Science.gov

Sample records for coordinate system based

  1. Multi-view coordinate system transformation based on robot

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Wang, Peng-qiang; Xi, Jiang-tao; Guo, Qing-hua; Tang, Huan; Li, Jing; Li, Xiao-jie; Zhu, Teng-da

    2015-11-01

    The registration of point cloud is important for large object measurement. A measurement method for coordinate system transformation based on robot is proposed in this paper. Firstly, for obtaining extrinsic parameters, the robot moves to three different positions to capture the images of three targets. Then the transformation matrix X between camera and tool center point (TCP) coordinate systems can be calculated by using the known parameters of robot and the extrinsic parameters, and finally the multi-view coordinate system can be transformed into robot coordinate system by the transformation matrix X. With the help of robot, the multi-view point cloud can be easily transformed into a unified coordinate system. By using robot, the measurement doesn't need any mark. Experimental results show that the method is effective.

  2. Surface-based determination of the pelvic coordinate system

    NASA Astrophysics Data System (ADS)

    Fieten, Lorenz; Eschweiler, Jörg; Heger, Stefan; Kabir, Koroush; Gravius, Sascha; de la Fuente, Matías; Radermacher, Klaus

    2009-02-01

    In total hip replacement (THR) one technical factor influencing the risk of dislocation is cup orientation. Computer-assisted surgery systems allow for cup navigation in anatomy-based reference frames. The pelvic coordinate system most used for cup navigation in THR is based on the mid-sagittal plane (MSP) and the anterior pelvic plane (APP). From a geometrical point of view, the MSP can be considered as a mirror plane, whereas the APP can be considered as a tangent plane comprising the anterior superior iliac spines (ASIS) and the pubic tubercles. In most systems relying on the pelvic coordinate system, the most anterior points of the ASIS and the pubic tubercles are selected manually. As manual selection of landmark points is a tedious, time-consuming and error-prone task, a surface-based approach for combined MSP and APP computation is presented in this paper: Homologous points defining the MSP and the landmark points defining the APP are selected automatically from surface patches. It is investigated how MSP computation can benefit from APP computation and vice versa, and clinical perspectives of combined MSP and APP computation are discussed. Experimental results on computed tomography data show that the surface-based approach can improve accuracy.

  3. Micro practices of coordination based on complex adaptive systems: user needs and strategies for coordinating public health in Denmark

    PubMed Central

    Wittrup, Inge; Burau, Viola

    2015-01-01

    Introduction Many highly formalised approaches to coordination poorly fit public health and recent studies call for coordination based on complex adaptive systems. Our contribution is two-fold. Empirically, we focus on public health, and theoretically we build on the patient perspective and treat coordination as a process of contingent, two-level negotiations of user needs. Theory and Methods The paper draws on the concept of user needs-based coordination and sees coordination as a process, whereby needs emerging from the life world of the user are made amenable to the health system through negotiations. The analysis is based on an explorative case study of a health promotion initiative in Denmark. It adopts an anthropological qualitative approach and uses a range of qualitative data. Results The analysis identifies four strategies of coordination: the coordinator focusing on the individual user or on relations with other professionals; and the manager coaching the coordinator or providing structural support. Crucially, the coordination strategies by management remain weak as they do not directly relate to specific user needs. Discussion In process of bottom-up negotiations user needs become blurred and this is especially a challenge for management. The study therefore calls for an increased focus on the level nature of negotiations to bridge the gap that currently weakens coordination strategies by management. PMID:26528097

  4. Magnetic Coordinate Systems

    NASA Astrophysics Data System (ADS)

    Laundal, K. M.; Richmond, A. D.

    2016-07-01

    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.

  5. Object-Coordinate-Based Bilateral Control System Using Visual Information

    NASA Astrophysics Data System (ADS)

    Nakajima, Yu; Nozaki, Takahiro; Oyamada, Yuji; Ohnishi, Kouhei

    In the field of teleoperation, visual or tactile information obtained by the operators is restricted (e. g., limited or delayed sight) because of communication constraints. Therefore, it is difficult for the operators to operate the system. In this paper, a bilateral control system using the environmental information about the position and posture of a target as obtained by a camera is proposed. The proposed method reduces the workload of the operators by taking some of their tasks. An experiment is conducted to prove the benefit of the proposed method by using a 1-DOF master robot and a 2-DOF slave robot.

  6. 75 FR 42376 - Proposed Information Collection; Comment Request; NTIA/FCC Web-based Frequency Coordination System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... applications on the Web site provide ] real-time responses: (1) Obtain a validation of the coordination of a...; NTIA/FCC Web- based Frequency Coordination System AGENCY: National Telecommunications and Information... Telecommunications and Information Administration (NTIA) hosts a Web-based system that collects...

  7. Coordination between control and knowledge based systems for autonomous vehicle guidance

    SciTech Connect

    Harmon, S.Y.

    1983-01-01

    A technique for coordination between control and knowledge based components of an autonomous mobile robot guidance system is discussed. This technique models the interaction process as multiple message passing tasks. A protocol with which to structure the messages has been developed. This protocol builds upon an available transport layer. The synchronization between tasks for real time control and slower knowledge based tasks is achieved by having the knowledge based tasks always work in anticipation of events to come. The implementation of this technique in the form of an autonomous mobile ground robot is used for illustration. Various elements of this robot's hardware and software architecture are discussed.

  8. The effect of coordinate system choice and segment reference on RSA-based knee translation measures.

    PubMed

    Beardsley, Christina L; Paller, David J; Peura, Glenn D; Brattbakk, Bjarne; Beynnon, Bruce D

    2007-01-01

    Roentgen stereophotogrammetric analysis (RSA) can be utilized to accurately describe joint kinematics, but even when measuring small displacements within radiographically discernible structures, standardized reference frames are imperative for useful comparison across patients and across studies. In the current paper, accurately controlled laboratory models demonstrated the considerable influence that a mere 1.9-cm offset of the origin of the coordinate system from the rotation axes could exert on translation measures when rotations were occurring. In addition, the use of two different coordinate systems to gauge translation on a radiographic anterior-posterior (A-P) knee laxity exam resulted in a significant correlation (R(2)=0.562) between the two systems; however, differences of up 9.28 mm were found between corresponding measurements. This implies that clinical conclusions can potentially be upheld or refuted, based on the same data set, subject to coordinate system definition. Although the data analyzed presently involved the knee joint, similar issues surround the RSA motion analysis of other joints as well.

  9. Research on large spatial coordinate automatic measuring system based on multilateral method

    NASA Astrophysics Data System (ADS)

    Miao, Dongjing; Li, Jianshuan; Li, Lianfu; Jiang, Yuanlin; Kang, Yao; He, Mingzhao; Deng, Xiangrui

    2015-10-01

    To measure the spatial coordinate accurately and efficiently in large size range, a manipulator automatic measurement system which based on multilateral method is developed. This system is divided into two parts: The coordinate measurement subsystem is consists of four laser tracers, and the trajectory generation subsystem is composed by a manipulator and a rail. To ensure that there is no laser beam break during the measurement process, an optimization function is constructed by using the vectors between the laser tracers measuring center and the cat's eye reflector measuring center, then an orientation automatically adjust algorithm for the reflector is proposed, with this algorithm, the laser tracers are always been able to track the reflector during the entire measurement process. Finally, the proposed algorithm is validated by taking the calibration of laser tracker for instance: the actual experiment is conducted in 5m × 3m × 3.2m range, the algorithm is used to plan the orientations of the reflector corresponding to the given 24 points automatically. After improving orientations of some minority points with adverse angles, the final results are used to control the manipulator's motion. During the actual movement, there are no beam break occurs. The result shows that the proposed algorithm help the developed system to measure the spatial coordinates over a large range with efficiency.

  10. 78 FR 49480 - Proposed Information Collection; Comment Request; NTIA/FCC Web-based Frequency Coordination System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ...; NTIA/FCC Web- based Frequency Coordination System AGENCY: National Telecommunications and Information... Telecommunications and Information Administration (NTIA) hosts a web-based system that collects specific... basis by federal and non-federal users. The web-based system provides a means for non-federal...

  11. An Extensible Space-Based Coordination Approach for Modeling Complex Patterns in Large Systems

    NASA Astrophysics Data System (ADS)

    Kühn, Eva; Mordinyi, Richard; Schreiber, Christian

    Coordination is frequently associated with shared data spaces employing Linda coordination. But in practice, communication between parallel and distributed processes is carried out with message exchange patterns. What, actually, do shared data spaces contribute beyond these? In this paper we present a formal representation for a definition of shared spaces by introducing an "extensible tuple model", based on existing research on Linda coordination, some Linda extensions, and virtual shared memory. The main enhancements of the extensible tuple model comprise: means for structuring of spaces, Internet- compatible addressing of resources, more powerful coordination capabilities, a clear separation of user data and coordination information, support of symmetric peer application architectures, and extensibility through programmable aspects. The advantages of the extensible tuple model (XTM) are that it allows for a specification of complex coordination patterns.

  12. Hipparchus' coordinate system

    NASA Astrophysics Data System (ADS)

    Duke, Dennis W.

    2002-07-01

    In his "Histoire de l'Astronomie Ancienne" Delambre concludes unequivocally that Hipparchus knew and used a definite system of celestial spherical coordinates, namely the right ascension and declination system that we use today. The basis of Delambre's conclusion was disarmingly simple: he pointed out that in the "Commentary to Aratus" Hipparchus actually quotes the positions of numerous stars directly in right ascension and declination (or more often its complement, polar distance). Nearly two centuries later, in his "A History of Ancient Mathematical Astronomy", Neugebauer not only completely ignores Delambre's conclusion on this issue, but goes further to propose his own, as we shall see quite fanciful, theory that begins "From the Commentary to Aratus, it is quite obvious that at Hipparchus' time a definite system of spherical coordinates for stellar positions did not yet exist." and concludes "...nowhere in Greek astronomy before the catalogue of stars in the Almagest is it attested that orthogonal spherical coordinates are used to determine stellar positions." Today it is clear that Neugebauer's theory is conventionally accepted. It is the purpose of this paper to offer fresh arguments that Delambre was correct.

  13. The Evaluation of SEPAS National Project Based on Electronic Health Record System (EHRS) Coordinates in Iran

    PubMed Central

    Asadi, Farkhondeh; Moghaddasi, Hamid; Rabiei, Reza; Rahimi, Forough; Mirshekarlou, Soheila Jahangiri

    2015-01-01

    Background: Electronic Health Records (EHRs) are secure private lifetime records that can be shared by using interoperability standards between different organizations and units. These records are created by the productive system that is called EHR system. Implementing EHR systems has a number of advantages such as facilitating access to medical records, supporting patient care, and improving the quality of care and health care decisions. The project of electronic health record system in Iran, which is the goal of this study, is called SEPAS. With respect to the importance of EHR and EHR systems the researchers investigated the project from two perspectives: determining the coordinates of the project and how it evolved, and incorporating the coordinates of EHR system in this project. Methods: In this study two evaluation tools, a checklist and a questionnaire, were developed based on texts and reliable documentation. The questionnaire and the checklist were validated using content validity by receiving the experts’ comments and the questionnaire’s reliability was estimated through Test-retest(r =87%). Data were collected through study, observation, and interviews with experts and specialists of SEPAS project. Results: This research showed that SEPAS project, like any other project, could be evaluated. It has some aims; steps, operational phases and certain start and end time, but all the resources and required facilities for the project have not been considered. Therefore it could not satisfy its specified objective and the useful and unique changes which are the other characteristics of any project have not been achieved. In addition, the findings of EHR system coordinates can be determined in 4 categories as Standards and rules, Telecommunication-Communication facilities, Computer equipment and facilities and Stakeholders. Conclusions: The findings indicated that SEPAS has the ability to use all standards of medical terminology and health classification

  14. Coordinator-based systems for secondary prevention in fragility fracture patients.

    PubMed

    Marsh, D; Akesson, K; Beaton, D E; Bogoch, E R; Boonen, S; Brandi, M-L; McLellan, A R; Mitchell, P J; Sale, J E M; Wahl, D A

    2011-07-01

    The underlying causes of incident fractures--bone fragility and the tendency to fall--remain under-diagnosed and under-treated. This care gap in secondary prevention must be addressed to minimise both the debilitating consequences of subsequent fractures for patients and the associated economic burden to healthcare systems. Clinical systems aimed at ensuring appropriate management of patients following fracture have been developed around the world. A systematic review of the literature showed that 65% of systems reported include a dedicated coordinator who acts as the link between the orthopaedic team, the osteoporosis and falls services, the patient and the primary care physician. Coordinator-based systems facilitate bone mineral density testing, osteoporosis education and care in patients following a fragility fracture and have been shown to be cost-saving. Other success factors included a fracture registry and a database to monitor the care provided to the fracture patient. Implementation of such a system requires an audit of existing arrangements, creation of a network of healthcare professionals with clearly defined roles and the identification of a 'medical champion' to lead the project. A business case is needed to acquire the necessary funding. Incremental, achievable targets should be identified. Clinical pathways should be supported by evidence-based recommendations from national or regional guidelines. Endorsement of the proposed model within national healthcare policies and advocacy programmes can achieve alignment of the objectives of policy makers, professionals and patients. Successful transformation of care relies upon consensus amongst all participants in the multi-disciplinary team that cares for fragility fracture patients.

  15. Bis(oxazoline)-based coordination polymers: a recoverable system for enantioselective Henry reactions.

    PubMed

    Angulo, Beatriz; García, José I; Herrerías, Clara I; Mayoral, José A; Miñana, Ana C

    2012-07-01

    An efficient release-capture strategy for the recovery and reuse of enantioselective catalysts in the Henry reaction is described. This strategy is based on the precipitation of an insoluble coordination polymer at the end of each reaction, allowing easy separation from products. The coordination polymer is formed through aggregation of Cu(II) ions with ditopic bisoxazoline-based chiral ligands. Up to 11 catalytic cycles have been conducted keeping good yields and enantioselectivities.

  16. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    SciTech Connect

    Cao, Junjie; Jia, Hongzhi

    2015-11-15

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  17. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system.

    PubMed

    Cao, Junjie; Jia, Hongzhi

    2015-11-01

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light--incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes--and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method. PMID:26628116

  18. Robust patterning of gene expression based on internal coordinate system of cells.

    PubMed

    Ogawa, Ken-ichiro; Miyake, Yoshihiro

    2015-06-01

    Cell-to-cell communication in multicellular organisms is established through the transmission of various kinds of chemical substances such as proteins. It is well known that gene expression triggered by a chemical substance in individuals has stable spatial patterns despite the individual differences in concentration patterns of the chemical substance. This fact reveals an important property of multicellular organisms called "robustness", which allows the organisms to generate their forms while maintaining proportion. Robustness has been conventionally accounted for by the stability of solutions of dynamical equations that represent a specific interaction network of chemical substances. However, any biological system is composed of autonomous elements. In general, an autonomous element does not merely accept information on the chemical substance from the environment; instead, it accepts the information based on its own criteria for reaction. Therefore, this phenomenon needs to be considered from the viewpoint of cells. Such a viewpoint is expected to allow the consideration of the autonomy of cells in multicellular organisms. This study aims to explain theoretically the robust patterning of gene expression from the viewpoint of cells. For this purpose, we introduced a new operator for transforming a state variable of a chemical substance from an external coordinate system to an internal coordinate system of each cell, which describes the observation of the chemical substance by cells. We then applied this operator to the simplest reaction-diffusion model of the chemical substance to investigate observation effects by cells. Our mathematical analysis of this extended model indicates that the robust patterning of gene expression against individual differences in concentration pattern of the chemical substance can be explained from the viewpoint of cells if there is a regulation field that compensates for the difference between cells seen in the observation results

  19. Multipole Structure and Coordinate Systems

    ERIC Educational Resources Information Center

    Burko, Lior M.

    2007-01-01

    Multipole expansions depend on the coordinate system, so that coefficients of multipole moments can be set equal to zero by an appropriate choice of coordinates. Therefore, it is meaningless to say that a physical system has a nonvanishing quadrupole moment, say, without specifying which coordinate system is used. (Except if this moment is the…

  20. A PLM-based automated inspection planning system for coordinate measuring machine

    NASA Astrophysics Data System (ADS)

    Zhao, Haibin; Wang, Junying; Wang, Boxiong; Wang, Jianmei; Chen, Huacheng

    2006-11-01

    With rapid progress of Product Lifecycle Management (PLM) in manufacturing industry, automatic generation of inspection planning of product and the integration with other activities in product lifecycle play important roles in quality control. But the techniques for these purposes are laggard comparing with techniques of CAD/CAM. Therefore, an automatic inspection planning system for Coordinate Measuring Machine (CMM) was developed to improve the automatization of measuring based on the integration of inspection system in PLM. Feature information representation is achieved based on a PLM canter database; measuring strategy is optimized through the integration of multi-sensors; reasonable number and distribution of inspection points are calculated and designed with the guidance of statistic theory and a synthesis distribution algorithm; a collision avoidance method is proposed to generate non-collision inspection path with high efficiency. Information mapping is performed between Neutral Interchange Files (NIFs), such as STEP, DML, DMIS, XML, etc., to realize information integration with other activities in the product lifecycle like design, manufacturing and inspection execution, etc. Simulation was carried out to demonstrate the feasibility of the proposed system. As a result, the inspection process is becoming simpler and good result can be got based on the integration in PLM.

  1. Market-Based Coordination and Auditing Mechanisms for Self-Interested Multi-Robot Systems

    ERIC Educational Resources Information Center

    Ham, MyungJoo

    2009-01-01

    We propose market-based coordinated task allocation mechanisms, which allocate complex tasks that require synchronized and collaborated services of multiple robot agents to robot agents, and an auditing mechanism, which ensures proper behaviors of robot agents by verifying inter-agent activities, for self-interested, fully-distributed, and…

  2. A practical approach for active camera coordination based on a fusion-driven multi-agent system

    NASA Astrophysics Data System (ADS)

    Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.

    2014-04-01

    In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.

  3. An Adaptive Coordinated Control for an Offshore Wind Farm Connected VSC Based Multi-Terminal DC Transmission System

    NASA Astrophysics Data System (ADS)

    Kumar, M. Ajay; Srikanth, N. V.

    2014-11-01

    The voltage source converter (VSC) based multiterminal high voltage direct current (MTDC) transmission system is an interesting technical option to integrate offshore wind farms with the onshore grid due to its unique performance characteristics and reduced power loss via extruded DC cables. In order to enhance the reliability and stability of the MTDC system, an adaptive neuro fuzzy inference system (ANFIS) based coordinated control design has been addressed in this paper. A four terminal VSC-MTDC system which consists of an offshore wind farm and oil platform is implemented in MATLAB/ SimPowerSystems software. The proposed model is tested under different fault scenarios along with the converter outage and simulation results show that the novel coordinated control design has great dynamic stabilities and also the VSC-MTDC system can supply AC voltage of good quality to offshore loads during the disturbances.

  4. Exploring chemical reactivity of complex systems with path-based coordinates: role of the distance metric.

    PubMed

    Zinovjev, Kirill; Tuñón, Iñaki

    2014-09-01

    Path-based reaction coordinates constitute a valuable tool for free-energy calculations in complex processes. When a reference path is defined by means of collective variables, a nonconstant distance metric that incorporates the nonorthonormality of these variables should be taken into account. In this work, we show that, accounting for the correct metric tensor, these kind of variables can provide iso-hypersurfaces that coincide with the iso-committor surfaces and that activation free energies equal the value that would be obtained if the committor function itself were used as reaction coordinate. The advantages of the incorporation of the variable metric tensor are illustrated with the analysis of the enzymatic reaction catalyzed by isochorismate-pyruvate lyase. Hybrid QM/MM techniques are used to obtain the free energy profile and to analyze reactive trajectories initiated at the transition state. For this example, the committor histogram is peaked at 0.5 only when a variable metric tensor is incorporated in the definition of the path-based coordinate. PMID:24986052

  5. MARS, a multi-agent system for assessing rowers' coordination via motion-based stigmergy.

    PubMed

    Avvenuti, Marco; Cesarini, Daniel; Cimino, Mario G C A

    2013-01-01

    A crucial aspect in rowing is having a synchronized, highly-efficient stroke. This is very difficult to obtain, due to the many interacting factors that each rower of the crew must perceive. Having a system that monitors and represents the crew coordination would be of great help to the coach during training sessions. In the literature, some methods already employ wireless sensors for capturing motion patterns that affect rowing performance. A challenging problem is to support the coach's decisions at his same level of knowledge, using a limited number of sensors and avoiding the complexity of the biomechanical analysis of human movements. In this paper, we present a multi-agent information-processing system for on-water measuring of both the overall crew asynchrony and the individual rower asynchrony towards the crew. More specifically, in the system, the first level of processing is managed by marking agents, which release marks in a sensing space, according to the rowers' motion. The accumulation of marks enables a stigmergic cooperation mechanism, generating collective marks, i.e., short-term memory structures in the sensing space. At the second level of processing, information provided by marks is observed by similarity agents, which associate a similarity degree with respect to optimal marks. Finally, the third level is managed by granulation agents, which extract asynchrony indicators for different purposes. The effectiveness of the system has been experimented on real-world scenarios. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach and initial experimental setting. PMID:24036582

  6. MARS, a multi-agent system for assessing rowers' coordination via motion-based stigmergy.

    PubMed

    Avvenuti, Marco; Cesarini, Daniel; Cimino, Mario G C A

    2013-01-01

    A crucial aspect in rowing is having a synchronized, highly-efficient stroke. This is very difficult to obtain, due to the many interacting factors that each rower of the crew must perceive. Having a system that monitors and represents the crew coordination would be of great help to the coach during training sessions. In the literature, some methods already employ wireless sensors for capturing motion patterns that affect rowing performance. A challenging problem is to support the coach's decisions at his same level of knowledge, using a limited number of sensors and avoiding the complexity of the biomechanical analysis of human movements. In this paper, we present a multi-agent information-processing system for on-water measuring of both the overall crew asynchrony and the individual rower asynchrony towards the crew. More specifically, in the system, the first level of processing is managed by marking agents, which release marks in a sensing space, according to the rowers' motion. The accumulation of marks enables a stigmergic cooperation mechanism, generating collective marks, i.e., short-term memory structures in the sensing space. At the second level of processing, information provided by marks is observed by similarity agents, which associate a similarity degree with respect to optimal marks. Finally, the third level is managed by granulation agents, which extract asynchrony indicators for different purposes. The effectiveness of the system has been experimented on real-world scenarios. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach and initial experimental setting.

  7. MARS, a Multi-Agent System for Assessing Rowers' Coordination via Motion-Based Stigmergy

    PubMed Central

    Avvenuti, Marco; Cesarini, Daniel; Cimino, Mario G. C. A.

    2013-01-01

    A crucial aspect in rowing is having a synchronized, highly-efficient stroke. This is very difficult to obtain, due to the many interacting factors that each rower of the crew must perceive. Having a system that monitors and represents the crew coordination would be of great help to the coach during training sessions. In the literature, some methods already employ wireless sensors for capturing motion patterns that affect rowing performance. A challenging problem is to support the coach's decisions at his same level of knowledge, using a limited number of sensors and avoiding the complexity of the biomechanical analysis of human movements. In this paper, we present a multi-agent information-processing system for on-water measuring of both the overall crew asynchrony and the individual rower asynchrony towards the crew. More specifically, in the system, the first level of processing is managed by marking agents, which release marks in a sensing space, according to the rowers' motion. The accumulation of marks enables a stigmergic cooperation mechanism, generating collective marks, i.e., short-term memory structures in the sensing space. At the second level of processing, information provided by marks is observed by similarity agents, which associate a similarity degree with respect to optimal marks. Finally, the third level is managed by granulation agents, which extract asynchrony indicators for different purposes. The effectiveness of the system has been experimented on real-world scenarios. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach and initial experimental setting. PMID:24036582

  8. Coordinate systems for the space shuttle program

    NASA Technical Reports Server (NTRS)

    Davis, L. D.

    1974-01-01

    A minimal set of well defined coordinate systems necessary for the interchange of data within the space shuttle program is presented. The document format consists of four parts: (1) a list of the subscripts identifying the coordinate systems, (2) a glossary explaning the terms used within the coordinate system definitions, (3) figures defining, both graphically and verbally, each coordinate system, and (4) an appendix (published separately) showing the relationships (transformations) between similar systems.

  9. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system

    NASA Technical Reports Server (NTRS)

    Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.

    1996-01-01

    We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.

  10. Decentralised coordination of a multi-agent system based on intermittent data

    NASA Astrophysics Data System (ADS)

    DeLellis, Pietro; Garofalo, Franco; Lo Iudice, Francesco; Mancini, Giovanni

    2015-08-01

    In this paper, we present a novel decentralised and non-cooperative algorithm for estimation and control of a multi-agent system. The control goal is to achieve a balanced formation on a generic closed curve. Different from previous work, each agent only gathers a measurement of its Euclidean distance from the other agents when they are in its proximity. This distance is usually different from the controlled distance along the curve, thus producing an uncertain and intermittent information on the actual spacing among agents. This fleeting data flow is processed by an estimation algorithm to produce an interval estimate of the relative position, which is then used by an 'interval feedback control law' to steer the system dynamics. The effectiveness of the approach and its performance are demonstrated through an extensive numerical analysis on two representative examples.

  11. Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems.

    PubMed

    Fan, Yuting; Li, Jianqiang; Xu, Kun; Chen, Hao; Lu, Xun; Dai, Yitang; Yin, Feifei; Ji, Yuefeng; Lin, Jintong

    2013-09-01

    In this paper, we analyze the performance of IEEE 802.11 distributed coordination function in simulcast radio-over-fiber-based distributed antenna systems (RoF-DASs) where multiple remote antenna units (RAUs) are connected to one wireless local-area network (WLAN) access point (AP) with different-length fiber links. We also present an analytical model to evaluate the throughput of the systems in the presence of both the inter-RAU hidden-node problem and fiber-length difference effect. In the model, the unequal delay induced by different fiber length is involved both in the backoff stage and in the calculation of Ts and Tc, which are the period of time when the channel is sensed busy due to a successful transmission or a collision. The throughput performances of WLAN-RoF-DAS in both basic access and request to send/clear to send (RTS/CTS) exchange modes are evaluated with the help of the derived model.

  12. The Washington State System for Coordination of Staff Development. The Staff Development Coordination Study. Final Report.

    ERIC Educational Resources Information Center

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    This report outlines the roles and responsibilities, pertaining to the improvement amd coordination of statewide teacher inservice, of the Superintendent of Public Instruction (SPI) in the state of Washington. After a field-based research study was conducted, a system was devised by which the SPI can improve coordination of staff development…

  13. The coordinate systems used in visual tracking

    PubMed Central

    Howe, Piers D. L.; Pinto, Yair; Horowitz, Todd S.

    2010-01-01

    Tracking moving objects is a fundamental attentional operation. Here we ask which coordinate system is used to track objects: retinal (retinotopic), scene-centered (allocentric), or both? Observers tracked three of six disks that were confined to move within an imaginary square. By moving either the imaginary square (and thus the disks contained within), the fixation cross, or both, we could dramatically increase the disks' speeds in one coordinate system while leaving them unchanged in the other, so as to impair tracking in only one coordinate system at a time. Hindering tracking in either coordinate system reduced tracking ability by an equal amount, suggesting that observers are compelled to use both coordinate systems and cannot choose to track only in the unimpaired coordinate system. PMID:20887744

  14. Barriers to healthcare coordination in market-based and decentralized public health systems: a qualitative study in healthcare networks of Colombia and Brazil

    PubMed Central

    Vargas, Ingrid; Mogollón-Pérez, Amparo Susana; De Paepe, Pierre; Ferreira da Silva, Maria Rejane; Unger, Jean-Pierre; Vázquez, María-Luisa

    2016-01-01

    Although integrated healthcare networks (IHNs) are promoted in Latin America in response to health system fragmentation, few analyses on the coordination of care across levels in these networks have been conducted in the region. The aim is to analyse the existence of healthcare coordination across levels of care and the factors influencing it from the health personnel’ perspective in healthcare networks of two countries with different health systems: Colombia, with a social security system based on managed competition and Brazil, with a decentralized national health system. A qualitative, exploratory and descriptive–interpretative study was conducted, based on a case study of healthcare networks in four municipalities. Individual semi-structured interviews were conducted with a three stage theoretical sample of (a) health (112) and administrative (66) professionals of different care levels, and (b) managers of providers (42) and insurers (14). A thematic content analysis was conducted, segmented by cases, informant groups and themes. The results reveal poor clinical information transfer between healthcare levels in all networks analysed, with added deficiencies in Brazil in the coordination of access and clinical management. The obstacles to care coordination are related to the organization of both the health system and the healthcare networks. In the health system, there is the existence of economic incentives to compete (exacerbated in Brazil by partisan political interests), the fragmentation and instability of networks in Colombia and weak planning and evaluation in Brazil. In the healthcare networks, there are inadequate working conditions (temporary and/or part-time contracts) which hinder the use of coordination mechanisms, and inadequate professional training for implementing a healthcare model in which primary care should act as coordinator in patient care. Reforms are needed in these health systems and networks in order to modify incentives

  15. Barriers to healthcare coordination in market-based and decentralized public health systems: a qualitative study in healthcare networks of Colombia and Brazil.

    PubMed

    Vargas, Ingrid; Mogollón-Pérez, Amparo Susana; De Paepe, Pierre; Ferreira da Silva, Maria Rejane; Unger, Jean-Pierre; Vázquez, María-Luisa

    2016-07-01

    Although integrated healthcare networks (IHNs) are promoted in Latin America in response to health system fragmentation, few analyses on the coordination of care across levels in these networks have been conducted in the region. The aim is to analyse the existence of healthcare coordination across levels of care and the factors influencing it from the health personnel' perspective in healthcare networks of two countries with different health systems: Colombia, with a social security system based on managed competition and Brazil, with a decentralized national health system. A qualitative, exploratory and descriptive-interpretative study was conducted, based on a case study of healthcare networks in four municipalities. Individual semi-structured interviews were conducted with a three stage theoretical sample of (a) health (112) and administrative (66) professionals of different care levels, and (b) managers of providers (42) and insurers (14). A thematic content analysis was conducted, segmented by cases, informant groups and themes. The results reveal poor clinical information transfer between healthcare levels in all networks analysed, with added deficiencies in Brazil in the coordination of access and clinical management. The obstacles to care coordination are related to the organization of both the health system and the healthcare networks. In the health system, there is the existence of economic incentives to compete (exacerbated in Brazil by partisan political interests), the fragmentation and instability of networks in Colombia and weak planning and evaluation in Brazil. In the healthcare networks, there are inadequate working conditions (temporary and/or part-time contracts) which hinder the use of coordination mechanisms, and inadequate professional training for implementing a healthcare model in which primary care should act as coordinator in patient care. Reforms are needed in these health systems and networks in order to modify incentives, strengthen

  16. Barriers to healthcare coordination in market-based and decentralized public health systems: a qualitative study in healthcare networks of Colombia and Brazil.

    PubMed

    Vargas, Ingrid; Mogollón-Pérez, Amparo Susana; De Paepe, Pierre; Ferreira da Silva, Maria Rejane; Unger, Jean-Pierre; Vázquez, María-Luisa

    2016-07-01

    Although integrated healthcare networks (IHNs) are promoted in Latin America in response to health system fragmentation, few analyses on the coordination of care across levels in these networks have been conducted in the region. The aim is to analyse the existence of healthcare coordination across levels of care and the factors influencing it from the health personnel' perspective in healthcare networks of two countries with different health systems: Colombia, with a social security system based on managed competition and Brazil, with a decentralized national health system. A qualitative, exploratory and descriptive-interpretative study was conducted, based on a case study of healthcare networks in four municipalities. Individual semi-structured interviews were conducted with a three stage theoretical sample of (a) health (112) and administrative (66) professionals of different care levels, and (b) managers of providers (42) and insurers (14). A thematic content analysis was conducted, segmented by cases, informant groups and themes. The results reveal poor clinical information transfer between healthcare levels in all networks analysed, with added deficiencies in Brazil in the coordination of access and clinical management. The obstacles to care coordination are related to the organization of both the health system and the healthcare networks. In the health system, there is the existence of economic incentives to compete (exacerbated in Brazil by partisan political interests), the fragmentation and instability of networks in Colombia and weak planning and evaluation in Brazil. In the healthcare networks, there are inadequate working conditions (temporary and/or part-time contracts) which hinder the use of coordination mechanisms, and inadequate professional training for implementing a healthcare model in which primary care should act as coordinator in patient care. Reforms are needed in these health systems and networks in order to modify incentives, strengthen

  17. Reference coordinate systems: An update. Supplement 11

    NASA Technical Reports Server (NTRS)

    Mueller, Ivan I.

    1988-01-01

    A common requirement for all geodetic investigations is a well-defined coordinate system attached to the earth in some prescribed way, as well as a well-defined inertial coordinate system in which the motions of the terrestrial frame can be monitored. The paper deals with the problems encountered when establishing such coordinate systems and the transformations between them. In addition, problems related to the modeling of the deformable earth are discussed. This paper is an updated version of the earlier work, Reference Coordinate Systems for Earth Dynamics: A Preview, by the author.

  18. A one-step colorimetric acid-base titration sensor using a complementary color changing coordination system.

    PubMed

    Cho, Hui Hun; Kim, Si Hyun; Heo, Jun Hyuk; Moon, Young Eel; Choi, Young Hun; Lim, Dong Cheol; Han, Kwon-Hoon; Lee, Jung Heon

    2016-06-21

    We report the development of a colorimetric sensor that allows for the quantitative measurement of the acid content via acid-base titration in a single-step. In order to create the sensor, we used a cobalt coordination system (Co-complex sensor) that changes from greenish blue colored Co(H2O)4(OH)2 to pink colored Co(H2O)6(2+) after neutralization. Greenish blue and pink are two complementary colors with a strong contrast. As a certain amount of acid is introduced to the Co-complex sensor, a portion of greenish blue colored Co(H2O)4(OH)2 changes to pink colored Co(H2O)6(2+), producing a different color. As the ratio of greenish blue and pink in the Co-complex sensor is determined by the amount of neutralization reaction occurring between Co(H2O)4(OH)2 and an acid, the sensor produced a spectrum of green, yellow green, brown, orange, and pink colors depending on the acid content. In contrast, the color change appeared only beyond the end point for normal acid-base titration. When we mixed this Co-complex sensor with different concentrations of citric acid, tartaric acid, and malic acid, three representative organic acids in fruits, we observed distinct color changes for each sample. This color change could also be observed in real fruit juice. When we treated the Co-complex sensor with real tangerine juice, it generated diverse colors depending on the concentration of citric acid in each sample. These results provide a new angle on simple but quantitative measurements of analytes for on-site usage in various applications, such as in food, farms, and the drug industry. PMID:27143645

  19. A one-step colorimetric acid-base titration sensor using a complementary color changing coordination system.

    PubMed

    Cho, Hui Hun; Kim, Si Hyun; Heo, Jun Hyuk; Moon, Young Eel; Choi, Young Hun; Lim, Dong Cheol; Han, Kwon-Hoon; Lee, Jung Heon

    2016-06-21

    We report the development of a colorimetric sensor that allows for the quantitative measurement of the acid content via acid-base titration in a single-step. In order to create the sensor, we used a cobalt coordination system (Co-complex sensor) that changes from greenish blue colored Co(H2O)4(OH)2 to pink colored Co(H2O)6(2+) after neutralization. Greenish blue and pink are two complementary colors with a strong contrast. As a certain amount of acid is introduced to the Co-complex sensor, a portion of greenish blue colored Co(H2O)4(OH)2 changes to pink colored Co(H2O)6(2+), producing a different color. As the ratio of greenish blue and pink in the Co-complex sensor is determined by the amount of neutralization reaction occurring between Co(H2O)4(OH)2 and an acid, the sensor produced a spectrum of green, yellow green, brown, orange, and pink colors depending on the acid content. In contrast, the color change appeared only beyond the end point for normal acid-base titration. When we mixed this Co-complex sensor with different concentrations of citric acid, tartaric acid, and malic acid, three representative organic acids in fruits, we observed distinct color changes for each sample. This color change could also be observed in real fruit juice. When we treated the Co-complex sensor with real tangerine juice, it generated diverse colors depending on the concentration of citric acid in each sample. These results provide a new angle on simple but quantitative measurements of analytes for on-site usage in various applications, such as in food, farms, and the drug industry.

  20. Robust PI-based Frequency Control of Isolated Wind-Diesel Power System with Coordinated Governor, Pitch and Battery Controller

    NASA Astrophysics Data System (ADS)

    Nandar, Cuk Supriyadi Ali; Hashiguchi, Takuhei; Goda, Tadahiro

    A penetration of renewable energy sources such as photovoltaic, wind power etc to prevent global warming is become increasing highly. However, a random unpredictable wind power output may cause frequency fluctuation on isolated hybrid wind-diesel power system. This paper proposes design of coordinated control of governor, pitch and battery to stabilize frequency fluctuation in isolated wind-diesel power system. A well coordinated control between governor, pitch and battery controller are able to improve a performance and also minimize an interaction between the controllers. The structure of the proposed controllers are the first-order PI controller. They are simple and easy to implement in power system utilities. The robustness of the proposed PI controllers are guaranteed by applying an inverse additive perturbation to represent possible unstructured uncertainties in the power system such as variation of system parameters, generating and loading conditions etc. The proposed PI control parameters are optimized and achieved by a genetic algorithm (GA). Simulation studies have been done to show the control effect and robustness of the proposed PI controller in isolated hybrid wind-diesel power system against various disturbances and system uncertainties.

  1. Compact-range coordinate system established using a laser tracker.

    SciTech Connect

    Gallegos, Floyd H.; Bryce, Edwin Anthony

    2006-12-01

    Establishing a Cartesian coordinate reference system for an existing Compact Antenna Range using the parabolic reflector is presented. A SMX (Spatial Metrix Corporation) M/N 4000 laser-based coordinate measuring system established absolute coordinates for the facility. Electric field characteristics with positional movement correction are evaluated. Feed Horn relocation for alignment with the reflector axis is also described. Reference points are established for follow-on non-laser alignments utilizing a theodolite.

  2. [Coupling coordination measurement of urbanization and eco-environment system in Huaihe River Basin of China based on fuzzy matter element theory].

    PubMed

    Guo, Yue-Ting; Xu, Jian-Gang

    2013-05-01

    Based on the statistical data of urbanization and eco-environment of 35 cities in the Huaihe River Basin of China in 2010, an index system of urbanization-eco-environment system was established by using fuzzy matter element theory, and the weight of each indicator was calculated by entropy method. The improved function of the coupling coordination degree of urbanization and eco-environment was constructed to measure this coupling coordination degree in the Huaihe River Basin. In 2010, the development level of urbanization subsystem in the Basin was lower than that of the eco-environment subsystem, and the integrated coordination index of urbanization and eco-environment was 0.186, indicating that there was a gap between the two types of indicators. The average coupling degree of urbanization and eco-environment was 0.475, indicating that the urbanization-eco-environment system was at antagonistic stage. There was a greater difference in the development level of urbanization subsystem, but a smaller difference in the development level of eco-environment subsystem among the cities. The average value of the coordination degree of all the cities was 0.706, indicating that the Huaihe River Basin was at high coordination coupling stage, and the integrated coherence and synergistic effect of urbanization and eco-environment construction in the Huaihe River Basin was higher.

  3. State-Based Implicit Coordination and Applications

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.

    2011-01-01

    In air traffic management, pairwise coordination is the ability to achieve separation requirements when conflicting aircraft simultaneously maneuver to solve a conflict. Resolution algorithms are implicitly coordinated if they provide coordinated resolution maneuvers to conflicting aircraft when only surveillance data, e.g., position and velocity vectors, is periodically broadcast by the aircraft. This paper proposes an abstract framework for reasoning about state-based implicit coordination. The framework consists of a formalized mathematical development that enables and simplifies the design and verification of implicitly coordinated state-based resolution algorithms. The use of the framework is illustrated with several examples of algorithms and formal proofs of their coordination properties. The work presented here supports the safety case for a distributed self-separation air traffic management concept where different aircraft may use different conflict resolution algorithms and be assured that separation will be maintained.

  4. System-Level Planning, Coordination, and Communication

    PubMed Central

    Kanter, Robert K.; Dries, David; Luyckx, Valerie; Lim, Matthew L.; Wilgis, John; Anderson, Michael R.; Sarani, Babak; Hupert, Nathaniel; Mutter, Ryan; Devereaux, Asha V.; Christian, Michael D.; Kissoon, Niranjan; Christian, Michael D.; Devereaux, Asha V.; Dichter, Jeffrey R.; Kissoon, Niranjan; Rubinson, Lewis; Amundson, Dennis; Anderson, Michael R.; Balk, Robert; Barfield, Wanda D.; Bartz, Martha; Benditt, Josh; Beninati, William; Berkowitz, Kenneth A.; Daugherty Biddison, Lee; Braner, Dana; Branson, Richard D; Burkle, Frederick M.; Cairns, Bruce A.; Carr, Brendan G.; Courtney, Brooke; DeDecker, Lisa D.; De Jong, Marla J.; Dominguez-Cherit, Guillermo; Dries, David; Einav, Sharon; Erstad, Brian L.; Etienne, Mill; Fagbuyi, Daniel B.; Fang, Ray; Feldman, Henry; Garzon, Hernando; Geiling, James; Gomersall, Charles D.; Grissom, Colin K.; Hanfling, Dan; Hick, John L.; Hodge, James G.; Hupert, Nathaniel; Ingbar, David; Kanter, Robert K.; King, Mary A.; Kuhnley, Robert N.; Lawler, James; Leung, Sharon; Levy, Deborah A.; Lim, Matthew L.; Livinski, Alicia; Luyckx, Valerie; Marcozzi, David; Medina, Justine; Miramontes, David A.; Mutter, Ryan; Niven, Alexander S.; Penn, Matthew S.; Pepe, Paul E.; Powell, Tia; Prezant, David; Reed, Mary Jane; Rich, Preston; Rodriquez, Dario; Roxland, Beth E.; Sarani, Babak; Shah, Umair A.; Skippen, Peter; Sprung, Charles L.; Subbarao, Italo; Talmor, Daniel; Toner, Eric S.; Tosh, Pritish K.; Upperman, Jeffrey S.; Uyeki, Timothy M.; Weireter, Leonard J.; West, T. Eoin; Wilgis, John; Ornelas, Joe; McBride, Deborah; Reid, David; Baez, Amado; Baldisseri, Marie; Blumenstock, James S.; Cooper, Art; Ellender, Tim; Helminiak, Clare; Jimenez, Edgar; Krug, Steve; Lamana, Joe; Masur, Henry; Mathivha, L. Rudo; Osterholm, Michael T.; Reynolds, H. Neal; Sandrock, Christian; Sprecher, Armand; Tillyard, Andrew; White, Douglas; Wise, Robert; Yeskey, Kevin

    2014-01-01

    BACKGROUND: System-level planning involves uniting hospitals and health systems, local/regional government agencies, emergency medical services, and other health-care entities involved in coordinating and enabling care in a major disaster. We reviewed the literature and sought expert opinions concerning system-level planning and engagement for mass critical care due to disasters or pandemics and offer suggestions for system-planning, coordination, communication, and response. The suggestions in this chapter are important for all of those involved in a pandemic or disaster with multiple critically ill or injured patients, including front-line clinicians, hospital administrators, and public health or government officials. METHODS: The American College of Chest Physicians (CHEST) consensus statement development process was followed in developing suggestions. Task Force members met in person to develop nine key questions believed to be most relevant for system-planning, coordination, and communication. A systematic literature review was then performed for relevant articles and documents, reports, and other publications reported since 1993. No studies of sufficient quality were identified upon which to make evidence-based recommendations. Therefore, the panel developed expert opinion-based suggestions using a modified Delphi process. RESULTS: Suggestions were developed and grouped according to the following thematic elements: (1) national government support of health-care coalitions/regional health authorities (HC/RHAs), (2) teamwork within HC/RHAs, (3) system-level communication, (4) system-level surge capacity and capability, (5) pediatric patients and special populations, (6) HC/RHAs and networks, (7) models of advanced regional care systems, and (8) the use of simulation for preparedness and planning. CONCLUSIONS: System-level planning is essential to provide care for large numbers of critically ill patients because of disaster or pandemic. It also entails a

  5. Stigmergy based behavioural coordination for satellite clusters

    NASA Astrophysics Data System (ADS)

    Tripp, Howard; Palmer, Phil

    2010-04-01

    Multi-platform swarm/cluster missions are an attractive prospect for improved science return as they provide a natural capability for temporal, spatial and signal separation with further engineering and economic advantages. As spacecraft numbers increase and/or the round-trip communications delay from Earth lengthens, the traditional "remote-control" approach begins to break down. It is therefore essential to push control into space; to make spacecraft more autonomous. An autonomous group of spacecraft requires coordination, but standard terrestrial paradigms such as negotiation, require high levels of inter-spacecraft communication, which is nontrivial in space. This article therefore introduces the principals of stigmergy as a novel method for coordinating a cluster. Stigmergy is an agent-based, behavioural approach that allows for infrequent communication with decisions based on local information. Behaviours are selected dynamically using a genetic algorithm onboard. supervisors/ground stations occasionally adjust parameters and disseminate a "common environment" that is used for local decisions. After outlining the system, an analysis of some crucial parameters such as communications overhead and number of spacecraft is presented to demonstrate scalability. Further scenarios are considered to demonstrate the natural ability to deal with dynamic situations such as the failure of spacecraft, changing mission objectives and responding to sudden bursts of high priority tasks.

  6. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect

    Tumer, Kagan

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing

  7. A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability in pediatric feet.

    PubMed

    Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B

    2012-04-01

    Several multi-segment foot models to measure the motion of intrinsic joints of the foot have been reported. Use of these models in clinical decision making is limited due to lack of rigorous validation including inter-clinician, and inter-lab variability measures. A model with thoroughly quantified variability may significantly improve the confidence in the results of such foot models. This study proposes a new clinical foot model with the underlying strategy of using separate anatomic and technical marker configurations and coordinate systems. Anatomical landmark and coordinate system identification is determined during a static subject calibration. Technical markers are located at optimal sites for dynamic motion tracking. The model is comprised of the tibia and three foot segments (hindfoot, forefoot and hallux) and inter-segmental joint angles are computed in three planes. Data collection was carried out on pediatric subjects at two sites (Site 1: n=10 subjects by two clinicians and Site 2: five subjects by one clinician). A plaster mold method was used to quantify static intra-clinician and inter-clinician marker placement variability by allowing direct comparisons of marker data between sessions for each subject. Intra-clinician and inter-clinician joint angle variability were less than 4°. For dynamic walking kinematics, intra-clinician, inter-clinician and inter-laboratory variability were less than 6° for the ankle and forefoot, but slightly higher for the hallux. Inter-trial variability accounted for 2-4° of the total dynamic variability. Results indicate the proposed foot model reduces the effects of marker placement variability on computed foot kinematics during walking compared to similar measures in previous models.

  8. Coordination-Cluster-Based Molecular Magnetic Refrigerants.

    PubMed

    Zhang, Shaowei; Cheng, Peng

    2016-08-01

    Coordination polymers serving as molecular magnetic refrigerants have been attracting great interest. In particular, coordination cluster compounds that demonstrate their apparent advantages on cryogenic magnetic refrigerants have attracted more attention in the last five years. Herein, we mainly focus on depicting aspects of syntheses, structures, and magnetothermal properties of coordination clusters that serve as magnetic refrigerants on account of the magnetocaloric effect. The documented molecular magnetic refrigerants are classified into two primary categories according to the types of metal centers, namely, homo- and heterometallic clusters. Every section is further divided into several subgroups based on the metal nuclearity and their dimensionalities, including discrete molecular clusters and those with extended structures constructed from molecular clusters. The objective is to present a rough overview of recent progress in coordination-cluster-based molecular magnetic refrigerants and provide a tutorial for researchers who are interested in the field. PMID:27381662

  9. Application of a compound controller based on fuzzy control and support vector machine to ship's boiler-turbine coordinated control system

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Li, Yan-Yan

    2009-03-01

    Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.

  10. Information Systems Coordinate Emergency Management

    NASA Technical Reports Server (NTRS)

    2012-01-01

    -changing planet. This information can be captured, analyzed, and visualized by geographic information systems (GIS) to produce maps, charts, and other tools that can reveal information essential to a wide variety of applications including emergency management. Knowing precise, real-time information about the size, location, environmental conditions, and resulting damage of an event like a flood or wildfire as well as the location and numbers of emergency responders and other resources contributes directly to the effectiveness of disaster mitigation. The need for such information is also evident when responding to homeland security threats, such as a terrorist attack. Recognizing the value of its geospatial information resources for this and other purposes, in 1998 Stennis and the state of Mississippi partnered to form what became the Enterprise for Innovative Geospatial Solutions (EIGS) industry cluster, supporting the growth of remote sensing and GIS-based research and business. As part of EIGS, several companies partnered with NASA through dual use and Small Business Innovation Research (SBIR) contracts. Among those was NVision.

  11. Measurement system for 3-D foot coordinates and parameters

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Li, Yunhui; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi

    2008-12-01

    The 3-D foot-shape measurement system based on laser-line-scanning principle and the model of the measurement system were presented. Errors caused by nonlinearity of CCD cameras and caused by installation can be eliminated by using the global calibration method for CCD cameras, which based on nonlinear coordinate mapping function and the optimized method. A local foot coordinate system is defined with the Pternion and the Acropodion extracted from the boundaries of foot projections. The characteristic points can thus be located and foot parameters be extracted automatically by the local foot coordinate system and the related sections. Foot measurements for about 200 participants were conducted and the measurement results for male and female participants were presented. 3-D foot coordinates and parameters measurement makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers.

  12. Design and synthesis of two luminescent Zn(II)-based coordination polymers with different structures regulated by different solvent system

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Ping; Wen, Gui-Lin; Liao, Yi; Wang, Jun; Lu, Lu; Wu, Yu; Xie, Bin

    2016-08-01

    Two new coordination polymers (CPs) [Zn(HL)(H2O)]n (1) and [Zn3(L)2(H2O)2]n·(H2O)n (2), based on a multifunctional ligand combined carboxylate groups and a nitrogen donor group 5-(6-carboxypyridin-2-yl)isophthalic acid (H3L), have been synthesized under different solvent media and fully characterized by powder X-ray diffraction (PXRD), infrared (IR) spectra, elemental analyses (EA) and thermogravimetric analyses (TGA). Single-crystal X-ray diffraction analysis reveals that 1 shows 1D dimeric chain structure, while 2 gives a 3D dense packing framework. Topology analysis illustrates that 2 can be simplified as a 3-nodal net (4, 5, 6-connected net) with the point symbol of {44·62}{46·64}2{48·66·8}. In addition, solid state luminescent properties of two complexes have also been studied in detail, which may act as the potential optical materials.

  13. On a new coordinate system with astrophysical application: Spiral coordinates

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.; Gil, P. J. S.

    In this presentation are introduced spiral coordinates, which are a particular case of conformal coordinates, i.e. orthogonal curvelinear coordinates with equal factors along all coordinate axis. The spiral coordinates in the plane have as coordinate curves two families of logarithmic spirals, making a constant angle, respectively phi and pi / 2-phi, with all radial lines, where phi is a parameter. They can be obtained from a complex function, representing a spiral potential flow, due to the superposition of a source/sink with a vortex; the parameter phi in this case specifies the ratio of the ass flux of source/sink to the circulation of the vortex. Regardless of hydrodynamical or other interpretations, spiral coordinates are particulary convenient in situation where physical quantities vary only along a logarithmicspiral. The example chosen is the propagation of Alfven waves along a logarithmic spiral, as an approximation to Parker's spiral. The equation of dissipative MHD are written in spiral coordinates, and eliminated to specify the Alfven wave equation in spiral coordinates; the latter is solved exactly in terms of Bessel functions, and the results analyzed for values of the parameters corresponding to the solar wind.

  14. Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation.

    PubMed

    Hudson, Todd E; Landy, Michael S

    2016-02-01

    A coordinate system is composed of an encoding, defining the dimensions of the space, and an origin. We examine the coordinate encoding used to update motor plans during sensory-motor adaptation to center-out reaches. Adaptation is induced using a novel paradigm in which feedback of reach endpoints is perturbed following a sinewave pattern over trials; the perturbed dimensions of the feedback were the axes of a Cartesian coordinate system in one session and a polar coordinate system in another session. For center-out reaches to randomly chosen target locations, reach errors observed at one target will require different corrections at other targets within Cartesian- and polar-coded systems. The sinewave adaptation technique allowed us to simultaneously adapt both dimensions of each coordinate system (x-y, or reach gain and angle), and identify the contributions of each perturbed dimension by adapting each at a distinct temporal frequency. The efficiency of this technique further allowed us to employ perturbations that were a fraction the size normally used, which avoids confounding automatic adaptive processes with deliberate adjustments made in response to obvious experimental manipulations. Subjects independently corrected errors in each coordinate in both sessions, suggesting that the nervous system encodes both a Cartesian- and polar-coordinate-based internal representation for motor adaptation. The gains and phase lags of the adaptive responses are not readily explained by current theories of sensory-motor adaptation.

  15. Local and global navigational coordinate systems in desert ants.

    PubMed

    Collett, Matthew; Collett, Thomas S

    2009-04-01

    While foraging, the desert ant Cataglyphis fortis keeps track of its position with respect to its nest through a process of path integration (PI). Once it finds food, it can then follow a direct home vector to its nest. Furthermore, it remembers the coordinates of a food site, and uses these coordinates to return to the site. Previous studies suggest, however, that it does not associate any coordinates remembered from previous trips with familiar views such that it can produce a home vector when displaced to a familiar site. We ask here whether a desert ant uses any association between PI coordinates and familiar views to ensure consistent PI coordinates as it travels along a habitual route. We describe an experiment in which we manipulated the PI coordinates an ant has when reaching a distinctive point along a habitual route on the way to a feeder. The subsequent home vectors of the manipulated ants, when displaced from the food-site to a test ground, show that also when a route memory is evoked at a significant point on the way to a food site, C. fortis does not reset its PI coordinates to those it normally has at that point. We use this result to argue that local vector memories, which encode the metric properties of a segment of a habitual route, must be encoded in a route-based coordinate system that is separate from the nest-based global coordinates. We propose a model for PI-based guidance that can account for several puzzling observations, and that naturally produces the route-based coordinate system required for learning and following local vectors.

  16. Quipus and System of Coordinated Precession

    NASA Astrophysics Data System (ADS)

    Campos, T. C.

    2004-05-01

    The Incas of ancient Peru possessed no writing. Instead, they developed a unique system expressed on spatial arrays of colored knotted cords called Quipus to record and transmit information throughout their vast empire. In their thorough description of quipus, Ascher & Ascher observed that in two cases the numbers registered in their strings have a very special relationship to each other. For this to occur the numbers must have been obtained through the multiplication of whole numbers by fractions or decimals, operations apparently beyond the arithmetic knowledge of the Incas. The quipus AS120 and AS143, coming from Ica (Peru) and conserved in the Museum of Berlin has the suitable characteristics previously. In the AS143 there is a the relationship with the systems of coordinated precession (tilt of Earth's spin axis (40036); eccentricity of Earth's orbit (97357); and precession of equinoxes (between 18504 and 23098)). For the history of the Earth are necessary an chronometer natural to coordinate and to classify the observations and this chronometer comes to be the vernal point, defining the vernal point as" a sensitive axis of maximum conductivity" as itdemonstrates it the stability of the geomagnetic equator (inclination of the field is zero grades), in the year 1939 calculated with the IGRF from the year 1900 up to the 2004 and that it is confirmed with tabulated data of the Geophysical Institute of Huancayo (Peru),from that date until this year (2004) and this fluctuating between the 12-14 South.,on the other hand in the area of Brazil it has advanced very quickly toward the north, and above to 108 km. approximately it is located the equatorial electrojet that is but intense in the equinoxes in South America. And this stability from the point of view of the precession of the equinoxes this coinciding with the entrance of the apparent sun for the constellation of Aquarius, being this mechanism the base to establish a system of coordinated precession where it is

  17. Quantification of Aromaticity Based on Interaction Coordinates: A New Proposal.

    PubMed

    Pandey, Sarvesh Kumar; Manogaran, Dhivya; Manogaran, Sadasivam; Schaefer, Henry F

    2016-05-12

    Attempts to establish degrees of aromaticity in molecules are legion. In the present study, we begin with a fictitious fragment arising from only those atoms contributing to the aromatic ring and having a force field projected from the original system. For example, in benzene, we adopt a fictitious C6 fragment with a force field projected from the full benzene force field. When one bond or angle is stretched and kept fixed, followed by a partial optimization for all other internal coordinates, structures change from their respective equilibria. These changes are the responses of all other internal coordinates for constraining the bond or angle by unit displacements and relaxing the forces on all other internal coordinates. The "interaction coordinate" derived from the redundant internal coordinate compliance constants measures how a bond (its electron density) responds for constrained optimization when another bond or angle is stretched by a specified unit (its electron density is perturbed by a finite amount). The sum of interaction coordinates (responses) of all bonded neighbors for all internal coordinates of the fictitious fragment is a measure of the strength of the σ and π electron interactions leading to aromatic stability. This sum, based on interaction coordinates, appears to be successful as an aromaticity index for a range of chemical systems. Since the concept involves analyzing a fragment rather than the whole molecule, this idea is more general and is likely to lead to new insights.

  18. Distributed sensor coordination for advanced energy systems

    SciTech Connect

    Tumer, Kagan

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  19. [A theoretical analysis of coordination in the field of health care: application to coordinated care systems].

    PubMed

    Sebai, Jihane

    2016-01-01

    Various organizational, functional or structural issues have led to a review of the foundations of the former health care system based on a traditional market segmentation between general practice and hospital medicine, and between health and social sectors and marked by competition between private and public sectors. The current reconfiguration of the health care system has resulted in “new” levers explained by the development of a new organizational reconfiguration of the primary health care model. Coordinated care structures (SSC) have been developed in this context by making coordination the cornerstone of relations between professionals to ensure global, continuous and quality health care. This article highlights the contributions of various theoretical approaches to the understanding of the concept of coordination in the analysis of the current specificity of health care. PMID:27392057

  20. [A theoretical analysis of coordination in the field of health care: application to coordinated care systems].

    PubMed

    Sebai, Jihane

    2016-01-01

    Various organizational, functional or structural issues have led to a review of the foundations of the former health care system based on a traditional market segmentation between general practice and hospital medicine, and between health and social sectors and marked by competition between private and public sectors. The current reconfiguration of the health care system has resulted in “new” levers explained by the development of a new organizational reconfiguration of the primary health care model. Coordinated care structures (SSC) have been developed in this context by making coordination the cornerstone of relations between professionals to ensure global, continuous and quality health care. This article highlights the contributions of various theoretical approaches to the understanding of the concept of coordination in the analysis of the current specificity of health care.

  1. A new quantitative evaluation method of spiral drawing for patients with Parkinson’s disease based on a polar coordinate system with varying origin

    NASA Astrophysics Data System (ADS)

    Wang, Min; Wang, Bei; Zou, Junzhong; Nakamura, Masatoshi

    2012-09-01

    Parkinson's disease (PD) is a common disease of the central nervous system among the elderly, and its complex symptoms bring up challenges for the clinical diagnosis. In this paper, a new method based on a polar coordinate system with varying origin was proposed in order to quantitatively evaluate the performance in spiral drawing tasks for patients with Parkinson's disease, since this method can assess the movement ability of spiral drawing before and after deep brain stimulation (DBS) among the patients. In this paper, three normal subjects and twelve PD patients participated in spiral drawing experiment. The hand movements of patients, before and after DBS, were recorded by a digitized tablet respectively in this experiment. And the variation of origin, radius, degree and other characteristics of hand movements were evaluated by introducing a set of parameters for feature extraction. The result showed that the proposed polar coordinate system embraced good performance in the quantitative evaluation of spiral drawing. Therefore, the proposed method overcame the limitation of data processes with fixed origin for diagnosis and evaluation, and by combining with extraction and analysis of characteristic parameters it had clinical significance in measuring the effectiveness of operation or treatment for the PD patients.

  2. Coordinate Additional Perturbations to Mars Orbiters and Choice of Corresponding Coordinate System

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zhao, Yu-hui; Zhang, Wei; Wang, Yan-rong; Wang, Jia-song

    2011-04-01

    Similar to the study of the related problems of Earth satellites, in the research of the motion of Mars orbiter especially for low-orbit satellites, it is more appropriate to choose an epoch Mars-centered and Mars-equator reference system, which indeed is called the Mars-centered celestial coordinate system. In this system, the xy-plane and the direction of the x-axis correspond to the mean equator and mean equinox. Similar to the precession and nutation of the Earth, the wiggling of instantaneous Mars equator causes the coordinate additional perturbations in this Mars coordinate system. The paper quotes a method which is similar to the one used in dealing with the coordinate additional perturbations of Earth. According to this method, based on the IAU2000 Mars orientation model and under the precondition of a certain accuracy, we are able to figure out the precession part of the change of Mars gravitation. This lays the foundation for further study of its influence on the Mars orbiter's orbit of precession and the solution of the corresponding coordinate additional perturbations. The obtained analytical solution is easy to use. Compared with the numerical solution with higher accuracy, the result shows that the accuracy of this analytical solution could satisfy the general requirements in use. Therefore, our result verifies that a unified coordinate system, the Mars-centered celestial system in which J2000.0 is chosen as its current initial epoch, could be applied to deal with the relative problems of Mars orbiters, especially for low-orbit satellites. It is different from the method we previously used in dealing with the corresponding problems of Earth satellites, where we adopted the instantaneous equator and epoch (J1950.0) mean equinox as xy-plane and the direction of x -axis. In contrast, the coordinate transformation brings heavy workload and certain inconvenience in relative former works in which the prior system is used. If adopting the unified coordinate

  3. The Coordinate Additional Perturbations to Mars Orbiters and the Choice of Corresponding Coordinate System

    NASA Astrophysics Data System (ADS)

    Liu, L.; Zhao, Y. H.; Zhang, W.; Wang, Y. R.; Wang, J. S.

    2010-10-01

    Similar to the study of the related problems of Earth satellites, in the research of the motion of Mars orbiter especially for low orbit satellites, it is more appropriate to choose an epoch Mars-centered and Mars-equator reference system, which indeed is called the Mars-centered celestial coordinate system. In this system, the xy plane and the direction of the x axis correspond to the mean equator and mean equinox. Similar to the precession and nutation on the Earth, the wiggling of instantaneous Mars equator causes the coordinate additional perturbations in this Mars coordinate system. The paper quotes a method which is similar to the one used in dealing with the coordinate additional perturbations of Earth. According to this method, based on the IAU2000 Mars orientation model and under the precondition of a certain accuracy, we are able to figure out the precession part of the change of Mars gravitation. This lays the foundation for further study of its influence on the Mars orbiter's orbit of precession and the solution of the corresponding coordinate additional perturbations. The obtained analytical solution is easy to use. Compared with the numerical solution with higher accuracy, the result shows that the accuracy of this analytical solution could satisfy general requirements in use. Therefore, our result verifies that a unified coordinate system, the Mars-centered celestial system in which J2000.0 is chosen as its current initial epoch, could be applied to deal with the relative problems of Mars orbiters, especially for low orbit satellites. It is different from the method we previously used in dealing with the corresponding problems of Earth satellites, where we adopted the instantaneous equator and epoch (J1950.0) mean equinox as xy plane and the direction of x axis. In contrast, the coordinate transformation brings heavy workload and certain inconvenience in relative former works in which the prior system is used. If adopting the unified coordinate

  4. The coordinate system for force control.

    PubMed

    Saha, Devjani J; Hu, Xiao; Perreault, Eric; Murray, Wendy; Mussa-Ivaldi, Ferdinando A

    2015-03-01

    The primary objective of this study was to establish the coordinate frame for force control by observing how parameters of force that are not explicitly specified by a motor task vary across the workspace. We asked subjects to apply a force of a specific magnitude with their hand. Subjects could complete the task by applying forces in any direction of their choice in the transverse plane. They were tested with the arm in seven different configurations. To estimate whether contact forces are represented in extrinsic or intrinsic coordinates, we applied the parallel transport method of differential geometry to the net joint torques applied during the task. This approach allowed us to compare the force variability observed at different arm configurations with the force variability that would be expected if the control system were applying an invariant pattern of joint torques at the tested configurations. The results indicate that for the majority of the subjects, the predominant pattern was consistent with an invariant representation in joint coordinates. However, two out of eleven subjects also demonstrated a preference for extrinsic representation. These findings suggest that the central nervous system can represent contact forces in both coordinate frames, with a prevalence toward intrinsic representations.

  5. The coordinate system for force control.

    PubMed

    Saha, Devjani J; Hu, Xiao; Perreault, Eric; Murray, Wendy; Mussa-Ivaldi, Ferdinando A

    2015-03-01

    The primary objective of this study was to establish the coordinate frame for force control by observing how parameters of force that are not explicitly specified by a motor task vary across the workspace. We asked subjects to apply a force of a specific magnitude with their hand. Subjects could complete the task by applying forces in any direction of their choice in the transverse plane. They were tested with the arm in seven different configurations. To estimate whether contact forces are represented in extrinsic or intrinsic coordinates, we applied the parallel transport method of differential geometry to the net joint torques applied during the task. This approach allowed us to compare the force variability observed at different arm configurations with the force variability that would be expected if the control system were applying an invariant pattern of joint torques at the tested configurations. The results indicate that for the majority of the subjects, the predominant pattern was consistent with an invariant representation in joint coordinates. However, two out of eleven subjects also demonstrated a preference for extrinsic representation. These findings suggest that the central nervous system can represent contact forces in both coordinate frames, with a prevalence toward intrinsic representations. PMID:25479739

  6. A reactive coordination scheme for a many-robot system.

    PubMed

    Evans, K S; Unsal, C; Bay, J S

    1997-01-01

    This paper presents a novel approach for coordinating a homogeneous system of mobile robots using implicit communication in the form of broadcasts. The broadcast-based coordination scheme was developed for the Army Ant swarm-a system of small, relatively inexpensive mobile robots that can accomplish complex tasks by cooperating as a team. The primary drawback, however, of the Army Ant system is that the absence of a central supervisor poses difficulty in the coordination and control of the agents. Our coordination scheme provides a global "group dynamic" that controls the actions of each robot using only local interactions. Coordination of the swarm is achieved with signals we call "heartbeats". Each agent broadcasts a unique heartbeat and responds to the collective behavior of all other heartbeats. We generate heartbeats with van der Pol oscillators. In this application, we use the known properties of coupled van der Pol oscillators to create predictable group behavior. Some of the properties and behaviors of coupled van der Pol oscillators are discussed in detail. We emphasize the use of this scheme to allow agents to simultaneously perform an action such as lifting, steering, or changing speed. The results of experiments performed on three actual heartbeat circuits are presented and the behavior of the realized system is compared to simulated results. We also demonstrate the application of the coordination scheme to global speed control. PMID:18255900

  7. Nanometrization of Lanthanide-Based Coordination Polymers.

    PubMed

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers. PMID:26471940

  8. Nanometrization of Lanthanide-Based Coordination Polymers.

    PubMed

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers.

  9. An integrated logic system for time-resolved fluorescent "turn-on" detection of cysteine and histidine base on terbium (III) coordination polymer-copper (II) ensemble.

    PubMed

    Xue, Shi-Fan; Lu, Ling-Fei; Wang, Qi-Xian; Zhang, Shengqiang; Zhang, Min; Shi, Guoyue

    2016-09-01

    Cysteine (Cys) and histidine (His) both play indispensable roles in many important biological activities. An enhanced Cys level can result in Alzheimer's and cardiovascular diseases. Likewise, His plays a significant role in the growth and repair of tissues as well as in controlling the transmission of metal elements in biological bases. Therefore, it is meaningful to detect Cys and His simultaneously. In this work, a novel terbium (III) coordination polymer-Cu (II) ensemble (Tb(3+)/GMP-Cu(2+)) was proposed. Guanosine monophosphate (GMP) can self-assemble with Tb(3+) to form a supramolecular Tb(3+) coordination polymer (Tb(3+)/GMP), which can be suited as a time-resolved probe. The fluorescence of Tb(3+)/GMP would be quenched upon the addition of Cu(2+), and then the fluorescence of the as-prepared Tb(3+)/GMP-Cu(2+) ensemble would be restored again in the presence of Cys or His. By incorporating N-Ethylmaleimide and Ni(2+) as masking agents, Tb(3+)/GMP-Cu(2+) was further exploited as an integrated logic system and a specific time-resolved fluorescent "turn-on" assay for simultaneously sensing His and Cys was designed. Meanwhile it can also be used in plasma samples, showing great potential to meet the need of practical application. PMID:27343597

  10. Coordinate System Issues in Binary Star Computations

    NASA Astrophysics Data System (ADS)

    Kaplan, George H.

    2015-08-01

    It has been estimated that half of all stars are components of binary or multiple systems. Yet the number of known orbits for astrometric and spectroscopic binary systems together is less than 7,000 (including redundancies), almost all of them for bright stars. A new generation of deep all-sky surveys such as Pan-STARRS, Gaia, and LSST are expected to lead to the discovery of millions of new systems. Although for many of these systems, the orbits may be undersampled initially, it is to be expected that combinations of new and old data sources will eventually lead to many more orbits being known. As a result, a revolution in the scientific understanding of these systems may be upon us.The current database of visual (astrometric) binary orbits represents them relative to the “plane of the sky”, that is, the plane orthogonal to the line of sight. Although the line of sight to stars constantly changes due to proper motion, aberration, and other effects, there is no agreed upon standard for what line of sight defines the orbital reference plane. Furthermore, the computation of differential coordinates (component B relative to A) for a given date must be based on the binary system’s direction at that date. Thus, a different “plane of the sky” is appropriate for each such date, i.e., each observation. However, projection effects between the reference planes, differential aberration, and the curvature of the sky are generally neglected in such computations. Usually the only correction applied is for the change in the north direction (position angle zero) due to precession (and sometimes also proper motion). This paper will present an algorithm for a more complete model of the geometry involved, and will show that such a model is necessary to avoid errors in the computed observables that are significant at modern astrometric accuracy. The paper will also suggest where conventions need to be established to avoid ambiguities in how quantities related to binary star

  11. Implementation of a Relay Coordination System for the Mars Network

    NASA Technical Reports Server (NTRS)

    Allard, Daniel A.

    2010-01-01

    Mars network relay operations involve the coordination of lander and orbiter teams through long-term and short-term planning, tactical changes and post-pass analysis. Much of this coordination is managed through email traffic and point-to-point file data exchanges. It is often difficult to construct a complete and accurate picture of the relay situation at any given moment, as there is no centralized store of correlated relay data. The Mars Relay Operations Service (MaROS) is being implemented to address the problem of relay coordination for current and next-generation relay missions. The service is provided for the purpose of coordinating communications sessions between landed spacecraft assets and orbiting spacecraft assets at Mars. The service centralizes a set of functions previously distributed across multiple spacecraft operations teams, and as such greatly improves visibility into the end-to-end strategic coordination process. Most of the process revolves around the scheduling of communications sessions between the spacecraft during periods of time when a landed asset on Mars is geometrically visible by an orbiting spacecraft. These "relay" sessions are used to transfer data both to and from the landed asset via the orbiting asset on behalf of Earth-based spacecraft operators. This paper will discuss the relay coordination problem space, overview the architecture and design selected to meet system requirements, and describe the first phase of system implementation

  12. Reference Magnetic Coordinates (RMC) for toroidal confinement systems

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid; Kolemen, Egemen; Lazerson, Samuel

    2012-03-01

    Because of intrinsic anisotropy of high temperature plasma with respect to magnetic field, use of proper coordinates is of high priority for both theory and numerical methods. While in axisymmetric case, the poloidal flux function Y(r,z)=const determines proper flux coordinates, in 3-D, such a function does not exist. The destruction of nested magnetic surfaces even by small 3-D perturbations leads to a sudden change of topology of magnetic field. As a result, the coordinate systems can no longer be based on tracing the magnetic field lines resulting in difficulties for theory and 3-D numerical simulations. The RMC coordinates a,θ,ζ presented here (introduced in 1998 but not really used) are nested toroidal coordinates, which are best aligned with an ergodic confinement fields. In particular, in RMC the vector potential of the magnetic field has an irreducible form A = φ00(a)∇θ +[Y00(a) +ψ^*(a,θ,ζ)]∇ζ , where 3-D function ψ^* contains only resonant Fourier harmonics of angle coordinates. RMC can be generated and advanced using a fast (Newton) algorithm not involving the field line tracing.

  13. Sensitivity analysis approach to multibody systems described by natural coordinates

    NASA Astrophysics Data System (ADS)

    Li, Xiufeng; Wang, Yabin

    2014-03-01

    The classical natural coordinate modeling method which removes the Euler angles and Euler parameters from the governing equations is particularly suitable for the sensitivity analysis and optimization of multibody systems. However, the formulation has so many principles in choosing the generalized coordinates that it hinders the implementation of modeling automation. A first order direct sensitivity analysis approach to multibody systems formulated with novel natural coordinates is presented. Firstly, a new selection method for natural coordinate is developed. The method introduces 12 coordinates to describe the position and orientation of a spatial object. On the basis of the proposed natural coordinates, rigid constraint conditions, the basic constraint elements as well as the initial conditions for the governing equations are derived. Considering the characteristics of the governing equations, the newly proposed generalized-α integration method is used and the corresponding algorithm flowchart is discussed. The objective function, the detailed analysis process of first order direct sensitivity analysis and related solving strategy are provided based on the previous modeling system. Finally, in order to verify the validity and accuracy of the method presented, the sensitivity analysis of a planar spinner-slider mechanism and a spatial crank-slider mechanism are conducted. The test results agree well with that of the finite difference method, and the maximum absolute deviation of the results is less than 3%. The proposed approach is not only convenient for automatic modeling, but also helpful for the reduction of the complexity of sensitivity analysis, which provides a practical and effective way to obtain sensitivity for the optimization problems of multibody systems.

  14. Combination of a vision system and a coordinate measuring machine for rapid coordinate metrology

    NASA Astrophysics Data System (ADS)

    Qu, Yufu; Pu, Zhaobang; Liu, Guodong

    2002-09-01

    This paper presents a novel methodology that integrates a vision system and a coordinate measuring machine for rapid coordinate metrology. Rapid acquisition of coordinate data from parts having tiny dimension, complex geometry and soft or fragile material has many applications. Typical examples include Large Scale Integrated circuit, glass or plastic part measurement, and reverse engineering in rapid product design and realization. In this paper, a novel approach to a measuring methodology for a vision integrated coordinate measuring system is developed and demonstrated. The vision coordinate measuring system is characterized by an integrated use of a high precision coordinate measuring machine (CMM), a vision system, advanced computational software, and the associated electronics. The vision system includes a charge-coupled device (CCD) camera, a self-adapt brightness power, and a graphics workstation with an image processing board. The vision system along with intelligent feature recognition and auto-focus algorithms provides the feature point space coordinate of global part profile after the system has been calibrated. The measured data may be fitted to geometry element of part profile. The obtained results are subsequently used to compute parameters consist of curvature radius, distance, shape error and surface reconstruction. By integrating the vision system with the CMM, a highly automated, high speed, 3D coordinate acquisition system is developed. It has potential applications in a whole spectrum of manufacturing problems with a major impact on metrology, inspection, and reverse engineering.

  15. The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value

    PubMed Central

    Bartra, Oscar; McGuire, Joseph T.; Kable, Joseph W.

    2013-01-01

    Numerous experiments have recently sought to identify neural signals associated with the subjective value (SV) of choice alternatives. Theoretically, SV assessment is an intermediate computational step during decision making, in which alternatives are placed on a common scale to facilitate value-maximizing choice. Here we present a quantitative, coordinate-based meta-analysis of 206 published fMRI studies investigating neural correlates of SV. Our results identify two general patterns of SV-correlated brain responses. In one set of regions, both positive and negative effects of SV on BOLD are reported at above-chance rates across the literature. Areas exhibiting this pattern include anterior insula, dorsomedial prefrontal cortex, dorsal and posterior striatum, and thalamus. The mixture of positive and negative effects potentially reflects an underlying U-shaped function, indicative of signal related to arousal or salience. In a second set of areas, including ventromedial prefrontal cortex and anterior ventral striatum, positive effects predominate. Positive effects in the latter regions are seen both when a decision is confronted and when an outcome is delivered, as well as for both monetary and primary rewards. These regions appear to constitute a "valuation system," carrying a domain-general SV signal and potentially contributing to value-based decision making. PMID:23507394

  16. Precise Selenodetic Coordinate System on Artificial Light Refers

    NASA Astrophysics Data System (ADS)

    Bagrov, Alexander; Pichkhadze, Konstantin M.; Sysoev, Valentin

    Historically a coordinate system for the Moon was established on the base of telescopic observations from the Earth. As the angular resolution of Earth-to-Space telescopic observations is limited by Earth atmosphere, and is ordinary worse then 1 ang. second, the mean accuracy of selenodetic coordinates is some angular minutes, which corresponds to errors about 900 meters for positions of lunar objects near center of visible lunar disk, and at least twice more when objects are near lunar poles. As there are no Global Positioning System nor any astronomical observation instruments on the Moon, we proposed to use an autonomous light beacon on the Luna-Globe landing module to fix its position on the surface of the moon ant to use it as refer point for fixation of spherical coordinates system for the Moon. The light beacon is designed to be surely visible by orbiting probe TV-camera. As any space probe has its own stars-orientation system, there is not a problem to calculate a set of directions to the beacon and to the referent stars in probe-centered coordinate system during flight over the beacon. Large number of measured angular positions and time of each observation will be enough to calculate both orbital parameters of the probe and selenodetic coordinates of the beacon by methods of geodesy. All this will allow fixing angular coordinates of any feature of lunar surface in one global coordinate system, referred to the beacon. The satellite’s orbit plane contains ever the center mass of main body, so if the beacon will be placed closely to a lunar pole, we shall determine pole point position of the Moon with accuracy tens times better then it is known now. When angular accuracy of self-orientation by stars of the orbital module of Luna-Glob mission will be 6 angular seconds, then being in circular orbit with height of 200 km the on-board TV-camera will allow calculation of the beacon position as well as 6" corresponding to spatial resolution of the camera. It mean

  17. Chemical proteomic tool for ligand mapping of CYP antitargets: an NMR-compatible 3D QSAR descriptor in the Heme-Based Coordinate System.

    PubMed

    Yao, Huili; Costache, Aurora D; Sem, Daniel S

    2004-01-01

    Chemical proteomic strategies strive to probe and understand protein-ligand interactions across gene families. One gene family of particular interest in drug and xenobiotic metabolism are the cytochromes P450 (CYPs), the topic of this article. Although numerous tools exist to probe affinity of CYP-ligand interactions, fewer exist for the rapid experimental characterization of the structural nature of these interactions. As a complement to recent advances in X-ray crystallography, NMR methods are being developed that allow for fairly high throughput characterization of protein-ligand interactions. One especially promising NMR approach involves the use of paramagnetic induced relaxation effects to measure distances of ligand atoms from the heme iron in CYP enzymes. Distances obtained from these T(1) relaxation measurements can be used as a direct source of 1-dimensional structural information or to restrain a ligand docking to generate a 3-dimensional data set. To facilitate such studies, we introduce the concept of the Heme-Based Coordinate System and present how it can be used in combination with NMR T(1) relaxation data to derive 3D QSAR descriptors directly or in combination with in silico docking. These descriptors should have application in defining the binding preferences of CYP binding sites using 3D QSAR models. They are especially well-suited for the biasing of fragment assembly and combinatorial chemistry drug design strategies, to avoid fragment or reagent combinations with enhanced affinity for CYP antitargets.

  18. A topological coordinate system for the diamond cubic grid.

    PubMed

    Čomić, Lidija; Nagy, Benedek

    2016-09-01

    Topological coordinate systems are used to address all cells of abstract cell complexes. In this paper, a topological coordinate system for cells in the diamond cubic grid is presented and some of its properties are detailed. Four dependent coordinates are used to address the voxels (triakis truncated tetrahedra), their faces (hexagons and triangles), their edges and the points at their corners. Boundary and co-boundary relations, as well as adjacency relations between the cells, can easily be captured by the coordinate values. Thus, this coordinate system is apt for implementation in various applications, such as visualizations, morphological and topological operations and shape analysis. PMID:27580205

  19. A topological coordinate system for the diamond cubic grid.

    PubMed

    Čomić, Lidija; Nagy, Benedek

    2016-09-01

    Topological coordinate systems are used to address all cells of abstract cell complexes. In this paper, a topological coordinate system for cells in the diamond cubic grid is presented and some of its properties are detailed. Four dependent coordinates are used to address the voxels (triakis truncated tetrahedra), their faces (hexagons and triangles), their edges and the points at their corners. Boundary and co-boundary relations, as well as adjacency relations between the cells, can easily be captured by the coordinate values. Thus, this coordinate system is apt for implementation in various applications, such as visualizations, morphological and topological operations and shape analysis.

  20. Dynamic coordination of a self-reconfigurable manipulator system

    NASA Technical Reports Server (NTRS)

    Kim, Sungbok; Lee, Sukhan

    1991-01-01

    The authors present the dynamic coordination of a self-reconfigurable manipulator system capable of changing its mechanical structure according to given task requirements. The self-reconfiguration is achieved by reconfiguring the topology of a dual-arm system through serial, parallel, and bracing structures. Particular emphasis is placed on the dynamic coordination of two arms having three different dual-arm topologies. The authors develop the Cartesian space dynamic models of a dual-arm system of three dual-arm topologies and derive the kinematic and dynamic constraints imposed on two arms in cooperation. Dual-arm dynamic manipulabilities are defined to quantify the dynamic performance of three dual-arm topologies in terms of the efficiency of generating Cartesian accelerations. A methodology of selecting serial, parallel, and bracing structures based on dual-arm dynamic manipulabilities is provided.

  1. Training a system-literate care coordination workforce.

    PubMed

    Naccarella, Lucio; Osborne, Richard H; Brooks, Peter M

    2016-04-01

    People with chronic complex conditions continue to experience increasing health system fragmentation and poor coordination. To reverse these trends, one solution has been an investment in effective models of care coordination that use a care coordinator workforce. Care coordinators are not a homogenous workforce - but an applied professional role, providing direct and indirect care, and is often undertaken by nurses, allied health professionals, social workers or general practitioners. In Australia, there is no training curriculum nor courses, nor nationally recognised professional quality standards for the care coordinator workforce. With the growing complexity and fragmentation of the health care system, health system literacy - shared understanding of the roles and contributions of the different workforce professions, organisations and systems, among patients and indeed the health workforce is required. Efforts to improve health system literacy among the health workforce are increasing at a policy, practice and research level. However, insufficient evidence exists about what are the health system literacy needs of care coordinators, and what is required for them to be most effective. Key areas to build a health system literate care coordination workforce are presented. Care coordination is more than an optional extra, but one of the only ways we are going to be able to provide equitable health services for people with chronic complex conditions. People with low health literacy require more support with the coordination of their care, therefore we need to build a high performing care coordinator workforce that upholds professional quality standards, and is health literacy responsive.

  2. Extending the lanthanide-terephthalate system: Isolation of an unprecedented Tb(III)-based coordination polymer with high potential porosity and luminescence properties

    NASA Astrophysics Data System (ADS)

    Le Natur, François; Calvez, Guillaume; Freslon, Stéphane; Daiguebonne, Carole; Bernot, Kevin; Guillou, Olivier

    2015-04-01

    A novel coordination polymer with chemical formula {[Tb(bdc)1.5(H2O)]ṡ(DMF)(H2O)}∞ (1) has been synthesized by reaction between 1,4-benzene-dicarboxylic acid (H2bdc) and di-cationic hexanuclear entity [Tb6O(OH)8(NO3)6(H2O)12]2+ in an ethylene glycol (EG)/N,N-dimethylformamide (DMF) mixture. This compound has been obtained as single crystals by slow evaporation in air at room temperature. If the hexanuclear entity is destroyed during the reaction, the coordination polymer that is obtained is original and presents promising potential micro-porosity and luminescent properties. It crystallizes in the monoclinic system, space group C12/c1 (No. 15) with the cell parameters a = 23.7540(1) Å, b = 10.5390(4) Å, c = 19.7580(3) Å, β = 125.8100(1)° and Z = 8.

  3. Optical 3D-coordinate measuring system using structured light

    NASA Astrophysics Data System (ADS)

    Schreiber, Wolfgang; Notni, Gunther; Kuehmstedt, Peter; Gerber, Joerg; Kowarschik, Richard M.

    1996-09-01

    The paper is aimed at the description of an optical shape measuring technique based on a consistent principle using fringe projection technique. We demonstrate a real 3D- coordinate measuring system where the sale of coordinates is given only by the illumination-structures. This method has the advantages that the aberration of the observing system and the depth-dependent imaging scale have no influence on the measuring accuracy and, moreover, the measurements are independent of the position of the camera with respect to the object under test. Furthermore, it is shown that the influence of specular effects of the surface on the measuring result can be eliminated. Moreover, we developed a very simple algorithm to calibrate the measuring system. The measuring examples show that a measuring accuracy of 10-4 (i.e. 10 micrometers ) within an object volume of 100 X 100 X 70 mm3 is achievable. Furthermore, it is demonstrated that the set of coordinate values can be processed in CNC- and CAD-systems.

  4. Space telescope coordinate systems, symbols, and nomenclature definitions

    NASA Technical Reports Server (NTRS)

    Kennel, H. F.

    1976-01-01

    The major coordinate systems as well as the transformations and transformation angles between them, for the Space Telescope are defined. The coordinate systems were primarily developed for use in pointing and control system analysis and simulation. Additional useful information (on nomenclature, symbols, quaternion operations, etc.) is also contained.

  5. Polarized radiative transfer equation in several astrophysically interesting coordinate systems

    NASA Astrophysics Data System (ADS)

    Freimanis, J.

    2012-04-01

    While modeling multiple light scattering in astrophysical objects generally it is necessary to make numerical 3D radiative transfer calculations in objects of irregular morphology. But often their shape can be approximated by some regular geometry, e.g. plane-parallel, spherical, cylindrical, conical, spheroidal or toroidal. There are few theoretical results concerning radiative transfer in nonplanar geometries, namely, only for spherical and cylindrical coordinate systems. But the numerical solution of any equation generally performs best if the numerical method accounts for the analytical properties of the solution, first of all - its singularities and asymptotics. This justifies further theoretical research of radiative transfer in different coordinate systems, and first of all, the transfer equation itself in different coordinate systems must be written down. General method allowing to obtain clear expression for the differential operator of polarized radiative transfer equation (PRTE) in arbitrary curvilinear spatial coordinate system was recently described [1]. Here it is applied to several orthogonal coordinate systems essential for astrophysical applications. PRTE in circular conical coordinate system is treated as a particular look upon PRTE in spherical coordinate system. Previously obtained expressions for PRTE in elliptic conical coordinate system [2] are simplified using Lukáčs [3] trigonometric parameterization of the coordinates. PRTE in triaxial ellipsoidal system is obtained by merger of parameterization of angular coordinates described in [3] with my own ideas; PRTE in oblate spheroidal and prolate spheroidal system appear as particular cases of it in two types of the ellipsoidal system. PRTE in two different kinds of toroidal coordinate system (classical and simple) is derived as well.

  6. A vision-aided alignment datum system for coordinate measuring machines

    NASA Astrophysics Data System (ADS)

    Wang, L.; Lin, G. C. I.

    1997-07-01

    This paper presents the development of a CAD-based and vision-aided precision measurement system. A new coordinate system alignment technique for coordinate measuring machines (CMMs) is described. This alignment technique involves a machine vision system with CAD-based planning and execution of inspection. The determination method for measuring datums for the coordinate measuring technique, using the AutoCAD development system, is described in more detail. To improve image quality in the machine vision system, a contrast enhancement technique is used on the image background to reduce image noise, and an on-line calibration technique is applied. Some systematic errors may be caused by imperfect geometric features in components during coordinate system alignment. This measurement system approach, with its new measuring coordinate alignment method, can be used for high-precision measurement to overcome such errors.

  7. Coordinate systems for the carpal bones of the wrist.

    PubMed

    Coburn, James C; Upal, Mohammad A; Crisco, Joseph J

    2007-01-01

    The eight small and complexly shaped carpal bones of the wrist articulate in six degrees of freedom with each other and to some extent with the radius and the metacarpals. With the increasing number and sophistication of studies of the carpus, a standardized definition for a coordinate system for each the carpal bones would aid in the reporting and comparison of findings. This paper presents a method for defining and constructing a coordinate system specific to each of the eight carpal bones based upon the inertial properties of the bone, derived from surface models constructed from three-dimensional (3-D) medical image volumes. Surface models from both wrists of 5 male and 5 female subjects were generated from CT image volumes in two neutral wrist positions (functional and clinical). An automated algorithm found the principal inertial axes and oriented them according to preset conditions in 85% of the bones, the remaining bones were corrected manually. Six of the eight carpal bones were significantly more extended in the functional neutral position than in the clinical neutral position. Gender had no significant effect on carpal bone posture in either wrist position. Correlations between the 3-D carpal posture and the commonly used 2-D clinical radiographic carpal angles are established. 3-D coordinate systems defined by the anatomy of the carpal bone, such as the ones presented here, are necessary to completely describe 3-D changes in the posture of the carpal bones.

  8. MHD spectra and coordinate transformations in toroidal systems

    NASA Astrophysics Data System (ADS)

    Predebon, I.; Momo, B.; Terranova, D.; Innocente, P.

    2016-09-01

    A fully geometric approach is used to study the mutual spectral properties of different classes of MHD equilibria with symmetries defined by action-angle coordinates. We refer mostly to the helical equilibria of tokamak and reversed field pinch plasmas compared to the axisymmetric counterpart. Based on the existence of different coordinate systems, we show how the magnetic field and the vector potential are correspondingly evaluated, and how their spectral decompositions may largely vary. Most notably, a monochromatic perturbation in a reference frame can appear with a rich spectrum in another frame. The consequences on the interpretation of the measurements and the implications on the effectiveness of the externally applied magnetic fields on the plasma are discussed with practical examples.

  9. Systems and Methods of Coordination Control for Robot Manipulation

    NASA Technical Reports Server (NTRS)

    Chang, Chu-Yin (Inventor); English, James (Inventor); Tardella, Neil (Inventor); Bacon, James (Inventor)

    2013-01-01

    Disclosed herein are systems and methods for controlling robotic apparatus having several movable elements or segments coupled by joints. At least one of the movable elements can include one or more mobile bases, while the others can form one or more manipulators. One of the movable elements can be treated as an end effector for which a certain motion is desired. The end effector may include a tool, for example, or represent a robotic hand (or a point thereon), or one or more of the one or more mobile bases. In accordance with the systems and methods disclosed herein, movement of the manipulator and the mobile base can be controlled and coordinated to effect a desired motion for the end effector. In many cases, the motion can include simultaneously moving the manipulator and the mobile base.

  10. Representation of Projection and Coordinate Systems in Engineering Graphics.

    ERIC Educational Resources Information Center

    Ross, William A.

    1990-01-01

    The existing methods for graphically illustrating projection and coordinate systems for manual and computer-aided drafting and design are examined. Inconsistencies in methods used to graphically depict first and third angle projection in texts and the lack of attention in the relationship of projection to coordinate systems are noted. (KR)

  11. State-based models for planning and execution coordination

    NASA Technical Reports Server (NTRS)

    Bennett, Matthew B.; Knight, Russell L.; Rasmussen, Robert D.; Ingham, Michel D.

    2005-01-01

    Many traditional planners are built on top of existing execution engines that were not necessarily intended to be operated by a planner. The Mission Data System has been designed from the onset to have both an execution and planning engine and provides a framework for producing state-based models that can be used to coordinate planning and execution. The models provide a basis for ensuring the consistency of assumptions made by the execution engine and planner, and the frameworks provide a basis for run time communications between the planner and execution engines.

  12. Determination of Ship Approach Parameters in the Polar Coordinates System

    NASA Astrophysics Data System (ADS)

    Banachowicz, Andrzej; Wolski, Adam

    2014-06-01

    An essential aspect of the safety of navigation is avoiding collisions with other vessels and natural or man made navigational obstructions. To solve this kind of problem the navigator relies on automatic anti-collision ARPA systems, or uses a geometric method and makes radar plots. In both cases radar measurements are made: bearing (or relative bearing) on the target position and distance, both naturally expressed in the polar coordinates system originating at the radar antenna. We first convert original measurements to an ortho-Cartesian coordinate system. Then we solve collision avoiding problems in rectangular planar coordinates, and the results are transformed to the polar coordinate system. This article presents a method for an analysis of a collision situation at sea performed directly in the polar coordinate system. This approach enables a simpler geometric interpretation of a collision situation

  13. Reference coordinate systems for Earth dynamics: A preview

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.

    1982-01-01

    Geodynamics is the subject of intensive international research during last decade. A common requirement for all investigations is the necessity of a well defined coordinate system attached to the Earth in some prescribed way. In addition, a well defined inertial coordinate system is also needed in which the motions of the terrestrial system can be monitored. The problems encountered when establishing such coordinate systems and the transformations between them are presented. In addition, problems related to the modeling of the deformable Earth are discussed. Finally, action items are listed which are necessary to assure that the reference system issue is resolved early and that uniformity is assured by means of international agreements.

  14. [Enriching the diagnosis announcement system with the coordination passport].

    PubMed

    Bertrand, Nathalie

    2016-05-01

    The personalised care plan of a person with cancer requires proper coordination between the various professionals involved in their care at the different stages of their illness. In order to organise this coordination efficiently, for the patient as well as for the health professionals, an oncology hospital team has developed a practical and modular tool. The coordination passport enriches the diagnosis announcement system used in the hospital.

  15. Policies to enhance coordination in hospital-based case management programs.

    PubMed

    Netting, F E; Williams, F G; Jones-McClintic, S; Warrick, L

    1990-02-01

    Social work practitioners in health and social services are expected to develop and implement programs and client care plans that require cooperation and coordination with numerous other individuals and programs. Such cooperation and coordination often are accomplished through informal networking. As programs develop, these relationships may be formalized in written policy agreements. In this article, the authors examine four policies designed to improve cooperation and coordination at different levels in hospital-based case management systems. Implications for social work practice are discussed.

  16. An intelligent hybrid behavior coordination system for an autonomous mobile robot

    NASA Astrophysics Data System (ADS)

    Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Fallouh, Samer

    2013-12-01

    In this paper, development of a low-cost PID controller with an intelligent behavior coordination system for an autonomous mobile robot is described that is equipped with IR sensors, ultrasonic sensors, regulator, and RC filters on the robot platform based on HCS12 microcontroller and embedded systems. A novel hybrid PID controller and behavior coordination system is developed for wall-following navigation and obstacle avoidance of an autonomous mobile robot. Adaptive control used in this robot is a hybrid PID algorithm associated with template and behavior coordination models. Software development contains motor control, behavior coordination intelligent system and sensor fusion. In addition, the module-based programming technique is adopted to improve the efficiency of integrating the hybrid PID and template as well as behavior coordination model algorithms. The hybrid model is developed to synthesize PID control algorithms, template and behavior coordination technique for wall-following navigation with obstacle avoidance systems. The motor control, obstacle avoidance, and wall-following navigation algorithms are developed to propel and steer the autonomous mobile robot. Experiments validate how this PID controller and behavior coordination system directs an autonomous mobile robot to perform wall-following navigation with obstacle avoidance. Hardware configuration and module-based technique are described in this paper. Experimental results demonstrate that the robot is successfully capable of being guided by the hybrid PID controller and behavior coordination system for wall-following navigation with obstacle avoidance.

  17. [Coupling coordinated development of ecological-economic system in Loess Plateau].

    PubMed

    Zhang, Qing-Feng; Wu, Fa-Qi; Wang, Li; Wang, Jian

    2011-06-01

    Based on system theory, a coupling coordinated development model of ecological-economic system in Loess Plateau was established, and the evaluation criteria and basic types of the coordinated development of the ecological-economic system were proposed. The county-level coupling coordinated development of the ecological-economic system was also discussed, based on the local characteristics. The interactions between the ecological and economic systems in Loess Plateau could be divided into four stages, i.e., seriously disordered development stage, mild-disordered development stage, low-level coordinated development stage, and high level well-coordinated development stage. At each stage, there existed a cyclic process of profit and loss-antagonist-running-dominant-synchronous development. The coupling development degree of the ecological-economic system in Loess Plateau was overall at a lower level, being about 62.7% of the counties at serious disorder, 30.1% of the counties at mild disorder, and 7.1% of the counties at low but coordinated level. The coupling development degree based on the model established in this study could better reflect the current social-economic and ecological environment situations, especially the status of coordination. To fully understand the coupling of ecological-economic system and to adopt appropriate development mode would be of significance to promote the county-level coordinated development in Loess Plateau.

  18. Unified Selenocentric Reference Coordinates Net in the Dynamic System

    NASA Astrophysics Data System (ADS)

    Nefedyev, Yuri; Petrova, Natalia; Varaksina, Natalia

    In this report the task of the making selenocentric inertial reference net is solved. The purpose is making summary reference net by expansion KSC-1162 selenodetic system using 12 cosmic and ground selenodesic catalogues. The prospective analysis of this net was performed. These selenocentric reference catalogue covers full visible and a part of far lunar sides. Modern cosmic technologies need the accurate coordinate - temporal support including reference frame realization, inertial and dynamic system orientation and studying dynamic and geometry celestial bodies. That refers to dynamic and geometric selenocentric lunar parameters. The catalogue based on mission “Apollo” and reference nets of the west lunar hemisphere made by missions “Zond 5”, ”Zond 8” cover small part of the Moon surface. Three ALSEP stations were used to transform “Apollo” topographic coordinates. Transformation mean-square errors are less than 80 meters and measurement’s errors are about 60 meters. On this account positions inaccuracy near and between ALSEP stations are less 150 meters. The offset from place of the location ALSEP enlarges the supposed mistake is more than 300 m and this is a major part of the lunar surface. In solving the problem of high-precision condensation and expansion of fundamental selenocentric net KSC-1162 on the visible side of the Moon and lunar far side were obtained following new results: a) the analysis and investigation of the accuracy of basic net contained in ULCN were carried out; b) the decryption of common objects for coordinate systems which are being explored was executed; c) the extension of the mathematical content package TSC was carried out; d) the development of TSC as an expert system of universal transformation planet's coordinates was carried out; e) the possibility of applying the ARM-approach to the problem TC on common objects, which allows to find optimal parameter estimation and model structure of TC was confirmed; f) the

  19. Design for a Performance Based Adult Education Community Coordinating Agency.

    ERIC Educational Resources Information Center

    Stambler, Moses

    A plan is described for a project to establish an adult education coordinating and change agency in the New Haven, Connecticut area to coordinate activities of existing organizations; provide a research staff to establish a computerized data base; disseminate information and provide technological services to local agencies; set up a communications…

  20. Local search to improve coordinate-based task mapping

    DOE PAGES

    Balzuweit, Evan; Bunde, David P.; Leung, Vitus J.; Finley, Austin; Lee, Alan C. S.

    2015-10-31

    We present a local search strategy to improve the coordinate-based mapping of a parallel job’s tasks to the MPI ranks of its parallel allocation in order to reduce network congestion and the job’s communication time. The goal is to reduce the number of network hops between communicating pairs of ranks. Our target is applications with a nearest-neighbor stencil communication pattern running on mesh systems with non-contiguous processor allocation, such as Cray XE and XK Systems. Utilizing the miniGhost mini-app, which models the shock physics application CTH, we demonstrate that our strategy reduces application running time while also reducing the runtimemore » variability. Furthermore, we further show that mapping quality can vary based on the selected allocation algorithm, even between allocation algorithms of similar apparent quality.« less

  1. Local search to improve coordinate-based task mapping

    SciTech Connect

    Balzuweit, Evan; Bunde, David P.; Leung, Vitus J.; Finley, Austin; Lee, Alan C. S.

    2015-10-31

    We present a local search strategy to improve the coordinate-based mapping of a parallel job’s tasks to the MPI ranks of its parallel allocation in order to reduce network congestion and the job’s communication time. The goal is to reduce the number of network hops between communicating pairs of ranks. Our target is applications with a nearest-neighbor stencil communication pattern running on mesh systems with non-contiguous processor allocation, such as Cray XE and XK Systems. Utilizing the miniGhost mini-app, which models the shock physics application CTH, we demonstrate that our strategy reduces application running time while also reducing the runtime variability. Furthermore, we further show that mapping quality can vary based on the selected allocation algorithm, even between allocation algorithms of similar apparent quality.

  2. Microgrids and distributed generation systems: Control, operation, coordination and planning

    NASA Astrophysics Data System (ADS)

    Che, Liang

    Distributed Energy Resources (DERs) which include distributed generations (DGs), distributed energy storage systems, and adjustable loads are key components in microgrid operations. A microgrid is a small electric power system integrated with on-site DERs to serve all or some portion of the local load and connected to the utility grid through the point of common coupling (PCC). Microgrids can operate in both grid-connected mode and island mode. The structure and components of hierarchical control for a microgrid at Illinois Institute of Technology (IIT) are discussed and analyzed. Case studies would address the reliable and economic operation of IIT microgrid. The simulation results of IIT microgrid operation demonstrate that the hierarchical control and the coordination strategy of distributed energy resources (DERs) is an effective way of optimizing the economic operation and the reliability of microgrids. The benefits and challenges of DC microgrids are addressed with a DC model for the IIT microgrid. We presented the hierarchical control strategy including the primary, secondary, and tertiary controls for economic operation and the resilience of a DC microgrid. The simulation results verify that the proposed coordinated strategy is an effective way of ensuring the resilient response of DC microgrids to emergencies and optimizing their economic operation at steady state. The concept and prototype of a community microgrid that interconnecting multiple microgrids in a community are proposed. Two works are conducted. For the coordination, novel three-level hierarchical coordination strategy to coordinate the optimal power exchanges among neighboring microgrids is proposed. For the planning, a multi-microgrid interconnection planning framework using probabilistic minimal cut-set (MCS) based iterative methodology is proposed for enhancing the economic, resilience, and reliability signals in multi-microgrid operations. The implementation of high-reliability microgrids

  3. Transformation formulas relating geodetic coordinates to a tangent to Earth, plane coordinate system

    NASA Technical Reports Server (NTRS)

    Credeur, L.

    1981-01-01

    Formulas and their approximation were developed to map geodetic position to an Earth tangent plane with an airport centered rectangular coordinate system. The transformations were developed for use in a terminal area air traffic model with deterministic aircraft traffic. The exact configured vehicle's approximation equations used in their precision microwave landing system navigation experiments.

  4. Plasticity of Intermediate Mechanics Students' Coordinate System Choice

    ERIC Educational Resources Information Center

    Sayre, Eleanor C.; Wittman, Michael C.

    2008-01-01

    We investigate the interplay between mathematics and physics resources in intermediate mechanics students. In the mechanics course, the selection and application of coordinate systems is a consistent thread. At the University of Maine, students often start the course with a strong preference to use Cartesian coordinates, in accordance with their…

  5. Expression of joint moment in the joint coordinate system.

    PubMed

    Desroches, Guillaume; Chèze, Laurence; Dumas, Raphaël

    2010-11-01

    The question of using the nonorthogonal joint coordinate system (JCS) to report joint moments has risen in the literature. However, the expression of joint moments in a nonorthogonal system is still confusing. The purpose of this paper is to present a method to express any 3D vector in a nonorthogonal coordinate system. The interpretation of these expressions in the JCS is clarified and an example for the 3D joint moment vector at the shoulder and the knee is given. A nonorthogonal projection method is proposed based on the mixed product. These nonorthogonal projections represent, for a 3D joint moment vector, the net mechanical action on the JCS axes. Considering the net mechanical action on each axis seems important in order to assess joint resistance in the JCS. The orthogonal projections of the same 3D joint moment vector on the JCS axes can be characterized as "motor torque." However, this interpretation is dependent on the chosen kinematic model. The nonorthogonal and orthogonal projections of shoulder joint moment during wheelchair propulsion and knee joint moment during walking were compared using root mean squares (rmss). rmss showed differences ranging from 6 N m to 22.3 N m between both projections at the shoulder, while differences ranged from 0.8 N m to 3.0 N m at the knee. Generally, orthogonal projections were of lower amplitudes than nonorthogonal projections at both joints. The orthogonal projection on the proximal or distal coordinates systems represents the net mechanical actions on each axis, which is not the case for the orthogonal projection (i.e., motor torque) on JCS axes. In order to represent the net action at the joint in a JCS, the nonorthogonal projection should be used.

  6. Coordinated scheduling for dynamic real-time systems

    NASA Technical Reports Server (NTRS)

    Natarajan, Swaminathan; Zhao, Wei

    1994-01-01

    In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.

  7. Approximate Linearization Control of 2-DOF Underactuated-by-1 Systems Using Higher Order Linearization Coordinate

    NASA Astrophysics Data System (ADS)

    Hoshino, Tasuku

    This paper deals with an approximate linearization control of 2-DOF underactuated-by-1 nonlinear systems, proposing a novel linearization coordinate which reduces the approximation error over the state space around the operating point. The coordinate is analytically constructed in a systematic way by solving two first order linear partial differential equations and the solution is given in an infinite series of configuration variables. The resulting linearization feedback is highly nonlinear and the basin of attraction of the stabilized system using proposed coordinate is large, comparing with those of a conventional first order or other lower order linearization coordinates. The approximate linearization control based on the proposed coordinate is applied to the stabilization of a rotational inverted pendulum; the advantage is verified in simulations and experiments. Some perspectives on availability of the linearization coordinate are discussed and they are computed also for a mobile inverted pendulum, Acrobot, and for Pendubot as examples.

  8. Construction of a Turn Off-On-Off Fluorescent System Based on Competitive Coordination of Cu2+ between 6,7-Dihydroxycoumarin and Pyrophosphate Ion for Sensitive Assay of Pyrophosphatase Activity

    PubMed Central

    Zhao, Liu; Miao, Yanqing; Liu, Chunye; Zhang, Chenxiao

    2016-01-01

    The detection of pyrophosphatase (PPase) activity is of great significance in diagnosing diseases and understanding the function of PPase-related biological events. This study constructed a turn off-on-off fluorescent system for PPase activity assay based on PPase-regulated competitive coordination of Cu2+ between a water-soluble fluorescent probe 6,7-dihydroxycoumarin (DHC) and pyrophosphate (PPi). The probe DHC can coordinate with Cu2+ and consequently display on-off type fluorescence response. Furthermore, the in situ formed nonfluorescent Cu2+-DHC complex can act as an effective off-on type fluorescent probe for sensing PPi due to the higher coordination reactivity between Cu2+ and PPi than that between Cu2+ and DHC. The subsequent addition of PPase to the mixture containing Cu2+, DHC, and PPi leads to the fluorescence requenching of the system again (an off state) because PPase catalyzes the hydrolysis of PPi into orthophosphate in the reaction system. Under the optimum conditions, the decrease of the fluorescence intensity of DHC-Cu2+-PPi system was linear with the increase of the PPase activity in the range from 0.1 to 0.3 U. The detection limit was down to 0.028 U PPase (S/N = 3). Moreover, the as-established system was also applied to evaluate PPase inhibitor. This study offers a simple yet effective method for the detection of PPase activity. PMID:27766179

  9. Stepwise Assembly of Coordination-Based Metal-Organic Networks

    SciTech Connect

    R Kaminker; L Motiei; A Gulino; I Fragala; L Shimon; G Evmenenko; P Dutta; M Iron; M van der Boom

    2011-12-31

    Metal-organic networks (MONs) were created by a stepwise solution deposition approach from vinylpyridine-based building blocks and PdCl{sub 2}. The combined experimental and computational study demonstrates the formation of saturated, structurally organized systems on solid supports. The rigid nature and geometry of the components are well-suited to form honeycomb and parallelogram structures, as predicted by a computational study. Detailed structural information of the new MONs was obtained by optical (UV/vis) spectroscopy, ellipsometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and synchrotron X-ray reflectivity (XRR). Notably, the XPS elemental composition indicates the formation of a palladium coordination-based network.

  10. Geometric deviation modeling by kinematic matrix based on Lagrangian coordinate

    NASA Astrophysics Data System (ADS)

    Liu, Weidong; Hu, Yueming; Liu, Yu; Dai, Wanyi

    2015-09-01

    Typical representation of dimension and geometric accuracy is limited to the self-representation of dimension and geometric deviation based on geometry variation thinking, yet the interactivity affection of geometric variation and gesture variation of multi-rigid body is not included. In this paper, a kinematic matrix model based on Lagrangian coordinate is introduced, with the purpose of unified model for geometric variation and gesture variation and their interactive and integrated analysis. Kinematic model with joint, local base and movable base is built. The ideal feature of functional geometry is treated as the base body; the fitting feature of functional geometry is treated as the adjacent movable body; the local base of the kinematic model is fixed onto the ideal geometry, and the movable base of the kinematic model is fixed onto the fitting geometry. Furthermore, the geometric deviation is treated as relative location or rotation variation between the movable base and the local base, and it's expressed by the Lagrangian coordinate. Moreover, kinematic matrix based on Lagrangian coordinate for different types of geometry tolerance zones is constructed, and total freedom for each kinematic model is discussed. Finally, the Lagrangian coordinate library, kinematic matrix library for geometric deviation modeling is illustrated, and an example of block and piston fits is introduced. Dimension and geometric tolerances of the shaft and hole fitting feature are constructed by kinematic matrix and Lagrangian coordinate, and the results indicate that the proposed kinematic matrix is capable and robust in dimension and geometric tolerances modeling.

  11. National Coordination Office for Space-Based PNT

    NASA Astrophysics Data System (ADS)

    Shaw, M. E.

    2008-12-01

    In December 2004, President Bush issued the US Policy on space-based positioning, navigation, and timing (PNT), providing guidance on the management of the Global Positioning System (GPS) and other space- based PNT systems. The policy established the National Executive Committee (EXCOM) to advise and coordinate federal agencies on matters related to space-based PNT. Chaired jointly by the deputy secretaries of defense and transportation, the EXCOM includes equivalent level officials from the Departments of State, the Interior, Agriculture, Commerce, and Homeland Security, the Joint Chiefs of Staff, and the National Aeronautics and Space Administration (NASA). A National Coordination Office (NCO) supports the EXCOM through an interagency staff. Since establishing the EXCOM and NCO in 2005, the organizations have quickly grown in influence and effectiveness, leading or managing many interagency initiatives including the development of a Five-Year National Space-Based PNT Plan, the Space-Based PNT Interference Detection and Mitigation (IDM) Plan, and other strategic documents. The NCO has also facilitated interagency coordination on numerous policy issues and on external communications intended to spread a consistent, positive US message about space-based PNT. Role of the NCO - The purpose of the EXCOM is to provide top-level guidance to US agencies regarding space-based PNT infrastructure. The president established it at the deputy secretary level to ensure its strategic recommendations effect real change in agency budgets. Recognizing such high-level officials could only meet every few months, the president directed the EXCOM to establish an NCO to carry out its day-to-day business, including overseeing the implementation of EXCOM action items across the member agencies. These range from the resolution of funding issues to the assessment of strategic policy options. They also include the completion of specific tasks and documents requested by the EXCOM co

  12. Unified Planetary Coordinates System: A Searchable Database of Geodetic Information

    NASA Technical Reports Server (NTRS)

    Becker, K. J.a; Gaddis, L. R.; Soderblom, L. A.; Kirk, R. L.; Archinal, B. A.; Johnson, J. R.; Anderson, J. A.; Bowman-Cisneros, E.; LaVoie, S.; McAuley, M.

    2005-01-01

    Over the past 40 years, an enormous quantity of orbital remote sensing data has been collected for Mars from many missions and instruments. Unfortunately these datasets currently exist in a wide range of disparate coordinate systems, making it extremely difficult for the scientific community to easily correlate, combine, and compare data from different Mars missions and instruments. As part of our work for the PDS Imaging Node and on behalf of the USGS Astrogeology Team, we are working to solve this problem and to provide the NASA scientific research community with easy access to Mars orbital data in a unified, consistent coordinate system along with a wide variety of other key geometric variables. The Unified Planetary Coordinates (UPC) system is comprised of two main elements: (1) a database containing Mars orbital remote sensing data computed using a uniform coordinate system, and (2) a process by which continual maintainance and updates to the contents of the database are performed.

  13. Coordinate-dependent diffusion coefficients: Decay rate in open quantum systems

    SciTech Connect

    Sargsyan, V. V.; Palchikov, Yu. V.; Antonenko, N. V.; Kanokov, Z.; Adamian, G. G.

    2007-06-15

    Based on a master equation for the reduced density matrix of an open quantum collective system, the influence of coordinate-dependent microscopical diffusion coefficients on the decay rate from a metastable state is treated. For various frictions and temperatures larger than a crossover temperature, the quasistationary decay rates obtained with the coordinate-dependent microscopical set of diffusion coefficients are compared with those obtained with the coordinate-independent microscopical set of diffusion coefficients and coordinate-independent and -dependent phenomenological sets of diffusion coefficients. Neglecting the coordinate dependence of diffusion coefficients, one can strongly overestimate or underestimate the decay rate at low temperature. The coordinate-dependent phenomenological diffusion coefficient in momentum are shown to be suitable for applications.

  14. A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability and sensitivity in pediatric planovalgus feet.

    PubMed

    Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B; D'Astous, Jacques L

    2013-01-01

    Several multisegment foot models have been proposed and some have been used to study foot pathologies. These models have been tested and validated on typically developed populations; however application of such models to feet with significant deformities presents an additional set of challenges. For the first time, in this study, a multisegment foot model is tested for repeatability in a population of children with symptomatic abnormal feet. The results from this population are compared to the same metrics collected from an age matched (8-14 years) typically developing population. The modified Shriners Hospitals for Children, Greenville (mSHCG) foot model was applied to ten typically developing children and eleven children with planovalgus feet by two clinicians. Five subjects in each group were retested by both clinicians after 4-6 weeks. Both intra-clinician and inter-clinician repeatability were evaluated using static and dynamic measures. A plaster mold method was used to quantify variability arising from marker placement error. Dynamic variability was measured by examining trial differences from the same subjects when multiple clinicians carried out the data collection multiple times. For hindfoot and forefoot angles, static and dynamic variability in both groups was found to be less than 4° and 6° respectively. The mSHCG model strategy of minimal reliance on anatomical markers for dynamic measures and inherent flexibility enabled by separate anatomical and technical coordinate systems resulted in a model equally repeatable in typically developing and planovalgus populations.

  15. The OSU 275 system of satellite tracking station coordinates

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.; Kumar, M.

    1975-01-01

    A brief review of the methods and data used in the OSU 275 geodetic system is given along with the summary of the results. Survey information regarding the tracking stations in the system is given in tabular form along with the geodetic and geophysical parameters, origin and orientation, Cartisian coordinates, and systematic differences with global and nonglobal geodetic systems.

  16. Computer transformation of partial differential equations into any coordinate system

    NASA Technical Reports Server (NTRS)

    Sullivan, R. D.

    1977-01-01

    The use of tensors to provide a compact way of writing partial differential equations in a form valid in all coordinate systems is discussed. In order to find solutions to the equations with their boundary conditions they must be expressed in terms of the coordinate system under consideration. The process of arriving at these expressions from the tensor formulation was automated by a software system, TENSR. An allied system that analyzes the resulting expressions term by term and drops those that are negligible is also described.

  17. AST: A library for modelling and manipulating coordinate systems

    NASA Astrophysics Data System (ADS)

    Berry, David S.; Warren-Smith, Rodney F.; Jenness, Tim

    2016-04-01

    In view of increased interest in object-oriented systems for describing coordinate information, we present a description of the data model used by the Starlink AST library. AST provides a comprehensive range of facilities for attaching world co-ordinate systems to astronomical data, and for retrieving and interpreting that information in a variety of formats, including FITS-WCS. AST is a mature system that has been in use for more than 17 years, and may consequently be useful as a means of informing development of similar systems in the future.

  18. Modeling and simulation of complex network attributes on coordinating large multiagent system.

    PubMed

    Xu, Yang; Li, Xiang; Liu, Ming

    2014-01-01

    With the expansion of distributed multiagent systems, traditional coordination strategy becomes a severe bottleneck when the system scales up to hundreds of agents. The key challenge is that in typical large multiagent systems, sparsely distributed agents can only communicate directly with very few others and the network is typically modeled as an adaptive complex network. In this paper, we present simulation testbed CoordSim built to model the coordination of network centric multiagent systems. Based on the token-based strategy, the coordination can be built as a communication decision problem that agents make decisions to target communications and pass them over to the capable agents who will potentially benefit the team most. We have theoretically analyzed that the characters of complex network make a significant difference with both random and intelligent coordination strategies, which may contribute to future multiagent algorithm design. PMID:24955399

  19. Modeling and Simulation of Complex Network Attributes on Coordinating Large Multiagent System

    PubMed Central

    Li, Xiang; Liu, Ming

    2014-01-01

    With the expansion of distributed multiagent systems, traditional coordination strategy becomes a severe bottleneck when the system scales up to hundreds of agents. The key challenge is that in typical large multiagent systems, sparsely distributed agents can only communicate directly with very few others and the network is typically modeled as an adaptive complex network. In this paper, we present simulation testbed CoordSim built to model the coordination of network centric multiagent systems. Based on the token-based strategy, the coordination can be built as a communication decision problem that agents make decisions to target communications and pass them over to the capable agents who will potentially benefit the team most. We have theoretically analyzed that the characters of complex network make a significant difference with both random and intelligent coordination strategies, which may contribute to future multiagent algorithm design. PMID:24955399

  20. Precision Effects for Solar Image Coordinates Within the FITS World Coordinate System

    NASA Technical Reports Server (NTRS)

    Thompson, W. T.

    2010-01-01

    The FITS world coordinate system (WCS) provides a number of tools for precisely specifying the spatial coordinates of an image. Many of the finer details that the WCS addresses have not historically been taken into account in solar image processing. This paper examines various effects which can affect the expression of coordinates in FITS headers, to determine under what conditions such effects need to be taken into account in data analysis, and under what conditions they can be safely ignored. Effects which are examined include perspective, parallax, spherical projection, optical axis determination, speed-of-light effects, stellar aberration, gravitational deflection, and scattering and refraction at radio wavelengths. Purely instrumental effects, such as misalignment or untreated optical aberrations, are not considered. Since the value of the solar radius is an experimental quantity, the effect of adopting a specific radius value is also examined. These effects are examined in the context of a previous paper outlining a WCS standard for encoding solar coordinates in FITS files. Aspects of that previous paper are clarified and extended in the present work.

  1. Geometric calibration of a coordinate measuring machine using a laser tracking system

    NASA Astrophysics Data System (ADS)

    Umetsu, Kenta; Furutnani, Ryosyu; Osawa, Sonko; Takatsuji, Toshiyuki; Kurosawa, Tomizo

    2005-12-01

    This paper proposes a calibration method for a coordinate measuring machine (CMM) using a laser tracking system. The laser tracking system can measure three-dimensional coordinates based on the principle of trilateration with high accuracy and is easy to set up. The accuracy of length measurement of a single laser tracking interferometer (laser tracker) is about 0.3 µm over a length of 600 mm. In this study, we first measured 3D coordinates using the laser tracking system. Secondly, 21 geometric errors, namely, parametric errors of the CMM, were estimated by the comparison of the coordinates obtained by the laser tracking system and those obtained by the CMM. As a result, the estimated parametric errors agreed with those estimated by a ball plate measurement, which demonstrates the validity of the proposed calibration system.

  2. Plasticity of intermediate mechanics students' coordinate system choice

    NASA Astrophysics Data System (ADS)

    Sayre, Eleanor C.; Wittmann, Michael C.

    2008-12-01

    We investigate the interplay between mathematics and physics resources in intermediate mechanics students. In the mechanics course, the selection and application of coordinate systems is a consistent thread. At the University of Maine, students often start the course with a strong preference to use Cartesian coordinates, in accordance with their prior physics and mathematics classes. In small-group interviews and in homework help sessions, we ask students to define a coordinate system and set up the equations of motion for a simple pendulum for which polar coordinates are more appropriate. We analyze video data from several encounters using a combination of Process/Object theory and Resource Theory. We find that students sometimes persist in using an inappropriate Cartesian system. Furthermore, students often derive (rather than recall) the details of the polar coordinate system, indicating that their knowledge is far from solid. To describe our work more precisely, we define a scale of plasticity and several heuristics for defining resources and their plasticity.

  3. Influenza Virus Surveillance in Coordinated Swine Production Systems, United States

    PubMed Central

    Kaplan, Bryan S.; DeBeauchamp, Jennifer; Stigger-Rosser, Evelyn; Franks, John; Crumpton, Jeri Carol; Turner, Jasmine; Darnell, Daniel; Jeevan, Trushar; Kayali, Ghazi; Harding, Abbey; Webby, Richard J.

    2015-01-01

    To clarify the epidemiology of influenza A viruses in coordinated swine production systems to which no animals from outside the system are introduced, we conducted virologic surveillance during September 2012–September 2013. Animal age, geographic location, and farm type were found to affect the prevalence of these viruses. PMID:26402228

  4. Probing the coordination environment of Ti(3+) ions coordinated to nitrogen-containing Lewis bases.

    PubMed

    Morra, E; Maurelli, S; Chiesa, M; Van Doorslaer, S

    2015-08-28

    Multi-frequency continuous-wave and pulsed EPR techniques are employed to investigate the coordination of nitrogen-containing ligands to Ti(3+)-chloro complexes. Frozen solutions of TiCl3 and TiCl3(Py)3 dissolved in nitrogen-containing solvents have been investigated together with the TiCl3(Py)3 solid-state complex. For these different systems, the hyperfine and nuclear quadrupole data of Ti(3+)-bound (14)N nuclei are reported and discussed in the light of DFT computations, allowing for a detailed description of the microscopic structure of these systems.

  5. On Market-Based Coordination of Thermostatically Controlled Loads With User Preference

    SciTech Connect

    Li, Sen; Zhang, Wei; Lian, Jianming; Kalsi, Karanjit

    2014-12-15

    This paper presents a market-based control framework to coordinate a group of autonomous Thermostatically Controlled Loads (TCL) to achieve the system-level objectives with pricing incentives. The problem is formulated as maximizing the social welfare subject to feeder power constraint. It allows the coordinator to affect the aggregated power of a group of dynamical systems, and creates an interactive market where the users and the coordinator cooperatively determine the optimal energy allocation and energy price. The optimal pricing strategy is derived, which maximizes social welfare while respecting the feeder power constraint. The bidding strategy is also designed to compute the optimal price in real time (e.g., every 5 minutes) based on local device information. The coordination framework is validated with realistic simulations in GridLab-D. Extensive simulation results demonstrate that the proposed approach effectively maximizes the social welfare and decreases power congestion at key times.

  6. A sensitivity-based coordination method for optimization of product families

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Yao, Wei-Xing; Xia, Tian-Xiang

    2016-07-01

    This article provides an introduction to a decomposition-based method for the optimization of product families with predefined platforms. To improve the efficiency of the system coordinator, a new sensitivity-based coordination method (SCM) is proposed. The key idea in SCM is that the system level coordinates share variables by using sensitivity information to make trade-offs between the product subsystems. The coordinated shared variables are determined by minimizing the performance deviation with respect to the optimal design of subproblems and constraint violation incurred by sharing. Each subproblem has a significant degree of independence and can be solved in a simultaneous way. The numerical performance of SCM is investigated, and the results suggest that the new approach is robust and leads to a substantial reduction in computational effort compared with the analytical target cascading method. Then, the proposed methodology is applied to the structural optimization of a family of automotive body side-frames.

  7. Six-coordinate high-spin iron(ii) complexes with bidentate PN ligands based on 2-aminopyridine - new Fe(ii) spin crossover systems.

    PubMed

    Holzhacker, Christian; Calhorda, Maria José; Gil, Adrià; Carvalho, Maria Deus; Ferreira, Liliana P; Stöger, Berthold; Mereiter, Kurt; Weil, Matthias; Müller, Danny; Weinberger, Peter; Pittenauer, Ernst; Allmaier, Günter; Kirchner, Karl

    2014-08-01

    Several new octahedral iron(ii) complexes of the type [Fe(PN(R)-Ph)2X2] (X = Cl, Br; R = H, Me) containing bidentate PN(R)-Ph (R = H, Me) (1a,b) ligands based on 2-aminopyridine were prepared. (57)Fe Mössbauer spectroscopy and magnetization studies confirmed in all cases their high spin nature at room temperature with magnetic moments very close to 4.9μB reflecting the expected four unpaired d-electrons in all these compounds. While in the case of the PN(H)-Ph ligand an S = 2 to S = 0 spin crossover was observed at low temperatures, complexes with the N-methylated analog PN(Me)-Ph retain an S = 2 spin state also at low temperatures. Thus, [Fe(PN(H)-Ph)2X2] (2a,3a) and [Fe(PN(Me)-Ph)2X2] (2b,3b) adopt different geometries. In the first case a cis-Cl,P,N-arrangement seems to be most likely, as supported by various experimental data derived from (57)Fe Mössbauer spectroscopy, SQUID magnetometry, UV/Vis, Raman, and ESI-MS as well as DFT and TDDFT calculations, while in the case of the PN(Me)-Ph ligand a trans-Cl,P,N-configuration is adopted. The latter is also confirmed by X-ray crystallography. In contrast to [Fe(PN(Me)-Ph)2X2] (2b,3b), [Fe(PN(H)-Ph)2X2] (2a,3a) is labile and undergoes rearrangement reactions. In CH3OH, the diamagnetic dicationic complex [Fe(PN(H)-Ph)3](2+) (5) is formed via the intermediacy of cis-P,N-[Fe(κ(2)-P,N-PN(H)-Ph)2(κ(1)-P-PN(H)-Ph)(X)](+) (4a,b) where one PN ligand is coordinated in a κ(1)-P-fashion. In CH3CN the diamagnetic dicationic complex cis-N,P,N-[Fe(PN(H)-Ph)2(CH3CN)2](2+) (6) is formed as a major isomer where the two halide ligands are replaced by CH3CN.

  8. Using endmembers as a coordinate system in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Gillis, David; Bowles, Jeffrey H.; Winter, Michael E.

    2002-11-01

    The linear mixing model (LMM) is a well-known and useful method for decomposing spectra in a hyperspectral image into the sum of their constituents, or endmembers. Mathematically, if the spectra are represented as n-dimensional vectors, then the LMM implies that the set of endmembers defines a basis or coordinate system for the set of spectra. Because the endmembers themselves are generally not orthogonal, the geometry (distances, difference angles, etc.) is changed by moving from band space to endmember space. We explore some of the differences between the two coordinate systems, and show in particular that the difference in angle measurements leads to an improved method for subpixel target detection.

  9. Probing System Characteristics in Coordinate Metrology

    NASA Astrophysics Data System (ADS)

    Ali, Salah H. R.

    2010-01-01

    This paper aims at studying the effect of the dynamic errors on surface measurements using three different types of touch trigger probes attached to a bridge-type-CMM. Unforeseeable dynamic root errors of a ductile touch trigger probing system have been characterized theoretically and experimentally as well. The results were employed in validating a developed analytical two-dimensional-model (2DM) of stylus tip to be developed to demonstrate the capability of such approaches of emphasizing the root error concept, and to evaluate the accuracy of the CMM measurements. A set of experiments was conducted; the results were analyzed in order to investigate the effect of the dynamic root errors in the light of probe scanning speed at different stylus tip radii. Variations in the mass and geometry of the stylus have their consequent effects on its inherent intrinsic dynamic characteristics that in turn would cause relevant systematic root errors in the resulting measurements. 3D bore cylindrical surface form undulations were measured by employing a probe on the trajectory of internal surface diameter for the standard reference test gauge ring. Regression analysis was applied on the results of measurement density distribution; uncertainty of measurement repeatability was then evaluated and graphically presented. The results were investigated and optimum strategic measurement parameters could thus have been derived to ensure foreseeable accurate and precise results.

  10. Comparison of scapular local coordinate systems

    PubMed Central

    Ludewig, Paula M; Hassett, Daniel R; LaPrade, Robert F; Camargo, Paula R; Braman, Jonathan P

    2010-01-01

    Background Our purposes were to compare between the original and current recommended standard methods of three-dimensional scapular rotation descriptions and to examine the prevalence of gimbal-lock for scapular motion during scapular plane abduction. Additionally we compared these standards to an alternative method and a glenoid based description. Methods Eleven asymptomatic subjects were studied using electromagnetic sensors secured to bone-fixed pins in the scapula and humerus during two repetitions of scapular plane abduction. Anatomical landmarks defined scapular axes. Scapular angular data were analyzed at humerothoracic elevation angles from initial to maximum elevation. Repeated measures ANOVAs were performed for each variable with a significance level of P<0.05. An anatomical model was used to compare the standards to the alternative and glenoid methods. Findings For scapular upward rotation and tilting, larger differences occurred between standards at higher angles of elevation. The current standard measured 12.4° less upward rotation and 6.1° greater posterior tilting at maximum elevation as compared to the original. The current standard measured 11.6° less scapular internal rotation across all elevation angles. Using the original landmarks, six subjects attained a mean end-range humerothoracic elevation of 147.4° (SD 12.1°), with a mean end-range scapular upward rotation of 54.4°. The alternative method was more closely aligned to the glenoid method than the current standard. Interpretation Significant differences were found between the two standards. The current standard interprets the same scapular motion with less internal rotation and upward rotation, and more posterior tilting than the original. No subjects reached upward rotation positions nearing gimbal-lock. Axis orientations also affect clinical interpretation. The alternative method appears worthy of further consideration as shoulder kinematic measurement further evolves. PMID:20185212

  11. Coordinate Projection-based Solver for ODE with Invariants

    2008-04-08

    CPODES is a general purpose (serial and parallel) solver for systems of ordinary differential equation (ODE) with invariants. It implements a coordinate projection approach using different types of projection (orthogonal or oblique) and one of several methods for the decompositon of the Jacobian of the invariant equations.

  12. A Zn based coordination polymer exhibiting long-lasting phosphorescence.

    PubMed

    Cepeda, Javier; Sebastian, Eider San; Padro, Daniel; Rodríguez-Diéguez, Antonio; García, Jose A; Ugalde, Jesus M; Seco, Jose M

    2016-07-01

    A new Zn(ii) based coordination polymer (CP) built by the cohesive pilling of 2D Shubnikov type layers is reported. This material exhibits time dependent multicoloured emission, part of which shows a persistent green phosphorescence visible for up to two seconds to the naked eye, which originates from multiple charge transfer mechanisms. PMID:27297330

  13. Coordination polymer particles as potential drug delivery systems.

    PubMed

    Imaz, Inhar; Rubio-Martínez, Marta; García-Fernández, Lorena; García, Francisca; Ruiz-Molina, Daniel; Hernando, Jordi; Puntes, Victor; Maspoch, Daniel

    2010-07-14

    Micro- and nanoscale coordination polymer particles can be used for encapsulating and delivering drugs. In vitro cancer cell cytotoxicity assays showed that these capsules readily release doxorubicin, which shows anticancer efficacy. The results from this work open up new avenues for metal-organic capsules to be used as potential drug delivery systems.

  14. Coordination polymer particles as potential drug delivery systems.

    PubMed

    Imaz, Inhar; Rubio-Martínez, Marta; García-Fernández, Lorena; García, Francisca; Ruiz-Molina, Daniel; Hernando, Jordi; Puntes, Victor; Maspoch, Daniel

    2010-07-14

    Micro- and nanoscale coordination polymer particles can be used for encapsulating and delivering drugs. In vitro cancer cell cytotoxicity assays showed that these capsules readily release doxorubicin, which shows anticancer efficacy. The results from this work open up new avenues for metal-organic capsules to be used as potential drug delivery systems. PMID:20485835

  15. A multi-agent system for coordinating international shipping

    SciTech Connect

    Goldsmith, S.Y.; Phillips, L.R.; Spires, S.V.

    1998-05-01

    Moving commercial cargo across the US-Mexico border is currently a complex, paper-based, error-prone process that incurs expensive inspections and delays at several ports of entry in the Southwestern US. Improved information handling will dramatically reduce border dwell time, variation in delivery time, and inventories, and will give better control of the shipment process. The Border Trade Facilitation System (BTFS) is an agent-based collaborative work environment that assists geographically distributed commercial and government users with transshipment of goods across the US-Mexico border. Software agents mediate the creation, validation and secure sharing of shipment information and regulatory documentation over the Internet, using the World Wide Web to interface with human actors. Agents are organized into Agencies. Each agency represents a commercial or government agency. Agents perform four specific functions on behalf of their user organizations: (1) agents with domain knowledge elicit commercial and regulatory information from human specialists through forms presented via web browsers; (2) agents mediate information from forms with diverse otologies, copying invariant data from one form to another thereby eliminating the need for duplicate data entry; (3) cohorts of distributed agents coordinate the work flow among the various information providers and they monitor overall progress of the documentation and the location of the shipment to ensure that all regulatory requirements are met prior to arrival at the border; (4) agents provide status information to human actors and attempt to influence them when problems are predicted.

  16. Documentation of program AFTBDY to generate coordinate system for 3D after body using body fitted curvilinear coordinates, part 1

    NASA Technical Reports Server (NTRS)

    Kumar, D.

    1980-01-01

    The computer program AFTBDY generates a body fitted curvilinear coordinate system for a wedge curved after body. This wedge curved after body is being used in an experimental program. The coordinate system generated by AFTBDY is used to solve 3D compressible N.S. equations. The coordinate system in the physical plane is a cartesian x,y,z system, whereas, in the transformed plane a rectangular xi, eta, zeta system is used. The coordinate system generated is such that in the transformed plane coordinate spacing in the xi, eta, zeta direction is constant and equal to unity. The physical plane coordinate lines in the different regions are clustered heavily or sparsely depending on the regions where physical quantities to be solved for by the N.S. equations have high or low gradients. The coordinate distribution in the physical plane is such that x stays constant in eta and zeta direction, whereas, z stays constant in xi and eta direction. The desired distribution in x and z is input to the program. Consequently, only the y-coordinate is solved for by the program AFTBDY.

  17. Deployment dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Tian, Qiang; Hu, Hai-Yan

    2013-02-01

    The spinning solar sail of large scale has been well developed in recent years. Such a solar sail can be considered as a rigid-flexible multibody system mainly composed of a spinning central rigid hub, a number of flexible thin tethers, sail membranes, and tip masses. A simplified interplanetary kite-craft accelerated by radiation of the Sun (IKAROS) model is established in this study by using the absolute-coordinate-based (ACB) method that combines the natural coordinate formulation (NCF) describing the central rigid hub and the absolute nodal coordinate formulation (ANCF) describing flexible parts. The initial configuration of the system in the second-stage deployment is determined through both dynamic and static analyses. The huge set of stiff equations of system dynamics is solved by using the generalized-alpha method, and thus the deployment dynamics of the system can be well understood.

  18. Static Analysis of Large-Scale Multibody System Using Joint Coordinates and Spatial Algebra Operator

    PubMed Central

    Omar, Mohamed A.

    2014-01-01

    Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732

  19. Static analysis of large-scale multibody system using joint coordinates and spatial algebra operator.

    PubMed

    Omar, Mohamed A

    2014-01-01

    Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.

  20. Combined non-contact coordinate measurement system and calibration method

    NASA Astrophysics Data System (ADS)

    Fan, Yiyan; Zhao, Bin

    2015-07-01

    A combined non-contact measurement system comprising attitude angle sensor, angle encoder, laser rangefinder, and total station is adopted to measure the spatial coordinate of the hidden zones in large-scale space. The laser from the total station is aimed at the optical system of the attitude angle sensor to obtain the spatial coordinate and the spatial attitude angles. Then, the angle encoder driven by a stepping motor is rotated to drive the laser rangefinder to direct at the measured point. This approach is used to obtain the distance from the rangefinder to the measured point and the angle of the angle encoder. Finally, the spatial coordinates of the measured point can be calculated by using these measured parameters. For the measurement system, we propose a weighted least squares (WLS) calibration method, in which weights are determined for the angular distribution density. Experimental results show that the measurement system could expand the scale and achieve reliable precision during combined measurement and the measurement error of the weighted least squares method is less than that of the ordinary least square (OLS) method.

  1. A hierarchical distributed control model for coordinating intelligent systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1991-01-01

    A hierarchical distributed control (HDC) model for coordinating cooperative problem-solving among intelligent systems is described. The model was implemented using SOCIAL, an innovative object-oriented tool for integrating heterogeneous, distributed software systems. SOCIAL embeds applications in 'wrapper' objects called Agents, which supply predefined capabilities for distributed communication, control, data specification, and translation. The HDC model is realized in SOCIAL as a 'Manager'Agent that coordinates interactions among application Agents. The HDC Manager: indexes the capabilities of application Agents; routes request messages to suitable server Agents; and stores results in a commonly accessible 'Bulletin-Board'. This centralized control model is illustrated in a fault diagnosis application for launch operations support of the Space Shuttle fleet at NASA, Kennedy Space Center.

  2. Coordinated aggregation in complex systems:. an interdisciplinary approach

    NASA Astrophysics Data System (ADS)

    Basios, V.; Nicolis, S. C.; Deneubourg, J. L.

    2016-09-01

    The study of the topic of guided aggregation in biology brings together decision making, collective motion and the dynamical interplay between individuals and groups. At the same time it meets statistical mechanics and the physics of complex systems in a new paradigmatic thinking. We propose a research platform for implementation and for undertaking systematic studies of coordinated aggregation, in a truly multi- and inter-disciplinary fashion.

  3. The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin.

    PubMed

    Andruh, Marius

    2015-10-14

    Ortho-vanillin became very popular in coordination chemistry because of its Schiff bases, which generate a rich variety of complexes, ranging from oligonuclear species to coordination polymers. Some of these organic molecules are particularly useful in metallosupramolecular chemistry for assembling homo- and heterometallic helicates. The Schiff bases obtained using aminoalcohols open the door to the synthesis of homo- and heterometallic clusters with various nuclearities and surprising topologies of the metal centers. Several relevant structural types are reviewed. The heterobinuclear 3d-3d' and 3d-4f complexes are valuable building-blocks for the synthesis of heterotrimetallic systems. Beyond the richness of this chemistry, the complexes obtained from o-vanillin-based Schiff ligands show interesting properties: magnetism, luminescence, chirality, catalysis, cytotoxicity, and ferroelectricity. This paper reviews recent data that illustrate a very fertile and dynamic research field in coordination chemistry and materials science.

  4. Motor adaptation and generalization of reaching movements using motor primitives based on spatial coordinates.

    PubMed

    Tanaka, Hirokazu; Sejnowski, Terrence J

    2015-02-15

    The brain processes sensory and motor information in a wide range of coordinate systems, ranging from retinal coordinates in vision to body-centered coordinates in areas that control musculature. Here we focus on the coordinate system used in the motor cortex to guide actions and examine physiological and psychophysical evidence for an allocentric reference frame based on spatial coordinates. When the equations of motion governing reaching dynamics are expressed as spatial vectors, each term is a vector cross product between a limb-segment position and a velocity or acceleration. We extend this computational framework to motor adaptation, in which the cross-product terms form adaptive bases for canceling imposed perturbations. Coefficients of the velocity- and acceleration-dependent cross products are assumed to undergo plastic changes to compensate the force-field or visuomotor perturbations. Consistent with experimental findings, each of the cross products had a distinct reference frame, which predicted how an acquired remapping generalized to untrained location in the workspace. In response to force field or visual rotation, mainly the coefficients of the velocity- or acceleration-dependent cross products adapted, leading to transfer in an intrinsic or extrinsic reference frame, respectively. The model further predicted that remapping of visuomotor rotation should under- or overgeneralize in a distal or proximal workspace. The cross-product bases can explain the distinct patterns of generalization in visuomotor and force-field adaptation in a unified way, showing that kinematic and dynamic motor adaptation need not arise through separate neural substrates.

  5. Vertical coordinates measurement based on intersection laser screens

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wang, Zhaoba; Zhao, Donge; Liu, Ji

    2015-10-01

    In order to solve the weakness of traditional vertical target coordinate measurement, such as complex structure, inconvenient debugging and difficult to form a large area target, a method based on intersection laser screens was proposed. The effective area of was constituted by the intersection of two fan-shaped laser screens. Photodiode (PD) array was used to measure the intensity of laser light. When the projectile passes through the laser screens, the corresponding PDs receive signal. After signal processing and adaptive threshold comparator circuit processing, the signal is transmitted to PC to calculate the projectile target coordinate. The calculation method of feature point and the calculation process of coordinate were described in detail. Error distribution in effective area was analyzed. Experiment was carried out by using simulating projectile and the principle prototype whose effective target area is 1m×1m. The result shows that the precision of location measurement is up to 2mm. The method has the advantages of simple structure, convenient debugging. It is easy to construct a larger area target, and the maximum effective area can reach to 6m×6m.

  6. Classification of physical activities based on body-segments coordination.

    PubMed

    Fradet, Laetitia; Marin, Frederic

    2016-09-01

    Numerous innovations based on connected objects and physical activity (PA) monitoring have been proposed. However, recognition of PAs requires robust algorithm and methodology. The current study presents an innovative approach for PA recognition. It is based on the heuristic definition of postures and the use of body-segments coordination obtained through external sensors. The first part of this study presents the methodology required to define the set of accelerations which is the most appropriate to represent the particular body-segments coordination involved in the chosen PAs (here walking, running, and cycling). For that purpose, subjects of different ages and heterogeneous physical conditions walked, ran, cycled, and performed daily activities at different paces. From the 3D motion capture, vertical and horizontal accelerations of 8 anatomical landmarks representative of the body were computed. Then, the 680 combinations from up to 3 accelerations were compared to identify the most appropriate set of acceleration to discriminate the PAs in terms of body segment coordinations. The discrimination was based on the maximal Hausdorff Distance obtained between the different set of accelerations. The vertical accelerations of both knees demonstrated the best PAs discrimination. The second step was the proof of concept, implementing the proposed algorithm to classify PAs of new group of subjects. The originality of the proposed algorithm is the possibility to use the subject's specific measures as reference data. With the proposed algorithm, 94% of the trials were correctly classified. In conclusion, our study proposed a flexible and extendable methodology. At the current stage, the algorithm has been shown to be valid for heterogeneous subjects, which suggests that it could be deployed in clinical or health-related applications regardless of the subjects' physical abilities or characteristics.

  7. Classification of physical activities based on body-segments coordination.

    PubMed

    Fradet, Laetitia; Marin, Frederic

    2016-09-01

    Numerous innovations based on connected objects and physical activity (PA) monitoring have been proposed. However, recognition of PAs requires robust algorithm and methodology. The current study presents an innovative approach for PA recognition. It is based on the heuristic definition of postures and the use of body-segments coordination obtained through external sensors. The first part of this study presents the methodology required to define the set of accelerations which is the most appropriate to represent the particular body-segments coordination involved in the chosen PAs (here walking, running, and cycling). For that purpose, subjects of different ages and heterogeneous physical conditions walked, ran, cycled, and performed daily activities at different paces. From the 3D motion capture, vertical and horizontal accelerations of 8 anatomical landmarks representative of the body were computed. Then, the 680 combinations from up to 3 accelerations were compared to identify the most appropriate set of acceleration to discriminate the PAs in terms of body segment coordinations. The discrimination was based on the maximal Hausdorff Distance obtained between the different set of accelerations. The vertical accelerations of both knees demonstrated the best PAs discrimination. The second step was the proof of concept, implementing the proposed algorithm to classify PAs of new group of subjects. The originality of the proposed algorithm is the possibility to use the subject's specific measures as reference data. With the proposed algorithm, 94% of the trials were correctly classified. In conclusion, our study proposed a flexible and extendable methodology. At the current stage, the algorithm has been shown to be valid for heterogeneous subjects, which suggests that it could be deployed in clinical or health-related applications regardless of the subjects' physical abilities or characteristics. PMID:27441831

  8. A global model of the neutral thermosphere in magnetic coordinates based on AE-C data

    NASA Technical Reports Server (NTRS)

    Stehle, C. G.

    1980-01-01

    An empirical model of the global atomic oxygen and helium distributions in the thermosphere is developed in a magnetic coordinate system and compared to similar models which are expanded in geographic coordinates. The advantage of using magnetic coordinates is that fewer terms are needed to make predictions which are nearly identical to those which would be obtained from a geographic model with longitudinal and universal time corrections. Magnetic coordinates are more directly related to the major energy inputs in the polar regions than geographic coordinates and are more convenient to use in studies of high latitude energy deposition processes. This is important for comparison with theoretical models where the number of coordinates is limited. The effect of magnetic activity on the atomic oxygen distribution in the morning sector of the high latitude thermosphere in the auroral zone is also considered. A magnetic activity indicator (ML) based on an auroral electrojet index (AL) and the 3 hour ap index are used to relate the atomic oxygen density variations to magnetic activity in this region.

  9. Electromagnetic concentrators with reduced material parameters based on coordinate transformation.

    PubMed

    Wang, Wei; Lin, Lan; Ma, Junxian; Wang, Changtao; Cui, Jianhua; Du, Chunlei; Luo, Xiangang

    2008-07-21

    Omni-directional electromagnetic field concentrators have been recently reported by Marco Rahm et al. [Photon. Nanostruct.: Fundam. Appl. 6, 87 (2008)] based on form-invariant coordinate transformations related to its Jacobi transformation matrix. Using transverse-electric wave illumination, we reduced the complex material parameters of the concentrator for future practical implementation. Concentrators with different set of permittivity and permeability tensors are proposed. The electromagnetic concentrating performance and the scattering properties at the inner and outer boundary of these concentrators are theoretically and numerically analyzed. Finally we obtain a set of material tensors for a concentrator that simultaneously has perfect matched interior and exterior interfaces.

  10. Metabolomic insights into system-wide coordination of vertebrate metamorphosis

    PubMed Central

    2014-01-01

    Background After completion of embryogenesis, many organisms experience an additional obligatory developmental transition to attain a substantially different juvenile or adult form. During anuran metamorphosis, the aquatic tadpole undergoes drastic morphological changes and remodelling of tissues and organs to become a froglet. Thyroid hormones are required to initiate the process, but the mechanism whereby the many requisite changes are coordinated between organs and tissues is poorly understood. Metabolites are often highly conserved biomolecules between species and are the closest reflection of phenotype. Due to the extensive distribution of blood throughout the organism, examination of the metabolites contained therein provides a system-wide overview of the coordinated changes experienced during metamorphosis. We performed an untargeted metabolomic analysis on serum samples from naturally-metamorphosing Rana catesbeiana from tadpoles to froglets using ultraperformance liquid chromatography coupled to a mass spectrometer. Total and aqueous metabolite extracts were obtained from each serum sample to select for nonpolar and polar metabolites, respectively, and selected metabolites were validated by running authentic compounds. Results The majority of the detected metabolites (74%) showed statistically significant abundance changes (padj < 0.001) between metamorphic stages. We observed extensive remodelling of five core metabolic pathways: arginine and purine/pyrimidine, cysteine/methionine, sphingolipid, and eicosanoid metabolism and the urea cycle, and found evidence for a major role for lipids during this postembryonic process. Metabolites traditionally linked to human disease states were found to have biological linkages to the system-wide changes occuring during the events leading up to overt morphological change. Conclusions To our knowledge, this is the first wide-scale metabolomic study of vertebrate metamorphosis identifying fundamental pathways

  11. Developing community based rehabilitation for cancer survivors: organizing for coordination and coherence in practice

    PubMed Central

    2013-01-01

    Background Increasing incidences of cancer combined with prolonged survival have raised the need for developing community based rehabilitation. The objectives of the analysis were to describe and interpret the key issues related to coordination and coherence of community-based cancer rehabilitation in Denmark and to provide insights relevant for other contexts. Methods Twenty-seven rehabilitation managers across 15 municipalities in Denmark comprised the sample. The study was designed with a combination of data collection methods including questionnaires, individual interviews, and focus groups. A Grounded Theory approach was used to analyze the data. Results A lack of shared cultures among health care providers and systems of delivery was a primary barrier to collaboration which was essential for establishing coordination of care. Formal multidisciplinary steering committees, team-based organization, and informal relationships were fundamental for developing coordination and coherence. Conclusions Coordination and coherence in community-based rehabilitation relies on increased collaboration, which may best be optimized by use of shared frameworks within and across systems. Results highlight the challenges faced in practical implementation of community rehabilitation and point to possible strategies for its enhancement. PMID:24004881

  12. Application of wall functions to generalized nonorthogonal curvilinear coordinate systems

    NASA Astrophysics Data System (ADS)

    Sondak, Douglas L.; Pletcher, Richard H.

    1995-01-01

    A method has been developed for the application of wall functions to generalized curvilinear coordinate systems with nonorthogonal grids. Two test cases have been computed using this method with the k-epsilon turbulence model: flow over a flat plate at 0-deg angle of attack using a nonorthogonal grid at the wall and flow over a prolate hemispheroid with a hemispherical nose cap at 0-deg angle of attack. All results are compared with experimental data. In addition, the hemispheroid results are compared with computations using the Baldwin-Lomax algebraic turbulence model and the Chien low-Reynolds-number k-epsilon turbulence model.

  13. Intrinsic interference mitigating coordinated beamforming for the FBMC/OQAM based downlink

    NASA Astrophysics Data System (ADS)

    Cheng, Yao; Li, Peng; Haardt, Martin

    2014-12-01

    In this work, we propose intrinsic interference mitigating coordinated beamforming (IIM-CBF)-based transmission strategies for the downlink of multi-user multiple-input-multiple-out (MIMO) systems and coordinated multi-point (CoMP) systems where filter bank based multi-carrier with offset quadrature amplitude modulation (FBMC/OQAM) is employed. Our goal is to alleviate the dimensionality constraint imposed on the state-of-the-art solutions for FBMC/OQAM-based space division multiple access that the total number of receive antennas of the users must not exceed the number of transmit antennas at the base station. First, two IIM-CBF algorithms are developed for a single-cell multi-user MIMO downlink system. The central idea is to jointly and iteratively calculate the precoding matrix and decoding matrix for each subcarrier to mitigate the multi-user interference as well as the intrinsic interference inherent in FBMC/OQAM-based systems. Second, for a CoMP downlink scenario where partial coordination among the base stations is considered, the application of coordinated beamforming-based transmission schemes is further investigated. An appropriate IIM-CBF technique is proposed. Simulation results show that when the number of transmit antennas at the base station is equal to the total number of receive antennas of the users, the proposed IIM-CBF algorithm outperforms the existing transmission strategies for FBMC/OQAM-based multi-user MIMO downlink systems. Moreover, we evaluate the performances of the IIM-CBF schemes in the downlink of multi-user MIMO systems and CoMP systems where the total number of receive antennas of users exceeds the number of transmit antennas at the base station. It is observed that by employing the IIM-CBF techniques, FBMC/OQAM systems achieve a similar bit error rate (BER) performance as its orthogonal frequency division multiplexing with the cyclic prefix insertion (CP-OFDM)-based counterpart while exhibiting superiority in terms of a higher

  14. A regional method for craniofacial reconstruction based on coordinate adjustments and a new fusion strategy.

    PubMed

    Deng, Qingqiong; Zhou, Mingquan; Wu, Zhongke; Shui, Wuyang; Ji, Yuan; Wang, Xingce; Liu, Ching Yiu Jessica; Huang, Youliang; Jiang, Haiyan

    2016-02-01

    Craniofacial reconstruction recreates a facial outlook from the cranium based on the relationship between the face and the skull to assist identification. But craniofacial structures are very complex, and this relationship is not the same in different craniofacial regions. Several regional methods have recently been proposed, these methods segmented the face and skull into regions, and the relationship of each region is then learned independently, after that, facial regions for a given skull are estimated and finally glued together to generate a face. Most of these regional methods use vertex coordinates to represent the regions, and they define a uniform coordinate system for all of the regions. Consequently, the inconsistence in the positions of regions between different individuals is not eliminated before learning the relationships between the face and skull regions, and this reduces the accuracy of the craniofacial reconstruction. In order to solve this problem, an improved regional method is proposed in this paper involving two types of coordinate adjustments. One is the global coordinate adjustment performed on the skulls and faces with the purpose to eliminate the inconsistence of position and pose of the heads; the other is the local coordinate adjustment performed on the skull and face regions with the purpose to eliminate the inconsistence of position of these regions. After these two coordinate adjustments, partial least squares regression (PLSR) is used to estimate the relationship between the face region and the skull region. In order to obtain a more accurate reconstruction, a new fusion strategy is also proposed in the paper to maintain the reconstructed feature regions when gluing the facial regions together. This is based on the observation that the feature regions usually have less reconstruction errors compared to rest of the face. The results demonstrate that the coordinate adjustments and the new fusion strategy can significantly improve the

  15. Stabilization of multimodal electromechanical oscillations by coordinated application of power system stabilizers

    SciTech Connect

    Ostojic, D.R. )

    1991-11-01

    This paper presents a hybrid methodology which utilizes modal sensitivity and frequency domain analysis to coordinate power system stabilizers in multimachine systems. The proposed approach permits robust stabilization of multimodal electromechanical oscillations by the minimal number of coordinated stabilizers. A spectral monitoring technique is used for the fast examination of performance of coordinated stabilizers in the non-linear power system.

  16. Coordination chemistry of N-heterocyclic nitrenium-based ligands.

    PubMed

    Tulchinsky, Yuri; Kozuch, Sebastian; Saha, Prasenjit; Mauda, Assaf; Nisnevich, Gennady; Botoshansky, Mark; Shimon, Linda J W; Gandelman, Mark

    2015-05-01

    Comprehensive studies on the coordination properties of tridentate nitrenium-based ligands are presented. N-heterocyclic nitrenium ions demonstrate general and versatile binding abilities to various transition metals, as exemplified by the synthesis and characterization of Rh(I) , Rh(III) , Mo(0) , Ru(0) , Ru(II) , Pd(II) , Pt(II) , Pt(IV) , and Ag(I) complexes based on these unusual ligands. Formation of nitrenium-metal bonds is unambiguously confirmed both in solution by selective (15) N-labeling experiments and in the solid state by X-ray crystallography. The generality of N-heterocyclic nitrenium as a ligand is also validated by a systematic DFT study of its affinity towards all second-row transition and post-transition metals (Y-Cd) in terms of the corresponding bond-dissociation energies.

  17. A Rapid Coordinate Transformation Method Applied in Industrial Robot Calibration Based on Characteristic Line Coincidence.

    PubMed

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia

    2016-02-18

    Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration.

  18. A Rapid Coordinate Transformation Method Applied in Industrial Robot Calibration Based on Characteristic Line Coincidence.

    PubMed

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia

    2016-01-01

    Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration. PMID:26901203

  19. Care coordination in long-term home- and community-based care.

    PubMed

    Johansson, Barbara; Harkey, Jane

    2014-09-01

    This article examines the role of care coordination, when fulfilled by a professional board-certified case manager, in successful long-term home- and community-based care (HCBC). A facet of care coordination, as also discussed, is a robust assessment of the individual by the professional case manager, who devises and implements a comprehensive care plan to address the clinical, psychosocial, and environmental needs of the individual as part of a person-centered, evidenced-based approach. To be successful, long-term HCBC starts with a robust assessment of the individual by a professional board-certified case manager. The case manager uses specific tools that incorporate qualitative measurements to address factors such as medical/clinical needs, (e.g., diagnoses, chronic conditions, and/or health risks); mental/behavioral health (e.g., geriatric depression screening); medication/pharmacology (e.g., review and reconciliation of prescribed and over the counter medications and supplements) and the individual's ability to self-administer; home safety; and presence of a family/support system and their ability and willingness to provide care. Based on these findings, the case manager puts in place a comprehensive care plan, working with a well-coordinated multidisciplinary team, including informal supports, physicians, registered nurses, occupational therapists, pharmacists, social workers, nutritionists, and other allied health professionals. From the beginning, the rigor of care coordination is essential to the how successfully individuals and their families/support systems realize their goal of long-term HCBC.

  20. A Rapid Coordinate Transformation Method Applied in Industrial Robot Calibration Based on Characteristic Line Coincidence

    PubMed Central

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia

    2016-01-01

    Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration. PMID:26901203

  1. Spherical Coordinate Systems for Streamlining Suited Mobility Analysis

    NASA Technical Reports Server (NTRS)

    Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Rajulu. Sudhakar

    2015-01-01

    Introduction: When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. It has been shown that using a spherical coordinate system allows Anthropometry and Biomechanics Facility (ABF) personnel to increase their ability to transmit important human mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project was to use innovative analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify a new method before it was implemented in the ABF's data analysis practices. A mechanical test rig was built and tracked in 3D using an optical motion capture system. Its position and orientation were reported in both Euler and spherical reference systems. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would vary within the reference frame. This stage also involved expanding a kinematic model of the shoulder to include the rest of the joints of the body. The third stage of the project involved creating visualization methods to assist in interpreting motion in a spherical frame. These visualization methods will be incorporated in a tool to evaluate a database of suited mobility data, which is currently in development. Results: Initial results

  2. A global model of the neutral thermosphere in magnetic coordinates based on OGO 6 data

    NASA Technical Reports Server (NTRS)

    Stehle, C. G.; Nisbet, J. S.; Bleuler, E.

    1982-01-01

    Data from the OGO 6 satellite have been analyzed in magnetic latitude and magnetic local time coordinates for various seasons and magnetic activity levels. These measurements show considerable detail, particularly in the auroral regions where the energy inputs are well organized in this coordinate system. This detail is not readily observed in models based on geographic coordinates. Atomic oxygen and helium densities and a parameter related to the molecular nitrogen density were analyzed. The long-term averages of these quantities are presented in graphical form and as analytic functions to provide models of these thermospheric parameters. The atomic oxygen and helium densities show minima at high latitudes in the postmidnight sector for nearly all seasons and magnetic activity levels. The exospheric temperature inferred from the N2 density increases toward high latitudes for all seasons and all magnetic activity levels. This inferred temperature is about 300 deg K higher at the summer magnetic pole than at the winter magnetic pole.

  3. IA and PA network-based computation of coordinating combat behaviors in the military MAS

    NASA Astrophysics Data System (ADS)

    Xia, Zuxun; Fang, Huijia

    2004-09-01

    In the military multi-agent system every agent needs to analyze the dependent and temporal relations among the tasks or combat behaviors for working-out its plans and getting the correct behavior sequences, it could guarantee good coordination, avoid unexpected damnification and guard against bungling the change of winning a battle due to the possible incorrect scheduling and conflicts. In this paper IA and PA network based computation of coordinating combat behaviors is put forward, and emphasize particularly on using 5x5 matrix to represent and compute the temporal binary relation (between two interval-events, two point-events or between one interval-event and one point-event), this matrix method makes the coordination computing convenience than before.

  4. Behavior Analysis Based on Coordinates of Body Tags

    NASA Astrophysics Data System (ADS)

    Luštrek, Mitja; Kaluža, Boštjan; Dovgan, Erik; Pogorelc, Bogdan; Gams, Matjaž

    This paper describes fall detection, activity recognition and the detection of anomalous gait in the Confidence project. The project aims to prolong the independence of the elderly by detecting falls and other types of behavior indicating a health problem. The behavior will be analyzed based on the coordinates of tags worn on the body. The coordinates will be detected with radio sensors. We describe two Confidence modules. The first one classifies the user's activity into one of six classes, including falling. The second one detects walking anomalies, such as limping, dizziness and hemiplegia. The walking analysis can automatically adapt to each person by using only the examples of normal walking of that person. Both modules employ machine learning: the paper focuses on the features they use and the effect of tag placement and sensor noise on the classification accuracy. Four tags were enough for activity recognition accuracy of over 93% at moderate sensor noise, while six were needed to detect walking anomalies with the accuracy of over 90%.

  5. COSPAR, IAU, LSI Colloquium on Lunar Dynamics and Observational Coordinate Systems: Revised abstracts

    NASA Technical Reports Server (NTRS)

    Moutsoulas, M. (Editor)

    1973-01-01

    The proceedings of a colloquium on lunar dynamics and observational coordinate systems are presented. Discussions were held on the establishment of a fundamental reference system and on the lunar ephemerides. Abstracts of the subjects discussed at the meeting are submitted. Some of the topics discussed are: (1) coordinates of the Apollo retroreflectors, (2) determination of lunar baselines, (3) numerical series for the variations of lunar coordinates, (4) fundamental craters for establishing a lunar coordinate system, and (5) composite lunar gravity fields.

  6. CIFTS : A coordinated infrastructure for fault-tolerant systems.

    SciTech Connect

    Gupta, R.; Beckman, P.; Park, B. H.; Lusk, E.; Hargrove, P.; Geist, A.; Panda, D. K.; Lumsdaine, A.; Dongarra, J.; ORNL; LBNL; Ohio State Univ.; Indiana Univ.; Univ. of Tennessee

    2009-01-01

    In the next few years SciDAC applications will utilize petascale systems with tens to hundreds of thousands of processors, hundreds of I/O nodes, and thousands of disks. This leap of two orders of magnitude in scale from today's typical systems is causing a critical gap in fault management of these systems. The fault management issues for these emerging systems are well beyond the scope of today's common infrastructure and practice. Currently, systems software components for large-scale machines remain largely independent in their fault awareness and notification strategies. Faults can arise not just from the hardware but also from the OS, middleware, libraries, and application levels. Petascale applications that are evolving to utilize these platforms face many new challenges. With the CIFTS initiative, we aim to provide a coordinated infrastructure that will enable Fault Tolerant Systems to adapt to faults occuring in the operating environment in a holistic manner. Our approach will be to design a reference implementation of a fault awareness and notification backplane to provide common uniform event handling and notification mechanisms for fault-aware libraries and middleware; create an interface specification that allows libraries, run- time systems, and applications to connect to and use the fault-tolerance backplane; and extend key libraries and applications to validate the interface choices and to form the critical mass necessary for adoption in the community.

  7. Complete supersonic flowfields over blunt bodies in a generalized orthogonal coordinate system

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1979-01-01

    A general orthogonal coordinate system is used to describe various axisymmetric and two-dimensional shapes. Close approximations to planetary probe configurations are possible. The full Navier-Stokes equations are discretized in this coordinate system in a manner based on Allen and Cheng's numerical procedure. The blow shock is treated as a discontinuity which floats between grid points. Completely coupled flows over the forebody, base, and near wake were calculated over a cylinder, sphere, and an approximation to the Viking Aeroshell. Some problem areas in determining the base flow for increasing Reynolds number are discussed. In particular, it is found that the mean free path of the fluid near the wall immediately below the corner of the Viking Aeroshell, which experiences a severe expansion, can become greater than the local mesh size required to resolve the boundary layer in the forebody.

  8. On the use of different coordinate systems in mechanochemical force analyses

    NASA Astrophysics Data System (ADS)

    Stauch, Tim; Dreuw, Andreas

    2015-08-01

    Force analyses are crucial for a comprehensive understanding of mechanochemical processes. The choice of coordinate system in these kinds of analyses is a nontrivial task that determines the quality and validity of the obtained results. Here, we study the suitability of different sets of coordinates for mechanical force analyses, i.e., normal modes, delocalized internal, redundant internal, and Z-matrix coordinates. After discussing the theoretical foundations of force analyses using different coordinate systems, we investigate a number of test molecules. We show that normal modes and Z-matrix coordinates deliver useful results only if certain requirements are fulfilled and that only redundant internal coordinates yield meaningful results in all cases.

  9. Emergency control system based on the analytical hierarchy process and coordinated development degree model for sudden water pollution accidents in the Middle Route of the South-to-North Water Transfer Project in China.

    PubMed

    Long, Yan; Xu, Guobin; Ma, Chao; Chen, Liang

    2016-06-01

    Water transfer projects are important for realizing reasonable allocation of water resources, but once a water pollution accident occurs during such a project, the water environment is exposed to enormous risks. Therefore, it is critical to determine an appropriate emergency control system (ECS) for sudden water pollution accidents that occur in water transfer projects. In this study, the analytical hierarchy process (AHP) integrated with the coordinated development degree model (CDDM) was used to develop the ECS. This ECS was developed into two parts, including the emergency risk assessment and the emergency control. Feasible emergency control targets and control technology were also proposed for different sudden water pollution accidents. A demonstrative project was conducted in the Fangshui to Puyang channel, which is part of the Beijing-Shijiazhuang Emergency Water Supply Project (BSP) in the Middle Route of the South-to-North Water Transfer Project (MR-SNWTP) in China. However, we could not use an actual toxic soluble pollutant to validate our ECS, so we performed the experiment with sucrose to test the ECS based on its concentration variation. The relative error of peak sucrose concentration was less than 20 %.

  10. Emergency control system based on the analytical hierarchy process and coordinated development degree model for sudden water pollution accidents in the Middle Route of the South-to-North Water Transfer Project in China.

    PubMed

    Long, Yan; Xu, Guobin; Ma, Chao; Chen, Liang

    2016-06-01

    Water transfer projects are important for realizing reasonable allocation of water resources, but once a water pollution accident occurs during such a project, the water environment is exposed to enormous risks. Therefore, it is critical to determine an appropriate emergency control system (ECS) for sudden water pollution accidents that occur in water transfer projects. In this study, the analytical hierarchy process (AHP) integrated with the coordinated development degree model (CDDM) was used to develop the ECS. This ECS was developed into two parts, including the emergency risk assessment and the emergency control. Feasible emergency control targets and control technology were also proposed for different sudden water pollution accidents. A demonstrative project was conducted in the Fangshui to Puyang channel, which is part of the Beijing-Shijiazhuang Emergency Water Supply Project (BSP) in the Middle Route of the South-to-North Water Transfer Project (MR-SNWTP) in China. However, we could not use an actual toxic soluble pollutant to validate our ECS, so we performed the experiment with sucrose to test the ECS based on its concentration variation. The relative error of peak sucrose concentration was less than 20 %. PMID:26979314

  11. Family Voice with Informed Choice: Coordinating Wraparound with Research-Based Treatment for Children and Adolescents

    PubMed Central

    Bruns, Eric J.; Walker, Janet S.; Bernstein, Adam; Daleiden, Eric; Pullmann, Michael D.; Chorpita, Bruce F.

    2014-01-01

    The wraparound process is a type of individualized, team-based care coordination that has become central to many state and system efforts to reform children’s mental health service delivery for youths with the most complex needs and their families. Although the emerging wraparound research base is generally positive regarding placements and costs, effect sizes are smaller for clinical and functional outcomes. This paper presents a review of literature on care coordination and wraparound models, with a focus on theory and research that indicates the need to better connect wraparound-enrolled children and adolescents to evidence-based treatment (EBT). The paper goes on to describe how recently developed applications of EBT that are based on quality improvement and flexible application of “common elements” of research-based care may provide a more individualized approach that better aligns with the philosophy and procedures of the wraparound process. Finally, this paper presents preliminary studies that show the feasibility and potential effectiveness of coordinating wraparound with the Managing and Adapting Practice (MAP) system, and discusses intervention development and research options that are currently underway. PMID:24325146

  12. Regulatory Coordination between Two Major Intracellular Homeostatic Systems

    PubMed Central

    Dokladny, Karol; Zuhl, Micah Nathaniel; Mandell, Michael; Bhattacharya, Dhruva; Schneider, Suzanne; Deretic, Vojo; Moseley, Pope Lloyd

    2013-01-01

    The eukaryotic cell depends on multitiered homeostatic systems ensuring maintenance of proteostasis, organellar integrity, function and turnover, and overall cellular viability. At the two opposite ends of the homeostatic system spectrum are heat shock response and autophagy. Here, we tested whether there are interactions between these homeostatic systems, one universally operational in all prokaryotic and eukaryotic cells, and the other one (autophagy) is limited to eukaryotes. We found that heat shock response regulates autophagy. The interaction between the two systems was demonstrated by testing the role of HSF-1, the central regulator of heat shock gene expression. Knockdown of HSF-1 increased the LC3 lipidation associated with formation of autophagosomal organelles, whereas depletion of HSF-1 potentiated both starvation- and rapamycin-induced autophagy. HSP70 expression but not expression of its ATPase mutant inhibited starvation or rapamycin-induced autophagy. We also show that exercise induces autophagy in humans. As predicted by our in vitro studies, glutamine supplementation as a conditioning stimulus prior to exercise significantly increased HSP70 protein expression and prevented the expected exercise induction of autophagy. Our data demonstrate for the first time that heat shock response, from the top of its regulatory cascade (HSF-1) down to the execution stages delivered by HSP70, controls autophagy thus connecting and coordinating the two extreme ends of the homeostatic systems in the eukaryotic cell. PMID:23576438

  13. Cytotoxicity of cyclometalated platinum complexes based on tridentate NCN and CNN-coordinating ligands: remarkable coordination dependence.

    PubMed

    Vezzu, Dileep A K; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan

    2014-05-01

    A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the N^C^N-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the C^N^N-coordinated platinum complex based on 6-phenyl-2,2'-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by N^C^N- and C^N^N-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the N^C^N-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed that the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis were studied by western blot analysis and the activation of PARP via caspase 7 was observed.

  14. Cytotoxicity of Cyclometalated Platinum Complexes Based on Tridentate NCN and CNN-coordinating ligands: Remarkable Coordination Dependence

    PubMed Central

    Vezzu, Dileep A. k.; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan

    2014-01-01

    A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the NʌCʌN-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the CʌNʌN-coordinated platinum complex based on 6-phenyl-2,2′-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by NʌCʌN- and CʌNʌN-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the NʌCʌN-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis was studied by western blot analysis and the activation of PARP via caspase 7 was observed. PMID:24531534

  15. A coordination polymer nanobelt (CPNB)-based aptasensor for sulfadimethoxine.

    PubMed

    Song, Kyung-Mi; Jeong, Euiyoung; Jeon, Weejeong; Jo, Hunho; Ban, Changill

    2012-03-15

    A polymer-based aptasensor, which consisted of fluorescein amidite (FAM)-modified aptamers and coordination polymer nanobelts (CPNBs), was developed utilizing the fluorescence quenching effect to detect sulfadimethoxine residue in food products. A single-stranded DNA (ssDNA) aptamer, which was a specific bio-probe for sulfadimethoxine (Su13; 5'-GAGGGCAACGAGTGTTTATAGA-3'), was discovered by a magnetic bead-based systematic evolution of ligands by exponential enrichment (SELEX) technique, and the fluorescent quenchers CPNBs were produced by mixing AgNO(3) and 4,4'-bipyridine. This aptasensor easily and sensitively detected sulfadimethoxine in solution with a limit of detection (LOD) of 10ng/mL. Furthermore, the antibiotic dissolved in milk was also effectively detected with the same LOD value. In addition, this aptamer probe offered high specificity for sulfadimethoxine compared to other antibiotics. These valuable results provide ample evidence that the CPNB-based aptasensor can be used to quantify sulfadimethoxine residue in food products. PMID:22244734

  16. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    NASA Astrophysics Data System (ADS)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving

  17. Efficient transformations from geodetic to UTM coordinate systems

    SciTech Connect

    Toms, R.M.

    1996-08-07

    The problem of efficiently performing transformations from geocentric to geodetic coordinates has been addressed at previous DIS (Distributed Interactive Simulation) workshops. This paper extends the work presented at the 14th DIS Workshop. As a consequence of the new algorithm for geocentric to geodetic coordinate conversion, a subsequent conversion to Universal Transverse Mercator coordinates is made considerably more efficient. No additional trigonometric or square root evaluations are required and accuracy is not degraded.

  18. Spherical Coordinate Systems for Streamlining Suited Mobility Analysis

    NASA Technical Reports Server (NTRS)

    Benson, Elizabeth; Cowley, Matthew S.; Harvill. Lauren; Rajulu, Sudhakar

    2014-01-01

    When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. One of our key functions is to help design engineers understand how a human will perform with new designs and all too often traditional use of Euler rotations becomes as much of a hindrance as a help. It is believed that using a spherical coordinate system will allow ABF personnel to more quickly and easily transmit important mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project is to establish new analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify the method before it was implemented in the ABF's data analysis practices. The first stage was a proof of concept, where a mechanical test rig was built and instrumented with an inclinometer, so that its angle from horizontal was known. The test rig was tracked in 3D using an optical motion capture system, and its position and orientation were reported in both Euler and spherical reference systems. The rig was meant to simulate flexion/extension, transverse rotation and abduction/adduction of the human shoulder, but without the variability inherent in human motion. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would

  19. Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.

    PubMed

    Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla

    2014-12-01

    This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.

  20. Coordinated management of combined sewer overflows by means of environmental decision support systems.

    PubMed

    Murla, Damian; Gutierrez, Oriol; Martinez, Montse; Suñer, David; Malgrat, Pere; Poch, Manel

    2016-04-15

    During heavy rainfall, the capacity of sewer systems and wastewater treatment plants may be surcharged producing uncontrolled wastewater discharges and a depletion of the environmental quality. Therefore there is a need of advanced management tools to tackle with these complex problems. In this paper an environmental decision support system (EDSS), based on the integration of mathematical modeling and knowledge-based systems, has been developed for the coordinated management of urban wastewater systems (UWS) to control and minimize uncontrolled wastewater spills. Effectiveness of the EDSS has been tested in a specially designed virtual UWS, including two sewers systems, two WWTP and one river subjected to typical Mediterranean rain conditions. Results show that sewer systems, retention tanks and wastewater treatment plants improve their performance under wet weather conditions and that EDSS can be very effective tools to improve the management and prevent the system from possible uncontrolled wastewater discharges.

  1. Synthesis, structural and fungicidal studies of hydrazone based coordination compounds

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2013-02-01

    The coordination compounds of the Co(II), Ni(II) and Cu(II) metal ions derived from imine based ligand, benzil bis(carbohydarzone) were structurally and pharmaceutically studied. The compounds have the general stoichiometry [M(L)]X2 and [Co(L)X2], where M = Ni(II) and Cu(II), and X=NO3- and Cl- ions. The analytical techniques like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV/Visible, NMR, ESI mass and EPR were used to study the compounds. The key IR bands, i.e., amide I, amide II and amide III stretching vibrations accounts for the tetradentate metal binding nature of the ligand. The electronic and EPR spectral results suggest the square planar Ni(II) and Cu(II) complexes (giso = 2.11-2.22) and tetragonal geometry Co(II) complexes (giso = 2.10-2.17). To explore the compounds in the biological field, they were examined against the opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The partial covalent character of metal-ligand bond is supported by the orbital reduction factor k (0.62-0.92) and nephalauxetic parameter β (0.55-0.57).

  2. Synthesis, structural and fungicidal studies of hydrazone based coordination compounds.

    PubMed

    Sharma, Amit Kumar; Chandra, Sulekh

    2013-02-15

    The coordination compounds of the Co(II), Ni(II) and Cu(II) metal ions derived from imine based ligand, benzil bis(carbohydarzone) were structurally and pharmaceutically studied. The compounds have the general stoichiometry [M(L)]X(2) and [Co(L)X(2)], where M=Ni(II) and Cu(II), and X=NO(3)(-) and Cl(-) ions. The analytical techniques like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV/Visible, NMR, ESI mass and EPR were used to study the compounds. The key IR bands, i.e., amide I, amide II and amide III stretching vibrations accounts for the tetradentate metal binding nature of the ligand. The electronic and EPR spectral results suggest the square planar Ni(II) and Cu(II) complexes (g(iso)=2.11-2.22) and tetragonal geometry Co(II) complexes (g(iso)=2.10-2.17). To explore the compounds in the biological field, they were examined against the opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The partial covalent character of metal-ligand bond is supported by the orbital reduction factor k (0.62-0.92) and nephalauxetic parameter β (0.55-0.57).

  3. Coordinated ground-based and geosynchronous satellite-based measurements of auroral pulsations

    SciTech Connect

    Suszcynsky, David M.; Borovsky, Joseph E.; Thomsen, Michelle F.; McComas, David J.; Belian, Richard D.

    1996-09-01

    We describe a technique that uses a ground-based all-sky video camera and geosynchronous satellite-based plasma and energetic particle detectors to study ionosphere-magnetosphere coupling as it relates to the aurora. The video camera system was deployed in Eagle, Alaska for a seven month period at the foot of the magnetic field line that threads geosynchronous satellite 1989-046. Since 1989-046 corotates with the earth, its footprint remains nearly fixed in the vicinity of Eagle, allowing for routine continuous monitoring of an auroral field line at its intersections with the ground and with geosynchronous orbit. As an example of the utility of this technique, we present coordinated ground-based and satellite based observations during periods of auroral pulsations and compare this data to the predictions of both the relaxation oscillator theory and flow cyclotron maser theory for the generation of pulsating aurorae. The observed plasma and energetic particle characteristics at geosynchronous orbit during pulsating aurorae displays are found to be in agreement with the predictions of both theories lending further support that a cyclotron resonance mechanism is responsible for auroral pulsations.

  4. The study of dual camera 3D coordinate vision measurement system using a special probe

    NASA Astrophysics Data System (ADS)

    Liu, Shugui; Peng, Kai; Zhang, Xuefei; Zhang, Haifeng; Huang, Fengshan

    2006-11-01

    Due to high precision and convenient operation, the vision coordinate measurement machine with one probe has become the research focus in visual industry. In general such a visual system can be setup conveniently with just one CCD camera and probe. However, the price of the system will surge up too high to accept while the top performance hardware, such as CCD camera, image captured card and etc, have to be applied in the system to obtain the high axis-oriented measurement precision. In this paper, a new dual CCD camera vision coordinate measurement system based on redundancy principle is proposed to achieve high precision by moderate price. Since two CCD cameras are placed with the angle of camera axis like about 90 degrees to build the system, two sub-systems can be built by each CCD camera and the probe. With the help of the probe the inner and outer parameters of camera are first calibrated, the system by use of redundancy technique is set up now. When axis-oriented error is eliminated within the two sub-systems, which is so large and always exits in the single camera system, the high precision measurement is obtained by the system. The result of experiment compared to that from CMM shows that the system proposed is more excellent in stableness and precision with the uncertainty beyond +/-0.1 mm in xyz orient within the distance of 2m using two common CCD cameras.

  5. The School Health Portfolio System: a new tool for planning and evaluating coordinated school health programs.

    PubMed

    Weiler, Robert M; Pigg, R Morgan

    2004-11-01

    The School Health Portfolio System (SHPS), developed originally to evaluate the Florida Coordinated School Health Program Pilot Schools Project, offers a new and innovative system for planning and evaluating a coordinated school health program at the individual school level. The SHPS provides practitioners a detailed but easy-to-use system that enables schools to create new programs or modify existing programs across all eight components of the CSHP model, as well as administrative support critical to sustainability. The System comes packaged as a self-contained, notebook-style manual divided into 15 sections. It includes electronic templates of key documents to guide school teams in creating a customized portfolio, and a list of sample goals and artifacts that confirm achievement of a goal related to the school's coordinated school health program. An evaluation rubric provides a structured method to assess a program portfolio's contents, and the extent to which the contents document achievement of program goals. The rubric produces both a qualitative assessment, such as a narrative summary of program strengths and areas for improvement, and a quantitative assessment, such as a numerical score (0-100), letter grade (A-F), or 5-star system (*-*****). The physical structure, function, and scoring of the rubric depend on the method of assessment. The SHPS enables schools to set goals based on individual school needs, and incorporate CSHP goals into school improvement plans--a critical factor in sustainability and accountability. The System also offers teams the option of coordinating their efforts with CDC's School Health Index as a companion assessment measure. This article outlines the process a team would follow in developing a portfolio, and includes a sample assessment for the area of School Health Education.

  6. The School Health Portfolio System: A New Tool for Planning and Evaluating Coordinated School Health Programs.

    ERIC Educational Resources Information Center

    Weiler, Robert M.; Pigg, R. Morgan, Jr.

    2004-01-01

    The School Health Portfolio System (SHPS), developed originally to evaluate the Florida Coordinated School Health Program Pilot Schools Project, offers a new and innovative system for planning and evaluating a coordinated school health program at the individual school level. The SHPS provides practitioners a detailed but easy-to-use system that…

  7. Intelligent system of coordination and control for manufacturing

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.

    2016-08-01

    This paper wants shaping an intelligent system monitoring and control, which leads to optimizing material and information flows of the company. The paper presents a model for tracking and control system using intelligent real. Production system proposed for simulation analysis provides the ability to track and control the process in real time. Using simulation models be understood: the influence of changes in system structure, commands influence on the general condition of the manufacturing process conditions influence the behavior of some system parameters. Practical character consists of tracking and real-time control of the technological process. It is based on modular systems analyzed using mathematical models, graphic-analytical sizing, configuration, optimization and simulation.

  8. Homogenisation in project management for large German research projects in the Earth system sciences: overcoming the institutional coordination bias

    NASA Astrophysics Data System (ADS)

    Rauser, Florian; Vamborg, Freja

    2016-04-01

    The interdisciplinary project on High Definition Clouds and Precipitation for advancing climate prediction HD(CP)2 (hdcp2.eu) is an example for the trend in fundamental research in Europe to increasingly focus on large national and international research programs that require strong scientific coordination. The current system has traditionally been host-based: project coordination activities and funding is placed at the host institute of the central lead PI of the project. This approach is simple and has the advantage of strong collaboration between project coordinator and lead PI, while exhibiting a list of strong, inherent disadvantages that are also mentioned in this session's description: no community best practice development, lack of integration between similar projects, inefficient methodology development and usage, and finally poor career development opportunities for the coordinators. Project coordinators often leave the project before it is finalized, leaving some of the fundamentally important closing processes to the PIs. This systematically prevents the creation of professional science management expertise within academia, which leads to an automatic imbalance that hinders the outcome of large research programs to help future funding decisions. Project coordinators in academia often do not work in a professional project office environment that could distribute activities and use professional tools and methods between different projects. Instead, every new project manager has to focus on methodological work anew (communication infrastructure, meetings, reporting), even though the technological needs of large research projects are similar. This decreases the efficiency of the coordination and leads to funding that is effectively misallocated. We propose to challenge this system by creating a permanent, virtual "Centre for Earth System Science Management CESSMA" (cessma.com), and changing the approach from host- based to centre-based. This should

  9. Some notions of decentralization and coordination in large-scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Chong, C. Y.

    1975-01-01

    Some notions of decentralization and coordination in the control of large-scale dynamic systems are discussed. Decentralization and coordination have always been important concepts in the study of large systems. Roughly speaking decentralization is the process of dividing a large problem into subproblems so that it can be handled more easily. Coordination is the manipulation of the subproblem so that the original problem is solved. The various types of decentralization and coordination that have been used to control dynamic systems are discussed. The emphasis was to distinguish between on-line and off-line operations to understand the results available by indicating the aspects of the problem which are decentralized.

  10. Beam Elements with Trapezoidal Cross Section Deformation Modes Based on the Absolute Nodal Coordinate Formulation

    NASA Astrophysics Data System (ADS)

    Matikainen, Marko K.; Dmitrochenko, Oleg; Mikkola, Aki

    2010-09-01

    In this study, higher order beam elements are developed based on the absolute nodal coordinate formulation. The absolute nodal coordinate formulation is a finite element procedure that was recently proposed for flexible multibody applications. Many different elements based on the absolute nodal coordinate formulation are introduced, but still the beam elements are not able to describe the trapezoidal cross section mode. This leads to the locking phenomena, and therefore, the beam elements based on the absolute nodal coordinate formulation with three dimensional elasticity converge to an inexact solution. In order to avoid the locking phenomena, the trapezoidal cross section deformation mode is included in the beam elements based on the absolute nodal coordinate with additional degrees of freedom. The proper description for the trapezoidal cross section deformation is important for the continuum beam elements based on three-dimensional elasticity where the material model is often based on general continuum mechanics.

  11. Multi-component coordination-driven self-assembly: construction of alkyl-based structures and molecular modelling.

    PubMed

    Pollock, J Bryant; Cook, Timothy R; Schneider, Gregory L; Stang, Peter J

    2013-10-01

    The design of supramolecular coordination complexes (SCCs) is typically predicated on the use of rigid molecular building blocks through which the structural outcome is determined based on the number and orientation of labile coordination sites on metal acceptors, and the angularity of the ligand donors that are to bridge these nodes. Three-component systems extend the complexity of self-assembly by utilizing two different Lewis base donors in concert with a metal that favors a heteroligated coordination environment. The thermodynamic preference for heteroligation provides a new design principle to the formation of SCCs, wherein multicomponent architectures need not employ only rigid donors. Herein, we exploit the self-selection processes of bis(phosphine) Pt(II) metal centers which favor mixed Pt(pyridyl)(carboxylate) coordination spheres over their homoligated counterparts, specifically using alkyl-based dicarboxylate ligands instead of traditionally rigid phenyl, alkenyl, or ethynyl variants. Using this mode of assembly, flexible-based 2D and 3D SCCs containing long alkyl chains were synthesized and characterized. Density functional theory (DFT) and natural population analysis (NPA) calculations were performed on model systems to probe the thermodynamic preference for heteroligated coordination spheres in the experimental systems.

  12. Stable reduced-order models of generalized dynamical systems using coordinate-transformed Arnoldi algorithms

    SciTech Connect

    Silveira, L.M.; Kamon, M.; Elfadel, I.; White, J.

    1996-12-31

    Model order reduction based on Krylov subspace iterative methods has recently emerged as a major tool for compressing the number of states in linear models used for simulating very large physical systems (VLSI circuits, electromagnetic interactions). There are currently two main methods for accomplishing such a compression: one is based on the nonsymmetric look-ahead Lanczos algorithm that gives a numerically stable procedure for finding Pade approximations, while the other is based on a less well characterized Arnoldi algorithm. In this paper, we show that for certain classes of generalized state-space systems, the reduced-order models produced by a coordinate-transformed Arnoldi algorithm inherit the stability of the original system. Complete Proofs of our results will be given in the final paper.

  13. Intelligent vehicle electrical power supply system with central coordinated protection

    NASA Astrophysics Data System (ADS)

    Yang, Diange; Kong, Weiwei; Li, Bing; Lian, Xiaomin

    2016-07-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect; electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle's battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle's power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  14. Intelligent vehicle electrical power supply system with central coordinated protection

    NASA Astrophysics Data System (ADS)

    Yang, Diange; Kong, Weiwei; Li, Bing; Lian, Xiaomin

    2016-05-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect; electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle's battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle's power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  15. Coordinator's Handbook. Research & Development Series No. 119-B. Career Planning Support System.

    ERIC Educational Resources Information Center

    Lowry, Cheryl Meredith; And Others

    This coordinator's handbook, one of a set of twelve documents describing the Career Planning Support System (CPSS) and its use, is designed as a project management tool and provides step-by-step procedures for planning, leading, and coordinating CPSS activities. (CPSS is a comprehensive guidance program management system which offers the school…

  16. Building Management Information Systems to Coordinate Citywide Afterschool Programs: A Toolkit for Cities. Executive Summary

    ERIC Educational Resources Information Center

    Kingsley, Chris

    2012-01-01

    This executive summary describes highlights from the report, "Building Management Information Systems to Coordinate Citywide Afterschool Programs: A Toolkit for Cities." City-led efforts to build coordinated systems of afterschool programming are an important strategy for improving the health, safety and academic preparedness of children and…

  17. Learning from the implementation of inter-organisational web-based care planning and coordination.

    PubMed

    Walker, Rae; Blacker, Vivian; Pandita, Linda; Close, Jacky; Mason, Wendy; Watson, Julie

    2013-01-01

    In Victoria, despite strong policy support, e-care planning and coordination is poorly developed. The action research project discussed here was developed to overcome organisational and worker-level barriers to change. The project outcomes highlighted the need for work on the building blocks of e-care coordination that enhance workers' knowledge and skills, and provide permission and support for appropriate collaborative system and services coordination practices.

  18. Investigating Systems: MINNEMAST Coordinated Mathematics - Science Series, Unit 15.

    ERIC Educational Resources Information Center

    David, Edith, Ed.

    This volume is the fifteenth in a series of 29 coordinated MINNEMAST units in mathematics and science for kindergarten and the primary grades. Intended for use by second-grade teachers, this unit guide provides a summary and overview of the unit, a list of materials needed, and descriptions of six groups of lessons. The purposes and procedures for…

  19. Natural Systems: MINNEMAST Coordinated Mathematics - Science Series, Unit 29.

    ERIC Educational Resources Information Center

    Bakke, Jeannette; And Others

    This volume is the last in a series of 29 coordinated MINNEMAST units in mathematics and science for kindergarten and the primary grades. Intended for use by third-grade teachers, this unit guide provides a summary and overview of the unit, a list of materials needed, and descriptions of three groups of lessons. The purposes and procedures for…

  20. Prediction-driven coordination of distributed MPC controllers for linear unconstrained dynamic systems

    NASA Astrophysics Data System (ADS)

    Marcos, Natalia I.; Fraser Forbes, J.; Guay, Martin

    2014-08-01

    In this paper, a coordinated-distributed model predictive control (CDMPC) scheme is proposed for discrete-time, linear, unconstrained dynamic systems. The proposed control scheme incorporates a coordinator that communicates with local CDMPC controllers. With the assistance of the coordinator, the local CDMPC controllers adjust their calculated control actions iteratively to achieve the optimal plant-wide operation. A 'prediction-driven' algorithm is used to coordinate the local CDMPC controllers. Convergence of the prediction-driven algorithm is shown along with a stability analysis of the closed-loop system under coordinated-distributed control. A simulation example is used to illustrate the effectiveness of the proposed coordinated-distributed control scheme.

  1. Heliophysics/Geospace System Observatory: System level science by large-scale space-ground coordination

    NASA Astrophysics Data System (ADS)

    Nishimura, T.; Angelopoulos, V.; Moore, T. E.; Samara, M.

    2015-12-01

    Recent multi-satellite and ground-based network measurements have revealed importance of cross-scale and cross-regional coupling processes for understanding key issues in geospace such as magnetic reconnection, substorms and particle acceleration. In particular, localized and fast plasma transport in a global scale has been recognized to play a fundamental role in regulating evolution of the magnetosphere-ionosphere-thermosphere coupling. Those results call for coordinated measurements multi-missions and facilities in a global scale for understanding global coupling processes in a system level. In fact, the National Research Council recommends to use NASA's existing heliophysics flight missions and NSF's ground-based facilities by forming a network of observing platforms that operate simultaneously to investigate the solar system. This array can be thought of as a single observatory, the Heliophysics/Geospace System Observatory (H/GSO). Motivated by the successful launch of MMS and the healthy status of THEMIS, Van Allen Probes and other missions, we plan a strategic use of existing and upcoming assets in space and ground in the next two years. In the 2015-2016 and 2016-2017 northern winter seasons, MMS will be in the dayside over northern Europe, and THEMIS will be in the nightside over North America. In the 2016 and 2017 southern winter seasons, THEMIS will be in the dayside over the South Pole, and MMS will be in the nightside in the Australian sector. These are favorable configurations for simultaneous day-night coupling measurements of magnetic reconnection and related plasma transport both in space and on the ground, and also provide excellent opportunities for cross-scale coupling, global effects of dayside transients, tail-inner magnetosphere coupling, and other global processes. This presentation will give the current status and plan of the H/GSO and these science targets.

  2. Peptide tag/probe pairs based on the coordination chemistry for protein labeling.

    PubMed

    Uchinomiya, Shohei; Ojida, Akio; Hamachi, Itaru

    2014-02-17

    Protein-labeling methods serve as essential tools for analyzing functions of proteins of interest under complicated biological conditions such as in live cells. These labeling methods are useful not only to fluorescently visualize proteins of interest in biological systems but also to conduct protein and cell analyses by harnessing the unique functions of molecular probes. Among the various labeling methods available, an appropriate binding pair consisting of a short peptide and a de novo designed small molecular probe has attracted attention because of its wide utility and versatility. Interestingly, most peptide tag/probe pairs exploit metal-ligand coordination interactions as the main binding force responsible for their association. Herein, we provide an overview of the recent progress of these coordination-chemistry-based protein-labeling methods and their applications for fluorescence imaging and functional analysis of cellular proteins, while highlighting our originally developed labeling methods. These successful examples clearly exemplify the utility and versatility of metal coordination chemistry in protein functional analysis.

  3. Use of numerically generated body-fitted coordinate systems for solution of the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Mastin, C. W.; Thames, F. C.; Shanks, S. P.

    1975-01-01

    A procedure for numerical solution of the time-dependent, two-dimensional incompressible Navier-Stokes equations that can treat the unsteady laminar flow about bodies of arbitrary shape, such as two-dimensional airfoils, multiple airfoils, and submerged hydrofoils, as naturally as it can deal with the flow about simple bodies. The solution is based on a method of automatic numerical generation of a general curvilinear coordinate system with coordinate lines coincident with all boundaries of a general multiconnected region containing any number of arbitrarily shaped bodies. The curvilinear coordinates are generated as the solution of two elliptical partial differential equations with Dirichlet boundary conditions, one coordinate being specified to be constant on each of the boundaries, and a distribution of the other being specified along the boundaries. The solution compares excellently with the Blasius boundary layer solution for the flow past a semiinfinite flat plate.

  4. Application of the Absolute Nodal Co-Ordinate Formulation to Multibody System Dynamics

    NASA Astrophysics Data System (ADS)

    Escalona, J. L.; Hussien, H. A.; Shabana, A. A.

    1998-07-01

    The floating frame of reference formulation is currently the most widely used approach in flexible multibody simulations. The use of this approach, however, has been limited to small deformation problems. In this investigation, the computer implementation of the newabsolute nodal co-ordinate formulationand its use in the small and large deformation analysis of flexible multibody systems that consist of interconnected bodies are discussed. While in the floating frame of reference formulation a mixed set of absolute reference and local elastic co-ordinates are used, in the absolute nodal co-ordinate formulation only absolute co-ordinates are used. In the absolute nodal co-ordinate formulation, new interpretation of the nodal co-ordinates of the finite elements is used. No infinitesimal or finite rotations are used as nodal co-ordinates from beams and plates, instead, global slopes are used to define the element nodal co-ordinates. Using this interpretation of the element co-ordinates, beams and plates can be considered as isoparametric elements, and as a result, exact modelling of the rigid body dynamics can be obtained using the element shape function and the absolute nodal co-ordinates. Unlike the floating frame of reference approach, no co-ordinate transformation is required in order to determine the element inertia. The mass matrix of the finite elements is a constant matrix, and therefore, the centrifugal and Coriolis forces are equal to zero when the absolute nodal co-ordinate formulation is used. Another advantage of using the absolute nodal co-ordinate formulation in the dynamic simulation of multibody systems is its simplicity in imposing some of the joint constraints and also its simplicity in formulating the generalized forces due to spring-damper elements. The results obtained in this investigation show an excellent agreement with the results obtained using the floating frame of reference formulation when large rotation-small deformation problems are

  5. Coordinate Families for the Schwarzschild Geometry Based on Radial Timelike Geodesics

    NASA Technical Reports Server (NTRS)

    Finch, Tehani K.

    2015-01-01

    We explore the connections between various coordinate systems associated with observers moving inwardly along radial geodesics in the Schwarzschild geometry. Painleve-Gullstrand (PG) time is adapted to freely falling observers dropped from rest from in nity; Lake-Martel-Poisson (LMP) time coordinates are adapted to observers who start at in nity with non-zero initial inward velocity; Gautreau-Ho mann (GH) time coordinates are adapted to observers dropped from rest from a nite distance from the black hole horizon. We construct from these an LMP family and a propertime family of time coordinates, the intersection of which is PG time. We demonstrate that these coordinate families are distinct, but related, one-parameter generalizations of PG time, and show linkage to Lema^tre coordinates as well.

  6. Coordinate Families for the Schwarzschild Geometry Based on Radial Timelike Geodesics

    NASA Technical Reports Server (NTRS)

    Finch, Tehani K.

    2015-01-01

    We explore the connections between various coordinate systems associated with observersmoving inwardly along radial geodesics in the Schwarzschild geometry. Painleve-Gullstrand (PG) time is adapted to freely falling observers dropped from rest from infinity; Lake-Martel-Poisson (LMP) time coordinates are adapted to observers who start at infinity with non-zero initial inward velocity; Gautreau-Hoffmann time coordinates are adapted to observers dropped from rest from a finite distance from the black hole horizon.We construct from these an LMP family and a proper-time family of time coordinates, the intersection of which is PG time. We demonstrate that these coordinate families are distinct, but related, one-parameter generalizations of PG time, and show linkage to Lemaître coordinates as well.

  7. Chemistry of stannylene-based Lewis pairs: dynamic tin coordination switching between donor and acceptor character.

    PubMed

    Krebs, Kilian M; Freitag, Sarah; Schubert, Hartmut; Gerke, Birgit; Pöttgen, Rainer; Wesemann, Lars

    2015-03-16

    The coordination chemistry of cyclic stannylene-based intramolecular Lewis pairs is presented. The P→Sn adducts were treated with [Ni(COD)2] and [Pd(PCy3)2] (COD = 1,5-cyclooctadiene, PCy3 = tricyclohexylphosphine). In the isolated coordination compounds the stannylene moiety acts either as an acceptor or a donor ligand. Examples of a dynamic switch between these two coordination modes of the P-Sn ligand are illustrated and the structures in the solid state together with heteronuclear NMR spectroscopic findings are discussed. In the case of a Ni(0) complex, (119)Sn Mössbauer spectroscopy of the uncoordinated and coordinated phosphastannirane ligand is presented.

  8. Use of global positioning system measurements to determine geocentric coordinates and variations in Earth orientation

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S.-C.; Lichten, S. M.

    1993-01-01

    Geocentric tracking station coordinates and short-period Earth-orientation variations can be measured with Global Positioning System (GPS) measurements. Unless calibrated, geocentric coordinate errors and changes in Earth orientation can lead to significant deep-space tracking errors. Ground-based GPS estimates of daily and subdaily changes in Earth orientation presently show centimeter-level precision. Comparison between GPS-estimated Earth-rotation variations, which are the differences between Universal Time 1 and Universal Coordinated Time (UT1-UTC), and those calculated from ocean tide models suggests that observed subdaily variations in Earth rotation are dominated by oceanic tidal effects. Preliminary GPS estimates for the geocenter location (from a 3-week experiment) agree with independent satellite laser-ranging estimates to better than 10 cm. Covariance analysis predicts that temporal resolution of GPS estimates for Earth orientation and geocenter improves significantly when data collected from low Earth-orbiting satellites as well as from ground sites are combined. The low Earth GPS tracking data enhance the accuracy and resolution for measuring high-frequency global geodynamical signals over time scales of less than 1 day.

  9. Complex coacervate core micelles from iron-based coordination polymers.

    PubMed

    Wang, Junyou; de Keizer, Arie; Fokkink, Remco; Yan, Yun; Cohen Stuart, Martien A; van der Gucht, Jasper

    2010-07-01

    Complex coacervate core micelles (C3Ms) from cationic poly(N-methyl-2-vinyl-pyridinium iodide)-b-poly(ethylene oxide) (P2MVP(41)-b-PEO(205)) and anionic iron coordination polymers are investigated in the present work. Micelle formation is studied by light scattering for both Fe(II)- and Fe(III)-containing C3Ms. At the stoichiometric charge ratio, both Fe(II)-C3Ms and Fe(III)-C3Ms are stable for at least 1 week at room temperature. Excess of iron coordination polymers has almost no effect on the formed Fe(II)-C3Ms and Fe(III)-C3Ms, whereas excess of P2MVP(41)-b-PEO(205) copolymers in the solution can dissociate the formed micelles. Upon increasing salt concentration, the scattering intensity decreases. This decrease is due to both a decrease in the number of micelles (or an increase in CMC) and a decrease in aggregation number. The salt dependence of the CMC and the aggregation number is explained using a scaling argument for C3M formation. Compared with Fe(II)-C3Ms, Fe(III)-C3Ms have a lower CMC and a higher stability against dissociation by added salt.

  10. Unidirectional rotating coordinate rotation digital computer algorithm based on rotational phase estimation.

    PubMed

    Zhang, Chaozhu; Han, Jinan; Yan, Huizhi

    2015-06-01

    The improved coordinate rotation digital computer (CORDIC) algorithm gives high precision and resolution phase rotation, but it has some shortages such as high iterations and big system delay. This paper puts forward unidirectional rotating CORDIC algorithm to solve these problems. First, using under-damping theory, a part of unidirectional phase rotations is carried out. Then, the threshold value of angle is determined based on phase rotation estimation method. Finally, rotation phase estimation completes the rest angle iterations. Furthermore, the paper simulates and implements the numerical control oscillator by Quartus II software and Modelsim software. According to the experimental results, the algorithm reduces iterations and judgment of sign bit, so that it decreases system delay and resource utilization and improves the throughput. We always analyze the error brought by this algorithm. It turned out that the algorithm has a good application prospect in global navigation satellite system and channelized receiver. PMID:26133856

  11. Slow-fast effect and generation mechanism of brusselator based on coordinate transformation

    NASA Astrophysics Data System (ADS)

    Li, Xianghong; Hou, Jingyu; Shen, Yongjun

    2016-08-01

    The Brusselator with different time scales, which behaves in the classical slow-fast effect, is investigated, and is characterized by the coupling of the quiescent and spiking states. In order to reveal the generation mechanism by using the slow-fast analysis method, the coordinate transformation is introduced into the classical Brusselator, so that the transformed system can be divided into the fast and slow subsystems. Furthermore, the stability condition and bifurcation phenomenon of the fast subsystem are analyzed, and the attraction domains of different equilibria are presented by theoretical analysis and numerical simulation respectively. Based on the transformed system, it could be found that the generation mechanism between the quiescent and spiking states is Fold bifurcation and change of the attraction domain of the fast subsystem. The results may also be helpful to the similar system with multiple time scales.

  12. Movement coordination during conversation.

    PubMed

    Latif, Nida; Barbosa, Adriano V; Vatikiotis-Bateson, Eric; Vatiokiotis-Bateson, Eric; Castelhano, Monica S; Munhall, K G

    2014-01-01

    Behavioral coordination and synchrony contribute to a common biological mechanism that maintains communication, cooperation and bonding within many social species, such as primates and birds. Similarly, human language and social systems may also be attuned to coordination to facilitate communication and the formation of relationships. Gross similarities in movement patterns and convergence in the acoustic properties of speech have already been demonstrated between interacting individuals. In the present studies, we investigated how coordinated movements contribute to observers' perception of affiliation (friends vs. strangers) between two conversing individuals. We used novel computational methods to quantify motor coordination and demonstrated that individuals familiar with each other coordinated their movements more frequently. Observers used coordination to judge affiliation between conversing pairs but only when the perceptual stimuli were restricted to head and face regions. These results suggest that observed movement coordination in humans might contribute to perceptual decisions based on availability of information to perceivers. PMID:25119189

  13. Movement Coordination during Conversation

    PubMed Central

    Latif, Nida; Barbosa, Adriano V.; Vatiokiotis-Bateson, Eric; Castelhano, Monica S.; Munhall, K. G.

    2014-01-01

    Behavioral coordination and synchrony contribute to a common biological mechanism that maintains communication, cooperation and bonding within many social species, such as primates and birds. Similarly, human language and social systems may also be attuned to coordination to facilitate communication and the formation of relationships. Gross similarities in movement patterns and convergence in the acoustic properties of speech have already been demonstrated between interacting individuals. In the present studies, we investigated how coordinated movements contribute to observers’ perception of affiliation (friends vs. strangers) between two conversing individuals. We used novel computational methods to quantify motor coordination and demonstrated that individuals familiar with each other coordinated their movements more frequently. Observers used coordination to judge affiliation between conversing pairs but only when the perceptual stimuli were restricted to head and face regions. These results suggest that observed movement coordination in humans might contribute to perceptual decisions based on availability of information to perceivers. PMID:25119189

  14. A generalized orthogonal coordinate system for describing families of axisymmetric and two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1977-01-01

    A generalized curvilinear orthogonal coordinate system is presented which can be used for approximating various axisymmetric and two-dimensional body shapes of interest to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones, flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles. A set of transformation equations is also developed whereby a uniform velocity field approaching a body at any angle of attack can be resolved in the transformed coordinate system. The Navier-Stokes equations are written in terms of a generalized orthogonal coordinate system to show the resultant complexity of the governing equations.

  15. Ideal MHD stability calculations in axisymmetric toroidal coordinate systems

    SciTech Connect

    Grimm, R.C.; Dewar, R.L.; Manickam, J.

    1982-03-01

    A scalar form of the ideal MHD energy principle is shown to provide a more accurate and efficient numerical method for determining the stability of an axisymmetric toroidal equilibrium than the usual vector form. Additional improvement is obtained by employing a class of straight magnetic field line flux coordinates which allow for an optimal choice of the poloidal angle in the minor cross section of the torus. The usefulness of these techniques is illustrated by a study (using a new code, PEST 2) of the convergence properties of the finite element Galerkin representation in tokamak and spheromak geometries, and by the accurate determination of critical ..beta.. values for ballooning modes.

  16. An adaptive control scheme for coordinated multimanipulator systems

    SciTech Connect

    Jonghann Jean; Lichen Fu . Dept. of Electrical Engineering)

    1993-04-01

    The problem of adaptive coordinated control of multiple robot arms transporting an object is addressed. A stable adaptive control scheme for both trajectory tracking and internal force control is presented. Detailed analyses on tracking properties of the object position, velocity and the internal forces exerted on the object are given. It is shown that this control scheme can achieve satisfactory tracking performance without using the measurement of contact forces and their derivatives. It can be shown that this scheme can be realized by decentralized implementation to reduce the computational burden. Moreover, some efficient adaptive control strategies can be incorporated to reduce the computational complexity.

  17. Selected Issues of a Coordinated Adaptive Road Traffic System Application within the Silesian Conurbation

    NASA Astrophysics Data System (ADS)

    Żochowska, Renata; Celiński, Ireneusz; Sobota, Aleksander; Czapkowski, Leszek

    The article deals with the selected issues of deployment of a coordinated adaptive road traffic control system within the Silesian conurbation. One needs to identify all peculiar problems allocated with this region. This will include the range, structural and administration issues. All of them are associated with the distributed traffic management realized by different local authorities. Since deployment of such complex system relies mainly on the ITS solutions, all important technical issues applying to the conurbation are being presented. The authors have specifically highlighted a problem of collecting information on travel destinations. The efficient systems in use base on the dynamic methods and need the Origin-Destination matrices to be updated due to a current situation on roads. All the conventional methods of estimating such matrices do not apply and one needs to consider the assumptions on and limitations of the input data and complexity of computing.

  18. Towards black-box calculations of tunneling splittings obtained from vibrational structure methods based on normal coordinates.

    PubMed

    Neff, Michael; Rauhut, Guntram

    2014-02-01

    Multidimensional potential energy surfaces obtained from explicitly correlated coupled-cluster calculations and further corrections for high-order correlation contributions, scalar relativistic effects and core-correlation energy contributions were generated in a fully automated fashion for the double-minimum benchmark systems OH3(+) and NH3. The black-box generation of the potentials is based on normal coordinates, which were used in the underlying multimode expansions of the potentials and the μ-tensor within the Watson operator. Normal coordinates are not the optimal choice for describing double-minimum potentials and the question remains if they can be used for accurate calculations at all. However, their unique definition is an appealing feature, which removes remaining errors in truncated potential expansions arising from different choices of curvilinear coordinate systems. Fully automated calculations are presented, which demonstrate, that the proposed scheme allows for the determination of energy levels and tunneling splittings as a routine application.

  19. Columbia River Coordinated Information System (CIS); Information Needs, 1992 Technical Report.

    SciTech Connect

    Petrosky, Charlie; Kinney, William J.; Rowe, Mike

    1993-05-01

    Successful application of adaptive management to rebuilding the Columbia Basin`s anadromous fish resources requires that available information and experience be organized and shared between numerous organizations and individuals. Much of this knowledge exists only in unpublished form in agency and individual files. Even that information which is published in the form of technical and contract reports receives only limited distribution and is often out of print and unavailable after a few years. Only a small fraction of the basin`s collective knowledge is captured in permanent and readily available databases and recognized journals. State, tribal, and federal fishery managers have recognize these information management problems and have committed to a program, the Coordinated Information System Project, to capture and share more easily the core data and other information upon which management decisions are based. That project is now completing the process of scoping and identification of information needs. Construction of prototype systems will begin in 1992. This report is one in a series of seven describing the results of the Coordinated Information on System scoping and needs identification phase.

  20. Coordinate transformation between rotating and inertial systems under the constant two-way speed of light

    NASA Astrophysics Data System (ADS)

    Choi, Yang-Ho

    2016-09-01

    An observation system consists of the world lines of rest observers in the system. Recently a coordinate transformation between an isotropic and a rotating observation system has been presented which was derived through a relativistic circular approach based on the Lorentz transformation. It was formulated such that the relative speeds between the two systems are the same, but the two-way speed of light is not constant in the rotating observation system. The constancy of the two-way speed of light in inertial frames has been known to be experimentally verified. This paper presents the transformation that holds the constancy in the rotating system as well. Though the rotating system is in motion with acceleration, it can be regarded as locally inertial. Thus, in the limit, a transformation into a rotating system should be reduced to a transformation into an inertial systems. The transformation presented is consistent with the one between inertial systems so that the latter can be derived from the former in the limit. Moreover it allows us to theoretically analyze the generalized Sagnac effect, which involves rectilinear motion as well as circular motion. The theoretical analysis corresponds to the experimental results.

  1. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... 25.272 Section 25.272 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.272 General inter-system coordination... that there is continuously available means of communications between the satellite network...

  2. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... 25.272 Section 25.272 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.272 General inter-system coordination... that there is continuously available means of communications between the satellite network...

  3. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... 25.272 Section 25.272 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.272 General inter-system coordination... that there is continuously available means of communications between the satellite network...

  4. Advancing Coordinated Care in Four Provincial Healthcare Systems: Evaluating a Knowledge-Exchange Intervention

    PubMed Central

    Lyons, Renee; Parker, Victoria; Phillips, Stephen

    2011-01-01

    Objectives: This research project created and evaluated a knowledge-exchange intervention designed to facilitate an increase in organizational readiness for implementing coordinated stroke care in four primarily rural provincial healthcare systems. Intervention: Knowledge brokers were linked to networks within, across and outside the provinces to support, inform and disseminate best practice recommendations for coordinated stroke care within the provincial healthcare systems. Findings: The intervention increased awareness and dissemination of recommendations, which stimulated the implementation of coordinated stroke care. Similar knowledge-exchange interventions might work in other healthcare jurisdictions with similar demographics, to promote evidence-informed improvements in healthcare. PMID:22851988

  5. The quantization of the radii of coordination spheres cubic crystals and cluster systems

    NASA Astrophysics Data System (ADS)

    Melnikov, G.; Emelyanov, S.; Ignatenko, N.; Ignatenko, G.

    2016-02-01

    The article deals with the creation of an algorithm for calculating the radii of coordination spheres and coordination numbers cubic crystal structure and cluster systems in liquids. Solution has important theoretical value since it allows us to calculate the amount of coordination in the interparticle interaction potentials, to predict the processes of growth of the crystal structures and processes of self-organization of particles in the cluster system. One option accounting geometrical and quantum factors is the use of the Fibonacci series to construct a consistent number of focal areas for cubic crystals and cluster formation in the liquid.

  6. Nanoscale coordination polymers for platinum-based anticancer drug delivery.

    PubMed

    Rieter, William J; Pott, Kimberly M; Taylor, Kathryn M L; Lin, Wenbin

    2008-09-01

    Pt-containing nanoscale coordination polymer (NCP) particles with the formula of Tb2(DSCP)3(H2O)12 (where DSCP represents disuccinatocisplatin), NCP-1, were precipitated from an aqueous solution of Tb3+ ions and DSCP bridging ligands via the addition of a poor solvent. SEM and TEM images showed that as-synthesized NCP-1 exhibited a spherical morphology with a DLS diameter of 58.3 +/- 11.3 nm. NCP-1 particles were stabilized against rapid dissolution in water by encapsulation in shells of amorphous silica. The resulting silica-coated particles NCP-1' exhibited significantly longer half-lives for DSCP release from the particles (a t1/2 of 9 h for NCP-1' with 7 nm silica coating vs t1/2 of 1 h for as-synthesized NCP-1). In vitro cancer cell cytotoxicity assays with the human colon carcinoma cell line (HT-29) showed that internalized NCP-1' particles readily released the DSCP moieties which were presumably reduced to cytotoxic Pt(II) species to give the Pt-containing NCPs anticancer efficacy superior to the cisplatin standard. The generality of this degradable nanoparticle formulation should allow for the design of NCPs as effective delivery vehicles for a variety of biologically and medically important cargoes such as therapeutic and imaging agents.

  7. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller.

    PubMed

    Niamul Islam, Naz; Hannan, M A; Mohamed, Azah; Shareef, Hussain

    2016-01-01

    Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation. PMID:26745265

  8. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller

    PubMed Central

    Niamul Islam, Naz; Hannan, M. A.; Mohamed, Azah; Shareef, Hussain

    2016-01-01

    Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation. PMID:26745265

  9. Columbia River Coordinated Information System (CIS); Data Catalog, 1992 Technical Report.

    SciTech Connect

    O'Connor, Dick; Allen, Stan; Reece, Doug

    1993-05-01

    The Columbia River Coordinated Information system (CIS) Project started in 1989 to address regional data sharing. Coordinated exchange and dissemination of any data must begin with dissemination of information about those data, such as: what is available; where the data are stored; what form they exist in; who to contact for further information or access to these data. In Phase II of this Project (1991), a Data Catalog describing the contents of regional datasets and less formal data collections useful for system monitoring and evaluation projects was built to improve awareness of their existence. Formal datasets are described in a `Dataset Directory,` while collections of data are Used to those that collect such information in the `Data Item Directory.` The Data Catalog will serve regional workers as a useful reference which centralizes the institutional knowledge of many data contacts into a single source. Recommendations for improvement of the Catalog during Phase III of this Project include addressing gaps in coverage, establishing an annual maintenance schedule, and loading the contents into a PC-based electronic database for easier searching and cross-referencing.

  10. An alternative definition of the scapular coordinate system for use with RSA.

    PubMed

    Kedgley, Angela E; Dunning, Cynthia E

    2010-05-28

    When performing radiostereometric analysis (RSA), computed tomography scans are often taken to obtain the landmarks used to create anatomical coordinate systems (CSs) for quantifying joint kinematics. Different conventions for defining CSs lead to an inability to compare results among studies. The International Society of Biomechanics (ISB) has proposed a set of CSs; however, the landmarks needed to create the recommended scapular CS require the entire scapula to be scanned, thereby also exposing breast and other tissues to radiation. The main purpose of this work was to investigate an alternate definition of the CS that has repeatably attainable landmarks and axes as close as possible to those recommended by the ISB, while limiting the portion of the scapula requiring scanning. Intra- and inter-investigator variabilities of landmark digitization were quantified in one model of a scapula and one cadaveric specimen. Based on the variability of the digitizations, an alternative CS was defined. The differences between the ISB and alternative CSs were evaluated on 11 cadaveric specimens. Beaded biplanar RSA was performed on the glenohumeral joint model in 15 different configurations and the resulting kinematics were calculated for each set of landmark digitizations using both sets of coordinate systems. While the kinematic angles obtained using the alternative CS were statistically different from those obtained using the ISB standard, these differences were small (on the order of 5 degrees) and therefore considered to be of little clinical significance. In all likelihood, the benefits of decreasing radiation exposure outweigh these differences in angles.

  11. Distributed Adaptive Coordinated Control of Multi-Manipulator Systems Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Hou, Zeng-Guang; Cheng, Long; Tan, Min; Wang, Xu

    On many occasions, all the manipulators in the multi-manipulator system need to achieve the same joint configuration to fulfill certain coordination tasks. In this chapter, a distributed adaptive approach is proposed for solving this coordination problem based on the leader-follower strategy. The proposed algorithm is distributed because the controller for each follower manipulator is solely based on the information of connected neighbor manipulators, and the joint value of leader manipulator is only accessible to partial follower manipulators. The uncertain term in the manipulator's dynamics is considered in the controller design, and it is approximated by the adaptive neural network scheme. The neural network weight matrix is adjusted on-line by the projection method, and the pre-training phase is no longer required. Effects of approximation error and external disturbances are counteracted by employing the robustness signal. According to the theoretical analysis, all the joints of follower manipulators can be regulated into an arbitrary small neighborhood of the value of leader's joint. Finally, simulation results are given to demonstrate the satisfactory performance of the proposed method.

  12. Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex.

    PubMed

    Tan, Hongliang; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Chen, Shouhui; Wang, Li

    2013-12-15

    The meta-organic coordination polymers have been emerged as fascinating nanomaterials because of their tunable nature. In this work, we employed lanthanide coordination polymer self-assembled from adenosine monophosphate (AMP) and europium ion (Eu(3+)) as receptor reagent and citrate (Cit) as ancillary ligand to construct a fluorescent sensor for the detection of tetracycline (Tc) in milk. The co-coordination of Cit and Tc with Eu(3+) on the surface of the coordination polymer AMP/Eu leads to the formation of ternary complex which emitted strong fluorescence due to the removal of coordinated water molecules and an intramolecular energy transfer from Tc to Eu(3+). The fluorescent intensity of Eu(3+) displayed a good linear response to Tc concentrations in the range of 0.1-20 μM with a detection limit of 60 nM. This method was successfully applied to determine the levels of Tc in milk, which is the first application of coordination polymer as a fluorescent sensor in real sample. Compared with other Eu(3+)-based fluorescent methods for Tc detection, the presented method allows simple, direct analysis of Tc without requiring special reaction media or complicated prepreparation processes. This straightforward strategy could be extended to the preparation of other lanthanide coordination polymer-based fluorescent probes for applications in biosensing, imaging, drug delivery, and so on.

  13. Mind the Gap: Exploring the Physics of Null Points Using Unconventional Coordinate Systems

    NASA Astrophysics Data System (ADS)

    Shanahan, Brendan; Dudson, Ben; Avino, Fabio; Leddy, Jarrod; Hill, Peter; Furno, Ivo

    2015-11-01

    Simulations of instabilities and turbulence in X-point configurations are challenging due to the limitations of field-aligned coordinate systems: X-point dynamics are often interpolated from flux surfaces, which could exclude relevant physics. Here we explore the physics of null regions in multiple geometries using unconventional coordinate systems in BOUT++. Specifically, we have investigated the physics of blob propagation and compared with experimental measurements within the TORPEX device, indicating an increase in inertially limited filament propagation in the null region caused by longer connection lengths. The null point dynamics of filaments crossing the separatrix in tokamak geometry will also be presented using a novel field-aligned coordinate system, with applications to ELM and blob theory. Finally, recent work on implementation and applicability of the Flux Coordinate Independent (FCI) approach to complex magnetic geometry modelling will be discussed.

  14. Coordinability and consistency in accident causation and prevention: formal system theoretic concepts for safety in multilevel systems.

    PubMed

    Cowlagi, Raghvendra V; Saleh, Joseph H

    2013-03-01

    Although a "system approach" to accidents in sociotechnical systems has been frequently advocated, formal system theoretic concepts remain absent in the literature on accident analysis and system safety. To address this gap, we introduce the notions of coordinability and consistency from the hierarchical and multilevel systems theory literature. We then investigate the applicability and the importance of these concepts to accident causation and safety. Using illustrative examples, including the worst disaster in aviation history, and recent incidents in the United States of aircraft clipping each other on the tarmac, we propose that the lack of coordinability is a fundamental failure mechanism causing or contributing to accidents in multilevel systems. We make a similar case for the lack of consistency. Coordinability and consistency become ingredients for accident prevention, and their absence fundamental failure mechanisms that can lead to system accidents. Finally, using the concepts introduced in this work, we identify several venues for further research, including the development of a theory of coordination in multilevel systems, the investigation of potential synergies between coordinability, consistency, and the high reliability organizations paradigm, and the possibility of reframing the view that "sloppy management is the root cause of many industrial accidents" as one of lack of coordinability and/or consistency between management and operations. By introducing and expanding on the concepts of coordinability and consistency, we hope to contribute to the thinking about, and the to language of, accident causation, and prevention and to add to the intellectual toolkit of safety professionals and academics. PMID:22967134

  15. Implementation and Evaluation of the Mathematics Education Based on Class Coordination by Learners‧ Background

    NASA Astrophysics Data System (ADS)

    Kubo, Izumi; Honda, Tatsuhiro; Yokota, Hisashi

    In the academic year 2004 Faculty of Environmental Studies in Hiroshima Institute of Technology stopped coordinating the mathematical classes by the placement tests, because a number of students found themselves mismatched to assigned classes. This was due to the diversifying types of entrance exams. Instead the mathematics classes are now coordinated by the students‧ learning backgrounds. This paper presents the method of mathematics education based on class coordination by learners‧ backgrounds and the annotation on the time-history of the students‧ achievements for four years from the academic year 2004 to show the validity of this novel method of education for diversified students.

  16. Coordinating compass-based and nest-based flight directions during bumblebee learning and return flights.

    PubMed

    Collett, Thomas S; de Ibarra, Natalie Hempel; Riabinina, Olena; Philippides, Andrew

    2013-03-15

    Bumblebees tend to face their nest over a limited range of compass directions when learning the nest's location on departure and finding it on their approach after foraging. They thus obtain similar views of the nest and its surroundings on their learning and return flights. How do bees coordinate their flights relative to nest-based and compass-based reference frames to get such similar views? We show, first, that learning and return flights contain straight segments that are directed along particular compass bearings, which are independent of the orientation of a bee's body. Bees are thus free within limits to adjust their viewing direction relative to the nest, without disturbing flight direction. Second, we examine the coordination of nest-based and compass-based control during likely information gathering segments of these flights: loops during learning flights and zigzags on return flights. We find that bees tend to start a loop or zigzag when flying within a restricted range of compass directions and to fly towards the nest and face it after a fixed change in compass direction, without continuous interactions between their nest-based and compass-based directions of flight. A preferred trajectory of compass-based flight over the course of a motif, combined with the tendency of the bees to keep their body oriented towards the nest automatically narrows the range of compass directions over which bees view the nest. Additionally, the absence of interactions between the two reference frames allows loops and zigzags to have a stereotyped form that can generate informative visual feedback.

  17. A Novel Systems-Biology Algorithm for the Analysis of Coordinated Protein Responses Using Quantitative Proteomics.

    PubMed

    García-Marqués, Fernando; Trevisan-Herraz, Marco; Martínez-Martínez, Sara; Camafeita, Emilio; Jorge, Inmaculada; Lopez, Juan Antonio; Méndez-Barbero, Nerea; Méndez-Ferrer, Simón; Del Pozo, Miguel Angel; Ibáñez, Borja; Andrés, Vicente; Sánchez-Madrid, Francisco; Redondo, Juan Miguel; Bonzon-Kulichenko, Elena; Vázquez, Jesús

    2016-05-01

    The coordinated behavior of proteins is central to systems biology. However, the underlying mechanisms are poorly known and methods to analyze coordination by conventional quantitative proteomics are still lacking. We present the Systems Biology Triangle (SBT), a new algorithm that allows the study of protein coordination by pairwise quantitative proteomics. The Systems Biology Triangle detected statistically significant coordination in diverse biological models of very different nature and subjected to different kinds of perturbations. The Systems Biology Triangle also revealed with unprecedented molecular detail an array of coordinated, early protein responses in vascular smooth muscle cells treated at different times with angiotensin-II. These responses included activation of protein synthesis, folding, turnover, and muscle contraction - consistent with a differentiated phenotype-as well as the induction of migration and the repression of cell proliferation and secretion. Remarkably, the majority of the altered functional categories were protein complexes, interaction networks, or metabolic pathways. These changes could not be detected by other algorithms widely used by the proteomics community, and the vast majority of proteins involved have not been described before to be regulated by AngII. The unique capabilities of The Systems Biology Triangle to detect functional protein alterations produced by the coordinated action of proteins in pairwise quantitative proteomics experiments make this algorithm an attractive choice for the biological interpretation of results on a routine basis.

  18. Waxholm Space: An image-based reference for coordinating mouse brain research

    PubMed Central

    Johnson, G. Allan; Badea, Alexandra; Brandenburg, Jeffrey; Cofer, Gary; Fubara, Boma; Liu, Song; Nissanov, Jonathan

    2010-01-01

    We describe an atlas of the C57BL/6 mouse brain based on MRI and conventional Nissl histology. Magnetic resonance microscopy was performed on a total of 14 specimens that were actively stained to enhance tissue contrast. Images were acquired with three different MR protocols yielding contrast dependent on spin lattice relaxation (T1), spin spin relaxation (T2), and magnetic susceptibility (T2*). Spatial resolution was 21.5 microns (isotropic). Conventional histology (Nissl) was performed on a limited set of these same specimens and the Nissl images were registered (3D-to-3D) to the MR data. Probabilistic atlases for 37 structures are provided, along with average atlases. The availability of three different MR protocols, the Nissl data, and the labels provides a rich set of options for registration of other atlases to the same coordinate system, thus facilitating data-sharing. All the data is available for download via the web. PMID:20600960

  19. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George

    2011-11-22

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  20. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  1. 36 CFR 9.83 - Coordination of AMRAP activities in National Park System units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... activities in National Park System units. 9.83 Section 9.83 Parks, Forests, and Public Property NATIONAL PARK... Coordination of AMRAP activities in National Park System units. (a) To facilitate compliance with this Subpart... agreeable schedule of AMRAP projects and activities in Alaska units of the National Park System....

  2. 36 CFR 9.83 - Coordination of AMRAP activities in National Park System units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... activities in National Park System units. 9.83 Section 9.83 Parks, Forests, and Public Property NATIONAL PARK... Coordination of AMRAP activities in National Park System units. (a) To facilitate compliance with this Subpart... agreeable schedule of AMRAP projects and activities in Alaska units of the National Park System....

  3. 36 CFR 9.83 - Coordination of AMRAP activities in National Park System units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activities in National Park System units. 9.83 Section 9.83 Parks, Forests, and Public Property NATIONAL PARK... Coordination of AMRAP activities in National Park System units. (a) To facilitate compliance with this Subpart... agreeable schedule of AMRAP projects and activities in Alaska units of the National Park System....

  4. 36 CFR 9.83 - Coordination of AMRAP activities in National Park System units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... activities in National Park System units. 9.83 Section 9.83 Parks, Forests, and Public Property NATIONAL PARK... Coordination of AMRAP activities in National Park System units. (a) To facilitate compliance with this Subpart... agreeable schedule of AMRAP projects and activities in Alaska units of the National Park System....

  5. Coordinator's Training Guide. Research & Development Series No. 119-A. Career Planning Support System.

    ERIC Educational Resources Information Center

    Shaltry, Paul; Kester, Ralph J.

    One of a set of twelve documents describing the Career Planning Support System (CPSS) and its use, this guide is designed to help the CPSS coordinator become familiar with CPSS and his or her role. (The Career Planning Support System is a comprehensive guidance program management system which (1) provides techniques to improve a high school's…

  6. 36 CFR 9.83 - Coordination of AMRAP activities in National Park System units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activities in National Park System units. 9.83 Section 9.83 Parks, Forests, and Public Property NATIONAL PARK... Coordination of AMRAP activities in National Park System units. (a) To facilitate compliance with this Subpart... agreeable schedule of AMRAP projects and activities in Alaska units of the National Park System....

  7. Pursit-evasion game analysis in a line of sight coordinate system

    NASA Technical Reports Server (NTRS)

    Shinar, J.; Davidovitz, A.

    1985-01-01

    The paper proposes to use line of sight coordinates for the analysis of pursuit-evasion games. The advantage of this method for two-target games is shown to be evident. As a demonstrative example the game of two identical cars is formulated and solved in such coordinate systems. A new type of singular surface, overlooked in a previous study of the same problem, is discovered as a consequence of the simplicity of the solution.

  8. Designing Agent Utilities for Coordinated, Scalable and Robust Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan

    2005-01-01

    Coordinating the behavior of a large number of agents to achieve a system level goal poses unique design challenges. In particular, problems of scaling (number of agents in the thousands to tens of thousands), observability (agents have limited sensing capabilities), and robustness (the agents are unreliable) make it impossible to simply apply methods developed for small multi-agent systems composed of reliable agents. To address these problems, we present an approach based on deriving agent goals that are aligned with the overall system goal, and can be computed using information readily available to the agents. Then, each agent uses a simple reinforcement learning algorithm to pursue its own goals. Because of the way in which those goals are derived, there is no need to use difficult to scale external mechanisms to force collaboration or coordination among the agents, or to ensure that agents actively attempt to appropriate the tasks of agents that suffered failures. To present these results in a concrete setting, we focus on the problem of finding the sub-set of a set of imperfect devices that results in the best aggregate device. This is a large distributed agent coordination problem where each agent (e.g., device) needs to determine whether to be part of the aggregate device. Our results show that the approach proposed in this work provides improvements of over an order of magnitude over both traditional search methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents failed midway through the simulation) the system's performance degrades gracefully and still outperforms a failure-free and centralized search algorithm. The results also show that the gains increase as the size of the system (e.g., number of agents) increases. This latter result is particularly encouraging and suggests that this method is ideally suited for domains where the number of agents is currently in the

  9. A pentanuclear lead(II) complex based on a strapped porphyrin with three different coordination modes.

    PubMed

    Le Gac, Stéphane; Furet, Eric; Roisnel, Thierry; Hijazi, Ismail; Halet, Jean-François; Boitrel, Bernard

    2014-10-01

    We have previously described Pb(II) and Bi(III) bimetallic complexes with overhanging carboxylic acid strapped porphyrins in which one metal ion is bound to the N-core ("out-of-plane", OOP), whereas the second one is bound to the strap ("hanging-atop", HAT). In such complexes, the hemidirected coordination sphere of a HAT Pb(II) cation provides sufficient space for an additional binding of a neutral ligand (e.g., DMSO). Interestingly, investigations of the HAT metal coordination mode in a single strap porphyrin show that a HAT Pb(II) can also interact via intermolecular coordination bonds, allowing the self-assembly of two bimetallic complexes. In the pentanuclear Pb(II) complex we are describing in this Article, three different coordination modes were found. The OOP Pb(II) remains inert toward the supramolecular assembling process, whereas the HAT Pb(II) cation, in addition to its intramolecular carboxylate and regular exogenous acetate groups, coordinates an additional exogenous acetate. These two acetates are shared with a third lead(II) cation featuring a holo-directed coordination sphere, from which a centro-symmetric complex is assembled. Density functional theory calculations show some electron-density pockets in the vicinity of the hemidirected HAT Pb(II) atoms, which are associated with the presence of a stereochemically active lone pair of electrons. On the basis of the comparison with other HAT Pb(II) and Bi(III) systems, the "volume" of this lone pair correlates well with the bond distance distributions and the number of the proximal oxygen atoms tethered to the post-transition metal cation. It thus follows the order 6-coordinate Bi(III) > 6-coordinate Pb(II) > 5-coordinate Pb(II).

  10. Bioinspired Coordinated Path Following for Vessels with Speed Saturation Based on Virtual Leader

    PubMed Central

    Fu, Mingyu

    2016-01-01

    This paper investigates the coordinated path following of multiple marine vessels with speed saturation. Based on virtual leader strategy, the authors show how the neural dynamic model and passivity-based techniques are brought together to yield a distributed control strategy. The desired path following is achieved by means of a virtual dynamic leader, whose controller is designed based on the biological neural shunting model. Utilizing the characteristic of bounded and smooth output of neural dynamic model, the tracking error jump is avoided and speed saturation problem is solved in straight path. Meanwhile, the coordinated path following of multiple vessels with a desired spatial formation is achieved through defining the formation reference point. The consensus of formation reference point is realized by using the synchronization controller based on passivity. Finally, simulation results validate the effectiveness of the proposed coordinated algorithm. PMID:27034652

  11. Luminescent Europium(III) Coordination Zippers Linked with Thiophene-Based Bridges.

    PubMed

    Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Fushimi, Koji; Seki, Tomohiro; Ito, Hajime; Hasegawa, Yasuchika

    2016-09-19

    Novel Eu(III) coordination polymers [Eu(hfa)3 (dpt)]n (dpt: 2,5-bis(diphenylphosphoryl)thiophene) and [Eu(hfa)3 (dpedot)]n (dpedot: 2,5-bis(diphenylphosphoryl)ethylenedioxythiophene) with hydrogen-bonded zipper structures are reported. The coordination polymers are composed of Eu(III) ions, hexafluoroacetylacetonato ligands, and thiophene-based phosphine oxide bridges. The zig-zag orientation of single polymer chains induced the formation of densely packed coordination structures with multiple intermolecular interactions, resulting in thermal stability above 300 °C. They exhibit a high intrinsic emission quantum yield (ca. 80 %) due to their asymmetrical and low-vibrational coordination structures around Eu(III) ions. Furthermore, the characteristic alternative orientation of substituents also contributes to the dramatically high ligand-to-metal energy transfer efficiencies of up to 80 % in the solid state. PMID:27554795

  12. Luminescent Europium(III) Coordination Zippers Linked with Thiophene-Based Bridges.

    PubMed

    Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Fushimi, Koji; Seki, Tomohiro; Ito, Hajime; Hasegawa, Yasuchika

    2016-09-19

    Novel Eu(III) coordination polymers [Eu(hfa)3 (dpt)]n (dpt: 2,5-bis(diphenylphosphoryl)thiophene) and [Eu(hfa)3 (dpedot)]n (dpedot: 2,5-bis(diphenylphosphoryl)ethylenedioxythiophene) with hydrogen-bonded zipper structures are reported. The coordination polymers are composed of Eu(III) ions, hexafluoroacetylacetonato ligands, and thiophene-based phosphine oxide bridges. The zig-zag orientation of single polymer chains induced the formation of densely packed coordination structures with multiple intermolecular interactions, resulting in thermal stability above 300 °C. They exhibit a high intrinsic emission quantum yield (ca. 80 %) due to their asymmetrical and low-vibrational coordination structures around Eu(III) ions. Furthermore, the characteristic alternative orientation of substituents also contributes to the dramatically high ligand-to-metal energy transfer efficiencies of up to 80 % in the solid state.

  13. Documentation of program COORDC to generate and coordinate system for 3D corners with or without fillet using body fitted curvilinear coordinates, part 2

    NASA Technical Reports Server (NTRS)

    Kumar, D.

    1980-01-01

    The computer program COORDC generates a body fitted curvilinear coordinate system for corner geometry with or without corner fillets. It is assumed that at any given xi, x remains constant; consequently the only variation is in y and z. It is also assumed that for all xi's in the physical plane the coordinate system in y-z plane is similar. This enables solution of coordinate system for one particular xi = 1 (x for xi = 1 is arbitrarily chosen to be 0.0) and the solution for all other xi plane can be easily specified once the coordinates in the physical plane on the line 1 or = to xi or = to IMAX, eta = 1, zeta = 1 are specified.

  14. Rossby vortex simulation on a paraboloidal coordinate system using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Yu, Huidan; Zhao, Kaihua

    2001-11-01

    In this paper, we apply our compressible lattice Boltzmann model to a rotating parabolic coordinate system to simulate Rossby vortices emerging in a layer of shallow water flowing zonally in a rotating paraboloidal vessel. By introducing a scaling factor, nonuniform curvilinear mesh can be mapped to a flat uniform mesh and then normal lattice Boltzmann method works. Since the mass per unit area on the two-dimensional (2D) surface varies with the thickness of the water layer, the 2D flow seems to be ``compressible'' and our compressible model is applied. Simulation solutions meet with the experimental observations qualitatively. Based on this research, quantitative solutions and many natural phenomena simulations in planetary atmospheres, oceans, and magnetized plasma, such as the famous Jovian Giant Red Spot, the Galactic Spiral-vortex, the Gulf Stream, and the Kuroshio Current, etc., can be expected.

  15. Rossby vortex simulation on a paraboloidal coordinate system using the lattice Boltzmann method.

    PubMed

    Yu, H; Zhao, K

    2001-11-01

    In this paper, we apply our compressible lattice Boltzmann model to a rotating parabolic coordinate system to simulate Rossby vortices emerging in a layer of shallow water flowing zonally in a rotating paraboloidal vessel. By introducing a scaling factor, nonuniform curvilinear mesh can be mapped to a flat uniform mesh and then normal lattice Boltzmann method works. Since the mass per unit area on the two-dimensional (2D) surface varies with the thickness of the water layer, the 2D flow seems to be "compressible" and our compressible model is applied. Simulation solutions meet with the experimental observations qualitatively. Based on this research, quantitative solutions and many natural phenomena simulations in planetary atmospheres, oceans, and magnetized plasma, such as the famous Jovian Giant Red Spot, the Galactic Spiral-vortex, the Gulf Stream, and the Kuroshio Current, etc., can be expected. PMID:11736137

  16. EURONET: Europe's Plan for a Coordinated Information System

    ERIC Educational Resources Information Center

    Voigt, Melvin J.

    1976-01-01

    Describes plans for a European information network that will link the nations of Europe together in providing easy access to data bases from all parts of the world and in all fields of science and technology. (Author/PF)

  17. System for Inter-Agency Coordination in Adult Education.

    ERIC Educational Resources Information Center

    King, Gordon A.; Regan, Timothy F.

    An innovative system to facilitate inter-agency cooperation in 16 federal agencies concerned with adult basic education is provided. The 16 programs chosen for the study were: (1) Work Incentive Program; (2) Concentrated Employment Program; (3) New Careers; (4) The Cuban Refugee Program; (5) Grants for Community Planning, Services and Training for…

  18. Coordinated ground system for joint science operations for the ExoMars2016 TGO mission.

    NASA Astrophysics Data System (ADS)

    Nazarov, Vladimir; Heather, David; Frew, David; Eismont, Natan; Manaud, Nicolas; Ledkov, Anton; Nazirov, Ravil; Metcalfe, Leo; Cardesin, Alejandro; Konoplev, Veniamin; Korotkov, Fedor; Batanov, Oleg; Brumfitt, Jon; Alvarez, Rub; Martin, Patrick; Melnik, Anton; Tretiakov, Alexey; Villacorta, Antonio

    International collaboration is increasingly important for space science missions, often requiring joint operations activity. Such an approach is extremely important for studies of planets and other bodies of the Solar system that usually require high budget for their realization. In addition, as the development of international payloads for such missions is a well-established practice, the establishment of common ground systems for joint science operations is an important feature. Benefits of such an approach are evident: • More science return • Reduced the cost • More redundancy • Technology exchange But on the other hand, common systems for joint operations pose some specific difficulties, such as: • Different review procedures in the developing organisations • Incompatible documentation structures (“document tree”) • A risk of producing a “multiheaded dragon” (inefficient/duplicated task distributions) • Different base technologies • Language problems This article describes approaches for resolving these problems on the basis of the coordinated system for joint science operations for the ExoMars2016 mission, which is at the design stage now. The architecture of the system, the scenario of distributed but joint data management, as well as some methodological and technological aspects, will be discussed

  19. The Lagrangian coordinate system and what it means for two-dimensional crowd flow models

    NASA Astrophysics Data System (ADS)

    van Wageningen-Kessels, Femke; Leclercq, Ludovic; Daamen, Winnie; Hoogendoorn, Serge P.

    2016-02-01

    A continuum crowd flow model is solved using the Lagrangian coordinate system. The system has proven to give computational advantages over the traditional Eulerian coordinate system for (one-dimensional) road traffic flow. Our extension of the model and simulation method to (two-dimensional) crowd flow paves the way to explore the advantages for crowd flow simulation. Detailed analysis of the advantages is left for future research. However, this paper provides a first exploration and shows that a model and simulation method for two-dimensional crowd flow can be developed using Lagrangian numerical techniques and that it leads to accurate simulation results.

  20. Whisking Kinematics Enables Object Localization in Head-Centered Coordinates Based on Tactile Information from a Single Vibrissa.

    PubMed

    Yang, Anne E T; Hartmann, Mitra J Z

    2016-01-01

    During active tactile exploration with their whiskers (vibrissae), rodents can rapidly orient to an object even though there are very few proprioceptors in the whisker muscles. Thus a long-standing question in the study of the vibrissal system is how the rat can localize an object in head-centered coordinates without muscle-based proprioception. We used a three-dimensional model of whisker bending to simulate whisking motions against a peg to investigate the possibility that the 3D mechanics of contact from a single whisker are sufficient for localization in head-centered coordinates. Results show that for nearly all whiskers in the array, purely tactile signals at the whisker base - as would be measured by mechanoreceptors, in whisker-centered coordinates - could be used to determine the location of a vertical peg in head-centered coordinates. Both the "roll" and the "elevation" components of whisking kinematics contribute to the uniqueness and resolution of the localization. These results offer an explanation for a behavioral study showing that rats can more accurately determine the horizontal angle of an object if one column, rather than one row, of whiskers is spared.

  1. Pheromone-based coordination strategy to static sensors on the ground and unmanned aerial vehicles carried sensors

    NASA Astrophysics Data System (ADS)

    Pignaton de Freitas, Edison; Heimfarth, Tales; Pereira, Carlos Eduardo; Morado Ferreira, Armando; Rech Wagner, Flávio; Larsson, Tony

    2010-04-01

    A current trend that is gaining strength in the wireless sensor network area is the use of heterogeneous sensor nodes in one coordinated overall network, needed to fulfill the requirements of sophisticated emerging applications, such as area surveillance systems. One of the main concerns when developing such sensor networks is how to provide coordination among the heterogeneous nodes, in order to enable them to efficiently respond the user needs. This study presents an investigation of strategies to coordinate a set of static sensor nodes on the ground cooperating with wirelessly connected Unmanned Aerial Vehicles (UAVs) carrying a variety of sensors, in order to provide efficient surveillance over an area of interest. The sensor nodes on the ground are set to issue alarms on the occurrence of a given event of interest, e.g. entrance of a non-authorized vehicle in the area, while the UAVs receive the issued alarms and have to decide which of them is the most suitable to handle the issued alarm. A bio-inspired coordination strategy based on the concept of pheromones is presented. As a complement of this strategy, a utility-based decision making approach is proposed.

  2. Whisking Kinematics Enables Object Localization in Head-Centered Coordinates Based on Tactile Information from a Single Vibrissa

    PubMed Central

    Yang, Anne E. T.; Hartmann, Mitra J. Z.

    2016-01-01

    During active tactile exploration with their whiskers (vibrissae), rodents can rapidly orient to an object even though there are very few proprioceptors in the whisker muscles. Thus a long-standing question in the study of the vibrissal system is how the rat can localize an object in head-centered coordinates without muscle-based proprioception. We used a three-dimensional model of whisker bending to simulate whisking motions against a peg to investigate the possibility that the 3D mechanics of contact from a single whisker are sufficient for localization in head-centered coordinates. Results show that for nearly all whiskers in the array, purely tactile signals at the whisker base – as would be measured by mechanoreceptors, in whisker-centered coordinates – could be used to determine the location of a vertical peg in head-centered coordinates. Both the “roll” and the “elevation” components of whisking kinematics contribute to the uniqueness and resolution of the localization. These results offer an explanation for a behavioral study showing that rats can more accurately determine the horizontal angle of an object if one column, rather than one row, of whiskers is spared. PMID:27486390

  3. Whisking Kinematics Enables Object Localization in Head-Centered Coordinates Based on Tactile Information from a Single Vibrissa.

    PubMed

    Yang, Anne E T; Hartmann, Mitra J Z

    2016-01-01

    During active tactile exploration with their whiskers (vibrissae), rodents can rapidly orient to an object even though there are very few proprioceptors in the whisker muscles. Thus a long-standing question in the study of the vibrissal system is how the rat can localize an object in head-centered coordinates without muscle-based proprioception. We used a three-dimensional model of whisker bending to simulate whisking motions against a peg to investigate the possibility that the 3D mechanics of contact from a single whisker are sufficient for localization in head-centered coordinates. Results show that for nearly all whiskers in the array, purely tactile signals at the whisker base - as would be measured by mechanoreceptors, in whisker-centered coordinates - could be used to determine the location of a vertical peg in head-centered coordinates. Both the "roll" and the "elevation" components of whisking kinematics contribute to the uniqueness and resolution of the localization. These results offer an explanation for a behavioral study showing that rats can more accurately determine the horizontal angle of an object if one column, rather than one row, of whiskers is spared. PMID:27486390

  4. Space construction base control system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.

  5. The design and implementation of hospital-based coordinated care programs.

    PubMed

    Warrick, L H; Christianson, J B; Williams, F G; Netting, F E

    1990-01-01

    This article contains the initial findings of an ongoing evaluation of a hospital-based coordinated care demonstration. The goal of the demonstration is to investigate the appropriateness and feasibility of providing hospital-based case management services for extended periods to elderly individuals living in the community. The rationale for the demonstration is reviewed, and the structure of each participating hospital's coordinated care program is described. Data are presented on the characteristics of clients served by the programs during the first six months of the demonstration. The factors that influenced implementation and early operations of these programs are analyzed, and their implications for hospital managers are discussed.

  6. Kids in Trouble. Coordinating Social and Correctional Service Systems for Youth.

    ERIC Educational Resources Information Center

    National Governors' Association, Washington, DC. Center for Policy Research.

    This report is based on a review of literature, statistical data, and a range of community-based programs for juvenile offenders, studied during the past 5 years by the National Governors' Association. The report provides an overview of innovative approaches to program design and coordination of services for delinquent youth. It describes several…

  7. A practical coordinate unification method for integrated tactile-optical measuring system

    NASA Astrophysics Data System (ADS)

    Li, Feng; Peter Longstaff, Andrew; Fletcher, Simon; Myers, Alan

    2014-04-01

    To meet the requirement of both high speed and high accuracy 3D measurements for dimensional metrology, multi-sensor measuring systems have been developed to measure, analyse and reverse engineer the geometry of objects. This paper presents a new development in coordinate unification called the "centroid of spherical centres" method, which can be used instead of the traditional method which uses three datum-points to perform the geometric transformation and unification of tactile and optical sensors. The benefits of the proposed method are improved accuracy in coordinate unification and the method is used to integrate a coordinate measuring machine (CMM) and optical sensors (structured light scanning system and FaroArm laser line probe). A sphere-plate artefact is developed for data fusion of the multi-sensor system and experimental results validate the accuracy and effectiveness of this method.

  8. Coordination dynamics in a socially situated nervous system.

    PubMed

    Coey, Charles A; Varlet, Manuel; Richardson, Michael J

    2012-01-01

    Traditional theories of cognitive science have typically accounted for the organization of human behavior by detailing requisite computational/representational functions and identifying neurological mechanisms that might perform these functions. Put simply, such approaches hold that neural activity causes behavior. This same general framework has been extended to accounts of human social behavior via concepts such as "common-coding" and "co-representation" and much recent neurological research has been devoted to brain structures that might execute these social-cognitive functions. Although these neural processes are unquestionably involved in the organization and control of human social interactions, there is good reason to question whether they should be accorded explanatory primacy. Alternatively, we propose that a full appreciation of the role of neural processes in social interactions requires appropriately situating them in their context of embodied-embedded constraints. To this end, we introduce concepts from dynamical systems theory and review research demonstrating that the organization of human behavior, including social behavior, can be accounted for in terms of self-organizing processes and lawful dynamics of animal-environment systems. Ultimately, we hope that these alternative concepts can complement the recent advances in cognitive neuroscience and thereby provide opportunities to develop a complete and coherent account of human social interaction.

  9. Effects of coordinate system choice on measured regional myocardial function in short-axis cine electron-beam tomography

    NASA Astrophysics Data System (ADS)

    Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II

    1995-05-01

    is an interactive program with a graphical user interface which facilitates the simulation of a wide variety of dynamic ventricular cross sections. Analysis of these simulations has led to a better understanding of how polar coordinate system placement influences the results of quantitative regional ventricular function assessment. It has also created new insight into how the appropriateness of the placement of such a polar coordinate systems can be objectively assessed. The validity of the conclusions drawn from the analysis of simulated ventricular shapes was validated through the analysis of outlines extracted from cine electron beam computed tomographic images. This was done using another interactive software tool developed specifically for this purpose. With this tool, the effects on regional function parameters of various choices for origin placement can be directly observed. This has proven to reinforce the conclusions drawn from the simulations and has led to the modification of the procedures used in our laboratory. Conclusions: The so-called floating coordinate systems are superior to fixed ones for quantification of regional left ventricular contraction in almost every respect. The use of regional ejection fractions with a coordinate system origin located at the centroid of the endocardial surface can lead to 180 degree errors in identifying the location of a myocardial infarction. This problem is less pronounced with midline and epicardium- based centroids and does not occur when the centroid of the myocardium is used. The quantified migration of myocardial mass across sector boundaries is a useful indicator of an inappropriate choice of coordinate system origin. When the centroid of the myocardium falls well within the ventricular cavity, as it usually does, it is a better location for the origin for regional analysis than any of the other centroids analyzed.

  10. The Empirical Comparison of Coordinate Transformation Models and Distortion Modeling Methods Based on a Case Study of Croatia

    NASA Astrophysics Data System (ADS)

    Grgic, M.; Varga, M.; Bašić, T.

    2015-12-01

    Several coordinate transformation models enable performing of the coordinate transformations between the historical astro-geodetic datums, which were utilized before the GNSS (Global Navigation Satellite System) technologies were developed, and datums related to the International Terrestrial Reference System (ITRS), which today are most often used to determine the position. The decision on the most appropriate coordinate transformation model is influenced by many factors, such as: required accuracy, available computational resources, possibility of the model application regarding the size and shape of the territory, coordinate distortion that very often exist in historical astro-geodetic datums, etc. This study is based on the geodetic data of the Republic of Croatia in both, historical and ITRS-related datum. It investigates different transformation models, including conformal Molodensky 3 parameters (p) and 5p (standard and abridged) transformation models, 7p transformation models (Bursa-Wolf and Molodensky-Badekas model), Affine transformation models (8p, 9p, 12p), and Multiple Regression Equation approach. Besides, it investigates the 7p, 8p, 9p, and 12p transformation models extended with distortion modeling, and the grid based only transformation model (NTv2 model). Furthermore, several distortion modeling methods were used to produce various models of distortion shifts in different resolutions. Thereafter, their performance and the performance of the transformation models was evaluated using summary statistics derived from the remained positional residuals that were computed for the independent control spatial data set. Lastly, the most appropriate method(s) of distortion modeling and most appropriate coordinate transformation model(s) were defined regarding the required accuracy for the Croatian case.

  11. HotEye (tm) Based Coordinate Measuring Machine for Forging Industry

    SciTech Connect

    OG Technologies

    2003-06-09

    The objective of this project is to develop a 3 dimensional measurement system for the domestic forging industry based on HotEye{trademark}. This technology will allow high definition camera to accurately image a red hot object. The project marries conventional Coordinate Measurement Machine ''CMM'' technology to HotEye{trademark} technology to permit the accurate measurement of forged parts while they are at high temperature. Being able to take such measurements will dramatically reduce the amount of scrap produced by the domestic forging industry. This industry wastes a significant amount of energy because of the high rate of scrap it produces. OGT will: (1) Develop a 3D measurement sensor head that will work on a part at a temperature up to 1,450 C with an accuracy of 0.1mm or better and with a scanning speed of less than 10 seconds for an area of 100mm x 100mm. (2) Develop a Virtual-Fixturing software package to alleviate the need of precise hard fixturing. (3) Integrate the 3D measurement sensor head and the Virtual-Fixturing software into a standard CMM, both hardware (replacing the probes) and software (data format and user interface match) so that the system can automatically perform a complete preprogrammed measurement of a hot product. (4) Test and evaluate the system in a forging facility.

  12. Predictive-model-based dynamic coordination control strategy for power-split hybrid electric bus

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaohua; Yang, Nannan; Wang, Junnian; Song, Dafeng; Zhang, Nong; Shang, Mingli; Liu, Jianxin

    2015-08-01

    Parameter-matching methods and optimal control strategies of the top-selling hybrid electric vehicle (HEV), namely, power-split HEV, are widely studied. In particular, extant research on control strategy focuses on the steady-state energy management strategy to obtain better fuel economy. However, given that multi-power sources are highly coupled in power-split HEVs and influence one another during mode shifting, conducting research on dynamic coordination control strategy (DCCS) to achieve riding comfort is also important. This paper proposes a predictive-model-based DCCS. First, the dynamic model of the objective power-split HEV is built and the mode shifting process is analyzed based on the developed model to determine the reason for the system shock generated. Engine torque estimation algorithm is then designed according to the principle of the nonlinear observer, and the prediction model of the degree of shock is established based on the theory of model predictive control. Finally, the DCCS with adaptation for a complex driving cycle is realized by combining the feedback control and the predictive model. The presented DCCS is validated on the co-simulation platform of AMESim and Simulink. Results show that the shock during mode shifting is well controlled, thereby improving riding comfort.

  13. Conversion of Hanford site well locations to Washington coordinate system of 1983, South Zone 1991 (WCS83S)

    SciTech Connect

    Burnett, R.A.; Tzemos, S.; Dietz, L.A.

    1993-12-01

    Past construction and survey practices have resulted in the use of multiple local coordinate systems for measuring and reporting the horizontal position of wells and other facilities and locations on the Hanford Site. This report describes the development of a coordinate transformation process and algorithm and its application to the conversion of the horizontal coordinates of Hanford site wells from the various local coordinate systems and datums to a single standard coordinate system, the Washington Coordinate system of 1983, South Zone 1991 (WCS83S). The coordinate transformation algorithm, implemented as a computer program called CTRANS, uses standard two-dimensional translation, rotation, and scaling transformation equations and can be applied to any set of horizontal point locations. For each point to be transformed, the coefficients of the transformation equations are calculated locally, using the coordinates of the three nearest registration points (points with known locations in both coordinate systems). The report contains a discussion of efforts to verify and validate both the software and the well location data, a description of the methods used to estimate transformation and registration point accuracy, instructions for using the computer program, and a summary of the Hanford well conversion results for each local coordinate system and datum. Also included are the results of using recent U.S. Army Corps of Engineers survey data to obtain estimated measures of location errors in wells for which the local coordinate data source is undocumented, unverified, and therefore of unknown accuracy.

  14. Efficient Procedure for the Numerical Calculation of Harmonic Vibrational Frequencies Based on Internal Coordinates

    SciTech Connect

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2013-08-15

    We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson’s GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding number using double differentiation in Cartesian coordinates. For molecules of C1 symmetry the computational savings in the energy calculations amount to 36N – 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and trimer) are presented. Finally, in all cases the frequencies based on internal coordinates differ on average by <1 cm–1 from those obtained from Cartesian coordinates.

  15. Efficient procedure for the numerical calculation of harmonic vibrational frequencies based on internal coordinates.

    PubMed

    Miliordos, Evangelos; Xantheas, Sotiris S

    2013-08-15

    We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson's GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding number using double differentiation in Cartesian coordinates. For molecules of C1 symmetry the computational savings in the energy calculations amount to 36N - 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and trimer) are presented. In all cases the frequencies based on internal coordinates differ on average by <1 cm(-1) from those obtained from Cartesian coordinates.

  16. Grid-based methods for diatomic quantum scattering problems: a finite-element, discrete variable representation in prolate spheroidal coordinates

    SciTech Connect

    Tao, Liang; McCurdy, C.W.; Rescigno, T.N.

    2008-11-25

    We show how to combine finite elements and the discrete variable representation in prolate spheroidal coordinates to develop a grid-based approach for quantum mechanical studies involving diatomic molecular targets. Prolate spheroidal coordinates are a natural choice for diatomic systems and have been used previously in a variety of bound-state applications. The use of exterior complex scaling in the present implementation allows for a transparently simple way of enforcing Coulomb boundary conditions and therefore straightforward application to electronic continuum problems. Illustrative examples involving the bound and continuum states of H2+, as well as the calculation of photoionization cross sections, show that the speed and accuracy of the present approach offer distinct advantages over methods based on single-center expansions.

  17. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    NASA Technical Reports Server (NTRS)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  18. Coordinate-Space Hartree-Fock-Bogoliubov Solvers for Superfluid Fermi Systems in Large Boxes

    SciTech Connect

    Pei, J. C.; Fann, George I; Harrison, Robert J; Nazarewicz, W.; Hill, Judith C; Galindo, Diego A; Jia, Jun

    2012-01-01

    The self-consistent Hartree-Fock-Bogoliubov problem in large boxes can be solved accurately in the coordinate space with the recently developed solvers HFB-AX (2D) and MADNESS-HFB (3D). This is essential for the description of superfluid Fermi systems with complicated topologies and significant spatial extend, such as fissioning nuclei, weakly-bound nuclei, nuclear matter in the neutron star rust, and ultracold Fermi atoms in elongated traps. The HFB-AX solver based on B-spline techniques uses a hybrid MPI and OpenMP programming model for parallel computation for distributed parallel computation, within a node multi-threaded LAPACK and BLAS libraries are used to further enable parallel calculations of large eigensystems. The MADNESS-HFB solver uses a novel multi-resolution analysis based adaptive pseudo-spectral techniques to enable fully parallel 3D calculations of very large systems. In this work we present benchmark results for HFB-AX and MADNESS-HFB on ultracold trapped fermions.

  19. Informatics Systems and Tools to Facilitate Patient-centered Care Coordination

    PubMed Central

    Kneale, L.

    2015-01-01

    Summary Introduction There is a growing international focus on patient-centered care. A model designed to facilitate this type of care in the primary care setting is the patient-centered medical home. This model of care strives to be patient-focused, comprehensive, team-based, coordinated, accessible, and focused on quality and safety of care. Objective The objective of this paper is to identify the current status and future trends of patient-centered care and the role of informatics systems and tools in facilitating this model of care. Methods In this paper we review recent scientific literature of the past four years to identify trends and state of current evidence when it comes to patient-centered care overall, and more specifically medical homes. Results There are several studies that indicate growth and development in seven informatics areas within patient-centered care, namely clinical decision support, registries, team care, care transitions, personal health records, telehealth, and measurement. In some cases we are still lacking large randomized clinical trials and the evidence base is not always solid, but findings strongly indicate the potential of informatics to support patient-centered care. Conclusion Current evidence indicates that advancements have been made in implementing and evaluating patient-centered care models. Technical, legal, and practical challenges still remain. Further examination of the impact of patient-centered informatics tools and systems on clinical outcomes is needed. PMID:26293847

  20. Coordinate systems and transformations for 3D modeling: the unifying concept in the RADIUS common development environment

    NASA Astrophysics Data System (ADS)

    Quam, Lynn H.; Heller, Aaron J.

    1996-02-01

    The RADIUS Common Development Environment pulls together many diverse functions into an integrated whole. The main goal of the environment is to provide a system to do interactive modeling of 3-dimensional scenes from multiple images, as well as, providing an infrastructure to support the research in and implementation of image understanding-based algorithms for this and other tasks. The RCDE contains facilities for: CAD-system-like 3D modeling; image processing; electronic-light-table image viewing and exploitation; frame and non-frame camera photogrammetry; and photo realistic rendering. The major achievement of the system is the high level of integration and interoperability between and among these facilities. The key realization that enables this is that every entity represented in the RCDE has an associated local coordinate system. This includes cartographic and cultural features, images and sub-images, text annotations, graphical user interface elements, photogrammetric conjugate points and even the earth itself. These entities are tied together through a flexible and efficient network of coordinate transformations. This allows each type of data to be represented, manipulated, and displayed in the most convenient and precise form, without sacrificing functionality or generality, in addition to enabling the fusion of different types of geometric data. In this paper, we explain the coordinate system representations and transformation facilities in the RCDE and outline some of the rationale and strategies behind the current design and implementation. Also included are examples drawn from its use in the government sponsored RADIUS program.

  1. Synthesis and characterization of linear cerium(IV) Schiff-base coordination polymers

    SciTech Connect

    Chen, H.; Cronin, J.A.; Archer, R.D. . Dept. of Chemistry)

    1994-04-11

    The first soluble linear Schiff-base rare earth coordination polymer, catena-poly[cerium-(4)-[mu]-N,N[prime],N[double prime],N[prime][double prime]-tetrasalicylidene (3,3[prime]-diaminobenzidinato)-O,N,N[prime],O[prime],O[double prime],N[double prime],N[prime][double prime],O[prime][double prime

  2. A barium based coordination polymer for the activity assay of deoxyribonuclease I.

    PubMed

    Song, Chan; Wang, Guan-Yao; Wang, Ya-Ling; Kong, De-Ming; Wang, Yong-Jian; Li, Yue; Ruan, Wen-Juan

    2014-10-01

    A new coordination polymer which shows an unusual 2D inorganic connectivity was constructed. This compound exhibits distinct fluorescence quenching ability to the dye-labeled single-stranded DNA probes with different lengths, based on which an analytical method was developed for the activity assay of deoxyribonuclease I.

  3. DACUM Research Chart on the Work-Based Learning Teacher Coordinator. Post Research Report

    ERIC Educational Resources Information Center

    Wichowski, Chester P.

    2011-01-01

    A research and development effort was undertaken to provide definition and validate the emerging role of the Work-Based Learning Teacher Coordinator through the use of a DACUM process in cooperation with the Pennsylvania Cooperative Education Association with funding support provided by the Pennsylvania Department of Education, Bureau of Career…

  4. Colorimetric Detection of Creatinine Based on Plasmonic Nanoparticles via Synergistic Coordination Chemistry.

    PubMed

    Du, Jianjun; Zhu, Bowen; Leow, Wan Ru; Chen, Shi; Sum, Tze Chien; Peng, Xiaojun; Chen, Xiaodong

    2015-09-01

    A simple and portable colorimetric assay for creatinine detection is fabricated based on the synergistic coordination of creatinine and uric acid with Hg(2+) on the surface of gold nanoparticles, which exhibits good selectivity and sensitivity. Point-of-care clinical creatinine monitoring can be supported for monitoring renal function and diagnosing corresponding renal diseases at home.

  5. A component based implementation of agents and brokers for design coordination

    NASA Technical Reports Server (NTRS)

    Weidner, R. J.

    2001-01-01

    NASA's mission design coordination has been based on expert opinion of parametric data presented in Excel or Powerpoint. Common access is required to more powerful design tools supporting performance simulation and analysis. Components provide the means for inexpensively adding the desired functionality.

  6. High-speed real-time 3-D coordinates measurement based on fringe projection profilometry considering camera lens distortion

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Chen, Qian; Zuo, Chao; Sun, Jiasong; Yu, Shi Ling

    2014-10-01

    Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility, high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction of moving objects and dynamic scenes. However, the camera lens is never perfect and the lens distortion does influence the accuracy of the measurement result, which is often overlooked in the existing real-time 3-D shape measurement systems. To this end, here we present a novel high-speed real-time 3-D coordinates measuring technique based on fringe projection with the consideration of the camera lens distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined and stored in computer memory for real-time fringe correction. The out-of-plane height is obtained firstly and the acquisition for the two corresponding in-plane coordinates follows on the basis of the solved height. Besides, a method of lookup table (LUT) is introduced as well for fast data processing. Our experimental results reveal that the measurement error of the in-plane coordinates has been reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the distortions being eliminated. Moreover, owing to the generated LUTs, a 3-D reconstruction speed of 92.34 frames per second can be achieved.

  7. Setting standards at the forefront of delivery system reform: aligning care coordination quality measures for multiple chronic conditions.

    PubMed

    DuGoff, Eva H; Dy, Sydney; Giovannetti, Erin R; Leff, Bruce; Boyd, Cynthia M

    2013-01-01

    The primary study objective is to assess how three major health reform care coordination initiatives (Accountable Care Organizations, Independence at Home, and Community-Based Care Transitions) measure concepts critical to care coordination for people with multiple chronic conditions. We find that there are major differences in quality measurement across these three large and politically important programs. Quality measures currently used or proposed for these new health reform-related programs addressing care coordination primarily capture continuity of care. Other key areas of care coordination, such as care transitions, patient-centeredness, and cross-cutting care across multiple conditions are infrequently addressed. The lack of a comprehensive and consistent measure set for care coordination will pose challenges for healthcare providers and policy makers who seek, respectively, to provide and reward well-coordinated care. In addition, this heterogeneity in measuring care coordination quality will generate new information, but will inhibit comparisons between these care coordination programs.

  8. Infant Vocal-Motor Coordination: Precursor to the Gesture-Speech System?

    ERIC Educational Resources Information Center

    Iverson, Jana M.; Fagan, Mary K.

    2004-01-01

    This study was designed to provide a general picture of infant vocal-motor coordination and test predictions generated by Iverson and Thelen's (1999) model of the development of the gesture-speech system. Forty-seven 6- to 9-month-old infants were videotaped with a primary caregiver during rattle and toy play. Results indicated an age-related…

  9. Columbia River Coordinated Information System (CIS), 1992-1993 Annual Report.

    SciTech Connect

    Rowe, Mike; Roger, Phillip B.; O'Connor, Dick

    1993-11-01

    The purposes of this report are to: (1) describe the project to date; (2) to document the work and accomplishments of the (CIS) project for Fiscal Year 1993; and (3) to provide a glimpse of future project direction. The concept of a Coordinated Information System (CIS) as an approach to meeting the growing needs for regionally standardized anadromous fish information.

  10. Community Resource Coordinator's Guide. Washington State Community Resource System for Career Education.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    This handbook includes suggestions, guidelines, and techniques for helping a school or school district in planning and managing a system for involving the local community in career education activities for students in grades K-12. Guidelines cover initial planning and organization through implementation and evaluation. A coordinated, systematic…

  11. Coordinated Fuel Cell System Programs for Government and Commercial Applications: Are We in a New Era?

    NASA Technical Reports Server (NTRS)

    Warshay, Marvin; Prokopius, Paul

    1996-01-01

    Though the fuel cell was invented in 1839, it was not until the early 1960's that the fuel cell power system was developed and used for a real application, for the NASA Space Mission Gemini. Unfortunately, fuel cell power systems did not, as a result, become in widespread use. Nevertheless, a great deal of progress has been made by both government and industry, culminating in many successful fuel cell power system demonstrations. Initially, each government agency and each private organization went its own way. Later, it became evident that coordination among programs was essential. An overview is presented of the current coordinated efforts by government and industry in fuel cells, with a sufficient historical background. The primary barriers to coordination of programs were institutional and differing application requirements. Initially, in the institutional area, it was the energy crisis and the formation of DOE which fostered close working relationships among government, manufacturers, and users. The authors discuss the fuel cell power system programs (of NASA, DOE, DOT, DOC, EPRI, GRI, industry, and universities), including missions and applications, technology advances, and demonstrations. The discussion covers the new Solar Regenerative Fuel Cell (RFC) program which has space, defense, and commercial terrestrial applications, and which is an excellent example of both program coordination and the Clinton Administration's dual-use application policy.

  12. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... 25.272 Section 25.272 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.272 General inter-system coordination... shall ensure that there is continuously available means of communications between the satellite...

  13. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... 25.272 Section 25.272 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.272 General inter-system coordination procedures. (a) Each space station licensee in the Fixed-Satellite Service shall establish a...

  14. Comparison, contrast, and critique of four commuter coordination systems. Final report

    SciTech Connect

    Margulies, N.; Baker, J.

    1990-02-01

    The review establishes a general understanding of the concept of organizational effectiveness by summarizing major models of effectiveness presented in literature, and specifies a useful framework for analyzing organizational effectiveness in the 4 commuter coordination systems documented in the report. A model of interorganizational relationships was developed as a result of the interviews and was employed to evaluate the strengths and weaknesses of each organizational form and to generate an ideal type for future rideshare organizations. Legislation legitimizing the commuter coordination service was found to be a critical factor in the ability of the agencies to impact their environments.

  15. A space-time tensor formulation for continuum mechanics in general curvilinear, moving, and deforming coordinate systems

    NASA Technical Reports Server (NTRS)

    Avis, L. M.

    1976-01-01

    Tensor methods are used to express the continuum equations of motion in general curvilinear, moving, and deforming coordinate systems. The space-time tensor formulation is applicable to situations in which, for example, the boundaries move and deform. Placing a coordinate surface on such a boundary simplifies the boundary condition treatment. The space-time tensor formulation is also applicable to coordinate systems with coordinate surfaces defined as surfaces of constant pressure, density, temperature, or any other scalar continuum field function. The vanishing of the function gradient components along the coordinate surfaces may simplify the set of governing equations. In numerical integration of the equations of motion, the freedom of motion of the coordinate surfaces provides a potential for enhanced resolution of the continuum field function. An example problem of an incompressible, inviscid fluid with a top free surface is considered, where the surfaces of constant pressure (including the top free surface) are coordinate surfaces.

  16. A Perylene-Based Microporous Coordination Polymer Interacts Selectively with Electron-Poor Aromatics.

    PubMed

    Tran, Ly D; Ma, Jialiu; Wong-Foy, Antek G; Matzger, Adam J

    2016-04-11

    The design, synthesis, and properties of the new microporous coordination polymer UMCM-310 are described. The unique electronic character of the perylene-based linker enables selective interaction with electron-poor aromatics leading to efficient separation of nitroaromatics. UMCM-310 possesses high surface area and large pore size and thus permits the separation of large organic molecules based on adsorption rather than size exclusion.

  17. Study of variant design of SML-based coordinate measuring machines automatic measurement plan

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Wang, Boxiong; Wang, Junying; Chen, Huacheng; Luo, Xiuzhi

    2006-11-01

    It is the trend of Coordinate Measuring Machine (CMM) measurement technology that creates measurement plan automatically. Based on Pro/CMM module of Pro/E software, the idea for automatic generation of the main DMIS (Dimensional Measuring Interface Standard) file of measurement plan is described. To satisfy the special measurement requirements of different customers conveniently, a method of variant design of DMIS file based on SML (Tabular Layouts of Article Characteristics) and the main DMIS file is proposed.

  18. Columbia River Coordinated Information System (CIS); Phase II Cooperative Agreement, 1992 Technical Report.

    SciTech Connect

    Roger, Phillip B.

    1993-05-01

    Anadromous salmon in the Columbia River Basin are presently far below historic level of production, due to the impacts of development in the basin. To halt the downward trend in production and ultimately increase returns, the Northwest Power Planning Council developed the Columbia River Basin Fish and Wildlife Program. The Program outlines a coordinated plan for restoring anadromous salmonid runs to the basin. The goals and objectives outlined in the Program require addressing a complex set of problems that encompass a broad range of social, political, economic and biological issues. Resolution of these problems will require the efforts of a number of federal, state, and tribal agencies that have regulatory authority over activities that either directly or indirectly affect anadromous salmonids in the basin. Resource managers have realized the need for coordination in these efforts. The Coordinated Information System is designed to share information critical to Program development and evaluation efficiently among the numerous participants in the restoration process.

  19. Influence of the supramolecular order on the electrical properties of 1D coordination polymers based materials

    NASA Astrophysics Data System (ADS)

    Musumeci, Chiara; Osella, Silvio; Ferlauto, Laura; Niedzialek, Dorota; Grisanti, Luca; Bonacchi, Sara; Jouaiti, Abdelaziz; Milita, Silvia; Ciesielski, Artur; Beljonne, David; Hosseini, Mir Wais; Samorì, Paolo

    2016-01-01

    The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(ii) or Pd(ii) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(ii) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(ii) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results provide important guidelines for the design of conductive metal coordination polymers, highlighting the fundamental role of both intra- as well as inter-chain interactions, thus opening up new perspectives towards their application in functional devices.The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(ii) or Pd(ii) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(ii) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(ii) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results

  20. Evaluation of Eight Methods for Aligning Orientation of Two Coordinate Systems.

    PubMed

    Mecheri, Hakim; Robert-Lachaine, Xavier; Larue, Christian; Plamondon, André

    2016-08-01

    The aim of this study was to evaluate eight methods for aligning the orientation of two different local coordinate systems. Alignment is very important when combining two different systems of motion analysis. Two of the methods were developed specifically for biomechanical studies, and because there have been at least three decades of algorithm development in robotics, it was decided to include six methods from this field. To compare these methods, an Xsens sensor and two Optotrak clusters were attached to a Plexiglas plate. The first optical marker cluster was fixed on the sensor and 20 trials were recorded. The error of alignment was calculated for each trial, and the mean, the standard deviation, and the maximum values of this error over all trials were reported. One-way repeated measures analysis of variance revealed that the alignment error differed significantly across the eight methods. Post-hoc tests showed that the alignment error from the methods based on angular velocities was significantly lower than for the other methods. The method using angular velocities performed the best, with an average error of 0.17 ± 0.08 deg. We therefore recommend this method, which is easy to perform and provides accurate alignment. PMID:27245737

  1. Ant-based distributed protocol for coordination of a swarm of robots in demining mission

    NASA Astrophysics Data System (ADS)

    De Rango, Floriano; Palmieri, Nunzia

    2016-05-01

    Coordination among multiple robots has been extensively studied, since a number of practical real problem s can be performed using an effective approach. In this paper is investigated a collective task that requires a multi-robot system to search for randomly distributed mines in an unknown environment and disarm them cooperatively. The communication among the swarm of robots influences the overall performance in terms of time to execute the task or consumed energy. To address this problem, a new distributed recruiting protocol to coordinate a swarm of robots in demining mission, is described. This problem is a multi-objective problem and two bio inspired strategies are used. The novelty of this approach lies in the combination of direct and indirect communication: on one hand an indirect communication among robots is used for the exploration of the environment, on the other hand a novel protocol is used to accomplish the recruiting and coordination of the robots for demining task. This protocol attempts to tackle the question of how autonomous robot can coordinate themselves into an unknown environment relying on simple low-level capabilities. The strategy is able to adapt the current system dynamics if the number of robots or the environment structure or both change. The proposed approach has been implemented and has been evaluated in several simulated environments. We analyzed the impact of our approach in the overall performance of a robot team. Experimental results indicated the effectiveness and efficiency of the proposed protocol to spread the robots in the environment.

  2. Transformation from proper time on earth to coordinate time in solar system barycentric space-time frame of reference

    NASA Technical Reports Server (NTRS)

    Moyer, T. D.

    1976-01-01

    An expression was derived for the time transformation t - tau, where t is coordinate time in the solar system barycentric space-time frame of reference and tau is proper time obtained from a fixed atomic clock on earth. This transformation is suitable for use in the computation of high-precision earth-based range and Doppler observables of a spacecraft or celestial body located anywhere in the solar system; it can also be used in obtaining computed values of very long baseline interferometry data types. The formulation for computing range and Doppler observables, which is an explicit function of the transformation t - tau, is described briefly.

  3. Construction of a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates

    PubMed Central

    Jiang, Wei; Fang, Baishan

    2016-01-01

    Systems that can regulate and coordinate the expression of multiple enzymes for metabolic regulation and synthesis of important drug intermediates are poorly explored. In this work, a strategy for constructing a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates was developed and evaluated by connecting protein-protein expressions, regulating the strength of ribosome binding sites (RBS) and detecting the system capacity for producing chiral amino acid. Results demonstrated that the dual-enzyme system had good enantioselectivity, low cost, high stability, high conversion rate and approximately 100% substrate conversion. This study has paved a new way of exploring metabolic mechanism of functional genes and engineering whole cell-catalysts for synthesis of chiral α-hydroxy acids or chiral amino acids. PMID:27456301

  4. Construction of a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates.

    PubMed

    Jiang, Wei; Fang, Baishan

    2016-01-01

    Systems that can regulate and coordinate the expression of multiple enzymes for metabolic regulation and synthesis of important drug intermediates are poorly explored. In this work, a strategy for constructing a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates was developed and evaluated by connecting protein-protein expressions, regulating the strength of ribosome binding sites (RBS) and detecting the system capacity for producing chiral amino acid. Results demonstrated that the dual-enzyme system had good enantioselectivity, low cost, high stability, high conversion rate and approximately 100% substrate conversion. This study has paved a new way of exploring metabolic mechanism of functional genes and engineering whole cell-catalysts for synthesis of chiral α-hydroxy acids or chiral amino acids. PMID:27456301

  5. Platinum(II)-Oligonucleotide Coordination Based Aptasensor for Simple and Selective Detection of Platinum Compounds.

    PubMed

    Cai, Sheng; Tian, Xueke; Sun, Lianli; Hu, Haihong; Zheng, Shirui; Jiang, Huidi; Yu, Lushan; Zeng, Su

    2015-10-20

    Wide use of platinum-based chemotherapeutic regimens for the treatment for carcinoma calls for a simple and selective detection of platinum compound in biological samples. On the basis of the platinum(II)-base pair coordination, a novel type of aptameric platform for platinum detection has been introduced. This chemiluminescence (CL) aptasensor consists of a designed streptavidin (SA) aptamer sequence in which several base pairs were replaced by G-G mismatches. Only in the presence of platinum, coordination occurs between the platinum and G-G base pairs as opposed to the hydrogen-bonded G-C base pairs, which leads to SA aptamer sequence activation, resulting in their binding to SA coated magnetic beads. These Pt-DNA coordination events were monitored by a simple and direct luminol-peroxide CL reaction through horseradish peroxidase (HRP) catalysis with a strong chemiluminescence emission. The validated ranges of quantification were 0.12-240 μM with a limit of detection of 60 nM and selectivity over other metal ions. This assay was also successfully used in urine sample determination. It will be a promising candidate for the detection of platinum in biomedical and environmental samples.

  6. Identification of Communication and Coordination Issues in the US Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John

    2001-01-01

    Today's air traffic control system is approaching the point of saturation, as evidenced by increasing delays across the National Airspace System (NAS). There exists an opportunity to enhance NAS efficiency and reduce delays by improving strategic communication throughout the ATC system. Although several measures have been taken to improve communication (e.g., Collaborative Decision Making tools), communication issues between ATC facilities remain. It is hypothesized that by identifying the key issues plaguing inter-facility strategic communication, steps can be taken to enhance these communications, and therefore ATC system efficiency. In this report, a series of site visits were performed at Boston and New York ATC facilities as well as at the Air Traffic Control System Command Center. The results from these site visits were used to determine the current communication and coordination structure of Traffic Management Coordinators, who hold a pivotal role in inter-facility communications. Several themes emerged from the study, including: ambiguity of organizational structure in the current ATC system, awkward coordination between ATC facilities, information flow issues, organizational culture issues, and negotiation behaviors used to cope with organizational culture issues.

  7. Distributed Data Integration Prototype System for Coordinated Enhanced Observing Period (CEOP) Data

    NASA Astrophysics Data System (ADS)

    Miura, S. H.; Aizawa, K.

    2006-12-01

    The purpose of the JAXA Prototype for CEOP Distributed Data Integration Service is to provide user-friendly access to the CEOP (in-situ, satellite and global gridded model output) data. The system is distributed in the sense that, while the system is located in Tokyo, the data is located in archive centers which are globally distributed. The in-situ data is archived at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) in Boulder, Colorado, USA. The NWP global gridded model output data is archived at the Max Planck Institute for Meteorology (MPIM) in cooperation with the World Data Center for Climate (WDC-Climate) in Hamburg, Germany. The satellite data is archived at the IIS (Institute of Industrial Science) at the University of Tokyo, in Tokyo, Japan. Other (non-CEOP) globally distributed data that is on DODS servers can be added in the future according to scientist's requests. The system is integrated in the sense that all of the data is temporally and geospatially coordinated and can be selected and viewed within the same system. The in-situ data are time series data and the global gridded model output data and satellite data are 4D (time series of 2D scenes at levels or in multiple frequency bands). The system knows the geolocation and time of all data sets and supports selection of the data through a uniform set of menus, by data type, reference site and station, and supports sub-setting according to time, area and height/depth. The basic concept for developing the JAXA prototype is " to use existing software where possible". Based on this concept, OPeNDAP, which is widely used in the ocean and atmospheric sciences, was chosen as the data access protocol to enable "access to distributed data". And also the open source Live Access Serve (LAS) was selected as the JAXA Prototype component to enable "integration service". Users can access the system at http://jaxa.ceos.org/wtf_ceop. This system has been online since June 1, 2005

  8. Advanced visualization platform for surgical operating room coordination: distributed video board system.

    PubMed

    Hu, Peter F; Xiao, Yan; Ho, Danny; Mackenzie, Colin F; Hu, Hao; Voigt, Roger; Martz, Douglas

    2006-06-01

    One of the major challenges for day-of-surgery operating room coordination is accurate and timely situation awareness. Distributed and secure real-time status information is key to addressing these challenges. This article reports on the design and implementation of a passive status monitoring system in a 19-room surgical suite of a major academic medical center. Key design requirements considered included integrated real-time operating room status display, access control, security, and network impact. The system used live operating room video images and patient vital signs obtained through monitors to automatically update events and operating room status. Images were presented on a "need-to-know" basis, and access was controlled by identification badge authorization. The system delivered reliable real-time operating room images and status with acceptable network impact. Operating room status was visualized at 4 separate locations and was used continuously by clinicians and operating room service providers to coordinate operating room activities. PMID:17012154

  9. Nonretinotopic perception of orientation: Temporal integration of basic features operates in object-based coordinates.

    PubMed

    Wutz, Andreas; Drewes, Jan; Melcher, David

    2016-08-01

    Early, feed-forward visual processing is organized in a retinotopic reference frame. In contrast, visual feature integration on longer time scales can involve object-based or spatiotopic coordinates. For example, in the Ternus-Pikler (T-P) apparent motion display, object identity is mapped across the object motion path. Here, we report evidence from three experiments supporting nonretinotopic feature integration even for the most paradigmatic example of retinotopically-defined features: orientation. We presented observers with a repeated series of T-P displays in which the perceived rotation of Gabor gratings indicates processing in either retinotopic or object-based coordinates. In Experiment 1, the frequency of perceived retinotopic rotations decreased exponentially for longer interstimulus intervals (ISIs) between T-P display frames, with object-based percepts dominating after about 150-250 ms. In a second experiment, we show that motion and rotation judgments depend on the perception of a moving object during the T-P display ISIs rather than only on temporal factors. In Experiment 3, we cued the observers' attentional state either toward a retinotopic or object motion-based reference frame and then tracked both the observers' eye position and the time course of the perceptual bias while viewing identical T-P display sequences. Overall, we report novel evidence for spatiotemporal integration of even basic visual features such as orientation in nonretinotopic coordinates, in order to support perceptual constancy across self- and object motion.

  10. Influence of the supramolecular order on the electrical properties of 1D coordination polymers based materials.

    PubMed

    Musumeci, Chiara; Osella, Silvio; Ferlauto, Laura; Niedzialek, Dorota; Grisanti, Luca; Bonacchi, Sara; Jouaiti, Abdelaziz; Milita, Silvia; Ciesielski, Artur; Beljonne, David; Hosseini, Mir Wais; Samorì, Paolo

    2016-01-28

    The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(II) or Pd(II) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(II) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(II) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results provide important guidelines for the design of conductive metal coordination polymers, highlighting the fundamental role of both intra- as well as inter-chain interactions, thus opening up new perspectives towards their application in functional devices. PMID:26754960

  11. Nonretinotopic perception of orientation: Temporal integration of basic features operates in object-based coordinates.

    PubMed

    Wutz, Andreas; Drewes, Jan; Melcher, David

    2016-08-01

    Early, feed-forward visual processing is organized in a retinotopic reference frame. In contrast, visual feature integration on longer time scales can involve object-based or spatiotopic coordinates. For example, in the Ternus-Pikler (T-P) apparent motion display, object identity is mapped across the object motion path. Here, we report evidence from three experiments supporting nonretinotopic feature integration even for the most paradigmatic example of retinotopically-defined features: orientation. We presented observers with a repeated series of T-P displays in which the perceived rotation of Gabor gratings indicates processing in either retinotopic or object-based coordinates. In Experiment 1, the frequency of perceived retinotopic rotations decreased exponentially for longer interstimulus intervals (ISIs) between T-P display frames, with object-based percepts dominating after about 150-250 ms. In a second experiment, we show that motion and rotation judgments depend on the perception of a moving object during the T-P display ISIs rather than only on temporal factors. In Experiment 3, we cued the observers' attentional state either toward a retinotopic or object motion-based reference frame and then tracked both the observers' eye position and the time course of the perceptual bias while viewing identical T-P display sequences. Overall, we report novel evidence for spatiotemporal integration of even basic visual features such as orientation in nonretinotopic coordinates, in order to support perceptual constancy across self- and object motion. PMID:27494545

  12. Rational design of mass diffusion metamaterial concentrators based on coordinate transformations

    NASA Astrophysics Data System (ADS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-08-01

    Recent advances in coordinate transformations of Fick's equation have paved the way for the design of metamaterial devices that can manipulate mass diffusion flux. The control of diffusion paths has a great potential for the design of novel catalytic and separation systems in chemical and biomolecular engineering. In order to explore these new applications, it is necessary to understand mass diffusion in coordinate transformation metamaterial devices. In this work, we present a comprehensive study on the impact of structure and material properties on the resultant physical properties of mass concentrator metamaterial shells. The concentration gradient at the core, the total mass flow rate towards the core, and the disturbance of the external concentration field are systematically examined in order to provide guidelines for the rational design and fabrication of metamaterial mass concentrators. A practical case is also presented where the concentration of oxygen diffusing in a polymeric system is studied.

  13. Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation.

    PubMed

    Zou, An-Min; Kumar, Krishna Dev

    2012-07-01

    This brief considers the attitude coordination control problem for spacecraft formation flying when only a subset of the group members has access to the common reference attitude. A quaternion-based distributed attitude coordination control scheme is proposed with consideration of the input saturation and with the aid of the sliding-mode observer, separation principle theorem, Chebyshev neural networks, smooth projection algorithm, and robust control technique. Using graph theory and a Lyapunov-based approach, it is shown that the distributed controller can guarantee the attitude of all spacecraft to converge to a common time-varying reference attitude when the reference attitude is available only to a portion of the group of spacecraft. Numerical simulations are presented to demonstrate the performance of the proposed distributed controller. PMID:24807141

  14. Coordination chemistry, thermodynamics and DFT calculations of copper(II) NNOS Schiff base complexes.

    PubMed

    Esmaielzadeh, Sheida; Azimian, Leila; Shekoohi, Khadijeh; Mohammadi, Khosro

    2014-12-10

    Synthesis, magnetic and spectroscopy techniques are described for five copper(II) containing tetradentate Schiff bases are synthesized from methyl-2-(N-2'-aminoethane), (1-methyl-2'-aminoethane), (3-aminopropylamino)cyclopentenedithiocarboxylate. Molar conductance and infrared spectral evidences indicate that the complexes are four-coordinate in which the Schiff bases are coordinated as NNOS ligands. Room temperature μeff values for the complexes are 1.71-1.80B.M. corresponding to one unpaired electron respectively. The formation constants and free energies were measured spectrophotometrically, at constant ionic strength 0.1M (NaClO4), at 25˚C in DMF solvent. Also, the DFT calculations were carried out to determine the structural and the geometrical properties of the complexes. The DFT results are further supported by the experimental formation constants of these complexes.

  15. Novel 3D bismuth-based coordination polymers: Synthesis, structure, and second harmonic generation properties

    SciTech Connect

    Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; Loye, Hans-Conrad zur

    2012-11-15

    Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi{sub 2}O{sub 2}(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P2{sub 1} (a=9.6479(9) A, b=4.2349(4) A, c=11.9615(11) A, {beta}=109.587(1) Degree-Sign ), which contains Bi{sub 2}O{sub 2} chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P2{sub 1} (a=19.0855(7) A, b=13.7706(5) A, c=19.2429(7) A, {beta}=90.701(1) Degree-Sign ) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi{sup 3+}, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer. - Graphical Abstract: Structures of two new, polar, 3D Bismuth(III)-based coordination polymers: Bi{sub 2}O{sub 2}(pydc) (compound 1), and Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (compound 2). Highlights: Black-Right-Pointing-Pointer New, polar, 3D Bismuth(III)-based coordination polymers. Black-Right-Pointing-Pointer First polar bismuth-based coordination polymers synthesized via a 'hybrid' strategy. Black-Right-Pointing-Pointer Combination of stereochemically-active lone pairs and unsymmetrical or chiral ligands. Black-Right-Pointing-Pointer Synthesis of class C-SHG materials based on Kurtz-Perry categories.

  16. Network Performance and Coordination in the Health, Education, Telecommunications System. Satellite Technology Demonstration, Technical Report No. 0422.

    ERIC Educational Resources Information Center

    Braunstein, Jean; Janky, James M.

    This paper describes the network coordination for the Health, Education, Telecommunications (HET) system. Specifically, it discusses HET network performance as a function of a specially-developed coordination system which was designed to link terrestrial equipment to satellite operations centers. Because all procedures and equipment developed for…

  17. Performance of Language-Coordinated Collective Systems: A Study of Wine Recognition and Description

    PubMed Central

    Zubek, Julian; Denkiewicz, Michał; Dębska, Agnieszka; Radkowska, Alicja; Komorowska-Mach, Joanna; Litwin, Piotr; Stępień, Magdalena; Kucińska, Adrianna; Sitarska, Ewa; Komorowska, Krystyna; Fusaroli, Riccardo; Tylén, Kristian; Rączaszek-Leonardi, Joanna

    2016-01-01

    Most of our perceptions of and engagements with the world are shaped by our immersion in social interactions, cultural traditions, tools and linguistic categories. In this study we experimentally investigate the impact of two types of language-based coordination on the recognition and description of complex sensory stimuli: that of red wine. Participants were asked to taste, remember and successively recognize samples of wines within a larger set in a two-by-two experimental design: (1) either individually or in pairs, and (2) with or without the support of a sommelier card—a cultural linguistic tool designed for wine description. Both effectiveness of recognition and the kinds of errors in the four conditions were analyzed. While our experimental manipulations did not impact recognition accuracy, bias-variance decomposition of error revealed non-trivial differences in how participants solved the task. Pairs generally displayed reduced bias and increased variance compared to individuals, however the variance dropped significantly when they used the sommelier card. The effect of sommelier card reducing the variance was observed only in pairs, individuals did not seem to benefit from the cultural linguistic tool. Analysis of descriptions generated with the aid of sommelier cards shows that pairs were more coherent and discriminative than individuals. The findings are discussed in terms of global properties and dynamics of collective systems when constrained by different types of cultural practices. PMID:27729875

  18. Poisson Coordinates.

    PubMed

    Li, Xian-Ying; Hu, Shi-Min

    2013-02-01

    Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

  19. Shape assisted fabrication of fluorescent cages of squarate based metal-organic coordination frameworks.

    PubMed

    Jayaramulu, Kolleboyina; Krishna, Katla Sai; George, Subi J; Eswaramoorthy, Muthuswamy; Maji, Tapas Kumar

    2013-05-11

    Micronic cage structures of squarate based metal-organic coordination frameworks (MOCFs) have been fabricated for the first time by specific anion selective etching of metal squarate cubes. Time and stoichiometry dependent synthesis and the corresponding microscopic studies have provided mechanistic insight into the cage formation. Furthermore, a non-covalent post-synthetic strategy has been adopted to functionalize the micronic cubes or cages with chromophores rendering the resulting hybrids green fluorescent.

  20. Estimability and dependency analysis of model parameters based on delay coordinates

    NASA Astrophysics Data System (ADS)

    Schumann-Bischoff, J.; Luther, S.; Parlitz, U.

    2016-09-01

    In data-driven system identification, values of parameters and not observed variables of a given model of a dynamical system are estimated from measured time series. We address the question of estimability and redundancy of parameters and variables, that is, whether unique results can be expected for the estimates or whether, for example, different combinations of parameter values would provide the same measured output. This question is answered by analyzing the null space of the linearized delay coordinates map. Examples with zero-dimensional, one-dimensional, and two-dimensional null spaces are presented employing the Hindmarsh-Rose model, the Colpitts oscillator, and the Rössler system.

  1. Pd(II) coordinated deprotonated diphenyl phosphino amino pyridine: reactivity towards solvent, base, and acid.

    PubMed

    Pratihar, Sanjay; Pegu, Rupa; Guha, Ankur Kanti; Sarma, Bipul

    2014-12-01

    The reactivity and stability of P(III)-N and P(III)≈N bonds will be different towards various solvents, bases, and acids because of their difference in bond strength due to different N-pπ-P-dπ donor bonding. For this, a P≈N containing Pd(II) complex, [Pd(DPAP)2] (C1), was synthesized from the reaction between PdCl2(COD) (COD = 1,4-cyclooctadiene) and 2 equiv. DPAP (diphenyl phosphino amino pyridine) ligand, followed by deprotonation of the N-H proton of the coordinated DPAP. The reactivity and stability of coordinated P≈N in complex C1 were determined in various protic and aprotic solvents, bases, and acids. The inertness of coordinated P=N towards various solvents and bases was observed, whereas protonation occurs at the nitrogen of P=N in the presence of an acid to form P-NH, with the generation of dicationic palladium complexes (C2). The dicationic complex C2 is found to be stable in the presence of bulky monoanionic Sn(IV) reagents, whereas, in the presence of more nucleophilic anions like Br(-) or I(-), dissociation of one DPAP ligand from dicationic Pd(II) complexes C2 leads to the generation of Pd(DPAP)X2 (X = Br(-), I(-)). Finally, the utility of the complexes towards Suzuki coupling of various aryl bromides and aryl or heteraryl boronic acids has been checked.

  2. Regularization of the circular restricted three-body problem using `similar' coordinate systems

    NASA Astrophysics Data System (ADS)

    Roman, R.; Szücs-Csillik, I.

    2012-04-01

    The regularization of a new problem, namely the three-body problem, using `similar' coordinate system is proposed. For this purpose we use the relation of `similarity', which has been introduced as an equivalence relation in a previous paper (see Roman in Astrophys. Space Sci. doi:10.1007/s10509-011-0747-1, 2011). First we write the Hamiltonian function, the equations of motion in canonical form, and then using a generating function, we obtain the transformed equations of motion. After the coordinates transformations, we introduce the fictitious time, to regularize the equations of motion. Explicit formulas are given for the regularization in the coordinate systems centered in the more massive and the less massive star of the binary system. The `similar' polar angle's definition is introduced, in order to analyze the regularization's geometrical transformation. The effect of Levi-Civita's transformation is described in a geometrical manner. Using the resulted regularized equations, we analyze and compare these canonical equations numerically, for the Earth-Moon binary system.

  3. Patterns of Horse-Rider Coordination during Endurance Race: A Dynamical System Approach

    PubMed Central

    Viry, Sylvain; Sleimen-Malkoun, Rita; Temprado, Jean-Jacques; Frances, Jean-Philippe; Berton, Eric; Laurent, Michel; Nicol, Caroline

    2013-01-01

    In riding, most biomechanical studies have focused on the description of the horse locomotion in unridden condition. In this study, we draw the prospect of how the basic principles established in inter-personal coordination by the theory of Coordination Dynamics may provide a conceptual and methodological framework for understanding the horse-rider coupling. The recent development of mobile technologies allows combined horse and rider recordings during long lasting natural events such as endurance races. Six international horse-rider dyads were thus recorded during a 120 km race by using two tri-axial accelerometers placed on the horses and riders, respectively. The analysis concentrated on their combined vertical displacements. The obtained shapes and angles of Lissajous plots together with values of relative phase between horse and rider displacements at lower reversal point allowed us to characterize four coordination patterns, reflecting the use of two riding techniques per horse's gait (trot and canter). The present study shows that the concepts, methods and tools of self-organizing dynamic system approach offer new directions for understanding horse-rider coordination. The identification of the horse-rider coupling patterns constitutes a firm basis to further study the coalition of multiple constraints that determine their emergence and their dynamics in endurance race. PMID:23940788

  4. [The meaning of the auditory sensory systems asymmetry in highly coordinated manual movement].

    PubMed

    Tkachenko, P V; Bobyntsev, I I

    2012-02-01

    Analysis of the stable correlation of asymmetry of the acoustic stem evoked potentials intervals with parameters of bimanual coordination was performed. Different mechanisms of the auditory asymmetry at the stem level were found in men and women. Optimum bimanual performance in men is provided by adequate co-adjustment of sensor-motor system elements, and is connected with sensory input and the feature of its bilateral irradiation through the right input. The left channel input and its sensory asymmetry is much more important in women. Bilateral irradiation in this case does not lead to adequate integration of the systems elements in performance of the motor task, that indicates the lower level of bimanual coordination.

  5. A Mobile Care Coordination System for the Management of Complex Chronic Disease.

    PubMed

    Haynes, Sarah; Kim, Katherine K

    2016-01-01

    There is global concern about healthcare cost, quality, and access as the prevalence of complex and chronic diseases, such as heart disease, continues to grow. Care for patients with complex chronic disease involves diverse practitioners and multiple transitions between medical centers, physician practices, clinics, community resources, and patient homes. There are few systems that provide the flexibility to manage these varied and complex interactions. Participatory and user-centered design methodology was applied to the first stage of building a mobile platform for care coordination for complex, chronic heart disease. Key informant interviews with patients, caregivers, clinicians, and care coordinators were conducted. Thematic analysis led to identification of priority user functions including shared care plan, medication management, symptom management, nutrition, physical activity, appointments, personal monitoring devices, and integration of data and workflow. Meaningful stakeholder engagement contributes to a person-centered system that enhances health and efficiency. PMID:27332252

  6. A computer code for three-dimensional incompressible flows using nonorthogonal body-fitted coordinate systems

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.

    1986-03-01

    In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.

  7. A computer code for three-dimensional incompressible flows using nonorthogonal body-fitted coordinate systems

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1986-01-01

    In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.

  8. A Mobile Care Coordination System for the Management of Complex Chronic Disease.

    PubMed

    Haynes, Sarah; Kim, Katherine K

    2016-01-01

    There is global concern about healthcare cost, quality, and access as the prevalence of complex and chronic diseases, such as heart disease, continues to grow. Care for patients with complex chronic disease involves diverse practitioners and multiple transitions between medical centers, physician practices, clinics, community resources, and patient homes. There are few systems that provide the flexibility to manage these varied and complex interactions. Participatory and user-centered design methodology was applied to the first stage of building a mobile platform for care coordination for complex, chronic heart disease. Key informant interviews with patients, caregivers, clinicians, and care coordinators were conducted. Thematic analysis led to identification of priority user functions including shared care plan, medication management, symptom management, nutrition, physical activity, appointments, personal monitoring devices, and integration of data and workflow. Meaningful stakeholder engagement contributes to a person-centered system that enhances health and efficiency.

  9. Fast implementation for fluorescence tomography based on coordinate descent with limited measurements

    NASA Astrophysics Data System (ADS)

    Xue, Zhenwen; Qin, Chenghu; Wu, Ping; Yang, Xin; Tian, Jie

    2012-03-01

    Fluorescence molecular tomography (FMT) can three-dimensionally resolve molecular activities in in vivo small animal through the reconstruction of the distribution of fluorescent probes. Due to large number of unknowns and limited measurements from the surfaces of small animals, the FMT problem is often ill-posed and ill-conditioned. Though various L2-norm regularizations can make the solution stable, they usually make the solution over-smoothed. During the early stages of tumor detection, fluorescent sources that indicate the distribution of tumors are usually small and sparse, which can be regarded as a type of a priori information. L1-norm regularizations have been incorporated to promote the sparsity of optical tomographic problems. In this paper, an efficient method with the L1-norm regularization based on coordinate descent is proposed to solve the FMT problem with extremely limited measurements. The proposed method minimizes the objective by solving a sequence of scalar minimization subproblems in multi-variable minimization. Each subproblem improves the estimate of the solution via minimizing along a determined coordinate with all other coordinates fixed. This algorithm first updates the coordinate that makes the energy decrease the most. Non-existence of matrix-vector multiplication in the iteration process makes the proposed algorithm time-efficient. To evaluate this method, we compare it to the iterated-shrinkage-based algorithm with L1-norm regularization in numerical experiments. The proposed algorithm is able to obtain satisfactory reconstruction results even when the measurements are very limited. Besides, the proposed algorithm is about two orders of magnitude faster than the iterated-shrinkage-based algorithm, which enables the proposed algorithm into practical applications.

  10. Effect of Coordinate Rotation Systems on Calculated Fluxes over a Forest in Complex Terrain: A Comprehensive Comparison

    NASA Astrophysics Data System (ADS)

    Shimizu, Takanori

    2015-08-01

    Seven coordinate rotation systems were compared to determine a suitable system for a forest in complex terrain, using eddy-covariance data for a period of 40 days. The traditional double rotation was set as the standard of comparison with six other fixed coordinate systems, whose coefficients were carefully determined based on wind component data for a two-year period. Differences in total heat fluxes and daytime fluxes calculated from all systems were small, except those from the sector-wise planar fit, which linearly and systematically underestimated the fluxes by about 5 %. The nighttime flux was also underestimated by the sector-wise planar fit, but there was significant scatter in the plots, and the mean difference was 7 %. The standard deviations of the wind components and scalars normalized by the friction velocity and the dynamic parameters were calculated for each system, and the errors from the relationships obtained previously from flat and homogenous terrain were examined. The nighttime normalized standard deviation for scalars agreed better with the relationships after applying the sector-wise planar fit than those calculated by the other systems, although no remarkable difference was found in the daytime data. Therefore, the sector-wise planar fit was not the first choice for our site during daytime based on the energy imbalance, which was mainly caused by underestimating daytime heat fluxes. Double rotation or one of the four systems without the roll rotation process might be superior at our site. However, the offset error in the vertical wind component of the sonic anemometer induced errors of several percent in the fluxes in these systems, which was equivalent to the underestimation using the sector-wise planar fit. Meanwhile, the sector-wise planar fit system might still be the best system for calculating nighttime flux, considering the tendency of the nighttime normalized standard deviations.

  11. Midline governs axon pathfinding by coordinating expression of two major guidance systems.

    PubMed

    Liu, Qing-Xin; Hiramoto, Masaki; Ueda, Hitoshi; Gojobori, Takashi; Hiromi, Yasushi; Hirose, Susumu

    2009-05-15

    Formation of the neural network requires concerted action of multiple axon guidance systems. How neurons orchestrate expression of multiple guidance genes is poorly understood. Here, we show that Drosophila T-box protein Midline controls expression of genes encoding components of two major guidance systems: Frazzled, ROBO, and Slit. In midline mutant, expression of all these molecules are reduced, resulting in severe axon guidance defects, whereas misexpression of Midline induces their expression. Midline is present on the promoter regions of these genes, indicating that Midline controls transcription directly. We propose that Midline controls axon pathfinding through coordinating the two guidance systems.

  12. Proprioceptive feedback modulates coordinating information in a system of segmentally distributed microcircuits

    PubMed Central

    Smarandache-Wellmann, Carmen; Weller, Cynthia; Hall, Wendy M.; DiCaprio, Ralph A.

    2014-01-01

    The system of modular neural circuits that controls crustacean swimmerets drives a metachronal sequence of power-stroke (PS, retraction) and return-stroke (RS, protraction) movements that propels the animal forward efficiently. These neural modules are synchronized by an intersegmental coordinating circuit that imposes characteristic phase differences between these modules. Using a semi-intact preparation that left one swimmeret attached to an otherwise isolated central nervous system (CNS) of the crayfish, Pacifastacus leniusculus, we investigated how the rhythmic activity of this system responded to imposed movements. We recorded extracellularly from the PS and RS nerves that innervated the attached limb and from coordinating axons that encode efference copies of the periodic bursts in PS and RS axons. Simultaneously, we recorded from homologous nerves in more anterior and posterior segments. Maintained retractions did not affect cycle period but promptly weakened PS bursts, strengthened RS bursts, and caused corresponding changes in the strength and timing of efference copies in the module's coordinating axons. Changes in these efference copies then caused changes in the phase and duration, but not the strength, of PS bursts in modules controlling neighboring swimmerets. These changes were promptly reversed when the limb was released. Each swimmeret is innervated by two nonspiking stretch receptors (NSSRs) that depolarize when the limb is retracted. Voltage clamp of an NSSR changed the durations and strengths of bursts in PS and RS axons innervating the same limb and caused corresponding changes in the efference copies of this motor output. PMID:25185816

  13. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents

    SciTech Connect

    Banerjee, Debasis; Finkelstein, Jeffrey; Smirnov, A.; Forster, Paul M.; Borkowski, Lauren A.; Teat, Simon J.; Parise, John B.

    2015-10-15

    Three magnesium based metal-organic frameworks, Mg{sub 3}(3,5-PDC){sub 3}(DMF){sub 3} {center_dot} DMF [1], Mg(3,5-PDC)(H{sub 2}O) {center_dot} (H{sub 2}O) [3], and Mg4(3,5-PDC)4(DMF){sub 2}(H{sub 2}O){sub 2} {center_dot} 2DMF {center_dot} 4.5H{sub 2}O [4], and a 2-D coordination polymer, [Mg(3,5-PDC)(H{sub 2}O){sub 2}] [2] [PDC = pyridinedicarboxylate], were synthesized using a combination of DMF, methanol, ethanol, and water. Compound 1 [space group P2{sub 1}/n, a = 12.3475(5) {angstrom}, b = 11.1929(5) {angstrom}, c = 28.6734(12) {angstrom}, {beta} = 98.8160(10){sup o}, V = 3916.0(3) {angstrom}{sup 3}] consists of a combination of isolated and corner-sharing magnesium octahedra connected by the organic linkers to form a 3-D network with a 12.2 {angstrom} x 4.6 {angstrom} 1-D channel. The channel contains coordinated and free DMF molecules. In compound 2 [space group C2/c, a = 9.964(5) {angstrom}, b = 12.0694(6) {angstrom}, c = 7.2763(4) {angstrom}, {beta} = 106.4970(6){sup o}, V = 836.70(6) {angstrom}{sup 3}], PDC connects isolated seven coordinated magnesium polyhedra into a layered structure. Compound 3 [space group P6{sub 1}22, a = 11.479(1) {angstrom}, c = 14.735(3) {angstrom}, V = 1681.7(4) {angstrom}{sup 3}] (previously reported) contains isolated magnesium octahedra connected by the organic linker with each other forming a 3D network. Compound 4 [space group P2{sub 1}/c, a = 13.7442(14) {angstrom}, b = 14.2887(15) {angstrom}, c = 14.1178(14) {angstrom}, {beta} = 104.912(2){sup o}, V = 2679.2(5) {angstrom}{sup 3}] also exhibits a 3D network based on isolated magnesium octahedra with square cavities containing both disordered DMF and water molecules. The structural topologies originate due to the variable coordination ability of solvent molecules with the metal center. Water molecules coordinate with the magnesium metal centers preferably over other polar solvents (DMF, methanol, ethanol) used to synthesize the coordination networks. Despite testing

  14. A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation

    NASA Astrophysics Data System (ADS)

    Dufva, K. E.; Sopanen, J. T.; Mikkola, A. M.

    2005-02-01

    In this study, a new two-dimensional shear deformable beam element is proposed for large deformation problems. The kinematics of the beam are defined using an exact displacement field, where the rotation angles of the cross-section caused by bending and shear deformations are described separately. Cubic interpolation is used for determining the curvature of the beam due to bending, while linear interpolation polynomials are used for the shear strain. The absolute nodal coordinate formulation, in which global displacements and slopes are used as the nodal coordinates, is employed for the finite element discretization of the beam. The capability of the element to predict static deformation is studied using numerical examples. The results imply that the element is free of a phenomenon called shear-locking. The capability of the element to model highly nonlinear behaviour is established using a bending test where the cantilever is bent into a full circle using only four elements. A flexible pendulum and a spin-up manoeuvre are modelled in order to study the behaviour of the element in dynamical problems. The proposed element is also compared with an existing shear deformable beam element based on the absolute nodal coordinate formulation. Finally, the simple linearization of the beam curvature based on the assumption of small strain will be discussed.

  15. Coordination polymers assembled from semirigid fluorene-based ligand: A couple of enantiomers

    NASA Astrophysics Data System (ADS)

    Li, Liang; Wang, Zihao; Chen, Qiang; Zhou, Xinhui; yang, Tao; Zhao, Qiang; Huang, Wei

    2015-11-01

    A couple of Mg(II)-based coordination polymer enantiomers [MgL(DMF)(H2O)3]n (R-MgL and S-MgL), and a Zn(II)-based coordination polymer [ZnL(DMF)]n (ZnL) have been synthesized by the solvothermal reactions between the achiral ligand 4,4‧-(9,9-dimethyl-9H-fluorene-2,7-diyl)dibenzoic acid (H2L) and the corresponding metal salts. The MgL was obtained as the racemic conglomerate from the one pot reaction. The single crystal X-ray structural analyses reveal that MgL crystallize in the chiral space group P21 and possesses the right- or left-handed homochiral 1D Mg-O-C helical chain. The ZnL crystallize in the non-centrosymmetrical space group Aba2 and possesses the 2D network comprised of 1D Zn-O-C meso-helical chains and ligands. The MgL and ZnL complexes exhibit strong coordination-perturbed ligand-centered blue emissions when excited at 320 nm. Their second-order nonlinear optical effects and thermal properties have also been studied.

  16. Single-Molecule Spin Switch Based on Voltage-Triggered Distortion of the Coordination Sphere.

    PubMed

    Harzmann, Gero D; Frisenda, Riccardo; van der Zant, Herre S J; Mayor, Marcel

    2015-11-01

    Here, we report on a new single-molecule-switching concept based on the coordination-sphere-dependent spin state of Fe(II) species. The perpendicular arrangement of two terpyridine (tpy) ligands within heteroleptic complexes is distorted by the applied electric field. Whereas one ligand fixes the complex in the junction, the second one exhibits an intrinsic dipole moment which senses the E field and causes the distortion of the Fe(II) coordination sphere triggering the alteration of its spin state. A series of complexes with different dipole moments have been synthesized and their transport features were investigated via mechanically controlled break-junctions. Statistical analyses support the hypothesized switching mechanism with increasing numbers of junctions displaying voltage-dependent bistabilities upon increasing the Fe(II) complexes' intrinsic dipole moments. A constant threshold value of the E field required for switching corroborates the mechanism. PMID:26426777

  17. Extraction of local coordination structure in a low-concentration uranyl system by XANES.

    PubMed

    Zhang, Linjuan; Zhou, Jing; Zhang, Jianyong; Su, Jing; Zhang, Shuo; Chen, Ning; Jia, Yunpeng; Li, Jiong; Wang, Yu; Wang, Jian Qiang

    2016-05-01

    Obtaining structural information of uranyl species at an atomic/molecular scale is a critical step to control and predict their physical and chemical properties. To obtain such information, experimental and theoretical L3-edge X-ray absorption near-edge structure (XANES) spectra of uranium were studied systematically for uranyl complexes. It was demonstrated that the bond lengths (R) in the uranyl species and relative energy positions (ΔE) of the XANES were determined as follows: ΔE1 = 168.3/R(U-Oax)(2) - 38.5 (for the axial plane) and ΔE2 = 428.4/R(U-Oeq)(2) - 37.1 (for the equatorial plane). These formulae could be used to directly extract the distances between the uranium absorber and oxygen ligand atoms in the axial and equatorial planes of uranyl ions based on the U L3-edge XANES experimental data. In addition, the relative weights were estimated for each configuration derived from the water molecule and nitrate ligand based on the obtained average equatorial coordination bond lengths in a series of uranyl nitrate complexes with progressively varied nitrate concentrations. Results obtained from XANES analysis were identical to that from extended X-ray absorption fine-structure (EXAFS) analysis. XANES analysis is applicable to ubiquitous uranyl-ligand complexes, such as the uranyl-carbonate complex. Most importantly, the XANES research method could be extended to low-concentration uranyl systems, as indicated by the results of the uranyl-amidoximate complex (∼40 p.p.m. uranium). Quantitative XANES analysis, a reliable and straightforward method, provides a simplified approach applied to the structural chemistry of actinides. PMID:27140156

  18. A reliable system of ventricular coordinates for the cartography and stereotaxy of the amygdala (and anterior hippocampus) in macaques.

    PubMed

    Percheron, G

    1997-07-18

    The most reliable stereotactic methods in primates resort to ventricular as opposed to bony landmarks. The usual CA-CP system did not appear satisfactory for stereotaxy of the amygdala and anterior hippocampus. Variation studies on ventriculograms and reconstructions from histological material were done to find more reliable systems. The most precise system of coordinates for cartography and stereotaxy of the amygdala is based on the 'amygdalar notch', a ventricular diverticulum forming the angle between the inferior and anterior borders of the temporal horn of the lateral ventricle, located beneath the inferior border of the amygdala. The AN point, the vertex of the notch in the sagittal direction, is a reliable ventricular landmark in the antero-posterior and infero-superior directions. The medial vertex of the diverticulum, ANm, is a ventricular landmark in the medio-lateral direction. The 'AN system of coordinates' is a reliable system for amygdalar stereotaxy. Stereotaxy of the anterior hippocampus would benefit from other ventricular landmarks. The most lateral point of the main body (HiL) is a landmark for the medio-lateral dimension. Ventriculography and ventricular landmarks should always be used for stereotaxy in primate species.

  19. Traffic Management Coordinator Evaluation of the Dynamic Weather Routes Concept and System

    NASA Technical Reports Server (NTRS)

    Gong, Chester

    2014-01-01

    Dynamic Weather Routes (DWR) is a weather-avoidance system for airline dispatchers and FAA traffic managers that continually searches for and advises the user of more efficient routes around convective weather. NASA and American Airlines (AA) have been conducting an operational trial of DWR since July 17, 2012. The objective of this evaluation is to assess DWR from a traffic management coordinator (TMC) perspective, using recently retired TMCs and actual DWR reroutes advisories that were rated acceptable by AA during the operational trial. Results from the evaluation showed that the primary reasons for a TMC to modify or reject airline reroute requests were related to airspace configuration. Approximately 80 percent of the reroutes evaluated required some coordination before implementation. Analysis showed TMCs approved 62 percent of the requested DWR reroutes, resulting in 57 percent of the total requested DWR time savings.

  20. Coordinate Control of Wind Turbine and Battery in Wind Turbine Generator System

    NASA Astrophysics Data System (ADS)

    Senjyu, Tomonobu; Kikunaga, Yasuaki; Tokudome, Motoki; Uehara, Akie; Yona, Atsushi; Funabashi, Toshihisa

    Battery is installed for with wind power generator to level the output power fluctuations, since output power fluctuations of wind power generator are large. However, if large battery is installed in wind turbine generator, the capital cost for wind power system will increase. Hence, the smallest size of battery should be preferable to save the capital cost. In this paper, we propose a methodology for controlling combined system output power and storage energy capacity of battery system. The system consists of wind turbine generator and battery energy storage system. The generated power fluctuation in low and high frequency range are smoothed by pitch angle control and battery charge or discharge. This coordinated control reduces the rated battery capacity and windmill blade stress. In our proposed method, we apply H∞ control theory to achieve good response and robustness. The effectiveness of the proposed control system is simulated.

  1. Terbium-based coordination polymer nanoparticles for detection of ciprofloxacin in tablets and biological fluids.

    PubMed

    Tan, Hongliang; Zhang, Li; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Chen, Shouhui; Wang, Li

    2013-11-27

    The metal-organic coordination polymers with tunable structures and properties have been rapidly emerging as very important functional materials. In this work, we prepared terbium (Tb(3+))-based coordination polymer nanoparticles (CPNPs) by employing adenine (Ad) as bridging ligands. The CPNPs was further used as a receptor reagent for ciprofloxacin (CF) detection in aqueous solution. Addition of CF induces a typical emission of Tb(3+) due to the formation of Ad/Tb-CF complex and the sensitization of CF. The fluorescent intensity of Tb(3+) was enhanced linearly with increasing the CF concentration from 60 nM to 14 μM. The detection limit for CF in aqueous solution is 60 nM. The Ad/Tb CPNPs was successfully applied to detect CF in tablet and urine samples and showed a satisfactory result. Compared with other methods, the proposed method is advantageous because that it provides a very simple strategy for CF detection, which does not require complicated sample pretreatment processes or special reaction media. The proposed strategy could be contributed to expand the potential applications of lanthanide coordination polymers in biological and environmental fields.

  2. Immunology-directed methods for distributed robotics: a novel immunity-based architecture for robust control and coordination

    NASA Astrophysics Data System (ADS)

    Singh, Surya P. N.; Thayer, Scott M.

    2002-02-01

    This paper presents a novel algorithmic architecture for the coordination and control of large scale distributed robot teams derived from the constructs found within the human immune system. Using this as a guide, the Immunology-derived Distributed Autonomous Robotics Architecture (IDARA) distributes tasks so that broad, all-purpose actions are refined and followed by specific and mediated responses based on each unit's utility and capability to timely address the system's perceived need(s). This method improves on initial developments in this area by including often overlooked interactions of the innate immune system resulting in a stronger first-order, general response mechanism. This allows for rapid reactions in dynamic environments, especially those lacking significant a priori information. As characterized via computer simulation of a of a self-healing mobile minefield having up to 7,500 mines and 2,750 robots, IDARA provides an efficient, communications light, and scalable architecture that yields significant operation and performance improvements for large-scale multi-robot coordination and control.

  3. Structuralization of Ca(2+)-Based Metal-Organic Frameworks Prepared via Coordination Replication of Calcium Carbonate.

    PubMed

    Sumida, Kenji; Hu, Ming; Furukawa, Shuhei; Kitagawa, Susumu

    2016-04-01

    The emergence of metal-organic frameworks (MOFs) as potential candidates to supplant existing adsorbent types in real-world applications has led to an explosive growth in the number of compounds available to researchers, as well as in the diversity of the metal salts and organic linkers from which they are derived. In this context, the use of carbonate-based precursors as metal sources is of interest due to their abundance in mineral deposits and their reaction chemistry with acids, resulting in just water and carbon dioxide as side products. Here, we have explored the use of calcium carbonate as a metal source and demonstrate its versatility as a precursor to several known frameworks, as well as a new flexible compound based on the 2,5-dihydroxybenzoquinone (H2dhbq) linker, Ca(dhbq)(H2O)2. Furthermore, inspired by the ubiquity and unique structures of biomineralized forms of calcium carbonate, we also present examples of the preparation of superstructures of Ca-based MOFs via the coordination replication technique. In all, the results confirm the suitability of carbonate-based metal sources for the preparation of MOFs and further expand upon the growing scope of coordination replication as a convenient strategy for the preparation of structuralized materials. PMID:27002690

  4. Station coordinates in the Standard Earth III system derived by using camera data from ISAGEX. [International Satellite Geodesy Experiment

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.; Latimer, J.; Mendes, G.

    1975-01-01

    Simultaneous and individual camera observations of Geos 1, Geos 2, Pageos, and Midas 4 obtained during the International Satellite Geodesy Experiment are used to determine station coordinates. The Smithsonian Astrophysical Observatory Standard Earth III system of coordinates is utilized to tie the geometrical network to a geocentric system and as a reference for calculating satellite orbits. The normal systems for geometrical and dynamical solutions are combined.

  5. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    SciTech Connect

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming; Elizondo, Marcelo A.

    2013-04-03

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive control (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.

  6. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    SciTech Connect

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming; Elizondo, Marcelo A.

    2013-01-07

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive control (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.

  7. An external cloak with arbitrary cross section based on complementary medium and coordinate transformation.

    PubMed

    Yang, Chengfu; Yang, Jingjing; Huang, Ming; Xiao, Zhe; Peng, Jinhui

    2011-01-17

    Electromagnetic cloak is a device which makes an object "invisible" for electromagnetic irradiation in a certain frequency range. Material parameters for the complementary medium-assisted external cylindrical cloak with arbitrary cross section are derived based on combining the concepts of complementary media and transformation optics. It can make the object with arbitrary shape outside the cloaking domain invisible, as long as an "antiobject" is embedded in the complementary media layer. Moreover, we find that the shape, size and the position of the "antiobject" is dependent on the contour of the cloak and the coordinate transformation. The external cloaking effect has been verified by full-wave simulation. PMID:21263655

  8. A responsive supramolecular polymer formed by orthogonal metal-coordination and cryptand-based host-guest interaction.

    PubMed

    Wei, Peifa; Xia, Binyuan; Zhang, Yanyan; Yu, Yihua; Yan, Xuzhou

    2014-04-18

    Herein, a cation responsive linear supramolecular polymer was constructed in an orthogonal fashion by unifying the themes of coordination-driven self-assembly and cryptand-based host-guest interaction. PMID:24609282

  9. Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs).

    PubMed

    Hu, Ming; Reboul, Julien; Furukawa, Shuhei; Radhakrishnan, Logudurai; Zhang, Yuanjian; Srinivasu, Pavuluri; Iwai, Hideo; Wang, Hongjing; Nemoto, Yoshihiro; Suzuki, Norihiro; Kitagawa, Susumu; Yamauchi, Yusuke

    2011-07-28

    We report a new synthetic route for preparation of nanoporous carbon nitride fibers with graphitic carbon nitride polymers, by calcination of Al-based porous coordination polymers (Al-PCPs) with dicyandiamide (DCDA) under a nitrogen atmosphere.

  10. Retrieval-based Face Annotation by Weak Label Regularized Local Coordinate Coding.

    PubMed

    Wang, Dayong; Hoi, Steven C H; He, Ying; Zhu, Jianke; Mei, Tao; Luo, Jiebo

    2013-08-01

    Retrieval-based face annotation is a promising paradigm of mining massive web facial images for automated face annotation. This paper addresses a critical problem of such paradigm, i.e., how to effectively perform annotation by exploiting the similar facial images and their weak labels which are often noisy and incomplete. In particular, we propose an effective Weak Label Regularized Local Coordinate Coding (WLRLCC) technique, which exploits the principle of local coordinate coding in learning sparse features, and employs the idea of graph-based weak label regularization to enhance the weak labels of the similar facial images. We present an efficient optimization algorithm to solve the WLRLCC task. We conduct extensive empirical studies on two large-scale web facial image databases: (i) a Western celebrity database with a total of $6,025$ persons and $714,454$ web facial images, and (ii)an Asian celebrity database with $1,200$ persons and $126,070$ web facial images. The encouraging results validate the efficacy of the proposed WLRLCC algorithm. To further improve the efficiency and scalability, we also propose a PCA-based approximation scheme and an offline approximation scheme (AWLRLCC), which generally maintains comparable results but significantly saves much time cost. Finally, we show that WLRLCC can also tackle two existing face annotation tasks with promising performance.

  11. NSF-ARCSS Freshwater Initiative (FWI): Synthesis as Coordination of Thought to Discover Emergent System Properties

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C. J.; Hinzman, L. D.; Pundsack, J. W.

    2004-12-01

    The NSF-ARCSS program is undergoing a purposeful move toward system-wide and synthetic thinking. As part of this broader agenda, the NSF-ARCSS Freshwater Initiative (FWI) is embarking on its own synthesis. FWI synthesis has been organized around two fundamental approaches. The first avenue is a consolidation of existing quantitative information for constructing a comprehensive freshwater budget linking fluxes and stocks through the climate / terrestrial system, oceans, and sea-ice. The second avenue involves linkages of observational studies of paleo, historic, and contemporary water systems and simulation models of their behavior. These efforts represent both inductive and deductive approaches, and the FWI uses an operational definition of synthesis as a coordination of thought to discover emergent system properties to detect and understand Arctic water cycle change. This discussion will focus on recent results of analysis with acknowledgement of input from a broad set of FWI researchers.

  12. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    SciTech Connect

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility or control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.

  13. Soluble 1D coordination polymers based on dendron-functionalized bispyridine ligand for linking between immobilized molecules on substrates.

    PubMed

    Tokuhisa, Hideo; Kanesato, Masatoshi

    2005-10-11

    As a monomeric ligand for a soluble 1D coordination polymer, a benzyl-ether based dendrimer having a rigid 4,4'-bispyridine ligand at the focal point has been synthesized and the coordination chemistry with Pd(II) investigated by nuclear magnetic resonance, ultraviolet-visible and fluorescence spectroscopies, gel permeation chromatography measurement, and X-ray photoelectron spectroscopy. As a result, it was found that the synthesized dendrimer forms a stable, soluble Pd(II) coordination polymer with rough estimation of degree of polymerization of 10 in organic solvents. Furthermore, through the coordination polymer we attempted to link fourth-generation poly(amidoamine) dendrimers (PAMAM) individually immobilized on mica and confirmed the interconnection of the PAMAM through coordination polymers by atomic force microscopy.

  14. Physical and neural entrainment to rhythm: human sensorimotor coordination across tasks and effector systems

    PubMed Central

    Ross, Jessica Marie; Balasubramaniam, Ramesh

    2014-01-01

    The human sensorimotor system can be readily entrained to environmental rhythms, through multiple sensory modalities. In this review, we provide an overview of theories of timekeeping that make this neuroentrainment possible. First, we present recent evidence that contests the assumptions made in classic timekeeper models. The role of state estimation, sensory feedback and movement parameters on the organization of sensorimotor timing are discussed in the context of recent experiments that examined simultaneous timing and force control. This discussion is extended to the study of coordinated multi-effector movements and how they may be entrained. PMID:25136306

  15. Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, & Visualization

    SciTech Connect

    Wright, David L.

    2004-12-01

    Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, and Visualization Methods with Applications to Site Characterization EMSP Project 86992 Progress Report as of 9/2004.

  16. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    PubMed Central

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  17. Reconstruction and Visualization of Coordinated 3D Cell Migration Based on Optical Flow.

    PubMed

    Kappe, Christopher P; Schütz, Lucas; Gunther, Stefan; Hufnagel, Lars; Lemke, Steffen; Leitte, Heike

    2016-01-01

    Animal development is marked by the repeated reorganization of cells and cell populations, which ultimately determine form and shape of the growing organism. One of the central questions in developmental biology is to understand precisely how cells reorganize, as well as how and to what extent this reorganization is coordinated. While modern microscopes can record video data for every cell during animal development in 3D+t, analyzing these videos remains a major challenge: reconstruction of comprehensive cell tracks turned out to be very demanding especially with decreasing data quality and increasing cell densities. In this paper, we present an analysis pipeline for coordinated cellular motions in developing embryos based on the optical flow of a series of 3D images. We use numerical integration to reconstruct cellular long-term motions in the optical flow of the video, we take care of data validation, and we derive a LIC-based, dense flow visualization for the resulting pathlines. This approach allows us to handle low video quality such as noisy data or poorly separated cells, and it allows the biologists to get a comprehensive understanding of their data by capturing dynamic growth processes in stills. We validate our methods using three videos of growing fruit fly embryos.

  18. Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials

    NASA Astrophysics Data System (ADS)

    Cuesta, E.; Alvarez, B. J.; Patiño, H.; Telenti, A.; Barreiro, J.

    2016-05-01

    This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed.

  19. A turn-on coordination nanoparticle-based fluorescent probe for phosphate in human serum

    NASA Astrophysics Data System (ADS)

    Lin, Na; Li, Jian; Lu, Zhixiang; Bian, Longchun; Zheng, Liyan; Cao, Qiue; Ding, Zhongtao

    2015-03-01

    Coordination nanoparticles (CNPs) are becoming attractive platforms for chemical sensing applications because their unique adjustable properties offer the opportunity to design various luminescent nanoprobes. Here, we present a CNP-based fluorescent nanoprobe, in which fluorophores (rhodamine B, RB) and quenchers (methylene blue, MB) were spontaneously enfolded by coordination networks self-assembled of adenine, biphenyl-4,4'-dicarboxylic acid (BDA) and zinc ions. The aggregation of fluorophores and quenchers in CNPs resulted in a quenched state fluorescence of RB. RB and MB could be released from CNPs in the presence of phosphate, which triggered the fluorescence of RB. On the basis of recognition-driven disassembly principle, a novel turn-on fluorescent probe for the determination of PO43- with a wide response range (0.5-50 μM) has been successfully applied in the detection of phosphate in human serum samples. This work not only develops a probe for phosphate but also provides a general strategy for designing nanoprobes or nanocarriers towards various targets by altering organic linkers or metal ions.Coordination nanoparticles (CNPs) are becoming attractive platforms for chemical sensing applications because their unique adjustable properties offer the opportunity to design various luminescent nanoprobes. Here, we present a CNP-based fluorescent nanoprobe, in which fluorophores (rhodamine B, RB) and quenchers (methylene blue, MB) were spontaneously enfolded by coordination networks self-assembled of adenine, biphenyl-4,4'-dicarboxylic acid (BDA) and zinc ions. The aggregation of fluorophores and quenchers in CNPs resulted in a quenched state fluorescence of RB. RB and MB could be released from CNPs in the presence of phosphate, which triggered the fluorescence of RB. On the basis of recognition-driven disassembly principle, a novel turn-on fluorescent probe for the determination of PO43- with a wide response range (0.5-50 μM) has been successfully applied in

  20. Hybrid equations of motion for flexible multibody systems using quasi-coordinates

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Stemple, T.

    1993-01-01

    A variety of engineering systems, such as automobiles, aircraft, rotorcraft, robots, spacecraft, etc., can be modeled as flexible multibody systems. The individual flexible bodies are in general characterized by distributed parameters. In most earlier investigations they were approximated by some spatial discretization procedure, such as the classical Rayleigh-Ritz method or the finite element method. This paper presents a mathematical formulation for distributed-parameter multibody systems consisting of a set of hybrid (ordinary and partial) differential equations of motion in terms of quasi-coordinates. Moreover, the equations for the elastic motions include rotatory inertia and shear deformation effects. The hybrid set is cast in state form, thus making it suitable for control design.

  1. Distributed adaptive fuzzy iterative learning control of coordination problems for higher order multi-agent systems

    NASA Astrophysics Data System (ADS)

    Li, Jinsha; Li, Junmin

    2016-07-01

    In this paper, the adaptive fuzzy iterative learning control scheme is proposed for coordination problems of Mth order (M ≥ 2) distributed multi-agent systems. Every follower agent has a higher order integrator with unknown nonlinear dynamics and input disturbance. The dynamics of the leader are a higher order nonlinear systems and only available to a portion of the follower agents. With distributed initial state learning, the unified distributed protocols combined time-domain and iteration-domain adaptive laws guarantee that the follower agents track the leader uniformly on [0, T]. Then, the proposed algorithm extends to achieve the formation control. A numerical example and a multiple robotic system are provided to demonstrate the performance of the proposed approach.

  2. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    NASA Astrophysics Data System (ADS)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing

    2016-10-01

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg2+, Ca2+ and Ba2+) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO)4, which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (44·62)3(49·66)2. The calcium compound consists of 1D infinite "Ca-O" inorganic chains connected by the deprotonated ligands to from a 3D framework. The barium compound exhibits a 3D framework in which 1D "Ba-O" inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions' influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural topologies.

  3. Coordination properties of hydralazine Schiff base. Synthesis and equilibrium studies of some metal ion complexes

    NASA Astrophysics Data System (ADS)

    Shoukry, Azza A.; Shoukry, Mohamed M.

    2008-08-01

    In the present study, a new ligand is prepared by condensation of hydralazine (1-Hydralazinophthalazine) with 2-butanon-3-oxime. The acid-base equilibria of the schiff-base and the complex formation equilibria with the metal ions as Cu(II), Ni(II), Co(II), Cd(II), Mn(II) and Zn(II) are investigated potentiometrically. The stability constants of the complexes are determined and the concentration distribution diagrams of the complexes are evaluated. The effect of metal ion properties as atomic number, ionic radius, electronegativity and ionization potential are investigated. The isolated solid complexes are characterized by conventional chemical and physical methods. The potential coordination sites are assigned using the i.r. and 1H NMR spectra. The structures of the isolated solid complexes are proposed on the basis of the spectral and magnetic studies.

  4. Multimodal Perception and Multicriterion Control of Nested Systems. 1; Coordination of Postural Control and Vehicular Control

    NASA Technical Reports Server (NTRS)

    Riccio, Gary E.; McDonald, P. Vernon

    1998-01-01

    The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control.

  5. A cost-effective intelligent robotic system with dual-arm dexterous coordination and real-time vision

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Chen, Alexander Y. K.

    1991-01-01

    Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two

  6. Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

    NASA Astrophysics Data System (ADS)

    Reed, Patrick M.; Chaney, Nathaniel W.; Herman, Jonathan D.; Ferringer, Matthew P.; Wood, Eric F.

    2015-02-01

    At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks.

  7. Tricarboxylate-based Gd(III) coordination polymers exhibiting large magnetocaloric effects.

    PubMed

    Liu, Sui-Jun; Cao, Chen; Xie, Chen-Chao; Zheng, Teng-Fei; Tong, Xiao-Lan; Liao, Jin-Sheng; Chen, Jing-Lin; Wen, He-Rui; Chang, Ze; Bu, Xian-He

    2016-05-31

    Two Gd(III) coordination polymers with the formula [Gd(cit)(H2O)]∞ () and [Gd(nta)(H2O)2]∞ () (H4cit = citric acid, H3nta = nitrilotriacetic acid) have been successfully prepared under hydrothermal conditions. Complex exhibits a three-dimensional (3D) structure based on carboxylate-bridged layers, while complex is a double-layer structure containing eight-coordinated Gd(III). Magnetic investigations reveal that weak antiferromagnetic couplings between adjacent Gd(III) ions in both and with different Weiss values result in large cryogenic magnetocaloric effects. It is notable that the maximum entropy changes (-ΔS) of and reach 31.3 J kg(-1) K(-1) and 32.2 J kg(-1) K(-1) at 2 K for a moderate field change (ΔH = 3 T), and a remarkable -ΔS (41.5 J kg(-1) K(-1) for and 42.0 J kg(-1) K(-1) for ) could be obtained for ΔH = 7 T.

  8. Coordinate based meta-analysis of functional neuroimaging data; false discovery control and diagnostics.

    PubMed

    Tench, Christopher R; Tanasescu, Radu; Auer, Dorothee P; Constantinescu, Cris S

    2013-01-01

    Coordinate based meta-analysis (CBMA) is widely used to find regions of consistent activation across fMRI studies that have been selected for their functional relevance to a given hypothesis. Only reported coordinates (foci), and a model of their spatial uncertainty, are used in the analysis. Results are clusters of foci where multiple studies have reported in the same spatial region, indicating functional relevance. There are several published methods that perform the analysis in a voxel-wise manner, resulting in around 10(5) statistical tests, and considerable emphasis placed on controlling the risk of type 1 statistical error. Here we address this issue by dramatically reducing the number of tests, and by introducing a new false discovery rate control: the false cluster discovery rate (FCDR). FCDR is particularly interpretable and relevant to the results of CBMA, controlling the type 1 error by limiting the proportion of clusters that are expected under the null hypothesis. We also introduce a data diagnostic scheme to help ensure quality of the analysis, and demonstrate its use in the example studies. We show that we control the false clusters better than the widely used ALE method by performing numerical experiments, and that our clustering scheme results in more complete reporting of structures relevant to the functional task.

  9. A turn-on coordination nanoparticle-based fluorescent probe for phosphate in human serum.

    PubMed

    Lin, Na; Li, Jian; Lu, Zhixiang; Bian, Longchun; Zheng, Liyan; Cao, Qiue; Ding, Zhongtao

    2015-03-21

    Coordination nanoparticles (CNPs) are becoming attractive platforms for chemical sensing applications because their unique adjustable properties offer the opportunity to design various luminescent nanoprobes. Here, we present a CNP-based fluorescent nanoprobe, in which fluorophores (rhodamine B, RB) and quenchers (methylene blue, MB) were spontaneously enfolded by coordination networks self-assembled of adenine, biphenyl-4,4'-dicarboxylic acid (BDA) and zinc ions. The aggregation of fluorophores and quenchers in CNPs resulted in a quenched state fluorescence of RB. RB and MB could be released from CNPs in the presence of phosphate, which triggered the fluorescence of RB. On the basis of recognition-driven disassembly principle, a novel turn-on fluorescent probe for the determination of PO4(3-) with a wide response range (0.5-50 μM) has been successfully applied in the detection of phosphate in human serum samples. This work not only develops a probe for phosphate but also provides a general strategy for designing nanoprobes or nanocarriers towards various targets by altering organic linkers or metal ions. PMID:25690475

  10. Coordinated contractions effectively expel water from the aquiferous system of a freshwater sponge.

    PubMed

    Elliott, Glen R D; Leys, Sally P

    2007-11-01

    In response to mechanical stimuli the freshwater sponge Ephydatia muelleri (Demospongiae, Haplosclerida, Spongillidae) carries out a series of peristaltic-like contractions that is effective in expelling clumps of waste material from the aquiferous system. Rates of contraction depend on the region of tissue they are propagating through: 0.3-1 microm s(-1) in the peripheral canals, 1-4 microm s(-1) in central canals, and 6-122 microm s(-1) in the osculum. Faster events include twitches of the entire sponge choanosome and contraction of the sheet-like apical pinacoderm that forms the outer surface of the animal. Contraction events are temporally and spatially coordinated. Constriction of the tip of the osculum leads to dilation of excurrent canals; fields of ostia in the apical pinacoderm close in unison just prior to contraction of the choanosome, apical pinacoderm and osculum. Relaxation returns the osculum, canals and the apical pinacoderm to their normal state, and three such coordinated 'inflation-contraction' responses typically follow a single stimulus. Cells in the mesohyl arrest crawling as a wave of contraction passes, suggesting an extracellular signal may pass between cells. Bundles of actin filaments traverse endopinacocytes of the apical pinacoderm. Actin-dense plaques join actin bundles in adjacent pinacocytes to form continuous tracts spanning the whole sponge. The orchestrated and highly repeatable series of contractions illustrates that cellular sponges are capable of coordinated behavioural responses even in the absence of neurons and true muscle. Propagation of the events through the pinacocytes also illustrates the presence of a functional epithelium in cellular sponges. These results suggest that control over a hydrostatic skeleton evolved prior to the origin of nerves and true muscle.

  11. Transformation based endorsement systems

    NASA Technical Reports Server (NTRS)

    Sudkamp, Thomas

    1988-01-01

    Evidential reasoning techniques classically represent support for a hypothesis by a numeric value or an evidential interval. The combination of support is performed by an arithmetic rule which often requires restrictions to be placed on the set of possibilities. These assumptions usually require the hypotheses to be exhausitive and mutually exclusive. Endorsement based classification systems represent support for the alternatives symbolically rather than numerically. A framework for constructing endorsement systems is presented in which transformations are defined to generate and update the knowledge base. The interaction of the knowledge base and transformations produces a non-monotonic reasoning system. Two endorsement based reasoning systems are presented to demonstrate the flexibility of the transformational approach for reasoning with ambiguous and inconsistent information.

  12. Global Coordinating of Multiagent System Result from Dual Forces Embedded in a Local Agent

    NASA Astrophysics Data System (ADS)

    Nomura, Shusaku

    2006-06-01

    Tactical locomotion of giant amoeba, the plasmodium of Physarum polycephalum, is studied upon an aspect of a mechanical system introducing the cruel duality of cohesive and deviational force. The mechanical model of the protist has been studied frequently concentrated solely on the cohesive force that makes the non-differential organism maintain as a single individual avoiding from separation. Deviation from cohesion is frequently regarded as external stochastic perturbation or other mechanism. However, the drastic change of morphogenesis observed in developing organism cannot explain by the external perturbation. I, by contrast, focused on the duality of cohesive and deviational force. I constructed a model introducing the cruel duality by an interface of a self-similar nowhere differentiable return map, which is temporally constructed by neighbors' states. I tested the model and showed the possibility that such a duality could drive the global coordinating featuring the plasticity as a single system.

  13. Simulation of a free-surface and seepage face using boundary-fitted coordinate system method

    NASA Astrophysics Data System (ADS)

    Lee, Kang-Kun; Leap, Darrell I.

    1997-09-01

    The boundary-fitted coordinate (BFC) system method is applied to simulate steady groundwater seepage with a free-surface and seepage face using the finite-difference method. The BFC system method eliminates the difficulty of fitting finite-difference grids to a changeable free-surface which is not known a priori but will be obtained as part of a solution. Also, grid generation with this approach is simpler than with the finite-element method. At each iterative sweep, the changeable free-surface becomes a part of the boundary-fitted grid lines, making boundary condition implementation easy and accurate. An example problem demonstrating the simulation procedure and numerical results compares very well with the analytical solution.

  14. New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates

    SciTech Connect

    Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning; Yu, Jie-Hui; Zhang, Ping; Xu, Ji-Qing

    2015-03-15

    Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N′-donor ligands yielded three new coordination polymers as [Cu{sub 4}(fph){sub 2}(bpe){sub 3}(H{sub 2}O){sub 2}]·2H{sub 2}O (fph=4,4′-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co{sub 2}(fph)(bpa){sub 2}(H{sub 2}O){sub 2}]·3H{sub 2}O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H{sub 2}O)(H{sub 2}oph)(bpa)] (oph=4,4′-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu{sup 2+} ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. For compound 2, the fph molecules still serve as the first connectors, linking the Co{sup 2+} ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1–3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors. - Graphical abstract: Structures of three semi-rigid V-shape tetracarboxylate-based coordination polymers were reported, and their magnetic properties were investigated. - Highlights: • Structures of three tetracarboxylate-based coordination polymers were reported. • Role of organic bases in metal–tetracarboxylate compounds was discussed. • Characters of V-shape and semi-rigidity for tetracarboxylate play a key role in crystal growth. • Their magnetic properties were investigated.

  15. Spectral Theory for Interacting Particle Systems Solvable by Coordinate Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Borodin, Alexei; Corwin, Ivan; Petrov, Leonid; Sasamoto, Tomohiro

    2015-11-01

    We develop spectral theory for the q-Hahn stochastic particle system introduced recently by Povolotsky. That is, we establish a Plancherel type isomorphism result that implies completeness and biorthogonality statements for the Bethe ansatz eigenfunctions of the system. Owing to a Markov duality with the q-Hahn TASEP (a discrete-time generalization of TASEP with particles' jump distribution being the orthogonality weight for the classical q-Hahn orthogonal polynomials), we write down moment formulas that characterize the fixed time distribution of the q-Hahn TASEP with general initial data. The Bethe ansatz eigenfunctions of the q-Hahn system degenerate into eigenfunctions of other (not necessarily stochastic) interacting particle systems solvable by the coordinate Bethe ansatz. This includes the ASEP, the (asymmetric) six-vertex model, and the Heisenberg XXZ spin chain (all models are on the infinite lattice). In this way, each of the latter systems possesses a spectral theory, too. In particular, biorthogonality of the ASEP eigenfunctions, which follows from the corresponding q-Hahn statement, implies symmetrization identities of Tracy and Widom (for ASEP with either step or step Bernoulli initial configuration) as corollaries. Another degeneration takes the q-Hahn system to the q-Boson particle system (dual to q-TASEP) studied in detail in our previous paper (2013). Thus, at the spectral theory level we unify two discrete-space regularizations of the Kardar-Parisi-Zhang equation/stochastic heat equation, namely, q-TASEP and ASEP.

  16. Semantic Registration and Discovery System of Subsystems and Services within an Interoperable Coordination Platform in Smart Cities.

    PubMed

    Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin

    2016-06-24

    Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a "system of systems" could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method.

  17. Semantic Registration and Discovery System of Subsystems and Services within an Interoperable Coordination Platform in Smart Cities.

    PubMed

    Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin

    2016-01-01

    Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a "system of systems" could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method. PMID:27347965

  18. Optimal wide-area monitoring and nonlinear adaptive coordinating neurocontrol of a power system with wind power integration and multiple FACTS devices.

    PubMed

    Qiao, Wei; Venayagamoorthy, Ganesh K; Harley, Ronald G

    2008-01-01

    Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area coordinating neurocontrol (WACNC), based on wide-area measurements, for a power system with power system stabilizers, a large wind farm and multiple flexible ac transmission system (FACTS) devices. An optimal wide-area monitor (OWAM), which is a radial basis function neural network (RBFNN), is designed to identify the input-output dynamics of the nonlinear power system. Its parameters are optimized through particle swarm optimization (PSO). Based on the OWAM, the WACNC is then designed by using the dual heuristic programming (DHP) method and RBFNNs, while considering the effect of signal transmission delays. The WACNC operates at a global level to coordinate the actions of local power system controllers. Each local controller communicates with the WACNC, receives remote control signals from the WACNC to enhance its dynamic performance and therefore helps improve system-wide dynamic and transient performance. The proposed control is verified by simulation studies on a multimachine power system.

  19. Magnetospheric Response to Interplanetary Field Enhancements: Coordinated Space-based and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Chi, Peter; Russell, Christopher; Lai, Hairong

    2014-05-01

    In general, asteroids, meteoroids and dust do not interact with the plasma structures in the solar system, but after a collision between fast moving bodies the debris cloud contains nanoscale dust particles that are charged and behave like heavy ions. Dusty magnetic clouds are then accelerated to the solar wind speed. While they pose no threat to spacecraft because of the particle size, the coherency imposed by the magnetization of the cloud allows the cloud to interact with the Earth's magnetosphere as well as the plasma in the immediate vicinity of the cloud. We call these clouds Interplanetary Field Enhancements (IFEs). These IFEs are a unique class of interplanetary field structures that feature cusp-shaped increases and decreases in the interplanetary magnetic field and a thin current sheet. The occurrence of IFEs is attributed to the interaction between the solar wind and dust particles produced in inter-bolide collisions. Previous spacecraft observations have confirmed that IFEs move with the solar wind. When IFEs strike the magnetosphere, they may distort the magnetosphere in several possible ways, such as producing a small indentation, a large scale compression, or a glancing blow. In any event if the IFE is slowed by the magnetosphere, the compression of the Earth's field should be seen in the ground-based magnetic records that are continuously recorded. Thus it is important to understand the magnetospheric response to IFE arrival. In this study, we investigate the IFE structure observed by spacecraft upstream of the magnetosphere and the induced magnetic field perturbations observed by networks of ground magnetometers, including the THEMIS, CARISMA, McMAC arrays in North America and the IMAGE array in Europe. We find that, in a well-observed IFE event on December 24, 2006, all ground magnetometer stations observed an impulse at approximately 1217 UT when the IFE was expected to arrive at the Earth's magnetopause. These ground stations spread across many

  20. 3-D solution of flow in an infinite square array of circular tubes by using boundary-fitted coordinate system

    SciTech Connect

    Chen, B.C.J.; Chien, T.H.; Sha, W.T.; Kim, J.H.

    1982-01-01

    Heat transfer and fluid flow over circular tubes have wide applications in the design of heat exchangers and nuclear reactors. However, it is often difficult to accurately calculate the detailed velocity and temperature distributions of the flow because of the complex geometry involved in the analysis, and a lack of an appropriate coordinate system for the analysis. Boundary conditions on the surfaces of the tubes are often interpolated. This interpolation process introduces inaccuracy. To overcome this difficulty, the present study used the technique of the boundary-fitted coordinate system. In this technique, all the physical boundaries are transformed into constant coordinate lines in the transformed coordinates. Therefore, the boundary conditions can be specified on the grid points without interpolation.

  1. Pilot/Controller Coordinated Decision Making in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Bearman, Chris; Miller, Ronald c.; Orasanu, Judith M.

    2011-01-01

    Introduction: NextGen technologies promise to provide considerable benefits in terms of enhancing operations and improving safety. However, there needs to be a thorough human factors evaluation of the way these systems will change the way in which pilot and controllers share information. The likely impact of these new technologies on pilot/controller coordinated decision making is considered in this paper using the "operational, informational and evaluative disconnect" framework. Method: Five participant focus groups were held. Participants were four experts in human factors, between x and x research students and a technical expert. The participant focus group evaluated five key NextGen technologies to identify issues that made different disconnects more or less likely. Results: Issues that were identified were: Decision Making will not necessarily improve because pilots and controllers possess the same information; Having a common information source does not mean pilots and controllers are looking at the same information; High levels of automation may lead to disconnects between the technology and pilots/controllers; Common information sources may become the definitive source for information; Overconfidence in the automation may lead to situations where appropriate breakdowns are not initiated. Discussion: The issues that were identified lead to recommendations that need to be considered in the development of NextGen technologies. The current state of development of these technologies provides a good opportunity to utilize recommendations at an early stage so that NextGen technologies do not lead to difficulties in resolving breakdowns in coordinated decision making.

  2. A Player and Coordinator: The Versatile Roles of Eosinophils in the Immune System

    PubMed Central

    Long, Hai; Liao, Wei; Wang, Ling; Lu, Qianjin

    2016-01-01

    Summary Eosinophils have traditionally been associated with allergic diseases and parasite infection. Research advances in the recent decades have brought evolutionary changes in our understanding of eosinophil biology and its roles in immunity. It is currently recognized that eosinophils play multiple roles in both innate and adaptive immunity. As effector cells in innate immunity, eosinophils exert a pro-inflammatory and destructive role in the Th2 immune response associated with allergic inflammation or parasite infection. Eosinophils can also be recruited by danger signals released by pathogen infections or tissue injury, inducing host defense against parasitic, fungal, bacterial or viral infection or promoting tissue repair and remodeling. Eosinophils also serve as nonprofessional antigen-presenting cells in response to allergen challenge or helminth infection, and, meanwhile, are known to function as a versatile coordinator that actively regulates or interacts with various immune cells including T lymphocytes and dendritic cells. More roles of eosinophils implicated in immunity have been proposed including in immune homeostasis, allograft rejection, and anti-tumor immunity. Eosinophil interactions with structural cells are also implicated in the mechanisms in allergic inflammation and in Helicobacter pylori gastritis. These multifaceted roles of eosinophils as both players and coordinators in immune system are discussed in this review. PMID:27226792

  3. Model-Based Systems

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    2007-01-01

    Engineers, who design systems using text specification documents, focus their work upon the completed system to meet Performance, time and budget goals. Consistency and integrity is difficult to maintain within text documents for a single complex system and more difficult to maintain as several systems are combined into higher-level systems, are maintained over decades, and evolve technically and in performance through updates. This system design approach frequently results in major changes during the system integration and test phase, and in time and budget overruns. Engineers who build system specification documents within a model-based systems environment go a step further and aggregate all of the data. They interrelate all of the data to insure consistency and integrity. After the model is constructed, the various system specification documents are prepared, all from the same database. The consistency and integrity of the model is assured, therefore the consistency and integrity of the various specification documents is insured. This article attempts to define model-based systems relative to such an environment. The intent is to expose the complexity of the enabling problem by outlining what is needed, why it is needed and how needs are being addressed by international standards writing teams.

  4. Stereo- and Temporally Controlled Coordination Polymerization Triggered by Alternating Addition of a Lewis Acid and Base.

    PubMed

    Liu, Bo; Cui, Dongmei; Tang, Tao

    2016-09-19

    Significant progress has been made with regard to temporally controlled radical and ring-opening polymerizations, for example, by means of chemical reagents, light, and voltage, whereas quantitative switch coordination polymerization is still challenging. Herein, we report the temporally and stereocontrolled 3,4-polymerization of isoprene through allosterically regulating the active metal center by alternating addition of Lewis basic pyridine to "poison" the Lewis acidic active metal species through acid-base interactions and Lewis acidic Al(i) Bu3 to release the original active species through pyridine abstraction. This process is quick, quantitative, and can be repeated multiple times while maintaining high 3,4-selectivity. Moreover, this strategy is also effective for the switch copolymerization of isoprene and styrene with dual 3,4- and syndiotactic selectivity. Tuning the switch cycles and intervals enables the isolation of various copolymers with different distributions of 3,4-polyisoprene and syndiotactic polystyrene sequences. PMID:27539866

  5. A Data-Based Console Logger for Mission Operations Team Coordination

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Jenks, Kenneth; Overland, David; Oliver, Patrick; Zhang, Jiajie; Gong, Yang; Zhang, Tao

    2005-01-01

    Concepts and prototypes1,2 are discussed for a data-based console logger (D-Logger) to meet new challenges for coordination among flight controllers arising from new exploration mission concepts. The challenges include communication delays, increased crew autonomy, multiple concurrent missions, reduced-size flight support teams that include multidisciplinary flight controllers during quiescent periods, and migrating some flight support activities to flight controller offices. A spiral development approach has been adopted, making simple, but useful functions available early and adding more extensive support later. Evaluations have guided the development of the D-Logger from the beginning and continue to provide valuable user influence about upcoming requirements. D-Logger is part of a suite of tools designed to support future operations personnel and crew. While these tools can be used independently, when used together, they provide yet another level of support by interacting with one another. Recommendations are offered for the development of similar projects.

  6. The coordination chemistry of two symmetric fluorene-based organic ligands with cuprous chloride.

    PubMed

    Liu, Yan-Fei; Zhao, Chao-Wei; Ma, Jian-Ping; Liu, Qi-Kui; Dong, Yu-Bin

    2013-12-15

    Two novel symmetric fluorene-based ligands, namely, 2,7-bis(1H-imidazol-1-yl)-9,9-dimethyl-9H-fluorene [L1 or (I), C21H18N4] and 2,7-bis(1H-imidazol-1-yl)-9,9-dipropyl-9H-fluorene (L2), have been used to construct the coordination polymers catena-poly[[dichloridodicopper(I)(Cu-Cu)]-μ-2,7-bis(1H-imidazol-1-yl)-9,9-dimethyl-9H-fluorene], [Cu2Cl2(C21H18N4)]n, (II), and catena-poly[[tetra-μ2-chlorido-tetracopper(I)]-bis[μ-2,7-bis(1H-imidazol-1-yl)-9,9-dipropyl-9H-fluorene

  7. Bidentate coordinating behaviour of chalcone based ligands towards oxocations: VO(IV) and Mo(V)

    NASA Astrophysics Data System (ADS)

    Thaker, B. T.; Barvalia, R. S.

    2013-08-01

    We synthesized and studied the coordinating behaviour of chalcone based ligands derived from DHA and n-alkoxy benzaldehyde and their complexes of VO(IV) and MoO(V). The chalcone ligands are characterized by elemental analyses, UV-visible, IR, 1H NMR, and mass spectra. The resulting oxocation complexes are also characterized by elemental analyses, IR, 1H NMR, electronic, electron spin resonance spectra, magnetic susceptibility measurement and molar conductance studies. The IR and 1H NMR spectral data suggest that the chalcone ligands behave as a monobasic bidentate with O:O donor sequence towards metal ion. The molar conductivity data show them to be non-electrolytes. From the electronic, magnetic and ESR spectral data suggest that all the chalcone ligand complexes of VO(IV) and MoO(V) have distorted octahedral geometry.

  8. Luminescent molecular hybrid system derived from 2-furancarboxylic acid and silylated monomer coordinated to rare earth ions

    NASA Astrophysics Data System (ADS)

    Sui, Yu-Long; Yan, Bing

    2006-04-01

    In this study, silica-based organic-inorganic hybrids were prepared by the sol-gel method. Tetraethoxysilane (abbreviated as TEOS) and a kind of monomer (abbreviated as FA-APES) derived from modified 2-furancarboxylic acid (abbreviated as FA) with (3-aminopropyl)triethoxysilane (abbreviated as APES) were used as the inorganic and organic fragments, respectively. Coordination reaction between lanthanides (europium and terbium ions) and sbnd C dbnd O group of the monomer happened simultaneously. And after days of aging process the resultant materials showed characteristic luminescence of lanthanides. The enhancement of luminescence can be seen by the comparison with simply doped lanthanide hybrid systems. And it can be explained by the coordination ability of the organic counterpart. IR, NMR, UV-vis absorption, low-temperature phosphorescence spectroscopy and fluorescence spectroscopy were applied to characterize and the above spectroscopic data revealed that the triplet state energy of organic ligand matches with the emissive energy level of lanthanides (especially of Tb 3+).

  9. Determination of Rectification Corrections for Semi Gantry Crane Rail Axes in the Local 3D Coordinate System

    NASA Astrophysics Data System (ADS)

    Filipiak, Daria; Kamiński, Waldemar

    2015-02-01

    Electronic tacheometers are currently the standard instruments used in geodetic work, including also geodetic engineering measurements. The main advantage connected with this equipment is among others high accuracy of the measurement and thus high accuracy of the final determinations represented for example by the points' coordinates. One of many applications of the tacheometers is the measurement of crane rail axes. This measurement is based on polar method and it allows to get the spatial coordinates of points in 3D local system. The standard technology of measurement of crane rail axes and development of its calculations' results is well-known and widely presented in the subject literature. At the same time new methods of observations results evaluation are developing. Some new proposals for the development of measurement results were already presented in (Kamiński, 2013). This paper is a generalisation of the paper quoted above. The authors developed the concept which was presented there by a proposal for determining rectification corrections for semi gantry crane rail axes. To carried out the task, the parametric method with conditions on parameters was used. Moreover the practical tests on simulated measurement results were conducted. The results obtained from alignment confirmed the theoretical assumptions. Despite the fact that analyses were carried out only on the simulated data, it is already possible to say that presented method for determination of rectification corrections for crane rail axes can be used for development of the observations from real measurement.

  10. Understanding the Structure of Reversible Coordination Polymers Based on Europium in Electrostatic Assemblies Using Time-Resolved Luminescence.

    PubMed

    Xu, Limin; Xie, Mengqi; Huang, Jianbin; Yan, Yun

    2016-06-14

    In situ characterization of the structure of reversible coordination polymers remains a challenge because of their dynamic and concentration-responsive nature. It is especially difficult to determine these structures in their self-assemblies where their degree of polymerization responds to the local concentration. In this paper, we report on the structure of reversible lanthanide coordination polymers in electrostatic assemblies using time-resolved luminescence (TRL) measurement. The reversible coordinating system is composed of the bifunctional ligand 1,11-bis(2,6-dicarboxypyridin-4-yloxy)-3,6,9-trioxaundecane (L2EO4) and europium ion Eu(3+). Upon mixing with the positively charged diblock copolymer poly(2-vinylpyridine)-b-poly(ethylene oxide) (P2VP41-b-PEO205), electrostatic polyion micelles are formed and the negatively charged L2EO4-Eu coordination complex simultaneously transforms into coordination "polymers" in the micellar core. By virtue of the water-sensitive luminescence of Eu(3+), we are able to obtain the structural information of the L2EO4-Eu coordination polymers before and after the formation of polyion micelles. Upon analyzing the fluorescence decay curves of Eu(3+) before and after micellization, the fraction of Eu(3+) fully coordinated with L2EO4 is found to increase from 32 to 83%, which verifies the occurrence of chain extension of the L2EO4-Eu coordination polymers in the micellar core. Our work provides a qualitative picture for the structure change of reversible coordination polymers, which allows us to look into these "invisible" structures.

  11. Understanding the Structure of Reversible Coordination Polymers Based on Europium in Electrostatic Assemblies Using Time-Resolved Luminescence.

    PubMed

    Xu, Limin; Xie, Mengqi; Huang, Jianbin; Yan, Yun

    2016-06-14

    In situ characterization of the structure of reversible coordination polymers remains a challenge because of their dynamic and concentration-responsive nature. It is especially difficult to determine these structures in their self-assemblies where their degree of polymerization responds to the local concentration. In this paper, we report on the structure of reversible lanthanide coordination polymers in electrostatic assemblies using time-resolved luminescence (TRL) measurement. The reversible coordinating system is composed of the bifunctional ligand 1,11-bis(2,6-dicarboxypyridin-4-yloxy)-3,6,9-trioxaundecane (L2EO4) and europium ion Eu(3+). Upon mixing with the positively charged diblock copolymer poly(2-vinylpyridine)-b-poly(ethylene oxide) (P2VP41-b-PEO205), electrostatic polyion micelles are formed and the negatively charged L2EO4-Eu coordination complex simultaneously transforms into coordination "polymers" in the micellar core. By virtue of the water-sensitive luminescence of Eu(3+), we are able to obtain the structural information of the L2EO4-Eu coordination polymers before and after the formation of polyion micelles. Upon analyzing the fluorescence decay curves of Eu(3+) before and after micellization, the fraction of Eu(3+) fully coordinated with L2EO4 is found to increase from 32 to 83%, which verifies the occurrence of chain extension of the L2EO4-Eu coordination polymers in the micellar core. Our work provides a qualitative picture for the structure change of reversible coordination polymers, which allows us to look into these "invisible" structures. PMID:27228142

  12. Semantic Registration and Discovery System of Subsystems and Services within an Interoperable Coordination Platform in Smart Cities

    PubMed Central

    Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin

    2016-01-01

    Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a “system of systems” could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method. PMID:27347965

  13. Assembly multi-dimensional CdII coordination architectures based on flexible bis(benzimidazole) ligands: Diversity of their coordination geometries and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Jiao, Cui-huan; Geng, Jian-chen; He, Cui-hong; Cui, Guang-hua

    2012-08-01

    Based on three structurally related flexible bis(5,6-dimethylbenzimidazole) ligand, five novel metal-organic CdII coordination architectures: from 0D to 3D structures CdII complexes have been hydrothermally synthesized and structurally characterized, namely, Cd2I4(L1)2 (1), [CdCl2(L1)]n (2), [CdCl2(L2)]n (3), {[Cd(chdc)(L2)0.5]·H2O}n (4), {[Cd(pydca)(L3)0.5(H2O)2]·H2O}n (5) (where L1 = 1,2-bis(5,6-dimethylbenzimidazole)ethane, L2 = 1,3-bis(5,6-dimethylbenzimidazole)propane, L3 = 1,4-bis(5,6-dimethylbenzimidazole)butane, H2chdc = 1,4-cyclohexanedicarboxylic acid, H2pydca = pyridine-2,6-dicarboxylic acid). A discrete binuclear [2 + 2] metallomacrocycles cadmium(II) complex of 1 is 0D, 3 and 5 exhibit one-dimensional helical and zigzag chain structures, respectively. 4 Forms a 2D layer with sql net topology bridged by carboxylate anion and L2, while 2 is an overall 3D array with the diamond topology (dia). In these complexes, the influences of anions coordination on the framework formation were observed and discussed. These results indicate the spacer length of the ligands and anions play important roles in controlling the diversity structural topologies of such metal-organic coordination architectures. The thermogravimetric analyses, X-ray powder diffraction and solid-state luminescent properties of the complexes have also been investigated.

  14. Reliability mechanisms in distributed data base systems

    SciTech Connect

    Son, S.H.

    1986-01-01

    Distributed database systems operate in computer networking environments where component failures are inevitable during normal operation. Failures not only threaten normal operation of the system, but they may destroy the correctness of the data base by direct damage to the storage subsystem. In order to cope with these failures, distributed data base systems must provide reliability mechanisms that maintain the system consistency. There are two major parts in this dissertation. In the first part, mechanisms are presented for recovery management in distributed data base system. The recovery management of a distributed data bases system consists of two parts: the preparation for the recovery by saving necessary information during normal operation of the data base system, and the coordination of the actual recovery in order to avoid the possible inconsistency after the recovery. The preparation for the recovery is done through the checkpointing and logging. A new scheme is proposed for reconstruction of the data base in distributed environments. In the second part, a token-based resiliency control scheme for replicated distributed data base systems. The proposed control scheme increases the reliability as well as the degree of concurrency while maintaining the consistency of the system.

  15. Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy.

    PubMed

    Dokladny, Karol; Zuhl, Micah Nathaniel; Mandell, Michael; Bhattacharya, Dhruva; Schneider, Suzanne; Deretic, Vojo; Moseley, Pope Lloyd

    2013-05-24

    The eukaryotic cell depends on multitiered homeostatic systems ensuring maintenance of proteostasis, organellar integrity, function and turnover, and overall cellular viability. At the two opposite ends of the homeostatic system spectrum are heat shock response and autophagy. Here, we tested whether there are interactions between these homeostatic systems, one universally operational in all prokaryotic and eukaryotic cells, and the other one (autophagy) is limited to eukaryotes. We found that heat shock response regulates autophagy. The interaction between the two systems was demonstrated by testing the role of HSF-1, the central regulator of heat shock gene expression. Knockdown of HSF-1 increased the LC3 lipidation associated with formation of autophagosomal organelles, whereas depletion of HSF-1 potentiated both starvation- and rapamycin-induced autophagy. HSP70 expression but not expression of its ATPase mutant inhibited starvation or rapamycin-induced autophagy. We also show that exercise induces autophagy in humans. As predicted by our in vitro studies, glutamine supplementation as a conditioning stimulus prior to exercise significantly increased HSP70 protein expression and prevented the expected exercise induction of autophagy. Our data demonstrate for the first time that heat shock response, from the top of its regulatory cascade (HSF-1) down to the execution stages delivered by HSP70, controls autophagy thus connecting and coordinating the two extreme ends of the homeostatic systems in the eukaryotic cell. PMID:23576438

  16. Synthesis and Structural Characterization of Carboxylate-Based Metal-Organic Frameworks and Coordination Networks

    NASA Astrophysics Data System (ADS)

    Calderone, Paul

    Coordination networks (CNs) and metal-organic frameworks (MOFs) are crystalline materials composed of metal ions linked by multifunctional organic ligands. From these connections, infinite arrays of one-, two-, or three-dimensional networks can be formed. Exploratory synthesis and research of novel CNs and MOFs is of current interest because of their many possible industrial applications including gas storage, catalysis, magnetism, and luminescence. A variety of metal centers and organic ligands can be used to synthesize MOFs and CNs under a range of reaction conditions, leading to extraordinary structural diversity. The characteristics of the metals and linkers, such as properties and coordination preferences, play the biggest role in determining the structure and properties of the resulting network. Thus, the choice of metal and linker is dictated by the desired traits of the target network. The pervasive use of transition metal centers in MOF synthesis stems from their well-known coordination behavior with carboxylate-based linkers, thus facilitating design strategies. Conversely, CNs and MOFs based on s-block and lanthanide metals are less studied because each group presents unique challenges to structure prediction. Lanthanide metals have variable coordination spheres capable of accommodating up to twelve atoms, while the bonding in s-block metals takes on a mainly ionic character. In spite of these obstacles, lanthanide and s-block CNs are worthwhile synthetic targets because of their unique properties. Interesting photoluminescent and sensing materials can be developed using lanthanide metals, whereas low atomic weight s-block metals may afford an advantage in gravimetric advantages for gas storage applications. The aim of this research was to expand the current understanding of carboxylate-based CN and MOF synthesis by varying the metals, solvents, and temperatures used. To this end

  17. The light pen of a no guide 3D-coordinate measuring system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofang; Jiang, Chengzhi; Xue, Tongze; Li, Cuiying; Wang, Biru

    2006-11-01

    With the advantages of simple structure, high speed, and high accuracy, a no guide 3D-coordinate measuring technique that using the photoelectric detectors with intersection converge imaging has the predominance in workshop measurement. Its measuring head is made in a pen shape with several light sources, which is called as the light pen. In this paper, the structure design and self-calibration of light pen system are analyzed, and the identifying way for multi-sources on light pen is present. The Laser-balls are offered to be the light-sources while the principles as well as fabrication are introduced. The light pen can insert and touch the points of inner surface in a deep hole. So the localization of CMM can be avoided by using the light pen with simple and deft structure.

  18. Bifacial Base-Pairing Behaviors of 5-Hydroxyuracil DNA Bases through Hydrogen Bonding and Metal Coordination.

    PubMed

    Takezawa, Yusuke; Nishiyama, Kotaro; Mashima, Tsukasa; Katahira, Masato; Shionoya, Mitsuhiko

    2015-10-12

    A novel bifacial ligand-bearing nucleobase, 5-hydroxyuracil (U(OH) ), which forms both a hydrogen-bonded base pair (U(OH) -A) and a metal-mediated base pair (U(OH) -M-U(OH) ) has been developed. The U(OH) -M-U(OH) base pairs were quantitatively formed in the presence of lanthanide ions such as Gd(III) when U(OH) -U(OH) pairs were consecutively incorporated into DNA duplexes. This result established metal-assisted duplex stabilization as well as DNA-templated assembly of lanthanide ions. Notably, a duplex possessing U(OH) -A base pairs was destabilized by addition of Gd(III) ions. This observation suggests that the hybridization behaviors of the U(OH) -containing DNA strands are altered by metal complexation. Thus, the U(OH) nucleobase with a bifacial base-pairing property holds great promise as a component for metal-responsive DNA materials.

  19. A computer package for teaching relay coordination and loop based network solution

    SciTech Connect

    Goswami, S.K.; Basu, S.K. . Electrical Engineering Dept.)

    1994-05-01

    This paper reports the development of a relay coordination package specially designed as a teaching aid. Fault studies required for relay coordination has been performed by using a newly developed loop impedance matrix. This new method of forming loop impedance matrix is particularly suitable for multiple fault studies environment as required in relay coordination. A simple topology searching technique has been used to find all loops of the network. This package simultaneously serves the purpose of teaching relay coordination, loop analysis technique and the method of topology searching.

  20. GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging

    PubMed Central

    Martin, Bronwen; Chadwick, Wayne; Janssens, Jonathan; Premont, Richard T.; Schmalzigaug, Robert; Becker, Kevin G.; Lehrmann, Elin; Wood, William H.; Zhang, Yongqing; Siddiqui, Sana; Park, Sung-Soo; Cong, Wei-na; Daimon, Caitlin M.; Maudsley, Stuart

    2016-01-01

    Aging represents one of the most complicated and highly integrated somatic processes. Healthy aging is suggested to rely upon the coherent regulation of hormonal and neuronal communication between the central nervous system and peripheral tissues. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity and therefore likely coordinates multiple systems in the aging process. We previously identified, in hypothalamic and peripheral tissues, the G protein-coupled receptor kinase interacting protein 2 (GIT2) as a stress response and aging regulator. As metabolic status profoundly affects aging trajectories, we investigated the role of GIT2 in regulating metabolic activity. We found that genomic deletion of GIT2 alters hypothalamic transcriptomic signatures related to diabetes and metabolic pathways. Deletion of GIT2 reduced whole animal respiratory exchange ratios away from those related to primary glucose usage for energy homeostasis. GIT2 knockout (GIT2KO) mice demonstrated lower insulin secretion levels, disruption of pancreatic islet beta cell mass, elevated plasma glucose, and insulin resistance. High-dimensionality transcriptomic signatures from islets isolated from GIT2KO mice indicated a disruption of beta cell development. Additionally, GIT2 expression was prematurely elevated in pancreatic and hypothalamic tissues from diabetic-state mice (db/db), compared to age-matched wild type (WT) controls, further supporting the role of GIT2 in metabolic regulation and aging. We also found that the physical interaction of pancreatic GIT2 with the insulin receptor and insulin receptor substrate 2 was diminished in db/db mice compared to WT mice. Therefore, GIT2 appears to exert a multidimensional “keystone” role in regulating the aging process by coordinating somatic responses to energy deficits. PMID:26834700

  1. Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis

    PubMed Central

    Reichl, Lars; Heide, Dominik; Löwel, Siegrid; Crowley, Justin C.; Kaschube, Matthias; Wolf, Fred

    2012-01-01

    In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of orientation columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about a hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference. From basic symmetry assumptions we obtain a comprehensive phenomenological classification of possible inter-map coupling energies and examine representative examples. We show that each individual coupling energy leads to a different class of OP solutions with different correlations among the maps such that inferences about the optimization principle from map layout appear viable. We systematically assess whether quantitative laws resembling

  2. Accurate prediction of V1 location from cortical folds in a surface coordinate system

    PubMed Central

    Hinds, Oliver P.; Rajendran, Niranjini; Polimeni, Jonathan R.; Augustinack, Jean C.; Wiggins, Graham; Wald, Lawrence L.; Rosas, H. Diana; Potthast, Andreas; Schwartz, Eric L.; Fischl, Bruce

    2008-01-01

    Previous studies demonstrated substantial variability of the location of primary visual cortex (V1) in stereotaxic coordinates when linear volume-based registration is used to match volumetric image intensities (Amunts et al., 2000). However, other qualitative reports of V1 location (Smith, 1904; Stensaas et al., 1974; Rademacher et al., 1993) suggested a consistent relationship between V1 and the surrounding cortical folds. Here, the relationship between folds and the location of V1 is quantified using surface-based analysis to generate a probabilistic atlas of human V1. High-resolution (about 200 μm) magnetic resonance imaging (MRI) at 7 T of ex vivo human cerebral hemispheres allowed identification of the full area via the stria of Gennari: a myeloarchitectonic feature specific to V1. Separate, whole-brain scans were acquired using MRI at 1.5 T to allow segmentation and mesh reconstruction of the cortical gray matter. For each individual, V1 was manually identified in the high-resolution volume and projected onto the cortical surface. Surface-based intersubject registration (Fischl et al., 1999b) was performed to align the primary cortical folds of individual hemispheres to those of a reference template representing the average folding pattern. An atlas of V1 location was constructed by computing the probability of V1 inclusion for each cortical location in the template space. This probabilistic atlas of V1 exhibits low prediction error compared to previous V1 probabilistic atlases built in volumetric coordinates. The increased predictability observed under surface-based registration suggests that the location of V1 is more accurately predicted by the cortical folds than by the shape of the brain embedded in the volume of the skull. In addition, the high quality of this atlas provides direct evidence that surface-based intersubject registration methods are superior to volume-based methods at superimposing functional areas of cortex, and therefore are better

  3. A Sarsa(λ)-based control model for real-time traffic light coordination.

    PubMed

    Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control. PMID:24592183

  4. A novel schiff base zinc coordination compound inhibits proliferation and induces apoptosis of human osteosarcoma cells.

    PubMed

    Yan, Ming; Pang, Li; Ma, Tan-tan; Zhao, Cheng-liang; Zhang, Nan; Yu, Bing-xin; Xia, Yan

    2015-10-01

    Various kinds of schiff base metal complexes have been proven to induce apoptosis of tumor cells. However, it remains largely unknown whether schiff base zinc complexes induce apoptosis in human cancer cells. Here, we synthesized a novel schiff base zinc coordination compound (SBZCC) and investigated its effects on the growth, proliferation and apoptosis of human osteosarcoma MG-63 cells. A novel SBZCC was synthesized by chemical processes and used to treat MG-63 cells. The cell viability was determined by CCK-8 assay. The cell cycle progression, mitochondrial membrane potential and apoptotic cells were analyzed by flow cytometry. The apoptosis-related proteins levels were determined by immunoblotting. Treatment of MG-63 cells with SBZCC resulted in inhibition of cell proliferation and cell cycle arrest at G1 phase. Moreover, SBZCC significantly reduced the mitochondrial membrane potential and induced apoptosis, accompanied with increased Bax/Bcl-2 and FlasL/Fas expression as well as caspase-3/8/9 cleavage. Our results demonstrated that the synthesized novel SBZCC could inhibit the proliferation and induce apoptosis of MG-63 cells via activating both the mitochondrial and cell death receptor apoptosis pathways, suggesting that SBZCC is a promising agent for the development as anticancer drugs.

  5. Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere

    SciTech Connect

    Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.; O'Hagan, Molly J.; Ginovska-Pangovska, Bojana; Linehan, John C.; Shaw, Wendy J.

    2012-10-05

    The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introduce enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.

  6. Efficient water oxidation catalysts based on readily available iron coordination complexes.

    PubMed

    Fillol, Julio Lloret; Codolà, Zoel; Garcia-Bosch, Isaac; Gómez, Laura; Pla, Juan José; Costas, Miquel

    2011-09-04

    Water oxidation catalysis constitutes the bottleneck for the development of energy-conversion schemes based on sunlight. To date, state-of-the-art homogeneous water oxidation catalysis is performed efficiently with expensive, toxic and earth-scarce transition metals, but 3d metal-based catalysts are much less established. Here we show that readily available, environmentally benign iron coordination complexes catalyse homogeneous water oxidation to give O(2), with high efficiency during a period of hours. Turnover numbers >350 and >1,000 were obtained using cerium ammonium nitrate at pH 1 and sodium periodate at pH 2, respectively. Spectroscopic monitoring of the catalytic reactions, in combination with kinetic studies, show that high valent oxo-iron species are responsible for the O-O forming event. A systematic study of iron complexes that contain a broad family of neutral tetradentate organic ligands identifies first-principle structural features to sustain water oxidation catalysis. Iron-based catalysts described herein open a novel strategy that could eventually enable sustainable artificial photosynthetic schemes.

  7. Organometallic electrochemistry based on electrolytes containing weakly-coordinating fluoroarylborate anions.

    PubMed

    Geiger, William E; Barrière, Frédéric

    2010-07-20

    -deficient organometallic compounds are subject to nucleophilic attack by the traditional family of electrolyte anions. With a view to testing the scope of the much less nucleophililic WCAs in providing a benign electrolyte anion for the generation of organometallic cation radicals, we carried out a series of studies on transition metal sandwich and half-sandwich compounds. The model compounds were chosen both for their fundamental importance and because their radical cations had been neither isolated nor spectrally characterized, despite many previous electrochemical investigations with traditional anions. The oxidation of prototypical organometallic compounds, such as the sandwich-structured ruthenocene and the piano-stool structured Cr(eta(6)-C(6)H(6))(CO)(3), Mn(eta(5)-C(5)H(5))(CO)(3), Re(eta(5)-C(5)H(5))(CO)(3), and Co(eta(5)-C(5)H(5))(CO)(2), gave the first definitive in situ characterization of their radical cations. In several cases, the kinetic stabilization of the anodic products allowed the identification of dimers or unique dimer radicals having weak metal-metal bonds and provided new preparative options for organometallic systems. In terms of thermodynamic effects, the lower ion-pairing abilities of WCAs and their good solubility in a broad range of solvents, including those of lower polarity, permitted a systematic study that yielded an integrated model of how to use solvent-electrolyte combinations to manipulate the E(1/2) differences of compounds undergoing multiple electron-transfer reactions. Although the efficacy of WCA-based electrolytes in organometallic anodic chemistry is now established, WCAs might further expand applications of organic redox chemistry. Other WCAs, including those derived from carboranes and fluorinated alkoxyaluminates, merit additional studies. PMID:20345126

  8. The Research and Education Collaborative Occultation Network: A System for Coordinated TNO Occultation Observations

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Keller, John M.

    2016-03-01

    We describe a new system and method for collecting coordinated occultation observations of trans-Neptunian objects (TNOs). Occultations by objects in the outer solar system are more difficult to predict due to their large distance and limited span of the astrometric data used to determine their orbits and positions. This project brings together the research and educational community into a unique citizen-science partnership to overcome the difficulties of observing these distant objects. The goal of the project is to get sizes and shapes for TNOs with diameters larger than 100 km. As a result of the system design it will also serve as a probe for binary systems with spatial separations as small as contact systems. Traditional occultation efforts strive to get a prediction sufficiently good to place mobile ground stations in the shadow track. Our system takes a new approach of setting up a large number of fixed observing stations and letting the shadows come to the network. The nominal spacing of the stations is 50 km so that we ensure two chords at our limiting size. The spread of the network is roughly 2000 km along a roughly north-south line in the western United States. The network contains 56 stations that are committed to the project and we get additional ad hoc support from International Occultation Timing Association members. At our minimum size, two stations will record an event while the other stations will be probing the inner regions for secondary events. Larger objects will get more chords and will allow determination of shape profiles. The stations are almost exclusively sited and associated with schools, usually at the 9-12 grade level. We present a full description of the system we have developed for the continued exploration of the Kuiper Belt.

  9. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  10. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  11. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  12. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  13. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  14. Service Coordination and Children's Functioning in a School-Based Intensive Mental Health Program

    ERIC Educational Resources Information Center

    Puddy, Richard W.; Roberts, Michael C.; Vernberg, Eric M.; Hambrick, Erin P.

    2012-01-01

    Coordination of mental health services in children with serious emotional disturbance (SED) has shown a preliminary relationship to positive outcomes in children. Yet, research in this area is sparse. Therefore, the relation between service coordination activities and adaptive functioning was examined for 51 children SED who were treated in the…

  15. Workshop for coordinating South Carolina`s pre-college systemic initiatives

    SciTech Connect

    1997-03-26

    The goal of the South Carolina Statewide Systemic Initiative (SC SSI) is to provide quality and effective learning experiences in science and mathematics to all people of South Carolina by affecting systemic change. To accomplish this goal, South Carolina must: (1) coordinate actions among many partners for science and mathematics change; (2) place the instruments of change into the hands of the effectors of change - teachers and schools; and (3) galvanize the support of policy makers, parents, and local communities for change. The SC SSI proposes to establish a network of 13 regional mathematics and science HUBs. The central idea of this plan is the accumulation of Teacher Leaders at each HUB who are prepared in special Curriculum Leadership Institutes to assist other teachers and schools. The HUB becomes a regional nexus for delivering services to schools who request assistance by matching schools with Teacher Leaders. Other initiatives such as the use of new student performance assessments, the integration of instructional technologies into the curriculum, a pilot preservice program, and Family Math and Family Science will be bundled together through the Teacher Leaders in the HUBs. Concurrent policy changes at the state level in teacher and administrator certification and recertification requirements, school regulations and accountability, and the student performance assessment system will enable teachers and schools to support instructional practices that model South Carolina`s new state Curriculum Frameworks in Mathematics and Science.

  16. Exact dynamics of stochastic linear delayed systems: Application to spatiotemporal coordination of comoving agents

    NASA Astrophysics Data System (ADS)

    McKetterick, Thomas John; Giuggioli, Luca

    2014-10-01

    Delayed dynamics result from finite transmission speeds of a signal in the form of energy, mass, or information. In stochastic systems the resulting lagged dynamics challenge our understanding due to the rich behavioral repertoire encompassing monotonic, oscillatory, and unstable evolution. Despite the vast literature, quantifying this rich behavior is limited by a lack of explicit analytic studies of high-dimensional stochastic delay systems. Here we fill this gap for systems governed by a linear Langevin equation of any number of delays and spatial dimensions with additive Gaussian noise. By exploiting Laplace transforms we are able to derive an exact time-dependent analytic solution of the Langevin equation. By using characteristic functionals we are able to construct the full time dependence of the multivariate probability distribution of the stochastic process as a function of the delayed and nondelayed random variables. As an application we consider interactions in animal collective movement that go beyond the traditional assumption of instantaneous alignment. We propose models for coordinated maneuvers of comoving agents applicable to recent empirical findings in pigeons and bats whereby individuals copy the heading of their neighbors with some delay. We highlight possible strategies that individual pairs may adopt to reduce the variance in their velocity difference and/or in their spatial separation. We also show that a minimum in the variance of the spatial separation at long times can be achieved with certain ratios of measurement to reaction delay.

  17. Rotating Space Debris Tracking Based on The Orbit-Attitude Coordinated Control

    NASA Astrophysics Data System (ADS)

    Wang, Shuquan; Zhu, Lingchao

    2016-07-01

    This paper investigates the rotating space debris tracking problem. Active capturing and removal of space debris are challenging because the space debris is noncoorperating. The scenario considered is that a rotating space debris is the target to be captured by a spacecraft with a robotic arm. One rough approach is to capture the space debris with a strong arm then detumble the rotation of the whole system using the attitude control system on board. In this way the arm and the spacecraft have to be strong enough to withstand the impact caused by the relative orbital and attitude motions. Another way is to at first track the motion of the characterized surface, which should be easier to capture, of the debris. Then the robotic arm is engaged to capture the debris. In this way, the impact applied on the robotic arm is greatly reduced such that the possibility of causing new debris is also reduced. The orbit-attitude coordinated controller is developed to track the motion of the space debris. The controller is assymptotically stable without considering the boundness of the control efforts. The stability in the situation of bounded control inputs is analyzed. Analytical criterion for a successful tracking is obtained in the situation that rotational motion of the space debris is percession.

  18. Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.; Fong, T. W.; Bualat, M. G.; Lee, S. Y.; Dorsey, J. T.; Doggett, W. R.

    2007-01-01

    Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.

  19. Dual-Emission Luminescence of Magnesium Coordination Polymers Based on Mixed Organic Ligands.

    PubMed

    Wu, Zhao-Feng; Tan, Bin; Deng, Zhong-Hua; Xie, Zai-Lai; Fu, Jing-Jing; Shen, Nan-Nan; Huang, Xiao-Ying

    2016-01-22

    Presented herein are two luminescent magnesium coordination polymers (Mg-CPs), namely [Mg2 (H2O)2 (2-NDC)4 (1,10-phen)2] (1) and [Mg2 (H2O)(1,4-NDC)2 (1,10-phen)] (2), in which 2-NDCH=2-naphthalenecarboxylic acid, 1,4-NDCH2 =1,4-naphthalene dicarboxylic acid, and 1,10-phen=1,10-phenanthroline. Based on the mixed ligands, the title compounds exhibit linker-based photoluminescence (PL) properties thanks to the unique configuration of the Mg(2+) ions. The two compounds show interesting dual emission on excitation of the different luminophores of the mixed linkers. In particular, the emissions of compound 2 could be tuned from green to yellow simply by varying the excitation energies. Furthermore, 2 could be excited by using a commercial λ=450 nm blue LED chip to generate white-light emission, which allows the fabrication of a white-light-emitting diode (WLED) with 20 lm W(-1) luminous efficacy. This work may provide a new method for designing tunable PL CPs by using the low-cost and abundant magnesium ion. PMID:26661529

  20. Robust 3D face landmark localization based on local coordinate coding.

    PubMed

    Song, Mingli; Tao, Dacheng; Sun, Shengpeng; Chen, Chun; Maybank, Stephen J

    2014-12-01

    In the 3D facial animation and synthesis community, input faces are usually required to be labeled by a set of landmarks for parameterization. Because of the variations in pose, expression and resolution, automatic 3D face landmark localization remains a challenge. In this paper, a novel landmark localization approach is presented. The approach is based on local coordinate coding (LCC) and consists of two stages. In the first stage, we perform nose detection, relying on the fact that the nose shape is usually invariant under the variations in the pose, expression, and resolution. Then, we use the iterative closest points algorithm to find a 3D affine transformation that aligns the input face to a reference face. In the second stage, we perform resampling to build correspondences between the input 3D face and the training faces. Then, an LCC-based localization algorithm is proposed to obtain the positions of the landmarks in the input face. Experimental results show that the proposed method is comparable to state of the art methods in terms of its robustness, flexibility, and accuracy. PMID:25296404

  1. SCODE: A Secure Coordination-Based Data Dissemination to Mobile Sinks in Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hung, Lexuan; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo

    For many sensor network applications such as military, homeland security, it is necessary for users (sinks) to access sensor networks while they are moving. However, sink mobility brings new challenges to secure routing in large-scale sensor networks. Mobile sinks have to constantly propagate their current location to all nodes, and these nodes need to exchange messages with each other so that the sensor network can establish and maintain a secure multi-hop path between a source node and a mobile sink. This causes significant computation and communication overhead for sensor nodes. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. In this paper, we propose a secure and energy-efficient data dissemination protocol — Secure COodination-based Data dissEmination (SCODE) — for mobile sinks in sensor networks. We take advantages of coordination networks (grid structure) based on Geographical Adaptive Fidelity (GAF) protocol to construct a secure and efficient routing path between sources and sinks. Our security analysis demonstrates that the proposed protocol can defend against common attacks in sensor network routing such as replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Our performance evaluation both in mathematical analysis and simulation shows that the SCODE significantly reduces communication overhead and energy consumption while the latency is similar compared with the existing routing protocols, and it always delivers more than 90 percentage of packets successfully.

  2. Development of a probing system for a micro-coordinate measuring machine by utilizing shear-force detection

    NASA Astrophysics Data System (ADS)

    Ito, So; Kodama, Issei; Gao, Wei

    2014-06-01

    This paper introduces a newly developed probing system for a micro-coordinate measurement machine (micro-CMM) based on an interaction force generated by the water layer on the surface of the measuring object. In order to measure the dimensions of the micrometric structures, a probing system using a nanopipette ball stylus has been developed. A glass microsphere with diameter of 9 µm is used as a stylus tip of the probing system. The glass nanopipette, which is fabricated from a capillary glass tube by a thermal pulling process, is employed as a stylus shaft to improve the fixation strength of the stylus tip. The approach between the stylus tip and the surface of the measuring object can be detected by utilizing the method of shear-force detection. The stylus is oscillated in the lateral direction at its resonant frequency to detect an interaction force owing to the viscoelasticity of the meniscus layer existing on the surface of the measuring object. The oscillation amplitude is decreased by the shear-force applied to the stylus tip. In this study, the basic characteristics of the probing system including sensitivity, resolution and reproducibility are investigated. The experimental result of dimensional measurement of micrometer-scale structure is presented.

  3. Patient- and family-centered care coordination: a framework for integrating care for children and youth across multiple systems.

    PubMed

    2014-05-01

    Understanding a care coordination framework, its functions, and its effects on children and families is critical for patients and families themselves, as well as for pediatricians, pediatric medical subspecialists/surgical specialists, and anyone providing services to children and families. Care coordination is an essential element of a transformed American health care delivery system that emphasizes optimal quality and cost outcomes, addresses family-centered care, and calls for partnership across various settings and communities. High-quality, cost-effective health care requires that the delivery system include elements for the provision of services supporting the coordination of care across settings and professionals. This requirement of supporting coordination of care is generally true for health systems providing care for all children and youth but especially for those with special health care needs. At the foundation of an efficient and effective system of care delivery is the patient-/family-centered medical home. From its inception, the medical home has had care coordination as a core element. In general, optimal outcomes for children and youth, especially those with special health care needs, require interfacing among multiple care systems and individuals, including the following: medical, social, and behavioral professionals; the educational system; payers; medical equipment providers; home care agencies; advocacy groups; needed supportive therapies/services; and families. Coordination of care across settings permits an integration of services that is centered on the comprehensive needs of the patient and family, leading to decreased health care costs, reduction in fragmented care, and improvement in the patient/family experience of care.

  4. A junction-tree based learning algorithm to optimize network wide traffic control: A coordinated multi-agent framework

    SciTech Connect

    Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; Ukkusuri, Satish V.

    2015-01-31

    Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plans in terms of average delay, number of stops, and vehicular emissions at the network level.

  5. A junction-tree based learning algorithm to optimize network wide traffic control: A coordinated multi-agent framework

    DOE PAGES

    Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; Ukkusuri, Satish V.

    2015-01-31

    Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less

  6. Research on the electro-optical assistant landing system based on the dual camera photogrammetry algorithm

    NASA Astrophysics Data System (ADS)

    Mi, Yuhe; Huang, Yifan; Li, Lin

    2015-08-01

    Based on the location technique of beacon photogrammetry, Dual Camera Photogrammetry (DCP) algorithm was used to assist helicopters landing on the ship. In this paper, ZEMAX was used to simulate the two Charge Coupled Device (CCD) cameras imaging four beacons on both sides of the helicopter and output the image to MATLAB. Target coordinate systems, image pixel coordinate systems, world coordinate systems and camera coordinate systems were established respectively. According to the ideal pin-hole imaging model, the rotation matrix and translation vector of the target coordinate systems and the camera coordinate systems could be obtained by using MATLAB to process the image information and calculate the linear equations. On the basis mentioned above, ambient temperature and the positions of the beacons and cameras were changed in ZEMAX to test the accuracy of the DCP algorithm in complex sea status. The numerical simulation shows that in complex sea status, the position measurement accuracy can meet the requirements of the project.

  7. Enhanced communication and coordination in the public health surveillance component of the Cincinnati Drinking Water Contamination Warning System.

    PubMed

    Dangel, Chrissy; Allgeier, Steven C; Gibbons, Darcy; Haas, Adam; Simon, Katie

    2012-03-01

    Effective communication and coordination are critical when investigating a possible drinking water contamination incident. A contamination warning system is designed to detect water contamination by initiating a coordinated, effective response to mitigate significant public health and economic consequences. This article describes historical communication barriers during water contamination incidents and discusses how these barriers were overcome through the public health surveillance component of the Cincinnati Drinking Water Contamination Warning System, referred to as the "Cincinnati Pilot." By enhancing partnerships in the public health surveillance component of the Cincinnati Pilot, information silos that existed in each organization were replaced with interagency information depots that facilitated effective decision making.

  8. Posttranslational regulation of coordinated enzyme activities in the Pup-proteasome system

    PubMed Central

    Elharar, Yifat; Roth, Ziv; Hecht, Nir; Rotkopf, Ron; Khalaila, Isam; Gur, Eyal

    2016-01-01

    The proper functioning of any biological system depends on the coordinated activity of its components. Regulation at the genetic level is, in many cases, effective in determining the cellular levels of system components. However, in cases where regulation at the genetic level is insufficient for attaining harmonic system function, posttranslational regulatory mechanisms are often used. Here, we uncover posttranslational regulatory mechanisms in the prokaryotic ubiquitin-like protein (Pup)-proteasome system (PPS), the bacterial equivalent of the eukaryotic ubiquitin-proteasome system. Pup, a ubiquitin analog, is conjugated to proteins through the activities of two enzymes, Dop (deamidase of Pup) and PafA (proteasome accessory factor A), the Pup ligase. As Dop also catalyzes depupylation, it was unclear how PPS function could be maintained without Dop and PafA canceling the activity of the other, and how the two activities of Dop are balanced. We report that tight Pup binding and the limited degree of Dop interaction with high-molecular-weight pupylated proteins results in preferred Pup deamidation over protein depupylation by this enzyme. Under starvation conditions, when accelerated protein pupylation is required, this bias is intensified by depletion of free Dop molecules, thereby minimizing the chance of depupylation. We also find that, in contrast to Dop, PafA presents a distinct preference for high-molecular-weight protein substrates. As such, PafA and Dop act in concert, rather than canceling each other's activity, to generate a high-molecular-weight pupylome. This bias in pupylome molecular weight distribution is consistent with the proposed nutritional role of the PPS under starvation conditions. PMID:26951665

  9. BredeQuery: Coordinate-Based Meta-analytic Search of Neuroscientific Literature from the SPM Environment

    NASA Astrophysics Data System (ADS)

    Wilkowski, Bartłomiej; Szewczyk, Marcin; Rasmussen, Peter Mondrup; Hansen, Lars Kai; Nielsen, Finn Årup

    Large amounts of neuroimaging studies are collected and have chan-ged our view on human brain function. By integrating multiple studies in meta-analysis a more complete picture is emerging. Brain locations are usually reported as coordinates with reference to a specific brain atlas, thus some of the databases offer so-called coordinate-based searching to the users (e.g. Brede, BrainMap). For such search, the publications, which relate to the brain locations represented by the user coordinates, are retrieved. We present BredeQuery - a plugin for the widely used SPM data analytic pipeline. BredeQuery offers a direct link from SPM to the Brede Database coordinate-based search engine. BredeQuery is able to 'grab' brain location coordinates from the SPM windows and enter them as a query for the Brede Database. Moreover, results of the query can be displayed in a MATLAB window and/or exported directly to some popular bibliographic file formats (BibTeX, Reference Manager, etc).

  10. The Application of Quasi-Mean-Element-Method to LEO under Additional Perturbation due to Change of Coordinate System

    NASA Astrophysics Data System (ADS)

    Tang, Jing-shi; Liu, Lin

    2010-10-01

    The perturbation caused by the oscillation of Earth's equator plane must be taken into account when working on the motion of satellite on a low Earth orbit (LEO) in the geocentric celestial coordinate system. Since 1960 s, an intermediate orbit coordinate system using true equator and mean equinox (TEME) is introduced. It effectively solves the problem and has been widely used in various applications till today. But this traditional reference frame is purely conceptual and has always been a headache when performing the transition between these systems especially for those who are unfamiliar with celestial frames. As proved in a previous paper, it is possible to avoid the intermediate TEME frame, and conversions between osculating elements and mean elements can be completed in a consistent geocentric celestial coordinate system where only short-period terms are required. In this paper, after including the improved secular and long-period terms, the quasi-mean-element-method is available to predict the orbit analytically, reaching the accuracy of 10 -6 in Earth's radius. And all these can be done in the same celestial frame. The results suggest that the celestial coordinate system (J2000.0 nowadays) can be used throughout any applications without having to introduce TEME system as intermediate frame any more.

  11. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    SciTech Connect

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-12-18

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

  12. Processing Coordination Ambiguity

    ERIC Educational Resources Information Center

    Engelhardt, Paul E.; Ferreira, Fernanda

    2010-01-01

    We examined temporarily ambiguous coordination structures such as "put the butter in the bowl and the pan on the towel." Minimal Attachment predicts that the ambiguous noun phrase "the pan" will be interpreted as a noun-phrase coordination structure because it is syntactically simpler than clausal coordination. Constraint-based theories assume…

  13. Coordinated Care Management For Dementia In A Large, Academic Health System

    PubMed Central

    Tan, Zaldy S.; Jennings, Lee; Reuben, David

    2014-01-01

    Alzheimer’s disease and other dementias are chronic, incurable diseases that require coordinated care that addresses the medical, behavioral, and social aspects of the disease. With funding from the Center for Medicare and Medicaid Innovation (the Innovation Center), we launched a dementia care program in which a nurse practitioner acting as a dementia care manager worked with primary care physicians to develop and implement a dementia care plan that offers training and support to caregivers, manages care transitions, and facilitates access to community-based services. Post-visit surveys showed high levels of caregiver satisfaction. As program enrollment grows, outcomes will be tracked based on the triple aim developed by the Institute for Healthcare Improvement and adopted by the Centers for Medicare and Medicaid Services: better care, better health, and lower cost and utilization. The program, if successful at achieving the triple aim, may serve as a national model for how dementia and other chronic diseases can be managed in partnership with primary care practices. The program may also inform policy and reimbursement decisions for the recently released transitional care management codes and the complex chronic care management codes to be released by Medicare in 2015. PMID:24711323

  14. Coordination of hand shape.

    PubMed

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-03-01

    The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness. PMID:21389230

  15. Coordination of Hand Shape

    PubMed Central

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-01-01

    The neural control of hand movement involves coordination of the sensory, motor and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In Experiment 1, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus somatosensory and motor information appear to be coordinated in an object-based, spatial coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness. PMID:21389230

  16. Station coordinates in the standard earth 3 system and radiation-pressure perturbations from ISAGEX camera data

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.; Latimer, J.; Mendes, G.

    1975-01-01

    Simultaneous and individual camera observations of GEOS 1, GEOS 2, Pageos, and Midas 4 obtained during the International Satellite Geodesy Experiment are utilized to determine station coordinates. The Smithsonian Astrophysical Observatory Standard Earth III system of coordinates is used to tie the geometrical network to a geocentric system and as a reference for calculating satellite orbits. A solution for coordinates combining geometrical and dynamical methods is obtained, and a comparison between the solutions and terrestrial data is made. The radiation-pressure and earth-albedo perturbations for Pageos are very large, and Pageos' orbits are used to evaluate the analytical treatment of these perturbations. Residual effects, which are probably of interest to aeronomists, remain in the Pageos orbits.

  17. A global station coordinate solution based upon camera and laser data - GSFC 1973

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Douglas, B. C.; Klosko, S. M.

    1973-01-01

    Results for the geocentric coordinates of 72 globally distributed satellite tracking stations consisting of 58 cameras and 14 lasers are presented. The observational data for this solution consists of over 65,000 optical observations and more than 350 laser passes recorded during the National Geodetic Satellite Program, the 1968 Centre National d'Etudes Spatiales/Smithsonian Astrophysical Observatory (SAO) Program, and International Satellite Geodesy Experiment Program. Dynamic methods were used. The data were analyzed with the GSFC GEM and SAO 1969 Standard Earth Gravity Models. The recent value of GM = 398600.8 cu km/sec square derived at the Jet Propulsion Laboratory (JPL) gave the best results for this combination laser/optical solution. Solutions are made with the deep space solution of JPL (LS-25 solution) including results obtained at GSFC from Mariner-9 Unified B-Band tracking. Datum transformation parameters relating North America, Europe, South America, and Australia are given, enabling the positions of some 200 other tracking stations to be placed in the geocentric system.

  18. Cupid: Cluster-Based Exploration of Geometry Generators with Parallel Coordinates and Radial Trees.

    PubMed

    Beham, Michael; Herzner, Wolfgang; Gröller, M Eduard; Kehrer, Johannes

    2014-12-01

    Geometry generators are commonly used in video games and evaluation systems for computer vision to create geometric shapes such as terrains, vegetation or airplanes. The parameters of the generator are often sampled automatically which can lead to many similar or unwanted geometric shapes. In this paper, we propose a novel visual exploration approach that combines the abstract parameter space of the geometry generator with the resulting 3D shapes in a composite visualization. Similar geometric shapes are first grouped using hierarchical clustering and then nested within an illustrative parallel coordinates visualization. This helps the user to study the sensitivity of the generator with respect to its parameter space and to identify invalid parameter settings. Starting from a compact overview representation, the user can iteratively drill-down into local shape differences by clicking on the respective clusters. Additionally, a linked radial tree gives an overview of the cluster hierarchy and enables the user to manually split or merge clusters. We evaluate our approach by exploring the parameter space of a cup generator and provide feedback from domain experts. PMID:26356883

  19. Modulation of Amyloid-β Aggregation by Histidine-coordinating Cobalt(III) Schiff Base Complexes

    PubMed Central

    Heffern, Marie C.; Velasco, Pauline T.; Matosziuk, Lauren M.; Coomes, Joseph L.; Karras, Constantine; Ratner, Mark A.; Klein, William B.; Eckermann, Amanda L.; Meade, Thomas J.

    2014-01-01

    Oligomers of the Aβ42 peptide are significant neurotoxins linked to Alzheimer’s Disease (AD). Histidine (His) residues present at the N-terminus of Aβ42 are believed to influence toxicity by either serving as metal-ion binding sites (that promote oligomerization and oxidative damage) or facilitating synaptic binding. Transition metal complexes that bind to these residues and modulate Aβ toxicity have emerged as therapeutic candidates. Cobalt(III) Schiff base complexes (Co(III)-sb) were evaluated for their ability to interact with Aβ peptides. HPLC-MS, NMR, fluorescence, and DFT studies demonstrated that Co(III)-sb complexes could interact with the His residues in a truncated Aβ16 peptide representing the Aβ42 N-terminus. Coordination of Co(III)-sb complexes altered the structure of Aβ42 peptides and promoted the formation of large soluble oligomers. Interestingly, this structural perturbation of Aβ correlated to reduced synaptic binding to hippocampal neurons. These results demonstrate the promise of Co(III)-sb complexes in anti-AD therapeutic approaches. PMID:24961930

  20. Evolving dynamics of trading behavior based on coordination game in complex networks

    NASA Astrophysics Data System (ADS)

    Bian, Yue-tang; Xu, Lu; Li, Jin-sheng

    2016-05-01

    This work concerns the modeling of evolvement of trading behavior in stock markets. Based on the assumption of the investors' limited rationality, the evolution mechanism of trading behavior is modeled according to the investment strategy of coordination game in network, that investors are prone to imitate their neighbors' activity through comprehensive analysis on the risk dominance degree of certain investment behavior, the network topology of their relationship and its heterogeneity. We investigate by mean-field analysis and extensive simulations the evolution of investors' trading behavior in various typical networks under different risk dominance degree of investment behavior. Our results indicate that the evolution of investors' behavior is affected by the network structure of stock market and the effect of risk dominance degree of investment behavior; the stability of equilibrium states of investors' behavior dynamics is directly related with the risk dominance degree of some behavior; connectivity and heterogeneity of the network plays an important role in the evolution of the investment behavior in stock market.

  1. PREFACE: Coordination Action on Defects Relevant to Engineering Silicon-Based Devices

    NASA Astrophysics Data System (ADS)

    Evans-Freeman, Jan

    2005-06-01

    This issue contains a selection of papers presented at the First International Workshop of the European project entitled Coordination Action on Defects Relevant to Engineering Silicon-Based Devices (CADRES) held in Catania, Sicily, 26--28 September 2004. The CADRES project is sponsored by the European Commission in the Framework 6 IST programme. The Workshop was attended by about 107 delegates, from many European countries, who heard presentations from speakers prominent in their fields from all over the world, plus several excellent student presentations. Over the three days there were opportunities for very focussed discussion, and all who attended could benefit from new collaboration and training opportunities available as a result of this meeting. I would like to thank the local organizers, Professor Francesco Priolo and his students for the smooth running of the workshop, and Professor Bengt Svensson for acting as the Programme Chairman. I would also like to thank Professors Svensson and Priolo for their help with the selection of papers for the workshop and with the Proceedings.

  2. Integrating care coordination home telehealth and home based primary care in rural Oklahoma: a pilot study.

    PubMed

    Sorocco, Kristen H; Bratkovich, Kristi L; Wingo, Rita; Qureshi, Saleem M; Mason, Patrick J

    2013-08-01

    The purpose of this program was to evaluate the benefits of integrating VA Care Coordination Home Telehealth and Telemental health within HBPC. A case study design was used to determine quality assurance and quality improvement of incorporating additional home telehealth equipment within Home Based Primary Care (HBPC). Veterans with complex medical conditions and their caregivers living in rural Oklahoma were enrolled. Veterans received the same care other HBPC patients received with the addition of home telehealth equipment. Members from the interdisciplinary treatment team were certified to use the telehealth equipment. Veterans and their caregivers were trained on use of the equipment in their homes. Standard HBPC program measures were used to assess the program success. Assessments from all disciplines on the HBPC team were at baseline, 3, and 6 months, and participants provided satisfaction and interview data to assess the benefits of integrating technology into standard care delivery within an HBPC program. Six veterans were enrolled (mean age = 72 yrs) with a range of physical health conditions including: chronic obstructive pulmonary disease, cerebrovascular accident, spinal cord injury, diabetes, hypertension, and syncope. Primary mental health conditions included depression, dementia, anxiety, and PTSD. Scores on the Mini-Mental State Examination ranged from 18 to 30. Over a 6-month period, case studies indicated improvements in strength, social functioning, decreased caregiver burden, and compliance with treatment plan. This integration of CCHT and HBPC served previously underserved rural veterans having complex medical conditions and appears both feasible and clinically beneficial to veterans and their caregivers.

  3. Three coordination polymers based on different carboxylates, metals and a tri(4-imidazolylphenyl)amine ligand

    NASA Astrophysics Data System (ADS)

    Wu, Hua; Shi, Chenjie; Zhao, Yanqing; Jiang, Yutong; Tao, Yuehong

    2015-04-01

    In this paper, three new coordination complexes based on a flexible tri(4-imidazolylphenyl)amine (Tipa) ligand, namely [Co(Tipa)(L1)2]·H2O (1), [Zn2(Tipa)(L1)4(H2O)]·2H2O (2) and [Mn(Tipa)(L2)]·2H2O (3), where HL1 = benzoic acid H2L2 = 5-OH-1,3-benzenedicarboxylic acid and Tipa = tri(4-imidazolylphenyl)amine, have been synthesized under the hydrothermal condition and characterized by single-crystal X-ray diffraction, elemental analysis and IR spectra. Compound 1 exhibits a 1D ladder chain with the benzoic anions hanging on the two sides of the chain. For compound 2, it shows a fascinating 1D zigzag chain. Compound 3 displays (3,5)-connected (42·6)(42·67·8) topology, where the identical 2D networks entangle in highly rare parallel fashions to give a fascinating 2D → 3D framework with polycatenation and polyrotaxane characters. Moreover, the photoluminescent properties for the compounds 2 and 3 were also investigated.

  4. A coordinate-based meta-analytic model of trauma processing in posttraumatic stress disorder.

    PubMed

    Ramage, Amy E; Laird, Angela R; Eickhoff, Simon B; Acheson, Ashley; Peterson, Alan L; Williamson, Douglas E; Telch, Michael J; Fox, Peter T

    2013-12-01

    Posttraumatic stress disorder (PTSD) has a well-defined set of symptoms that can be elicited during traumatic imagery tasks. For this reason, trauma imagery tasks are often employed in functional neuroimaging studies. Here, coordinate-based meta-analysis (CBM) was used to pool eight studies applying traumatic imagery tasks to identify sites of task-induced activation in 170 PTSD patients and 104 healthy controls. In this way, right anterior cingulate (ACC), right posterior cingulate (PCC), and left precuneus (Pcun) were identified as regions uniquely active in PTSD patients relative to healthy controls. To further characterize these regions, their normal interactions, and their typical functional roles, meta-analytic connectivity modeling (MACM) with behavioral filtering was applied. MACM indicated that the PCC and Pcun regions were frequently co-active and associated with processing of cognitive information, particularly in explicit memory tasks. Emotional processing was particularly associated with co-activity of the ACC and PCC, as mediated by the thalamus. By narrowing the regions of interest to those commonly active across multiple studies (using CBM) and developing a priori hypotheses about directed probabilistic dependencies amongst these regions, this proposed model-when applied in the context of graphical and causal modeling-should improve model fit and thereby increase statistical power for detecting differences between subject groups and between treatments in neuroimaging studies of PTSD.

  5. Uniform Cerium-Based Coordination Polymer Microsnheres: Preoaration and Upconversion Emission.

    PubMed

    Nie, Zhi-Wen; Zeng, Cheng-Hui; Xie, Gang; Zhong, Sheng-Liang

    2016-04-01

    Homogeneously doped Yb3+ and Er3+ cerium-based coordination polymer (CP) microspheres have been successfully synthesized on a large scale through a simple solvothermal route with 2,5-pyridinedicarboxylic acid (2,5-H2PDC) as the organic linker. CeO2: Yb3+, Er3+ porous microspheres were obtained by annealing the corresponding CP microspheres at 600 °C for 4 h under atmospheric pressure. These as-prepared products were characterized by Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersion X-ray (EDX) spectroscopy, Thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis. The room temperature upconversion luminescent spectra of the as-prepared microspheres were carried out by 980 nm NIR light excitation. Interestingly, Yb3+ and Er3+ codoped CP microspheres give a single-band emission centered at 673 nm, while the CeO2: Yb3+, Er3+ microspheres give emission in green and red region, with red being the dominant emission. The emission intensity of the CeO2: Yb3+, Er3+ microspheres were much stronger than that of the Yb3+ and Er3+ codoped CP microspheres. PMID:27451693

  6. International Space Exploration Coordination Group Assessment of Technology Gaps for LOx/Methane Propulsion Systems for the Global Exploration Roadmap

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; Whitley, Ryan; Klem, Mark D.; Johnson, Wesley; Alexander, Leslie; D'Aversa, Emanuela; Ruault, Jean-Marc; Manfletti, Chiara; Caruana, Jean-Noel; Ueno, Hiroshi; Asakawa, Hiroya

    2016-01-01

    As part of the Global Exploration Roadmap (GER), the International Space Exploration Coordination Group (ISECG) formed two technology gap assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. The participating agencies were ASI, CNES, DLR, ESA, JAXA, and NASA. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion. LOx/Methane propulsion systems are enabling for future human missions Mars by significantly reducing the landed mass of the Mars ascent stage through the use of in-situ propellant production, for improving common fluids for life support, power and propulion thus allowing for diverse redundancy, for eliminating the corrosive and toxic propellants thereby improving surface operations and resusabilty, and for inceasing the performance of propulsion systems. The goals and objectives of the international team are to determine the gaps in technology that must be closed for LOx/Methane to be used in human exploration missions in cis-lunar, lunar, and Mars mission applications. An emphasis is placed on near term lunar lander applications with extensibility to Mars. Each agency provided a status of the substantial amount of Lox/Methane propulsion system development to date and their inputs on the gaps in the technology that are remaining. The gaps, which are now opportunities for collaboration, are then discussed.

  7. Design and simulation of satellite attitude control system based on Simulink and VR

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Gan, Qingbo; Kang, Jingshu

    2016-01-01

    In order to research satellite attitude control system design and visual simulation, the simulation framework of satellite dynamics and attitude control using Simulink were established. The design of satellite earth-oriented control system based on quaternion feedback was completed. The 3D scene based on VR was created and models in the scene were driven by simulation data of Simulink. By coordinate transformation. successful observing the scene in inertial coordinate system, orbit coordinate system and body coordinate system. The result shows that application of simulation method of Simulink combined with VR in the design of satellite attitude control system field, has the advantages of high confidence level, hard real-time property, multi-perspective and multi-coordinate system observing the scene, and improves the comprehensibility and accuracy of the design.

  8. Assessment of Multi-Joint Coordination and Adaptation in Standing Balance: A Novel Device and System Identification Technique.

    PubMed

    Engelhart, Denise; Schouten, Alfred C; Aarts, Ronald G K M; van der Kooij, Herman

    2015-11-01

    The ankles and hips play an important role in maintaining standing balance and the coordination between joints adapts with task and conditions, like the disturbance magnitude and type, and changes with age. Assessment of multi-joint coordination requires the application of multiple continuous and independent disturbances and closed loop system identification techniques (CLSIT). This paper presents a novel device, the double inverted pendulum perturbator (DIPP), which can apply disturbing forces at the hip level and between the shoulder blades. In addition to the disturbances, the device can provide force fields to study adaptation of multi-joint coordination. The performance of the DIPP and a novel CLSIT was assessed by identifying a system with known mechanical properties and model simulations. A double inverted pendulum was successfully identified, while force fields were able to keep the pendulum upright. The estimated dynamics were similar as the theoretical derived dynamics. The DIPP has a sufficient bandwidth of 7 Hz to identify multi-joint coordination dynamics. An experiment with human subjects where a stabilizing force field was rendered at the hip (1500 N/m), showed that subjects adapt by lowering their control actions around the ankles. The stiffness from upper and lower segment motion to ankle torque dropped with 30% and 48%, respectively. Our methods allow to study (pathological) changes in multi-joint coordination as well as adaptive capacity to maintain standing balance. PMID:25423654

  9. Assessment of Multi-Joint Coordination and Adaptation in Standing Balance: A Novel Device and System Identification Technique.

    PubMed

    Engelhart, Denise; Schouten, Alfred C; Aarts, Ronald G K M; van der Kooij, Herman

    2015-11-01

    The ankles and hips play an important role in maintaining standing balance and the coordination between joints adapts with task and conditions, like the disturbance magnitude and type, and changes with age. Assessment of multi-joint coordination requires the application of multiple continuous and independent disturbances and closed loop system identification techniques (CLSIT). This paper presents a novel device, the double inverted pendulum perturbator (DIPP), which can apply disturbing forces at the hip level and between the shoulder blades. In addition to the disturbances, the device can provide force fields to study adaptation of multi-joint coordination. The performance of the DIPP and a novel CLSIT was assessed by identifying a system with known mechanical properties and model simulations. A double inverted pendulum was successfully identified, while force fields were able to keep the pendulum upright. The estimated dynamics were similar as the theoretical derived dynamics. The DIPP has a sufficient bandwidth of 7 Hz to identify multi-joint coordination dynamics. An experiment with human subjects where a stabilizing force field was rendered at the hip (1500 N/m), showed that subjects adapt by lowering their control actions around the ankles. The stiffness from upper and lower segment motion to ankle torque dropped with 30% and 48%, respectively. Our methods allow to study (pathological) changes in multi-joint coordination as well as adaptive capacity to maintain standing balance.

  10. Coinage metal coordination chemistry of stable primary, secondary and tertiary ferrocenylethyl-based phosphines.

    PubMed

    Azizpoor Fard, M; Rabiee Kenaree, A; Boyle, P D; Ragogna, P J; Gilroy, J B; Corrigan, J F

    2016-02-21

    Ferrocene-based phosphines constitute an important auxiliary ligand in inorganic chemistry. Utilizing the (ferrocenylethyl)phosphines (FcCH2CH2)3-nHnP (Fc = ferrocenyl; n = 2, 1; n = 1, 2; n = 0, 3) the synthesis of a series of coordination complexes [(FcCH2CH2)3-nHnPCuCl]4 (n = 2, 1-CuCl; n = 0, 3-CuCl), [(FcCH2CH2)2HPCuCl] (2-CuCl), {[(FcCH2CH2)H2P]2AgCl}2 (1-AgCl), [(FcCH2CH2)2HPAgCl] (2-AgCl), [(FcCH2CH2)3PAgCl]4 (3-AgCl), [(FcCH2CH2)3PM(OAc)]4 (M = Cu, 3-CuOAc M = Ag, 3-AgOAc), [(FcCH2CH2)3-nHnPAuCl] (n = 1, 2-AuCl; n = 0, 3-AuCl), via the reaction between the free phosphine and MX (M = Cu, Ag and Au; X = Cl, OAc), is described. The reaction between the respective phosphine with a suspension of metal-chloride or -acetate in a 1 : 1 ratio in THF at ambient temperature affords coordinated phosphine-coinage metal complexes. Varying structural motifs are observed in the solid state, as determined via single crystal X-ray analysis of 1-CuCl, 3-CuCl, 1-AgCl, 3-AgCl, 3-CuOAc, 3-AgOAc, 2-AuCl and 3-AuCl. Complexes 1-CuCl and 3-CuCl are tetrameric Cu(i) cubane-like structures with a Cu4Cl4 core, whereas silver complexes with primary and tertiary phosphine reveal two different structural types. The structure of 1-AgCl, unlike the rest, displays the coordination of two phosphines to each silver atom and shows a quadrangle defined by two Ag and two Cl atoms. In contrast, 3-AgCl is distorted from a cubane structure via elongation of one of the ClAg distances. 3-CuOAc and 3-AgOAc are isostructural with step-like cores, while complexes 2-AuCl and 3-AuCl reveal a linear geometry of a phosphine gold(i) chloride devoid of any aurophilic interactions. All of the complexes were characterized in solution by multinuclear (1)H, (13)C{(1)H} and (31)P NMR spectroscopic techniques; the redox chemistry of the series of complexes was examined using cyclic voltammetry. This class of complexes has been found to exhibit one reversible Fe(ii)/Fe(iii) oxidation couple, suggesting the

  11. Coinage metal coordination chemistry of stable primary, secondary and tertiary ferrocenylethyl-based phosphines.

    PubMed

    Azizpoor Fard, M; Rabiee Kenaree, A; Boyle, P D; Ragogna, P J; Gilroy, J B; Corrigan, J F

    2016-02-21

    Ferrocene-based phosphines constitute an important auxiliary ligand in inorganic chemistry. Utilizing the (ferrocenylethyl)phosphines (FcCH2CH2)3-nHnP (Fc = ferrocenyl; n = 2, 1; n = 1, 2; n = 0, 3) the synthesis of a series of coordination complexes [(FcCH2CH2)3-nHnPCuCl]4 (n = 2, 1-CuCl; n = 0, 3-CuCl), [(FcCH2CH2)2HPCuCl] (2-CuCl), {[(FcCH2CH2)H2P]2AgCl}2 (1-AgCl), [(FcCH2CH2)2HPAgCl] (2-AgCl), [(FcCH2CH2)3PAgCl]4 (3-AgCl), [(FcCH2CH2)3PM(OAc)]4 (M = Cu, 3-CuOAc M = Ag, 3-AgOAc), [(FcCH2CH2)3-nHnPAuCl] (n = 1, 2-AuCl; n = 0, 3-AuCl), via the reaction between the free phosphine and MX (M = Cu, Ag and Au; X = Cl, OAc), is described. The reaction between the respective phosphine with a suspension of metal-chloride or -acetate in a 1 : 1 ratio in THF at ambient temperature affords coordinated phosphine-coinage metal complexes. Varying structural motifs are observed in the solid state, as determined via single crystal X-ray analysis of 1-CuCl, 3-CuCl, 1-AgCl, 3-AgCl, 3-CuOAc, 3-AgOAc, 2-AuCl and 3-AuCl. Complexes 1-CuCl and 3-CuCl are tetrameric Cu(i) cubane-like structures with a Cu4Cl4 core, whereas silver complexes with primary and tertiary phosphine reveal two different structural types. The structure of 1-AgCl, unlike the rest, displays the coordination of two phosphines to each silver atom and shows a quadrangle defined by two Ag and two Cl atoms. In contrast, 3-AgCl is distorted from a cubane structure via elongation of one of the ClAg distances. 3-CuOAc and 3-AgOAc are isostructural with step-like cores, while complexes 2-AuCl and 3-AuCl reveal a linear geometry of a phosphine gold(i) chloride devoid of any aurophilic interactions. All of the complexes were characterized in solution by multinuclear (1)H, (13)C{(1)H} and (31)P NMR spectroscopic techniques; the redox chemistry of the series of complexes was examined using cyclic voltammetry. This class of complexes has been found to exhibit one reversible Fe(ii)/Fe(iii) oxidation couple, suggesting the

  12. Highly emissive organic solids with remarkably broad color tunability based on N,C-chelate, four-coordinate organoborons.

    PubMed

    Shaikh, Aslam C; Ranade, Dnyanesh S; Thorat, Shridhar; Maity, Arunava; Kulkarni, Prasad P; Gonnade, Rajesh G; Munshi, Parthapratim; Patil, Nitin T

    2015-11-18

    Molecular fluorophores based on N,C-chelate, four-coordinate organoborons exhibit tunable solid-state emission colors that cover the whole visible region from blue to red. The emission color can be tuned through the substituents on either quinolines or the boron center.

  13. The Effect of System-Assigned Exemplar-Comparison Strategies on Acquisition of Coordinate Concepts.

    ERIC Educational Resources Information Center

    Allen, Brockenbrough S.

    The feasibility of guiding students of moderate aptitude to select appropriate learning strategies while they are learning an imaginary classification system was investigated in a study that contrasted the effect of system-assigned strategies for learning concepts with strategies selected by students. Subject-matter content was based on a set of…

  14. Can autism, language and coordination disorders be differentiated based on ability profiles?

    PubMed

    Wisdom, Sarah N; Dyck, Murray J; Piek, Jan P; Hay, David; Hallmayer, Joachim

    2007-04-01

    Children with autistic disorder (AD), mixed receptive-expressive language disorder (RELD), or developmental coordination disorder (DCD) have impairments in common. We assess which abilities differentiate the disorders. Children aged 3-13 years diagnosed with AD (n = 30), RELD (n = 30), or DCD (n = 22) were tested on measures of language, intelligence, social cognition, motor coordination, and executive functioning. Results indicate that the AD and DCD groups have poorer fine and gross motor coordination and better response inhibition than the RELD group. The AD and DCD groups differ in fine and gross motor coordination, emotion understanding, and theory of mind scores (AD always lower), but discriminant function analysis yielded a non-significant function and more classification errors for these groups. In terms of ability scores, the AD and DCD groups appear to differ more in severity than in kind.

  15. Experimental matrix isolation study and quantum-mechanics-based normal-coordinate analysis of the anharmonic infrared spectrum of picolinic acid N-oxide.

    PubMed

    Szczepaniak, Krystyna; Person, Willis B; Hadzi, Dusan

    2005-08-01

    This work is, according to our knowledge, the first experimental matrix isolation study of a molecular system with a very short and strong intramolecular OH...O hydrogen bond. It also includes a satisfying interpretation of its entire infrared spectrum. The interpretation relies on the calculation at the DFT/B3LYP/6-31G(d,p) level of the harmonic spectrum and of the anharmonic relaxed potential energy for the stretching motion of the hydrogen-bonded proton, used with our recently modified quantum-mechanics-based normal-coordinate analysis. An important observation about the anharmonic spectrum obtained from this procedure is that the OH stretch coordinate contributes to several normal modes, mixing extensively with other in-plane internal coordinates, in particular OH-bending and C=O-stretching. The two intense normal modes with the largest contributions from the OH-stretching coordinate to the potential energy distribution and to the intensity are located near 1700 and 1500 cm(-1). A calculated anharmonic spectrum obtained from this procedure agrees with the experimental spectrum (frequencies and intensity distribution), within the limits of the estimated uncertainties for the calculation and experiment, allowing the interpretation of the latter. The agreement for the frequencies is about 1-3%. The anharmonic spectrum calculated using the anharmonic keyword in Gaussian 03w is not in satisfactory agreement with experiment insofar as the OH-stretching mode is concerned.

  16. Tunable emission in lanthanide coordination polymer gels based on a rationally designed blue emissive gelator.

    PubMed

    Sutar, Papri; Suresh, Venkata M; Maji, Tapas Kumar

    2015-06-18

    Rational design and synthesis of a new low molecular weight gelator (LMWG) having 9,10-diphenylanthracene core and terminal terpyridine is reported. Tb(III) and Eu(III) ion coordination to a LMWG results in green and pink emissive coordination polymer gels, respectively, with coiled nanofiber morphology. Further, control over stoichiometry of LMWG:Tb(III):Eu(III) leads to yellow and white light emitting bimetallic gels. PMID:25995095

  17. A comparison of coordinate systems for use in determining a radiotherapy delineation margin for whole breast

    NASA Astrophysics Data System (ADS)

    Pogson, E. M.; Bell, L.; Batumalai, V.; Koh, E. S.; Delaney, G.; Metcalfe, P.; Holloway, L.

    2014-03-01

    Cartesian co-ordinates, traditionally used for radiotherapy margins, calculated at 6 points, may not adequately represent changes in inter-observer contour variation as necessary to define a delineation margin. As a first step, this study compared the standard deviation (SD) in contour delineation using Polar and Cartesian co-ordinates for whole breast. Whole breast Clinical Target Volumes (CTV) were delineated by eight observers for 9 patients. The SD of contour position was determined for Polar co-ordinates at 1° increments for 5 slices and averaged across all patients. The mean centre of mass (COM) was used as the origin for the right breast, for the left the COM was shifted 1cm superiorly to avoid clipping. The SD was determined for Cartesian co-ordinates for medial-lateral and anterior-posterior positions. At slice Z=0cm considering Polar co-ordinates, the SD peaked medially reaching 3.55cm at 15° for the right breast, and 1.44cm at 171° for the left. The SD of the remaining slices maintained a similar distribution, with variation in the peak occurring within 10° of the Z=0cm positions. By comparison, for Cartesian co-ordinates at slice Z=0cm, the largest SD in the medial-lateral and anterior-posterior directions was 0.54/0.57cm and 1.03/0.67cm respectively for right/left breasts. The SD for inter-observer variation for whole breast varies with anatomical position. The maximum SD determined with Polar co-ordinates was greater than with Cartesian coordinates. A delineation margin may thus need to vary with angle over the entire structure and Cartesian co-ordinates may not be the best approach for margin determination for whole breast.

  18. Development of an atmospheric model based on a generalized vertical coordinate. Final report, September 12, 1991--August 31, 1997

    SciTech Connect

    Arakawa, Akio; Konor, C.S.

    1997-12-31

    There are great conceptual advantages in the use of an isentropic vertical coordinate in atmospheric models. Design of such a model, however, requires to overcome computational problems due to intersection of coordinate surfaces with the earth`s surface. Under this project, the authors have completed the development of a model based on a generalized vertical coordinate, {zeta} = F({Theta}, p, p{sub s}), in which an isentropic coordinate can be combined with a terrain-following {sigma}-coordinate a smooth transition between the two. One of the key issues in developing such a model is to satisfy the consistency between the predictions of pressure and potential temperature. In the model, the consistency is satisfied by the use of an equation that determines the vertical mass flux. A procedure to properly choose {zeta} = F({Theta}, p, p{sub s}) is also developed, which guarantees that {zeta} is a monotonic function of height even when unstable stratification occurs. There are two versions of the model constructed in parallel: one is the middle-latitude {beta}-plane version and the other is the global version. Both of these versions include moisture prediction, relaxed large-scale condensation and relaxed moist-convective adjustment schemes. A well-mixed planetary boundary layer (PBL) is also added.

  19. Two novel metal–organic coordination polymers based on diphosphonate and oxalate: Synthesis, structures and properties

    SciTech Connect

    Niu, Qing-Jun; Zheng, Yue-Qing Zhou, Lin-Xia; Zhu, Hong-Lin

    2015-07-15

    Two 2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonato and oxalic acid bridged coordination polymers (H{sub 2}en)[Co{sub 3}(H{sub 2}zdn){sub 2}(ox)(H{sub 2}O){sub 2}] (1) and Cd{sub 2}(H{sub 2}zdn)(ox){sub 0.5}(H{sub 2}O) (2) (2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid=H{sub 5}zdn; oxalic acid=H{sub 2}ox) were synthesized under hydrothermal conditions and characterized by the infrared (IR), thermogravimetric analyses (TGA), elemental analyses (EA) and X-ray diffraction (XRD). Compound 1 is bridged by phosphonate anions to 1D chain, and further linked by oxalate anions to 2D layer. Compound 2 is bridged by O–P–O units of H{sub 5}zdn to the layer, and then pillared by oxalate anions to generate 3D frameworks. Compound 1 shows anti-ferromagnetic behaviors analyzed with the temperature-dependent zero-field ac magnetic susceptibilities, while compound 2 exhibits an influence on the luminescent property. - Graphical abstract: Linked by oxalate, two zoledronate-based metal–organic frameworks are synthesized, which exhibits the different frameworks. Magnetism and luminescent properties have been studied. The weak antiferromagnetic coupling is conducted in 1. - Highlights: • Compound 1 and 2 are first linked by oxalate anion based on zoledronic acid. • Compound 1 generates a classic “dia Diamond” (6{sup 6}) topology. • Compound 2 exhibits a (4{sup 4}·6{sup 2})(4{sup 4}·6{sup 6}) topology. • Magnetism and luminescent properties of 1 and 2 have been studied, respectively.

  20. Coordinated Regulation of Virulence during Systemic Infection of Salmonella enterica serovar Typhimurium

    SciTech Connect

    Yoon, Hyunjin; McDermott, Jason E.; Porwollik, Steffen; Mcclelland, Michael; Heffron, Fred

    2009-02-20

    Salmonella must respond to a myriad of environmental cues during infection of a mouse and express specific subsets of genes in a temporal and spatial manner to subvert the host defense mechanisms but these regulatory pathways are poorly established. To unravel how micro-environmental signals are processed and integrated into coordinated action, we constructed in-frame non-polar deletions of 84 regulators inferred to play a role in Salmonella typhimurium virulence and tested them in three virulence assays (intraperitoneal (i.p.), and intragastric (i.g.) infection in BALB/c mice, and persistence in SvJ129 mice). Overall 36 regulators were identified that were less virulent in at least one assay, and of those, 15 regulators were required for systemic mouse infection in an acute infection model. As a first step towards understanding the interplay between a pathogen and its host from a systems biology standpoint we focused on these 15 genes. Transcriptional profiles were obtained for each of these 15 regulators from strains grown under four different environmental conditions. These results as well as publicly available transcriptional profiles were analyzed using both network inference and cluster analysis algorithms. The analysis predicts a regulatory network in which all 15 regulators control a specific set of genes necessary for Salmonella to cause systemic infection. We tested the regulatory model by expressing a subset of the regulators in trans and monitoring transcription of 7 known virulence factors located within Salmonella pathogenicity island 2 (SPI-2). These experiments validated the regulatory model and showed that, for these 7 genes, the response regulator SsrB and the marR type regulator SlyA co-regulate in a regulatory cascade by integrating multiple signals.

  1. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation

    PubMed Central

    Naya, Daniel E.; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-01-01

    Thermal conductance measures the ease with which heat leaves or enters  an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915

  2. Coordinating Multi-Rover Systems: Evaluation Functions for Dynamic and Noisy Environments

    NASA Technical Reports Server (NTRS)

    Turner, Kagan; Agogino, Adrian

    2005-01-01

    This paper addresses the evolution of control strategies for a collective: a set of entities that collectively strives to maximize a global evaluation function that rates the performance of the full system. Directly addressing such problems by having a population of collectives and applying the evolutionary algorithm to that population is appealing, but the search space is prohibitively large in most cases. Instead, we focus on evolving control policies for each member of the collective. The fundamental issue in this approach is how to create an evaluation function for each member of the collective that is both aligned with the global evaluation function and is sensitive to the fitness changes of the member, while relatively insensitive to the fitness changes of other members. We show how to construct evaluation functions in dynamic, noisy and communication-limited collective environments. On a rover coordination problem, a control policy evolved using aligned and member-sensitive evaluations outperfoms global evaluation methods by up to 400%. More notably, in the presence of a larger number of rovers or rovers with noisy and communication limited sensors, the proposed method outperforms global evaluation by a higher percentage than in noise-free conditions with a small number of rovers.

  3. The visual perception coordinate system uses axes defined by the earth, trunk, and vision.

    PubMed

    Darling, Warren G; Robert, Bartelt

    2005-01-01

    Eight young adults adjusted a line located on one side of a computer display parallel to internally specified Earth-fixed vertical (display in frontal plane), to the horizontal trunk-fixed anterior-posterior axis (display in horizontal plane), and to an oblique line (display in horizontal and vertical planes). All tasks were completed in a dark room with the head and trunk in both a standard erect posture and varied postures. Errors were lowest when setting the line to internally specified vertical in the frontal plane and to an oblique line in the horizontal plane when head and trunk orientations were varied. Constant errors for setting one line parallel to a second line were in opposite directions when the second line was located on the left versus right side of the display, but did not differ in direction when setting the line parallel to internally specified axes. Also, the oblique effect was preserved when the head and trunk were tilted to various orientations, suggesting that it results from integration of an internally specified gravitational reference with visual input. We conclude that the visual perceptual coordinate system uses internally specified vertical and, when available, a visually specified horizontal reference axis to define object orientation.

  4. Social coordination in toddler's word learning: interacting systems of perception and action

    NASA Astrophysics Data System (ADS)

    Pereira, Alfredo; Smith, Linda; Yu, Chen

    2008-06-01

    We measured turn-taking in terms of hand and head movements and asked if the global rhythm of the participants' body activity relates to word learning. Six dyads composed of parents and toddlers (M=18 months) interacted in a tabletop task wearing motion-tracking sensors on their hands and head. Parents were instructed to teach the labels of 10 novel objects and the child was later tested on a name-comprehension task. Using dynamic time warping, we compared the motion data of all body-part pairs, within and between partners. For every dyad, we also computed an overall measure of the quality of the interaction, that takes into consideration the state of interaction when the parent uttered an object label and the overall smoothness of the turn-taking. The overall interaction quality measure was correlated with the total number of words learned. In particular, head movements were inversely related to other partner's hand movements, and the degree of bodily coupling of parent and toddler predicted the words that children learned during the interaction. The implications of joint body dynamics to understanding joint coordination of activity in a social interaction, its scaffolding effect on the child's learning and its use in the development of artificial systems are discussed.

  5. Unmanned Aerial Systems during the Coordinated Investigation of Climate-Cryosphere Interaction at Svalbard, Norway

    NASA Astrophysics Data System (ADS)

    Burkhart, J. F.; Bates, T. S.; Quinn, P.; Storvold, R.; Herber, A.; Vitale, V.; Lesenkov, S.; Cicci/Vauuav Science Team

    2011-12-01

    During Spring 2011 an intensive investigation of climate-cryosphere interaction was conducted in Svalbard, Norway. A primary objective of the campaign was to investigate processes related to the deposition of aerosols to the Arctic cryosphere. Moreover, the campaign provided a first-time opportunity to test several novel data acquisition platforms. Of interest to this session are the three Unmanned Aerial System (UAS) platforms that flew cooperatively with oversight from the Norwegian Civil Aviation Authority (CAA). The campaign presented the unique opportunity for a CAA to regulate UAS platforms; both private and foreign government-owned aircraft (Norway, USA, and Russia). Further, it highlighted challenges, both political and logistical, related to conducting such an operation. We present an overview of the 'Coordinated Investigation of Climate-Cryosphere Interaction' campaign, and highlight the novel and valuable contributions from each of the UAS platforms. Our presentation includes an overview of the different platform capabilities, a discussion of the scientific merits of the platforms, insight into the political process for UAS operations in the Arctic, and a summary of the acquired contributions toward the goals of the CICCI project.

  6. The 2008-2009 Pennsylvania System of School Assessment Handbook for Assessment Coordinators: Writing, Reading and Mathematics, Science

    ERIC Educational Resources Information Center

    Pennsylvania Department of Education, 2010

    2010-01-01

    This handbook describes the responsibilities of district and school assessment coordinators in the administration of the Pennsylvania System of School Assessment (PSSA). This updated guidebook contains the following sections: (1) General Assessment Guidelines for All Assessments; (2) Writing Specific Guidelines; (3) Reading and Mathematics…

  7. Applying User Input to the Design and Testing of an Electronic Behavioral Health Information System for Wraparound Care Coordination

    PubMed Central

    Bruns, Eric J.; Hyde, Kelly L.; Sather, April; Hook, Alyssa; Lyon, Aaron R.

    2015-01-01

    Health information technology (HIT) and care coordination for individuals with complex needs are high priorities for quality improvement in health care. However, there is little empirical guidance about how best to design electronic health record systems and related technologies to facilitate implementation of care coordination models in behavioral health, or how best to apply user input to the design and testing process. In this paper, we describe an iterative development process that incorporated user/stakeholder perspectives at multiple points and resulted in an electronic behavioral health information system (EBHIS) specific to the wraparound care coordination model for youth with serious emotional and behavioral disorders. First, we review foundational HIT research on how EBHIS can enhance efficiency and outcomes of wraparound that was used to inform development. After describing the rationale for and functions of a prototype EBHIS for wraparound, we describe methods and results for a series of six small studies that informed system development across four phases of effort – predevelopment, development, initial user testing, and commercialization – and discuss how these results informed system design and refinement. Finally, we present next steps, challenges to dissemination, and guidance for others aiming to develop specialized behavioral health HIT. The research team's experiences reinforce the opportunity presented by EBHIS to improve care coordination for populations with complex needs, while also pointing to a litany of barriers and challenges to be overcome to implement such technologies. PMID:26060099

  8. Applying User Input to the Design and Testing of an Electronic Behavioral Health Information System for Wraparound Care Coordination.

    PubMed

    Bruns, Eric J; Hyde, Kelly L; Sather, April; Hook, Alyssa N; Lyon, Aaron R

    2016-05-01

    Health information technology (HIT) and care coordination for individuals with complex needs are high priorities for quality improvement in health care. However, there is little empirical guidance about how best to design electronic health record systems and related technologies to facilitate implementation of care coordination models in behavioral health, or how best to apply user input to the design and testing process. In this paper, we describe an iterative development process that incorporated user/stakeholder perspectives at multiple points and resulted in an electronic behavioral health information system (EBHIS) specific to the wraparound care coordination model for youth with serious emotional and behavioral disorders. First, we review foundational HIT research on how EBHIS can enhance efficiency and outcomes of wraparound that was used to inform development. After describing the rationale for and functions of a prototype EBHIS for wraparound, we describe methods and results for a series of six small studies that informed system development across four phases of effort-predevelopment, development, initial user testing, and commercialization-and discuss how these results informed system design and refinement. Finally, we present next steps, challenges to dissemination, and guidance for others aiming to develop specialized behavioral health HIT. The research team's experiences reinforce the opportunity presented by EBHIS to improve care coordination for populations with complex needs, while also pointing to a litany of barriers and challenges to be overcome to implement such technologies. PMID:26060099

  9. Applying User Input to the Design and Testing of an Electronic Behavioral Health Information System for Wraparound Care Coordination.

    PubMed

    Bruns, Eric J; Hyde, Kelly L; Sather, April; Hook, Alyssa N; Lyon, Aaron R

    2016-05-01

    Health information technology (HIT) and care coordination for individuals with complex needs are high priorities for quality improvement in health care. However, there is little empirical guidance about how best to design electronic health record systems and related technologies to facilitate implementation of care coordination models in behavioral health, or how best to apply user input to the design and testing process. In this paper, we describe an iterative development process that incorporated user/stakeholder perspectives at multiple points and resulted in an electronic behavioral health information system (EBHIS) specific to the wraparound care coordination model for youth with serious emotional and behavioral disorders. First, we review foundational HIT research on how EBHIS can enhance efficiency and outcomes of wraparound that was used to inform development. After describing the rationale for and functions of a prototype EBHIS for wraparound, we describe methods and results for a series of six small studies that informed system development across four phases of effort-predevelopment, development, initial user testing, and commercialization-and discuss how these results informed system design and refinement. Finally, we present next steps, challenges to dissemination, and guidance for others aiming to develop specialized behavioral health HIT. The research team's experiences reinforce the opportunity presented by EBHIS to improve care coordination for populations with complex needs, while also pointing to a litany of barriers and challenges to be overcome to implement such technologies.

  10. Provincial Coordination and Inter-Institutional Collaboration in British Columbia's College, University College and Institute System. Monograph Series.

    ERIC Educational Resources Information Center

    Gaber, Devron

    This document addresses a study that aimed to better understand the historical development of British Columbia community college, university college, and institute system with special attention given to recent changes in inter-institutional collaboration in relation to provincial coordination. The study also addresses centralization and…

  11. Task planning and action coordination in integrated sensor-based robots

    SciTech Connect

    Chen, C.; Trivedi, M.M.

    1995-04-01

    A System Architecture for Sensor-based Intelligent Robots (SASIR) is introduced. The system architecture consists of perception, motor, task planner, knowledge-base, user interface, and supervisor modules. SASIR is constructed using a frame data structure, which provides a suitable and flexible scheme for representation and manipulation of the world model, the sensor derived information, as well as for describing the actions required for the execution of a specific task. The experimental results show the basic validity of the general architecture as well as the robust and successful performance of two working systems: (1) the Autonomous Spill Cleaning (ASC) Robotic System, and (2) ROBOSIGHT, which is capable of a range of autonomous inspection and manipulation tasks. 45 refs.

  12. Evaluation of a Care Coordination Measure for the Consumer Assessment of Healthcare Providers and Systems (CAHPS®) Medicare Survey

    PubMed Central

    Hays, Ron D.; Martino, Steven; Brown, Julie A.; Cui, Mike; Cleary, Paul; Gaillot, Sarah; Elliott, Marc

    2014-01-01

    There is widespread interest in assessing care coordination to improve overall care quality. We evaluated a five-item measure of care coordination included in the 2012 Consumer Assessment of Healthcare Providers and Systems (CAHPS) Medicare survey (n=326,194 respondents, 46% response rate). This measure includes patient reports of whether their personal doctor discusses their medicines, has medical records and other relevant information, and is informed about care from specialists; and whether the patient gets help in managing care and timely follow-up on test results. A one-factor categorical confirmatory factor analytic model indicated that five items constituted a coherent scale. Estimated health-plan level reliability was 0.70 at about 102 responses per plan.. The composite had a strong unique association with the CAHPS global rating of health care, controlling for the CAHPS core composite scores. This measure can be used to evaluate relative plan performance and characteristics associated with better care coordination. PMID:24227813

  13. Application of the trajectory coordinate system and the moving modes method approach to railroad dynamics using Krylov subspaces

    NASA Astrophysics Data System (ADS)

    Recuero, Antonio M.; Escalona, José L.

    2013-09-01

    This paper presents a procedure that makes use of a particular formulation based on the trajectory coordinate system (TCS) approach, which is specific of ground vehicles, to describe the track deformation by means of a suitable set of mode shapes. The inertia terms of the track elastic displacements are derived using the TCS arc length to couple the system dynamics. The selection of the track modes of deformation is carried out from a finite element model by using Krylov subspaces as the model-order reduction technique. The modes of deformation move along the track fixed to the TCS using the moving modes method (MMM), avoiding the issue concerning the spatial convergence of the load (wheels) on the track and preserving their vertical frequency contents whose accuracy can be chosen beforehand. An unsuspended wheelset with an induced hunting motion moving on flexible and rigid tangent tracks and a vehicle model are simulated using rail defects as excitations sources such that the performance of this procedure using a fully 3D contact algorithm is shown and analyzed.

  14. Effects of coordinate system choice on measured regional myocardial function in short axis cine electron-beam tomography

    SciTech Connect

    Reed, J.; Rumberger, J.; Buithieu, J.; Behrenbeck, T.; Breen, J.; Sheedy, P. II

    1995-12-31

    Following myocardial infarction, the size of the infarcted region and the systolic functioning of the non-infarcted region are commonly assessed by various cross-sectional imaging techniques. For the assessment of patterns of ventricular contraction, images are commonly acquired of ventricular cross-sections normal to the long axis of the heart and parallel to the mitral valve plane. The endocardial and epicardial surfaces of the myocardium are identified. Then the ventricle is divided into sectors and the volumes of blood and myocardium within each sector at multiple phases of the cardiac cycle are measured. Regional function parameters are derived from these measurements. This generally mandates the use of a polar or cylindrical coordinate system. Various algorithms have been used to select the origin of this coordinate system. These include the centroid of the endocardial surface, the epicardial surface, or of a polygon whose vertices lie midway between the epicardial and endocardial surfaces of the myocardium (centerline method). Another algorithm has been developed in the laboratory. This uses the centroid (or center of mass) of the myocardium exclusive of the ventricular cavity.Each of these choices for origin of coordinate system can be derived from the end-diastolic image or from the end-systolic image. Alternately, new coordinate system can be selected for each phase of the cardiac cycle. These are referred to as floating coordinate systems. A series of computer models have been developed in the laboratory to study the effects of each of these choices on the regional function parameters of normal ventricles and how these choices effect the quantification of regional abnormalities after myocardial infarction.

  15. A global model of the neutral thermosphere in magnetic coordinates based on AE-C data

    NASA Technical Reports Server (NTRS)

    Stehle, C. G.; Nisbet, J. S.; Bleuler, E.

    1983-01-01

    Molecular nitrogen, atomic oxygen, and helium densities obtained from the AE-C satellite are analyzed in magnetic latitude and magnetic local time coordinates and compared to OGO 6 data for various seasons and magnetic activity levels. A depletion region for atomic oxygen and helium with respect to molecular nitrogen at high magnetic latitudes in the postmidnight magnetic local time sector persists under both high and low solar activity conditions. A global model in magnetic coordinates, patterned after the mass spectrometer and incoherent scatter (MSIS) model, is developed for molecular nitrogen, atomic oxygen, and helium. It is shown to represent the data well, without any residual UT dependence, and with an accuracy comparable to that provided by the more complex MSIS model with longitude terms The advantage of using magnetic coordinates is that they are more directly related to the major energy inputs and momentum sources in the polar regions than are geographic coordinates and are more convenient to use in studies of high latitude energy deposition processes. This is important for comparison with theoretical models where the number of coordinates is limited.

  16. Coordination polymerization of renewable butyrolactone-based vinyl monomers by lanthanide and early metal catalysts.

    PubMed

    Miyake, Garret M; Newton, Stacie E; Mariott, Wesley R; Chen, Eugene Y-X

    2010-08-01

    This contribution reports the first study of coordination-addition polymerization of renewable butyrolactone-based vinyl monomers, MBL (alpha-methylene-gamma-butyrolactone) and MMBL (gamma-methyl-alpha-methylene-gamma-butyrolactone), using neutral lanthanocene(II), non-lanthanocene(III), and cationic group 4 metallocene catalysts. The samarocene(II) catalyst, Cp*(2)Sm(THF)(2), promotes a rapid, efficient, and controlled polymerization of MBL and MMBL in DMF at ambient temperature, exhibiting a high TOF of 3000 h(-1), typically near quantitative initiator efficiency, and the ability to control the polymer MW. The resulting atactic PMBL and PMMBL have high T(g)'s of 194 degrees C and 227 degrees C, respectively; when compared to atactic PMMA having comparable MW, the T(g) and onset decomposition temperatures of the PMMBL produced are substantially higher (by approximately 120 degrees C and 40 degrees C, respectively). Owing to the living/controlled characteristics of this polymerization, well-defined random and block copolymers of MBL with MMA and MMBL can be readily synthesized. Results of the kinetic and polymerization studies indicate that the true active species is the trivalent samarocene centers attached to the single growing polymer chain, derived presumably from a redox-then-radical-coupling process. In comparison, the polymerizations by non-lanthanocene(III) silylamides, Ln[N(SiMe(3))(2)](3) (Ln = La, Nd, Sm, Er), and by cationic group 4 metallocene and half-metallocene catalysts incorporating C(2) and C(s) symmetric ligands are much slower and less effective. Catalytic polymerization of MBL by Cp*(2)Sm(THF)(2) has also been realized in the presence of an enolizable organo acid as a suitable chain transfer agent. PMID:20631950

  17. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands.

    PubMed

    Barry, Dawn E; Caffrey, David F; Gunnlaugsson, Thorfinnur

    2016-06-01

    Herein some examples of the use of lanthanide ions (f-metal ions) to direct the synthesis of luminescent self-assembly systems (architectures) will be discussed. This area of lanthanide supramolecular chemistry is fast growing, thanks to the unique physical (magnetic and luminescent) and coordination properties of the lanthanides, which are often transferred to the resulting supermolecule. The emphasis herein will be on systems that are luminescent, and hence, generated by using either visibly emitting ions (such as Eu(III), Tb(III) and Sm(III)) or near infrared emitting ions (like Nd(III), Yb(III) and Er(III)), formed through the use of templating chemistry, by employing structurally simple ligands, possessing oxygen and nitrogen coordinating moieties. As the lanthanides have high coordination requirements, their use often allows for the formation of coordination compounds and supramolecular systems such as bundles, grids, helicates and interlocked molecules that are not synthetically accessible through the use of other commonly used templating ions such as transition metal ions. Hence, the use of the rare-earth metal ions can lead to the formation of unique and stable species in both solution and in the solid state, as well as functional and responsive structures.

  18. Design and synthesis of new 1D and 2D R-isophthalic acid-based coordination polymers (R = hydrogen or bromine).

    PubMed

    Zhang, Ren; Gong, Qihan; Emge, Thomas J; Banerjee, Debasis; Li, Jing

    2013-01-01

    Three new R-isophthalic acid-based (R = H or Br) coordination polymers have been designed and synthesized. By changing the N-containing ligand in the system, we are able to tune the dimensionality of coordination polymers from one-dimension (1D) to two-dimensions (2D) with the same basic building unit. Also, different metal ions can be incorporated into the same structures. Compound 1 [Cu(bipa)(py)2]·0.5(H2O) (H2bipa = 5-bromoisophthalic acid; py = pyridine) and compound 2 [Co(bipa)(py)2] are 1D chain structures. Compound 3 [Cu8(ipa)8(bpe)8]·2(bpe)·4(H2O) (bpe=1,2-bis(4-pyridyl)ethane) is a 2D layered structure.

  19. Symbolic Formulation of Large-scale Open-loop Multibody Systems for Vibration Analysis Using Absolute Joint Coordinates

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Chen, Xuedong; Luo, Xin; Huang, Qingjiu

    A novel symbolic formulation is presented to model dynamics of large-scale open-loop holonomic multibody systems, by using absolute joint coordinates and via matrix transformation, instead of solving constraint equations. The resulting minimal set of second-order linear ordinary differential equations (ODEs) can be used for linear vibration analysis and control directly. The ODEs are generated in three steps. Firstly, a set of linearized ODEs are formulated in terms of absolute coordinates without considering any constraint. Secondly, an overall transform matrix representing constraint topology for the entire constrained system is generated. Finally, matrices for a minimal set of ODEs for the open-loop holonomic multibody system are obtained via matrix transformation. The correctness and efficiency of the presented algorithm are verified by numerical experiments on various cases of holonomic multibody systems with different open-loop topologies, including chain topology and tree topology. It is indicated that the proposed method can significantly improve efficiency without losing computational accuracy.

  20. Multiobjective Decision Making Policies and Coordination Mechanisms in Hierarchical Organizations: Results of an Agent-Based Simulation

    PubMed Central

    2014-01-01

    This paper analyses how different coordination modes and different multiobjective decision making approaches interfere with each other in hierarchical organizations. The investigation is based on an agent-based simulation. We apply a modified NK-model in which we map multiobjective decision making as adaptive walk on multiple performance landscapes, whereby each landscape represents one objective. We find that the impact of the coordination mode on the performance and the speed of performance improvement is critically affected by the selected multiobjective decision making approach. In certain setups, the performances achieved with the more complex multiobjective decision making approaches turn out to be less sensitive to the coordination mode than the performances achieved with the less complex multiobjective decision making approaches. Furthermore, we present results on the impact of the nature of interactions among decisions on the achieved performance in multiobjective setups. Our results give guidance on how to control the performance contribution of objectives to overall performance and answer the question how effective certain multiobjective decision making approaches perform under certain circumstances (coordination mode and interdependencies among decisions). PMID:25152926

  1. LUMIS: Land Use Management and Information Systems; coordinate oriented program documentation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An integrated geographic information system to assist program managers and planning groups in metropolitan regions is presented. The series of computer software programs and procedures involved in data base construction uses the census DIME file and point-in-polygon architectures. The system is described in two parts: (1) instructions to operators with regard to digitizing and editing procedures, and (2) application of data base construction algorithms to achieve map registration, assure the topological integrity of polygon files, and tabulate land use acreages within administrative districts.

  2. A one-dimensional coordination polymer based on a di-Schiff base supported trinuclear CuII subunit.

    PubMed

    Zhang, Liangliang; Liu, Fuling; Yuan, Shuai; Wang, Xiaoyang; Sun, Di

    2012-04-01

    A novel one-dimensional Cu(II) coordination polymer, catena-poly[bis(μ(4)-3-{[2-(3-hydroxy-2-oxidobenzylidene)hydrazinylidene]methyl}benzene-1,2-diolato)dimethanoltricopper(II)], [Cu(3)(C(14)H(10)N(2)O(4))(2)(CH(3)OH)(2)](n), (I), was constructed with a di-Schiff base supported centrosymmetric trinuclear Cu(II) subunit. In the subunit, two peripheral symmetry-related Cu(II) cations have square-pyramidal CuNO(4) geometry and the central third Cu(II) cation lies on an inversion centre with octahedral CuN(2)O(4) geometry. In (I), each partially deprotonated di-Schiff base 3-{[2-(3-hydroxy-2-oxidobenzylidene)hydrazinylidene]methyl}benzene-1,2-diolate ligand (Hbcaz(3-)) acts as a heptadentate ligand to bind the Cu(II) centres into chains along the a axis. A centrosymmetric Cu(2)O(2) unit containing an asymmetrically bridging O atom, being axial at one Cu atom and equatorial at the other Cu atom, links the trinuclear Cu(II) subunit into a one-dimensional chain, which is reinforced by intramolecular phenol-methanol O-H...O and methanol-phenolate O-H...O hydrogen bonds. Interchain π-π stacking interactions between pyrocatechol units, with a distance of 3.5251 (18) Å, contribute to the stability of the crystal packing. PMID:22476144

  3. Low Band Gap Coplanar Conjugated Molecules Featuring Dynamic Intramolecular Lewis Acid-Base Coordination.

    PubMed

    Zhu, Congzhi; Guo, Zi-Hao; Mu, Anthony U; Liu, Yi; Wheeler, Steven E; Fang, Lei

    2016-05-20

    Ladder-type conjugated molecules with a low band gap and low LUMO level were synthesized through an N-directed borylation reaction of pyrazine-derived donor-acceptor-donor precursors. The intramolecular boron-nitrogen coordination bonds played a key role in rendering the rigid and coplanar conformation of these molecules and their corresponding electronic structures. Experimental investigation and theoretical simulation revealed the dynamic nature of such coordination, which allowed for active manipulation of the optical properties of these molecules by using competing Lewis basic solvents. PMID:27096728

  4. Geometrically motivated coordinate system for exploring spacetime dynamics in numerical-relativity simulations using a quasi-Kinnersley tetrad

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Brink, Jeandrew; Szilágyi, Béla; Lovelace, Geoffrey

    2012-10-01

    We investigate the suitability and properties of a quasi-Kinnersley tetrad and a geometrically motivated coordinate system as tools for quantifying both strong-field and wave-zone effects in numerical relativity (NR) simulations. We fix two of the coordinate degrees of freedom of the metric, namely, the radial and latitudinal coordinates, using the Coulomb potential associated with the quasi-Kinnersley transverse frame. These coordinates are invariants of the spacetime and can be used to unambiguously fix the outstanding spin-boost freedom associated with the quasi-Kinnersley frame (and thus can be used to choose a preferred quasi-Kinnersley tetrad). In the limit of small perturbations about a Kerr spacetime, these geometrically motivated coordinates and quasi-Kinnersley tetrad reduce to Boyer-Lindquist coordinates and the Kinnersley tetrad, irrespective of the simulation gauge choice. We explore the properties of this construction both analytically and numerically, and we gain insights regarding the propagation of radiation described by a super-Poynting vector, further motivating the use of this construction in NR simulations. We also quantify in detail the peeling properties of the chosen tetrad and gauge. We argue that these choices are particularly well-suited for a rapidly converging wave-extraction algorithm as the extraction location approaches infinity, and we explore numerically the extent to which this property remains applicable on the interior of a computational domain. Using a number of additional tests, we verify numerically that the prescription behaves as required in the appropriate limits regardless of simulation gauge; these tests could also serve to benchmark other wave extraction methods. We explore the behavior of the geometrically motivated coordinate system in dynamical binary-black-hole NR mergers; while we obtain no unexpected results, we do find that these coordinates turn out to be useful for visualizing NR simulations (for example, for

  5. Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles.

    PubMed

    Wu, C-W; Kang, Chao-Hsiang; Lin, Yi-Feng; Tung, Kuo-Lun; Deng, Yu-Heng; Ahamad, Tansir; Alshehri, Saad M; Suzuki, Norihiro; Yamauchi, Yusuke

    2016-04-01

    Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g. m-2 . h-1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future. PMID:27451778

  6. Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles.

    PubMed

    Wu, C-W; Kang, Chao-Hsiang; Lin, Yi-Feng; Tung, Kuo-Lun; Deng, Yu-Heng; Ahamad, Tansir; Alshehri, Saad M; Suzuki, Norihiro; Yamauchi, Yusuke

    2016-04-01

    Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g. m-2 . h-1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future.

  7. Functional profile of the binary brain corticosteroid receptor system: mediating, multitasking, coordinating, integrating.

    PubMed

    de Kloet, E R

    2013-11-01

    This contribution is focused on the action of the naturally occurring corticosteroids, cortisol and corticosterone, which are secreted from the adrenals in hourly pulses and after stress with the goal to maintain resilience and health. To achieve this goal the action of the corticosteroids displays an impressive diversity, because it is cell-specific and context-dependent in coordinating the individual's response to changing environments. These diverse actions of corticosterone are mediated by mineralocorticoid- and glucocorticoid-receptors that operate as a binary system in concert with neurotransmitter and neuropeptide signals to activate and inhibit stress reactions, respectively. Classically MR and GR are gene transcription factors, but recently these receptors appear to mediate also rapid non-genomic actions on excitatory neurotransmission suggesting that they integrate functions over time. Hence the balance of receptor-mediated actions is crucial for homeostasis. This balanced function of mineralo- and glucocorticoid-receptors can be altered epigenetically by a history of traumatic (early) life events and the experience of repeated stressors as well as by predisposing genetic variants in signaling pathways of these receptors. One of these variants, mineralocorticoid receptor haplotype 2, is associated with dispositional optimism in appraisal of environmental challenges. Imbalance in receptor-mediated corticosterone actions was found to leave a genomic signature highlighting the role of master switches such as cAMP response element-binding protein and mammalian target of rapamycin to compromise health, and to promote vulnerability to disease. Diabetic encephalopathy is a pathology of imbalanced corticosterone action, which can be corrected in its pre-stage by a brief treatment with the antiglucocorticoid mifepristone.

  8. Series of coordination polymers based on 4-(5-sulfo-quinolin-8-yloxy) phthalate and bipyridinyl coligands: Structure diversity and properties

    SciTech Connect

    Feng, Xun; Liu, Jing; Li, Jin; Ma, Lu-Fang; Wang, Li-Ya; Ng, Seik-Weng; Qin, Guo-Zhan

    2015-10-15

    Reactions between later metal salts and conjugational N-hetrocyclic sulfonate/ carboxylic acid under the presence of bipyridyl auxiliary ligands afforded a series of manganese, nickel, zinc, silver, cadmium coordination polymers bearing with phenyl pendant arm attached to quinoline skeletons, and they have been characterized by elements analysis, thermogravimetry, infrared spectroscopy and single-crystal X-ray diffraction studying. The series of polymers show interesting structural diversity in coordination environment, dimensions and topologies. They are all built from 2-D networks constructed from metal cluster through sulfonate or carboxylate groups, as the secondary building unit (SBU). The thermalgravimetric analyses show that they display framework stabilities in solid state. Variable-temperature magnetic susceptibility studies reveal the existence of antiferromagnetic interactions between adjacent Mn (II) ions in 1, and ferromagnetic interactions between Ni(II) ions for 2, respectively. The photo-luminescence properties of 3-5 have also been investigated systemically. - Highlights: • A series of coordination polymers based on later transition metal ions have been obtained. • They contain conjugational N-hetrocyclic sulfonate-carboxylic acid and bipyridyl auxiliary ligands. • They have been characterized systemically. • They exhibit structure diversity and interesting properties.

  9. Bio-inspired metal-coordination dynamics: A unique tool for engineering novel properties in soft matter systems

    NASA Astrophysics Data System (ADS)

    Grindy, Scott; Li, Qiaochu; Halim, Abigail; Learsch, Robert; Holten-Andersen, Niels

    2015-03-01

    In soft material systems, materials properties are generally governed by transient, dynamic interactions of many types over many hierarchal length- and time-scales. However, explicit control over these dynamics is not always possible, leaving open questions into how transient interactions can be exploited to design soft materials with unique and exceptional properties. Inspired by the adhesive chemistry and tough character of mussel byssal threads, we present several studies on both the mechanical properties of soft materials and templated crystallization kinetics to show the diverse array of materials properties that can be generated using bio-inspired metal-coordination. By studying our model systems, we can determine the explicit effects of metal-coordination dynamics on various bulk properties, further adding to the set of tools we can use to design soft material systems.

  10. Premature Infant Swallowing: Patterns of Tongue-Soft Palate Coordination Based Upon Videofluoroscopy

    PubMed Central

    Goldfield, Eugene C.; Buonomo, Carlo; Fletcher, Kara; Perez, Jennifer; Margetts, Stacey; Hansen, Anne; Smith, Vincent; Ringer, Steven; Richardson, Michael J.; Wolff, Peter H.

    2009-01-01

    Coordination between movements of individual tongue points, and between soft palate elevation and tongue movements, were examined in 12 prematurely born infants referred from hospital NICUs for videofluoroscopic swallow study (VFSS) due to poor oral feeding and suspicion of aspiration. Detailed post-evaluation kinematic analysis was conducted by digitizing images of a lateral view of digitally superimposed points on the tongue and soft palate. The primary measure of coordination was continuous relative phase of the time series created by movements of points on the tongue and soft palate over successive frames. Three points on the tongue (anterior, medial, and posterior) were organized around a stable in-phase pattern, with a phase lag that implied an anterior to posterior direction of motion. Coordination between a tongue point and a point on the soft palate during lowering and elevation was close to anti-phase at initiation of the pharyngeal swallow. These findings suggest that anti-phase coordination between tongue and soft palate may reflect the process by which the tongue is timed to pump liquid by moving it into an enclosed space, compressing it, and allowing it to leave by a specific route through the pharynx. PMID:20181397

  11. The Evolving Role of School-Based Technology Coordinators in Elementary Programs.

    ERIC Educational Resources Information Center

    Strudler, Neal; Falba, Christy; Hearrington, Doug

    In 1997, the Clark County School District (CCSD) in Las Vegas (Nevada) approved a plan to provide released-time coordinators to facilitate technology integration in all of its K-12 schools. This paper documents the implementation of that plan in CCSD's elementary school programs. Data were gathered through surveys and interviews of the Educational…

  12. Synthesis and Base Hydrolysis of a Cobalt(III) Complex Coordinated by a Thioether Ligand

    ERIC Educational Resources Information Center

    Roecker, Lee

    2008-01-01

    A two-week laboratory experiment for students in advanced inorganic chemistry is described. Students prepare and characterize a cobalt(III) complex coordinated by a thioether ligand during the first week of the experiment and then study the kinetics of Co-S bond cleavage in basic solution during the second week. The synthetic portion of the…

  13. Syntactic and Semantic Coordination in Finite Complement-Clause Constructions: A Diary-Based Case Study

    ERIC Educational Resources Information Center

    Köymen, Bahar; Lieven, Elena; Brandt, Silke

    2016-01-01

    This study investigates the coordination of matrix and subordinate clauses within finite complement-clause constructions. The data come from diary and audio recordings which include the utterances produced by an American English-speaking child, L, between the ages 1;08 and 3;05. We extracted all the finite complement-clause constructions that L…

  14. Introducing variable-step topography (VST) coordinates within dynamically constrained nonhydrostatic modeling system (NMS). Part 2: VST performance on orthodox obstacle flows

    NASA Astrophysics Data System (ADS)

    Tripoli, Gregory J.; Smith, Eric A.

    2014-06-01

    In this second part of a two-part sequence of papers, the performance metrics and quantitative advantages of a new VST surface coordinate system, implemented within a dynamically constrained, nonhydrostatic, cloud mesoscale atmospheric model, are evaluated in conjunction with seven orthodox obstacle flow problems. [The first part presented a full formulation of the VST model, prefaced by a description of the framework of the newly re-tooled nonhydrostatic modeling system (NMS) operating within integral constraints based on the conservation of the foremost quantities of mass, energy and circulation.] The intent behind VST is to create a vertical surface coordinate system boundary underpinning a nonhydrostatic atmosphere capable of reliable simulations of flows over both smooth and steep terrain without sacrificing dynamical integrity over either type of surface. Model simulation results are analyzed for six classical fluid dynamics problems involving flows relative to obstacles with known analytical or laboratory-simulated solutions, as well as for a seventh noteworthy mountain wave breaking problem that has well-studied numerical solutions. For cases when topography becomes excessively severe or poorly resolved numerically, atmospheric models using transform (terrain-following) coordinates produce noteworthy errors rendering a stable integration only if the topography is smoothed. For cases when topography is slowly varying (smooth or subtle), models using discrete-step coordinates also produce noteworthy errors relative to known solutions. Alternatively, the VST model demonstrates that both limitations of the two conventional approaches, for the entire range of slope severities, can be overcome. This means that VST is ideally suited for a scalable, nonhydrostatic atmospheric model, safeguarded with physically realistic dynamical constraints.

  15. Using the Onto-Semiotic Approach to Identify and Analyze Mathematical Meaning when Transiting between Different Coordinate Systems in a Multivariate Context

    ERIC Educational Resources Information Center

    Montiel, Mariana; Wilhelmi, Miguel R.; Vidakovic, Draga; Elstak, Iwan

    2009-01-01

    The main objective of this paper is to apply the onto-semiotic approach to analyze the mathematical concept of different coordinate systems, as well as some situations and university students' actions related to these coordinate systems. The identification of objects that emerge from the mathematical activity and a first intent to describe an…

  16. Honeycomb-shaped coordination polymers based on the self-assembly of long flexible ligands and alkaline-earth ions

    NASA Astrophysics Data System (ADS)

    Lian, Chen; Liu, Liu; Guo, Xu; Long, Yinshuang; Jia, Shanshan; Li, Huanhuan; Yang, Lirong

    2016-01-01

    Two novel coordination polymers, namely, [Ca(NCP)2]∞ (I) and [Sr(NCP)2]∞ (II) were synthesized under hydrothermal conditions based on 2-(4-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (HNCP) and characterized by elemental analysis, infrared spectrometry, X-ray powder diffraction and single crystal X-ray diffraction. Findings indicate that I and II are isomorphous and isostructural, containing the unit of M(NCP-)4 (M=Ca(II) and Sr(II)), based on which to assemble into three-dimensional (3D) porous 4-fold interpenetration honeycomb-shaped neutral coordination polymers (CPs). Between the adjacent lamellar structures in I and II, there exist π-π interactions between the pyridine rings belonging to phenanthroline of NCP- which stabilize the frameworks. Both I and II display stronger fluorescence emissions as well as high thermal stability.

  17. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  18. Building Management Information Systems to Coordinate Citywide Afterschool Programs: A Toolkit for Cities

    ERIC Educational Resources Information Center

    Kingsley, Chris

    2012-01-01

    The National League of Cities (NLC), through its Institute for Youth, Education and Families, produced this report to help city leaders, senior municipal staff and their local partners answer those questions as they work to strengthen and coordinate services for youth and families, particularly for those cities building comprehensive afterschool…

  19. The Impact of a Technology Coordinator's Belief System upon Using Technology to Create a Community's History

    ERIC Educational Resources Information Center

    Waring, Scott M.

    2010-01-01

    As it has been shown that teachers of social studies content are less likely than teachers of other content areas to utilize technology in their classroom, this study focuses on one instructional technology coordinators' beliefs towards technology, instruction, and students and how these beliefs impacted how technology was utilized during a…

  20. Relationship between Students' Understanding of Functions in Cartesian and Polar Coordinate Systems

    ERIC Educational Resources Information Center

    Montiel, Mariana; Vidakovic, Draga; Kabael, Tangul

    2009-01-01

    The present study was implemented as a prelude to a study on the generalization of the single variable function concept to multivariate calculus. In the present study we analyze students' mental processes and adjustments, as they are being exposed to single variable calculus with polar coordinates. The results show that there appears to be a…