Ignacio; Martínez, Gabriel; Aguilera, Nelly; Orozco, Emanuel; Fajardo-Dolci, Germán E; González-Block, Miguel A
2013-01-01
Evaluate the capacity of the federal legal framework to govern financing of health institutions in the public sector through innovative schemes--otherwise known as functional integration--, enabling them to purchase and sell health services to and from other public providers as a strategy to improve their performance. Based on indicators of normative alignment with respect to functional integration across public health provider and governance institutions, content analysis was undertaken of national health programs and relevant laws and guidelines for financial coordination. Significant progress was identified in the implementation of agreements for the coordination of public institutions. While the legal framework provides for a National Health System and a health sector, gaps and contradictions limit their scope. The General Register of Health is also moving forward, yet it lacks the necessary legal foundation to become a comprehensive tool for integration. The medical service exchange agreements are also moving forward based on tariffs and shared guidelines. However, there is a lack of incentives to promote the expansion of these agreements. It is recommended to update the legal framework for the coordination of the National Health System, ensuring a more harmonious and general focus to provide functional integration with the needed impulse.
Motion correction for radiation therapy of prostate using B-mode ultrasound
NASA Astrophysics Data System (ADS)
Hummel, Johann; Figl, Michael; Schmidbauer, Jörg; Tinzl, Martina; Bergmann, Helmar; Birkfellner, Wolfgang
2007-03-01
The use of intensity modulated radiation therapy promises to spare organs at risk by applying better dose distribution on the tumor. The specific challenge of this methods is the exact positioning of the patient and the localization of the exposured organ. With respect to the filling of rectum and bladder the prostate can move several millimeters up to centimeters. Therefore, the position of the prostate should be determinated and corrected daily before irradiation. We used a B-mode US machine (Ultramark 9, advanced Technology Laboratories, USA) which was calibrated using an optical tracking system (Polaris, NDI, Can). After correct positioning of the patient in the simulation room three anatomical markers (apex prostate, prostate lateral sinister/dexter) were identified and their positions calculated with respect to the coordinate system of the simulator. The same situation is given in the treatment room. Both, simulator and accelerator are registered by a simple point-to-point registration using a block with five drilled holes with known coordinates in the block coordinate system. The block is aligned by means of laser markers. When the patient is placed on the treatment table, the three anatomical landmarks are located on the US images and their positions are calculated with respect to the coordinate system of the treatment room. Applying a point-to-point registration results in a rotation matrix and a translation vector in the desired coordinate system which can be used for repositioning by translating and rotating the patient table. Additionally, a fiducial registration error (FRE) is calculated which gives a dimension of the accuracy the three points were identified. We found an fiducial registration error (FRE) of 2.4 mm +/- 1.2 mm for the point-to-point registration of the anatomical landmarks. The FRE for the point-to-point registration between the block and the optical tracking system was 0.5 mm +/- 0.2 mm. According to the US calibration we found an error of 0.8 mm +/- 0.2 mm.
NASA Technical Reports Server (NTRS)
Gutkowski, Sharon M.; Ohl, Raymond G.; Hylan, Jason E.; Hagopian, John G.; Kraft, Stephen E.; Mentzell, J. Eric; Connelly, Joseph A.; Schepis, Joseph P.; Sparr, Leroy M.; Greenhouse, Matthew A.
2003-01-01
We describe the population, optomechanical alignment, and alignment verification of near-infrared gratings on the grating wheel mechanism (GWM) for the Infrared Multi-Object Spectrometer (IRMOS). IRMOS is a cryogenic (80 K), principle investigator-class instrument for the 2.1 m and Mayall 3.8 m telescopes at Kitt Peak National Observatory, and a MEMS spectrometer concept demonstrator for the James Webb Space Telescope. The GWM consists of 13 planar diffraction gratings and one flat imaging mirror (58 x 57 mm), each mounted at a unique compound angle on a 32 cm diameter gear. The mechanism is predominantly made of Al 6061. The grating substrates are stress relieved for enhanced cryogenic performance. The optical surfaces are replicated from off-the-shelf masters. The imaging mirror is diamond turned. The GWM spans a projected diameter of approx. 48 cm when fully assembled, utilizes several flexure designs to accommodate potential thermal gradients, and is controlled using custom software with an off-the-shelf controller. Under ambient conditions, each grating is aligned in six degrees of freedom relative to a coordinate system that is referenced to an optical alignment cube mounted at the center of the gear. The local tip/tilt (Rx/Ry) orientation of a given grating is measured using the zero-order return from an autocollimating theodolite. The other degrees of freedom are measured using a two-axis cathetometer and rotary table. Each grating's mount includes a one-piece shim located between the optic and the gear. The shim is machined to fine align each grating. We verify ambient alignment by comparing grating difractive properties to model predictions.
Atlas Toolkit: Fast registration of 3D morphological datasets in the absence of landmarks
Grocott, Timothy; Thomas, Paul; Münsterberg, Andrea E.
2016-01-01
Image registration is a gateway technology for Developmental Systems Biology, enabling computational analysis of related datasets within a shared coordinate system. Many registration tools rely on landmarks to ensure that datasets are correctly aligned; yet suitable landmarks are not present in many datasets. Atlas Toolkit is a Fiji/ImageJ plugin collection offering elastic group-wise registration of 3D morphological datasets, guided by segmentation of the interesting morphology. We demonstrate the method by combinatorial mapping of cell signalling events in the developing eyes of chick embryos, and use the integrated datasets to predictively enumerate Gene Regulatory Network states. PMID:26864723
Integrated care management: aligning medical call centers and nurse triage services.
Kastens, J M
1998-01-01
Successful integrated delivery systems must aggressively design new approaches to managing patient care. Implementing a comprehensive care management model to coordinate patient care across the continuum is essential to improving patient care and reducing costs. The practice of telephone nursing and the need for experienced registered nurses to staff medical call centers, nurse triage centers, and outbound telemanagement is expanding as the penetration of full-risk capitated managed care contracts are signed. As health systems design their new care delivery approaches and care management models, medical call centers will be an integral approach to managing demand for services, chronic illnesses, and prevention strategies.
Atlas Toolkit: Fast registration of 3D morphological datasets in the absence of landmarks.
Grocott, Timothy; Thomas, Paul; Münsterberg, Andrea E
2016-02-11
Image registration is a gateway technology for Developmental Systems Biology, enabling computational analysis of related datasets within a shared coordinate system. Many registration tools rely on landmarks to ensure that datasets are correctly aligned; yet suitable landmarks are not present in many datasets. Atlas Toolkit is a Fiji/ImageJ plugin collection offering elastic group-wise registration of 3D morphological datasets, guided by segmentation of the interesting morphology. We demonstrate the method by combinatorial mapping of cell signalling events in the developing eyes of chick embryos, and use the integrated datasets to predictively enumerate Gene Regulatory Network states.
Schmidt, Thomas H; Kandt, Christian
2012-10-22
At the beginning of each molecular dynamics membrane simulation stands the generation of a suitable starting structure which includes the working steps of aligning membrane and protein and seamlessly accommodating the protein in the membrane. Here we introduce two efficient and complementary methods based on pre-equilibrated membrane patches, automating these steps. Using a voxel-based cast of the coarse-grained protein, LAMBADA computes a hydrophilicity profile-derived scoring function based on which the optimal rotation and translation operations are determined to align protein and membrane. Employing an entirely geometrical approach, LAMBADA is independent from any precalculated data and aligns even large membrane proteins within minutes on a regular workstation. LAMBADA is the first tool performing the entire alignment process automatically while providing the user with the explicit 3D coordinates of the aligned protein and membrane. The second tool is an extension of the InflateGRO method addressing the shortcomings of its predecessor in a fully automated workflow. Determining the exact number of overlapping lipids based on the area occupied by the protein and restricting expansion, compression and energy minimization steps to a subset of relevant lipids through automatically calculated and system-optimized operation parameters, InflateGRO2 yields optimal lipid packing and reduces lipid vacuum exposure to a minimum preserving as much of the equilibrated membrane structure as possible. Applicable to atomistic and coarse grain structures in MARTINI format, InflateGRO2 offers high accuracy, fast performance, and increased application flexibility permitting the easy preparation of systems exhibiting heterogeneous lipid composition as well as embedding proteins into multiple membranes. Both tools can be used separately, in combination with other methods, or in tandem permitting a fully automated workflow while retaining a maximum level of usage control and flexibility. To assess the performance of both methods, we carried out test runs using 22 membrane proteins of different size and transmembrane structure.
Comment on “Error made in reports of main field decay”
NASA Astrophysics Data System (ADS)
IAGA Working Group V-MOD on Geomagnetic Field Modeling,; Maus, Stefan; Macmillan, Susan
2004-09-01
As the International Association of Geomagnetism and Aeronomy (IAGA) Working Group on Geomagnetic Field Modeling (http://www.ngdc.noaa.gov/IAGA/vmod/), responsible for the International Geomagnetic Reference Field (IGRF) [Macmillan et al., 2003], we would like to comment on the Forum article by Wallace H.Campbell (Eos,85(16),20 April 2004). Campbell claims that reports of dipole decay at a special session held at the AGU 2003 Fall Meeting were misleading due to an incorrect choice of the coordinate system for the spherical harmonic analysis (SHA) of the geomagnetic field used for the IGRF the model on which the decay calculation was based.Campbell alleges that the dipole moment of a spherical harmonic expansion depends on the choice of the origin of the coordinate system. In his textbook on geomagnetism, Campbell goes one step further in asserting that, without changing the origin, the process of “tilting the analysis axis to align with the geomagnetic axis…would enhance the dipole term at the expense of the higher multipoles” [Campbell, 2003].
Accountable care around the world: a framework to guide reform strategies.
McClellan, Mark; Kent, James; Beales, Stephen J; Cohen, Samuel I A; Macdonnell, Michael; Thoumi, Andrea; Abdulmalik, Mariam; Darzi, Ara
2014-09-01
Accountable care--a way to align health care payments with patient-focused reform goals--is currently being pursued in the United States, but its principles are also being applied in many other countries. In this article we review experiences with such reforms to offer a globally applicable definition of an accountable care system and propose a conceptual framework for characterizing and assessing accountable care reforms. The framework consists of five components: population, outcomes, metrics and learning, payments and incentives, and coordinated delivery. We describe how the framework applies to accountable care reforms that are already being implemented in Spain and Singapore. We also describe how it can be used to map progress through increasingly sophisticated levels of reforms. We recommend that policy makers pursuing accountable care reforms emphasize the following steps: highlight population health and wellness instead of just treating illness; pay for outcomes instead of activities; create a more favorable environment for collaboration and coordinated care; and promote interoperable data systems. Project HOPE—The People-to-People Health Foundation, Inc.
SFESA: a web server for pairwise alignment refinement by secondary structure shifts.
Tong, Jing; Pei, Jimin; Grishin, Nick V
2015-09-03
Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate. We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software. SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.
Design of a versatile clinical aberrometer
NASA Astrophysics Data System (ADS)
Sheehan, Matthew; Goncharov, Alexander; Dainty, Chris
2005-09-01
We have designed an ocular aberrometer based on the Hartmann-Shack (HS) type wavefront sensor for use in optometry clinics. The optical system has enhanced versatility compared with commercial aberrometers, yet it is compact and user-friendly. The system has the capability to sense both on-axis and off-axis aberrations in the eye within an unobstructed 20 degree field. This capability is essential to collect population data for off-axis aberrations. This data will be useful in designing future adaptive optics (AO) systems to improve image quality of eccentric retinal areas, in particular, for multi-conjugate AO systems. The ability of the examiner to control the accommodation demand is a unique feature of the design that commercial instruments are capable of only after modification. The pupil alignment channel is re-combined with the sensing channel in a parallel path and imaged on a single CCD. This makes the instrument more compact, less expensive, and it helps to synchronize the pupil center with the HS spot coordinate system. Another advantage of the optical design is telecentric re-imaging of the HS spots, increasing the robustness to small longitudinal alignment errors. The optical system has been optimized with a ray-tracing program and its prototype is being constructed. Design considerations together with a description of the optical components are presented. Difficulties and future work are outlined.
Quantifying torso deformity in scoliosis
NASA Astrophysics Data System (ADS)
Ajemba, Peter O.; Kumar, Anish; Durdle, Nelson G.; Raso, V. James
2006-03-01
Scoliosis affects the alignment of the spine and the shape of the torso. Most scoliosis patients and their families are more concerned about the effect of scoliosis on the torso than its effect on the spine. There is a need to develop robust techniques for quantifying torso deformity based on full torso scans. In this paper, deformation indices obtained from orthogonal maps of full torso scans are used to quantify torso deformity in scoliosis. 'Orthogonal maps' are obtained by applying orthogonal transforms to 3D surface maps. (An 'orthogonal transform' maps a cylindrical coordinate system to a Cartesian coordinate system.) The technique was tested on 361 deformed computer models of the human torso and on 22 scans of volunteers (8 normal and 14 scoliosis). Deformation indices from the orthogonal maps correctly classified up to 95% of the volunteers with a specificity of 1.00 and a sensitivity of 0.91. In addition to classifying scoliosis, the system gives a visual representation of the entire torso in one view and is viable for use in a clinical environment for managing scoliosis.
From Spontaneous Motor Activity to Coordinated Behaviour: A Developmental Model
Marques, Hugo Gravato; Bharadwaj, Arjun; Iida, Fumiya
2014-01-01
In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions. PMID:25057775
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C; Yan, G; Helmig, R
2014-06-01
Purpose: To develop a system that can define the radiation isocenter and correlate this information with couch coordinates, laser alignment, optical distance indicator (ODI) settings, optical tracking system (OTS) calibrations, and mechanical isocenter walkout. Methods: Our team developed a multi-adapter, multi-purpose quality assurance (QA) and calibration device that uses an electronic portal imaging device (EPID) and in-house image-processing software to define the radiation isocenter, thereby allowing linear accelerator (Linac) components to be verified and calibrated. Motivated by the concept that each Linac component related to patient setup for image-guided radiotherapy based on cone-beam CT should be calibrated with respect tomore » the radiation isocenter, we designed multiple concentric adapters of various materials and shapes to meet the needs of MV and KV radiation isocenter definition, laser alignment, and OTS calibration. The phantom's ability to accurately define the radiation isocenter was validated on 4 Elekta Linacs using a commercial ball bearing (BB) phantom as a reference. Radiation isocenter walkout and the accuracy of couch coordinates, ODI, and OTS were then quantified with the device. Results: The device was able to define the radiation isocenter within 0.3 mm. Radiation isocenter walkout was within ±1 mm at 4 cardinal angles. By switching adapters, we identified that the accuracy of the couch position digital readout, ODI, OTS, and mechanical isocenter walkout was within sub-mm. Conclusion: This multi-adapter, multi-purpose isocenter phantom can be used to accurately define the radiation isocenter and represents a potential paradigm shift in Linac QA. Moreover, multiple concentric adapters allowed for sub-mm accuracy for the other relevant components. This intuitive and user-friendly design is currently patent pending.« less
CAFE: aCcelerated Alignment-FrEe sequence analysis.
Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A; Waterman, Michael S; Sun, Fengzhu
2017-07-03
Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, $d_2^*$ and $d_2^S$ are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Verification of BOUT++ by the method of manufactured solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudson, B. D., E-mail: benjamin.dudson@york.ac.uk; Hill, P.; Madsen, J.
2016-06-15
BOUT++ is a software package designed for solving plasma fluid models. It has been used to simulate a wide range of plasma phenomena ranging from linear stability analysis to 3D plasma turbulence and is capable of simulating a wide range of drift-reduced plasma fluid and gyro-fluid models. A verification exercise has been performed as part of a EUROfusion Enabling Research project, to rigorously test the correctness of the algorithms implemented in BOUT++, by testing order-of-accuracy convergence rates using the Method of Manufactured Solutions (MMS). We present tests of individual components including time-integration and advection schemes, non-orthogonal toroidal field-aligned coordinate systemsmore » and the shifted metric procedure which is used to handle highly sheared grids. The flux coordinate independent approach to differencing along magnetic field-lines has been implemented in BOUT++ and is here verified using the MMS in a sheared slab configuration. Finally, we show tests of three complete models: 2-field Hasegawa-Wakatani in 2D slab, 3-field reduced magnetohydrodynamics (MHD) in 3D field-aligned toroidal coordinates, and 5-field reduced MHD in slab geometry.« less
Burns, Lawton R; Pauly, Mark V
2012-11-01
Accountable care organizations are intended to improve the quality and lower the cost of health care through several mechanisms, such as disease management programs, care coordination, and aligning financial incentives for hospitals and physicians. Providers employed several of these mechanisms in forming the integrated delivery networks of the 1990s. The networks failed, however, because of heavy financial losses stemming from hospitals' purchase of physician practices and their inability to align incentives, garner capitated contracts, and develop the infrastructure to manage risk. Although the current mechanisms underlying accountable care organizations continue to evolve, whether and how they will have an impact on quality and costs remains open to question. Care coordination and information technology are proving more complicated and expensive to implement than anticipated, providers may lack the ability to implement these mechanisms, and primary care providers are in short supply. As in the 1990s, success depends on targeting specific populations, such as people with multiple chronic conditions who need and may benefit from coordinated care.
Cell Alignment Required in Differentiation of Myxococcus xanthus
NASA Astrophysics Data System (ADS)
Kim, Seung K.; Kaiser, Dale
1990-08-01
During fruiting body morphogenesis of Myxococcus xanthus, cell movement is required for transmission of C-factor, a short range intercellular signaling protein necessary for sporulation and developmental gene expression. Nonmotile cells fail to sporulate and to express C-factor-dependent genes, but both defects were rescued by a simple manipulation of cell position that oriented the cells in aligned, parallel groups. A similar pattern of aligned cells normally results from coordinated recruitment of wild-type cells into multicellular aggregates, which later form mature fruiting bodies. It is proposed that directed cell movement establishes critical contacts between adjacent cells, which are required for efficient intercellular C-factor transmission.
Operational Alignment in Predator Training Research
2014-04-21
to the SO and, down the road, the Mission Intelligence Coordinator ( MIC ). 2. X-Plane 9 is COTS software and serves as the aeronautical simulation...uses to communicate with ground forces, command and control (C2) elements, and the Mission Intelligence Coordinator ( MIC ), among others. 10. LNCS...because key events can be scripted and initiated as appropriate, while distractor events like a villager walking around a market can be controlled by
Delayed Response and Biosonar Perception Explain Movement Coordination in Trawling Bats
Giuggioli, Luca; McKetterick, Thomas J.; Holderied, Marc
2015-01-01
Animal coordinated movement interactions are commonly explained by assuming unspecified social forces of attraction, repulsion and alignment with parameters drawn from observed movement data. Here we propose and test a biologically realistic and quantifiable biosonar movement interaction mechanism for echolocating bats based on spatial perceptual bias, i.e. actual sound field, a reaction delay, and observed motor constraints in speed and acceleration. We found that foraging pairs of bats flying over a water surface swapped leader-follower roles and performed chases or coordinated manoeuvres by copying the heading a nearby individual has had up to 500 ms earlier. Our proposed mechanism based on the interplay between sensory-motor constraints and delayed alignment was able to recreate the observed spatial actor-reactor patterns. Remarkably, when we varied model parameters (response delay, hearing threshold and echolocation directionality) beyond those observed in nature, the spatio-temporal interaction patterns created by the model only recreated the observed interactions, i.e. chases, and best matched the observed spatial patterns for just those response delays, hearing thresholds and echolocation directionalities found to be used by bats. This supports the validity of our sensory ecology approach of movement coordination, where interacting bats localise each other by active echolocation rather than eavesdropping. PMID:25811627
Quality Assurance Results for a Commercial Radiosurgery System: A Communication.
Ruschin, Mark; Lightstone, Alexander; Beachey, David; Wronski, Matt; Babic, Steven; Yeboah, Collins; Lee, Young; Soliman, Hany; Sahgal, Arjun
2015-10-01
The purpose of this communication is to inform the radiosurgery community of quality assurance (QA) results requiring attention in a commercial FDA-approved linac-based cone stereo-tactic radiosurgery (SRS) system. Standard published QA guidelines as per the American Association of Physics in Medicine (AAPM) were followed during the SRS system's commissioning process including end-to-end testing, cone concentricity testing, image transfer verification, and documentation. Several software and hardware deficiencies that were deemed risky were uncovered during the process and QA processes were put in place to mitigate these risks during clinical practice. In particular, the present work focuses on daily cone concentricity testing and commissioning-related findings associated with the software. Cone concentricity/alignment is measured daily using both optical light field inspection, as well as quantitative radiation field tests with the electronic portal imager. In 10 out of 36 clini-cal treatments, adjustments to the cone position had to be made to align the cone with the collimator axis to less than 0.5 mm and on two occasions the pre-adjustment measured offset was 1.0 mm. Software-related errors discovered during commissioning included incorrect transfer of the isocentre in DICOM coordinates, improper handling of non-axial image sets, and complex handling of beam data, especially for multi-target treatments. QA processes were established to mitigate the occurrence of the software errors. With proper QA processes, the reported SRS system complies with tolerances set out in established guidelines. Discussions with the vendor are ongoing to address some of the hardware issues related to cone alignment. © The Author(s) 2014.
Bishop, Laura; Goebl, Werner
2017-07-21
Ensemble musicians often exchange visual cues in the form of body gestures (e.g., rhythmic head nods) to help coordinate piece entrances. These cues must communicate beats clearly, especially if the piece requires interperformer synchronization of the first chord. This study aimed to (1) replicate prior findings suggesting that points of peak acceleration in head gestures communicate beat position and (2) identify the kinematic features of head gestures that encourage successful synchronization. It was expected that increased precision of the alignment between leaders' head gestures and first note onsets, increased gesture smoothness, magnitude, and prototypicality, and increased leader ensemble/conducting experience would improve gesture synchronizability. Audio/MIDI and motion capture recordings were made of piano duos performing short musical passages under assigned leader/follower conditions. The leader of each trial listened to a particular tempo over headphones, then cued their partner in at the given tempo, without speaking. A subset of motion capture recordings were then presented as point-light videos with corresponding audio to a sample of musicians who tapped in synchrony with the beat. Musicians were found to align their first taps with the period of deceleration following acceleration peaks in leaders' head gestures, suggesting that acceleration patterns communicate beat position. Musicians' synchronization with leaders' first onsets improved as cueing gesture smoothness and magnitude increased and prototypicality decreased. Synchronization was also more successful with more experienced leaders' gestures. These results might be applied to interactive systems using gesture recognition or reproduction for music-making tasks (e.g., intelligent accompaniment systems).
Optical technologies for space sensor
NASA Astrophysics Data System (ADS)
Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun
2015-10-01
Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.
Dog-bites, rabies and One Health: Towards improved coordination in research, policy and practice.
Rock, Melanie J; Rault, Dawn; Degeling, Chris
2017-08-01
Dog-bites and rabies are neglected problems worldwide, notwithstanding recent efforts to raise awareness and to consolidate preventive action. As problems, dog-bites and rabies are entangled with one another, and both align with the concept of One Health. This concept emphasizes interdependence between humans and non-human species in complex socio-ecological systems. Despite intuitive appeal, One Health applications and critiques remain under-developed with respect to social science and social justice. In this article, we report on an ethnographic case-study of policies on dog bites and rabies, with a focus on Calgary, Alberta, Canada, which is widely recognized as a leader in animal-control policies. The fieldwork took place between 2013 and 2016. Our analysis suggests that current policies on rabies prevention may come at the expense of a 'bigger picture' for One Health. In that 'bigger picture,' support is needed to enhance coordination between animal-control and public-health policies. Such coordination has direct relevance for the well-being of children, not least Indigenous children. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Murray, M. S.; Ibarguchi, G.; Rajdev, V.
2015-12-01
Over the past twenty years, increasing awareness and understanding of changes in the Arctic system, the stated desires of Arctic Peoples to be engaged in the research process, and a growing international interest in the region's resources have informed various stakeholders to undertake many Arctic science planning activities. Some examples of science planning include priority-setting for research, knowledge translation, stakeholder engagement, improved coordination, and international collaboration. The International Study of Arctic Change recently initiated an analysis of the extent to which alignment exists among stated science priorities, recognized societal needs, and funding patterns of the major North American and European agencies. In this paper, we present a decade of data on international funding patterns and data on two decades of science planning. We discuss whether funding patterns reflect the priority research questions and identified needs for information that are articulated in a myriad of Arctic research planning documents. The alignment in many areas remains poor, bringing into question the purpose of large-scale science planning if it does not lead to funding of those priorities identified by Arctic stakeholder communities (scientists, Arctic Peoples, planners, policy makers, the private sector, and others).
The James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Nowak, Maria; Eichorn, William; Hill, Michael; Hylan, Jason; Marsh, James; Ohl, Raymond; Sampler, Henry; Wright, Geraldine; Crane, Allen; Herrera, Acey;
2007-01-01
The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISIM optical metering structure is a roughly 2.2x1.7x2.2mY, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISM structure must meet its requirements at the approx.40K cryogenic operating temperature. The SIs are aligned to the structure s coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified.
Seasonal influenza vaccination of healthcare employees: results of a 4-year campaign.
Hirsch, Pamela; Hodgson, Michael; Davey, Victoria
2011-05-01
To document successful substantial increases in healthcare worker influenza vaccination rates and to identify reasons for success and failure. (1) Four-year longitudinal characterization of facility vaccination rates, (2) Web-based facility-level questionnaire for influenza coordinators to identify success factors in year 3, and (3) semistructured telephone interviews of influenza coordinators at facilities with substantial increases or declines in year 4. National single-payer hospital (healthcare) system with 153 hospitals in 5 levels of complexity. Facility leadership staff. (1) Vaccination data collected from management sources (doses from pharmacies, denominator data from payrolls); (2) a Web-based survey aligned with a previously administered instrument (Wisconsin Health Department), piloted in-house, modified to reflect national strategies and improvements; and (3) semistructured telephone interviews with influenza coordinators at facilities that improved or worsened by more than 20% between the 2007-2008 and 2008-2009 influenza seasons. Vaccination acceptance rates improved from 45% of healthcare workers in 2005-2006 to 66.5% in 2008-2009. Facilities with lower complexity had higher vaccination rates. No individual factors were associated with improved performance. Sustained management attention can lead to improvements in healthcare worker influenza vaccination rates. Wavering of attention, though, may lead to rapid loss of effectiveness. Declination statements in this system did not contribute to vaccine acceptance.
Building and using a statistical 3D motion atlas for analyzing myocardial contraction in MRI
NASA Astrophysics Data System (ADS)
Rougon, Nicolas F.; Petitjean, Caroline; Preteux, Francoise J.
2004-05-01
We address the issue of modeling and quantifying myocardial contraction from 4D MR sequences, and present an unsupervised approach for building and using a statistical 3D motion atlas for the normal heart. This approach relies on a state-of-the-art variational non rigid registration (NRR) technique using generalized information measures, which allows for robust intra-subject motion estimation and inter-subject anatomical alignment. The atlas is built from a collection of jointly acquired tagged and cine MR exams in short- and long-axis views. Subject-specific non parametric motion estimates are first obtained by incremental NRR of tagged images onto the end-diastolic (ED) frame. Individual motion data are then transformed into the coordinate system of a reference subject using subject-to-reference mappings derived by NRR of cine ED images. Finally, principal component analysis of aligned motion data is performed for each cardiac phase, yielding a mean model and a set of eigenfields encoding kinematic ariability. The latter define an organ-dedicated hierarchical motion basis which enables parametric motion measurement from arbitrary tagged MR exams. To this end, the atlas is transformed into subject coordinates by reference-to-subject NRR of ED cine frames. Atlas-based motion estimation is then achieved by parametric NRR of tagged images onto the ED frame, yielding a compact description of myocardial contraction during diastole.
Autonomous orbital navigation using Kepler's equation
NASA Technical Reports Server (NTRS)
Boltz, F. W.
1974-01-01
A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.
Regulating the Intersection of Metabolism and Pathogenesis in Gram-positive Bacteria
RICHARDSON, ANTHONY R.; SOMERVILLE, GREG A.; SONENSHEIN, ABRAHAM L.
2015-01-01
Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction. PMID:26185086
Interactive navigation system for shock wave applications.
Hagelauer, U; Russo, S; Gigliotti, S; de Durante, C; Corrado, E M
2001-01-01
The latest generation of shock wave lithotripters, with therapy heads mounted on articulated arms, have found widespread application in the treatment of orthopedic diseases. Currently, integration of an ultrasound probe in the therapy head is the dominant modality for positioning the shock wave focus on the treatment area. For orthopedic applications, however, X-ray imaging is often preferred. This article describes a new method to locate the therapy head of a lithotripter. In the first step, the surgeon positions the tissue to be treated at the isocenter of a C-arc. This is achieved using AP and 30-degree lateral projections, with corresponding horizontal and vertical movements of the patient under fluoroscopic guidance. These movements register the anatomic location in the coordinate system of the C-arc. In the second step, the therapy head is navigated to align the shock wave focus with the isocenter. Position data are reported from an optical tracker mounted on the X-ray system, which tracks an array of infrared LEDs on the therapy head. The accuracy of the tracking system was determined on a test bench, and was calculated to be 1.55 mm (RMS) for an angular movement of +/-15 degrees around a calibrated position. Free-hand navigation and precise alignment are performed with a single virtual reality display. The display is calculated by a computer system in real time, and uses graphical symbols to represent the shock wave path and isocenter. In an interactive process, the physician observes the display while navigating the therapy head towards the isocenter. Precise alignment is achieved by displaying an enlarged view of the intersecting graphical symbols. Results from the first tests on 100 patients demonstrate the feasibility of this approach in a clinical environment. Copyright 2001 Wiley-Liss, Inc.
Photogrammetric measurement to one part in a million
NASA Astrophysics Data System (ADS)
Fraser, Clive S.
1992-03-01
Industrial photogrammetric measurement to accuracies of 1 part in 1,000,000 of the size of the object is discussed. Network design concepts are reviewed, especially with regard both to the relationships between the first- and second-order design phases and to minimization of the influences of uncompensated systematic error. Photogrammetric system aspects are also briefly touched upon. The network optimization process for the measurement of a large compact range reflector is described and results of successive alignment surveys of this structure are summarized. These photogrammetric measurements yielded three dimensional (3D) coordinate accuracies surpassing one part in a million.
Controller for the Electronically Scanned Thinned Array Radiometer (ESTAR) instrument
NASA Technical Reports Server (NTRS)
Zomberg, Brian G.; Chren, William A., Jr.
1994-01-01
A prototype controller for the ESTAR (electronically scanned thinned array radiometer) instrument has been designed and tested. It manages the operation of the digital data subsystem (DDS) and its communication with the Small Explorer data system (SEDS). Among the data processing tasks that it coordinates are FEM data acquisition, noise removal, phase alignment and correlation. Its control functions include instrument calibration and testing of two critical subsystems, the output data formatter and Walsh function generator. It is implemented in a Xilinx XC3064PC84-100 field programmable gate array (FPGA) and has a maximum clocking frequency of 10 MHz.
Aligning for accountable care: Strategic practices for change in accountable care organizations.
Hilligoss, Brian; Song, Paula H; McAlearney, Ann Scheck
Alignment within accountable care organizations (ACOs) is crucial if these new entities are to achieve their lofty goals. However, the concept of alignment remains underexamined, and we know little about the work entailed in creating alignment. The aim of this study was to develop the concept of aligning by identifying and describing the strategic practices administrators use to align the structures, processes, and behaviors of their organizations and individual providers in pursuit of accountable care. We conducted 2-year qualitative case studies of four ACOs that have assumed full risk for the costs and quality of care for defined populations. Five strategic aligning practices were used by all four ACOs. Informing both aligns providers' understandings with the goals and value proposition of the ACO and aligns the providers' attention with the drivers of performance. Involving both aligns ACO leaders' understandings with the realities facing providers and aligns the policies of the ACO with the needs of providers. Enhancing both aligns the operations of individual provider practices with the operations of the ACO and aligns the trust of providers with the ACO. Motivating aligns what providers value with the goals of the ACO. Finally, evolving is a metapractice of learning and adapting that guides the execution of the other four practices. Our findings suggest that there are second-order cognitive (e.g., understandings and attention) and cultural (e.g., trust and values) levels of alignment, as well as a first-order operational level (organizational structures, processes, and incentives). A well-aligned organization may require ongoing repositioning at each of these levels, as well as attention to both cooperative and coordinative dimensions of alignment. Implications for research and practice are discussed.
Kawata, Masaaki; Sato, Chikara
2007-06-01
In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-04
... developed with the expectation and understanding that outlining ADE prevention goals and, more importantly... coordinated federal partnerships, as well as public and private sector collaborations and aligned approaches...
Xia, Zhengqiang; Jing, Xu; He, Cheng; Wang, Xiaoge; Duan, Chunying
2017-11-13
The production and availability of enantiomerically pure compounds that spurred the development of chiral technologies and materials are very important to the fine chemicals and pharmaceutical industries. By coordinative alignment of enantiopure guests in the metal‒organic frameworks, we reported an approach to control over the chirality of homochiral crystallization and asymmetric transformation. Synthesized by achiral triphenylamine derivatives, the chirality of silver frameworks was determined by the encapsulated enantiopure azomethine ylides, from which clear interaction patterns were observed to explore the chiral induction principles. With the changing of addition sequence of substrates, the enantioselectivity of asymmetric cycloaddition was controlled to verify the determinant on the chirality of the bulky MOF materials. The economical chirality amplification that merges a series of complicated self-inductions, bulk homochiral crystallization and enantioselective catalysis opens new avenues for enantiopure chemical synthesis and provides a promising path for the directional design and development of homochiral materials.
Complexity matching in dyadic conversation.
Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T
2014-12-01
Recent studies of dyadic interaction have examined phenomena of synchronization, entrainment, alignment, and convergence. All these forms of behavioral matching have been hypothesized to play a supportive role in establishing coordination and common ground between interlocutors. In the present study, evidence is found for a new kind of coordination termed complexity matching. Temporal dynamics in conversational speech signals were analyzed through time series of acoustic onset events. Timing in periods of acoustic energy was found to exhibit behavioral matching that reflects complementary timing in turn-taking. In addition, acoustic onset times were found to exhibit power law clustering across a range of timescales, and these power law functions were found to exhibit complexity matching that is distinct from behavioral matching. Complexity matching is discussed in terms of interactive alignment and other theoretical principles that lead to new hypotheses about information exchange in dyadic conversation and interaction in general. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Modified alignment CGHs for aspheric surface test
NASA Astrophysics Data System (ADS)
Song, Jae-Bong; Yang, Ho-Soon; Rhee, Hyug-Gyo; Lee, Yun-Woo
2009-08-01
Computer Generated Holograms (CGH) for optical test are commonly consisted of one main pattern for testing aspheric surface and some alignment patterns for aligning the interferometer, CGH, and the test optics. To align the CGH plate and the test optics, we designed the alignment CGHs modified from the cat's eye alignment method, which are consisted of a couple of CGH patterns. The incident beam passed through the one part of the alignment CGH pattern is focused onto the one radius position of the test aspheric surface, and is reflected to the other part, and vice versa. This method has several merits compared to the conventional cat's eye alignment method. First, this method can be used in testing optics with a center hole, and the center part of CGH plate can be assigned to the alignment pattern. Second, the alignment pattern becomes a concentric circular arc pattern. The whole CGH patterns including the main pattern and alignment patterns are consisted of only concentric circular fringes. This concentric circular pattern can be easily made by the polar coordinated writer with circular scanning. The required diffraction angle becomes relatively small, so the 1st order diffraction beams instead of the 3rd order diffraction beam can be used as alignment beams, and the visibility can be improved. This alignment method also is more sensitive to the tilt and the lateral shift of the test aspheric surface. Using this alignment pattern, a 200 mm diameter F/0.5 aspheric mirror and a 600 mm diameter F/0.9 mirror were tested.
Parallel seed-based approach to multiple protein structure similarities detection
Chapuis, Guillaume; Le Boudic-Jamin, Mathilde; Andonov, Rumen; ...
2015-01-01
Finding similarities between protein structures is a crucial task in molecular biology. Most of the existing tools require proteins to be aligned in order-preserving way and only find single alignments even when multiple similar regions exist. We propose a new seed-based approach that discovers multiple pairs of similar regions. Its computational complexity is polynomial and it comes with a quality guarantee—the returned alignments have both root mean squared deviations (coordinate-based as well as internal-distances based) lower than a given threshold, if such exist. We do not require the alignments to be order preserving (i.e., we consider nonsequential alignments), which makesmore » our algorithm suitable for detecting similar domains when comparing multidomain proteins as well as to detect structural repetitions within a single protein. Because the search space for nonsequential alignments is much larger than for sequential ones, the computational burden is addressed by extensive use of parallel computing techniques: a coarse-grain level parallelism making use of available CPU cores for computation and a fine-grain level parallelism exploiting bit-level concurrency as well as vector instructions.« less
Representation of Gravity-Aligned Scene Structure in Ventral Pathway Visual Cortex.
Vaziri, Siavash; Connor, Charles E
2016-03-21
The ventral visual pathway in humans and non-human primates is known to represent object information, including shape and identity [1]. Here, we show the ventral pathway also represents scene structure aligned with the gravitational reference frame in which objects move and interact. We analyzed shape tuning of recently described macaque monkey ventral pathway neurons that prefer scene-like stimuli to objects [2]. Individual neurons did not respond to a single shape class, but to a variety of scene elements that are typically aligned with gravity: large planes in the orientation range of ground surfaces under natural viewing conditions, planes in the orientation range of ceilings, and extended convex and concave edges in the orientation range of wall/floor/ceiling junctions. For a given neuron, these elements tended to share a common alignment in eye-centered coordinates. Thus, each neuron integrated information about multiple gravity-aligned structures as they would be seen from a specific eye and head orientation. This eclectic coding strategy provides only ambiguous information about individual structures but explicit information about the environmental reference frame and the orientation of gravity in egocentric coordinates. In the ventral pathway, this could support perceiving and/or predicting physical events involving objects subject to gravity, recognizing object attributes like animacy based on movement not caused by gravity, and/or stabilizing perception of the world against changes in head orientation [3-5]. Our results, like the recent discovery of object weight representation [6], imply that the ventral pathway is involved not just in recognition, but also in physical understanding of objects and scenes. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Le, G.; Luehr, H.; Anderson, B. J.; Strangeway, R. J.; Russell, C. T.; Singer, H.; Slavin, J. A.; Zhang, Y.; Huang, T.; Bromund, K.;
2016-01-01
We present multimission observations of field-aligned currents, auroral oval, and magnetopause crossings during the 17 March 2015 magnetic storm. Dayside reconnection is expected to transport magnetic flux, strengthen field-aligned currents, lead to polar cap expansion and magnetopause erosion. Our multimission observations assemble evidence for all these manifestations. After a prolonged period of strongly southward interplanetary magnetic field, Swarm and AMPERE observe significant intensification of field-aligned currents .The dayside auroral oval, as seen by DMSP, appears as a thin arc associated with ongoing dayside reconnection. Both the field-aligned currents and the auroral arc move equatorward reaching as low as approx. 60 deg. magnetic latitude. Strong magnetopause erosion is evident in the in situ measurements of the magnetopause crossings by GOES 13/15 and MMS. The coordinated Swarm, AMPERE, DMSP, MMS and GOES observations, with both global and in situ coverage of the key regions, provide a clear demonstration of the effects of dayside reconnection on the entire magnetosphere.
NASA Astrophysics Data System (ADS)
Chen, Jiaxi; Li, Junmin
2018-02-01
In this paper, we investigate the perfect consensus problem for second-order linearly parameterised multi-agent systems (MAS) with imprecise communication topology structure. Takagi-Sugeno (T-S) fuzzy models are presented to describe the imprecise communication topology structure of leader-following MAS, and a distributed adaptive iterative learning control protocol is proposed with the dynamic of leader unknown to any of the agent. The proposed protocol guarantees that the follower agents can track the leader perfectly on [0,T] for the consensus problem. Under alignment condition, a sufficient condition of the consensus for closed-loop MAS is given based on Lyapunov stability theory. Finally, a numerical example and a multiple pendulum system are given to illustrate the effectiveness of the proposed algorithm.
An update to the analysis of the Canadian Spatial Reference System
NASA Astrophysics Data System (ADS)
Ferland, R.; Piraszewski, M.; Craymer, M.
2015-12-01
The primary objective of the Canadian Spatial Reference System (CSRS) is to provide users access to a consistent geo-referencing infrastructure over the Canadian landmass. Global Navigation Satellite System (GNSS) positioning accuracy requirements ranges from meter level to mm level (e.g.: crustal deformation). The highest level of the Canadian infrastructure consist of a network of continually operating GPS and GNSS receivers, referred to as active control stations. The network includes all Canadian public active control stations, some bordering US CORS and Alaska stations, Greenland active control stations, as well as a selection of IGS reference frame stations. The Bernese analysis software is used for the daily processing and the combination into weekly solutions which form the basis for this analysis. IGS weekly final orbit, Earth Rotation parameters (ERP's) and coordinates products are used in the processing. For the more demanding users, the time dependant changes of station coordinates is often more important.All station coordinate estimates and related covariance information is used in this analysis. For each input solution, variance factor, translation, rotation and scale (and if needed their rates) or subsets of these are estimated. In the combination of these weekly solutions, station positions and velocities are estimated. Since the time series from the stations in these networks often experience changes in behavior, new (or reuse of) parameters are generally used in these situations. As is often the case with real data, unrealistic coordinates may occur. Automatic detection and removal of outliers is used in these cases. For the transformation, position and velocity parameters loose apriori estimates and uncertainties are provided. Alignment using the usual Helmert transformation to the latest IGb08 realization of ITRF is also performed during the adjustment.
Fay, Nicolas; Walker, Bradley; Swoboda, Nik; Garrod, Simon
2018-05-01
Human cognition and behavior are dominated by symbol use. This paper examines the social learning strategies that give rise to symbolic communication. Experiment 1 contrasts an individual-level account, based on observational learning and cognitive bias, with an inter-individual account, based on social coordinative learning. Participants played a referential communication game in which they tried to communicate a range of recurring meanings to a partner by drawing, but without using their conventional language. Individual-level learning, via observation and cognitive bias, was sufficient to produce signs that became increasingly effective, efficient, and shared over games. However, breaking a referential precedent eliminated these benefits. The most effective, most efficient, and most shared signs arose when participants could directly interact with their partner, indicating that social coordinative learning is important to the creation of shared symbols. Experiment 2 investigated the contribution of two distinct aspects of social interaction: behavior alignment and concurrent partner feedback. Each played a complementary role in the creation of shared symbols: Behavior alignment primarily drove communication effectiveness, and partner feedback primarily drove the efficiency of the evolved signs. In conclusion, inter-individual social coordinative learning is important to the evolution of effective, efficient, and shared symbols. Copyright © 2018 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Kapon, Suulamit
2017-01-01
Learning science involves an ongoing process in which learners construct and reconstruct self-explanations and evaluate their relative soundness. This work coordinates and aligns complementary methodological and theoretical approaches to learning to both unpack sensemaking and better understand the conditions that facilitate it. I conceptualize…
Keeping speed and distance for aligned motion
NASA Astrophysics Data System (ADS)
Farkas, Illés J.; Kun, Jeromos; Jin, Yi; He, Gaoqi; Xu, Mingliang
2015-01-01
The cohesive collective motion (flocking, swarming) of autonomous agents is ubiquitously observed and exploited in both natural and man-made settings, thus, minimal models for its description are essential. In a model with continuous space and time we find that if two particles arrive symmetrically in a plane at a large angle, then (i) radial repulsion and (ii) linear self-propelling toward a fixed preferred speed are sufficient for them to depart at a smaller angle. For this local gain of momentum explicit velocity alignment is not necessary, nor are adhesion or attraction, inelasticity or anisotropy of the particles, or nonlinear drag. With many particles obeying these microscopic rules of motion we find that their spatial confinement to a square with periodic boundaries (which is an indirect form of attraction) leads to stable macroscopic ordering. As a function of the strength of added noise we see—at finite system sizes—a critical slowing down close to the order-disorder boundary and a discontinuous transition. After varying the density of particles at constant system size and varying the size of the system with constant particle density we predict that in the infinite system size (or density) limit the hysteresis loop disappears and the transition becomes continuous. We note that animals, humans, drones, etc., tend to move asynchronously and are often more responsive to motion than positions. Thus, for them velocity-based continuous models can provide higher precision than coordinate-based models. An additional characteristic and realistic feature of the model is that convergence to the ordered state is fastest at a finite density, which is in contrast to models applying (discontinuous) explicit velocity alignments and discretized time. To summarize, we find that the investigated model can provide a minimal description of flocking.
Keeping speed and distance for aligned motion.
Farkas, Illés J; Kun, Jeromos; Jin, Yi; He, Gaoqi; Xu, Mingliang
2015-01-01
The cohesive collective motion (flocking, swarming) of autonomous agents is ubiquitously observed and exploited in both natural and man-made settings, thus, minimal models for its description are essential. In a model with continuous space and time we find that if two particles arrive symmetrically in a plane at a large angle, then (i) radial repulsion and (ii) linear self-propelling toward a fixed preferred speed are sufficient for them to depart at a smaller angle. For this local gain of momentum explicit velocity alignment is not necessary, nor are adhesion or attraction, inelasticity or anisotropy of the particles, or nonlinear drag. With many particles obeying these microscopic rules of motion we find that their spatial confinement to a square with periodic boundaries (which is an indirect form of attraction) leads to stable macroscopic ordering. As a function of the strength of added noise we see--at finite system sizes--a critical slowing down close to the order-disorder boundary and a discontinuous transition. After varying the density of particles at constant system size and varying the size of the system with constant particle density we predict that in the infinite system size (or density) limit the hysteresis loop disappears and the transition becomes continuous. We note that animals, humans, drones, etc., tend to move asynchronously and are often more responsive to motion than positions. Thus, for them velocity-based continuous models can provide higher precision than coordinate-based models. An additional characteristic and realistic feature of the model is that convergence to the ordered state is fastest at a finite density, which is in contrast to models applying (discontinuous) explicit velocity alignments and discretized time. To summarize, we find that the investigated model can provide a minimal description of flocking.
NASA Technical Reports Server (NTRS)
Mielke, Roland; Dcunha, Ivan; Alvertos, Nicolas
1994-01-01
In the final phase of the proposed research a complete top to down three dimensional object recognition scheme has been proposed. The various three dimensional objects included spheres, cones, cylinders, ellipsoids, paraboloids, and hyperboloids. Utilizing a newly developed blob determination technique, a given range scene with several non-cluttered quadric surfaces is segmented. Next, using the earlier (phase 1) developed alignment scheme, each of the segmented objects are then aligned in a desired coordinate system. For each of the quadric surfaces based upon their intersections with certain pre-determined planes, a set of distinct features (curves) are obtained. A database with entities such as the equations of the planes and angular bounds of these planes has been created for each of the quadric surfaces. Real range data of spheres, cones, cylinders, and parallelpipeds have been utilized for the recognition process. The developed algorithm gave excellent results for the real data as well as for several sets of simulated range data.
Collective Motion in Behaviorally Heterogeneous Systems
NASA Astrophysics Data System (ADS)
Copenhagen, Katherine
Collective motion is a widespread phenomenon in nature where individuals actively propel themselves, gather together and move as a group. Some examples of collective motion are bird flocks, fish schools, bacteria swarms, cell clusters, and crowds of people. Many models seek to understand the effects of activity in collective systems including things such as environmental disorder, density, and interaction details primarily at infinite size limits and with uniform populations. In this dissertation I investigate the effects of finite sizes and behavioral heterogeneity as it exists in nature. Behavioral heterogeneity can originate from several different sources. Mixed populations of individuals can have inherently different behaviors such as mutant bacteria, injured fish, or agents that prefer individualistic behavior over coordinated motion. Alternatively, agents may modify their own behavior based on some local environmental dependency, such as local substrate, or density. In cases such as mutant cheaters in bacteria or malfunctioning drones in swarms, mixed populations of behaviorally heterogeneous agents can be modelled as arising in the form of aligning and non-aligning agents. When this kind of heterogeneity is introduced, there is a critical carrying capacity of non-aligners above which the system is unable to form a cohesive ordered group. However, if the cohesion of the group is relaxed to allow for fracture, the system will actively sort out non-aligning agents the system will exist at a critical non-aligner fraction. A similar heterogeneity could result in a mixture of high and low noise individuals. In this case there is also a critical carry capacity beyond which the system is unable to reach an ordered state, however the nature of this transition depends on the model details. Agents which are part of an ordered collective may vary their behavior as the group changes environments such as a flock of birds flying into a cloud. Using a unique model of a flock where the group behaves as a rigid disk reveals interesting behaviors as the system crosses a boundary between interfaces. The collective rotates and reorients or becomes stuck on the boundary as it crosses. I also investigate the effects of variable behavior depending on local density, and find that a frustration driven transient rotational phase arises in clusters where agents with low local density move faster than those with high local density as in cell clusters. All together I have shown that behavioral heterogeneity in collective motion can lead to unique phases and behaviors that are not seen in their homogeneous counterparts.
NASA Astrophysics Data System (ADS)
Ammann, C. M.; Holland, M. M.
2016-12-01
The Arctic is undergoing an exceptionally rapid transformation. Trying to predict or project the consequences of this change is pushing nearly every discipline in the physical, biogeochemical and social sciences towards the limits of their current understanding. Adequate data is missing to test and validate models for capturing a state of the Arctic system that we have not observed. But even more challenging is the systems-level evaluation, where impacts can quickly lead to unexpected outcomes with cascading repercussions throughout the different components and subcomponents of the environment. One approach to test our understanding, and to expose gaps in current observation strategies, modeling approaches as well as planning tools (e.g., forecast workflows, or decision frameworks) is to carefully design a small number of coordinated scenarios of plausible future states of the system, and then to study their diverse, potential impacts. A coordination of the scenarios is essential so that all disciplinary perspectives can be arranged around a common state, assumptions can be aligned, and a transdisciplinary conversation can be advanced from a common platform to form a comprehensive assessment of our knowledge. This presentation is a call to the community to join and assist the SEARCH program in designing effective scenarios that can be used for cross-cutting investigation of current limitations in our scientific understanding of how the Arctic environment might change, and what consequences these changes might bring to the physical, biological and social environments.
The Magsat three axis arc second precision attitude transfer system
NASA Technical Reports Server (NTRS)
Schenkel, F. W.; Heins, R. J.
1981-01-01
The Magsat Attitude Transfer System (ATS), which provides attitude alteration in pitch, yaw, and roll is described. A remote vector magnetometer extends from Magsat on a 20 ft boom, requiring vector orientation by reference to coordinate axes determined by a set of star mapping cameras. The ATS was designed to perform in a solar illuminated environment by using an optically narrow bandwidth with synchronous demodulation at 9300 A. The pitch/yaw optical design, the electrooptics, and signal and switching diagrams are provided. Simple mirrors with no moving parts are placed on the magnetometer to reflect a collimated beam from the ATS for attitude indication, which is accurate to one part in 96. Alignment was completed within 24 hr after launch.
2015-08-01
the brigades, and that DOD and the Department of State coordinate on providing passports to the brigades. Both concurred with the recommendations...Army and the Department of State have not agreed on a process for providing official passports to brigade personnel before their employment period. As...a result, the brigades have faced challenges in obtaining passports that have limited their ability to deploy the appropriate personnel to Africa
A Two-Phase Spherical Electric Machine for Generating Rotating Uniform Magnetic Fields
2007-06-01
data prior to processing in Matlab 65 5-6 Probe and sensor alignment apparatus with GMW sensor removed. The circular tip of the F.W. Bell probe can be...again using the Biot-Savart Law. The field, B, at a point, P, given in cylindrical geometry by the coordinates (r, ¢J, z), due to a circular loop of...alignment apparatus with GMW sensor removed. The circular tip of the F.W. Bell probe can be seen; it is flush with the bottom of the milled slot for the
2008-06-01
PAGE INTENTIONALLY LEFT BLANK xv ACKNOWLEDGMENTS We would like to thank Mr. Clint Swett (Director, Technology Services Organization, DFAS- KC ) and...Major Jeffrey Thiry (Deputy Director, Technology Services Organization, DFAS- KC ) for their help and support. Their guidance proved invaluable in... Teo (1996) define alignment as the “coordination between the business and IS planning functions and activities”. Luftman, Papp and Brier (1999
Display Parameters and Requirements
NASA Astrophysics Data System (ADS)
Bahadur, Birendra
The following sections are included: * INTRODUCTION * HUMAN FACTORS * Anthropometry * Sensory * Cognitive * Discussions * THE HUMAN VISUAL SYSTEM - CAPABILITIES AND LIMITATIONS * Cornea * Pupil and Iris * Lens * Vitreous Humor * Retina * RODS - NIGHT VISION * CONES - DAY VISION * RODS AND CONES - TWILIGHT VISION * VISUAL PIGMENTS * MACULA * BLOOD * CHOROID COAT * Visual Signal Processing * Pathways to the Brain * Spatial Vision * Temporal Vision * Colour Vision * Colour Blindness * DICHROMATISM * Protanopia * Deuteranopia * Tritanopia * ANOMALOUS TRICHROMATISM * Protanomaly * Deuteranomaly * Tritanomaly * CONE MONOCHROMATISM * ROD MONOCHROMATISM * Using Colour Effectively * COLOUR MIXTURES AND THE CHROMATICITY DIAGRAM * Colour Matching Functions and Chromaticity Co-ordinates * CIE 1931 Colour Space * CIE PRIMARIES * CIE COLOUR MATCHING FUNCTIONS AND CHROMATICITY CO-ORDINATES * METHODS FOR DETERMINING TRISTIMULUS VALUES AND COLOUR CO-ORDINATES * Spectral Power Distribution Method * Filter Method * CIE 1931 CHROMATICITY DIAGRAM * ADDITIVE COLOUR MIXTURE * CIE 1976 Chromaticity Diagram * CIE Uniform Colour Spaces and Colour Difference Formulae * CIELUV OR L*u*v* * CIELAB OR L*a*b* * CIE COLOUR DIFFERENCE FORMULAE * Colour Temperature and CIE Standard Illuminants and source * RADIOMETRIC AND PHOTOMETRIC QUANTITIES * Photopic (Vλ and Scotopic (Vλ') Luminous Efficiency Function * Photometric and Radiometric Flux * Luminous and Radiant Intensities * Incidence: Illuminance and Irradiance * Exitance or Emittance (M) * Luminance and Radiance * ERGONOMIC REQUIREMENTS OF DISPLAYS * ELECTRO-OPTICAL PARAMETERS AND REQUIREMENTS * Contrast and Contrast Ratio * Luminance and Brightness * Colour Contrast and Chromaticity * Glare * Other Aspects of Legibility * SHAPE AND SIZE OF CHARACTERS * DEFECTS AND BLEMISHES * FLICKER AND DISTORTION * ANGLE OF VIEW * Switching Speed * Threshold and Threshold Characteristic * Measurement Techniques For Electro-optical Parameters * RADIOMETRIC MEASUREMENTS * Broadband Radiometry or Filtered Photodetector Radiometric Method * Spectroradiometric Method * PHOTOMETRIC MEASUREMENTS * COLOUR MEASUREMENTS * LUMINANCE, CONTRAST RATIO, THRESHOLD CHARACTERISTIC AND POLAR PLOT * SWITCHING SPEED * ELECTRICAL AND LIFE PARAMETERS AND REQUIREMENTS * Operating Voltage, Current Drainage and Power Consumption * Operating Frequency * Life Expectancy * LCD FAILURE MODES * Liquid Crystal Materials * Substrate Glass * Electrode Patterns * Alignment and Aligning Material * Peripheral and End Plug Seal * Spacers * Crossover Material * Polarizers and Reflectors * Connectors * Heater * Colour Filters * Backlighting System * Explanation For Some of the Observed Defects * BLOOMING PIXELS * POLARIZER RELATED DEFECTS * DIFFERENTIAL THERMAL EXPANSION RELATED DEFECTS * ELECTROCHEMICAL AND ELECTROHYDRODYNAMIC RELATED DEFECTS * REVERSE TWIST AND REVERSE TILT * MEMORY OR REMINISCENT CONTRAST * LCD RELIABILRY AND ACCELERATED LIFE TESTING * ACKNOWLEDGEMENTS * REFERENCES * APPENDIX
Pezzulo, Giovanni; Iodice, Pierpaolo; Ferraina, Stefano; Kessler, Klaus
2013-01-01
The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to) incorporate information relative to the other actor(s), similar to the “re-calibration” of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors’ spatial representations and creates a “Shared Action Space” (SAS) supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps (BFMs) and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations. PMID:24324425
Study protocol: identifying and delivering point-of-care information to improve care coordination.
Hysong, Sylvia J; Che, Xinxuan; Weaver, Sallie J; Petersen, Laura A
2015-10-19
The need for deliberately coordinated care is noted by many national-level organizations. The Department of Veterans Affairs (VA) recently transitioned primary care clinics nationwide into Patient Aligned Care Teams (PACTs) to provide more accessible, coordinated, comprehensive, and patient-centered care. To better serve this purpose, PACTs must be able to successfully sequence and route interdependent tasks to appropriate team members while also maintaining collective situational awareness (coordination). Although conceptual frameworks of care coordination exist, few explicitly articulate core behavioral markers of coordination or the related information needs of team members attempting to synchronize complex care processes across time for a shared patient population. Given this gap, we partnered with a group of frontline primary care personnel at ambulatory care sites to identify the specific information needs of PACT members that will enable them to coordinate their efforts to provide effective, coordinated care. The study has three objectives: (1) development of measurable, prioritized point-of-care criteria for effective PACT coordination; (2) identifying the specific information needed at the point of care to optimize coordination; and (3) assessing the effect of adopting the aforementioned coordination standards on PACT clinicians' coordination behaviors. The study consists of three phases. In phase 1, we will employ the Productivity Measurement and Enhancement System (ProMES), a structured approach to performance measure creation from industrial/organizational psychology, to develop coordination measures with a design team of 6-10 primary care personnel; in phase 2, we will conduct focus groups with the phase 1 design team to identify point-of-care information needs. Phase 3 is a two-arm field experiment (n PACT = 28/arm); intervention arm PACTs will receive monthly feedback reports using the measures developed in phase 1 and attend brief monthly feedback sessions. Control arm PACTs will receive no intervention. PACTs will be followed prospectively for up to 1 year. This project combines both action research and implementation science methods to address important gaps in the existing care coordination literature using a partnership-based research design. It will provide an evidence-based framework for care coordination by employing a structured methodology for a systematic approach to care coordination in PACT settings and identifying the information needs that produce the most successful coordination of care. ISRCTN15412521.
Alignment of cellular motility forces with tissue flow as a mechanism for efficient wound healing
Basan, Markus; Elgeti, Jens; Hannezo, Edouard; Rappel, Wouter-Jan; Levine, Herbert
2013-01-01
Recent experiments have shown that spreading epithelial sheets exhibit a long-range coordination of motility forces that leads to a buildup of tension in the tissue, which may enhance cell division and the speed of wound healing. Furthermore, the edges of these epithelial sheets commonly show finger-like protrusions whereas the bulk often displays spontaneous swirls of motile cells. To explain these experimental observations, we propose a simple flocking-type mechanism, in which cells tend to align their motility forces with their velocity. Implementing this idea in a mechanical tissue simulation, the proposed model gives rise to efficient spreading and can explain the experimentally observed long-range alignment of motility forces in highly disordered patterns, as well as the buildup of tensile stress throughout the tissue. Our model also qualitatively reproduces the dependence of swirl size and swirl velocity on cell density reported in experiments and exhibits an undulation instability at the edge of the spreading tissue commonly observed in vivo. Finally, we study the dependence of colony spreading speed on important physical and biological parameters and derive simple scaling relations that show that coordination of motility forces leads to an improvement of the wound healing process for realistic tissue parameters. PMID:23345440
NASA Technical Reports Server (NTRS)
Alvertos, Nicolas; Dcunha, Ivan
1992-01-01
A feature set of two dimensional curves is obtained after intersecting symmetric objects like spheres, cones, cylinders, ellipsoids, paraboloids, and parallelepipeds with two planes. After determining the location and orientation of the objects in space, these objects are aligned so as to lie on a plane parallel to a suitable coordinate system. These objects are then intersected with a horizontal and a vertical plane. Experiments were carried out with range images of sphere and cylinder. The 3-D discriminant approach was used to recognize quadric surfaces made up of simulated data. Its application to real data was also studied.
Regioisomer-Specific Mechanochromism of Naphthopyran in Polymeric Materials.
Robb, Maxwell J; Kim, Tae Ann; Halmes, Abigail J; White, Scott R; Sottos, Nancy R; Moore, Jeffrey S
2016-09-28
Transformation of naphthopyran into a colored merocyanine species in polymeric materials is achieved using mechanical force. We demonstrate that the mechanochemical reactivity of naphthopyran is critically dependent on the regiochemistry, with only one particular substitution pattern leading to successful mechanochemical activation. Two alternative regioisomers with different polymer attachment points are demonstrated to be mechanochemically inactive. This trend in reactivity is accurately predicted by DFT calculations, reinforcing predictive capabilities in mechanochemical systems. We rationalize the reactivity differences between naphthopyran regioisomers in terms of the alignment of the target C-O pyran bond with the direction of the applied mechanical force and its effect on mechanochemical transduction along the reaction coordinate.
CAFE: aCcelerated Alignment-FrEe sequence analysis
Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A.; Waterman, Michael S.
2017-01-01
Abstract Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^*$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^S$\\end{document} are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. PMID:28472388
Acute alcohol intoxication impairs segmental body alignment in upright standing.
Hafstrom, A; Patel, M; Modig, F; Magnusson, M; Fransson, P A
2014-01-01
Balance control when standing upright is a complex process requiring input from several partly independent mechanisms such as coordination, feedback and feedforward control, and adaptation. Acute alcohol intoxication from ethanol is recognized as a major contributor to accidental falls requiring medical care. This study aimed to investigate if intoxication at 0.06 and 0.10% blood alcohol concentration affected body alignment. Mean angular positions of the head, shoulder, hip, and knee were measured with 3D-motion analysis and compared with the ankle position in 25 healthy adults during standing with or without perturbations, and with eyes open or closed. Alcohol intoxication had significant effects on body alignment during perturbed and unperturbed stance, and on adaptation to perturbations. It induced a significantly more posterior alignment of the knees and shoulders, and a tendency for a more posterior and left deviated head alignment in perturbed stance than when sober. The impact of alcohol intoxication was most apparent on the knee alignment, where availability of visual information deteriorated the adaptation to perturbations. Thus, acute alcohol intoxication resulted in inadequate balance control strategies with increased postural rigidity and impaired adaptation to perturbations. These factors probably contribute to the increased risk of falling when intoxicated with alcohol.
NASA Astrophysics Data System (ADS)
McKenna, Valerie E.
This dissertation studied the beliefs and practices of principals, workshop site coordinators, and science support personnel in two Central Florida school districts and compared those beliefs and practices to the literature on effective science in-service education. It is important to understand these beliefs and practices because they directly affect the content and pedagogical knowledge of classroom teachers, yet this aspect of instructional practices has been ignored in the science education literature. This study used a grounded theory methodology using open-ended individual interviews, participants observation, and documented analysis. Constant comparisons were built through analyzing the data. The research shows that in-service providers' and administrators' beliefs are aligned with the effective science education in-service literature. The conditions and context are ripe for changes because principals and workshop site coordinators' beliefs are aligned with the literature and changes are already beginning to take place. The intervening conditions may lead to improved teacher knowledge, teaching, and learning because standardized testing is expanding to incorporate the content area of science. Also workshop site coordinators are trying to set up a variety of opportunities to attend workshops on the same topic throughout the school year. Budgets are being restructured at the school level and district level to incorporate more science content professional development. However, it is too early to show how much improvement there will be in standardized test scores or whether teachers' have a deeper understanding of science content knowledge or effective science instruction.
Translator Plan: A Coordinated Vision for Fiscal Years 2018-2020
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riihimaki, Laura; Comstock, Jennifer; Collis, Scott
In June of 2017, the Translator Group met to develop this coordinated three-year vision plan, incorporating key feedback and aligning to ARM’s mission priorities. This plan responds to a shift in how we determine our priorities, given the new needs of the ARM Facility. In the past, individual Translators have determined priorities in conversation with individual DOE Atmospheric System Research (ASR) working groups. To better support ARM’s Decadal Vision (https://www.arm.gov/publications/programdocs/doe-sc-arm-14-029.pdf), however, the Translator Group is instead developing a coordinated response to needs from our user community to better balance resources and skills among participants. This approach agrees with direction frommore » ARM leadership and the ARM-ASR Coordination Team (AACT). To develop this plan the Translator Group reviewed feedback received from the User Executive Committee (UEC) and the Triennial Review, as well as priorities from ASR working groups and Principal Investigators (PIs), the LES ARM Symbiotic Simulation and Observation (LASSO) project, and new instrumentation and activities as described by the ARM Technical Director. In particular, we are responding to the advice that we were trying to do too much, and should focus on providing additional support to data quality, uncertainty assessment, a timeline for producing core VAPs from ARM Mobile Facility (AMF) campaigns, and supporting key aspects of the Decadal Vision.« less
NASA Technical Reports Server (NTRS)
Aldcroft, T.; Karovska, M.; Cresitello-Dittmar, M.; Cameron, R.
2000-01-01
The aspect system of the Chandra Observatory plays a key role in realizing the full potential of Chandra's x-ray optics and detectors. To achieve the highest spatial and spectral resolution (for grating observations), an accurate post-facto time history of the spacecraft attitude and internal alignment is needed. The CXC has developed a suite of tools which process sensor data from the aspect camera assembly and gyroscopes, and produce the spacecraft aspect solution. In this poster, the design of the aspect pipeline software is briefly described, followed by details of aspect system performance during the first eight months of flight. The two key metrics of aspect performance are: image reconstruction accuracy, which measures the x-ray image blurring introduced by aspect; and celestial location, which is the accuracy of detected source positions in absolute sky coordinates.
Westhoff, Connie M.; Uy, Jon Michael; Aguad, Maria; Smeland‐Wagman, Robin; Kaufman, Richard M.; Rehm, Heidi L.; Green, Robert C.; Silberstein, Leslie E.
2015-01-01
BACKGROUND There are 346 serologically defined red blood cell (RBC) antigens and 33 serologically defined platelet (PLT) antigens, most of which have known genetic changes in 45 RBC or six PLT genes that correlate with antigen expression. Polymorphic sites associated with antigen expression in the primary literature and reference databases are annotated according to nucleotide positions in cDNA. This makes antigen prediction from next‐generation sequencing data challenging, since it uses genomic coordinates. STUDY DESIGN AND METHODS The conventional cDNA reference sequences for all known RBC and PLT genes that correlate with antigen expression were aligned to the human reference genome. The alignments allowed conversion of conventional cDNA nucleotide positions to the corresponding genomic coordinates. RBC and PLT antigen prediction was then performed using the human reference genome and whole genome sequencing (WGS) data with serologic confirmation. RESULTS Some major differences and alignment issues were found when attempting to convert the conventional cDNA to human reference genome sequences for the following genes: ABO, A4GALT, RHD, RHCE, FUT3, ACKR1 (previously DARC), ACHE, FUT2, CR1, GCNT2, and RHAG. However, it was possible to create usable alignments, which facilitated the prediction of all RBC and PLT antigens with a known molecular basis from WGS data. Traditional serologic typing for 18 RBC antigens were in agreement with the WGS‐based antigen predictions, providing proof of principle for this approach. CONCLUSION Detailed mapping of conventional cDNA annotated RBC and PLT alleles can enable accurate prediction of RBC and PLT antigens from whole genomic sequencing data. PMID:26634332
Frønsdal, Katrine; Pichler, Franz; Mardhani-Bayne, Logan; Henshall, Chris; Røttingen, John-Arne; Mørland, Berit; Klemp, Marianne
2012-10-01
There has been an increased focus on the relationship between health technology assessment (HTA) and regulatory assessments and how regulatory, HTA and coverage bodies, and industry can work better together to improve efficiency and alignment of processes. There is increasingly agreement across sectors that improved communication and coordination could contribute to facilitating timely patient access to effective, affordable treatments that offer value to the health system. Discussions on aspects of this relationship are being held in different forums and various forms of coordination and collaboration are being developed or piloted within several jurisdictions. It is therefore both timely and of value to stakeholders to describe and reflect on current initiatives intended to improve interactions between regulatory, HTA and coverage bodies, and industry. Drawing on 2011 meetings of the HTAi Policy Forum and the Center for Innovation in Regulatory Science (CIRS), this study aims to describe and compare initiatives, and point to success factors and challenges that are likely to inform future work and collaboration.
76 FR 61365 - Bundled Payments for Care Improvement Initiative
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-04
..., better health care, and reduced expenditures through continuous improvement for Medicare, Medicaid and... and patient experience when health care providers work in a coordinated and patient-centered manner... initiative. This initiative seeks proposals from health care providers who wish to align incentives between...
ERIC Educational Resources Information Center
Thomas, Jeff; White, Katie
2012-01-01
Science Night--everybody wants one, but how does a teacher make it happen? To promote connections between schools, families, and communities, the authors organized a unique learning opportunity by combining three community partners' efforts and strengths. The school's Parent Teacher Association (PTA) coordinated and sponsored a science night for…
Photogrammetric Metrology for the James Webb Space Telescope Integrated Science Instrument Module
NASA Technical Reports Server (NTRS)
Nowak, Maria; Crane, Allen; Davila, Pam; Eichhorn, William; Gill, James; Herrera, Acey; Hill, Michael; Hylan, Jason; Jetten, Mark; Marsh, James;
2007-01-01
The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approximately 40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISM optical metering structure is a roughly 2.2x1.7x2.2m, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISIM structure must meet its requirements at the approximately 40K cryogenic operating temperature. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISIM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified. We report on the planning for and preliminary testing of a cryogenic metrology system for ISIM based on photogrammetry. Photogrammetry is the measurement of the location of custom targets via triangulation using images obtained at a suite of digital camera locations and orientations. We describe metrology system requirements, plans, and ambient photogrammetric measurements of a mock-up of the ISIM structure to design targeting and obtain resolution estimates. We compare these measurements with those taken from a well known ambient metrology system, namely, the Leica laser tracker system. We also describe the data reduction algorithm planned to interpret cryogenic data from the Flight structure. Photogrammetry was selected from an informal trade study of cryogenic metrology systems because its resolution meets sub-allocations to ISIM alignment requirements and it is a non-contact method that can in principle measure six degrees of freedom changes in target location. In addition, photogrammetry targets can be readily related to targets used for ambient surveys of the structure. By thermally isolating the photogrammetry camera during testing, metrology can be performed in situ during thermal cycling. Photogrammetry also has a small but significant cryogenic heritage in astronomical instrumentation metrology. It was used to validate the displacement/deformation predictions of the reflectors and the feed horns during thermal/vacuum testing (90K) for the Microwave Anisotropy Probe (MAP). It also was used during thermal vacuum testing (100K) to verify shape and component alignment at operational temperature of the High Gain Antenna for New Horizons. With tighter alignment requirements and lower operating temperatures than the aforementioned observatories, ISIM presents new challenges in the development of this metrology system.
Coherent Turbulence Rig in the Engine Research Building
1979-08-21
An engineer examines the Coherent Turbulence Rig in the Engine Research Building at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Coherent turbulence occurs when waves of uniform size and alignment are present in airflow. Researchers at NASA Lewis were interested in determining the relation between the size of the waves and their heat transfer properties. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful a collection of compressors and exhausters located in the central portion of the basement provides process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities.
Overcoming Communication Restrictions in Collectives
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian K.
2004-01-01
Many large distributed system are characterized by having a large number of components (eg., agents, neurons) whose actions and interactions determine a %orld utility which rates the performance of the overall system. Such collectives are often subject to communication restrictions, making it difficult for components which try to optimize their own private utilities, to take actions that also help optimize the world utility. In this article we address that coordination problem and derive four utility functions which present different compromises between how aligned a component s private utility is with the world utility and how readily that component can determine the actions that optimize its utility. The results show that the utility functions specifically derived to operate under communication restrictions outperform both traditional methods and previous collective-based methods by up to 75%.
Supporting the Whole Child through Coordinated Policies, Processes, and Practices
ERIC Educational Resources Information Center
Murray, Sharon D.; Hurley, James; Ahmed, Shannon R.
2015-01-01
Background: The Whole School, Whole Community, Whole Child (WSCC) model provides a framework for promoting greater alignment, integration, and collaboration between health and education across the school setting and improving students' cognitive, physical, social, and emotional development. By providing a learning environment that ensures each…
Alignment system for SGII-Up laser facility
NASA Astrophysics Data System (ADS)
Gao, Yanqi; Cui, Yong; Li, Hong; Gong, Lei; Lin, Qiang; Liu, Daizhong; Zhu, Baoqiang; Ma, Weixin; Zhu, Jian; Lin, Zunqi
2018-03-01
The SGII-Up laser facility in Shanghai is one of the most important high-power laser facilities in China. It is designed to obtain 24 kJ (3ω) of energy with a square pulse of 3 ns using eight laser beams (two bundles). To satisfy the requirements for the safety, efficiency, and quality, an alignment system is developed for this facility. This alignment system can perform automatic alignment of the preamplifier system, main amplifier system, and harmonic conversion system within 30 min before every shot during the routine operation of the facility. In this article, an overview of the alignment system is first presented. Then, its alignment characteristics are discussed, along with the alignment process. Finally, experimental results, including the alignment results and the facility performance, are reported. The results show that the far-field beam pointing alignment accuracy is better than 3 μrad, and the alignment error of the near-field beam centering is no larger than 1 mm. These satisfy the design requirements very well.
Combining aesthetic with ecological values for landscape sustainability.
Yang, Dewei; Luo, Tao; Lin, Tao; Qiu, Quanyi; Luo, Yunjian
2014-01-01
Humans receive multiple benefits from various landscapes that foster ecological services and aesthetic attractiveness. In this study, a hybrid framework was proposed to evaluate ecological and aesthetic values of five landscape types in Houguanhu Region of central China. Data from the public aesthetic survey and professional ecological assessment were converted into a two-dimensional coordinate system and distribution maps of landscape values. Results showed that natural landscapes (i.e. water body and forest) contributed positively more to both aesthetic and ecological values than semi-natural and human-dominated landscapes (i.e. farmland and non-ecological land). The distribution maps of landscape values indicated that the aesthetic, ecological and integrated landscape values were significantly associated with landscape attributes and human activity intensity. To combine aesthetic preferences with ecological services, the methods (i.e. field survey, landscape value coefficients, normalized method, a two-dimensional coordinate system, and landscape value distribution maps) were employed in landscape assessment. Our results could facilitate to identify the underlying structure-function-value chain, and also improve the understanding of multiple functions in landscape planning. The situation context could also be emphasized to bring ecological and aesthetic goals into better alignment.
Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method
Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu
2016-01-01
A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis. PMID:28029121
Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method.
Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu
2016-12-24
A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis.
Combining Aesthetic with Ecological Values for Landscape Sustainability
Yang, Dewei; Luo, Tao; Lin, Tao; Qiu, Quanyi; Luo, Yunjian
2014-01-01
Humans receive multiple benefits from various landscapes that foster ecological services and aesthetic attractiveness. In this study, a hybrid framework was proposed to evaluate ecological and aesthetic values of five landscape types in Houguanhu Region of central China. Data from the public aesthetic survey and professional ecological assessment were converted into a two-dimensional coordinate system and distribution maps of landscape values. Results showed that natural landscapes (i.e. water body and forest) contributed positively more to both aesthetic and ecological values than semi-natural and human-dominated landscapes (i.e. farmland and non-ecological land). The distribution maps of landscape values indicated that the aesthetic, ecological and integrated landscape values were significantly associated with landscape attributes and human activity intensity. To combine aesthetic preferences with ecological services, the methods (i.e. field survey, landscape value coefficients, normalized method, a two-dimensional coordinate system, and landscape value distribution maps) were employed in landscape assessment. Our results could facilitate to identify the underlying structure-function-value chain, and also improve the understanding of multiple functions in landscape planning. The situation context could also be emphasized to bring ecological and aesthetic goals into better alignment. PMID:25050886
NASA Technical Reports Server (NTRS)
Weiss, L. A.; Weber, E. J.; Reiff, P. H.; Sharber, J. R.; Winningham, J. D.; Primdahl, F.; Mikkelsen, I. S.; Seifring, C.; Wescott, Eugene M.
1994-01-01
An experimental campaign designed to study high-latitude auroral arcs was conducted in Sondre Stromfjord, Greenland, on February 26, 1987. The Polar Acceleration Regions and Convection Study (Polar ARCS) consisted of a coordinated set of ground-based, airborne, and sounding rocket measurements of a weak, sun-aligned arc system within the duskside polar cap. A rocket-borne barium release experiment, two DMSP satellite overflights, all-sky photography, and incoherent scatter radar measurements provided information on the large-scale plasma convection over the polar cap region while a second rocket instrumented with a DC magnetometer, Langmuir and electric field probes, and an electron spectrometer provided measurements of small-scale electrodynamics. The large-scale data indicate that small, sun-aligned precipitation events formed within a region of antisunward convection between the duskside auroral oval and a large sun-aligned arc further poleward. This convection signature, used to assess the relationship of the sun-aligned arc to the large-scale magnetospheric configuration, is found to be consistent with either a model in which the arc formed on open field lines on the dusk side of a bifurcated polar cap or on closed field lines threading an expanded low-latitude boundary layer, but not a model in which the polar cap arc field lines map to an expanded plasma sheet. The antisunward convection signature may also be explained by a model in which the polar cap arc formed on long field lines recently reconnected through a highly skewed plasma sheet. The small-scale measurements indicate the rocket passed through three narrow (less than 20 km) regions of low-energy (less than 100 eV) electron precipitation in which the electric and magnetic field perturbations were well correlated. These precipitation events are shown to be associated with regions of downward Poynting flux and small-scale upward and downward field-aligned currents of 1-2 micro-A/sq m. The paired field-aligned currents are associated with velocity shears (higher and lower speed streams) embedded in the region of antisunward flow.
NASA Technical Reports Server (NTRS)
Sitar, R. J.; Clauer, C. R.; Baker, J. B.; Ridley, A. J.; Cumnock, J.; Germany, G. A.; Spann, J. F., Jr.; Brittnacher, M. J.; Parks, G. K.
1998-01-01
We present the analysis of a coordinated set of observations from the POLAR Ultraviolet Imager (UVI), ground magnetometers, incoherent scatter radar, solar wind monitors, DMSP and GOES satellites, focused on a traveling convection vortex (TCV) event on 24th July 1996. Starting at approximately 10:48 UT, around magnetometers in Greenland and northern Canada observe pulsations consistent with the passing overhead of a series of alternating TCV filed-aligned current pairs. Azimuthal scans by the Sondrestrom incoherent scatter radar located near Kangerlussuaq (formerly Sondrestrom), Greenland, at this time show strong modulation in the strength and direction of ionospheric plasma flow. The magnetometer pulsations grow in magnitude over the next hour, peaking in intensity at 11:39 UT, at which time images form the UVI instrument show a localized intensification of auroral emissions over central and western Greenland. Subsequent images show the intensification grow in strength and propagate westward (tailward) until approximately 11:58 UT at which time the intensification fades. These observations are consistent with the westward passage of two pairs of moderately intense TCVs over central Greenland followed by a third very intense TCV pair. The intensification of auroral emissions at 11:39 UT is associated with the trailing vortex of the third TCV pair, thought to be the result of an upward field aligned current. The modulated flow observed by the radar is the result of the strong electric fields associated with the impulsive TCV related field aligned current systems as they pass through the field of view of the radar. Measurements of the solar wind from the V;IND and IMP-8 spacecraft suggest that a pressure change may be responsible for triggering the first two pairs of TCVS, and that a subsequent sudden change in the orientation of the interplanetary magnetic field may have produced the intensification of the third TCV pair and the associated auroral brightening. Magnetometer data from the GOES satellite located over the eastern United States at geostationary orbit is consistent with a series of field-aligned moving tailward past the satellite. DMSP particle data indicated that the TCVs occur on field lines which map to the boundary plasma sheet (BPS).
Designing Agent Utilities for Coordinated, Scalable and Robust Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Tumer, Kagan
2005-01-01
Coordinating the behavior of a large number of agents to achieve a system level goal poses unique design challenges. In particular, problems of scaling (number of agents in the thousands to tens of thousands), observability (agents have limited sensing capabilities), and robustness (the agents are unreliable) make it impossible to simply apply methods developed for small multi-agent systems composed of reliable agents. To address these problems, we present an approach based on deriving agent goals that are aligned with the overall system goal, and can be computed using information readily available to the agents. Then, each agent uses a simple reinforcement learning algorithm to pursue its own goals. Because of the way in which those goals are derived, there is no need to use difficult to scale external mechanisms to force collaboration or coordination among the agents, or to ensure that agents actively attempt to appropriate the tasks of agents that suffered failures. To present these results in a concrete setting, we focus on the problem of finding the sub-set of a set of imperfect devices that results in the best aggregate device. This is a large distributed agent coordination problem where each agent (e.g., device) needs to determine whether to be part of the aggregate device. Our results show that the approach proposed in this work provides improvements of over an order of magnitude over both traditional search methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents failed midway through the simulation) the system's performance degrades gracefully and still outperforms a failure-free and centralized search algorithm. The results also show that the gains increase as the size of the system (e.g., number of agents) increases. This latter result is particularly encouraging and suggests that this method is ideally suited for domains where the number of agents is currently in the thousands and will reach tens or hundreds of thousands in the near future.
Grechkin, Timofey Y.; Chihak, Benjamin J.; Cremer, James F.; Kearney, Joseph K.; Plumert, Jodie M.
2014-01-01
This investigation examined how children and adults negotiate a challenging perceptual-motor problem with significant real-world implications – bicycling across two lanes of opposing traffic. Twelve- and 14-year-olds and adults rode a bicycling simulator through an immersive virtual environment. Participants crossed intersections with continuous cross traffic coming from opposing directions. Opportunities for crossing were divided into aligned (far gap opens with or before near gap) and rolling (far gap opens after near gap) gap pairs. Children and adults preferred rolling to aligned gap pairs, though this preference was stronger for adults than for children. Crossing aligned versus rolling gap pairs produced substantial differences in direction of travel, speed of crossing, and timing of entry into the near and far lanes. For both aligned and rolling gap pairs, children demonstrated less skill than adults in coordinating self and object movement. These findings have implications for understanding perception-action-cognition links and for understanding risk factors underlying car-bicycle collisions. PMID:22924952
High-accuracy local positioning network for the alignment of the Mu2e experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hejdukova, Jana B.
This Diploma thesis describes the establishment of a high-precision local positioning network and accelerator alignment for the Mu2e physics experiment. The process of establishing new network consists of few steps: design of the network, pre-analysis, installation works, measurements of the network and making adjustments. Adjustments were performed using two approaches. First is a geodetic approach of taking into account the Earth’s curvature and the metrological approach of a pure 3D Cartesian system on the other side. The comparison of those two approaches is performed and evaluated in the results and compared with expected differences. The effect of the Earth’s curvaturemore » was found to be significant for this kind of network and should not be neglected. The measurements were obtained with Absolute Tracker AT401, leveling instrument Leica DNA03 and gyrotheodolite DMT Gyromat 2000. The coordinates of the points of the reference network were determined by the Least Square Meth od and the overall view is attached as Annexes.« less
Kinesthetic perceptions of earth- and body-fixed axes.
Darling, W G; Hondzinski, J M
1999-06-01
The major purpose of this research was to determine whether kinesthetic/proprioceptive perceptions of the earth-fixed vertical axis are more accurate than perceptions of intrinsic axes. In one experiment, accuracy of alignment of the forearm to earth-fixed vertical and head- and trunk-longitudinal axes by seven blindfolded subjects was compared in four tasks: (1) Earth-Arm--arm (humerus) orientation was manipulated by the experimenter; subjects aligned the forearm parallel to the vertical axis, which was also aligned with the head and trunk longitudinal axis; (2) Head--head, trunk, and upper-limb orientations were manipulated by the experimenter, subjects aligned the forearm parallel to the longitudinal axis of the head using only elbow flexion/extension and shoulder internal/external rotation; (3) Trunk--same as (2), except that subjects aligned the forearm parallel to the trunk-longitudinal axis; (4) Earth--same as (2), except that subjects aligned the forearm parallel to the earth-fixed vertical. Head, trunk, and gravitational axes were never parallel in tasks 2, 3, and 4 so that subjects could not simultaneously match their forearm to all three axes. The results showed that the errors for alignment of the forearm with the earth-fixed vertical were lower than for the trunk- and head-longitudinal axes. Furthermore, errors in the Earth condition were less dependent on alterations of the head and trunk orientation than in the Head and Trunk conditions. These data strongly suggest that the earth-fixed vertical is used as one axis for the kinesthetic sensory coordinate system that specifies upper-limb orientation at the perceptual level. We also examined the effects of varying gravitational torques at the elbow and shoulder on the accuracy of forearm alignment to earth-fixed axes. Adding a 450 g load to the forearm to increase gravitational torques when the forearm is not vertical did not improve the accuracy of forearm alignment with the vertical. Furthermore, adding small, variably sized loads (between which the subjects could not distinguish at the perceptual level) to the forearm just proximal to the wrist produced similar errors in aligning the forearm with the vertical and horizontal. Forearm-positioning errors were not correlated with the size of the load, as would be expected if gravitational torques affected forearm-position sense. We conclude that gravitational torques exerted about the shoulder and elbow do not make significant contributions to sensing forearm-orientation relative to earth-fixed axes when the upper-limb segments are not constrained by external supports.
Maximizing Educator Enhancement: Aligned Seminar and Online Professional Development
ERIC Educational Resources Information Center
Shaha, Steven; Glassett, Kelly; Copas, Aimee; Huddleston, T. Lisa
2016-01-01
Professional development and learning has a long history in seminar-like models, as well as in the more educator-personal delivery approaches. The question is whether an intentionally coordinated, integrated combination of the two PDL approaches will have best impacts for educators as quantified in improved student performance. Contrasts between…
Certification of Financial Aid Administrators: Is It Time to Move Forward?
ERIC Educational Resources Information Center
Peterson, Stacey A.
2017-01-01
Financial aid administrators administer various aspects of financial assistance programs; oversee, direct, coordinate, evaluate, and provide training for program activities and the personnel who manage office operations and supervise support staff; and ensure alignment of student and institutional needs while protecting the public interest. They…
Coordination in Coteaching: Producing Alignment in Real Time
ERIC Educational Resources Information Center
Roth, Wolff-Michael; Tobin, Kenneth; Carambo, Cristobal; Dalland, Chris
2005-01-01
In coteaching, two or more teachers take collective responsibility for enacting a curriculum together with their students. Past research provided some indication that in the course of coteaching, not only the teaching practices of the partners become increasingly alike but also do unconsciously produced ways of moving about the classroom, hand…
Surviving Performance Improvement "Solutions": Aligning Performance Improvement Interventions
ERIC Educational Resources Information Center
Bernardez, Mariano L.
2009-01-01
How can organizations avoid the negative, sometimes chaotic, effects of multiple, poorly coordinated performance improvement interventions? How can we avoid punishing our external clients or staff with the side effects of solutions that might benefit our bottom line or internal efficiency at the expense of the value received or perceived by…
Behavior Matching in Multimodal Communication Is Synchronized
ERIC Educational Resources Information Center
Louwerse, Max M.; Dale, Rick; Bard, Ellen G.; Jeuniaux, Patrick
2012-01-01
A variety of theoretical frameworks predict the resemblance of behaviors between two people engaged in communication, in the form of coordination, mimicry, or alignment. However, little is known about the time course of the behavior matching, even though there is evidence that dyads synchronize oscillatory motions (e.g., postural sway). This study…
Accountable care organization readiness and academic medical centers.
Berkowitz, Scott A; Pahira, Jennifer J
2014-09-01
As academic medical centers (AMCs) consider becoming accountable care organizations (ACOs) under Medicare, they must assess their readiness for this transition. Of the 253 Medicare ACOs prior to 2014, 51 (20%) are AMCs. Three critical components of ACO readiness are institutional and ACO structure, leadership, and governance; robust information technology and analytic systems; and care coordination and management to improve care delivery and health at the population level. All of these must be viewed through the lens of unique AMC mission-driven goals.There is clear benefit to developing and maintaining a centralized internal leadership when it comes to driving change within an ACO, yet there is also the need for broad stakeholder involvement. Other important structural features are an extensive primary care foundation; concomitant operation of a managed care plan or risk-bearing entity; or maintaining a close relationship with post-acute-care or skilled nursing facilities, which provide valuable expertise in coordinating care across the continuum. ACOs also require comprehensive and integrated data and analytic systems that provide meaningful population data to inform care teams in real time, promote quality improvement, and monitor spending trends. AMCs will require proven care coordination and management strategies within a population health framework and deployment of an innovative workforce.AMC core functions of providing high-quality subspecialty and primary care, generating new knowledge, and training future health care leaders can be well aligned with a transition to an ACO model. Further study of results from Medicare-related ACO programs and commercial ACOs will help define best practices.
Comparison Between Navier-Stokes and Thin-Layer Computations for Separated Supersonic Flow
NASA Technical Reports Server (NTRS)
Degani, David; Steger, Joseph L.
1983-01-01
In the numerical simulation of high Reynolds-number flow, one can frequently supply only enough grid points to resolve the viscous terms in a thin layer. As a consequence, a body-or stream-aligned coordinate system is frequently used and viscous terms in this direction are discarded. It is argued that these terms cannot be resolved and computational efficiency is gained by their neglect. Dropping the streamwise viscous terms in this manner has been termed the thin-layer approximation. The thin-layer concept is an old one, and similar viscous terms are dropped, for example, in parabolized Navier-Stokes schemes. However, such schemes also make additional assumptions so that the equations can be marched in space, and such a restriction is not usually imposed on a thin-layer model. The thin-layer approximation can be justified in much the same way as the boundary-layer approximation; it requires, therefore, a body-or stream-aligned coordinate and a high Reynolds number. Unlike the boundary-layer approximation, the same equations are used throughout, so there is no matching problem. Furthermore, the normal momentum equation is not simplified and the convection terms are not one-sided differenced for marching. Consequently, the thin-layer equations are numerically well behaved at separation and require no special treatment there. Nevertheless, the thin-layer approximation receives criticism. It has been suggested that the approximation is invalid at separation and, more recently, that it is inadequate for unsteady transonic flow. Although previous comparisons between the thin-layer and Navier-Stokes equations have been made, these comparisons have not been adequately documented.
Velocity field calculation for non-orthogonal numerical grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G. P.
2015-03-01
Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation,more » and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non-orthogonal grid, Darcy velocity components are rigorously derived in this study from normal fluxes to cell faces, which are assumed to be provided by or readily computed from porous-medium simulation code output. The normal fluxes are presumed to satisfy mass balances for every computational cell, and if so, the derived velocity fields are consistent with these mass balances. Derivations are provided for general two-dimensional quadrilateral and three-dimensional hexagonal systems, and for the commonly encountered special cases of perfectly vertical side faces in 2D and 3D and a rectangular footprint in 3D.« less
Environmental Control and Life Support (ECLS) Integrated Roadmap Development
NASA Technical Reports Server (NTRS)
Metcalf, Jordan L.; Carrasquillo, Robyn; Bagdigian, Bob; Peterson, Laurie
2011-01-01
This white paper documents a roadmap for development of Environmental Control and Life Support (ECLS) Systems (ECLSS) capabilities required to enable beyond-Low Earth Orbit (LEO) Exploration missions. In many cases, the execution of this Exploration-based roadmap will directly benefit International Space Station (ISS) operational capability by resolving known issues and/or improving overall system reliability. In addition, many of the resulting products will be applicable across multiple Exploration elements such as Multi-Purpose Crew Vehicle (MPCV), Multi-Mission Space Exploration Vehicle (MMSEV), Deep Space Habitat (DSH), and Landers. Within the ECLS community, this white paper will be a unifying tool that will improve coordination of resources, common hardware, and technologies. It will help to align efforts to focus on the highest priority needs that will produce life support systems for future human exploration missions that will simply run in the background, requiring minimal crew interaction.
A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bert, Christoph; Metheany, Katherine G.; Doppke, Karen
2005-09-15
External beam irradiation requires precise positioning of the target relative to the treatment planning coordinate system. A three-dimensional (3D) surface imaging system for patient positioning has recently been installed in one of our linear accelerator (linac) rooms. The device utilizes close-range photogrammetry to generate a 3D model of the patient's surface. This geometric model can be made to look like a digital camera image if wrapped with a gray-level image (texture mapping) that shows surface coloration. The system is calibrated to the linac coordinate system and has been designed as a patient setup device. To reproduce patient position in fractionatedmore » radiotherapy, the daily patient surface model is registered to a previously recorded reference surface. Using surface registration, the system calculates the rigid-body transformation that minimizes the distance between the treatment and the reference surface models in a region-of-interest (ROI). This transformation is expressed as a set of new couch coordinates at which the patient position best matches with the reference data. If respiratory motion is a concern, the surface can be obtained with a gated acquisition at a specified phase of the respiratory cycle. To analyze the accuracy of the system, we performed several experiments with phantoms to assess stability, alignment accuracy, precision of the gating function, and surface topology. The reproducibility of surface measurements was tested for periods up to 57 h. Each recorded frame was registered to the reference surface to calculate the required couch adjustment. The system stability over this time period was better than 0.5 mm. To measure the accuracy of the system to detect and quantify patient shift relative to a reference image, we compared the shift detected by the surface imaging system with known couch transitions in a phantom study. The maximum standard deviation was 0.75 mm for the three translational degrees of freedom, and less than 0.1 deg. for each rotation. Surface model precision was tested against computed tomography (CT)-derived surface topology. The root-mean-square rms of the distance between the surfaces was 0.65 mm, excluding regions where beam hardening caused artifacts in the CT data. Measurements were made to test the gated acquisition mode. The time-dependent amplitude was measured with the surface imaging system and an established respiratory gating system based on infrared (IR)-marker detection. The measured motion trajectories from both systems were compared to the known trajectory of the stage. The standard deviations of the amplitude differences to the motor trajectory were 0.04 and 0.15 mm for the IR-marker system and the 3D surface imaging system, respectively. A limitation of the surface-imaging device is the frame rate of 6.5 Hz, because rapid changes of the motion trajectory cannot be detected. In conclusion, the system is accurate and sufficiently stable to be used in the clinic. The errors computed when comparing the surface model with CT geometry were submillimeter, and deviations in the alignment and gating-signal tests were of the same magnitude.« less
Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.
Dunn, Joshua G; Weissman, Jonathan S
2016-11-22
Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily adapted to novel NGS assays. Examples, tutorials, and extensive documentation can be found at https://plastid.readthedocs.io .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Aaron P.; Carlson, Charles T.; Weaver, William T.
A mask alignment system for providing precise and repeatable alignment between ion implantation masks and workpieces. The system includes a mask frame having a plurality of ion implantation masks loosely connected thereto. The mask frame is provided with a plurality of frame alignment cavities, and each mask is provided with a plurality of mask alignment cavities. The system further includes a platen for holding workpieces. The platen may be provided with a plurality of mask alignment pins and frame alignment pins configured to engage the mask alignment cavities and frame alignment cavities, respectively. The mask frame can be lowered ontomore » the platen, with the frame alignment cavities moving into registration with the frame alignment pins to provide rough alignment between the masks and workpieces. The mask alignment cavities are then moved into registration with the mask alignment pins, thereby shifting each individual mask into precise alignment with a respective workpiece.« less
3-D ultrasound guidance of surgical robotics: a feasibility study.
Pua, Eric C; Fronheiser, Matthew P; Noble, Joanna R; Light, Edward D; Wolf, Patrick D; von Allmen, Daniel; Smith, Stephen W
2006-11-01
Laparoscopic ultrasound has seen increased use as a surgical aide in general, gynecological, and urological procedures. The application of real-time, three-dimensional (RT3D) ultrasound to these laparoscopic procedures may increase information available to the surgeon and serve as an additional intraoperative guidance tool. The integration of RT3D with recent advances in robotic surgery also can increase automation and ease of use. In this study, a 1-cm diameter probe for RT3D has been used laparoscopically for in vivo imaging of a canine. The probe, which operates at 5 MHz, was used to image the spleen, liver, and gall bladder as well as to guide surgical instruments. Furthermore, the three-dimensional (3-D) measurement system of the volumetric scanner used with this probe was tested as a guidance mechanism for a robotic linear motion system in order to simulate the feasibility of RT3D/robotic surgery integration. Using images acquired with the 3-D laparoscopic ultrasound device, coordinates were acquired by the scanner and used to direct a robotically controlled needle toward desired in vitro targets as well as targets in a post-mortem canine. The rms error for these measurements was 1.34 mm using optical alignment and 0.76 mm using ultrasound alignment.
Time-Extended Payoffs for Collectives of Autonomous Agents
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian K.
2002-01-01
A collective is a set of self-interested agents which try to maximize their own utilities, along with a a well-defined, time-extended world utility function which rates the performance of the entire system. In this paper, we use theory of collectives to design time-extended payoff utilities for agents that are both aligned with the world utility, and are "learnable", i.e., the agents can readily see how their behavior affects their utility. We show that in systems where each agent aims to optimize such payoff functions, coordination arises as a byproduct of the agents selfishly pursuing their own goals. A game theoretic analysis shows that such payoff functions have the net effect of aligning the Nash equilibrium, Pareto optimal solution and world utility optimum, thus eliminating undesirable behavior such as agents working at cross-purposes. We then apply collective-based payoff functions to the token collection in a gridworld problem where agents need to optimize the aggregate value of tokens collected across an episode of finite duration (i.e., an abstracted version of rovers on Mars collecting scientifically interesting rock samples, subject to power limitations). We show that, regardless of the initial token distribution, reinforcement learning agents using collective-based payoff functions significantly outperform both natural extensions of single agent algorithms and global reinforcement learning solutions based on "team games".
Lin, Hsien-Cheng
2017-02-01
Nursing information systems can enhance nursing practice and the efficiency and quality of administrative affairs within the nursing department and thus have been widely considered for implementation. Close alignment of human-computer interaction can advance optimal clinical performance with the use of information systems. However, a lack of introduction of the concept of alignment between users' perceptions and technological functionality has caused dissatisfaction, as shown in the existing literature. This study provides insight into the alignment between nurses' perceptions and how technological functionality affects their satisfaction with Nursing Information System use through a reductionist perspective of alignment. This cross-sectional study collected data from 531 registered nurses in Taiwan. The results indicated that "perceived usefulness in system quality alignment," "perceived usefulness in information quality alignment," "perceived ease of use in system quality alignment," "perceived ease of use in information quality alignment," and "perceived ease of use in service quality alignment" have significantly affected nurses' satisfaction with Nursing Information System use. However, "perceived usefulness in service quality alignment" had no significant effect on nurses' satisfaction. This study also provides some meaningful implications for theoretical and practical aspects of design.
Building a Common Pediatric Research Terminology for Accelerating Child Health Research
Bailey, L. Charles; Forrest, Christopher B.; Padula, Michael A.; Hirschfeld, Steven
2014-01-01
Longitudinal observational clinical data on pediatric patients in electronic format is becoming widely available. A new era of multi-institutional data networks that study pediatric diseases and outcomes across disparate health delivery models and care settings are also enabling an innovative collaborative rapid improvement paradigm called the Learning Health System. However, the potential alignment of routine clinical care, observational clinical research, pragmatic clinical trials, and health systems improvement requires a data infrastructure capable of combining information from systems and workflows that historically have been isolated from each other. Removing barriers to integrating and reusing data collected in different settings will permit new opportunities to develop a more complete picture of a patient’s care and to leverage data from related research studies. One key barrier is the lack of a common terminology that provides uniform definitions and descriptions of clinical observations and data. A well-characterized terminology ensures a common meaning and supports data reuse and integration. A common terminology allows studies to build upon previous findings and to reuse data collection tools and data management processes. We present the current state of terminology harmonization and describe a governance structure and mechanism for coordinating the development of a common pediatric research terminology that links to clinical terminologies and can be used to align existing terminologies. By reducing the barriers between clinical care and clinical research, a Learning Health System can leverage and reuse not only its own data resources but also broader extant data resources. PMID:24534404
Symmetry of oculomotor burst neuron coordinates about Listing's plane.
Crawford, J D; Vilis, T
1992-08-01
1. The purpose of this investigation was to determine the axes of eye rotation generated by oculomotor burst neuron populations and the coordinate system that they collectively define. In particular, we asked if such coordinates might be related to constraints in the emergent behavior, i.e., Listing's law for saccades. 2. The mesencephalic rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) was identified in four monkeys with the use of single-unit recording, and then explored with the use of electrical microstimulation and pharmacological inactivation with the inhibitory gamma-aminobutyric acid (GABA) agonist muscimol. Three-dimensional (3-D) eye positions and velocities were recorded in one or both eyes while alert animals made eye movements in response to visual stimuli and head rotation. 3. Unilateral stimulation of the riMLF (20 microA, 200 Hz, 300-600 ms) produced conjugate, constant velocity eye rotations, which then stopped abruptly and held their final positions. This is expected if the riMLF produces phasic signals upstream from the oculomotor integrator. 4. Units that burst before upward or downward saccades were recorded intermingled in each side of the riMLF. Unilateral stimulation of the same riMLF sites produced eye rotations about primarily torsional axes, clockwise (CW) during right riMLF stimulation and counterclockwise (CCW) during left stimulation. Only small and inconsistent vertical components were observed, supporting the view that the riMLF carries intermingled up and down signals. 5. The torsional axes of eye rotation produced by riMLF stimulation did not correlate to external anatomic landmarks. Instead, stimulation axes from both riMLF sides aligned with the primary gaze direction orthogonal to Listing's plane of eye positions recorded during saccades. 6. Injection of muscimol into one side of the riMLF produced a conjugate deficit in saccades and quick phases, including a 50% reduction in all vertical velocities and complete loss of one torsional direction. CW was lost after right riMLF inactivation, and CCW was lost after left inactivation. 7. The plane that separated the intact torsional axes from the missing axes correlated with the orientation of Listing's plane. Thus, during left or right riMLF inactivation, the vertical axes of intact horizontal saccades were abnormally aligned with Listing's plane. The orientation of these axes was not correlated with external anatomic landmarks. 8. As suggested by their alignment with Listing's plane, the intact vertical axes of horizontal saccades following riMLF inactivation were orthogonal to torsional riMLF stimulation axes.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Lin, Tao
Organic molecules are envisioned as the building blocks for design and fabrication of functional devices in future, owing to their versatility, low cost and flexibility. Although some devices such as organic light-emitting diode (OLED) have been already applied in our daily lives, the field is still in its infancy and numerous challenges still remain. In particular, fundamental understanding of the process of organic material fabrication at a molecular level is highly desirable. This thesis focuses on the design and fabrication of supramolecular and macromolecular nanostructures on a Au(111) surface through self-assembly, polymerization and a combination of two. We used scanning tunneling microscopy (STM) as an experimental tool and Monte Carlo (MC) and kinetic Monte Carlo (KMC) simulations as theoretical tools to characterize the structures of these systems and to investigate the mechanisms of the self-assembly and polymerization processes at a single-molecular level. The results of this thesis consist of four parts as below: Part I addresses the mechanisms of two-dimensional multicomponent supramolecular self-assembly via pyridyl-Fe-terpyridyl coordination. Firstly, we studied four types of self-assembled metal-organic systems exhibiting different dimensionalities using specifically-designed molecular building blocks. We found that the two-dimensional system is under thermodynamic controls while the systems of lower dimension are under kinetic controls. Secondly, we studied the self-assembly of a series of cyclic supramolecular polygons. Our results indicate that the yield of on-surface cyclic polygon structures is very low independent of temperature and concentration and this phenomenon can be attributed to a subtle competition between kinetic and thermodynamic controls. These results shed light on thermodynamic and kinetic controls in on-surface coordination self-assembly. Part II addresses the two-dimensional supramolecular self-assembly of porphyrin derivatives. Firstly, we investigated the coordination self-assembly of a series of peripheral bromo-phenyl and pyridyl substituted porphyrins with Fe. The self-assembly of the porphyrin derivatives in which phenyl groups are substituted by bromo-phenyl results in coordination networks exhibiting identical structures to that of the parent compounds, but contained nanopores that are functionalized by bromine substitutes. Secondly, we studied a two-dimensional coordination networks formed by 5,10,15,20-tetra(4-pyridyl)porphyrin and Fe. We discovered a novel coordination motif in which a pair of vertically aligned Fe atoms is ligated by four equatorial pyridyl groups. Lateral manipulation, vertical manipulation and tunneling spectroscopy were employed to characterize the networks. These novel coordination networks decorated with Br or vertically aligned Fe atoms may provide potential functions as nano-receptor, molecular magnetism or catalyst. Part III addresses the mechanism of on-surface Ullmann coupling reaction. We studied Pd- and Cu-catalyzed Ullmann coupling reactions between phenyl bromide functionalized porphyrin derivatives. We discovered that the reactions catalyzed by Pd or Cu can be described as a two-phase process that involves an initial activation followed by C-C bond formation. Analysis of rate constants of the Pd-catalyzed reactions allowed us to determine its activation energy as (0.41 +/- 0.03) eV. These results provide a quantitative understanding of on-surface Ullmann coupling reaction. Part IV addresses the on-surface self-assembly driven by a combination of coordination bonds and covalent bonds. Firstly, we utilized metal-directed template to control the on-surface polymerization process. Taking advantage of efficient topochemical enhancement owing to the conformation flexibility of the Cu-pyridyl bonds, macromolecular porphyrin structures that exhibit a narrow size distribution were synthesized. The results reveal that the polymerization process profited from the rich chemistry of Cu which catalyzed the C-C bond formation, controlled the size of the macromolecular products, and organized the macromolecules in a highly ordered manner on the surface. Secondly, we demonstrated a two-step approach for assembling metal-organic coordination network exhibiting very large pores. The first step involves obtaining one kind of building blocks via on-surface Ullmann coupling and the second step is coordination self-assembly. Moreover, the modulation of the surface-state electrons in the network was studied. These results provide new approaches to design and fabricate on-surface nanostructures. In summary, we resolved the structures and studied the on-surface assembly and reaction mechanisms of supramolecular and macromolecular nanostructures at a sub-molecular level. These fundamental studies may shed lights on design and fabrication of low-dimensional organic materials.
Effectiveness of base-of-skull immobilization system in a compact proton therapy setting.
Shafai-Erfani, Ghazal; Willoughby, Twyla; Ramakrishna, Naren; Meeks, Sanford; Kelly, Patrick; Zeidan, Omar
2018-05-01
The purpose of this study was to investigate daily repositioning accuracy by analyzing inter- and intra-fractional uncertainties associated with patients treated for intracranial or base of skull tumors in a compact proton therapy system with 6 degrees of freedom (DOF) robotic couch and a thermoplastic head mask indexed to a base of skull (BoS) frame. Daily orthogonal kV alignment images at setup position before and after daily treatments were analyzed for 33 patients. The system was composed of a new type of thermoplastic mask, a bite block, and carbon-fiber BoS couch-top insert specifically designed for proton therapy treatments. The correctional shifts in robotic treatment table with 6 DOF were evaluated and recorded based on over 1500 planar kV image pairs. Correctional shifts for patients with and without bite blocks were compared. Systematic and random errors were evaluated for all 6 DOF coordinates available for daily vector corrections. Uncertainties associated with geometrical errors and their sources, in addition to robustness analysis of various combinations of immobilization components were presented. Analysis of 644 fractions including patients with and without a bite block shows that the BoS immobilization system is capable of maintaining intra-fraction localization with submillimeter accuracy (in nearly 83%, 86%, 95% of cases along SI, LAT, and PA, respectively) in translational coordinates and subdegree precision (in 98.85%, 98.85%, and 96.4% of cases for roll, pitch, and yaw respectively) in rotational coordinates. The system overall fares better in intra-fraction localization precision compared to previously reported particle therapy immobilization systems. The use of a mask-attached type bite block has marginal impact on inter- or intra-fraction uncertainties compared to no bite block. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Leisher, Susannah Hopkins; Teoh, Zheyi; Reinebrant, Hanna; Allanson, Emma; Blencowe, Hannah; Erwich, Jan Jaap; Frøen, J Frederik; Gardosi, Jason; Gordijn, Sanne; Gülmezoglu, A Metin; Heazell, Alexander E P; Korteweg, Fleurisca; Lawn, Joy; McClure, Elizabeth M; Pattinson, Robert; Smith, Gordon C S; Tunçalp, Ӧzge; Wojcieszek, Aleena M; Flenady, Vicki
2016-09-15
To reduce the burden of 5.3 million stillbirths and neonatal deaths annually, an understanding of causes of deaths is critical. A systematic review identified 81 systems for classification of causes of stillbirth (SB) and neonatal death (NND) between 2009 and 2014. The large number of systems hampers efforts to understand and prevent these deaths. This study aimed to assess the alignment of current classification systems with expert-identified characteristics for a globally effective classification system. Eighty-one classification systems were assessed for alignment with 17 characteristics previously identified through expert consensus as necessary for an effective global system. Data were extracted independently by two authors. Systems were assessed against each characteristic and weighted and unweighted scores assigned to each. Subgroup analyses were undertaken by system use, setting, type of death included and type of characteristic. None of the 81 systems were aligned with more than 9 of the 17 characteristics; most (82 %) were aligned with four or fewer. On average, systems were aligned with 19 % of characteristics. The most aligned system (Frøen 2009-Codac) still had an unweighted score of only 9/17. Alignment with individual characteristics ranged from 0 to 49 %. Alignment was somewhat higher for widely used as compared to less used systems (22 % v 17 %), systems used only in high income countries as compared to only in low and middle income countries (20 % vs 16 %), and systems including both SB and NND (23 %) as compared to NND-only (15 %) and SB-only systems (13 %). Alignment was higher with characteristics assessing structure (23 %) than function (15 %). There is an unmet need for a system exhibiting all the characteristics of a globally effective system as defined by experts in the use of systems, as none of the 81 contemporary classification systems assessed was highly aligned with these characteristics. A particular concern in terms of global effectiveness is the lack of alignment with "ease of use" among all systems, including even the most-aligned. A system which meets the needs of users would have the potential to become the first truly globally effective classification system.
Analysis Of FEL Optical Systems With Grazing Incidence Mirrors
NASA Astrophysics Data System (ADS)
Knapp, C. E.; Viswanathan, V. K.; Bender, S. C.; Appert, Q. D.; Lawrence, G.; Barnard, C.
1986-11-01
The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.
PICsar: Particle in cell pulsar magnetosphere simulator
NASA Astrophysics Data System (ADS)
Belyaev, Mikhail A.
2016-07-01
PICsar simulates the magnetosphere of an aligned axisymmetric pulsar and can be used to simulate other arbitrary electromagnetics problems in axisymmetry. Written in Fortran, this special relativistic, electromagnetic, charge conservative particle in cell code features stretchable body-fitted coordinates that follow the surface of a sphere, simplifying the application of boundary conditions in the case of the aligned pulsar; a radiation absorbing outer boundary, which allows a steady state to be set up dynamically and maintained indefinitely from transient initial conditions; and algorithms for injection of charged particles into the simulation domain. PICsar is parallelized using MPI and has been used on research problems with 1000 CPUs.
The national response for preventing healthcare-associated infections: infrastructure development.
Mendel, Peter; Siegel, Sari; Leuschner, Kristin J; Gall, Elizabeth M; Weinberg, Daniel A; Kahn, Katherine L
2014-02-01
In 2009, the US Department of Health and Human Services (HHS) launched the Action Plan to Prevent Healthcare-associated Infections (HAIs). The Action Plan adopted national targets for reduction of specific infections, making HHS accountable for change across the healthcare system over which federal agencies have limited control. This article examines the unique infrastructure developed through the Action Plan to support adoption of HAI prevention practices. Interviews of federal (n=32) and other stakeholders (n=38), reviews of agency documents and journal articles (n=260), and observations of interagency meetings (n=17) and multistakeholder conferences (n=17) over a 3-year evaluation period. We extract key progress and challenges in the development of national HAI prevention infrastructure--1 of the 4 system functions in our evaluation framework encompassing regulation, payment systems, safety culture, and dissemination and technical assistance. We then identify system properties--for example, coordination and alignment, accountability and incentives, etc.--that enabled or hindered progress within each key development. The Action Plan has developed a model of interagency coordination (including a dedicated "home" and culture of cooperation) at the federal level and infrastructure for stimulating change through the wider healthcare system (including transparency and financial incentives, support of state and regional HAI prevention capacity, changes in safety culture, and mechanisms for stakeholder engagement). Significant challenges to infrastructure development included many related to the same areas of progress. The Action Plan has built a foundation of infrastructure to expand prevention of HAIs and presents useful lessons for other large-scale improvement initiatives.
ERIC Educational Resources Information Center
Potochnik, Tracie; Romans, Angela N.; Thompson, Joanne
2016-01-01
Promesa Boyle Heights, a neighborhood-level collaborative in Los Angeles, works to deliberately develop relationships, coordination, and alignment across multiple partners to benefit young people and families--with positive, measurable results. One unique aspect of Promesa is the substantive engagement of parents, youth, and residents as key…
ERIC Educational Resources Information Center
Potochnik, Tracie; Romans, Angela N.; Thompson, Joanne
2016-01-01
Promesa Boyle Heights, a neighborhood-level collaborative in Los Angeles, works to deliberately develop relationships, coordination, and alignment across multiple partners to benefit young people and families--with positive, measurable results. One unique aspect of Promesa is the substantive engagement of parents, youth, and residents as key…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... structure and is aligned with water management activities during recent flood and drought events in the... operating activities concerned with water management within the Greater Mississippi River Basin. The Greater... require coordination of basin-wide water management activities. b. To serve as a forum for discussion of...
Conditioning for Dance: Training for Peak Performance in All Dance Forms.
ERIC Educational Resources Information Center
Franklin, Eric
This book is designed to help dancers improve their technique and performance in all dance forms by strengthening the body's core while improving coordination, balance, alignment, and flexibility. It features 170 imagery illustrations paired with 160 dance-specific exercises to help maximize body-mind conditioning. It culminates with a 20-minute,…
NASA Astrophysics Data System (ADS)
Tietze, Kristina; Ritter, Oliver
2013-10-01
3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency-space domain.
NASA Astrophysics Data System (ADS)
Folley, Christopher; Bronowicki, Allen
2005-09-01
Prediction of optical performance for large, deployable telescopes under environmental conditions and mechanical disturbances is a crucial part of the design verification process of such instruments for all phases of design and operation: ground testing, commissioning, and on-orbit operation. A Structural-Thermal-Optical-Performance (STOP) analysis methodology is often created that integrates the output of one analysis with the input of another. The integration of thermal environment predictions with structural models is relatively well understood, while the integration of structural deformation results into optical analysis/design software is less straightforward. A Matlab toolbox has been created that effectively integrates the predictions of mechanical deformations on optical elements generated by, for example, finite element analysis, and computes optical path differences for the distorted prescription. The engine of the toolbox is the real ray-tracing algorithm that allows the optical surfaces to be defined in a single, global coordinate system thereby allowing automatic alignment of the mechanical coordinate system with the optical coordinate system. Therefore, the physical location of the optical surfaces is identical in the optical prescription and the finite element model. The application of rigid body displacements to optical surfaces, however, is more general than for use solely in STOP analysis, such as the analysis of misalignments during the commissioning process. Furthermore, all the functionality of Matlab is available for optimization and control. Since this is a new tool for use on flight programs, it has been verified against CODE V. The toolbox' functionality, to date, is described, verification results are presented, and, as an example of its utility, results of a thermal distortion analysis are presented using the James Webb Space Telescope (JWST) prescription.
3D Biometrics for Hindfoot Alignment Using Weightbearing CT.
Lintz, François; Welck, Matthew; Bernasconi, Alessio; Thornton, James; Cullen, Nicholas P; Singh, Dishan; Goldberg, Andy
2017-06-01
Hindfoot alignment on 2D radiographs can present anatomical and operator-related bias. In this study, software designed for weightbearing computed tomography (WBCT) was used to calculate a new 3D biometric tool: the Foot and Ankle Offset (FAO). We described the distribution of FAO in a series of data sets from clinically normal, varus, and valgus cases, hypothesizing that FAO values would be significantly different in the 3 groups. In this retrospective cohort study, 135 data sets (57 normal, 38 varus, 40 valgus) from WBCT (PedCAT; CurveBeam LLC, Warrington, PA) were obtained from a specialized foot and ankle unit. 3D coordinates of specific anatomical landmarks (weightbearing points of the calcaneus, of the first and fifth metatarsal heads and the highest and centermost point on the talar dome) were collected. These data were processed with the TALAS system (CurveBeam), which resulted in an FAO value for each case. Intraobserver and interobserver reliability were also assessed. In normal cases, the mean value for FAO was 2.3% ± 2.9%, whereas in varus and valgus cases, the mean was -11.6% ± 6.9% and 11.4% ± 5.7%, respectively, with a statistically significant difference among groups ( P < .001). The distribution of the normal population was Gaussian. The inter- and intraobserver reliability were 0.99 +/- 0.00 and 0.97 +/-0.02 Conclusions: This pilot study suggests that the FAO is an efficient tool for measuring hindfoot alignment using WBCT. Previously published research in this field has looked at WBCT by adapting 2D biometrics. The present study introduces the concept of 3D biometrics and describes an efficient, semiautomatic tool for measuring hindfoot alignment. Level III, retrospective comparative study.
The UCSC genome browser and associated tools
Haussler, David; Kent, W. James
2013-01-01
The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting. PMID:22908213
The UCSC genome browser and associated tools.
Kuhn, Robert M; Haussler, David; Kent, W James
2013-03-01
The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting.
NASA Astrophysics Data System (ADS)
Liu, J.-C.; Malkin, Z.; Zhu, Z.
2018-03-01
The International Celestial Reference Frame (ICRF) is currently realized by the very long baseline interferometry (VLBI) observations of extragalactic sources with the zero proper motion assumption, while Gaia will observe proper motions of these distant and faint objects to an accuracy of tens of microarcseconds per year. This paper investigates the difference between VLBI and Gaia quasar proper motions and it aims to understand the impact of quasar proper motions on the alignment of the ICRF and Gaia reference frame. We use the latest time series data of source coordinates from the International VLBI Service analysis centres operated at Goddard Space Flight Center (GSF2017) and Paris observatory (OPA2017), as well as the Gaia auxiliary quasar solution containing 2191 high-probability optical counterparts of the ICRF2 sources. The linear proper motions in right ascension and declination of VLBI sources are derived by least-squares fits while the proper motions for Gaia sources are simulated taking into account the acceleration of the Solar system barycentre and realistic uncertainties depending on the source brightness. The individual and global features of source proper motions in GSF2017 and OPA2017 VLBI data are found to be inconsistent, which may result from differences in VLBI observations, data reduction and analysis. A comparison of the VLBI and Gaia proper motions shows that the accuracies of the components of rotation and glide between the two systems are 2-4 μas yr- 1 based on about 600 common sources. For the future alignment of the ICRF and Gaia reference frames at different wavelengths, the proper motions of quasars must necessarily be considered.
Corporate Philanthropy Toward Community Health Improvement in Manufacturing Communities.
McHugh, Megan; Farley, Diane; Maechling, Claude R; Dunlop, Dorothy D; French, Dustin D; Holl, Jane L
2018-06-01
Virtually all large employers engage in corporate philanthropy, but little is known about the extent to which it is directed toward improving community health. We conducted in-depth interviews with leaders of corporate philanthropy from 13 of the largest manufacturing companies in the US to understand how giving decisions were made, the extent to which funding was directed towards improving community health, and whether companies coordinate with local public health agencies. We found that corporate giving was sizable and directed towards communities in which the manufacturers have a large presence. Giving was aligned with the social determinants of health (i.e., aimed at improving economic stability, the neighborhood and physical environment, education, food security and nutrition, the community and social context, and the health care system). However, improving public health was not often cited as a goal of corporate giving, and coordination with public health agencies was limited. Our results suggest that there may be opportunities for public health agencies to help guide corporate philanthropy, particularly by sharing community-level data and offering their measurement and evaluation expertise.
Chen, Zhe; Zhang, Fumin; Qu, Xinghua; Liang, Baoqiu
2015-01-01
In this paper, we propose a new approach for the measurement and reconstruction of large workpieces with freeform surfaces. The system consists of a handheld laser scanning sensor and a position sensor. The laser scanning sensor is used to acquire the surface and geometry information, and the position sensor is utilized to unify the scanning sensors into a global coordinate system. The measurement process includes data collection, multi-sensor data fusion and surface reconstruction. With the multi-sensor data fusion, errors accumulated during the image alignment and registration process are minimized, and the measuring precision is significantly improved. After the dense accurate acquisition of the three-dimensional (3-D) coordinates, the surface is reconstructed using a commercial software piece, based on the Non-Uniform Rational B-Splines (NURBS) surface. The system has been evaluated, both qualitatively and quantitatively, using reference measurements provided by a commercial laser scanning sensor. The method has been applied for the reconstruction of a large gear rim and the accuracy is up to 0.0963 mm. The results prove that this new combined method is promising for measuring and reconstructing the large-scale objects with complex surface geometry. Compared with reported methods of large-scale shape measurement, it owns high freedom in motion, high precision and high measurement speed in a wide measurement range. PMID:26091396
Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping.
Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian
2016-12-31
For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.
Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping
Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian
2016-01-01
For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable. PMID:28042855
NASA Technical Reports Server (NTRS)
Steffl, A. J.; Delamere, P. A.; Bagenal, F.
2006-01-01
In this third paper in a series presenting observations by the Cassini Ultraviolet Imaging Spectrometer (UVIS) of the Io plasma torus, we show remarkable, though subtle, spatio-temporal variations in torus properties. The Io torus is found to exhibit significant, near sinusoidal variations in ion composition as a functions of azimuthal position. The azimuthal variation in composition is such that the mixing ratio of S II us strongly correlated with the mixing ratio of S III and the equatorial electron density and strongly anti-correlated with the mixing ratios of both S IV and O II and the equatorial electron temperature. Surprisingly, the azimuthal variation in ion composition is observed to have a period of 10.07 h -- 1.5% longer than the System III rotation period of Jupiter, yet 1.3% shorter than the System UV period defined by [Brown, M. E., 1995. J. Geophys. Res. 100, 21683-21696]. Although the amplitude of the azimuthal variation of S III and O II remained in the range of 2-5%, the amplitude of the S II and S IV compositional variation ranged between 5 and 25% during the UVIS observations. Furthermore, the amplitude of the azimuthal variations of S II and S IV appears to be modulated by its location in System III longitude, such that when the region of maximum S II mixing ration (minimum S IV mixing ratio) is aligned with a System III longitude of 200 deg +/-, the amplitude is a factor of 4 greater than when the variation is anti-aligned. This behavior can explain numerous, often apparently contradictory, observations of variations in the properties of the Io plasma torus with the System III and System IV coordinate systems.
Housing and Child Well Being: Implications for Research, Policy, and Practice.
Fowler, Patrick J; Farrell, Anne F
2017-09-01
Inadequate housing and homelessness represent significant barriers to family stability and child development. An accumulating body of evidence documents the relatively high risk of family separation among families experiencing housing instability and homelessness, the extent of housing problems experienced by families involved in the child welfare system, and the disproportionately high rates of homelessness among youth aging out of foster care. Vulnerable youth and families interact frequently with various social service programs intended to mitigate multifaceted and multilevel risks, however, systems efforts and resources are rarely coordinated and results to date are mixed. We introduce 13 papers that are part of a burgeoning, increasingly sophisticated body of scholarship that inform coordinated responses to inadequate housing experienced by families involved in child welfare and related interventions. We note emergent themes and state a pressing need for research that accounts for ecological and contextual influences, examines the differential impact of housing and service interventions, identifies critical ingredients of effective housing and service interventions, and positions for scale-up. We distill findings into a set of observations and recommendations that align with best intentions to improve quality of life and promote well being among some of society's most vulnerable individuals. © Society for Community Research and Action 2017.
Connecting Humans and Water: The Case for Coordinated Data Collection
NASA Astrophysics Data System (ADS)
Braden, J. B.; Brown, D. G.; Jolejole-Foreman, C.; Maidment, D. R.; Marquart-Pyatt, S. T.; Schneider, D. W.
2012-12-01
"Water problems" are fundamentally human problems -- aligning water quality and quantity with human aspirations. In the U.S., however, the few ongoing efforts to repeatedly observe humans in relation to water at large scale are disjointed both with each other and with observing systems for water quality and quantity. This presentation argues for the systematic, coordinated, and on-going collection of primary data on humans, spanning beliefs, perceptions, behaviors, and institutions, alongside the water environments in which they are embedded. Such an enterprise would advance not only water science and related policy and management decisions, but also generate basic insights into human cognition, decision making, and institutional development as they relate to the science of sustainability. In support of this argument, two types of original analyses are presented. First, two case studies using existing data sets illustrate methodological issues involved in integrating natural system data with social data at large scale: one concerns the influence of water quality conditions on personal efforts to conserve water and contribute financially to environmental protection; the other explores relationships between recreation behavior and water quality. Both case studies show how methodological differences between data programs seriously undercut the potential to draw inference about human responses to water quality while also illustrating the scientific potential that could be realized from linking human and scientific surveys of the water environment. Second, the results of a survey of water scientists concerning important scientific and policy questions around humans and water provide insight into data collection priorities for a coordinated program of observation.
Dynamics of Geometrically Nonlinear Elastic Nonthin Anisotropic Shells of Variable Thickness
NASA Astrophysics Data System (ADS)
Marchuk, M. V.; Tuchapskii, R. I.
2017-11-01
A theory of dynamic elastic geometrically nonlinear deformation of nonthin anisotropic shells with variable thickness is constructed. Shells are assumed asymmetric about the reference surface. Functions are expanded into Legendre series. The basic equations are written in a coordinate system aligned with the lines of curvature of the reference surface. The equations of motion and appropriate boundary conditions are obtained using the Hamilton-Ostrogradsky variational principle. The change in metric across the thickness is taken into account. The theory assumes that the refinement process is regular and allows deriving equations including products of terms of Legendre series of unknown functions of arbitrary order. The behavior of a square metallic plate acted upon by a pressure pulse distributed over its face is studied.
NASA Astrophysics Data System (ADS)
Kulse, P.; Sasai, K.; Schulz, K.; Wietstruck, M.
2017-06-01
In the last decades the semiconductor technology has been driven by Moore's law leading to high performance CMOS technologies with feature sizes of less than 10 nm [1]. It has been pointed out that not only scaling but also the integration of novel components and technology modules into CMOS/BiCMOS technologies is becoming more attractive to realize smart and miniaturized systems [2]. Driven by new applications in the area of communication, health and automation, new components and technology modules such as BiCMOS embedded RF-MEMS, high-Q passives, Sibased microfluidics and InP-SiGe BiCMOS heterointegration have been demonstrated [3-6]. In contrast to standard VLSI processes fabricated on front side of the silicon wafer, these new technology modules require addition backside processing of the wafer; thus an accurate alignment between the front and backside of the wafer is mandatory. In previous work an advanced back to front side alignment technique and implementation into IHP's 0.25/0.13 μm high performance SiGe:C BiCMOS backside process module has been presented [7]. The developed technique enables a high resolution and accurate lithography on the backside of BiCMOS wafer for additional backside processing. In addition to the aforementioned back side process technologies, new applications like Through-Silicon Vias (TSV) for interposers and advanced substrate technologies for 3D heterogeneous integration demand not only single wafer fabrication but also processing of wafer stacks provided by temporary and permanent wafer bonding [8]. Therefore, the available overlay measurement techniques are not suitable if overlay and alignment marks are realized at the bonding interface of a wafer stack which consists of both a silicon device and a silicon carrier wafer. The former used EVG 40NT automated overlay measurement system, which use two opposite positioned microscopes inspecting simultaneous the wafer back and front side, is not capable measuring embedded overlay marks. In this work, the non-contact infrared alignment system of the Nikon i-line Stepper NSR-SF150 for both the alignment and the overlay determination of bonded wafer stacks with embedded alignment marks are used to achieve an accurate alignment between the different wafer sides. The embedded field image alignment (FIA) marks of the interface and the device wafer top layer are measured in a single measurement job. By taking the offsets between all different FIA's into account, after correcting the wafer rotation induced FIA position errors, hence an overlay for the stacked wafers can be determined. The developed approach has been validated by a standard back to front side application. The overlay was measured and determined using both, the EVG NT40 automated measurement system with special overlay marks and the measurement of the FIA marks of the front and back side layer. A comparison of both results shows mismatches in x and y translations smaller than 200 nm, which is relatively small compared to the overlay tolerances of +/-500 nm for the back to front side process. After the successful validation of the developed technique, special wafer stacks with FIA alignment marks in the bonding interface are fabricated. Due to the super IR light transparency of both doubled side polished wafers, the embedded FIA marks generate a stable and clear signal for accurate x and y wafer coordinate positioning. The FIA marks of the device wafer top layer were measured under standard condition in a developed photoresist mask without IR illumination. Following overlay calculation shows an overlay of less than 200 nm, which enables very accurate process condition for highly scaled TSV integration and advanced substrate integration into IHP's 0.25/0.13 μm SiGe:C BiCMOS technology. The presented method can be applied for both the standard back to front side process technologies and also new temporary and permanent wafer bonding applications.
Wang, Yi; Yuan, Qunhui; Xu, Hongbo; Zhu, Xuefeng; Gan, Wei
2016-07-21
Low-dimensional molecular motifs with diversity developed via the on-surface chemistry are attracting growing interest for their potential in advanced nanofabrication. In this work, scanning tunneling microscopy was employed to investigate the in situ and ex situ metal coordinations between 4,4'-ditetradecyl-2,2'-bipyridine (bpy) and Zn(ii) or Cu(ii) ions at a highly oriented pyrolytic graphite (HOPG)/1-phenyloctane interface under ambient conditions. The results demonstrate that the bpy adopts a flat-lying orientation with its substituted alkyl chains in a tail-to-tail arrangement in a bpy monolayer. For the in situ coordination, the bpy/Zn(ii) and bpy/Cu(ii) complexes are aligned in edge-on fashions, wherein the bpy stands vertically on the HOPG surface and interdigitates at the alkyl chains. In the two-dimensional arrays of ex situ coordinated complexes, metal dependent motifs have been observed with Zn(ii) and Cu(ii), wherein the bipyridine moieties are parallel to the graphite surface. These results suggest that the desired on-surface coordination architectures may be achieved by the intentional selection of the metal centers.
Khan, Arshad M.; Perez, Jose G.; Wells, Claire E.; Fuentes, Olac
2018-01-01
The rat has arguably the most widely studied brain among all animals, with numerous reference atlases for rat brain having been published since 1946. For example, many neuroscientists have used the atlases of Paxinos and Watson (PW, first published in 1982) or Swanson (S, first published in 1992) as guides to probe or map specific rat brain structures and their connections. Despite nearly three decades of contemporaneous publication, no independent attempt has been made to establish a basic framework that allows data mapped in PW to be placed in register with S, or vice versa. Such data migration would allow scientists to accurately contextualize neuroanatomical data mapped exclusively in only one atlas with data mapped in the other. Here, we provide a tool that allows levels from any of the seven published editions of atlases comprising three distinct PW reference spaces to be aligned to atlas levels from any of the four published editions representing S reference space. This alignment is based on registration of the anteroposterior stereotaxic coordinate (z) measured from the skull landmark, Bregma (β). Atlas level alignments performed along the z axis using one-dimensional Cleveland dot plots were in general agreement with alignments obtained independently using a custom-made computer vision application that utilized the scale-invariant feature transform (SIFT) and Random Sample Consensus (RANSAC) operation to compare regions of interest in photomicrographs of Nissl-stained tissue sections from the PW and S reference spaces. We show that z-aligned point source data (unpublished hypothalamic microinjection sites) can be migrated from PW to S space to a first-order approximation in the mediolateral and dorsoventral dimensions using anisotropic scaling of the vector-formatted atlas templates, together with expert-guided relocation of obvious outliers in the migrated datasets. The migrated data can be contextualized with other datasets mapped in S space, including neuronal cell bodies, axons, and chemoarchitecture; to generate data-constrained hypotheses difficult to formulate otherwise. The alignment strategies provided in this study constitute a basic starting point for first-order, user-guided data migration between PW and S reference spaces along three dimensions that is potentially extensible to other spatial reference systems for the rat brain. PMID:29765309
ERIC Educational Resources Information Center
Taliaferro, Wayne; Pham, Duy
2017-01-01
This brief examines how California is aligning education and training opportunities for people who are currently or formerly incarcerated. It is the first report in our series "Reconnecting Justice in the States," which will explore coordinated justice, education, and workforce policy and practice at the state level. It is part of…
ADHD Diagnosis and Management: A Practical Guide for the Clinic and the Classroom
ERIC Educational Resources Information Center
Wolraich, Mark L.; DuPaul, George J.
2010-01-01
Effective, "integrated" care across clinical, classroom, and home settings: that's what every student with ADHD needs to achieve academic and social success. Now professionals have one complete, highly accessible guide to delivering this kind of coordinated treatment for children in Grades 1-8. Aligned with the AAP's new guidelines for ADHD…
ERIC Educational Resources Information Center
Bennett, Dawn; Sunderland, Naomi; Bartleet, Brydie-Leigh; Power, Anne
2016-01-01
Although the value of service-learning opportunities has long been aligned to student engagement, global citizenship, and employability, the rhetoric can be far removed from the reality of coordinating such activities within higher education. This article stems from arts-based service-learning initiatives with Indigenous communities in Australia.…
Ishii, Lisa; Pronovost, Peter J; Demski, Renee; Wylie, Gill; Zenilman, Michael
2016-06-01
An increasing volume of ambulatory surgeries has led to an increase in the number of ambulatory surgery centers (ASCs). Some academic health systems have aligned with ASCs to create a more integrated care delivery system. Yet, these centers are diverse in many areas, including specialty types, ownership models, management, physician employment, and regulatory oversight. Academic health systems then face challenges in integrating these ASCs into their organizations. Johns Hopkins Medicine created the Ambulatory Surgery Coordinating Council in 2014 to manage, standardize, and promote peer learning among its eight ASCs. The Armstrong Institute for Patient Safety and Quality provided support and a model for this organization through its quality management infrastructure. The physician-led council defined a mission and created goals to identify best practices, uniformly provide the highest-quality patient-centered care, and continuously improve patient outcomes and experience across ASCs. Council members built trust and agreed on a standardized patient safety and quality dashboard to report measures that include regulatory, care process, patient experience, and outcomes data. The council addressed unintentional outcomes and process variation across the system and agreed to standard approaches to optimize quality. Council members also developed a process for identifying future goals, standardizing care practices and electronic medical record documentation, and creating quality and safety policies. The early success of the council supports the continuation of the Armstrong Institute model for physician-led quality management. Other academic health systems can learn from this model as they integrate ASCs into their complex organizations.
Automated full-3D digitization system for documentation of paintings
NASA Astrophysics Data System (ADS)
Karaszewski, Maciej; Adamczyk, Marcin; Sitnik, Robert; Michoński, Jakub; Załuski, Wojciech; Bunsch, Eryk; Bolewicki, Paweł
2013-05-01
In this paper, a fully automated 3D digitization system for documentation of paintings is presented. It consists of a specially designed frame system for secure fixing of painting, a custom designed, structured light-based, high-resolution measurement head with no IR and UV emission. This device is automatically positioned in two axes (parallel to the surface of digitized painting) with additional manual positioning in third, perpendicular axis. Manual change of observation angle is also possible around two axes to re-measure even partially shadowed areas. The whole system is built in a way which provides full protection of digitized object (moving elements cannot reach its vicinity) and is driven by computer-controlled, highly precise servomechanisms. It can be used for automatic (without any user attention) and fast measurement of the paintings with some limitation to their properties: maximum size of the picture is 2000mm x 2000mm (with deviation of flatness smaller than 20mm) Measurement head is automatically calibrated by the system and its possible working volume starts from 50mm x 50mm x 20mm (10000 points per square mm) and ends at 120mm x 80mm x 60mm (2500 points per square mm). The directional measurements obtained with this system are automatically initially aligned due to the measurement head's position coordinates known from servomechanisms. After the whole painting is digitized, the measurements are fine-aligned with color-based ICP algorithm to remove any influence of possible inaccuracy of positioning devices. We present exemplary digitization results along with the discussion about the opportunities of analysis which appear for such high-resolution, 3D computer models of paintings.
A combined microphone and camera calibration technique with application to acoustic imaging.
Legg, Mathew; Bradley, Stuart
2013-10-01
We present a calibration technique for an acoustic imaging microphone array, combined with a digital camera. Computer vision and acoustic time of arrival data are used to obtain microphone coordinates in the camera reference frame. Our new method allows acoustic maps to be plotted onto the camera images without the need for additional camera alignment or calibration. Microphones and cameras may be placed in an ad-hoc arrangement and, after calibration, the coordinates of the microphones are known in the reference frame of a camera in the array. No prior knowledge of microphone positions, inter-microphone spacings, or air temperature is required. This technique is applied to a spherical microphone array and a mean difference of 3 mm was obtained between the coordinates obtained with this calibration technique and those measured using a precision mechanical method.
Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.
2002-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT) with various orientations with respect to the bulk material coordinates. A nanotube, the local polymer adjacent to the nanotube, and the nanotube/polymer interface have been modeled as an equivalent-continuum fiber by using an equivalent-continuum modeling method. The equivalent-continuum fiber accounts for the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composite. As an example, the proposed approach is used for the constitutive modeling of a SWNT/LaRC-SI (with a PmPV interface) composite system, with aligned nanotubes, three-dimensionally randomly oriented nanotubes, and nanotubes oriented with varying degrees of axisymmetry. It is shown that the Young s modulus is highly dependent on the SWNT orientation distribution.
Ultrasonic inspection and deployment apparatus
Michaels, Jennifer E.; Michaels, Thomas E.; Mech, Jr., Stephen J.
1984-01-01
An ultrasonic inspection apparatus for the inspection of metal structures, especially installed pipes. The apparatus combines a specimen inspection element, an acoustical velocity sensing element, and a surface profiling element, all in one scanning head. A scanning head bellows contains a volume of oil above the pipe surface, serving as acoustical couplant between the scanning head and the pipe. The scanning head is mounted on a scanning truck which is mobile around a circular track surrounding the pipe. The scanning truck has sufficient motors, gears, and position encoders to allow the scanning head six degrees of motion freedom. A computer system continually monitors acoustical velocity, and uses that parameter to process surface profiling and inspection data. The profiling data is used to automatically control scanning head position and alignment and to define a coordinate system used to identify and interpret inspection data. The apparatus is suitable for highly automated, remote application in hostile environments, particularly high temperature and radiation areas.
Study on the key alignment technology of the catadioptric optical system
NASA Astrophysics Data System (ADS)
Song, Chong; Fu, Xing; Fu, Xi-hong; Kang, Xiao-peng; Liu, Kai
2017-02-01
Optical system alignment has a great influence on the whole system accuracy. In this paper, the processing of optical system alignment was mainly studied, the processing method of optics on the primary and secondary mirrors, front correction lens group and behind correction lens group with high precision centering lathe and internal focusing telescope. Then using the height indicator complete the system alignment of the primary mirror, secondary mirror, front correction group and behind correction group. Finally, based on the zygo interferometer detect the wavefront information. Using this alignment program for catadioptric optical system, the wavefront aberration of optical system, focal length, modulation transfer function (MTF) and other technical indicators have reached the requirements.
In-flight alignment using H ∞ filter for strapdown INS on aircraft.
Pei, Fu-Jun; Liu, Xuan; Zhu, Li
2014-01-01
In-flight alignment is an effective way to improve the accuracy and speed of initial alignment for strapdown inertial navigation system (INS). During the aircraft flight, strapdown INS alignment was disturbed by lineal and angular movements of the aircraft. To deal with the disturbances in dynamic initial alignment, a novel alignment method for SINS is investigated in this paper. In this method, an initial alignment error model of SINS in the inertial frame is established. The observability of the system is discussed by piece-wise constant system (PWCS) theory and observable degree is computed by the singular value decomposition (SVD) theory. It is demonstrated that the system is completely observable, and all the system state parameters can be estimated by optimal filter. Then a H ∞ filter was designed to resolve the uncertainty of measurement noise. The simulation results demonstrate that the proposed algorithm can reach a better accuracy under the dynamic disturbance condition.
Doing Duo - a case study of entrainment in William Forsythe's choreography "Duo".
Waterhouse, Elizabeth; Watts, Riley; Bläsing, Bettina E
2014-01-01
Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe's choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models.
Selection of head and whisker coordination strategies during goal-oriented active touch.
Schroeder, Joseph B; Ritt, Jason T
2016-04-01
In the rodent whisker system, a key model for neural processing and behavioral choices during active sensing, whisker motion is increasingly recognized as only part of a broader motor repertoire employed by rodents during active touch. In particular, recent studies suggest whisker and head motions are tightly coordinated. However, conditions governing the selection and temporal organization of such coordinated sensing strategies remain poorly understood. We videographically reconstructed head and whisker motions of freely moving mice searching for a randomly located rewarded aperture, focusing on trials in which animals appeared to rapidly "correct" their trajectory under tactile guidance. Mice orienting after unilateral contact repositioned their whiskers similarly to previously reported head-turning asymmetry. However, whisker repositioning preceded head turn onsets and was not bilaterally symmetric. Moreover, mice selectively employed a strategy we term contact maintenance, with whisking modulated to counteract head motion and facilitate repeated contacts on subsequent whisks. Significantly, contact maintenance was not observed following initial contact with an aperture boundary, when the mouse needed to make a large corrective head motion to the front of the aperture, but only following contact by the same whisker field with the opposite aperture boundary, when the mouse needed to precisely align its head with the reward spout. Together these results suggest that mice can select from a diverse range of sensing strategies incorporating both knowledge of the task and whisk-by-whisk sensory information and, moreover, suggest the existence of high level control (not solely reflexive) of sensing motions coordinated between multiple body parts. Copyright © 2016 the American Physiological Society.
Selection of head and whisker coordination strategies during goal-oriented active touch
2016-01-01
In the rodent whisker system, a key model for neural processing and behavioral choices during active sensing, whisker motion is increasingly recognized as only part of a broader motor repertoire employed by rodents during active touch. In particular, recent studies suggest whisker and head motions are tightly coordinated. However, conditions governing the selection and temporal organization of such coordinated sensing strategies remain poorly understood. We videographically reconstructed head and whisker motions of freely moving mice searching for a randomly located rewarded aperture, focusing on trials in which animals appeared to rapidly “correct” their trajectory under tactile guidance. Mice orienting after unilateral contact repositioned their whiskers similarly to previously reported head-turning asymmetry. However, whisker repositioning preceded head turn onsets and was not bilaterally symmetric. Moreover, mice selectively employed a strategy we term contact maintenance, with whisking modulated to counteract head motion and facilitate repeated contacts on subsequent whisks. Significantly, contact maintenance was not observed following initial contact with an aperture boundary, when the mouse needed to make a large corrective head motion to the front of the aperture, but only following contact by the same whisker field with the opposite aperture boundary, when the mouse needed to precisely align its head with the reward spout. Together these results suggest that mice can select from a diverse range of sensing strategies incorporating both knowledge of the task and whisk-by-whisk sensory information and, moreover, suggest the existence of high level control (not solely reflexive) of sensing motions coordinated between multiple body parts. PMID:26792880
Optical Testing of Retroreflectors for Cryogenic Applications
NASA Technical Reports Server (NTRS)
Ohl, Raymond G.; Frey, Bradley J.; Stock, Joseph M.; McMann, Joseph C.; Zukowiski, Tmitri J.
2010-01-01
A laser tracker (LT) is an important coordinate metrology tool that uses laser interferometry to determine precise distances to objects, points, or surfaces defined by an optical reference, such as a retroreflector. A retroreflector is a precision optic consisting of three orthogonal faces that returns an incident laser beam nearly exactly parallel to the incident beam. Commercial retroreflectors are designed for operation at room temperature and are specified by the divergence, or beam deviation, of the returning laser beam, usually a few arcseconds or less. When a retroreflector goes to extreme cold (.35 K), however, it could be anticipated that the precision alignment between the three faces and the surface figure of each face would be compromised, resulting in wavefront errors and beam divergence, degrading the accuracy of the LT position determination. Controlled tests must be done beforehand to determine survivability and these LT coordinate errors. Since conventional interferometer systems and laser trackers do not operate in vacuum or at cold temperatures, measurements must be done through a vacuum window, and care must be taken to ensure window-induced errors are negligible, or can be subtracted out. Retroreflector holders must be carefully designed to minimize thermally induced stresses. Changes in the path length and refractive index of the retroreflector have to be considered. Cryogenic vacuum testing was done on commercial solid glass retroreflectors for use on cryogenic metrology tasks. The capabilities to measure wavefront errors, measure beam deviations, and acquire laser tracker coordinate data were demonstrated. Measurable but relatively small increases in beam deviation were shown, and further tests are planned to make an accurate determination of coordinate errors.
Interplanetary magnetic field dependency of stable Sun-aligned polar cap arcs
NASA Technical Reports Server (NTRS)
Valladares, C. E.; Carlson, H. C., Jr.; Fukui, K.
1994-01-01
This is the first analysis, using a statistically significant data set, of the morphological dependence of the presence, orientation, and motion of stable sun-aligned polar cap arcs upon the vector interplanetary magnetic field (IMF). For the one winter season analyzed we had 1392 all-sky 630.0-nm images of 2-min resolution containing a total of 150 polar cap arcs, all with corresponding values of the IMF as measured by International Monitoring Platform (IMP) 8 or International Sun Earth Explorer (ISEE) 2. After demonstrating an unbiased data set with smooth normal distributions of events versus the dimensions of time, space, and IMF component, we examine IMF dependencies of the properties of the optical arcs. A well-defined dependence for B(sub z) is found for the presence/absence of stable Sun-aligned polar cap arcs. Consistent with previous statistical studies, the probability of observing polar cap aurora steadily increases for larger positive values of B(sub z), and linearly decreases when B(sub z) becomes more negative. The probability of observing Sun-aligned arcs within the polar cap is determined to vary sharply as a function of the arc location; arcs were observed 40% of the time on the dawnside and only 10% on the duskside. This implies an overall probability of at least 40% for the whole polar cap. 20% of the arcs were observed during 'southward IMF conditions,' but in fact under closer inspection were found to have been formed under northward IMF conditions; these 'residual' positive B(sub z) arcs ha d a delayed residence time in the polar cap of about what would be expected after a north to south transition of B(sub z). A firm dependence on B(sub y) is also found for both the orientation and the dawn-dusk direction of motion of the arcs. All the arcs are Sun-aligned to a first approximation, but present deviations from this orientation, depending primarily upon the location of the arc in corrected geomagnetic (CG) coordinates. The arcs populating the 06-12 and the 12-18 quadrants of the CG coordinate system point toward the cusp. The B(sub y) dependency of the arc alignment is consistent with a cusp displacement in local time according to the sign of B(sub y). We found that the arc direction of motion depended both on B(sub y) and the arc location within the polar cap. For a given value of B(sub y) two well-defined regions (or cells) exist. Within each cell the arcs move in the same direction toward the boundary between the cells. The arcs located in the duskside move dawnward; those in the dawnside move duskward. The relative size of these dusk and dawn regions (or cells) are controlled by the magnitude of B(sub y). This persistent dusk-dawn motion fo the polar cap arcs is interpreted in terms of newly open flux tubes entering the polar cap and exerting a displacement of the convective cells and the polar cap arcs that are embedded within them.
Dynamic interferometer alignment and its utility in UV Fourier transform spectrometer systems
NASA Technical Reports Server (NTRS)
Dorval, Rick K.; Engel, James R.; Wyntjes, Geert J.
1993-01-01
Dynamic alignment has been demonstrated as a practical approach to alignment maintenance for systems in the infrared region of the spectrum. On the basis of work done by OPTRA, this technique was introduced in commercial Fourier transform spectrometer systems in 1982 and in various forms is now available from a number of manufacturers. This paper reports on work by OPTRA to extend the basic technique to systems operating in the ultraviolet. In addition, this paper reports the preliminary results of the development of an alignment system using a laser diode in place of a gas laser normally found in dynamic alignment systems. A unique optical system and spatial heterodyne technique allows for achievement of a metrology system with characteristics that fully satisfy the requirements of an ultraviolet spectrometer system.
NASA Technical Reports Server (NTRS)
Scott, W. A.
1984-01-01
The propulsion simulator calibration laboratory (PSCL) in which calibrations can be performed to determine the gross thrust and airflow of propulsion simulators installed in wind tunnel models is described. The preliminary checkout, evaluation and calibration of the PSCL's 3 component force measurement system is reported. Methods and equipment were developed for the alignment and calibration of the force measurement system. The initial alignment of the system demonstrated the need for more efficient means of aligning system's components. The use of precision alignment jigs increases both the speed and accuracy with which the system is aligned. The calibration of the force measurement system shows that the methods and equipment for this procedure can be successful.
A distributed system for fast alignment of next-generation sequencing data.
Srimani, Jaydeep K; Wu, Po-Yen; Phan, John H; Wang, May D
2010-12-01
We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.
NASA Technical Reports Server (NTRS)
Thomas, N. L.; Chisel, D. M.
1976-01-01
The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.
Evaluation of Tower Shadowing on Anemometer Measurements at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruggeman, David Alan
2016-06-14
The objective of this study is to evaluate the effect of tower shadowing from the meteorology towers at LANL during 2014. This study is in response to the Department of Energy Meteorological Coordinating Council visit in 2015 that recommended an evaluation of any biases in the wind data introduced by the tower and boom alignment at all meteorology towers.
USDA-ARS?s Scientific Manuscript database
The need for resources is a major driver of animal migration and yet migration itself is energetically demanding. Mormon crickets and nymphal locusts readily engage in cannibalistic attacks that result in aligned, coordinated movement of individuals in massive bands that march daily for weeks at a ...
National Strategy for Aviation Security
2007-03-26
for Aviation Security (hereafter referred to as the Strategy) to protect the Nation and its interests from threats in the Air Domain. The Secretary of... Aviation security is best achieved by integrating public and private aviation security global activities into a coordinated effort to detect, deter...might occur. The Strategy aligns Federal government aviation security programs and initiatives into a comprehensive and cohesive national effort
NASA Astrophysics Data System (ADS)
Chen, Jiawen; Leung, Franco King-Chi; Stuart, Marc C. A.; Kajitani, Takashi; Fukushima, Takanori; van der Giessen, Erik; Feringa, Ben L.
2018-02-01
A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of nature's protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large proteins, in which mechanical stress induces a coordinated movement. However, artificial molecular muscles have often relied on covalent polymer-based actuators. Here, we describe the macroscopic contractile muscle-like motion of a supramolecular system (comprising 95% water) formed by the hierarchical self-assembly of a photoresponsive amphiphilic molecular motor. The molecular motor first assembles into nanofibres, which further assemble into aligned bundles that make up centimetre-long strings. Irradiation induces rotary motion of the molecular motors, and propagation and accumulation of this motion lead to contraction of the fibres towards the light source. This system supports large-amplitude motion, fast response, precise control over shape, as well as weight-lifting experiments in water and air.
Laser beam alignment and profilometry using diagnostic fluorescent safety mirrors
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.
2011-03-01
There are a wide range of laser beam delivery systems in use for various purposes; including industrial and medical applications. Virtually all such beam delivery systems for practical purposes employ optical systems comprised of mirrors and lenses to shape, focus and guide the laser beam down to the material being processed. The goal of the laser beam delivery is to set the optimum parameters and to "fold" the beam path to reduce the mechanical length of the optical system, thereby allowing a physically compact system. In many cases, even a compact system can incorporate upwards of six mirrors and a comparable number of lenses all needing alignment so they are collinear. One of the major requirements for use of such systems in industry is a method of safe alignment. The alignment process requires that the aligner determine where the beam strikes each element. The aligner should also preferably be able to determine the shape or pattern of the laser beam at that point and its relative power. These alignments are further compounded in that the laser beams generated are not visible to the unaided human eye. Such beams are also often of relatively high power levels, and are thereby a significant hazard to the eyes of the aligner. Obvious an invisible beam makes it nearly impossible to align laser system without some form of optical assistance. The predominant method of visually aligning the laser beam delivery is the use of thermal paper, paper cards or fluorescing card material. The use of paper products which have limited power handling capability or coated plastics can produce significant debris and contaminants within the beam line that ultimately damage the optics. The use of the cards can also create significant laser light scatter jeopardizing the safety of the person aligning the system. This paper covers a new safety mirror design for use with at various UV and Near IR wavelengths (193 nm to 1064 nm) within laser beam delivery systems and how its use can provide benefits covering eye safety, precise alignment and beam diagnostics.
NASA Astrophysics Data System (ADS)
Larios, Edgar; Yang, Wei Y.; Schulten, K.; Gruebele, M.
2004-12-01
Computing the root-mean-square deviation (RMSD) of a partially folded protein structure from the folded state requires the two structures to be translationally and rotationally aligned. We examine the constraint matrix L that preserves orthogonality of the rotation matrix during minimization of the RMSD. L is proportional to the sensitivity of the RMSD to the rotational alignment matrix. Its trace yields an isotropic reaction coordinate, while its off-diagonal matrix elements are related to the moment of inertia derivative tensor that encodes anisotropic information about the structure. We use L to compare λ-repressor fragment 6-85 (λ 6-85) to several partially folded structures obtained from molecular dynamics simulation (MD), and find that L as a reaction coordinate indeed encodes some information about protein topology. We also apply C α RMSD, L and tryptophan sidechain mobility as criteria for native state structural fluctuations of several λ 6-85 mutants. The mutants' denaturation curves and fluorescence quenching are measured experimentally for comparison. The results are in accord with a recent proposal that structural fluctuations near the chromophore can induce increased native state fluorescence or hyperfluorescence during unfolding of proteins.
Role of cerebellar nodulus and uvula on the vestibular quick phase spatial constancy.
Pettorossi, V E; Grassi, S; Errico, P; Barmack, N H
2001-01-01
We investigated the orientation of quick phases (QPs) of vestibularly-induced eye movements in rabbits in response to "off-vertical" sinusoidal vestibular stimulation. We also examined the possible role of the cerebellar nodulus and ventral uvula in controlling QP spatial orientation and modification. During "off-vertical" vestibular stimulation QPs remained aligned with the earth's horizontal plane, while the slow phases (SPs) were aligned with the plane of vestibular stimulation. This suggests that QPs are coded in gravito-inertial coordinates and SPs in head coordinates. When rabbits were oscillated in the light (20 degrees peak-to-peak; 0.2 Hz) about an "off-vertical" axis for 2 h, the QPs changed their trajectory, abandoning the earth's horizontal plane to approach the plane of the stimulus. By contrast, in the absence of conjunctive optokinetic stimulation, QPs remained fixed in the earth's horizontal plane even after 2 h of "off-vertical" stimulation. The conjunctive combination of optokinetic and vestibular stimulation caused QPs to change their plane of rotation. After lesion of the nodulus-uvula the ability of rabbits to reorient QPs during conjoint vestibular-optokinetic stimulation was maintained. We conclude that the space orientation and adaptation of QPs do not require cerebellar control.
Photoresist thin-film effects on alignment process capability
NASA Astrophysics Data System (ADS)
Flores, Gary E.; Flack, Warren W.
1993-08-01
Two photoresists were selected for alignment characterization based on their dissimilar coating properties and observed differences on alignment capability. The materials are Dynachem OFPR-800 and Shipley System 8. Both photoresists were examined on two challenging alignment levels in a submicron CMOS process, a nitride level and a planarized second level metal. An Ultratech Stepper model 1500 which features a darkfield alignment system with a broadband green light for alignment signal detection was used for this project. Initially, statistically designed linear screening experiments were performed to examine six process factors for each photoresist: viscosity, spin acceleration, spin speed, spin time, softbake time, and softbake temperature. Using the results derived from the screening experiments, a more thorough examination of the statistically significant process factors was performed. A full quadratic experimental design was conducted to examine viscosity, spin speed, and spin time coating properties on alignment. This included a characterization of both intra and inter wafer alignment control and alignment process capability. Insight to the different alignment behavior is analyzed in terms of photoresist material properties and the physical nature of the alignment detection system.
Study on the position accuracy of a mechanical alignment system
NASA Astrophysics Data System (ADS)
Cai, Yimin
In this thesis, we investigated the precision level and established the baseline achieved by a mechanical alignment system using datums and reference surfaces. The factors which affect the accuracy of mechanical alignment system were studied and methodology was developed to suppress these factors so as to reach its full potential precision. In order to characterize the mechanical alignment system quantitatively, a new optical position monitoring system by using quadrant detectors has been developed in this thesis, it can monitor multi-dimensional degrees of mechanical workpieces in real time with high precision. We studied the noise factors inside the system and optimized the optical system. Based on the fact that one of the major limiting noise factors is the shifting of the laser beam, a noise cancellation technique has been developed successfully to suppress this noise, the feasibility of an ultra high resolution (<20 A) for displacement monitoring has been demonstrated. Using the optical position monitoring system, repeatability experiment of the mechanical alignment system has been conducted on different kinds of samples including steel, aluminum, glass and plastics with the same size 100mm x 130mm. The alignment accuracy was studied quantitatively rather than qualitatively before. In a controlled environment, the alignment precision can be improved 5 folds by securing the datum without other means of help. The alignment accuracy of an aluminum workpiece having reference surface by milling is about 3 times better than by shearing. Also we have found that sample material can have fairly significant effect on the alignment precision of the system. Contamination trapped between the datum and reference surfaces in mechanical alignment system can cause errors of registration or reduce the level of manufacturing precision. In the thesis, artificial and natural dust particles were used to simulate the real situations and their effects on system precision have been investigated. In this experiment, we discovered two effective cleaning processes.
Visual-perceptual mismatch in robotic surgery.
Abiri, Ahmad; Tao, Anna; LaRocca, Meg; Guan, Xingmin; Askari, Syed J; Bisley, James W; Dutson, Erik P; Grundfest, Warren S
2017-08-01
The principal objective of the experiment was to analyze the effects of the clutch operation of robotic surgical systems on the performance of the operator. The relative coordinate system introduced by the clutch operation can introduce a visual-perceptual mismatch which can potentially have negative impact on a surgeon's performance. We also assess the impact of the introduction of additional tactile sensory information on reducing the impact of visual-perceptual mismatch on the performance of the operator. We asked 45 novice subjects to complete peg transfers using the da Vinci IS 1200 system with grasper-mounted, normal force sensors. The task involves picking up a peg with one of the robotic arms, passing it to the other arm, and then placing it on the opposite side of the view. Subjects were divided into three groups: aligned group (no mismatch), the misaligned group (10 cm z axis mismatch), and the haptics-misaligned group (haptic feedback and z axis mismatch). Each subject performed the task five times, during which the grip force, time of completion, and number of faults were recorded. Compared to the subjects that performed the tasks using a properly aligned controller/arm configuration, subjects with a single-axis misalignment showed significantly more peg drops (p = 0.011) and longer time to completion (p < 0.001). Additionally, it was observed that addition of tactile feedback helps reduce the negative effects of visual-perceptual mismatch in some cases. Grip force data recorded from grasper-mounted sensors showed no difference between the different groups. The visual-perceptual mismatch created by the misalignment of the robotic controls relative to the robotic arms has a negative impact on the operator of a robotic surgical system. Introduction of other sensory information and haptic feedback systems can help in potentially reducing this effect.
Alignment of 1000 Genomes Project reads to reference assembly GRCh38.
Zheng-Bradley, Xiangqun; Streeter, Ian; Fairley, Susan; Richardson, David; Clarke, Laura; Flicek, Paul
2017-07-01
The 1000 Genomes Project produced more than 100 trillion basepairs of short read sequence from more than 2600 samples in 26 populations over a period of five years. In its final phase, the project released over 85 million genotyped and phased variants on human reference genome assembly GRCh37. An updated reference assembly, GRCh38, was released in late 2013, but there was insufficient time for the final phase of the project analysis to change to the new assembly. Although it is possible to lift the coordinates of the 1000 Genomes Project variants to the new assembly, this is a potentially error-prone process as coordinate remapping is most appropriate only for non-repetitive regions of the genome and those that did not see significant change between the two assemblies. It will also miss variants in any region that was newly added to GRCh38. Thus, to produce the highest quality variants and genotypes on GRCh38, the best strategy is to realign the reads and recall the variants based on the new alignment. As the first step of variant calling for the 1000 Genomes Project data, we have finished remapping all of the 1000 Genomes sequence reads to GRCh38 with alternative scaffold-aware BWA-MEM. The resulting alignments are available as CRAM, a reference-based sequence compression format. The data have been released on our FTP site and are also available from European Nucleotide Archive to facilitate researchers discovering variants on the primary sequences and alternative contigs of GRCh38. © The Authors 2017. Published by Oxford University Press.
In-Flight Alignment Using H ∞ Filter for Strapdown INS on Aircraft
Pei, Fu-Jun; Liu, Xuan; Zhu, Li
2014-01-01
In-flight alignment is an effective way to improve the accuracy and speed of initial alignment for strapdown inertial navigation system (INS). During the aircraft flight, strapdown INS alignment was disturbed by lineal and angular movements of the aircraft. To deal with the disturbances in dynamic initial alignment, a novel alignment method for SINS is investigated in this paper. In this method, an initial alignment error model of SINS in the inertial frame is established. The observability of the system is discussed by piece-wise constant system (PWCS) theory and observable degree is computed by the singular value decomposition (SVD) theory. It is demonstrated that the system is completely observable, and all the system state parameters can be estimated by optimal filter. Then a H ∞ filter was designed to resolve the uncertainty of measurement noise. The simulation results demonstrate that the proposed algorithm can reach a better accuracy under the dynamic disturbance condition. PMID:24511300
A near-Infrared SETI Experiment: Alignment and Astrometric precision
NASA Astrophysics Data System (ADS)
Duenas, Andres; Maire, Jerome; Wright, Shelley; Drake, Frank D.; Marcy, Geoffrey W.; Siemion, Andrew; Stone, Remington P. S.; Tallis, Melisa; Treffers, Richard R.; Werthimer, Dan
2016-06-01
Beginning in March 2015, a Near-InfraRed Optical SETI (NIROSETI) instrument aiming to search for fast nanosecond laser pulses, has been commissioned on the Nickel 1m-telescope at Lick Observatory. The NIROSETI instrument makes use of an optical guide camera, SONY ICX694 CCD from PointGrey, to align our selected sources into two 200µm near-infrared Avalanche Photo Diodes (APD) with a field-of-view of 2.5"x2.5" each. These APD detectors operate at very fast bandwidths and are able to detect pulse widths extending down into the nanosecond range. Aligning sources onto these relatively small detectors requires characterizing the guide camera plate scale, static optical distortion solution, and relative orientation with respect to the APD detectors. We determined the guide camera plate scale as 55.9+- 2.7 milli-arcseconds/pixel and magnitude limit of 18.15mag (+1.07/-0.58) in V-band. We will present the full distortion solution of the guide camera, orientation, and our alignment method between the camera and the two APDs, and will discuss target selection within the NIROSETI observational campaign, including coordination with Breakthrough Listen.
Higher Order Lagrange Finite Elements In M3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Chen; H.R. Strauss; S.C. Jardin
The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemesmore » have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.« less
Opportunities to Align California's PreK-3 Education System
ERIC Educational Resources Information Center
Policy Analysis for California Education, PACE, 2016
2016-01-01
"PreK-3 Alignment in California's Education System: Obstacles and Opportunities" by Rachel Valentino and Deborah J. Stipek reviews the opportunities and challenges that must be addressed to better align PreK-3 education in California. The report describes policies and practices that districts have implemented to strengthen alignment, and…
Design of practical alignment device in KSTAR Thomson diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J. H., E-mail: jhlee@nfri.re.kr; University of Science and Technology; Lee, S. H.
2016-11-15
The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broadmore » wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.« less
Design of practical alignment device in KSTAR Thomson diagnostic.
Lee, J H; Lee, S H; Yamada, I
2016-11-01
The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak's Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR's Thomson scattering diagnostics.
Normal tissue toxicity after small field hypofractionated stereotactic body radiation.
Milano, Michael T; Constine, Louis S; Okunieff, Paul
2008-10-31
Stereotactic body radiation (SBRT) is an emerging tool in radiation oncology in which the targeting accuracy is improved via the detection and processing of a three-dimensional coordinate system that is aligned to the target. With improved targeting accuracy, SBRT allows for the minimization of normal tissue volume exposed to high radiation dose as well as the escalation of fractional dose delivery. The goal of SBRT is to minimize toxicity while maximizing tumor control. This review will discuss the basic principles of SBRT, the radiobiology of hypofractionated radiation and the outcome from published clinical trials of SBRT, with a focus on late toxicity after SBRT. While clinical data has shown SBRT to be safe in most circumstances, more data is needed to refine the ideal dose-volume metrics.
Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.
2011-10-01
Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview methodology showing how it is possible to reduce complex alignment directions into a simplified set of instructions for layman service engineers.
Automation of the targeting and reflective alignment concept
NASA Technical Reports Server (NTRS)
Redfield, Robin C.
1992-01-01
The automated alignment system, described herein, employs a reflective, passive (requiring no power) target and includes a PC-based imaging system and one camera mounted on a six degree of freedom robot manipulator. The system detects and corrects for manipulator misalignment in three translational and three rotational directions by employing the Targeting and Reflective Alignment Concept (TRAC), which simplifies alignment by decoupling translational and rotational alignment control. The concept uses information on the camera and the target's relative position based on video feedback from the camera. These relative positions are converted into alignment errors and minimized by motions of the robot. The system is robust to exogenous lighting by virtue of a subtraction algorithm which enables the camera to only see the target. These capabilities are realized with relatively minimal complexity and expense.
Urology Group Compensation and Ancillary Service Models in an Era of Value-based Care.
Shore, Neal D; Jacoby, Dana
2016-01-01
Changes involving the health care economic landscape have affected physicians' workflow, productivity, compensation structures, and culture. Ongoing Federal legislation regarding regulatory documentation and imminent payment-changing methodologies have encouraged physician consolidation into larger practices, creating affiliations with hospitals, multidisciplinary medical specialties, and integrated delivery networks. As subspecialization and evolution of care models have accelerated, independent medical groups have broadened ancillary service lines by investing in enterprises that compete with hospital-based (academic and nonacademic) entities, as well as non-physician- owned multispecialty enterprises, for both outpatient and inpatient services. The looming and dramatic shift from volume- to value-based health care compensation will assuredly affect urology group compensation arrangements and productivity formulae. For groups that can implement change rapidly, efficiently, and harmoniously, there will be opportunities to achieve the Triple Aim goals of the Patient Protection and Affordable Care Act, while maintaining a successful medical-financial practice. In summary, implementing new payment algorithms alongside comprehensive care coordination will assist urology groups in addressing the health economic cost and quality challenges that have been historically encountered with fee-for-service systems. Urology group leadership and stakeholders will need to adjust internal processes, methods of care coordination, cultural dependency, and organizational structures in order to create better systems of care and management. In response, ancillary services and patient throughput will need to evolve in order to adequately align quality measurement and reporting systems across provider footprints and patient populations.
Cotter, Christopher R.; Schüttler, Heinz-Bernd; Igoshin, Oleg A.; Shimkets, Lawrence J.
2017-01-01
Collective cell movement is critical to the emergent properties of many multicellular systems, including microbial self-organization in biofilms, embryogenesis, wound healing, and cancer metastasis. However, even the best-studied systems lack a complete picture of how diverse physical and chemical cues act upon individual cells to ensure coordinated multicellular behavior. Known for its social developmental cycle, the bacterium Myxococcus xanthus uses coordinated movement to generate three-dimensional aggregates called fruiting bodies. Despite extensive progress in identifying genes controlling fruiting body development, cell behaviors and cell–cell communication mechanisms that mediate aggregation are largely unknown. We developed an approach to examine emergent behaviors that couples fluorescent cell tracking with data-driven models. A unique feature of this approach is the ability to identify cell behaviors affecting the observed aggregation dynamics without full knowledge of the underlying biological mechanisms. The fluorescent cell tracking revealed large deviations in the behavior of individual cells. Our modeling method indicated that decreased cell motility inside the aggregates, a biased walk toward aggregate centroids, and alignment among neighboring cells in a radial direction to the nearest aggregate are behaviors that enhance aggregation dynamics. Our modeling method also revealed that aggregation is generally robust to perturbations in these behaviors and identified possible compensatory mechanisms. The resulting approach of directly combining behavior quantification with data-driven simulations can be applied to more complex systems of collective cell movement without prior knowledge of the cellular machinery and behavioral cues. PMID:28533367
An analytical perspective of Global health initiatives in Tanzania and Zambia.
Mwisongo, Aziza; Soumare, Alice Ntamwishimiro; Nabyonga-Orem, Juliet
2016-07-18
A number of Global health initiatives (GHIs) have been created to support low and middle income countries. Their support has been of different forms. The African Region has benefitted immensely from GHIs and continues to register an increase in health partnerships and initiatives. However, information on the functioning and operationalisation of GHIs in the countries is limited. This study involved two country case studies, one in Tanzania and the other one in Zambia. Data were collected using a semi-structured questionnaire. The aims were to understand and profile the GHIs supporting health development and to assess their governance and alignment with country priorities, harmonisation and alignment of their interventions and efforts, and contribution towards health systems strengthening. The respondents included senior officers from health stakeholder agencies at the national and sub-national levels. The qualitative data were analysed using thematic content analysis in MAXQDA software. Health systems in both Tanzania and Zambia are decentralised. They have benefitted from GHI support in fighting the common health problems of HIV/AIDS, tuberculosis, malaria and vaccine-preventable diseases. In both countries, no GHI adequately made use of the existing Sector-wide Approach (SWAp) mechanisms but they largely operate through their unique structures and committees. GHI efforts to improve general health governance have not been matched with similar efforts from the countries. Their support to health system strengthening has not been comprehensive but has involved the selection of a few areas some of which were disease-focused. On the positive side, however, in both Tanzania and Zambia improved alignment with the countries' priorities is noted in that most of the proposals submitted to the GHIs refer to the priorities, objectives and strategies in the national health development plans and, GHIs depend on the national health information systems. GHIs are important funders of health in low and middle income countries. However, there is a need for the countries to take a proactive role in improving the governance, coordination and planning of the GHIs that they benefit from. This will also maximise the return on investment for the GHIs.
AlexSys: a knowledge-based expert system for multiple sequence alignment construction and analysis
Aniba, Mohamed Radhouene; Poch, Olivier; Marchler-Bauer, Aron; Thompson, Julie Dawn
2010-01-01
Multiple sequence alignment (MSA) is a cornerstone of modern molecular biology and represents a unique means of investigating the patterns of conservation and diversity in complex biological systems. Many different algorithms have been developed to construct MSAs, but previous studies have shown that no single aligner consistently outperforms the rest. This has led to the development of a number of ‘meta-methods’ that systematically run several aligners and merge the output into one single solution. Although these methods generally produce more accurate alignments, they are inefficient because all the aligners need to be run first and the choice of the best solution is made a posteriori. Here, we describe the development of a new expert system, AlexSys, for the multiple alignment of protein sequences. AlexSys incorporates an intelligent inference engine to automatically select an appropriate aligner a priori, depending only on the nature of the input sequences. The inference engine was trained on a large set of reference multiple alignments, using a novel machine learning approach. Applying AlexSys to a test set of 178 alignments, we show that the expert system represents a good compromise between alignment quality and running time, making it suitable for high throughput projects. AlexSys is freely available from http://alnitak.u-strasbg.fr/∼aniba/alexsys. PMID:20530533
Zhang, Wenqiang; Cheng, Chuan; Fang, Peilin; Tang, Bin; Zhang, Jindou; Huang, Guoming; Cong, Xin; Zhang, Bao; Ji, Xiao; Miao, Ling
2016-02-14
Nowadays, MXenes have received extensive concern as a prominent electrode material of electrochemical capacitors. As two important factors to the capacitance, the influence of the intrinsical terminations (F, O and OH) and coordination atoms (C and N) is investigated using first-principles calculations. According to the density of states aligned with the standard hydrogen electrode, it turns out that a Ti3CNO2 monolayer is proven to show an obvious pseudocapacitive behavior, while the bare, F and OH terminated Ti3CN monolayers may only present electrochemical double layer characters in an aqueous electrolyte. Moreover, the illustration of molecular orbitals over the Fermi level are mainly contributed by the d-orbitals of Ti atoms coordinated with O and N atoms, indicating that the redox pseudocapacitance of the Ti3CNO2 monolayer is promoted by the coordination N atoms. Then the superiority of N bonded Ti atoms in accepting charges can be visualized through the charge population. Further, the larger ratio of C/N in the coordination environment of Ti atoms indicates that more electrons can be stored. Our investigation can give an instructional advice in the MXenes-electrode production.
On the application of photogrammetry to the fitting of jawbone-anchored bridges.
Strid, K G
1985-01-01
Misfit between a jawbone-anchored bridge and the abutments in the patient's jaw may result in, for example, fixture fracture. To achieve improved alignment, the bridge base could be prepared in a numerically-controlled tooling machine using measured abutment coordinates as primary data. For each abutment, the measured values must comprise the coordinates of a reference surface as well as the spatial orientation of the fixture/abutment longitudinal axis. Stereophotogrammetry was assumed to be the measuring method of choice. To assess its potentials, a lower-jaw model with accurately positioned signals was stereophotographed and the films were measured in a stereocomparator. Model-space coordinates, computed from the image coordinates, were compared to the known signal coordinates. The root-mean-square error in position was determined to 0.03-0.08 mm, the maximum individual error amounting to 0.12 mm, whereas the r. m. s. error in axis direction was found to be 0.5-1.5 degrees with a maximum individual error of 1.8 degrees. These errors are of the same order as can be achieved by careful impression techniques. The method could be useful, but because of its complexity, stereophotogrammetry is not recommended as a standard procedure.
Shear Alignment of Diblock Copolymers for Patterning Nanowire Meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, Kyle T.
2016-09-08
Metallic nanowire meshes are useful as cheap, flexible alternatives to indium tin oxide – an expensive, brittle material used in transparent conductive electrodes. We have fabricated nanowire meshes over areas up to 2.5 cm 2 by: 1) mechanically aligning parallel rows of diblock copolymer (diBCP) microdomains; 2) selectively infiltrating those domains with metallic ions; 3) etching away the diBCP template; 4) sintering to reduce ions to metal nanowires; and, 5) repeating steps 1 – 4 on the same sample at a 90° offset. We aligned parallel rows of polystyrene-b-poly(2-vinylpyridine) [PS(48.5 kDa)-b-P2VP(14.5 kDa)] microdomains by heating above its glass transition temperaturemore » (T g ≈ 100°C), applying mechanical shear pressure (33 kPa) and normal force (13.7 N), and cooling below T g. DiBCP samples were submerged in aqueous solutions of metallic ions (15 – 40 mM ions; 0.1 – 0.5 M HCl) for 30 – 90 minutes, which coordinate to nitrogen in P2VP. Subsequent ozone-etching and sintering steps yielded parallel nanowires. We aimed to optimize alignment parameters (e.g. shear and normal pressures, alignment duration, and PDMS thickness) to improve the quality, reproducibility, and scalability of meshes. We also investigated metals other than Pt and Au that may be patterned using this technique (Cu, Ag).« less
HAL: a hierarchical format for storing and analyzing multiple genome alignments.
Hickey, Glenn; Paten, Benedict; Earl, Dent; Zerbino, Daniel; Haussler, David
2013-05-15
Large multiple genome alignments and inferred ancestral genomes are ideal resources for comparative studies of molecular evolution, and advances in sequencing and computing technology are making them increasingly obtainable. These structures can provide a rich understanding of the genetic relationships between all subsets of species they contain. Current formats for storing genomic alignments, such as XMFA and MAF, are all indexed or ordered using a single reference genome, however, which limits the information that can be queried with respect to other species and clades. This loss of information grows with the number of species under comparison, as well as their phylogenetic distance. We present HAL, a compressed, graph-based hierarchical alignment format for storing multiple genome alignments and ancestral reconstructions. HAL graphs are indexed on all genomes they contain. Furthermore, they are organized phylogenetically, which allows for modular and parallel access to arbitrary subclades without fragmentation because of rearrangements that have occurred in other lineages. HAL graphs can be created or read with a comprehensive C++ API. A set of tools is also provided to perform basic operations, such as importing and exporting data, identifying mutations and coordinate mapping (liftover). All documentation and source code for the HAL API and tools are freely available at http://github.com/glennhickey/hal. hickey@soe.ucsc.edu or haussler@soe.ucsc.edu Supplementary data are available at Bioinformatics online.
How personal and standardized coordination impact implementation of integrated care.
Benzer, Justin K; Cramer, Irene E; Burgess, James F; Mohr, David C; Sullivan, Jennifer L; Charns, Martin P
2015-10-02
Integrating health care across specialized work units has the potential to lower costs and increase quality and access to mental health care. However, a key challenge for healthcare managers is how to develop policies, procedures, and practices that coordinate care across specialized units. The purpose of this study was to identify how organizational factors impacted coordination, and how to facilitate implementation of integrated care. Semi-structured interviews were conducted in August 2009 with 30 clinic leaders and 35 frontline staff who were recruited from a convenience sample of 16 primary care and mental health clinics across eight medical centers. Data were drawn from a management evaluation of primary care-mental health integration in the US Department of Veterans Affairs. To protect informant confidentiality, the institutional review board did not allow quotations. Interviews identified antecedents of organizational coordination processes, and highlighted how these antecedents can impact the implementation of integrated care. Overall, implementing new workflow practices were reported to create conflicts with pre-existing standardized coordination processes. Personal coordination (i.e., interpersonal communication processes) between primary care leaders and staff was reported to be effective in overcoming these barriers both by working around standardized coordination barriers and modifying standardized procedures. This study identifies challenges to integrated care that might be solved with attention to personal and standardized coordination. A key finding was that personal coordination both between primary care and mental health leaders and between frontline staff is important for resolving barriers related to integrated care implementation. Integrated care interventions can involve both new standardized procedures and adjustments to existing procedures. Aligning and integrating procedures between primary care and specialty care requires personal coordination amongst leaders. Interpersonal relationships should be strengthened between staff when personal connections are important for coordinating patient care across clinical settings.
Competition policy in health care markets: navigating the enforcement and policy maze.
Gaynor, Martin
2014-06-01
US health care is in ferment. Private entities are merging, aligning, and coordinating in a wide array of configurations. At the same time, there is a great deal of policy change. This includes the federal government's Affordable Care Act, as well as actions by Medicare, state legislatures, and state agencies. The health system is built upon markets, which determine how (and how well) goods and services are delivered to consumers, so it is critical that these markets work as well as possible. As the primary federal antitrust enforcement agencies, the Federal Trade Commission and the Department of Justice are charged with ensuring that health care markets operate well, but they are not alone. The functioning of health care markets is also profoundly affected by other parts of the federal government (notably the Centers for Medicare and Medicaid Services) and by state legislation and regulation. In this current period of such dynamic change, it is particularly important for the antitrust agencies to continue and enhance their communication and coordination with other government agencies as well as to maintain vigilant antitrust enforcement and consumer protection in health care markets. Project HOPE—The People-to-People Health Foundation, Inc.
Cyclin B in mouse oocytes and embryos: importance for human reproduction and aneuploidy.
Polański, Zbigniew; Homer, Hayden; Kubiak, Jacek Z
2012-01-01
Oocyte maturation and early embryo development require precise coordination between cell cycle progression and the developmental programme. Cyclin B plays a major role in this process: its accumulation and degradation is critical for driving the cell cycle through activation and inactivation of the major cell cycle kinase, CDK1. CDK1 activation is required for M-phase entry whereas its inactivation leads to exit from M-phase. The tempo of oocyte meiotic and embryonic mitotic divisions is set by the rate of cyclin B accumulation and the timing of its destruction. By controlling when cyclin B destruction is triggered and by co-ordinating this with the completion of chromosome alignment, the spindle assembly checkpoint (SAC) is a critical quality control system important for averting aneuploidy and for building in the flexibility required to better integrate cell cycle progression with development. In this review we focus on cyclin B metabolism in mouse oocytes and embryos and illustrate how the cell cycle-powered clock (in fact cyclin B-powered clock) controls oocyte maturation and early embryo development, thereby providing important insight into human reproduction and potential causes of Down syndrome.
Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing
Henkel, Patrick
2017-01-01
Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform’s coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing. PMID:28594369
High accuracy step gauge interferometer
NASA Astrophysics Data System (ADS)
Byman, V.; Jaakkola, T.; Palosuo, I.; Lassila, A.
2018-05-01
Step gauges are convenient transfer standards for the calibration of coordinate measuring machines. A novel interferometer for step gauge calibrations implemented at VTT MIKES is described. The four-pass interferometer follows Abbe’s principle and measures the position of the inductive probe attached to a measuring head. The measuring head of the instrument is connected to a balanced boom above the carriage by a piezo translation stage. A key part of the measuring head is an invar structure on which the inductive probe and the corner cubes of the measuring arm of the interferometer are attached. The invar structure can be elevated so that the probe is raised without breaking the laser beam. During probing, the bending of the probe and the interferometer readings are recorded and the measurement face position is extrapolated to zero force. The measurement process is fully automated and the face positions of the steps can be measured up to a length of 2 m. Ambient conditions are measured continuously and the refractive index of air is compensated for. Before measurements the step gauge is aligned with an integrated 2D coordinate measuring system. The expanded uncertainty of step gauge calibration is U=\\sqrt{{{(64 nm)}2}+{{(88× {{10}-9}L)}2}} .
Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing.
Henkel, Patrick
2017-06-08
Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform's coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing.
In-flight angular alignment of inertial navigation systems by means of radio aids
NASA Technical Reports Server (NTRS)
Tanner, W.
1972-01-01
The principles involved in the angular alignment of the inertial reference by nondirectional data from radio aids are developed and compared with conventional methods of alignment such as gyro-compassing and pendulous vertical determination. The specific problem is considered of the space shuttle reentry and a proposed technique for the alignment of the inertial reference system some time before landing. A description is given of the digital simulation of a transponder interrogation system and of its interaction with the inertial navigation system. Data from reentry simulations are used to demonstrate the effectiveness of in-flight inertial system alignment. Concluding remarks refer to other potential applications such as space shuttle orbit insertion and air navigation of conventional aircraft.
2010-11-01
controlling erosion, reducing industrial pollution , protecting watersheds, managing river basins, and implementing disaster risk reduction activities to...Agriculture; (3) Hydropower; (4) Environment; (5) Governance and Management; and (6) Transboundary issues. Figure 4 summarizes the goals and alignment...and its neighbors; strengthen Afghanistan’s capacity to engage its neighbors on transboundary water resources; and strengthen the environment
Documentation for the machine-readable version of the lick Saturn-Voyager Reference Star Catalogue
NASA Technical Reports Server (NTRS)
Warren, W. H., Jr.
1982-01-01
The machine-readable version of the catalog is described. The catalog was prepared in order to determine accurate equatorial coordinates for reference stars in a band of sky against which cameras of the Voyager spacecraft were aligned for observations in the region of Saturn during the flyby. Tape contents and characteristics are described and a sample listing presented.
The national response for preventing healthcare-associated infections: data and monitoring.
Kahn, Katherine L; Weinberg, Daniel A; Leuschner, Kristin J; Gall, Elizabeth M; Siegel, Sari; Mendel, Peter
2014-02-01
Historically, the ability to accurately track healthcare-associated infections (HAIs) was hindered due to a lack of coordination among data sources and shortcomings in individual data sources. This paper presents the results of the evaluation of the HAI data and the monitoring component of the Action Plan, focusing on context (goals), inputs, and processes. We used the Content-Input-Process-Product framework, together with the HAI prevention system framework, to describe the transformative processes associated with data and monitoring efforts. Six HAI priority conditions in the 2009 Action Plan created a focus for the selection of goals and activities. Key Action Plan decisions included a phased-in data and monitoring approach, commitment to linking the selection of priority HAIs to highly visible national 5-year prevention targets, and the development of a comprehensive HAI database inventory. Remaining challenges relate to data validation, resources, and the opportunity to integrate electronic health and laboratory records with other provider data systems. The Action Plan's data and monitoring program has developed a sound infrastructure that builds upon technological advances and embodies a firm commitment to prioritization, coordination and alignment, accountability and incentives, stakeholder engagement, and an awareness of the need for predictable resources. With time, and adequate resources, it is likely that the investment in data-related infrastructure during the Action Plan's initial years will reap great rewards.
TransFit: Finite element analysis data fitting software
NASA Technical Reports Server (NTRS)
Freeman, Mark
1993-01-01
The Advanced X-Ray Astrophysics Facility (AXAF) mission support team has made extensive use of geometric ray tracing to analyze the performance of AXAF developmental and flight optics. One important aspect of this performance modeling is the incorporation of finite element analysis (FEA) data into the surface deformations of the optical elements. TransFit is software designed for the fitting of FEA data of Wolter I optical surface distortions with a continuous surface description which can then be used by SAO's analytic ray tracing software, currently OSAC (Optical Surface Analysis Code). The improved capabilities of Transfit over previous methods include bicubic spline fitting of FEA data to accommodate higher spatial frequency distortions, fitted data visualization for assessing the quality of fit, the ability to accommodate input data from three FEA codes plus other standard formats, and options for alignment of the model coordinate system with the ray trace coordinate system. TransFit uses the AnswerGarden graphical user interface (GUI) to edit input parameters and then access routines written in PV-WAVE, C, and FORTRAN to allow the user to interactively create, evaluate, and modify the fit. The topics covered include an introduction to TransFit: requirements, designs philosophy, and implementation; design specifics: modules, parameters, fitting algorithms, and data displays; a procedural example; verification of performance; future work; and appendices on online help and ray trace results of the verification section.
NASA Astrophysics Data System (ADS)
DeLong, S. B.; Avdievitch, N. N.
2014-12-01
As high-resolution topographic data become increasingly available, comparison of multitemporal and disparate datasets (e.g. airborne and terrestrial lidar) enable high-accuracy quantification of landscape change and detailed mapping of surface processes. However, if these data are not properly managed and aligned with maximum precision, results may be spurious. Often this is due to slight differences in coordinate systems that require complex geographic transformations and systematic error that is difficult to diagnose and correct. Here we present an analysis of four airborne and three terrestrial lidar datasets collected between 2003 and 2014 that we use to quantify change at an active earthflow in Mill Gulch, Sonoma County, California. We first identify and address systematic error internal to each dataset, such as registration offset between flight lines or scan positions. We then use a variant of an iterative closest point (ICP) algorithm to align point cloud data by maximizing use of stable portions of the landscape with minimal internal error. Using products derived from the aligned point clouds, we make our geomorphic analyses. These methods may be especially useful for change detection analyses in which accurate georeferencing is unavailable, as is often the case with some terrestrial lidar or "structure from motion" data. Our results show that the Mill Gulch earthflow has been active throughout the study period. We see continuous downslope flow, ongoing incorporation of new hillslope material into the flow, sediment loss from hillslopes, episodic fluvial erosion of the earthflow toe, and an indication of increased activity during periods of high precipitation.
Adaptability of the Immature Ocular Motor Control System: Unilateral IGF-1 Medial Rectus Treatment.
Willoughby, Christy L; Fleuriet, Jérome; Walton, Mark M; Mustari, Michael J; McLoon, Linda K
2015-06-01
Unilateral treatment with sustained release IGF-1 to one medial rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop as a result of changes in extraocular muscles during the critical period of development of binocularity. Sustained release IGF-1 pellets were implanted unilaterally on one medial rectus muscle in normal infant monkeys during the first 2 weeks of life. Eye position was monitored using standard photographic methods. After 3 months of treatment, myofiber and neuromuscular size, myosin composition, and innervation density were quantified in all rectus muscles and compared to those in age-matched controls. Sustained unilateral IGF-1 treatments resulted in strabismus for all treated subjects; 3 of the 4 subjects had a clinically significant strabismus of more than 10°. Both the treated medial rectus and the untreated ipsilateral antagonist lateral rectus muscles had significantly larger myofibers. No adaptation in myofiber size occurred in the contralateral functionally yoked lateral rectus or in myosin composition, neuromuscular junction size, or nerve density. Sustained unilateral IGF-1 treatment to extraocular muscles during the sensitive period of development of orthotropic eye alignment and binocularity was sufficient to disturb ocular motor development, resulting in strabismus in infant monkeys. This could be due to altering fusion of gaze during the early sensitive period. Serial measurements of eye alignment suggested the IGF-1-treated infants received insufficient coordinated binocular experience, preventing the establishment of normal eye alignment. Our results uniquely suggest that abnormal signaling by the extraocular muscles may be a cause of strabismus.
Adaptability of the Immature Ocular Motor Control System: Unilateral IGF-1 Medial Rectus Treatment
Willoughby, Christy L.; Fleuriet, Jérome; Walton, Mark M.; Mustari, Michael J.; McLoon, Linda K.
2015-01-01
Purpose. Unilateral treatment with sustained release IGF-1 to one medial rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop as a result of changes in extraocular muscles during the critical period of development of binocularity. Methods. Sustained release IGF-1 pellets were implanted unilaterally on one medial rectus muscle in normal infant monkeys during the first 2 weeks of life. Eye position was monitored using standard photographic methods. After 3 months of treatment, myofiber and neuromuscular size, myosin composition, and innervation density were quantified in all rectus muscles and compared to those in age-matched controls. Results. Sustained unilateral IGF-1 treatments resulted in strabismus for all treated subjects; 3 of the 4 subjects had a clinically significant strabismus of more than 10°. Both the treated medial rectus and the untreated ipsilateral antagonist lateral rectus muscles had significantly larger myofibers. No adaptation in myofiber size occurred in the contralateral functionally yoked lateral rectus or in myosin composition, neuromuscular junction size, or nerve density. Conclusions. Sustained unilateral IGF-1 treatment to extraocular muscles during the sensitive period of development of orthotropic eye alignment and binocularity was sufficient to disturb ocular motor development, resulting in strabismus in infant monkeys. This could be due to altering fusion of gaze during the early sensitive period. Serial measurements of eye alignment suggested the IGF-1-treated infants received insufficient coordinated binocular experience, preventing the establishment of normal eye alignment. Our results uniquely suggest that abnormal signaling by the extraocular muscles may be a cause of strabismus. PMID:26030103
Hafström, A; Modig, F; Magnusson, M; Fransson, P A
2014-06-01
Human stability control is a complex process comprising contributions from several partly independent mechanisms such as coordination, feedback and feed-forward control, and adaptation. Acute alcohol intoxication impairs these functions and is recognized as a major contributor to fall traumas. The study aimed to investigate how alcohol intoxication at .06% and .10% blood alcohol concentration (BAC) affected the movement spans and control of posture alignment. The angular positions of the head, shoulder, hip and knees relative to the ankles were measured with a 3D motion analysis system in 25 healthy adults during standing with eyes open or closed and with or without vibratory balance perturbations. Alcohol intoxication significantly increased the movement spans of the head, shoulders, hip and knees in anteroposterior and lateral directions during quiet stance (p < or = .047 and p < or = .003) and balance perturbations (p<.001, both directions). Alcohol intoxication also decreased the ability to reduce the movement spans through adaptation in both anteroposterior (p < or = .011) and lateral (p < or = .004) directions. When sober and submitted to balance perturbations, the subjects aligned the head, shoulders, hip and knees more forward relative to the ankle joint (p < .001), hence adopting a more resilient posture increasing the safety margin for backward falls. Alcohol intoxication significantly delayed this forward realignment (p < or = .022). Alcohol intoxication did not cause any significant posture realignment in the lateral direction. Thus, initiation of adaptive posture realignments to alcohol or other disruptions might be context dependent and associated with reaching a certain level of stability threats. Copyright © 2014 Elsevier B.V. All rights reserved.
Perspectives on health policy dialogue: definition, perceived importance and coordination.
Nabyonga-Orem, Juliet; Ousman, Kevin; Estrelli, Yolanda; Rene, Adzodo K M; Yakouba, Zina; Gebrikidane, Mesfin; Mamoud, Drave; Kwamie, Aku
2016-07-18
Countries in the World Health Organization African Region have witnessed an increase in global health initiatives in the recent past. Although these have provided opportunities for expanding coverage of health interventions; their poor alignment with the countries' priorities and weak coordination, are among the challenges that have affected their impact. A well-coordinated health policy dialogue provides an opportunity to address these challenges, but calls for common understanding among stakeholders of what policy dialogue entails. This paper seeks to assess stakeholders' understanding and perceived importance of health policy dialogue and of policy dialogue coordination. This was a cross-sectional descriptive study using qualitative methods. Interviews were conducted with 90 key informants from the national and sub-national levels in Lusophone Cabo Verde, Francophone Chad, Guinea and Togo, and Anglophone Liberia using an open-ended interview guide. The interviews were transcribed verbatim, coded and then put through inductive thematic content analysis using QRS software Version 10. There were variations in the definition of policy dialogue that were not necessarily linked to the linguistic leaning of respondents' countries or whether the dialogue took place at the national or sub-national level. The definitions were grouped into five categories based on whether they had an outcome, operational, process, forum or platform, or interactive and evidence-sharing orientation. The stakeholders highlighted multiple benefits of policy dialogue including ensuring stakeholder participation, improving stakeholder harmonisation and alignment, supporting implementation of health policies, fostering continued institutional learning, providing a guiding framework and facilitating stakeholder analysis. Policy dialogue offers the opportunity to improve stakeholder participation in policy development and promote aid effectiveness. However, conceptual clarity is needed to ensure pursuance of common objectives. While it is clear that stakeholder involvement is an important component of policy dialogue, numbers must be manageable for meaningful dialogue. Ownership and coordination of the policy dialogue are important aspects of the process, and building the institutional capacity of the ministry of health requires a comprehensive approach as opposed to strengthening selected departments within it. Likewise, capacity for policy dialogue needs to be built at the sub-national level, alongside improving the bottom-up approach in policy processes.
CANYVAL-X: Enabling a new class of scientific instruments
NASA Astrophysics Data System (ADS)
Shah, Neerav; Calhoun, Philip C.; Park, Sang-young; Keidar, Michael
2016-05-01
Significant new discoveries in space science can be realized by replacing the traditional large monolithic space telescopes with precision formation flying spacecraft to form a “virtual telescope.” Such virtual telescopes will revolutionize occulting imaging systems, provide images of the Sun, accretion disks, and other astronomical objects with unprecedented milli-arcsecond resolution (several orders of magnitude beyond current capability).Since the days of Apollo, NASA and other organizations have been conducting formation flying in space, but not with the precision required for virtual telescopes. These efforts have focused on rendezvous and docking (e.g., crew docking, satellite servicing, etc.) and/or ground-controlled coordinated flight (e.g., EO-1, GRAIL, MMS, etc.). While the TRL of the component level technology for formation flying is high, the capability for the system-level guidance, navigation, and control (GN&C) technology required to align a virtual telescope to an inertial astronomical target with sub-arcsecond precision is not fully developed.The CANYVAL-X (CubeSat Astronomy by NASA and Yonsei using Virtual Telescope Alignment eXperiment) mission is an engineering proof of concept featuring a pair of CubeSats flying as a tandem telescope with a goal of demonstrating the system-level GN&C needed to form a virtual telescope. NASA partnered with the George Washington University and the Yonsei University to design and develop CANYVAL-X. CANYVAL-X will demonstrate key technologies for using virtual telescopes in space, including micro-propulsion using millinewton thrusters, relative position sensing, and communications control between the two spacecraft. CANYVAL-X is scheduled to launch on a Flacon-9 in summer of 2016.
Advancing team-based primary health care: a comparative analysis of policies in western Canada.
Suter, Esther; Mallinson, Sara; Misfeldt, Renee; Boakye, Omenaa; Nasmith, Louise; Wong, Sabrina T
2017-07-17
We analyzed and compared primary health care (PHC) policies in British Columbia, Alberta and Saskatchewan to understand how they inform the design and implementation of team-based primary health care service delivery. The goal was to develop policy imperatives that can advance team-based PHC in Canada. We conducted comparative case studies (n = 3). The policy analysis included: Context review: We reviewed relevant information (2007 to 2014) from databases and websites. Policy review and comparative analysis: We compared and contrasted publically available PHC policies. Key informant interviews: Key informants (n = 30) validated narratives prepared from the comparative analysis by offering contextual information on potential policy imperatives. Advisory group and roundtable: An expert advisory group guided this work and a key stakeholder roundtable event guided prioritization of policy imperatives. The concept of team-based PHC varies widely across and within the three provinces. We noted policy gaps related to team configuration, leadership, scope of practice, role clarity and financing of team-based care; few policies speak explicitly to monitoring and evaluation of team-based PHC. We prioritized four policy imperatives: (1) alignment of goals and policies at different system levels; (2) investment of resources for system change; (3) compensation models for all members of the team; and (4) accountability through collaborative practice metrics. Policies supporting team-based PHC have been slow to emerge, lacking a systematic and coordinated approach. Greater alignment with specific consideration of financing, reimbursement, implementation mechanisms and performance monitoring could accelerate systemic transformation by removing some well-known barriers to team-based care.
Evolving Multi Rover Systems in Dynamic and Noisy Environments
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian
2005-01-01
In this chapter, we address how to evolve control strategies for a collective: a set of entities that collectively strives to maximize a global evaluation function that rates the performance of the full system. Addressing such problems by directly applying a global evolutionary algorithm to a population of collectives is unworkable because the search space is prohibitively large. Instead, we focus on evolving control policies for each member of the collective, where each member is trying to maximize the fitness of its own population. The main difficulty with this approach is creating fitness evaluation functions for the members of the collective that induce the collective to achieve high performance with respect to the system level goal. To overcome this difficulty, we derive member evaluation functions that are both aligned with the global evaluation function (ensuring that members trying to achieve high fitness results in a collective with high fitness) and sensitive to the fitness of each member (a member's fitness depends more on its own actions than on actions of other members). In a difficult rover coordination problem in dynamic and noisy environments, we show how to construct evaluation functions that lead to good collective behavior. The control policy evolved using aligned and member-sensitive evaluations outperforms global evaluation methods by up to a factor of four. in addition we show that the collective continues to perform well in the presence of high noise levels and when the environment is highly dynamic. More notably, in the presence of a larger number of rovers or rovers with noisy sensors, the improvements due to the proposed method become significantly more pronounced.
Doing Duo – a case study of entrainment in William Forsythe’s choreography “Duo”
Waterhouse, Elizabeth; Watts, Riley; Bläsing, Bettina E.
2014-01-01
Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe’s choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models. PMID:25374522
Calibration Of An Omnidirectional Vision Navigation System Using An Industrial Robot
NASA Astrophysics Data System (ADS)
Oh, Sung J.; Hall, Ernest L.
1989-09-01
The characteristics of an omnidirectional vision navigation system were studied to determine position accuracy for the navigation and path control of a mobile robot. Experiments for calibration and other parameters were performed using an industrial robot to conduct repetitive motions. The accuracy and repeatability of the experimental setup and the alignment between the robot and the sensor provided errors of less than 1 pixel on each axis. Linearity between zenith angle and image location was tested at four different locations. Angular error of less than 1° and radial error of less than 1 pixel were observed at moderate speed variations. The experimental information and the test of coordinated operation of the equipment provide understanding of characteristics as well as insight into the evaluation and improvement of the prototype dynamic omnivision system. The calibration of the sensor is important since the accuracy of navigation influences the accuracy of robot motion. This sensor system is currently being developed for a robot lawn mower; however, wider applications are obvious. The significance of this work is that it adds to the knowledge of the omnivision sensor.
Fabrication Process for Large Size Mold and Alignment Method for Nanoimprint System
NASA Astrophysics Data System (ADS)
Ishibashi, Kentaro; Kokubo, Mitsunori; Goto, Hiroshi; Mizuno, Jun; Shoji, Shuichi
Nanoimprint technology is considered one of the mass production methods of the display for cellular phone or notebook computer, with Anti-Reflection Structures (ARS) pattern and so on. In this case, the large size mold with nanometer order pattern is very important. Then, we describe the fabrication process for large size mold, and the alignment method for UV nanoimprint system. We developed the original mold fabrication process using nanoimprint method and etching techniques. In 66 × 45 mm2 area, 200nm period seamless patterns were formed using this process. And, we constructed original alignment system that consists of the CCD-camera system, X-Y-θ table, method of moiré fringe, and image processing system, because the accuracy of pattern connection depends on the alignment method. This alignment system accuracy was within 20nm.
Murphy, Gail Tomblin; Birch, Stephen; MacKenzie, Adrian; Rigby, Janet; Purkis, Mary Ellen
2017-01-01
Clarifying the healthcare innovation agenda is critical in order to advance the impact of system innovations. As part of this agenda-setting it is important to address the four conditions within which innovations can enhance system sustainability: 1) the innovation agenda reflects and is aligned with healthcare objectives and policy; 2) planning methodologies for services, workforce and funding are aligned with healthcare objectives and policy; 3) innovations in services are accommodated in systems through innovations in policy, planning and funding; and 4) innovations are systematically monitored and evaluated. In order to illustrate these conditions, the authors present a case study of an evaluation of one Canadian Health Authority's efforts to transform healthcare delivery. This case study reveals that aligning innovations in policy, planning, funding and health services is critical to transforming health systems and that, in the absence of such alignment, sustainable health systems are difficult to achieve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Y; Kim, T; Kang, S
2016-06-15
Purpose: To develop a real-time alignment monitoring system (RAMS) to compensate for the limitations of the conventional room laser based alignment system, and to verify the feasibility of the RAMS. Methods: The RAMS was composed of a room laser sensing array (RLSA), an analog-todigital converter, and a control PC. In the RLSA, seven photodiodes (each in 1 mm width) are arranged in a pattern that the RAMS provides alignment in 1 mm resolution. It works based on detecting laser light aligned on one of photodiodes. When misaligned, the laser would match with different photodiode(s) giving signal at unexpected location. Thus,more » how much displaced can be determined. To verify the reproducibility of the system with respect to time as well as repeated set-ups, temporal reproducibility and repeatability test was conducted. The accuracy of the system was tested by obtaining detection signals with varying laser-match positions. Results: The signal of the RAMS was found to be stable with respect to time. The repeatability test resulted in a maximum coefficient of variance of 1.14%, suggesting that the signal of the RAMS was stable over repeated set-ups. In the accuracy test, signals between when the laser was aligned and notaligned with any of sensors could be distinguished by signal intensity. The signals of not-aligned sensors were always below 75% of the signal of the aligned sensor. It was confirmed that the system could detect 1 mm of movement by monitoring the pattern of signals, and could observe the movement of the system in real-time. Conclusion: We developed a room laser based alignment monitoring system. The feasibility test verified that the system is capable of quantitative alignment monitoring in real time. The system is relatively simple, not expensive, and considered to be easily incorporated into conventional room laser systems for real-time alignment monitoring. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
Paramagnetic decoration of DNA origami nanostructures by Eu³⁺ coordination.
Opherden, Lars; Oertel, Jana; Barkleit, Astrid; Fahmy, Karim; Keller, Adrian
2014-07-15
The folding of DNA into arbitrary two- and three-dimensional shapes, called DNA origami, represents a powerful tool for the synthesis of functional nanostructures. Here, we present the first approach toward the paramagnetic functionalization of DNA origami nanostructures by utilizing postassembly coordination with Eu(3+) ions. In contrast to the usual formation of toroidal dsDNA condensates in the presence of trivalent cations, planar as well as rod-like DNA origami maintain their shape and monomeric state even under high loading with the trivalent lanthanide. Europium coordination was demonstrated by the change in Eu(3+) luminescence upon binding to the two DNA origami. Their natural circular dichroism in the Mg(2+)- and Eu(3+)-bound state was found to be very similar to that of genomic DNA, evidencing little influence of the DNA origami superstructure on the local chirality of the stacked base pairs. In contrast, the magnetic circular dichroism of the Mg(2+)-bound DNA origami deviates from that of genomic DNA. Furthermore, the lanthanide affects the magnetic properties of DNA in a superstructure-dependent fashion, indicative of the existence of superstructure-specific geometry of Eu(3+) binding sites in the DNA origami that are not formed in genomic DNA. This simple approach lays the foundation for the generation of magneto-responsive DNA origami nanostructures. Such systems do not require covalent modifications and can be used for the magnetic manipulation of DNA nanostructures or for the paramagnetic alignment of molecules in NMR spectroscopy.
The ties that bind: interorganizational linkages and physician-system alignment.
Alexander, J A; Waters, T M; Burns, L R; Shortell, S M; Gillies, R R; Budetti, P P; Zuckerman, H S
2001-07-01
To examine the association between the degree of alignment between physicians and health care systems, and interorganizational linkages between physician groups and health care systems. The study used a cross sectional, comparative analysis using a sample of 1,279 physicians practicing in loosely affiliated arrangements and 1,781 physicians in 61 groups closely affiliated with 14 vertically integrated health systems. Measures of physician alignment were based on multiitem scales validated in previous studies and derived from surveys sent to individual physicians. Measures of interorganizational linkages were specified at the institutional, administrative, and technical core levels of the physician group and were developed from surveys sent to the administrator of each of the 61 physician groups in the sample. Two stage Heckman models with fixed effects adjustments in the second stage were used to correct for sample selection and clustering respectively. After accounting for sample selection, fixed effects, and group and individual controls, physicians in groups with more valued practice service linkages display consistently higher alignment with systems than physicians in groups that have fewer such linkages. Results also suggest that centralized administrative control lowers physician-system alignment for selected measures of alignment. Governance interlocks exhibited only weak associations with alignment. Our findings suggest that alignment generally follows resource exchanges that promote value-added contributions to physicians and physician groups while preserving control and authority within the group.
Experiences from the anatomy track in the ontology alignment evaluation initiative.
Dragisic, Zlatan; Ivanova, Valentina; Li, Huanyu; Lambrix, Patrick
2017-12-04
One of the longest running tracks in the Ontology Alignment Evaluation Initiative is the Anatomy track which focuses on aligning two anatomy ontologies. The Anatomy track was started in 2005. In 2005 and 2006 the task in this track was to align the Foundational Model of Anatomy and the OpenGalen Anatomy Model. Since 2007 the ontologies used in the track are the Adult Mouse Anatomy and a part of the NCI Thesaurus. Since 2015 the data in the Anatomy track is also used in the Interactive track of the Ontology Alignment Evaluation Initiative. In this paper we focus on the Anatomy track in the years 2007-2016 and the Anatomy part of the Interactive track in 2015-2016. We describe the data set and the changes it went through during the years as well as the challenges it poses for ontology alignment systems. Further, we give an overview of all systems that participated in the track and the techniques they have used. We discuss the performance results of the systems and summarize the general trends. About 50 systems have participated in the Anatomy track. Many different techniques were used. The most popular matching techniques are string-based strategies and structure-based techniques. Many systems also use auxiliary information. The quality of the alignment has increased for the best performing systems since the beginning of the track and more and more systems check the coherence of the proposed alignment and implement a repair strategy. Further, interacting with an oracle is beneficial.
Onorbit IMU alignment error budget
NASA Technical Reports Server (NTRS)
Corson, R. W.
1980-01-01
The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.
Note: A simple sample transfer alignment for ultra-high vacuum systems.
Tamtögl, A; Carter, E A; Ward, D J; Avidor, N; Kole, P R; Jardine, A P; Allison, W
2016-06-01
The alignment of ultra-high-vacuum sample transfer systems can be problematic when there is no direct line of sight to assist the user. We present the design of a simple and cheap system which greatly simplifies the alignment of sample transfer devices. Our method is based on the adaptation of a commercial digital camera which provides live views from within the vacuum chamber. The images of the camera are further processed using an image recognition and processing code which determines any misalignments and reports them to the user. Installation has proven to be extremely useful in order to align the sample with respect to the transfer mechanism. Furthermore, the alignment software can be easily adapted for other systems.
Precise Synaptic Efficacy Alignment Suggests Potentiation Dominated Learning.
Hartmann, Christoph; Miner, Daniel C; Triesch, Jochen
2015-01-01
Recent evidence suggests that parallel synapses from the same axonal branch onto the same dendritic branch have almost identical strength. It has been proposed that this alignment is only possible through learning rules that integrate activity over long time spans. However, learning mechanisms such as spike-timing-dependent plasticity (STDP) are commonly assumed to be temporally local. Here, we propose that the combination of temporally local STDP and a multiplicative synaptic normalization mechanism is sufficient to explain the alignment of parallel synapses. To address this issue, we introduce three increasingly complex models: First, we model the idealized interaction of STDP and synaptic normalization in a single neuron as a simple stochastic process and derive analytically that the alignment effect can be described by a so-called Kesten process. From this we can derive that synaptic efficacy alignment requires potentiation-dominated learning regimes. We verify these conditions in a single-neuron model with independent spiking activities but more realistic synapses. As expected, we only observe synaptic efficacy alignment for long-term potentiation-biased STDP. Finally, we explore how well the findings transfer to recurrent neural networks where the learning mechanisms interact with the correlated activity of the network. We find that due to the self-reinforcing correlations in recurrent circuits under STDP, alignment occurs for both long-term potentiation- and depression-biased STDP, because the learning will be potentiation dominated in both cases due to the potentiating events induced by correlated activity. This is in line with recent results demonstrating a dominance of potentiation over depression during waking and normalization during sleep. This leads us to predict that individual spine pairs will be more similar after sleep compared to after sleep deprivation. In conclusion, we show that synaptic normalization in conjunction with coordinated potentiation--in this case, from STDP in the presence of correlated pre- and post-synaptic activity--naturally leads to an alignment of parallel synapses.
"Performance Of A Wafer Stepper With Automatic Intra-Die Registration Correction."
NASA Astrophysics Data System (ADS)
van den Brink, M. A.; Wittekoek, S.; Linders, H. F. D.; van Hout, F. J.; George, R. A.
1987-01-01
An evaluation of a wafer stepper with the new improved Philips/ASM-L phase grating alignment system is reported. It is shown that an accurate alignment system needs an accurate X-Y-0 wafer stage and an accurate reticle Z stage to realize optimum overlay accuracy. This follows from a discussion of the overlay budget and an alignment procedure model. The accurate wafer stage permits high overlay accuracy using global alignment only, thus eliminating the throughput penalty of align-by-field schemes. The accurate reticle Z stage enables an intra-die magnification control with respect to the wafer scale. Various overlay data are reported, which have been measured with the automatic metrology program of the stepper. It is demonstrated that the new dual alignment system (with the external spatial filter) has improved the ability to align to weakly reflecting layers. The results are supported by a Fourier analysis of the alignment signal. Resolution data are given for the PAS 2500 projection lenses, which show that the high overlay accuracy of the system is properly matched with submicron linewidth control. The results of a recently introduced 20mm i-line lens with a numerical aperture of 0.4 (Zeiss 10-78-58) are included.
Investigations into phase effects from diffracted Gaussian beams for high-precision interferometry
NASA Astrophysics Data System (ADS)
Lodhia, Deepali
Gravitational wave detectors are a new class of observatories aiming to detect gravitational waves from cosmic sources. All-reflective interferometer configurations have been proposed for future detectors, replacing transmissive optics with diffractive elements, thereby reducing thermal issues associated with power absorption. However, diffraction gratings introduce additional phase noise, creating more stringent conditions for alignment stability, and further investigations are required into all-reflective interferometers. A suitable mathematical framework using Gaussian modes is required for analysing the alignment stability using diffraction gratings. Such a framework was created, whereby small beam displacements are modelled using a modal technique. It was confirmed that the original modal-based model does not contain the phase changes associated with grating displacements. Experimental tests verified that the phase of a diffracted Gaussian beam is independent of the beam shape. Phase effects were further examined using a rigorous time-domain simulation tool. These findings show that the perceived phase difference is based on an intrinsic change of coordinate system within the modal-based model, and that the extra phase can be added manually to the modal expansion. This thesis provides a well-tested and detailed mathematical framework that can be used to develop simulation codes to model more complex layouts of all-reflective interferometers.
Cooperative interactions in dense thermal Rb vapour confined in nm-scale cells
NASA Astrophysics Data System (ADS)
Keaveney, James
Gravitational wave detectors are a new class of observatories aiming to detect gravitational waves from cosmic sources. All-reflective interferometer configurations have been proposed for future detectors, replacing transmissive optics with diffractive elements, thereby reducing thermal issues associated with power absorption. However, diffraction gratings introduce additional phase noise, creating more stringent conditions for alignment stability, and further investigations are required into all-reflective interferometers. A suitable mathematical framework using Gaussian modes is required for analysing the alignment stability using diffraction gratings. Such a framework was created, whereby small beam displacements are modelled using a modal technique. It was confirmed that the original modal-based model does not contain the phase changes associated with grating displacements. Experimental tests verified that the phase of a diffracted Gaussian beam is independent of the beam shape. Phase effects were further examined using a rigorous time-domain simulation tool. These findings show that the perceived phase difference is based on an intrinsic change of coordinate system within the modal-based model, and that the extra phase can be added manually to the modal expansion. This thesis provides a well-tested and detailed mathematical framework that can be used to develop simulation codes to model more complex layouts of all-reflective interferometers.
Engineering an in vitro organotypic model for studying cardiac hypertrophy.
Jain, Aditi; Hasan, Jafar; Desingu, Perumal Arumugam; Sundaresan, Nagalingam R; Chatterjee, Kaushik
2018-05-01
Neonatal cardiomyocytes cultured on flat surfaces are commonly used as a model to study cardiac failure of diverse origin. A major drawback of such a system is that the cardiomyocytes do not exhibit alignment, organization and calcium transients, similar to the native heart. Therefore, there is a need to develop in vitro platforms that recapitulate the cellular microenvironment of the murine heart as organotypic models to study cardiovascular diseases. In this study, we report an engineered platform that mimics cardiac cell organization and function of the heart. For this purpose, microscale ridges were fabricated on silicon using ultraviolet lithography and reactive ion etching techniques. Physical characterization of the microstructures was done using scanning electron microscopy and atomic force microscopy. Cardiomyocytes grown on these micro-ridges showed global parallel alignment and elliptical nuclear morphology as observed in the heart. Interestingly, calcium currents traversed the engineered cardiomyocytes in a coordinated and directional manner. Moreover, the cardiomyocytes on the engineered substrates were found to be responsive to hypertrophic stimuli, as observed by the expression of a fetal gene, atrial natriuretic peptide and increase in calcium transients upon agonist treatment. Taken together, our work demonstrates that micro-ridges can be used to obtain cardiomyocyte response in vitro, which closely resembles mammalian heart. Copyright © 2018 Elsevier B.V. All rights reserved.
Fostering change within organizational participants of multisectoral health care alliances.
Hearld, Larry R; Alexander, Jeffrey A; Mittler, Jessica N
2012-01-01
A touted advantage of multisectoral health care alliances is their ability to coordinate diverse constituencies and pursue community health goals in ways that allow them to make greater progress than each constituency could independently. However, participating organizations may have goals that do not entirely overlap or necessarily align with the alliance's goals, which can weaken or undermine an alliance's efforts. Fostering changes within participating organizations in ways that are consistent with the alliance's goals (i.e., alliance-oriented change) may be one mechanism by which alliances can coordinate diverse activities and improve care in their local communities. We examined whether alliance-oriented change within participating organizations is associated with alliance decision-making and conflict management style, level of participation, perceptions of alliance participation benefits and costs, and awareness of alliance activities within participating organizations. The study used two rounds of survey data collected from organizational participants of 14 alliances participating in the Robert Wood Johnson Foundation's Aligning Forces for Quality program. Alliance participants generally reported low levels of alliance-oriented change within their organizations as a result of the alliance and its activities. However, participants reporting higher levels of internal change in response to alliance activities had more positive perceptions of alliance decision-making style, higher levels of participation in alliance activities, more positive perceptions of alliance participation benefits relative to costs, and greater awareness of alliance activities across multiple levels of their respective organizations. Despite relatively low levels of alliance-oriented change within participating organizations, alliances may still have the means to align the goal orientations of a diverse membership and foster change that may extend the reach of the alliance in the community.
Simon, Mareike; Keilig, Ludger; Schwarze, Jörg; Jung, Britta A; Bourauel, Christoph
2014-06-01
The exact force systems as well as their progressions generated by removable thermoplastic appliances have not been investigated. Thus, the purposes of this experimental study were to quantify the forces and moments delivered by a single aligner and a series of aligners (Invisalign; Align Technology, Santa Clara, Calif) and to investigate the influence of attachments and power ridges on the force transfer. We studied 970 aligners of the Invisalign system (60 series of aligners). The aligners came from 30 consecutive patients, of which 3 tooth movements (incisor torque, premolar derotation, molar distalization) with 20 movements each were analyzed. The 3 movement groups were subdivided so that 10 movements were supported with an attachment and 10 were not. The patients' ClinCheck (Align Technology, Santa Clara, Calif) was planned so that the movements to be investigated were performed in isolation in the respective quadrant. Resin replicas of the patients' intraoral situation before the start of the investigated movement were taken and mounted in a biomechanical measurement system. An aligner was put on the model, the force systems were measured, and the calculated movements were experimentally performed until no further forces or moments were generated. Subsequently, the next aligners were installed, and the measurements were repeated. The initial mean moments were about 7.3 N·mm for maxillary incisor torque and about 1.0 N for distalization. Significant differences in the generated moments were measured in the premolar derotation group, whether they were supported with an attachment (8.8 N·mm) or not (1.2 N·mm). All measurements showed an exponential force change. Apart from a few maximal initial force systems, the forces and moments generated by aligners of the Invisalign system are within the range of orthodontic forces. The force change is exponential while a patient is wearing removable thermoplastic appliances. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Edge equilibrium code for tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xujing; Zakharov, Leonid E.; Drozdov, Vladimir V.
2014-01-15
The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.
Streamline integration as a method for two-dimensional elliptic grid generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Held, M.; Einkemmer, L.
We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metricsmore » we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.« less
NASA Astrophysics Data System (ADS)
Knipp, D.
2016-12-01
Using reprocessed (Level-2) data from the Defense Meteorology Satellite Program magnetometer (SSM) and particle precipitation (SSJ) instruments we determine the boundaries of the central plasma sheet auroral oval, and then consider the relative locations and intensities of field aligned currents. Large-scale field-aligned currents (FAC) are determined using the Minimum Variance Analysis technique, and their influence is then removed from the magnetic perturbations allowing us to estimate intensity and scale-size of the smaller-scale currents. When sorted by dynamic auroral boundary coordinates we find that large- scale Region 1 (R1) FAC are often within the polar cap and Region 2 (R2) FAC show a strong dawn-dusk asymmetry (as in Ohtani et al., 2010). We find that mesoscale FAC are stronger in the summer and are most consistently present in the vicinity of dawnside (downward) R1 FAC. Further, mesoscale FAC are confined to auroral latitudes and above on the dawnside, but can be subaroural on the dusk side. Hotspots of mesoscale FAC occur in pre-midnight regions especially during summer. Finally, we show how this information can be combined with measurements from above and below the ionosphere-thermosphere to help explain significant perturbations in polar cap dynamics.
Fang, Joyce; Savransky, Dmitry
2016-08-01
Automation of alignment tasks can provide improved efficiency and greatly increase the flexibility of an optical system. Current optical systems with automated alignment capabilities are typically designed to include a dedicated wavefront sensor. Here, we demonstrate a self-aligning method for a reconfigurable system using only focal plane images. We define a two lens optical system with 8 degrees of freedom. Images are simulated given misalignment parameters using ZEMAX software. We perform a principal component analysis on the simulated data set to obtain Karhunen-Loève modes, which form the basis set whose weights are the system measurements. A model function, which maps the state to the measurement, is learned using nonlinear least-squares fitting and serves as the measurement function for the nonlinear estimator (extended and unscented Kalman filters) used to calculate control inputs to align the system. We present and discuss simulated and experimental results of the full system in operation.
NASA Astrophysics Data System (ADS)
Zhou, Shudao; Ma, Zhongliang; Wang, Min; Peng, Shuling
2018-05-01
This paper proposes a novel alignment system based on the measurement of optical path using a light beam scanning mode in a transmissometer. The system controls both the probe beam and the receiving field of view while scanning in two vertical directions. The system then calculates the azimuth angle of the transmitter and the receiver to determine the precise alignment of the optical path. Experiments show that this method can determine the alignment angles in less than 10 min with errors smaller than 66 μrad in the azimuth. This system also features high collimation precision, process automation and simple installation.
Chiang, Rachelle Johnsson; Meagher, Whitney; Slade, Sean
2015-01-01
BACKGROUND The Whole School, Whole Community, Whole Child (WSCC) model calls for greater collaboration across the community, school, and health sectors to meet the needs and support the full potential of each child. This article reports on how 3 states and 2 local school districts have implemented aspects of the WSCC model through collaboration, leadership and policy creation, alignment, and implementation. METHODS We searched state health and education department websites, local school district websites, state legislative databases, and sources of peer-reviewed and gray literature to identify materials demonstrating adoption and implementation of coordinated school health, the WSCC model, and associated policies and practices in identified states and districts. We conducted informal interviews in each state and district to reinforce the document review. RESULTS States and local school districts have been able to strategically increase collaboration, integration, and alignment of health and education through the adoption and implementation of policy and practice supporting the WSCC model. Successful utilization of the WSCC model has led to substantial positive changes in school health environments, policies, and practices. CONCLUSIONS Collaboration among health and education sectors to integrate and align services may lead to improved efficiencies and better health and education outcomes for students. PMID:26440819
Value Based Care and Patient-Centered Care: Divergent or Complementary?
Tseng, Eric K; Hicks, Lisa K
2016-08-01
Two distinct but overlapping care philosophies have emerged in cancer care: patient-centered care (PCC) and value-based care (VBC). Value in healthcare has been defined as the quality of care (measured typically by healthcare outcomes) modified by cost. In this conception of value, patient-centeredness is one important but not necessarily dominant quality measure. In contrast, PCC includes multiple domains of patient-centeredness and places the patient and family central to all decisions and evaluations of quality. The alignment of PCC and VBC is complicated by several tensions, including a relative lack of patient experience and preference measures, and conceptions of cost that are payer-focused instead of patient-focused. Several strategies may help to align these two philosophies, including the use of patient-reported outcomes in clinical trials and value determinations, and the purposeful integration of patient preference in clinical decisions and guidelines. Innovative models of care, including accountable care organizations and oncology patient-centered medical homes, may also facilitate alignment through improved care coordination and quality-based payment incentives. Ultimately, VBC and PCC will only be aligned if patient-centered outcomes, perspectives, and preferences are explicitly incorporated into the definitions and metrics of quality, cost, and value that will increasingly influence the delivery of cancer care.
Gyrokinetic particle simulation of a field reversed configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, D. P., E-mail: dfulton@uci.edu; Lau, C. K.; Holod, I.
2016-01-15
Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respectively. A field-aligned mesh is constructed for solving self-consistent electric fields using a semi-spectral solver in a partial torus FRC geometry. This new simulation capability has been successfully verified and driftwave instability in the FRC has been studied using the gyrokinetic simulation for the first time. Initial GTC simulations find that in the FRC core, the ion-scale driftwave is stabilized by the large ionmore » gyroradius. In the SOL, the driftwave is unstable on both ion and electron scales.« less
The Neural Network In Coordinate Transformation
NASA Astrophysics Data System (ADS)
Urusan, Ahmet Yucel
2011-12-01
In international literature, Coordinate operations is divided into two categories. They are coordinate conversion and coordinate transformation. Coordinates converted from coordinate system A to coordinate system B in the same datum (mean origine, scale and axis directions are same) by coordinate conversion. There are two different datum in coordinate transformation. The basis of each datum to a different coordinate reference system. In Coordinate transformation, coordinates are transformed from coordinate reference system A to coordinate referance system B. Geodetic studies based on physical measurements. Coordinate transformation needs identical points which were measured in each coordinate reference system (A and B). However it is difficult (and need a big reserved budget) to measure in some places like as top of mountain, boundry of countries and seaside. In this study, this sample problem solution was researched. The method of learning which is one of the neural network methods, was used for solution of this problem.
Yu, Chen; Smith, Linda B.
2013-01-01
The coordination of visual attention among social partners is central to many components of human behavior and human development. Previous research has focused on one pathway to the coordination of looking behavior by social partners, gaze following. The extant evidence shows that even very young infants follow the direction of another's gaze but they do so only in highly constrained spatial contexts because gaze direction is not a spatially precise cue as to the visual target and not easily used in spatially complex social interactions. Our findings, derived from the moment-to-moment tracking of eye gaze of one-year-olds and their parents as they actively played with toys, provide evidence for an alternative pathway, through the coordination of hands and eyes in goal-directed action. In goal-directed actions, the hands and eyes of the actor are tightly coordinated both temporally and spatially, and thus, in contexts including manual engagement with objects, hand movements and eye movements provide redundant information about where the eyes are looking. Our findings show that one-year-olds rarely look to the parent's face and eyes in these contexts but rather infants and parents coordinate looking behavior without gaze following by attending to objects held by the self or the social partner. This pathway, through eye-hand coupling, leads to coordinated joint switches in visual attention and to an overall high rate of looking at the same object at the same time, and may be the dominant pathway through which physically active toddlers align their looking behavior with a social partner. PMID:24236151
Building the Coverage Continuum: The Role of State Medicaid Directors and Insurance Commissioners.
Ario, Joel; Bachrach, Deborah
2017-02-01
Issue: The Affordable Care Act has expanded coverage to 20 million newly insured individuals, split between state Medicaid programs and commercially insured marketplaces, with limited integration between the two. The seamless continuum of coverage envisioned by the law is central to achieving the full potential of the Affordable Care Act, but it remains an elusive promise. Goals: To examine the historical and cultural differences between state Medicaid agencies and insurance departments that contribute to this lack of coordination. Findings and Conclusions: Historical and cultural differences must be overcome to ensure continuing access to coverage and care. The authors present two opportunities for insurance and Medicaid officials to work together to advance the continuum of coverage: alignment of regulations for insurers participating in both markets and collaboration on efforts to reform the health care delivery system.
NASA Astrophysics Data System (ADS)
Santos, T. Q.; Alvarenga, A. V.; Oliveira, D. P.; Mayworm, R. C.; Souza, R. M.; Costa-Félix, R. P. B.
2016-07-01
Speed of sound is an important quantity to characterize reference materials for ultrasonic applications, for instance. The alignment between the transducer and the test body is an key activity in order to perform reliable and consistent measurement. The aim of this work is to evaluate the influence of the alignment system to the expanded uncertainty of such measurement. A stainless steel cylinder was previously calibrated on an out of water system typically used for calibration of non-destructive blocks. Afterwards, the cylinder was calibrated underwater with two distinct alignment system: fixed and mobile. The values were statistically compared to the out-of-water measurement, considered the golden standard for such application. For both alignment systems, the normalized error was less than 0.8, leading to conclude that the both measurement system (under and out-of-water) do not diverge significantly. The gold standard uncertainty was 2.7 m-s-1, whilst the fixed underwater system resulted in 13 m-s-1, and the mobile alignment system achieved 6.6 m-s-1. After the validation of the underwater system for speed of sound measurement, it will be applied to certify Encapsulated Tissue Mimicking Material as a reference material for biotechnology application.
Mapping global health research investments, time for new thinking--a Babel Fish for research data.
Terry, Robert F; Allen, Liz; Gardner, Charles A; Guzman, Javier; Moran, Mary; Viergever, Roderik F
2012-09-01
Today we have an incomplete picture of how much the world is spending on health and disease-related research and development (R&D). As such it is difficult to align, or even begin to coordinate, health R&D investments with international public health priorities. Current efforts to track and map global health research investments are complex, resource-intensive, and caveat-laden. An ideal situation would be for all research funding to be classified using a set of common standards and definitions. However, the adoption of such a standard by everyone is not a realistic, pragmatic or even necessary goal. It is time for new thinking informed by the innovations in automated online translation - e.g. Yahoo's Babel Fish. We propose a feasibility study to develop a system that can translate and map the diverse research classification systems into a common standard, allowing the targeting of scarce research investments to where they are needed most.
Mapping global health research investments, time for new thinking - A Babel Fish for research data
2012-01-01
Today we have an incomplete picture of how much the world is spending on health and disease-related research and development (R&D). As such it is difficult to align, or even begin to coordinate, health R&D investments with international public health priorities. Current efforts to track and map global health research investments are complex, resource-intensive, and caveat-laden. An ideal situation would be for all research funding to be classified using a set of common standards and definitions. However, the adoption of such a standard by everyone is not a realistic, pragmatic or even necessary goal. It is time for new thinking informed by the innovations in automated online translation - e.g. Yahoo's Babel Fish. We propose a feasibility study to develop a system that can translate and map the diverse research classification systems into a common standard, allowing the targeting of scarce research investments to where they are needed most. PMID:22938160
The Stance Leads the Dance: The Emergence of Role in a Joint Supra-Postural Task
Davis, Tehran J.; Pinto, Gabriela B.; Kiefer, Adam W.
2017-01-01
Successfully meeting a shared goal usually requires co-actors to adopt complementary roles. However, in many cases, who adopts what role is not explicitly predetermined, but instead emerges as a consequence of the differences in the individual abilities and constraints imposed upon each actor. Perhaps the most basic of roles are leader and follower. Here, we investigated the emergence of “leader-follower” dynamics in inter-personal coordination using a joint supra-postural task paradigm (Ramenzoni et al., 2011; Athreya et al., 2014). Pairs of actors were tasked with holding two objects in alignment (each actor manually controlled one of the objects) as they faced different demands for stance (stable vs. difficult) and control (which actor controlled the larger or smaller object). Our results indicate that when actors were in identical stances, neither led the inter-personal (between actors) coordination by any systematic fashion. Alternatively, when asymmetries in postural demands were introduced, the actor with the more difficult stance led the coordination (as determined using cross-recurrence quantification analysis). Moreover, changes in individual stance difficulty resulted in similar changes in the structure of both intra-personal (individual) and inter-personal (dyadic) coordination, suggesting a scale invariance of the task dynamics. Implications for the study of interpersonal coordination are discussed. PMID:28536547
Yuan, Peng; Mai, Huaming; Li, Jianfu; Ho, Dennis Chun-Yu; Lai, Yingying; Liu, Siting; Kim, Daeseung; Xiong, Zixiang; Alfi, David M; Teichgraeber, John F; Gateno, Jaime; Xia, James J
2017-12-01
There are many proven problems associated with traditional surgical planning methods for orthognathic surgery. To address these problems, we developed a computer-aided surgical simulation (CASS) system, the AnatomicAligner, to plan orthognathic surgery following our streamlined clinical protocol. The system includes six modules: image segmentation and three-dimensional (3D) reconstruction, registration and reorientation of models to neutral head posture, 3D cephalometric analysis, virtual osteotomy, surgical simulation, and surgical splint generation. The accuracy of the system was validated in a stepwise fashion: first to evaluate the accuracy of AnatomicAligner using 30 sets of patient data, then to evaluate the fitting of splints generated by AnatomicAligner using 10 sets of patient data. The industrial gold standard system, Mimics, was used as the reference. When comparing the results of segmentation, virtual osteotomy and transformation achieved with AnatomicAligner to the ones achieved with Mimics, the absolute deviation between the two systems was clinically insignificant. The average surface deviation between the two models after 3D model reconstruction in AnatomicAligner and Mimics was 0.3 mm with a standard deviation (SD) of 0.03 mm. All the average surface deviations between the two models after virtual osteotomy and transformations were smaller than 0.01 mm with a SD of 0.01 mm. In addition, the fitting of splints generated by AnatomicAligner was at least as good as the ones generated by Mimics. We successfully developed a CASS system, the AnatomicAligner, for planning orthognathic surgery following the streamlined planning protocol. The system has been proven accurate. AnatomicAligner will soon be available freely to the boarder clinical and research communities.
Yuan, Peng; Mai, Huaming; Li, Jianfu; Ho, Dennis Chun-Yu; Lai, Yingying; Liu, Siting; Kim, Daeseung; Xiong, Zixiang; Alfi, David M.; Teichgraeber, John F.; Gateno, Jaime
2017-01-01
Purpose There are many proven problems associated with traditional surgical planning methods for orthognathic surgery. To address these problems, we developed a computer-aided surgical simulation (CASS) system, the AnatomicAligner, to plan orthognathic surgery following our streamlined clinical protocol. Methods The system includes six modules: image segmentation and three-dimensional (3D) reconstruction, registration and reorientation of models to neutral head posture, 3D cephalometric analysis, virtual osteotomy, surgical simulation, and surgical splint generation. The accuracy of the system was validated in a stepwise fashion: first to evaluate the accuracy of AnatomicAligner using 30 sets of patient data, then to evaluate the fitting of splints generated by AnatomicAligner using 10 sets of patient data. The industrial gold standard system, Mimics, was used as the reference. Result When comparing the results of segmentation, virtual osteotomy and transformation achieved with AnatomicAligner to the ones achieved with Mimics, the absolute deviation between the two systems was clinically insignificant. The average surface deviation between the two models after 3D model reconstruction in AnatomicAligner and Mimics was 0.3 mm with a standard deviation (SD) of 0.03 mm. All the average surface deviations between the two models after virtual osteotomy and transformations were smaller than 0.01 mm with a SD of 0.01 mm. In addition, the fitting of splints generated by AnatomicAligner was at least as good as the ones generated by Mimics. Conclusion We successfully developed a CASS system, the AnatomicAligner, for planning orthognathic surgery following the streamlined planning protocol. The system has been proven accurate. AnatomicAligner will soon be available freely to the boarder clinical and research communities. PMID:28432489
Low-Beer, Daniel; Bergeri, Isabel; Hess, Sarah; Garcia-Calleja, Jesus Maria; Hayashi, Chika; Mozalevskis, Antons; Rinder Stengaard, Annemarie; Sabin, Keith; Harmanci, Hande; Bulterys, Marc
2017-01-01
Evidence documenting the global burden of disease from viral hepatitis was essential for the World Health Assembly to endorse the first Global Health Sector Strategy (GHSS) on viral hepatitis in May 2016. The GHSS on viral hepatitis proposes to eliminate viral hepatitis as a public health threat by 2030. The GHSS on viral hepatitis is in line with targets for HIV infection and tuberculosis as part of the Sustainable Development Goals. As coordination between hepatitis and HIV programs aims to optimize the use of resources, guidance is also needed to align the strategic information components of the 2 programs. The World Health Organization monitoring and evaluation framework for viral hepatitis B and C follows an approach similar to the one of HIV, including components on the following: (1) context (prevalence of infection), (2) input, (3) output and outcome, including the cascade of prevention and treatment, and (4) impact (incidence and mortality). Data systems that are needed to inform this framework include (1) surveillance for acute hepatitis, chronic infections, and sequelae and (2) program data documenting prevention and treatment, which for the latter includes a database of patients. Overall, the commonalities between HIV and hepatitis at the strategic, policy, technical, and implementation levels justify coordination, strategic linkage, or integration, depending on the type of HIV and viral hepatitis epidemics. Strategic information is a critical area of this alignment under the principle of what gets measured gets done. It is facilitated because the monitoring and evaluation frameworks for HIV and viral hepatitis were constructed using a similar approach. However, for areas where elimination of viral hepatitis requires data that cannot be collected through the HIV program, collaborations are needed with immunization, communicable disease control, tuberculosis, and hepatology centers to ensure collection of information for the remaining indicators. PMID:29246882
Automatic alignment method for calibration of hydrometers
NASA Astrophysics Data System (ADS)
Lee, Y. J.; Chang, K. H.; Chon, J. C.; Oh, C. Y.
2004-04-01
This paper presents a new method to automatically align specific scale-marks for the calibration of hydrometers. A hydrometer calibration system adopting the new method consists of a vision system, a stepping motor, and software to control the system. The vision system is composed of a CCD camera and a frame grabber, and is used to acquire images. The stepping motor moves the camera, which is attached to the vessel containing a reference liquid, along the hydrometer. The operating program has two main functions: to process images from the camera to find the position of the horizontal plane and to control the stepping motor for the alignment of the horizontal plane with a particular scale-mark. Any system adopting this automatic alignment method is a convenient and precise means of calibrating a hydrometer. The performance of the proposed method is illustrated by comparing the calibration results using the automatic alignment method with those obtained using the manual method.
Dynamic trunk stabilization: a conceptual back injury prevention program for volleyball athletes.
Smith, Chad E; Nyland, John; Caudill, Paul; Brosky, Joseph; Caborn, David N M
2008-11-01
The sport of volleyball creates considerable dynamic trunk stability demands. Back injury occurs all too frequently in volleyball, particularly among female athletes. The purpose of this clinical commentary is to review functional anatomy, muscle coactivation strategies, assessment of trunk muscle performance, and the characteristics of effective exercises for the trunk or core. From this information, a conceptual progressive 3-phase volleyball-specific training program is presented to improve dynamic trunk stability and to potentially reduce the incidence of back injury among volleyball athletes. Phase 1 addresses low-velocity motor control, kinesthetic awareness, and endurance, with the clinician providing cues to teach achievement of biomechanically neutral spine alignment. Phase 2 focuses on progressively higher velocity dynamic multiplanar endurance, coordination, and strength-power challenges integrating upper and lower extremity movements, while maintaining neutral spine alignment. Phase 3 integrates volleyball-specific skill simulations by breaking down composite movement patterns into their component parts, with differing dynamic trunk stability requirements, while maintaining neutral spine alignment. Prospective research is needed to validate the efficacy of this program.
Athanasiou, Thanos
2016-01-01
Despite taking advantage of established learning from other industries, quality improvement initiatives in healthcare may struggle to outperform secular trends. The reasons for this are rarely explored in detail, and are often attributed merely to difficulties in engaging clinicians in quality improvement work. In a narrative review of the literature, we argue that this focus on clinicians, at the relative expense of managerial staff, has proven counterproductive. Clinical engagement is not a universal challenge; moreover, there is evidence that managers—particularly middle managers—also have a role to play in quality improvement. Yet managerial participation in quality improvement interventions is often assumed, rather than proven. We identify specific factors that influence the coordination of front-line staff and managers in quality improvement, and integrate these factors into a novel model: the model of alignment. We use this model to explore the implementation of an interdisciplinary intervention in a recent trial, describing different participation incentives and barriers for different staff groups. The extent to which clinical and managerial interests align may be an important determinant of the ultimate success of quality improvement interventions. PMID:26647411
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Krasowski, Michael J.
1991-01-01
The goal is to develop an approach to automating the alignment and adjustment of optical measurement, visualization, inspection, and control systems. Classical controls, expert systems, and neural networks are three approaches to automating the alignment of an optical system. Neural networks were chosen for this project and the judgements that led to this decision are presented. Neural networks were used to automate the alignment of the ubiquitous laser-beam-smoothing spatial filter. The results and future plans of the project are presented.
Study of optical techniques for the Ames unitary wind tunnels. Part 1: Schlieren
NASA Technical Reports Server (NTRS)
Lee, George
1992-01-01
Alignment procedures and conceptual designs for the rapid alignment of the Ames Unitary Wind Tunnel schlieren systems were devised. The schlieren systems can be aligned by translating the light source, the mirrors, and the knife edge equal distances. One design for rapid alignment consists of a manual pin locking scheme. The other is a motorized electronic position scheme. A study of two optical concepts which can be used with the schlieren system was made. These are the 'point diffraction interferometers' and the 'focus schlieren'. Effects of vibrations were studied.
Alignment of Standards and Assessments as an Accountability Criterion.
ERIC Educational Resources Information Center
La Marca, Paul M.
2001-01-01
Provides an overview of the concept of alignment and the role it plays in assessment and accountability systems. Discusses some methodological issues affecting the study of alignment and explores the relationship between alignment and test score interpretation. Alignment is not only a methodological requirement but also an ethical requirement.…
Next-generation healthcare: a strategic appraisal.
Montague, Terrence
2009-01-01
Successful next-generation healthcare must deliver timely access and quality for an aging population, while simultaneously promoting disease prevention and managing costs. The key factors for sustained success are a culture with aligned goals and values; coordinated team care that especially engages with physicians and patients; practical information that is collected and communicated reliably; and education in the theory and methods of collaboration, measurement and leadership. Currently, optimal population health is challenged by a high prevalence of chronic disease, with large gaps between best and usual care, a scarcity of health human resources - particularly with the skills, attitudes and training for coordinated team care - and the absence of flexible, reliable clinical measurement systems. However, to make things better, institutional models and supporting technologies are available. In the short term, a first step is to enhance the awareness of the practical opportunities to improve, including the expansion of proven community-based disease management programs that communicate knowledge, competencies and clinical measurements among professional and patient partners, leading to reduced care gaps and improved clinical and economic outcomes. Longer-term success requires two additional steps. One is formal inter-professional training to provide, on an ongoing basis, the polyvalent human resource skills and foster the culture of working with others to improve the care of whole populations. The other is the adoption of reliable information systems, including electronic health records, to allow useful and timely measurement and effective communication of clinical information in real-world settings. A better health future can commence immediately, within existing resources, and be sustained with feasible innovations in provider and patient education and information systems. The future is now.
Gerrein, Betsy T; Williams, Christina E; Von Allmen, Daniel
2013-01-01
Formal quality-improvement (QI) projects require that participants are educated in QI methods to provide them with the capability to carry out successful, meaningful work. However, orchestrating a portfolio of projects that addresses the strategic mission of the institution requires an extension of basic QI training to provide the division or business unit with the capacity to successfully develop and manage the portfolio. Advanced Improvement Leadership Systems is a program to help units create a meaningful portfolio. This program, used by the Division of Pediatric General and Thoracic Surgery at Cincinnati Children's Hospital Medical Center, helped establish a portfolio of targeted QI projects designed to achieve outstanding outcomes at competitive costs in multiple clinical areas aligned with the institution's strategic goals (improve disease-based outcomes, patient safety, flow, and patient and family experience). These objectives are addressed in an institutional strategic plan built around 5 core areas: Safety, Productivity, Care Coordination and Outcomes, Patient and Family Experience, and Value. By combining the portfolio of QI projects with improvements in the divisional infrastructure, effective improvement efforts were realized throughout the division. In the 9 months following the program, divisional capability resulted in a 16.5% increase (5.7% to 22.2%) of formally trained staff working on 10 QI teams. Concurrently, a leadership team, designed to coordinate projects, remove barriers, and provide technical support, provided the capacity to pursue this ongoing effort. The Advanced Improvement Leadership Systems program increased the Division's efficiency and effectiveness in pursing the QI mission that is integral at our hospital.
Gerrein, Betsy T; Williams, Christina E; von Allmen, Daniel
2013-01-01
Formal quality-improvement (QI) projects require that participants are educated in QI methods to provide them with the capability to carry out successful, meaningful work. However, orchestrating a portfolio of projects that addresses the strategic mission of the institution requires an extension of basic QI training to provide the division or business unit with the capacity to successfully develop and manage the portfolio. Advanced Improvement Leadership Systems is a program to help units create a meaningful portfolio. This program, used by the Division of Pediatric General and Thoracic Surgery at Cincinnati Children’s Hospital Medical Center, helped establish a portfolio of targeted QI projects designed to achieve outstanding outcomes at competitive costs in multiple clinical areas aligned with the institution’s strategic goals (improve disease-based outcomes, patient safety, flow, and patient and family experience). These objectives are addressed in an institutional strategic plan built around 5 core areas: Safety, Productivity, Care Coordination and Outcomes, Patient and Family Experience, and Value. By combining the portfolio of QI projects with improvements in the divisional infrastructure, effective improvement efforts were realized throughout the division. In the 9 months following the program, divisional capability resulted in a 16.5% increase (5.7% to 22.2%) of formally trained staff working on 10 QI teams. Concurrently, a leadership team, designed to coordinate projects, remove barriers, and provide technical support, provided the capacity to pursue this ongoing effort. The Advanced Improvement Leadership Systems program increased the Division’s efficiency and effectiveness in pursing the QI mission that is integral at our hospital. PMID:24361020
Schmitt, Randal L [Tijeras, NM; Henson, Tammy D [Albuquerque, NM; Krumel, Leslie J [Cedar Crest, NM; Hargis, Jr., Philip J.
2006-06-20
A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.
NASA Astrophysics Data System (ADS)
Kilcommons, Liam M.; Redmon, Robert J.; Knipp, Delores J.
2017-08-01
We have developed a method for reprocessing the multidecadal, multispacecraft Defense Meteorological Satellite Program Special Sensor Magnetometer (DMSP SSM) data set and have applied it to 15 spacecraft years of data (DMSP Flight 16-18, 2010-2014). This Level-2 data set improves on other available SSM data sets with recalculated spacecraft locations and magnetic perturbations, artifact signal removal, representations of the observations in geomagnetic coordinates, and in situ auroral boundaries. Spacecraft locations have been recalculated using ground-tracking information. Magnetic perturbations (measured field minus modeled main field) are recomputed. The updated locations ensure the appropriate model field is used. We characterize and remove a slow-varying signal in the magnetic field measurements. This signal is a combination of ring current and measurement artifacts. A final artifact remains after processing: step discontinuities in the baseline caused by activation/deactivation of spacecraft electronics. Using coincident data from the DMSP precipitating electrons and ions instrument (SSJ4/5), we detect the in situ auroral boundaries with an improvement to the Redmon et al. (2010) algorithm. We embed the location of the aurora and an accompanying figure of merit in the Level-2 SSM data product. Finally, we demonstrate the potential of this new data set by estimating field-aligned current (FAC) density using the Minimum Variance Analysis technique. The FAC estimates are then expressed in dynamic auroral boundary coordinates using the SSJ-derived boundaries, demonstrating a dawn-dusk asymmetry in average FAC location relative to the equatorward edge of the aurora. The new SSM data set is now available in several public repositories.
Vascular pattern formation in plants.
Scarpella, Enrico; Helariutta, Ykä
2010-01-01
Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.
Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir
2015-06-01
The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.
Studies of outer planet satellites, Mercury and Uranus
NASA Technical Reports Server (NTRS)
Mckinnon, William B.; Schenk, Paul M.
1987-01-01
Arguments were made, based on geometry, for both an impact and an internal origin for the ancient, partially preserved furrow system of Ganymede. It was concluded that furrows were not concentric, but could be impact related if multiringed structures on icy satellites are initially noncircular. The geometry of the Valhalla ring structure on Callisto was examined in order to assess the circularity of an unmodified ring system. The Ganymede furrow system was remapped to make use of improvements in coordinate control. The least-squares center of curvature for all furrows in the Marius and Galileao Regio is -20.7, and 179.2 degrees. Furrows in Marius and Galileo Regio are reasonably concentric, and are much more circular than previously estimated. The perceived present nonalignment of the assumed originally concentric furrows were used to argue for large-scale lateral motion of dark terrain blocks in Ganymede's crust, presumably in association with bright terrain formation., The overall alignment of furrows as well as the inherent scatter in centers of curvature from subregions of Galileo and Marius do not support this hypothesis.
Measurement of upper extremity orientation by video stereometry system.
Peterson, B; Palmerud, G
1996-03-01
In the attempt to gain a broader understanding of the causal relationships behind work-related symptoms of pain in the human shoulder, monitoring of arm position is crucial. Different methods have been used with varying accuracy. A video-based stereometry system, using infra-red light and reflecting markers for motion analysis, has been introduced for measurements in the fields of ergonomics, biomechanics and sports medicine. The purpose of this study is to investigate the sources of error in using this system for posture registration of the upper limb. Measurements are performed on a calibration fixture, on a mechanical model of the upper limb and on a subject with an exoskeleton. Particular, attention is given to inconsistencies and relative errors due to the finite geometrical precision with which the markers are positioned in the calibration fixture and on the studied objects, the limited capability to align the objects relative to the coordinate system of the calibration fixture and the errors connected to angular measurements using protractors etc. It is concluded that the system makes a valuable addition to existing instruments for non-contact posture measurement, and produces position data with an adequate accuracy in normal handling.
Kitchener, Martin; Caronna, Carol A; Shortell, Stephen M
2005-03-01
As national health systems pursue the common goals of containing expenditure growth and improving quality, many have sought to replace autonomous modes (systems) of physician control that rely on initial professional training and subsequent peer review. A common approach has involved extending bureaucratic modes of physician control that employ techniques such as hierarchical coordination and salaried positions. This paper applies concepts from studies of professional work to frame an empirical analysis of emergent bureaucratic modes of physician control in US hospital-based systems. Conceptually, we draw from recent studies to update Scott's (Health Services Res. 17(3) (1982) 213) typology to specify three bureaucratic modes of physician control: heteronomous, conjoint, and custodial. Empirically, we use case study evidence from eight US hospital-based systems to illustrate the heterogeneity of bureaucratic modes of physician control that span each of the ideal types. The findings indicate that some influential analysts perpetuate a caricature of bureaucratic organization which underplays its capacity to provide multiple modes of physician control that maintain professional autonomy over the content of work, and present opportunities for aligning practice with social goals.
NASA Astrophysics Data System (ADS)
Robinson, R. M.; Zanetti, L. J.; Anderson, B. J.; Korth, H.; Samara, M.; Michell, R.; Grubbs, G. A., II; Hampton, D. L.; Dropulic, A.
2016-12-01
A high latitude conductivity model based on field-aligned currents measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides the means for complete specification of electric fields and currents at high latitudes. Based on coordinated measurements made by AMPERE and the Poker Flat Incoherent Scatter Radar, the model determines the most likely value of the ionospheric conductance from the direction, magnitude, and magnetic local time of the field-aligned current. A conductance model driven by field-aligned currents ensures spatial and temporal consistency between the calculated electrodynamic parameters. To validate the results, the Pedersen and Hall conductances were used to calculate the energy flux associated with the energetic particle precipitation. When integrated over the entire hemisphere, the total energy flux compares well with the Hemispheric Power Index derived from the OVATION-PRIME model. The conductances were also combined with the field-aligned currents to calculate the self-consistent electric field, which was then used to compute horizontal currents and Joule heating. The magnetic perturbations derived from the currents replicate most of the variations observed in ground-based magnetograms. The model was used to study high latitude particle precipitation, currents, and Joule heating for 24 magnetic storms. In most cases, the total energy input from precipitating particles and Joule heating exhibits a sharply-peaked maximum at the times of local minima in Dst, suggesting a close coupling between the ring current and the high latitude currents driven by the Region 2 field-aligned currents. The rapid increase and decrease of the high latitude energy deposition suggests an explosive transfer of energy from the magnetosphere to the ionosphere just prior to storm recovery.
FALCON Remote Laser Alignment System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, T.W.; Hebner, G.A.
1993-01-01
The FALCON Remote Laser Alignment System is used in a high radiation environment to adjust an optical assembly. The purpose of this report is to provide a description of the hardware used and to present the system configuration. Use of the system has increased the reliability and reproducibility of data as well as significantly reducing personnel radiation exposure. Based upon measured radiation dose, radiation exposure was reduced by at least a factor of two after implementing the remote alignment system.
FALCON Remote Laser Alignment System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, T.W.; Hebner, G.A.
1993-02-01
The FALCON Remote Laser Alignment System is used in a high radiation environment to adjust an optical assembly. The purpose of this report is to provide a description of the hardware used and to present the system configuration. Use of the system has increased the reliability and reproducibility of data as well as significantly reducing personnel radiation exposure. Based upon measured radiation dose, radiation exposure was reduced by at least a factor of two after implementing the remote alignment system.
Development and validation of a multilateration test bench for particle accelerator pre-alignment
NASA Astrophysics Data System (ADS)
Kamugasa, Solomon William; Rothacher, Markus; Gayde, Jean-Christophe; Mainaud Durand, Helene
2018-03-01
The development and validation of a portable coordinate measurement solution for fiducialization of compact linear collider (CLIC) components is presented. This new solution addresses two limitations of high-accuracy state-of-the-art coordinate measuring machines, i.e. lack of portability and limited measurement volume. The solution is based on frequency scanning interferometry (FSI) distances and the multilateration coordinate measurement technique. The developments include a reference sphere for localizing the FSI optical fiber tip and a kinematic mount for repositioning the reference sphere with sub-micrometric repeatability. This design enables absolute distance measurements in different directions from the same point, which is essential for multilateration. A multilateration test bench built using these prototypes has been used to fiducialize a CLIC cavity beam position monitor and 420 mm-long main beam quadrupole magnet. The combined fiducialization uncertainty achieved is 3.5 μm (k = 1), which is better than the CLIC 5 μm (k = 1) uncertainty specification.
Nielsen, Anne; McKenzie, Christine J.; Bond, Andrew D.
2009-01-01
The title compound, [FeCl3(C12H18N4)]·0.5CH3OH, contains an FeIII ion in a distorted octahedral coordination environment. The neutral N,N′,N′′-tridentate ligand adopts a fac coordination mode, and chloride ligands lie trans to each of the three coordinated N atoms. In the crystal, the complexes form columns extending parallel to the approximate local threefold axes of the FeN3Cl3 octahedra, and the columns are arranged so that the uncoordinated nitrile groups align in an antiparallel manner and the pyridyl rings form offset face-to-face arrangements [interplanar separations = 2.95 (1) and 3.11 (1) Å; centroid–centroid distances = 5.31 (1) and 4.92 (1) Å]. The methanol solvent molecule is disordered about a twofold rotation axis. PMID:21578169
Berry, Jesse L; Kim, Jonathan W; Jennelle, Richard; Astrahan, Melvin
2015-09-01
To describe a new surgical technique for intraoperative placement of Eye Physics (EP) plaques for uveal melanoma using a toric marker. A toric marker is designed for cataract surgery to align the axis of astigmatism; its use was modified in this protocol to mark the axis of suture coordinates as calculated by Plaque Simulator (PS) software. The toric marker can be used to localize suture coordinates, in degrees, during intraoperative plaque placement. Linear marking using the toric marker decreases potential inaccuracies associated with the surgeon estimating 'clock-hours' by dot placement. Use of the toric marker aided surgical placement of EP plaques. The EP planning protocol is now designed to display the suture coordinates either by clock-hours or degrees, per surgeon preference. Future research is necessary to determine whether routine use of the toric marker improves operative efficiency. [Ophthalmic Surg Lasers Imaging Retina. 2015;46:866-870.]. Copyright 2015, SLACK Incorporated.
Actin–microtubule coordination at growing microtubule ends
López, Magdalena Preciado; Huber, Florian; Grigoriev, Ilya; Steinmetz, Michel O.; Akhmanova, Anna; Koenderink, Gijsje H.; Dogterom, Marileen
2014-01-01
To power dynamic processes in cells, the actin and microtubule cytoskeletons organize into complex structures. Although it is known that cytoskeletal coordination is vital for cell function, the mechanisms by which cross-linking proteins coordinate actin and microtubule activities remain poorly understood. In particular, it is unknown how the distinct mechanical properties of different actin architectures modulate the outcome of actin–microtubule interactions. To address this question, we engineered the protein TipAct, which links growing microtubule ends via end-binding proteins to actin filaments. We show that growing microtubules can be captured and guided by stiff actin bundles, leading to global actin–microtubule alignment. Conversely, growing microtubule ends can transport, stretch and bundle individual actin filaments, thereby globally defining actin filament organization. Our results provide a physical basis to understand actin–microtubule cross-talk, and reveal that a simple cross-linker can enable a mechanical feedback between actin and microtubule organization that is relevant to diverse biological contexts. PMID:25159196
Design and realization of the optical and electron beam alignment system for the HUST-FEL oscillator
NASA Astrophysics Data System (ADS)
Fu, Q.; Tan, P.; Liu, K. F.; Qin, B.; Liu, X.
2018-06-01
A Free Electron Laser(FEL) oscillator with radiation wavelength at 30-100 μ m is under commissioning at Huazhong University of Science and Technology (HUST). This work presents the schematic design and realization procedures for the optical and beam alignment system in the HUST FEL facility. The optical cavity misalignment effects are analyzed with the code OPC + Genesis 1.3, and the tolerance of misalignment is proposed with the simulation result. Depending on undulator mechanical benchmarks, a laser indicating system has been built up as reference datum. The alignment of both optical axis and beam trajectory were achieved by this alignment system.
Zimmermann, Frauke; Schwenninger, Christoph; Nolten, Ulrich; Firmbach, Franz Peter; Elfring, Robert; Radermacher, Klaus
2012-05-06
Preservation and recovery of the mechanical leg axis as well as good rotational alignment of the prosthesis components and well-balanced ligaments are essential for the longevity of total knee arthroplasty (TKA). In the framework of the OrthoMIT project, the genALIGN system, a new navigated implantation approach based on intra-operative force-torque measurements, has been developed. With this system, optical or magnetic position tracking as well as any fixation of invasive rigid bodies are no longer necessary. For the alignment of the femoral component along the mechanical axis, a sensor-integrated instrument measures the torques resulting from the deviation between the instrument's axis and the mechanical axis under manually applied axial compression load. When both axes are coaxial, the resulting torques equal zero, and the tool axis can be fixed with respect to the bone. For ligament balancing and rotational alignment of the femoral component, the genALIGN system comprises a sensor-integrated tibial trial inlay measuring the amplitude and application points of the forces transferred between femur and tibia. Hereby, the impact of ligament tensions on knee joint loads can be determined over the whole range of motion. First studies with the genALIGN system, including a comparison with an imageless navigation system, show the feasibility of the concept.
System modeling of the Thirty Meter Telescope alignment and phasing system
NASA Astrophysics Data System (ADS)
Dekens, Frank G.; Seo, Byoung-Joon; Troy, Mitchell
2014-08-01
We have developed a system model using the System Modeling Language (SysML) for the Alignment and Phasing System (APS) on the Thirty Meter Telescope (TMT). APS is a Shack-Hartmann wave-front sensor that will be used to measure the alignment and phasing of the primary mirror segments, and the alignment of the secondary and tertiary mirrors. The APS system model contains the ow-down of the Level 1 TMT requirements to APS (Level 2) requirements, and from there to the APS sub-systems (Level 3) requirements. The model also contains the operating modes and scenarios for various activities, such as maintenance alignment, post-segment exchange alignment, and calibration activities. The requirements ow-down is captured in SysML requirements diagrams, and we describe the process of maintaining the DOORS database as the single-source-of-truth for requirements, while using the SysML model to capture the logic and notes associated with the ow-down. We also use the system model to capture any needed communications from APS to other TMT systems, and between the APS sub-systems. The operations are modeled using SysML activity diagrams, and will be used to specify the APS interface documents. The modeling tool can simulate the top level activities to produce sequence diagrams, which contain all the communications between the system and subsystem needed for that activity. By adding time estimates for the lowest level APS activities, a robust estimate for the total time on-sky that APS requires to align and phase the telescope can be obtained. This estimate will be used to verify that the time APS requires on-sky meets the Level 1 TMT requirements.
Goren, Arthur D; Bonvento, Michael J; Fernandez, Thomas J; Abramovitch, Kenneth; Zhang, Wenjian; Roe, Nadine; Seltzer, Jared; Steinberg, Mitchell; Colosi, Dan C
2011-03-01
A pilot study to compare radiation exposure with the Tru-Align rectangular collimation system to round collimation exposures was undertaken. Radiation exposure at various points within the cross sections of the collimators and entrance, intraoral and exit dose measurements were measured using InLight OSL dosimeters. Overall dose reduction with the use of the rectangular collimation system was estimated by taking into account the ratios of collimator openings and the average radiation exposure at the measurement points. Use of the Tru-Align system resulted in an average radiation exposure within the perimeter of the projected outline of the rectangular collimator of 36.1 mR, compared to 148.5 mR with the round collimator. Our calculations indicate a dose reduction by a factor of approximately 3.2 in the case of the Tru-Align system compared to round collimation. The Tru-Align system was easy to use, but in some situations failed to allow Xray coverage of the entire surface of the image receptor, leading to cone cuts.
ERIC Educational Resources Information Center
Bogard, Kimber; Takanishi, Ruby
2005-01-01
The United States is as known for its high-quality universities as for its poor-quality public schools. Many states are taking steps to improve the likelihood that their children will succeed in grades K-12 by providing funding for pre-kindergarten (PK). More than $2.4 billion dollars is spent on these programs, and the number of children…
Mithras Studies of the Boundary Between Open and Closed Field Lines.
1994-01-31
I ¸ . . A- : - Final Report • March 1995 MITHRAS STUDIES OF THE BOUNDARY BETWEEN OPEN AND CLOSED FIELD LINES John D. Kelly, Program Manager Richard A...Kelly, Program Manager Richard A. Doe, Research Physicist Geoscience and Engineering Center SRI Project 3245 Prepared for: Department of the Air...characteristic energy, energy flux, and an estimate for upward field-aligned current. On the basis of coordinated radar/optical experiments, Vallance Jones et al
2015-02-11
uncovered. Using magnetoencephalography ( MEG ) imaging during rest in 12 healthy subjects we analyse the resting state networks and their underlying...across the whole brain of the resting state is generated. Human magnetoencephalography ( MEG ) of the whole brain emphasized the contribution of...frequency oscillations coordinate long-range communication (Stein, Chiang, and König, 2000). However, these MEG findings do not align entirely with
DNA-dependent protein kinase in nonhomologous end joining: a lock with multiple keys?
Weterings, Eric; Chen, David J
2007-10-22
The DNA-dependent protein kinase (DNA-PK) is one of the central enzymes involved in DNA double-strand break (DSB) repair. It facilitates proper alignment of the two ends of the broken DNA molecule and coordinates access of other factors to the repair complex. We discuss the latest findings on DNA-PK phosphorylation and offer a working model for the regulation of DNA-PK during DSB repair.
Edge Equilibrium Code (EEC) For Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xujling
2014-02-24
The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids
Robust Coordination for Large Sets of Simple Rovers
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian
2006-01-01
The ability to coordinate sets of rovers in an unknown environment is critical to the long-term success of many of NASA;s exploration missions. Such coordination policies must have the ability to adapt in unmodeled or partially modeled domains and must be robust against environmental noise and rover failures. In addition such coordination policies must accommodate a large number of rovers, without excessive and burdensome hand-tuning. In this paper we present a distributed coordination method that addresses these issues in the domain of controlling a set of simple rovers. The application of these methods allows reliable and efficient robotic exploration in dangerous, dynamic, and previously unexplored domains. Most control policies for space missions are directly programmed by engineers or created through the use of planning tools, and are appropriate for single rover missions or missions requiring the coordination of a small number of rovers. Such methods typically require significant amounts of domain knowledge, and are difficult to scale to large numbers of rovers. The method described in this article aims to address cases where a large number of rovers need to coordinate to solve a complex time dependent problem in a noisy environment. In this approach, each rover decomposes a global utility, representing the overall goal of the system, into rover-specific utilities that properly assign credit to the rover s actions. Each rover then has the responsibility to create a control policy that maximizes its own rover-specific utility. We show a method of creating rover-utilities that are "aligned" with the global utility, such that when the rovers maximize their own utility, they also maximize the global utility. In addition we show that our method creates rover-utilities that allow the rovers to create their control policies quickly and reliably. Our distributed learning method allows large sets rovers be used unmodeled domains, while providing robustness against rover failures and changing environments. In experimental simulations we show that our method scales well with large numbers of rovers in addition to being robust against noisy sensor inputs and noisy servo control. The results show that our method is able to scale to large numbers of rovers and achieves up to 400% performance improvement over standard machine learning methods.
Creating a medical dictionary using word alignment: the influence of sources and resources.
Nyström, Mikael; Merkel, Magnus; Petersson, Håkan; Ahlfeldt, Hans
2007-11-23
Automatic word alignment of parallel texts with the same content in different languages is among other things used to generate dictionaries for new translations. The quality of the generated word alignment depends on the quality of the input resources. In this paper we report on automatic word alignment of the English and Swedish versions of the medical terminology systems ICD-10, ICF, NCSP, KSH97-P and parts of MeSH and how the terminology systems and type of resources influence the quality. We automatically word aligned the terminology systems using static resources, like dictionaries, statistical resources, like statistically derived dictionaries, and training resources, which were generated from manual word alignment. We varied which part of the terminology systems that we used to generate the resources, which parts that we word aligned and which types of resources we used in the alignment process to explore the influence the different terminology systems and resources have on the recall and precision. After the analysis, we used the best configuration of the automatic word alignment for generation of candidate term pairs. We then manually verified the candidate term pairs and included the correct pairs in an English-Swedish dictionary. The results indicate that more resources and resource types give better results but the size of the parts used to generate the resources only partly affects the quality. The most generally useful resources were generated from ICD-10 and resources generated from MeSH were not as general as other resources. Systematic inter-language differences in the structure of the terminology system rubrics make the rubrics harder to align. Manually created training resources give nearly as good results as a union of static resources, statistical resources and training resources and noticeably better results than a union of static resources and statistical resources. The verified English-Swedish dictionary contains 24,000 term pairs in base forms. More resources give better results in the automatic word alignment, but some resources only give small improvements. The most important type of resource is training and the most general resources were generated from ICD-10.
Creating a medical dictionary using word alignment: The influence of sources and resources
Nyström, Mikael; Merkel, Magnus; Petersson, Håkan; Åhlfeldt, Hans
2007-01-01
Background Automatic word alignment of parallel texts with the same content in different languages is among other things used to generate dictionaries for new translations. The quality of the generated word alignment depends on the quality of the input resources. In this paper we report on automatic word alignment of the English and Swedish versions of the medical terminology systems ICD-10, ICF, NCSP, KSH97-P and parts of MeSH and how the terminology systems and type of resources influence the quality. Methods We automatically word aligned the terminology systems using static resources, like dictionaries, statistical resources, like statistically derived dictionaries, and training resources, which were generated from manual word alignment. We varied which part of the terminology systems that we used to generate the resources, which parts that we word aligned and which types of resources we used in the alignment process to explore the influence the different terminology systems and resources have on the recall and precision. After the analysis, we used the best configuration of the automatic word alignment for generation of candidate term pairs. We then manually verified the candidate term pairs and included the correct pairs in an English-Swedish dictionary. Results The results indicate that more resources and resource types give better results but the size of the parts used to generate the resources only partly affects the quality. The most generally useful resources were generated from ICD-10 and resources generated from MeSH were not as general as other resources. Systematic inter-language differences in the structure of the terminology system rubrics make the rubrics harder to align. Manually created training resources give nearly as good results as a union of static resources, statistical resources and training resources and noticeably better results than a union of static resources and statistical resources. The verified English-Swedish dictionary contains 24,000 term pairs in base forms. Conclusion More resources give better results in the automatic word alignment, but some resources only give small improvements. The most important type of resource is training and the most general resources were generated from ICD-10. PMID:18036221
Sawyer, Travis W; Petersburg, Ryan; Bohndiek, Sarah E
2017-04-20
Optical fiber technology is found in a wide variety of applications to flexibly relay light between two points, enabling information transfer across long distances and allowing access to hard-to-reach areas. Large-core optical fibers and light guides find frequent use in illumination and spectroscopic applications, for example, endoscopy and high-resolution astronomical spectroscopy. Proper alignment is critical for maximizing throughput in optical fiber coupling systems; however, there currently are no formal approaches to tolerancing the alignment of a light-guide coupling system. Here, we propose a Fourier alignment sensitivity (FAS) algorithm to determine the optimal tolerances on the alignment of a light guide by computing the alignment sensitivity. The algorithm shows excellent agreement with both simulated and experimentally measured values and improves on the computation time of equivalent ray-tracing simulations by two orders of magnitude. We then apply FAS to tolerance and fabricate a coupling system, which is shown to meet specifications, thus validating FAS as a tolerancing technique. These results indicate that FAS is a flexible and rapid means to quantify the alignment sensitivity of a light guide, widely informing the design and tolerancing of coupling systems.
Sawyer, Travis W.; Petersburg, Ryan; Bohndiek, Sarah E.
2017-01-01
Optical fiber technology is found in a wide variety of applications to flexibly relay light between two points, enabling information transfer across long distances and allowing access to hard-to-reach areas. Large-core optical fibers and light guides find frequent use in illumination and spectroscopic applications; for example, endoscopy and high-resolution astronomical spectroscopy. Proper alignment is critical for maximizing throughput in optical fiber coupling systems, however, there currently are no formal approaches to tolerancing the alignment of a light guide coupling system. Here, we propose a Fourier Alignment Sensitivity (FAS) algorithm to determine the optimal tolerances on the alignment of a light guide by computing the alignment sensitivity. The algorithm shows excellent agreement with both simulated and experimentally measured values and improves on the computation time of equivalent ray tracing simulations by two orders of magnitude. We then apply FAS to tolerance and fabricate a coupling system, which is shown to meet specifications, thus validating FAS as a tolerancing technique. These results indicate that FAS is a flexible and rapid means to quantify the alignment sensitivity of a light guide, widely informing the design and tolerancing of coupling systems. PMID:28430250
Radio-Optical Reference Frame Link Using the U.S. Naval Observatory Astrograph and Deep CCD Imaging
NASA Astrophysics Data System (ADS)
Zacharias, N.; Zacharias, M. I.
2014-05-01
Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.
Radio-optical reference frame link using the U.S. Naval observatory astrograph and deep CCD imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharias, N.; Zacharias, M. I., E-mail: nz@usno.navy.mil
2014-05-01
Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reducedmore » following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.« less
RF Jitter Modulation Alignment Sensing
NASA Astrophysics Data System (ADS)
Ortega, L. F.; Fulda, P.; Diaz-Ortiz, M.; Perez Sanchez, G.; Ciani, G.; Voss, D.; Mueller, G.; Tanner, D. B.
2017-01-01
We will present the numerical and experimental results of a new alignment sensing scheme which can reduce the complexity of alignment sensing systems currently used, while maintaining the same shot noise limited sensitivity. This scheme relies on the ability of electro-optic beam deflectors to create angular modulation sidebands in radio frequency, and needs only a single-element photodiode and IQ demodulation to generate error signals for tilt and translation degrees of freedom in one dimension. It distances itself from current techniques by eliminating the need for beam centering servo systems, quadrant photodetectors and Gouy phase telescopes. RF Jitter alignment sensing can be used to reduce the complexity in the alignment systems of many laser optical experiments, including LIGO and the ALPS experiment.
Alignment of Standards and Assessments as an Accountability Criterion. ERIC Digest.
ERIC Educational Resources Information Center
La Marca, Paul M.
This digest provides an overview of the concept of alignment and the role it plays in assessment and accountability systems. It also discusses methodological issues affecting the study of alignment and explores the relationship between alignment and test score interpretation. Alignment refers to the degree of match between test content and subject…
Sub-cell turning to accomplish micron-level alignment of precision assemblies
NASA Astrophysics Data System (ADS)
Kumler, James J.; Buss, Christian
2017-08-01
Higher performance expectations for complex optical systems demand tighter alignment requirements for lens assembly alignment. In order to meet diffraction limited imaging performance over wide spectral bands across the UV and visible wavebands, new manufacturing approaches and tools must be developed if the optical systems will be produced consistently in volume production. This is especially applicable in the field of precision microscope objectives for life science, semiconductor inspection and laser material processing systems. We observe a rising need for the improvement in the optical imaging performance of objective lenses. The key challenge lies in the micron-level decentration and tilt of each lens element. One solution for the production of high quality lens systems is sub-cell assembly with alignment turning. This process relies on an automatic alignment chuck to align the optical axis of a mounted lens to the spindle axis of the machine. Subsequently, the mount is cut with diamond tools on a lathe with respect to the optical axis of the mount. Software controlled integrated measurement technology ensures highest precision. In addition to traditional production processes, further dimensions can be controlled in a very precise manner, e.g. the air gaps between the lenses. Using alignment turning simplifies further alignment steps and reduces the risk of errors. This paper describes new challenges in microscope objective design and manufacturing, and addresses difficulties with standard production processes. A new measurement and alignment technique is described, and strengths and limitations are outlined.
Liu, Chuanjun; Xiao, Chengli
2018-01-01
The spatial updating and memory systems are employed during updating in both the immediate and retrieved environments. However, these dual systems seem to work differently, as the difference of pointing latency and absolute error between the two systems vary across environments. To verify this issue, the present study employed the bias analysis of signed errors based on the hypothesis that the transformed representation will bias toward the original one. Participants learned a spatial layout and then either stayed in the learning location or were transferred to a neighboring room directly or after being disoriented. After that, they performed spatial judgments from perspectives aligned with the learning direction, aligned with the direction they faced during the test, or a novel direction misaligned with the two above-mentioned directions. The patterns of signed error bias were consistent across environments. Responses for memory aligned perspectives were unbiased, whereas responses for sensorimotor aligned perspectives were biased away from the memory aligned perspective, and responses for misaligned perspectives were biased toward sensorimotor aligned perspectives. These findings indicate that the spatial updating system is consistently independent of the spatial memory system regardless of the environments, but the updating system becomes less accessible as the environment changes from immediate to a retrieved one.
Liu, Chuanjun; Xiao, Chengli
2018-01-01
The spatial updating and memory systems are employed during updating in both the immediate and retrieved environments. However, these dual systems seem to work differently, as the difference of pointing latency and absolute error between the two systems vary across environments. To verify this issue, the present study employed the bias analysis of signed errors based on the hypothesis that the transformed representation will bias toward the original one. Participants learned a spatial layout and then either stayed in the learning location or were transferred to a neighboring room directly or after being disoriented. After that, they performed spatial judgments from perspectives aligned with the learning direction, aligned with the direction they faced during the test, or a novel direction misaligned with the two above-mentioned directions. The patterns of signed error bias were consistent across environments. Responses for memory aligned perspectives were unbiased, whereas responses for sensorimotor aligned perspectives were biased away from the memory aligned perspective, and responses for misaligned perspectives were biased toward sensorimotor aligned perspectives. These findings indicate that the spatial updating system is consistently independent of the spatial memory system regardless of the environments, but the updating system becomes less accessible as the environment changes from immediate to a retrieved one. PMID:29467698
Managing public health in the Army through a standard community health promotion council model.
Courie, Anna F; Rivera, Moira Shaw; Pompey, Allison
2014-01-01
Public health processes in the US Army remain uncoordinated due to competing lines of command, funding streams and multiple subject matter experts in overlapping public health concerns. The US Army Public Health Command (USAPHC) has identified a standard model for community health promotion councils (CHPCs) as an effective framework for synchronizing and integrating these overlapping systems to ensure a coordinated approach to managing the public health process. The purpose of this study is to test a foundational assumption of the CHPC effectiveness theory: the 3 features of a standard CHPC model - a CHPC chaired by a strong leader, ie, the senior commander; a full time health promotion team dedicated to the process; and centralized management through the USAPHC - will lead to high quality health promotion councils capable of providing a coordinated approach to addressing public health on Army installations. The study employed 2 evaluation questions: (1) Do CHPCs with centralized management through the USAPHC, alignment with the senior commander, and a health promotion operations team adhere more closely to the evidence-based CHPC program framework than CHPCs without these 3 features? (2) Do members of standard CHPCs report that participation in the CHPC leads to a well-coordinated approach to public health at the installation? The results revealed that both time (F(5,76)=25.02, P<.0001) and the 3 critical features of the standard CHPC model (F(1,76)=28.40, P<.0001) independently predicted program adherence. Evaluation evidence supports the USAPHC's approach to CHPC implementation as part of public health management on Army installations. Preliminary evidence suggests that the standard CHPC model may lead to a more coordinated approach to public health and may assure that CHPCs follow an evidence-informed design. This is consistent with past research demonstrating that community coalitions and public health systems that have strong leadership; dedicated staff time and expertise; influence over policy, governance and oversight; and formalized rules and regulations function more effectively than those without. It also demonstrates the feasibility of implementing an evidence-informed approach to community coalitions in an Army environment.
ERIC Educational Resources Information Center
Choi, Namyoun
2010-01-01
Educational standards alignment, which matches similar or equivalent concepts of educational standards, is a necessary task for educational resource discovery and retrieval. Automated or semi-automated alignment systems for educational standards have been recently available. However, existing systems frequently result in inconsistency in…
Comparative Analysis of the Measurement of Total Instructional Alignment
ERIC Educational Resources Information Center
Kick, Laura C.
2013-01-01
In 2007, Lisa Carter created the Total Instructional Alignment system--a process that aligns standards, curriculum, assessment, and instruction. Employed in several hundred school systems, the TIA process is a successful professional development program. The researcher developed an instrument to measure the success of the TIA process with the…
Chunk Alignment for Corpus-Based Machine Translation
ERIC Educational Resources Information Center
Kim, Jae Dong
2011-01-01
Since sub-sentential alignment is critically important to the translation quality of an Example-Based Machine Translation (EBMT) system, which operates by finding and combining phrase-level matches against the training examples, we developed a new alignment algorithm for the purpose of improving the EBMT system's performance. This new…
High-resolution in vivo Wistar rodent brain atlas based on T1 weighted image
NASA Astrophysics Data System (ADS)
Huang, Su; Lu, Zhongkang; Huang, Weimin; Seramani, Sankar; Ramasamy, Boominathan; Sekar, Sakthivel; Guan, Cuntai; Bhakoo, Kishore
2016-03-01
Image based atlases for rats brain have a significant impact on pre-clinical research. In this project we acquired T1-weighted images from Wistar rodent brains with fine 59μm isotropical resolution for generation of the atlas template image. By applying post-process procedures using a semi-automatic brain extraction method, we delineated the brain tissues from source data. Furthermore, we applied a symmetric group-wise normalization method to generate an optimized template of T1 image of rodent brain, then aligned our template to the Waxholm Space. In addition, we defined several simple and explicit landmarks to corresponding our template with the well known Paxinos stereotaxic reference system. Anchoring at the origin of the Waxholm Space, we applied piece-wise linear transformation method to map the voxels of the template into the coordinates system in Paxinos' stereotoxic coordinates to facilitate the labelling task. We also cross-referenced our data with both published rodent brain atlas and image atlases available online, methodologically labelling the template to produce a Wistar brain atlas identifying more than 130 structures. Particular attention was paid to the cortex and cerebellum, as these areas encompass the most researched aspects of brain functions. Moreover, we adopted the structure hierarchy and naming nomenclature common to various atlases, so that the names and hierarchy structure presented in the atlas are readily recognised for easy use. It is believed the atlas will present a useful tool in rodent brain functional and pharmaceutical studies.
Target tracking and pointing for arrays of phase-locked lasers
NASA Astrophysics Data System (ADS)
Macasaet, Van P.; Hughes, Gary B.; Lubin, Philip; Madajian, Jonathan; Zhang, Qicheng; Griswold, Janelle; Kulkarni, Neeraj; Cohen, Alexander; Brashears, Travis
2016-09-01
Arrays of phase-locked lasers are envisioned for planetary defense and exploration systems. High-energy beams focused on a threatening asteroid evaporate surface material, creating a reactionary thrust that alters the asteroid's orbit. The same system could be used to probe an asteroid's composition, to search for unknown asteroids, and to propel interplanetary and interstellar spacecraft. Phased-array designs are capable of producing high beam intensity, and allow beam steering and beam profile manipulation. Modular designs allow ongoing addition of emitter elements to a growing array. This paper discusses pointing control for extensible laser arrays. Rough pointing is determined by spacecraft attitude control. Lateral movement of the laser emitter tips behind the optical elements provides intermediate pointing adjustment for individual array elements and beam steering. Precision beam steering and beam formation is accomplished by coordinated phase modulation across the array. Added cells are incorporated into the phase control scheme by precise alignment to local mechanical datums using fast, optical relative position sensors. Infrared target sensors are also positioned within the datum scheme, and provide information about the target vector relative to datum coordinates at each emitter. Multiple target sensors allow refined determination of the target normal plane, providing information to the phase controller for each emitter. As emitters and sensors are added, local position data allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. Mechanical design and associated phase control that is scalable for target distance and number of emitters is presented.
Moto del Sole intorno al baricentro del sistema solare
NASA Astrophysics Data System (ADS)
Piovan, Luciano; Milani, Franco
2006-06-01
The paper discusses the Sun's motion around the barycentre of the Solar System determined by the ever-changing dispositon of the planets over approximately 2000 years. Files of high-quality data taken from international sites were used in common personal computers. The Sun shows a repetitive behaviour, where an apocycle (ApC, decennial period in which the Sun moves very far from the barycentre) is followed by a pericycle (PeC, decennial period in which the Sun moves very near the barycentre) and by another ApC, etc. Periodicities exist in the short period (supercycles, SpC, lasting about 40 years and made of two sequences ApC-PeC, each lasting 20 years), in the mean period (phases comprising a sequence of 4 to 5 SpC, then lasting approximately 160 or 200 years respectively, mean value 180 years), and in the long period (hypercycles, IpC, consisting of two phases, lasting approximately 360 or 400 years). During one phase, the successive ApCs start opposed to each other in ecliptical coordinates and end nearly superimposed; during the following phase the ApCs start superimposed one over the other and end opposed to each other in ecliptical coordinates. The phase length, whose mean value is about 180 years, is very near the modulation of the maxima of the sunspot cycle (178.7 years). The periodicities found are modulated mainly by the alignment of Jupiter, or by both Jupiter and Saturn, with the Sun and the barycentre of the Solar System.
Using factor analysis to identify neuromuscular synergies during treadmill walking
NASA Technical Reports Server (NTRS)
Merkle, L. A.; Layne, C. S.; Bloomberg, J. J.; Zhang, J. J.
1998-01-01
Neuroscientists are often interested in grouping variables to facilitate understanding of a particular phenomenon. Factor analysis is a powerful statistical technique that groups variables into conceptually meaningful clusters, but remains underutilized by neuroscience researchers presumably due to its complicated concepts and procedures. This paper illustrates an application of factor analysis to identify coordinated patterns of whole-body muscle activation during treadmill walking. Ten male subjects walked on a treadmill (6.4 km/h) for 20 s during which surface electromyographic (EMG) activity was obtained from the left side sternocleidomastoid, neck extensors, erector spinae, and right side biceps femoris, rectus femoris, tibialis anterior, and medial gastrocnemius. Factor analysis revealed 65% of the variance of seven muscles sampled aligned with two orthogonal factors, labeled 'transition control' and 'loading'. These two factors describe coordinated patterns of muscular activity across body segments that would not be evident by evaluating individual muscle patterns. The results show that factor analysis can be effectively used to explore relationships among muscle patterns across all body segments to increase understanding of the complex coordination necessary for smooth and efficient locomotion. We encourage neuroscientists to consider using factor analysis to identify coordinated patterns of neuromuscular activation that would be obscured using more traditional EMG analyses.
Curriculum Alignment Projects: Toward Developing a Need to Know
NASA Astrophysics Data System (ADS)
Pinkerton, K. David
2001-02-01
This study investigated means of designing a high school chemistry curriculum. A Curriculum Alignment Project (CAP) was used to coordinate one semester (18 weeks) of activities. CAPs are long-term, multiple-approach design and construction projects that provide students a concrete task to accomplish, rather than an abstract theme to appreciate. Topics were selected for their potential contribution to students' success on the CAP, not because the topics were coming up next in a textbook. One particular CAP, Bicarbonate Squeeze Play, is described in detail. After one cycle of CAPs, student motivation began to change from extrinsic to intrinsic; achievement on objective measures was holding steady; students' abilities to craft and carry out long-term plans for complex projects were improving; and the teacher was learning how to design curriculum that fostered students' need to know.
New DMSP database of precipitating auroral electrons and ions
NASA Astrophysics Data System (ADS)
Redmon, Robert J.; Denig, William F.; Kilcommons, Liam M.; Knipp, Delores J.
2017-08-01
Since the mid-1970s, the Defense Meteorological Satellite Program (DMSP) spacecraft have operated instruments for monitoring the space environment from low Earth orbit. As the program evolved, so have the measurement capabilities such that modern DMSP spacecraft include a comprehensive suite of instruments providing estimates of precipitating electron and ion fluxes, cold/bulk plasma composition and moments, the geomagnetic field, and optical emissions in the far and extreme ultraviolet. We describe the creation of a new public database of precipitating electrons and ions from the Special Sensor J (SSJ) instrument, complete with original counts, calibrated differential fluxes adjusted for penetrating radiation, estimates of the total kinetic energy flux and characteristic energy, uncertainty estimates, and accurate ephemerides. These are provided in a common and self-describing format that covers 30+ years of DMSP spacecraft from F06 (launched in 1982) to F18 (launched in 2009). This new database is accessible at the National Centers for Environmental Information and the Coordinated Data Analysis Web. We describe how the new database is being applied to high-latitude studies of the colocation of kinetic and electromagnetic energy inputs, ionospheric conductivity variability, field-aligned currents, and auroral boundary identification. We anticipate that this new database will support a broad range of space science endeavors from single observatory studies to coordinated system science investigations.
Alignment of sensor arrays in optical instruments using a geometric approach.
Sawyer, Travis W
2018-02-01
Alignment of sensor arrays in optical instruments is critical to maximize the instrument's performance. While many commercial systems use standardized mounting threads for alignment, custom systems require specialized equipment and alignment procedures. These alignment procedures can be time-consuming, dependent on operator experience, and have low repeatability. Furthermore, each alignment solution must be considered on a case-by-case basis, leading to additional time and resource cost. Here I present a method to align a sensor array using geometric analysis. By imaging a grid pattern of dots, I show that it is possible to calculate the misalignment for a sensor in five degrees of freedom simultaneously. I first test the approach by simulating different cases of misalignment using Zemax before applying the method to experimentally acquired data of sensor misalignment for an echelle spectrograph. The results show that the algorithm effectively quantifies misalignment in five degrees of freedom for an F/5 imaging system, accurate to within ±0.87 deg in rotation and ±0.86 μm in translation. Furthermore, the results suggest that the method can also be applied to non-imaging systems with a small penalty to precision. This general approach can potentially improve the alignment of sensor arrays in custom instruments by offering an accurate, quantitative approach to calculating misalignment in five degrees of freedom simultaneously.
VANLO - Interactive visual exploration of aligned biological networks
Brasch, Steffen; Linsen, Lars; Fuellen, Georg
2009-01-01
Background Protein-protein interaction (PPI) is fundamental to many biological processes. In the course of evolution, biological networks such as protein-protein interaction networks have developed. Biological networks of different species can be aligned by finding instances (e.g. proteins) with the same common ancestor in the evolutionary process, so-called orthologs. For a better understanding of the evolution of biological networks, such aligned networks have to be explored. Visualization can play a key role in making the various relationships transparent. Results We present a novel visualization system for aligned biological networks in 3D space that naturally embeds existing 2D layouts. In addition to displaying the intra-network connectivities, we also provide insight into how the individual networks relate to each other by placing aligned entities on top of each other in separate layers. We optimize the layout of the entire alignment graph in a global fashion that takes into account inter- as well as intra-network relationships. The layout algorithm includes a step of merging aligned networks into one graph, laying out the graph with respect to application-specific requirements, splitting the merged graph again into individual networks, and displaying the network alignment in layers. In addition to representing the data in a static way, we also provide different interaction techniques to explore the data with respect to application-specific tasks. Conclusion Our system provides an intuitive global understanding of aligned PPI networks and it allows the investigation of key biological questions. We evaluate our system by applying it to real-world examples documenting how our system can be used to investigate the data with respect to these key questions. Our tool VANLO (Visualization of Aligned Networks with Layout Optimization) can be accessed at . PMID:19821976
Global Ocean Carbon and Biogeochemistry Coordination
NASA Astrophysics Data System (ADS)
Telszewski, Maciej; Tanhua, Toste; Palacz, Artur
2016-04-01
The complexity of the marine carbon cycle and its numerous connections to carbon's atmospheric and terrestrial pathways means that a wide range of approaches have to be used in order to establish it's qualitative and quantitative role in the global climate system. Ocean carbon and biogeochemistry research, observations, and modelling are conducted at national, regional, and global levels to quantify the global ocean uptake of atmospheric CO2 and to understand controls of this process, the variability of uptake and vulnerability of carbon fluxes into the ocean. These science activities require support by a sustained, international effort that provides a central communication forum and coordination services to facilitate the compatibility and comparability of results from individual efforts and development of the ocean carbon data products that can be integrated with the terrestrial, atmospheric and human dimensions components of the global carbon cycle. The International Ocean Carbon Coordination Project (IOCCP) was created in 2005 by the IOC of UNESCO and the Scientific Committee on Oceanic Research. IOCCP provides an international, program-independent forum for global coordination of ocean carbon and biogeochemistry observations and integration with global carbon cycle science programs. The IOCCP coordinates an ever-increasing set of observations-related activities in the following domains: underway observations of biogeochemical water properties, ocean interior observations, ship-based time-series observations, large-scale ocean acidification monitoring, inorganic nutrients observations, biogeochemical instruments and autonomous sensors and data and information creation. Our contribution is through the facilitation of the development of globally acceptable strategies, methodologies, practices and standards homogenizing efforts of the research community and scientific advisory groups as well as integrating the ocean biogeochemistry observations with the multidisciplinary global ocean observing system. Over the past 4-5 years IOCCP's long standing experience in coordinating biogeochemical observations and data flows globally, resulted in assuming a leadership role during the design and implementation of the biogeochemistry portion of the Framework for Ocean Observing (FOO, 2012). To optimize and enhance the global ocean observing system IOCCP started to implement major elements of the system's approach outlined in the FOO. Starting by setting of ocean observing requirements representing the needs of societal and scientific stakeholders, followed by development of a set of essential ocean variables (EOVs) with spatial and temporal resolution specifications to best meet current demands for data and information services given current and potential national capabilities. The IOCCP works directly with projects and programs programmatically connected to GOOS as well as the WMO-IOC JCOMM to integrate ocean carbon and biogeochemistry observation information into the plans of the Global Climate Observing System in support of the United Nations Framework Convention on Climate Change, the World Summit on Sustainable Development, the Group on Earth Observations, and other international and intergovernmental strategies. We would like to update our partners across disciplines and domains on our short- and long-term strategies as well as learn from their combined experience and knowledge so that our individual activities align more with those undertaken by our counterparts in biological and physical oceanography as well as in terrestrial and atmospheric domains.
Stability Measurements for Alignment of the NIF Neutron Imaging System Pinhole Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fittinghoff, D N; Bower, D E; Drury, O B
2011-03-29
The alignment system for the National Ignition Facility's neutron imaging system has been commissioned and measurements of the relative stability of the 90-315 DIM, the front and the back of the neutron imaging pinhole array and an exploding pusher target have been made using the 90-135 and the 90-258 opposite port alignment systems. Additionally, a laser beam shot from the neutron-imaging Annex and reflected from a mirror at the back of the pinhole array was used to monitor the pointing of the pinhole. Over a twelve hour period, the relative stability of these parts was found to be within {approx}more » {+-}18 {micro}m rms even when using manual methods for tracking the position of the objects. For highly visible features, use of basic particle tracking techniques found that the front of the pinhole array was stable relative to the 90-135 opposite port alignment camera to within {+-}3.4 {micro}m rms. Reregistration, however, of the opposite port alignment systems themselves using the target alignment sensor was found to change the expected position of target chamber center by up to 194 {micro}m.« less
Wright, William Geoffrey; Glasauer, Stefan
2003-10-01
Perceiving one's vertical is an integral part of efficiently functioning in an environment physically polarized along that dimension. How one determines the direction of gravity is not a task left only to inertial sensors, such as the vestibular organs, rather as numerous studies have shown, this task is influenced visually and somatosensorily. In addition, there is evidence that higher order cognitive effects such as expectancies and context are critical in perception of the vertical. One's ability to integrate these various inputs during normal activity is not generally questioned, one's doubts being satisfied by observing a waiter navigating a crowded restaurant with a tray balanced on one hand, neither tripping or dropping an entree. But how these various sources are integrated is still debated. Most research focuses on subjective vertical perception used visual matching/alignment tasks, verbal reports, or saccadic eye movements as a dependent measure. Although a motor task involving a joystick or indicator to be aligned with gravity without visual feedback is used much less frequently, there is good evidence that individuals easily orient limbs to an external gravity-aligned coordinate axis while being statically tilted. By exposure to a dynamic situation, the central nervous system should be no more challenged by the task of determining the subjective vertical than during static conditions, because our spatial orientation systems were likely selected for just that. In addition, the sensitive calibration between visual and other sensory input also must have been key to its selection. This sensory interaction can be tested by changing the relation between the various sources. With the advent of virtual reality technology, a complex and "natural" visual stimulus is achievable and is easily manipulable. How one tests perception of verticality is also a pertinent question when researching spatial orientation systems. The system's performance may be better indicated by a task of higher relevance to its normal function. In other words, the dependent measure can be made more or less relevant to real-world tasks. With an experimental design that attempts to mimic natural conditions, the current study focuses on two main topics. First, how does manipulation of the visual inputs during passive roll-tilt affect one's sense of body orientation? And second, how does changing the task used to measure subjective vertical affect one's performance?
KOI2138 -- a Spin-Orbit Aligned Intermediate Period Super-Earth
NASA Astrophysics Data System (ADS)
Barnes, Jason W.
2015-11-01
A planet's formation and evolution are encoded in spin-orbit alignment -- the planet's inclination relative to its star's equatorial plane. While the solar system's spin-orbit aligned planets indicate our own relatively quiescent history, many close-in giant planets show significant misalignment. Some planets even orbit retrograde! Hot Jupiters, then, have experienced fundamentally different histories than we experienced here in the solar system. In this presentation, I will show a new determination of the spin-orbit alignment of 2.1 REarth exoplanet candidate KOI2138. KOI2138 shows a gravity-darkened transit lightcurve that is consistent with spin-orbit alignment. This measurement is important because the only other super-Earth with an alignment determination (55 Cnc e, orbit period 0.74 days) is misaligned. With an orbital period of 23.55 days, KOI2138 is far enough from its star to avoid tidal orbit evolution. Therefore its orbit is likely primordial, and hence it may represent the tip of an iceberg of terrestrial, spin-orbit aligned planets that have histories that more closely resemble that of the solar system's terrestrial planets.
Drumheller, Douglas S.
1998-01-01
An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.
Vergence and Strabismus in Neurodegenerative Disorders
Kang, Sarah L.; Shaikh, Aasef G.; Ghasia, Fatema F.
2018-01-01
Maintaining proper eye alignment is necessary to generate a cohesive visual image. This involves the coordination of complex neural networks, which can become impaired by various neurodegenerative diseases. When the vergence system is affected, this can result in strabismus and disorienting diplopia. While previous studies have detailed the effect of these disorders on other eye movements, such as saccades, relatively little is known about strabismus. Here, we focus on the prevalence, clinical characteristics, and treatment of strabismus and disorders of vergence in Parkinson’s disease, spinocerebellar ataxia, Huntington disease, and multiple system atrophy. We find that vergence abnormalities may be more common in these disorders than previously thought. In Parkinson’s disease, the evidence suggests that strabismus is related to convergence insufficiency; however, it is responsive to dopamine replacement therapy and can, therefore, fluctuate with medication “on” and “off” periods throughout the day. Diplopia is also established as a side effect of deep brain stimulation and is thought to be related to stimulation of the subthalamic nucleus and extraocular motor nucleus among other structures. In regards to the spinocerebellar ataxias, oculomotor symptoms are common in many subtypes, but diplopia is most common in SCA3 also known as Machado–Joseph disease. Ophthalmoplegia and vergence insufficiency have both been implicated in strabismus in these patients, but cannot fully explain the properties of the strabismus, suggesting the involvement of other structures as well. Strabismus has not been reported as a common finding in Huntington disease or atypical parkinsonian syndromes and more studies are needed to determine how these disorders affect binocular alignment.
Shi, Jie; Thompson, Paul M.; Gutman, Boris; Wang, Yalin
2013-01-01
In this paper, we develop a new automated surface registration system based on surface conformal parameterization by holomorphic 1-forms, inverse consistentsurface fluid registration, and multivariate tensor-based morphometry (mTBM). First, we conformally map a surface onto a planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal representation by combining its local conformal factor and mean curvature and linearly scale the dynamic range of the conformal representation to form the feature image of the surface. Third, we align the feature image with a chosen template image via the fluid image registration algorithm, which has been extended into the curvilinear coordinates to adjust for the distortion introduced by surface parameterization. The inverse consistent image registration algorithm is also incorporated in the system to jointly estimate the forward and inverse transformations between the study and template images. This alignment induces a corresponding deformation on the surface. We tested the system on Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset to study AD symptoms on hippocampus. In our system, by modeling a hippocampus as a 3D parametric surface, we nonlinearly registered each surface with a selected template surface. Then we used mTBM to analyze the morphometrydifference between diagnostic groups. Experimental results show that the new system has better performance than two publically available subcortical surface registration tools: FIRST and SPHARM. We also analyzed the genetic influence of the Apolipoprotein E ε4 allele (ApoE4),which is considered as the most prevalent risk factor for AD.Our work successfully detected statistically significant difference between ApoE4 carriers and non-carriers in both patients of mild cognitive impairment (MCI) and healthy control subjects. The results show evidence that the ApoE genotype may be associated with accelerated brain atrophy so that our workprovides a new MRI analysis tool that may help presymptomatic AD research. PMID:23587689
ERIC Educational Resources Information Center
Contino, Julie
2013-01-01
In a standards-based system, it is important for all components of the system to align in order to achieve the intended goals. No Child Left Behind law mandates that assessments be fully aligned with state standards, be valid, reliable and fair, be reported to all stakeholders, and provide evidence that all students in the state are meeting the…
NFIRAOS in 2015: engineering for future integration of complex subsystems
NASA Astrophysics Data System (ADS)
Atwood, Jenny; Andersen, David; Byrnes, Peter; Densmore, Adam; Fitzsimmons, Joeleff; Herriot, Glen; Hill, Alexis
2016-07-01
The Narrow Field InfraRed Adaptive Optics System (NFIRAOS) will be the first-light facility Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). NFIRAOS will be able to host three science instruments that can take advantage of this high performance system. NRC Herzberg is leading the design effort for this critical TMT subsystem. As part of the final design phase of NFIRAOS, we have identified multiple subsystems to be sub-contracted to Canadian industry. The scope of work for each subcontract is guided by the NFIRAOS Work Breakdown Structure (WBS) and is divided into two phases: the completion of the final design and the fabrication, assembly and delivery of the final product. Integration of the subsystems at NRC will require a detailed understanding of the interfaces between the subsystems, and this work has begun by defining the interface physical characteristics, stability, local coordinate systems, and alignment features. In order to maintain our stringent performance requirements, the interface parameters for each subsystem are captured in multiple performance budgets, which allow a bottom-up error estimate. In this paper we discuss our approach for defining the interfaces in a consistent manner and present an example error budget that is influenced by multiple subsystems.
Sordaria, a model system to uncover links between meiotic pairing and recombination
Zickler, Denise; Espagne, Eric
2017-01-01
The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) The identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination. PMID:26877138
Enzyme activity assays within microstructured optical fibers enabled by automated alignment.
Warren-Smith, Stephen C; Nie, Guiying; Schartner, Erik P; Salamonsen, Lois A; Monro, Tanya M
2012-12-01
A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women's health.
Numerical Upscaling of Solute Transport in Fractured Porous Media Based on Flow Aligned Blocks
NASA Astrophysics Data System (ADS)
Leube, P.; Nowak, W.; Sanchez-Vila, X.
2013-12-01
High-contrast or fractured-porous media (FPM) pose one of the largest unresolved challenges for simulating large hydrogeological systems. The high contrast in advective transport between fast conduits and low-permeability rock matrix, including complex mass transfer processes, leads to the typical complex characteristics of early bulk arrivals and long tailings. Adequate direct representation of FPM requires enormous numerical resolutions. For large scales, e.g. the catchment scale, and when allowing for uncertainty in the fracture network architecture or in matrix properties, computational costs quickly reach an intractable level. In such cases, multi-scale simulation techniques have become useful tools. They allow decreasing the complexity of models by aggregating and transferring their parameters to coarser scales and so drastically reduce the computational costs. However, these advantages come at a loss of detail and accuracy. In this work, we develop and test a new multi-scale or upscaled modeling approach based on block upscaling. The novelty is that individual blocks are defined by and aligned with the local flow coordinates. We choose a multi-rate mass transfer (MRMT) model to represent the remaining sub-block non-Fickian behavior within these blocks on the coarse scale. To make the scale transition simple and to save computational costs, we capture sub-block features by temporal moments (TM) of block-wise particle arrival times to be matched with the MRMT model. By predicting spatial mass distributions of injected tracers in a synthetic test scenario, our coarse-scale solution matches reasonably well with the corresponding fine-scale reference solution. For predicting higher TM-orders (such as arrival time and effective dispersion), the prediction accuracy steadily decreases. This is compensated to some extent by the MRMT model. If the MRMT model becomes too complex, it loses its effect. We also found that prediction accuracy is sensitive to the choice of the effective dispersion coefficients and on the block resolution. A key advantage of the flow-aligned blocks is that the small-scale velocity field is reproduced quite accurately on the block-scale through their flow alignment. Thus, the block-scale transverse dispersivities remain in the similar magnitude as local ones, and they do not have to represent macroscopic uncertainty. Also, the flow-aligned blocks minimize numerical dispersion when solving the large-scale transport problem.
Estimation Filter for Alignment of the Spitzer Space Telescope
NASA Technical Reports Server (NTRS)
Bayard, David
2007-01-01
A document presents a summary of an onboard estimation algorithm now being used to calibrate the alignment of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility). The algorithm, denoted the S2P calibration filter, recursively generates estimates of the alignment angles between a telescope reference frame and a star-tracker reference frame. At several discrete times during the day, the filter accepts, as input, attitude estimates from the star tracker and observations taken by the Pointing Control Reference Sensor (a sensor in the field of view of the telescope). The output of the filter is a calibrated quaternion that represents the best current mean-square estimate of the alignment angles between the telescope and the star tracker. The S2P calibration filter incorporates a Kalman filter that tracks six states - two for each of three orthogonal coordinate axes. Although, in principle, one state per axis is sufficient, the use of two states per axis makes it possible to model both short- and long-term behaviors. Specifically, the filter properly models transient learning, characteristic times and bounds of thermomechanical drift, and long-term steady-state statistics, whether calibration measurements are taken frequently or infrequently. These properties ensure that the S2P filter performance is optimal over a broad range of flight conditions, and can be confidently run autonomously over several years of in-flight operation without human intervention.
Martínez, Leandro
2015-01-01
The analysis of structural mobility in molecular dynamics plays a key role in data interpretation, particularly in the simulation of biomolecules. The most common mobility measures computed from simulations are the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuations (RMSF) of the structures. These are computed after the alignment of atomic coordinates in each trajectory step to a reference structure. This rigid-body alignment is not robust, in the sense that if a small portion of the structure is highly mobile, the RMSD and RMSF increase for all atoms, resulting possibly in poor quantification of the structural fluctuations and, often, to overlooking important fluctuations associated to biological function. The motivation of this work is to provide a robust measure of structural mobility that is practical, and easy to interpret. We propose a Low-Order-Value-Optimization (LOVO) strategy for the robust alignment of the least mobile substructures in a simulation. These substructures are automatically identified by the method. The algorithm consists of the iterative superposition of the fraction of structure displaying the smallest displacements. Therefore, the least mobile substructures are identified, providing a clearer picture of the overall structural fluctuations. Examples are given to illustrate the interpretative advantages of this strategy. The software for performing the alignments was named MDLovoFit and it is available as free-software at: http://leandro.iqm.unicamp.br/mdlovofit.
Martínez, Leandro
2015-01-01
The analysis of structural mobility in molecular dynamics plays a key role in data interpretation, particularly in the simulation of biomolecules. The most common mobility measures computed from simulations are the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuations (RMSF) of the structures. These are computed after the alignment of atomic coordinates in each trajectory step to a reference structure. This rigid-body alignment is not robust, in the sense that if a small portion of the structure is highly mobile, the RMSD and RMSF increase for all atoms, resulting possibly in poor quantification of the structural fluctuations and, often, to overlooking important fluctuations associated to biological function. The motivation of this work is to provide a robust measure of structural mobility that is practical, and easy to interpret. We propose a Low-Order-Value-Optimization (LOVO) strategy for the robust alignment of the least mobile substructures in a simulation. These substructures are automatically identified by the method. The algorithm consists of the iterative superposition of the fraction of structure displaying the smallest displacements. Therefore, the least mobile substructures are identified, providing a clearer picture of the overall structural fluctuations. Examples are given to illustrate the interpretative advantages of this strategy. The software for performing the alignments was named MDLovoFit and it is available as free-software at: http://leandro.iqm.unicamp.br/mdlovofit PMID:25816325
Alignment verification procedures
NASA Technical Reports Server (NTRS)
Edwards, P. R.; Phillips, E. P.; Newman, J. C., Jr.
1988-01-01
In alignment verification procedures each laboratory is required to align its test machines and gripping fixtures to produce a nearly uniform tensile stress field on an un-notched sheet specimen. The blank specimens (50 mm w X 305 mm l X 2.3 mm th) supplied by the coordinators were strain gauged. Strain gauge readings were taken at all gauges (n = 1 through 10). The alignment verification procedures are as follows: (1) zero all strain gauges while specimen is in a free-supported condition; (2) put strain-gauged specimen in the test machine so that specimen front face (face 1) is in contact with reference jaw (standard position of specimen), tighten grips, and at zero load measure strains on all gauges. (epsilon sub nS0 is strain at gauge n, standard position, zero load); (3) with specimen in machine and at a tensile load of 10 kN measure strains (specimen in standard position). (Strain = epsilon sub nS10); (4) remove specimen from machine. Put specimen in machine so that specimen back face (face 2) is in contact with reference jaw (reverse position of specimen), tighten grips, and at zero load measure strains on all gauges. (Strain - epsilon sub nR0); and (5) with specimen in machine and at tensile load of 10 kN measure strains (specimen in reverse position). (epsilon sub nR10 is strain at gauge n, reverse position, 10 kN load).
Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams
NASA Technical Reports Server (NTRS)
Jennings, Donald
2013-01-01
Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires almost no adjustment.
Estimating Relative Positions of Outer-Space Structures
NASA Technical Reports Server (NTRS)
Balian, Harry; Breckenridge, William; Brugarolas, Paul
2009-01-01
A computer program estimates the relative position and orientation of two structures from measurements, made by use of electronic cameras and laser range finders on one structure, of distances and angular positions of fiducial objects on the other structure. The program was written specifically for use in determining errors in the alignment of large structures deployed in outer space from a space shuttle. The program is based partly on equations for transformations among the various coordinate systems involved in the measurements and on equations that account for errors in the transformation operators. It computes a least-squares estimate of the relative position and orientation. Sequential least-squares estimates, acquired at a measurement rate of 4 Hz, are averaged by passing them through a fourth-order Butterworth filter. The program is executed in a computer aboard the space shuttle, and its position and orientation estimates are displayed to astronauts on a graphical user interface.
Emergent patterns of collective cell migration under tubular confinement.
Xi, Wang; Sonam, Surabhi; Beng Saw, Thuan; Ladoux, Benoit; Teck Lim, Chwee
2017-11-15
Collective epithelial behaviors are essential for the development of lumens in organs. However, conventional assays of planar systems fail to replicate cell cohorts of tubular structures that advance in concerted ways on out-of-plane curved and confined surfaces, such as ductal elongation in vivo. Here, we mimic such coordinated tissue migration by forming lumens of epithelial cell sheets inside microtubes of 1-10 cell lengths in diameter. We show that these cell tubes reproduce the physiological apical-basal polarity, and have actin alignment, cell orientation, tissue organization, and migration modes that depend on the extent of tubular confinement and/or curvature. In contrast to flat constraint, the cell sheets in a highly constricted smaller microtube demonstrate slow motion with periodic relaxation, but fast overall movement in large microtubes. Altogether, our findings provide insights into the emerging migratory modes for epithelial migration and growth under tubular confinement, which are reminiscent of the in vivo scenario.
On the large-scale dynamics of rapidly rotating convection zones. [in solar and stellar interiors
NASA Technical Reports Server (NTRS)
Durney, B. R.
1983-01-01
The fact that the values of the eight basic waves present in turbulent flows in the presence of rotation prohibit a tilt of eddy towards the axis of rotation is incorporated into a formalism for rapidly rotating convection zones. Equations for turbulent velocities are defined in a rotating coordinate system, assuming that gravity and grad delta T act in a radial direction. An expression is derived for the lifetime of a basic wave and then for the average velocity vector. A real convective eddy is formulated and the wave vectors are calculated. The velocity amplitude and the stress tensor amplitude are integrated over the eddy domain. Applied to the solar convective zone, it is found that the convective cells are aligned along the axis of rotation at the poles and at the equator, a model that conflicts with nonrotating mixng length theory predictions.
Software Architecture Evaluation in Global Software Development Projects
NASA Astrophysics Data System (ADS)
Salger, Frank
Due to ever increasing system complexity, comprehensive methods for software architecture evaluation become more and more important. This is further stressed in global software development (GSD), where the software architecture acts as a central knowledge and coordination mechanism. However, existing methods for architecture evaluation do not take characteristics of GSD into account. In this paper we discuss what aspects are specific for architecture evaluations in GSD. Our experiences from GSD projects at Capgemini sd&m indicate, that architecture evaluations differ in how rigorously one has to assess modularization, architecturally relevant processes, knowledge transfer and process alignment. From our project experiences, we derive nine good practices, the compliance to which should be checked in architecture evaluations in GSD. As an example, we discuss how far the standard architecture evaluation method used at Capgemini sd&m already considers the GSD-specific good practices, and outline what extensions are necessary to achieve a comprehensive architecture evaluation framework for GSD.
Lapierre, Lisette; Asenjo, Gabriela; Vergara, Constanza; Cornejo, Javiera
2017-05-01
The objective was to gather information on the status of antimicrobial surveillance in the Asia Pacific region and suggest control strategies. Twenty-one economies of the Asia Pacific region participated in this initiative. A survey was conducted on antimicrobial use and surveillance throughout the region. A workshop was carried out to create awareness about the issue and discuss the implementation of control strategies. Based on the survey results and workshop conclusions, it can be established that there is better understanding of the implications of antimicrobial resistance in the human medicine area. Only few economies take actions to control antimicrobial resistance on a veterinary/agricultural level. To confront antimicrobial resistance, it is critical to raise awareness; cooperation between all countries is needed to apply international standards, to be able to have harmonized public policies. Countries must align and improve their systems for surveillance and monitoring of antimicrobial resistance in human, animals, and the environment.
Close-Range Photogrammetry & Next Generation Spacecraft
NASA Technical Reports Server (NTRS)
Pappa, Richard S.
2002-01-01
NASA is focusing renewed attention on the topic of large, ultra-lightweight space structures, also known as 'gossamer' spacecraft. Nearly all of the details of the giant spacecraft are still to be worked out. But it's already clear that one of the most challenging aspects will be developing techniques to align and control these systems after they are deployed in space. A critical part of this process is creating new ground test methods to measure gossamer structures under stationary, deploying and vibrating conditions for validation of corresponding analytical predictions. In addressing this problem, I considered, first of all, the possibility of simply using conventional displacement or vibration sensor that could provide spatial measurements. Next, I turned my attention to photogrammetry, a method of determining the spatial coordinates of objects using photographs. The success of this research and development has convinced me that photogrammetry is the most suitable method to solve the gossamer measurement problem.
Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.
Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R
2009-07-01
The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/
Automated interferometric alignment system for paraboloidal mirrors
Maxey, L.C.
1993-09-28
A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aligning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront. 14 figures.
The Alignment Test System for AXAF-I's High Resolution Mirror Assembly
NASA Technical Reports Server (NTRS)
Waldman, Mark
1995-01-01
The AXAF-1 High Resolution Mirror Assembly (HRMA) consists of four nested mirror pairs of Wolter Type-1 grazing incidence optics. The HRMA assembly and alignment will take place in a vibration-isolated, cleanliness class 100, 18 meter high tower at an Eastman Kodak Company facility in Rochester, NY. Each mirror pair must be aligned such that its image is coma-free, and the four pairs must be aligned such that their images are coincident. In addition, both the HRMA optical axis and focal point must be precisely known with respect to physical references on the HRMA. The alignment of the HRMA mirrors is measured by the HRMA Alignment Test System (HATS), which is an integral part of the tower facility. The HATS is configured as a double-pass, autocollimating Hartmann test where each mirror aperture is scanned to determine the state of alignment. This paper will describe the design and operation of the HATS.
Zhang, Weibin; Miley, Natasha; Zastrow, Michael S.; MacQueen, Amy J.; Sato, Aya; Nabeshima, Kentaro; Martinez-Perez, Enrique; Mlynarczyk-Evans, Susanna; Carlton, Peter M.; Villeneuve, Anne M.
2012-01-01
During meiosis, chromosomes align with their homologous pairing partners and stabilize this alignment through assembly of the synaptonemal complex (SC). Since the SC assembles cooperatively yet is indifferent to homology, pairing and SC assembly must be tightly coordinated. We identify HAL-2 as a key mediator in this coordination, showing that HAL-2 promotes pairing largely by preventing detrimental effects of SC precursors (SYP proteins). hal-2 mutants fail to establish pairing and lack multiple markers of chromosome movement mediated by pairing centers (PCs), chromosome sites that link chromosomes to cytoplasmic microtubules through nuclear envelope-spanning complexes. Moreover, SYP proteins load inappropriately along individual unpaired chromosomes in hal-2 mutants, and markers of PC-dependent movement and function are restored in hal-2; syp double mutants. These and other data indicate that SYP proteins can impede pairing and that HAL-2 promotes pairing predominantly but not exclusively by counteracting this inhibition, thereby enabling activation and regulation of PC function. HAL-2 concentrates in the germ cell nucleoplasm and colocalizes with SYP proteins in nuclear aggregates when SC assembly is prevented. We propose that HAL-2 functions to shepherd SYP proteins prior to licensing of SC assembly, preventing untimely interactions between SC precursors and chromosomes and allowing sufficient accumulation of precursors for rapid cooperative assembly upon homology verification. PMID:22912597
Zhang, Weibin; Miley, Natasha; Zastrow, Michael S; MacQueen, Amy J; Sato, Aya; Nabeshima, Kentaro; Martinez-Perez, Enrique; Mlynarczyk-Evans, Susanna; Carlton, Peter M; Villeneuve, Anne M
2012-01-01
During meiosis, chromosomes align with their homologous pairing partners and stabilize this alignment through assembly of the synaptonemal complex (SC). Since the SC assembles cooperatively yet is indifferent to homology, pairing and SC assembly must be tightly coordinated. We identify HAL-2 as a key mediator in this coordination, showing that HAL-2 promotes pairing largely by preventing detrimental effects of SC precursors (SYP proteins). hal-2 mutants fail to establish pairing and lack multiple markers of chromosome movement mediated by pairing centers (PCs), chromosome sites that link chromosomes to cytoplasmic microtubules through nuclear envelope-spanning complexes. Moreover, SYP proteins load inappropriately along individual unpaired chromosomes in hal-2 mutants, and markers of PC-dependent movement and function are restored in hal-2; syp double mutants. These and other data indicate that SYP proteins can impede pairing and that HAL-2 promotes pairing predominantly but not exclusively by counteracting this inhibition, thereby enabling activation and regulation of PC function. HAL-2 concentrates in the germ cell nucleoplasm and colocalizes with SYP proteins in nuclear aggregates when SC assembly is prevented. We propose that HAL-2 functions to shepherd SYP proteins prior to licensing of SC assembly, preventing untimely interactions between SC precursors and chromosomes and allowing sufficient accumulation of precursors for rapid cooperative assembly upon homology verification.
Superimposition of protein structures with dynamically weighted RMSD.
Wu, Di; Wu, Zhijun
2010-02-01
In protein modeling, one often needs to superimpose a group of structures for a protein. A common way to do this is to translate and rotate the structures so that the square root of the sum of squares of coordinate differences of the atoms in the structures, called the root-mean-square deviation (RMSD) of the structures, is minimized. While it has provided a general way of aligning a group of structures, this approach has not taken into account the fact that different atoms may have different properties and they should be compared differently. For this reason, when superimposed with RMSD, the coordinate differences of different atoms should be evaluated with different weights. The resulting RMSD is called the weighted RMSD (wRMSD). Here we investigate the use of a special wRMSD for superimposing a group of structures with weights assigned to the atoms according to certain thermal motions of the atoms. We call such an RMSD the dynamically weighted RMSD (dRMSD). We show that the thermal motions of the atoms can be obtained from several sources such as the mean-square fluctuations that can be estimated by Gaussian network model analysis. We show that the superimposition of structures with dRMSD can successfully identify protein domains and protein motions, and that it has important implications in practice, e.g., in aligning the ensemble of structures determined by nuclear magnetic resonance.
Recent advances in automatic alignment system for the National Ignition Facility
NASA Astrophysics Data System (ADS)
Wilhelmsen, Karl; Awwal, Abdul A. S.; Kalantar, Dan; Leach, Richard; Lowe-Webb, Roger; McGuigan, David; Miller Kamm, Vicki
2011-03-01
The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 50 minutes. The system automatically commands 9,000 stepping motors to adjust mirrors and other optics based upon images acquired from high-resolution digital cameras viewing beams at various locations. Forty-five control loops per beamline request image processing services running on a LINUX cluster to analyze these images of the beams and references, and automatically steer the beams toward the target. This paper discusses the upgrades to the NIF automatic alignment system to handle new alignment needs and evolving requirements as related to various types of experiments performed. As NIF becomes a continuously-operated system and more experiments are performed, performance monitoring is increasingly important for maintenance and commissioning work. Data, collected during operations, is analyzed for tuning of the laser and targeting maintenance work. Handling evolving alignment and maintenance needs is expected for the planned 30-year operational life of NIF.
In Situ alignment system for phase-shifting point-diffraction interferometry
Goldberg, Kenneth Alan; Naulleau, Patrick P.
2000-01-01
A device and method to facilitate the gross alignment of patterned object- and image-plane masks in optical systems such as the phase-shifting point diffraction interferometer are provided. When an array of similar pinholes or discreet mask fields is used, confusion can occur over the alignment of the focused beams within the field. Adding to the mask pattern a circumscribed or inscribed set of symbols that are identifiable in situ facilitates the unambiguous gross alignment of the object- and/or image-plane masks. Alternatively, a system of markings can be encoded directly into the window shape to accomplish this same task.
NASA Astrophysics Data System (ADS)
Park, Jaeheung; Lühr, Hermann; Kervalishvili, Guram; Rauberg, Jan; Stolle, Claudia; Kwak, Young-Sil; Lee, Woo Kyoung
2017-01-01
In this study, we investigate the climatology of high-latitude total electron content (TEC) variations as observed by the dual-frequency Global Navigation Satellite Systems (GNSS) receivers onboard the Swarm satellite constellation. The distribution of TEC perturbations as a function of geographic/magnetic coordinates and seasons reasonably agrees with that of the Challenging Minisatellite Payload observations published earlier. Categorizing the high-latitude TEC perturbations according to line-of-sight directions between Swarm and GNSS satellites, we can deduce their morphology with respect to the geomagnetic field lines. In the Northern Hemisphere, the perturbation shapes are mostly aligned with the L shell surface, and this anisotropy is strongest in the nightside auroral (substorm) and subauroral regions and weakest in the central polar cap. The results are consistent with the well-known two-cell plasma convection pattern of the high-latitude ionosphere, which is approximately aligned with L shells at auroral regions and crossing different L shells for a significant part of the polar cap. In the Southern Hemisphere, the perturbation structures exhibit noticeable misalignment to the local L shells. Here the direction toward the Sun has an additional influence on the plasma structure, which we attribute to photoionization effects. The larger offset between geographic and geomagnetic poles in the south than in the north is responsible for the hemispheric difference.
Drumheller, D.S.
1998-10-20
An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.
ERIC Educational Resources Information Center
La Marca, Paul M.; Redfield, Doris; Winter, Phoebe C.
Alignment of content standards, performance standards, and assessments is crucial. This guide contains information to assist states and districts in aligning their assessment systems to their content and performance standards. It includes a review of current literature, both published and fugitive. The research is woven together with a few basic…
Partial Automated Alignment and Integration System
NASA Technical Reports Server (NTRS)
Kelley, Gary Wayne (Inventor)
2014-01-01
The present invention is a Partial Automated Alignment and Integration System (PAAIS) used to automate the alignment and integration of space vehicle components. A PAAIS includes ground support apparatuses, a track assembly with a plurality of energy-emitting components and an energy-receiving component containing a plurality of energy-receiving surfaces. Communication components and processors allow communication and feedback through PAAIS.
Derivation of GNSS derived station velocities for a surface deformation model in the Austrian region
NASA Astrophysics Data System (ADS)
Umnig, Elke; Weber, Robert; Maras, Jadre; Brückl, Ewald
2016-04-01
This contribution deals with the first comprehensive analysis of GNSS derived surface velocities computed within an observation network of about 100 stations covering the whole Austrian territory and parts of the neighbouring countries. Coordinate time series are available now, spanning a period of 5 years (2010.0-2015.0) for one focus area in East Austria and one and a half year (2013.5-2015.0) for the remaining part of the tracking network. In principle the data series are stemming from two different GNSS campaigns. The former was set up to investigate intra plate tectonic movements within the framework of the project ALPAACT (seismological and geodetic monitoring of ALpine-PAnnonian ACtive Tectonics), the latter was designed to support a number of various requests, e.g. derivation of GNSS derived water vapour fields, but also to expand the foresaid tectonic studies. In addition the activities within the ALPAACT project supplement the educational initiative SHOOLS & QUAKES, where scholars contribute to seismological research. For the whole period of the processed coordinate time series daily solutions have been computed by means of the Bernese software. The processed coordinate time series are tied to the global reference frame ITRF2000 as well as to the frame ITRF2008. Due to the transition of the reference from ITRF2000 to ITRF2008 within the processing period, but also due to updates of the Bernese software from version 5.0 to 5.2 the time series were initially not fully consistent and have to be re-aligned to a common frame. So the goal of this investigation is to derive a nationwide consistent horizontal motion field on base of GNSS reference station data within the ITRF2008 frame, but also with respect to the Eurasian plate. In this presentation we focus on the set-up of the coordinate time series and on the problem of frame alignment. Special attention is also paid to the separation into linear and periodic motion signals, originating from tectonic or non-tectonic sources.
Relativistic time transfer in the vicinity of the Earth and in the solar system
NASA Astrophysics Data System (ADS)
Nelson, Robert A.
2011-08-01
The algorithms for relativistic time transfer in the vicinity of the Earth and in the solar system are derived. The concepts of proper time and coordinate time are distinguished. The coordinate time elapsed during the transport of a clock and the propagation of an electromagnetic signal is analysed in three coordinate systems: an Earth-Centred Inertial (ECI) coordinate system, an Earth-Centred Earth-Fixed (ECEF) coordinate system and a barycentric coordinate system. The timescales of Geocentric Coordinate Time (TCG), Terrestrial Time (TT) and Barycentric Coordinate Time (TCB) are defined and their relationships are discussed. Some numerical examples are provided to illustrate the magnitudes of the effects.
Roche, Stephanie; Hall-Clifford, Rachel
2015-01-01
Each year, thousands of Guatemalans receive non-emergent surgical care from short-term medical missions (STMMs) hosted by local non-governmental organizations (NGOs) and staffed by foreign visiting medical teams (VMTs). The purpose of this study was to explore the perspectives of individuals based in NGOs involved in the coordination of surgical missions to better understand how these missions articulate with the larger Guatemalan health care system. During the summers of 2011 and 2013, in-depth interviews were conducted with 25 representatives from 11 different Guatemalan NGOs with experience with surgical missions. Transcripts were analysed for major themes using an inductive qualitative data analysis process. NGOs made use of the formal health care system but were limited by several factors, including cost, issues of trust and current ministry of health policy. Participants viewed the government health care system as a potential resource and expressed a desire for more collaboration. The current practices of STMMs are not conducive to health system strengthening. The role of STMMs must be defined and widely understood by all stakeholders in order to improve patient safety and effectively utilise health resources. Priority should be placed on aligning the work of VMTs with that of the larger health care system.
Development of Optical System for ARGO-M
NASA Astrophysics Data System (ADS)
Nah, Jakyoung; Jang, Jung-Guen; Jang, Bi-Ho; Han, In-Woo; Han, Jeong-Yeol; Park, Kwijong; Lim, Hyung-Chul; Yu, Sung-Yeol; Park, Eunseo; Seo, Yoon-Kyung; Moon, Il-Kwon; Choi, Byung-Kyu; Na, Eunjoo; Nam, Uk-Won
2013-03-01
ARGO-M is a satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.
Mechanisms of Chromosome Congression during Mitosis
Maiato, Helder; Gomes, Ana Margarida; Sousa, Filipe; Barisic, Marin
2017-01-01
Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called “direct congression” pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call “peripheral congression”, is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule diversity by means of tubulin post-translational modifications. This so-called “tubulin code” might work as a navigation system that selectively guides kinetochore motors with opposite polarities along specific spindle microtubule populations, ultimately leading to the congression of peripheral chromosomes. We propose an integrated model of chromosome congression in mammalian cells that depends essentially on the following parameters: (1) chromosome position relative to the spindle poles after nuclear envelope breakdown; (2) establishment of stable end-on kinetochore-microtubule attachments and bi-orientation; (3) coordination between kinetochore- and arm-associated motors; and (4) spatial signatures associated with post-translational modifications of specific spindle microtubule populations. The physiological consequences of abnormal chromosome congression, as well as the therapeutic potential of inhibiting chromosome congression are also discussed. PMID:28218637
NASA Technical Reports Server (NTRS)
Thompson, J. F.; Warsi, Z. U. A.; Mastin, C. W.
1982-01-01
A comprehensive review of methods of numerically generating curvilinear coordinate systems with coordinate lines coincident with all boundary segments is given. Some general mathematical framework and error analysis common to such coordinate systems is also included. The general categories of generating systems are those based on conformal mapping, orthogonal systems, nearly orthogonal systems, systems produced as the solution of elliptic and hyperbolic partial differential equations, and systems generated algebraically by interpolation among the boundaries. Also covered are the control of coordinate line spacing by functions embedded in the partial differential operators of the generating system and by subsequent stretching transformation. Dynamically adaptive coordinate systems, coupled with the physical solution, and time-dependent systems that follow moving boundaries are treated. References reporting experience using such coordinate systems are reviewed as well as those covering the system development.
Information systems for health sector monitoring in Papua New Guinea.
Cibulskis, R. E.; Hiawalyer, G.
2002-01-01
This paper describes (i). how a national health information System was designed, tested and implemented in Papua New Guinea, (ii). how the system was integrated with other management information systems, and (iii). how information has been used to support decision-making. It concludes that central coordination of systems design is essential to make sure that information systems are aligned with government priorities and can deliver the information required by managers. While there is often scope for improving the performance of existing information systems, too much emphasis can be placed on revising data collection procedures and creating the perfect information system. Data analysis, even from imperfect systems, can stimulate greater interest in information, which can improve the quality and completeness of reporting and encourage a more methodical approach to planning and monitoring services. Our experience suggests that senior decision-makers and political leaders can play an important role in creating a culture of information use. By demanding health information, using it to formulate policy, and disseminating it through the channels open to them, they can exert greater influence in negotiations with donors and other government departments, encourage a more rational approach to decision-making that will improve the operation of health services, and stimulate greater use of information at lower levels of the health system. The ability of information systems to deliver these benefits is critical to their sustainability. PMID:12378295
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Simon; Winn, Joshua N.; Setiawan, Johny
With observations of the EP Cru system, we continue our series of measurements of spin-orbit angles in eclipsing binary star systems, the BANANA project (Binaries Are Not Always Neatly Aligned). We find a close alignment between the sky projections of the rotational and orbital angular momentum vectors for both stars ({beta}{sub p} = -1. Degree-Sign 8 {+-} 1. Degree-Sign 6 and |{beta}{sub s}| < 17 Degree-Sign ). We also derive precise absolute dimensions and stellar ages for this system. The EP Cru and DI Her systems provide an interesting comparison: they have similar stellar types and orbital properties, but DImore » Her is younger and has major spin-orbit misalignments, raising the question of whether EP Cru also had a large misalignment at an earlier phase of evolution. We show that tidal dissipation is an unlikely explanation for the good alignment observed today, because realignment happens on the same timescale as spin-orbit synchronization, and the stars in EP Cru are far from synchronization (they are spinning nine times too quickly). Therefore it seems that some binaries form with aligned axes, while other superficially similar binaries are formed with misaligned axes.« less
A novel method of robot location using RFID and stereo vision
NASA Astrophysics Data System (ADS)
Chen, Diansheng; Zhang, Guanxin; Li, Zhen
2012-04-01
This paper proposed a new global localization method for mobile robot based on RFID (Radio Frequency Identification Devices) and stereo vision, which makes the robot obtain global coordinates with good accuracy when quickly adapting to unfamiliar and new environment. This method uses RFID tags as artificial landmarks, the 3D coordinate of the tags under the global coordinate system is written in the IC memory. The robot can read it through RFID reader; meanwhile, using stereo vision, the 3D coordinate of the tags under the robot coordinate system is measured. Combined with the robot's attitude coordinate system transformation matrix from the pose measuring system, the translation of the robot coordinate system to the global coordinate system is obtained, which is also the coordinate of the robot's current location under the global coordinate system. The average error of our method is 0.11m in experience conducted in a 7m×7m lobby, the result is much more accurate than other location method.
Inflight alignment of payload inertial reference from Shuttle navigation system
NASA Astrophysics Data System (ADS)
Treder, A. J.; Norris, R. E.; Ruprecht, R.
Two methods for payload attitude initialization from the STS Orbiter have been proposed: body axis maneuvers (BAM) and star line maneuvers (SLM). The first achieves alignment directly through the Shuttle star tracker, while the second, indirectly through the stellar-updated Shuttle inertial platform. The Inertial Upper Stage (IUS) with its strapdown navigation system is used to demonstrate in-flight alignment techniques. Significant accuracy can be obtained with minimal impact on Orbiter operations, with payload inertial reference potentially approaching the accuracy of the Shuttle star tracker. STS-6 flight performance parameters, including alignment stability, are discussed and compared with operational complexity. Results indicate overall alignment stability of .06 deg, 3 sigma per axis.
Grasso, R; Peppe, A; Stratta, F; Angelini, D; Zago, M; Stanzione, P; Lacquaniti, F
1999-05-01
Gait coordination was analyzed (four-camera 100 Hz ELITE system) in two groups of idiopathic Parkinson disease (PD) patients. Five patients underwent continuous infusion of apomorphine and were recorded in two different sessions (APO OFF and APO ON) in the same day. Three patients with a previous chronic electrode implantation in both internal globi pallidi (GPi) were recorded in the same experimental session with the electrodes on and off (STIM ON and STIM OFF). The orientation of both the trunk and the lower-limb segments was described with respect to the vertical in the sagittal plane. Lower-limb inter-segmental coordination was evaluated by analyzing the co-variation between thigh, shank, and foot elevation angles by means of orthogonal planar regression. At least 30 gait cycles per experimental condition were processed. We found that the trunk was bent forward in STIM OFF, whereas it was better aligned with the vertical in STIM ON in both PD groups. The legs never fully extended during the gait cycle in STIM OFF, whereas they extended before heel strike in STIM ON. The multisegmental coordination of the lower limb changed almost in parallel with the changes in trunk orientation. In STIM OFF, both the shape and the spatial orientation of the planar gait loops (thigh angle vs. shank angle vs. foot angle) differed from those of physiological locomotion, whereas in STIM ON the gait loop tended to resume features closer to the control. Switching the electrodes on and off in patients with GPi electrodes resulted in quasi-parallel changes of the trunk inclination and of the planar gait loop. The bulk of the data suggest that the basal-ganglia circuitry may be relevant in locomotion by providing an appropriate spatio-temporal framework for the control of posture and movement in a gravity-based body-centered frame of reference. Pallido-thalamic and/or pallido-mesencephalic pathways may influence the timing of the inter-segmental coordination for gait.
The US Arctic Observing Network - Mobilizing Interagency Observing Actions in an Era of Rapid Change
NASA Astrophysics Data System (ADS)
Starkweather, S.
2017-12-01
US agencies have long relied upon sustained Arctic observing to achieve their missions, be they in support of long-term monitoring, operationalized forecasts, or long-term process studies. One inventory of Arctic observing activities (arcticobservingviewer.org) suggests that there are more than 10,000 sustained data collection sites that have been supported by US agencies. Yet despite calls from academia (e.g. National Research Council, 2006) and agency leadership (e.g. IARPC, 2007) for more integrated approaches, such coherence - in the form of a US Arctic Observing Network (US AON) - has been slow and ad hoc in emerging. Two approaches have been invoked in systematically creating networks of greater coherence. One involves solving the "backward problem" or drawing existing observations into interoperable, multi-sensor, value-added data products. These approaches have the benefit that they build from existing assets and extend observations over greater time and space scales than individual efforts can approach. They suffer from being high-energy undertakings, often proceeding through voluntary efforts, and are limited by the observational assets already in place. Solving the "forward problem", or designing the network that is "needed" entails its own challenges of aligning multiple agency needs and capabilities into coordinated frameworks, often tied into a societal benefit structure. The solutions to the forward problem are greatly constrained by financial and technical feasibility. The benefit of such approaches is that interoperability and user-needs are baked into the network design, and some critical prioritization has been invoked. In September 2016, NOAA and other US agencies advanced plans to formally establish and fund the coordination of a US AON initiative. This US AON initiative brings new coordination capabilities on-line to support and strengthen US engagement in sustained and coordinated pan-Arctic observing and data sharing systems that serve societal needs. This work describes the capabilities of the new US AON initiative and how those capabilities are being mobilized towards both the "backward" and "forward" problems of Arctic observing.
Strongly aligned gas-phase molecules at free-electron lasers
Kierspel, Thomas; Wiese, Joss; Mullins, Terry; ...
2015-09-16
Here, we demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment ofmore » $$\\langle {\\mathrm{cos}}^{2}{\\theta }_{2{\\rm{D}}}\\rangle =0.85$$ was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.« less
Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.
Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K
2013-03-01
Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.
Camley, Brian A.; Zhang, Yunsong; Zhao, Yanxiang; Li, Bo; Ben-Jacob, Eshel; Levine, Herbert; Rappel, Wouter-Jan
2014-01-01
Pairs of endothelial cells on adhesive micropatterns rotate persistently, but pairs of fibroblasts do not; coherent rotation is present in normal mammary acini and kidney cells but absent in cancerous cells. Why? To answer this question, we develop a computational model of pairs of mammalian cells on adhesive micropatterns using a phase field method and study the conditions under which persistent rotational motion (PRM) emerges. Our model couples the shape of the cell, the cell’s internal chemical polarity, and interactions between cells such as volume exclusion and adhesion. We show that PRM can emerge from this minimal model and that the cell-cell interface may be influenced by the nucleus. We study the effect of various cell polarity mechanisms on rotational motion, including contact inhibition of locomotion, neighbor alignment, and velocity alignment, where cells align their polarity to their velocity. These polarity mechanisms strongly regulate PRM: Small differences in polarity mechanisms can create significant differences in collective rotation. We argue that the existence or absence of rotation under confinement may lead to insight into the cell’s methods for coordinating collective cell motility. PMID:25258412
NASA Astrophysics Data System (ADS)
Azatov, Mikheil; Sun, Xiaoyu; Suberi, Alexandra; Fourkas, John T.; Upadhyaya, Arpita
2017-12-01
Cells can sense and adapt to mechanical properties of their environment. The local geometry of the extracellular matrix, such as its topography, has been shown to modulate cell morphology, migration, and proliferation. Here we investigate the effect of micro/nanotopography on the morphology and cytoskeletal dynamics of human pancreatic tumor-associated fibroblast cells (TAFs). We use arrays of parallel nanoridges with variable spacings on a subcellular scale to investigate the response of TAFs to the topography of their environment. We find that cell shape and stress fiber organization both align along the direction of the nanoridges. Our analysis reveals a strong bimodal relationship between the degree of alignment and the spacing of the nanoridges. Furthermore, focal adhesions align along ridges and form preferentially on top of the ridges. Tracking actin stress fiber movement reveals enhanced dynamics of stress fibers on topographically patterned surfaces. We find that components of the actin cytoskeleton move preferentially along the ridges with a significantly higher velocity along the ridges than on a flat surface. Our results suggest that a complex interplay between the actin cytoskeleton and focal adhesions coordinates the cellular response to micro/nanotopography.
Polacsek, Michele; O'Brien, Liam M; Pratt, Elizabeth; Whatley-Blum, Janet; Adler, Sabrina
2017-03-01
Limiting food and beverage marketing to children is a promising approach to influence children's nutrition behavior. School-based marketing influences nutrition behavior and studies have consistently found marketing for nonnutritious foods and beverages in schools. No studies have examined the resources necessary to align school marketing environments with federal school nutrition standards. The purpose of this study was to determine how to improve school marketing environments so that they align with new federal competitive food nutrition standards. We assessed food marketing environments in 3 Portland, Maine schools using the Food and Beverage Marketing Survey (FBMS) and provided technical assistance to bring their marketing environments into conformity with the federal competitive food regulations, tracking resources and strategies for marketing removal. Noncompliant marketing was significantly reduced pre- to postintervention. Intervention strategies were facilitated by the School Health Coordinator and school-based wellness teams. Low monetary resources were required to remove marketing not compliant with federal nutrition standards for foods sold in schools. Several key challenges remain to sustain efforts. This study provides timely information for policymakers to support crafting policies that address the realities of school nutrition environments and universal enforcement challenges. © 2017, American School Health Association.
Strategic planning as a tool for achieving alignment in academic health centers.
Higginbotham, Eve J; Church, Kathryn C
2012-01-01
After the passage of the Patient Protection and Affordable Care Act in March 2010, there is an urgent need for medical schools, teaching hospitals, and practice plans to work together seamlessly across a common mission. Although there is agreement that there should be greater coordination of initiatives and resources, there is little guidance in the literature to address the method to achieve the necessary transformation. Traditional approaches to strategic planning often engage a few leaders and produce a set of immeasurable initiatives. A nontraditional approach, consisting of a Whole-Scale (Dannemiller Tyson Associates, Ann Arbor, MI) engagement, appreciative inquiry, and a balanced scorecard can, more rapidly transform an academic health center. Using this nontraditional approach to strategic planning, increased organizational awareness was achieved in a single academic health center. Strategic planning can be an effective tool to achieve alignment, enhance accountability, and a first step in meeting the demands of the new landscape of healthcare.
2010-01-01
Background Increasingly, multiple intervention programming is being understood and implemented as a key approach to developing public health initiatives and strategies. Using socio-ecological and population health perspectives, multiple intervention programming approaches are aimed at providing coordinated and strategic comprehensive programs operating over system levels and across sectors, allowing practitioners and decision makers to take advantage of synergistic effects. These approaches also require vertical and horizontal (v/h) integration of policy and practice in order to be maximally effective. Discussion This paper examines v/h integration of interventions for childhood overweight/obesity prevention and reduction from a Canadian perspective. It describes the implications of v/h integration for childhood overweight and obesity prevention, with examples of interventions where v/h integration has been implemented. An application of a conceptual framework for structuring v/h integration of an overweight/obesity prevention initiative is presented. The paper concludes with a discussion of the implications of vertical/horizontal integration for policy, research, and practice related to childhood overweight and obesity prevention multiple intervention programs. Summary Both v/h integration across sectors and over system levels are needed to fully support multiple intervention programs of the complexity and scope required by obesity issues. V/h integration requires attention to system structures and processes. A conceptual framework is needed to support policy alignment, multi-level evaluation, and ongoing coordination of people at the front lines of practice. Using such tools to achieve integration may enhance sustainability, increase effectiveness of prevention and reduction efforts, decrease stigmatization, and lead to new ways to relate the environment to people and people to the environment for better health for children. PMID:20478054
Maclean, Lynne M; Clinton, Kathryn; Edwards, Nancy; Garrard, Michael; Ashley, Lisa; Hansen-Ketchum, Patti; Walsh, Audrey
2010-05-17
Increasingly, multiple intervention programming is being understood and implemented as a key approach to developing public health initiatives and strategies. Using socio-ecological and population health perspectives, multiple intervention programming approaches are aimed at providing coordinated and strategic comprehensive programs operating over system levels and across sectors, allowing practitioners and decision makers to take advantage of synergistic effects. These approaches also require vertical and horizontal (v/h) integration of policy and practice in order to be maximally effective. This paper examines v/h integration of interventions for childhood overweight/obesity prevention and reduction from a Canadian perspective. It describes the implications of v/h integration for childhood overweight and obesity prevention, with examples of interventions where v/h integration has been implemented. An application of a conceptual framework for structuring v/h integration of an overweight/obesity prevention initiative is presented. The paper concludes with a discussion of the implications of vertical/horizontal integration for policy, research, and practice related to childhood overweight and obesity prevention multiple intervention programs. Both v/h integration across sectors and over system levels are needed to fully support multiple intervention programs of the complexity and scope required by obesity issues. V/h integration requires attention to system structures and processes. A conceptual framework is needed to support policy alignment, multi-level evaluation, and ongoing coordination of people at the front lines of practice. Using such tools to achieve integration may enhance sustainability, increase effectiveness of prevention and reduction efforts, decrease stigmatization, and lead to new ways to relate the environment to people and people to the environment for better health for children.
ERIC Educational Resources Information Center
Jaeger, T. Florian; Snider, Neal E.
2013-01-01
Speakers show a remarkable tendency to align their productions with their interlocutors'. Focusing on sentence production, we investigate the cognitive systems underlying such alignment (syntactic priming). Our guiding hypothesis is that syntactic priming is a consequence of a language processing system that is organized to achieve efficient…
Aspey, R A; McDermid, I S; Leblanc, T; Howe, J W; Walsh, T D
2008-09-01
The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4 degrees N, 117.7 degrees W) and Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented.