Memory traces of long-range coordinated oscillations in the sleeping human brain.
Piantoni, Giovanni; Van Der Werf, Ysbrand D; Jensen, Ole; Van Someren, Eus J W
2015-01-01
Cognition involves coordinated activity across distributed neuronal networks. Neuronal activity during learning triggers cortical plasticity that allows for reorganization of the neuronal network and integration of new information. Animal studies have shown post-learning reactivation of learning-elicited neuronal network activity during subsequent sleep, supporting consolidation of the reorganization. However, no previous studies, to our knowledge, have demonstrated reactivation of specific learning-elicited long-range functional connectivity during sleep in humans. We here show reactivation of learning-induced long-range synchronization of magnetoencephalography power fluctuations in human sleep. Visuomotor learning elicited a specific profile of long-range cortico-cortical synchronization of slow (0.1 Hz) fluctuations in beta band (12-30 Hz) power. The parieto-occipital part of this synchronization profile reappeared in delta band (1-3.5 Hz) power fluctuations during subsequent sleep, but not during the intervening wakefulness period. Individual differences in the reactivated synchronization predicted postsleep performance improvement. The presleep resting-state synchronization profile was not reactivated during sleep. The findings demonstrate reactivation of long-range coordination of neuronal activity in humans, more specifically of reactivation of coupling of infra-slow fluctuations in oscillatory power. The spatiotemporal profile of delta power fluctuations during sleep may subserve memory consolidation by echoing coordinated activation elicited by prior learning. © 2014 Wiley Periodicals, Inc.
A Metadata Model for E-Learning Coordination through Semantic Web Languages
ERIC Educational Resources Information Center
Elci, Atilla
2005-01-01
This paper reports on a study aiming to develop a metadata model for e-learning coordination based on semantic web languages. A survey of e-learning modes are done initially in order to identify content such as phases, activities, data schema, rules and relations, etc. relevant for a coordination model. In this respect, the study looks into the…
Lessons Learned from Coordinating Relay Activities at Mars
NASA Technical Reports Server (NTRS)
Gladden, Roy E.; Hwang, Pauline; Waggoner, Bruce; McLaughlin, Bruce; Fieseler, Paul; Thomas, Reid; Bigwood, Maria; Herrera, Paul
2005-01-01
The Mission Management Office at the Jet Propulsion Laboratory was tasked with coordinating the relay of data between multiple spacecraft at Mars in support of the Mars Exploration Rover Missions in early 2004. The confluence of three orbiters (Mars Global Surveyor, Mars Odyssey, and Mars Express), two rovers (Spirit and Opportunity), and one lander (Beagle 2) has provided a challenging operational scenario that required careful coordination between missions to provide the necessary support and to avoid potential interference during simultaneous relay sessions. As these coordination efforts progressed, several important lessons were learned that should be applied to future Mars relay activities.
ERIC Educational Resources Information Center
Behrmann, Polly; Millman, Joan
The activities collected in this handbook are planned for parents to use with their children in a learning experience. They can also be used in the classroom. Sections contain games designed to develop visual discrimination, auditory discrimination, motor coordination and oral expression. An objective is given for each game, and directions for…
Young, Sonia N; VanWye, William R; Wallmann, Harvey W
2018-06-25
To describe the use of sport simulation activities as a form of implicit motor learning training with a geriatric former athlete following a stroke. An active 76-year-old former professional male softball player presented to outpatient physical therapy with medical history of right stroke with left hemiparesis 2 weeks following onset of symptoms of impaired balance, coordination, gait, and motor planning. Initial physical therapy included gait, balance, and coordination training. Additional sport-related balance and coordination activities were later added to the treatment plan. After approximately 3 weeks of treatment, the patient was able to return to work and had dramatically improved balance, coordination, and gait with sport simulation activities. Implicit motor learning techniques were incorporated through sport and job task simulation activities along with task-oriented neuromuscular reeducation. The patient demonstrated improvements with gait, balance, gross motor function, and decreased fall risk.
ERIC Educational Resources Information Center
Barth-Cohen, Lauren A.; Wittmann, Michael C.
2017-01-01
This article presents an empirical analysis of conceptual difficulties encountered and ways students made progress in learning at both individual and group levels in a classroom environment in which the students used an embodied modeling activity to make sense of a specific scientific scenario. The theoretical framework, coordination class theory,…
ERIC Educational Resources Information Center
Romero, Margarida; Lambropoulos, Niki
2011-01-01
Computer Supported Collaborative Learning (CSCL) activities aim to promote collaborative knowledge construction and convergence. During the CSCL activity, the students should regulate their learning activity, at the individual and collective level. This implies an organisation cost related to the coordination of the activity with the team-mates…
Physical Activity Predicts Performance in an Unpracticed Bimanual Coordination Task.
Boisgontier, Matthieu P; Serbruyns, Leen; Swinnen, Stephan P
2017-01-01
Practice of a given physical activity is known to improve the motor skills related to this activity. However, whether unrelated skills are also improved is still unclear. To test the impact of physical activity on an unpracticed motor task, 26 young adults completed the international physical activity questionnaire and performed a bimanual coordination task they had never practiced before. Results showed that higher total physical activity predicted higher performance in the bimanual task, controlling for multiple factors such as age, physical inactivity, music practice, and computer games practice. Linear mixed models allowed this effect of physical activity to be generalized to a large population of bimanual coordination conditions. This finding runs counter to the notion that generalized motor abilities do not exist and supports the existence of a "learning to learn" skill that could be improved through physical activity and that impacts performance in tasks that are not necessarily related to the practiced activity.
An Activity-Based Learning Approach for Key Geographical Information Systems (GIS) Concepts
ERIC Educational Resources Information Center
Srivastava, Sanjeev Kumar; Tait, Cynthia
2012-01-01
This study presents the effect of active learning methods of concepts in geographical information systems where students participated in a series of interlocked learning experiences. These activities spanned several teaching weeks and involved the creation of a hand drawn map that was scanned and geo-referenced with locations' coordinates derived…
Reorganization of the human central nervous system.
Schalow, G; Zäch, G A
2000-10-01
The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns of several identified single afferent and efferent nerve fibres (motoneuron axons) were extracted from multi-unit impulse patterns, and human CNS functions could be analyzed under physiologic and pathophysiologic conditions. With our discovery of premotor spinal oscillators it became possible to judge upon CNS neuronal network organization based on the firing patterns of these spinal oscillators and their driving afferents. Since motoneurons fire occasionally for low activation and oscillatory for high activation, the coherent organization of subnetworks to generate macroscopic function is very complex and for the time being, may be best described by the theory of coordination dynamics. Since oscillatory firing has also been observed by us in single motor unit firing patterns measured electromyographically, it seems possible to follow up therapeutic intervention in patients with spinal cord and brain lesions not only based on the activity levels and phases of motor programs during locomotion but also based on the physiologic and pathophysiologic firing patterns and recruitment of spinal oscillators. The improvement of the coordination dynamics of the CNS can be partly measured directly by rhythmicity upon the patient performing rhythmic movements coordinated up to milliseconds. Since rhythmic dynamic, coordinated, stereotyped movements are mainly located in the spinal cord and only little supraspinal drive is necessary to initiate, maintain, and terminate them, rhythmic, dynamic, coordinated movements were used in therapy to enforce reorganization of the lesioned CNS by improving the self-organization and relative coordination of spinal oscillators (and their interactions with occasionally firing motoneurons) which became pathologic in their firing following CNS lesion. Paraparetic, tetraparetic spinal cord and brain-lesioned patients re-learned running and other movements by an oscillator formation and coordination dynamic therapy. Our development in neurorehabilitation is in accordance with those of theoretical and computational neurosciences which deal with the self-organization of neuronal networks. In particular, jumping on a springboard 'in-phase' and in 'anti-phase' to re-learn phase relations of oscillator coupling can be understood in the framework of the Haken-Kelso-Bunz coordination dynamic model. By introducing broken symmetry, intention, learning and spasticity in the landscape of the potential function of the integrated CNS activity, the change in self-organization becomes understandable. Movement patterns re-learned by oscillator formation and coordination dynamic therapy evolve from reorganization and regeneration of the lesioned CNS by cooperative and competitive interplay between intrinsic coordination dynamics, extrinsic therapy related inputs with physiologic re-afferent input, including intention, motivation, supervised learning, interpersonal coordination, and genetic constraints including neurogenesis. (ABSTRACT TRUNCATED)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voetsch, Karen; Sequeira, Sonia; Chavez, Amy Holmes
In 2012, the Centers for Disease Control and Prevention provided funding and technical assistance to all states and territories to implement the Coordinated Chronic Disease Program, marking the first time that all state health departments had federal resources to coordinate chronic disease prevention and control programs. This article describes lessons learned from this initiative and identifies key elements of a coordinated approach. We analyzed 80 programmatic documents from 21 states and conducted semistructured interviews with 7 chronic disease directors. Six overarching themes emerged: 1) focused agenda, 2) identification of functions, 3) comprehensive planning, 4) collaborative leadership and expertise, 5) managedmore » resources, and 6) relationship building. Furthermore, these elements supported 4 essential activities: 1) evidence-based interventions, 2) strategic use of staff, 3) consistent communication, and 4) strong program infrastructure. On the basis of these elements and activities, we propose a conceptual model that frames overarching concepts, skills, and strategies needed to coordinate state chronic disease prevention and control programs.« less
Voetsch, Karen; Sequeira, Sonia; Chavez, Amy Holmes
2016-03-31
In 2012, the Centers for Disease Control and Prevention provided funding and technical assistance to all states and territories to implement the Coordinated Chronic Disease Program, marking the first time that all state health departments had federal resources to coordinate chronic disease prevention and control programs. This article describes lessons learned from this initiative and identifies key elements of a coordinated approach. We analyzed 80 programmatic documents from 21 states and conducted semistructured interviews with 7 chronic disease directors. Six overarching themes emerged: 1) focused agenda, 2) identification of functions, 3) comprehensive planning, 4) collaborative leadership and expertise, 5) managedmore » resources, and 6) relationship building. Furthermore, these elements supported 4 essential activities: 1) evidence-based interventions, 2) strategic use of staff, 3) consistent communication, and 4) strong program infrastructure. On the basis of these elements and activities, we propose a conceptual model that frames overarching concepts, skills, and strategies needed to coordinate state chronic disease prevention and control programs.« less
Two Processes in Early Bimanual Motor Skill Learning
Yeganeh Doost, Maral; Orban de Xivry, Jean-Jacques; Bihin, Benoît; Vandermeeren, Yves
2017-01-01
Most daily activities are bimanual and their efficient performance requires learning and retention of bimanual coordination. Despite in-depth knowledge of the various stages of motor skill learning in general, how new bimanual coordination control policies are established is still unclear. We designed a new cooperative bimanual task in which subjects had to move a cursor across a complex path (a circuit) as fast and as accurately as possible through coordinated bimanual movements. By looking at the transfer of the skill between different circuits and by looking at training with varying circuits, we identified two processes in early bimanual motor learning. Loss of performance due to the switch in circuit after 15 min of training amounted to 20%, which suggests that a significant portion of improvements in bimanual performance is specific to the used circuit (circuit-specific skill). In contrast, the loss of performance due to the switch in circuit was 5% after 4 min of training. This suggests that learning the new bimanual coordination control policy dominates early in the training and is independent of the used circuit. Finally, switching between two circuits throughout training did not affect the early stage of learning (i.e., the first few minutes), but did affect the later stage. Together, these results suggest that early bimanual motor skill learning includes two different processes. Learning the new bimanual coordination control policy predominates in the first minutes whereas circuit-specific skill improvements unfold later in parallel with further improvements in the bimanual coordination control policy. PMID:29326573
ERIC Educational Resources Information Center
Smith, Elizabeth I.
Described are perceptual motor activities in the areas of coordination, agility, strength, balance, and endurance for use with learning disabled children. Provided are a rationale for movement education and definitions of 10 terms such as laterality and endurance. A sequence of activities is provided for the following skills: ball bouncing, rope…
Jadhav, Shantanu P.; Rothschild, Gideon; Roumis, Demetris K.; Frank, Loren M.
2016-01-01
SUMMARY Interactions between the hippocampus and prefrontal cortex (PFC) are critical for learning and memory. Hippocampal activity during awake sharp wave ripple (SWR) events is important for spatial learning, and hippocampal SWR activity often represents past or potential future experiences. Whether or how this reactivation engages the PFC, and how reactivation might interact with ongoing patterns of PFC activity remains unclear. We recorded hippocampal CA1 and PFC activity in animals learning spatial tasks and found that many PFC cells showed spiking modulation during SWRs. Unlike in CA1, SWR-related activity in PFC comprised both excitation and inhibition of distinct populations. Within individual SWRs, excitation activated PFC cells with representations related to the concurrently reactivated hippocampal representation, while inhibition suppressed PFC cells with unrelated representations. Thus, awake SWRs mark times of strong coordination between hippocampus and PFC that reflects structured reactivation of representations related to ongoing experience. PMID:26971950
A Guided Inquiry Activity for Teaching Ligand Field Theory
ERIC Educational Resources Information Center
Johnson, Brian J.; Graham, Kate J.
2015-01-01
This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…
Deriving Process-Driven Collaborative Editing Pattern from Collaborative Learning Flow Patterns
ERIC Educational Resources Information Center
Marjanovic, Olivera; Skaf-Molli, Hala; Molli, Pascal; Godart, Claude
2007-01-01
Collaborative Learning Flow Patterns (CLFPs) have recently emerged as a new method to formulate best practices in structuring the flow of activities within various collaborative learning scenarios. The term "learning flow" is used to describe coordination and sequencing of learning tasks. This paper adopts the existing concept of CLFP and argues…
A coordination theory for intelligent machines
NASA Technical Reports Server (NTRS)
Wang, Fei-Yue; Saridis, George N.
1990-01-01
A formal model for the coordination level of intelligent machines is established. The framework of the coordination level investigated consists of one dispatcher and a number of coordinators. The model called coordination structure has been used to describe analytically the information structure and information flow for the coordination activities in the coordination level. Specifically, the coordination structure offers a formalism to (1) describe the task translation of the dispatcher and coordinators; (2) represent the individual process within the dispatcher and coordinators; (3) specify the cooperation and connection among the dispatcher and coordinators; (4) perform the process analysis and evaluation; and (5) provide a control and communication mechanism for the real-time monitor or simulation of the coordination process. A simple procedure for the task scheduling in the coordination structure is presented. The task translation is achieved by a stochastic learning algorithm. The learning process is measured with entropy and its convergence is guaranteed. Finally, a case study of the coordination structure with three coordinators and one dispatcher for a simple intelligent manipulator system illustrates the proposed model and the simulation of the task processes performed on the model verifies the soundness of the theory.
Student Service Learning and Student Activities--A Perfect Fit.
ERIC Educational Resources Information Center
Craig, Deborah
1990-01-01
The coordination and purpose of a student service learning program fits appropriately within the mission of a student activities center. Some national associations that focus on community volunteerism are identified and the volunteer program at East Tennessee State University is described. Volunteer experiences included campus blood drive,…
Learning Styles versus the Rip Van Winkle Syndrome.
ERIC Educational Resources Information Center
Orsak, Lana
1990-01-01
Rip Van Winkle would not recognize Corsicana (Texas) High School since its curriculum coordinator began implementing learning styles techniques in various pilot programs. Lecturing to rows of bored students has been replaced by students' active involvement in group activities, listening centers, and tactile/kinesthetic exercises on the floor or at…
Learning to Support Learning Together: An Experience with the Soft Systems Methodology
ERIC Educational Resources Information Center
Sanchez, Adolfo; Mejia, Andres
2008-01-01
An action research approach called soft systems methodology (SSM) was used to foster organisational learning in a school regarding the role of the learning support department within the school and its relation with the normal teaching-learning activities. From an initial situation of lack of coordination as well as mutual misunderstanding and…
ERIC Educational Resources Information Center
Hoopes, Amy T.
Research into visual, perceptual, and motor coordination suggests that the kind of physical activity and coordination involved in swimming might prevent some cases of dyslexia and improve the academic performance of many learning disabled children. Early neurological development shows a relationship among the creeping period, later communication…
Service-Learning: A Language of "We"
ERIC Educational Resources Information Center
Taylor, Pamela G.; Ballengee-Morris, Christine
2004-01-01
This article focuses on service-learning, a method whereby students learn and develop through active participation in thoughtfully organized service that is conducted in and meets the needs of communities. It is coordinated with an elementary school, secondary school, institution of higher education, or community service program and the…
Multiplayer Activities That Develop Mathematical Coordination.
ERIC Educational Resources Information Center
Bricker, Lauren J.; Tanimoto, Steven L.; Rothenberg, Alex I.; Hutama, Danny C.; Wong, Tina H.
Four computer applications are presented that encourage students to develop "mathematical coordination"--the ability to manipulate numerical variables in cooperation with other students so as to achieve a definite goal. The programs enable a form of computer-supported cooperative learning (CSCL). This paper describes the rationale and…
Schalow, G
2010-01-01
Coordination Dynamics Therapy (CDT) has been shown to be able to partly repair CNS injury. The repair is based on a movement-based re-learning theory which requires at least three levels of description: the movement or pattern (and anamnesis) level, the collective variable level, and the neuron level. Upon CDT not only the actually performed movement pattern itself is repaired, but the entire dynamics of CNS organization is improved, which is the theoretical basis for (re-) learning transfer. The transfer of learning for repair from jumping on springboard and exercising on a special CDT and recording device to urinary bladder functions is investigated at the neuron level. At the movement or pattern level, the improvement of central nervous system (CNS) functioning in human patients can be seen (or partly measured) by the improvement of the performance of the pattern. At the collective variable level, coordination tendencies can be measured by the so-called 'coordination dynamics' before, during and after treatment. At the neuron level, re-learning can additionally be assessed by surface electromyography (sEMG) as alterations of single motor unit firings and motor programs. But to express the ongoing interaction between the numerous neural, muscular, and metabolic elements involved in perception and action, it is relevant to inquire how the individual afferent and efferent neurons adjust their phase and frequency coordination to other neurons to satisfy learning task requirements. With the single-nerve fibre action potential recording method it was possible to measure that distributed single neurons communicate by phase and frequency coordination. It is shown that this timed firing of neurons is getting impaired upon injury and has to be improved by learning The stability of phase and frequency coordination among afferent and efferent neuron firings can be related to pattern stability. The stability of phase and frequency coordination at the neuron level can therefore be assessed integratively at the (non-invasive) collective variable level by the arrhythmicity of turning (coordination dynamics) when a patient is exercising on a special CDT device. Upon jumping on springboard and exercising on the special CDT device, the intertwined neuronal networks, subserving movements (somatic) and urinary bladder functions (autonomic and somatic) in the sacral spinal cord, are synchronously activated and entrained to give rise to learning transfer from movements to bladder functions. Jumping on springboard and other movements primarily repair the pattern dynamics, whereas the exactly coordinated performed movements, performed on the special CDT device for turning, primarily improve the preciseness of the timed firing of neurons. The synchronous learning of perceptuomotor and perceptuobladder functioning from a dynamical perspective (giving rise to learning transfer) can be understood at the neuron level. Especially the activated phase and frequency coordination upon natural stimulation under physiologic and pathophysiologic conditions among a and gamma-motoneurons, muscle spindle afferents, touch and pain afferents, and urinary bladder stretch and tension receptor afferents in the human sacral spinal cord make understandable that somatic and parasympathetic functions are integrated in their functioning and give rise to learning transfer from movements to bladder functions. The power of this human treatment research project lies in the unit of theory, diagnostic/measurement, and praxis, namely that CNS injury can partly be repaired, including urinary bladder functions, and the repair can partly be understood even at the neuron level of description in human.
Orchestration in Learning Technology Research: Evaluation of a Conceptual Framework
ERIC Educational Resources Information Center
Prieto, Luis P.; Dimitriadis, Yannis; Asensio-Pérez, Juan I.; Looi, Chee-Kit
2015-01-01
The term "orchestrating learning" is being used increasingly often, referring to the coordination activities performed while applying learning technologies to authentic settings. However, there is little consensus about how this notion should be conceptualised, and what aspects it entails. In this paper, a conceptual framework for…
The Discovery of Personal Meaning: Affective Factors in Learning.
ERIC Educational Resources Information Center
Gorrell, Jeffrey
Learner-centered principles espoused by the American Psychological Association (APA) built on research of the last three decades suggest that learning does not simply entail coordinated cognitive processes. These 12 principles portray factors associated with learning as essential parts of the portrayal of learners as active creators of their own…
The Relationship of Neurogenesis and Growth of Brain Regions to Song Learning
ERIC Educational Resources Information Center
Kirn, John R.
2010-01-01
Song learning, maintenance and production require coordinated activity across multiple auditory, sensory-motor, and neuromuscular structures. Telencephalic components of the sensory-motor circuitry are unique to avian species that engage in song learning. The song system shows protracted development that begins prior to hatching but continues well…
ERIC Educational Resources Information Center
US Department of Education, 2007
2007-01-01
"Lessons Learned" is a series of publications that are a brief recounting of actual school emergencies and crises. This "Lessons Learned" issue focuses on an active shooter situation that escalated to a hostage situation that required multiple law enforcement agencies and other first responders and agencies to coordinate response and recovery…
ERIC Educational Resources Information Center
Perez-Sanagustin, Mar; Santos, Patricia; Hernandez-Leo, Davinia; Blat, Josep
2012-01-01
Computer-Supported Collaborative Blended Learning (CSCBL) scripts are complex learning situations in which formal and informal activities conducted at different spatial locations are coordinated and integrated into one unique learning setting through the use of technology. We define a conceptual model identifying four factors to be considered when…
Country watch: Central African Republic (CAR).
Aubel, J; Sobela, F; Voga, P
1997-01-01
This article describes the activities of the Community Peer AIDS Education Project, initiated in 1995 in the Central African Republic (CAR). The CAR project was created by the National AIDS Committee (NAC) and the US Peace Corps. A 4-day workshop was held at the onset for project staff and consultants. Staff developed a simple monitoring and evaluation (M&E) system that emphasizes "learning." M&E schemes measure project outputs, expenditures, and other measures of program implementation in order to help staff gradually improve implementation. M&E helps staff document activities, share information, and learn from the implementation process. Project activities are documented by maintaining community logbooks, taking photos of significant aspects of the educational activities, and leading informal discussion groups. The CAR project engaged in sharing and learning activities by holding meetings with peer leaders, team meetings, meetings with project managers, and meetings with the NAC. Once a month, peer field coordinators conducted a structured exercise with peer leaders. One aim was to gain their feedback on the successes and constraints of activities. Another was to make suggestions on how to improve activities. These structured exercises are recorded as lessons learned in a project book. Team meetings are held periodically. During meetings, staff review project books and photos and discuss successes and problems encountered. Project manager meetings provide time to share lessons learned and to suggest project strengthening options. NAC meetings between the project manager and field coordinators allow for a bottom-up learning process. CAR project staff were receptive to M&E efforts.
Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N
2016-01-04
The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.
Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio
2009-02-01
How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified mechanistic explanation of how spatial and object attention work together to search a scene and learn what is in it. The ARTSCAN model predicts how an object's surface representation generates a form-fitting distribution of spatial attention, or "attentional shroud". All surface representations dynamically compete for spatial attention to form a shroud. The winning shroud persists during active scanning of the object. The shroud maintains sustained activity of an emerging view-invariant category representation while multiple view-specific category representations are learned and are linked through associative learning to the view-invariant object category. The shroud also helps to restrict scanning eye movements to salient features on the attended object. Object attention plays a role in controlling and stabilizing the learning of view-specific object categories. Spatial attention hereby coordinates the deployment of object attention during object category learning. Shroud collapse releases a reset signal that inhibits the active view-invariant category in the What cortical processing stream. Then a new shroud, corresponding to a different object, forms in the Where cortical processing stream, and search using attention shifts and eye movements continues to learn new objects throughout a scene. The model mechanistically clarifies basic properties of attention shifts (engage, move, disengage) and inhibition of return. It simulates human reaction time data about object-based spatial attention shifts, and learns with 98.1% accuracy and a compression of 430 on a letter database whose letters vary in size, position, and orientation. The model provides a powerful framework for unifying many data about spatial and object attention, and their interactions during perception, cognition, and action.
ERIC Educational Resources Information Center
Deschênes, Jean-Sebastien; Barka, Noureddine; Michaud, Mario; Paradis, Denis; Brousseau, Jean
2013-01-01
A joint learning activity in process control is presented, in the context of a distance collaboration between engineering and technical-level students, in a similar fashion as current practices in the industry involving distance coordination and troubleshooting. The necessary infrastructure and the setup used are first detailed, followed by a…
Tomas-Roig, J; Piscitelli, F; Gil, V; Del Río, J A; Moore, T P; Agbemenyah, H; Salinas-Riester, G; Pommerenke, C; Lorenzen, S; Beißbarth, T; Hoyer-Fender, S; Di Marzo, V; Havemann-Reinecke, U
2016-04-15
Prolonged and sustained stimulation of the hypothalamo-pituitary-adrenal axis have adverse effects on numerous brain regions, including the cerebellum. Motor coordination and motor learning are essential for animal and require the regulation of cerebellar neurons. The G-protein-coupled cannabinoid CB1 receptor coordinates synaptic transmission throughout the CNS and is of highest abundance in the cerebellum. Accordingly, the aim of this study was to investigate the long-lasting effects of chronic psychosocial stress on motor coordination and motor learning, CB1 receptor expression, endogenous cannabinoid ligands and gene expression in the cerebellum. After chronic psychosocial stress, motor coordination and motor learning were impaired as indicated the righting reflex and the rota-rod. The amount of the endocannabinoid 2-AG increased while CB1 mRNA and protein expression were downregulated after chronic stress. Transcriptome analysis revealed 319 genes differentially expressed by chronic psychosocial stress in the cerebellum; mainly involved in synaptic transmission, transmission of nerve impulse, and cell-cell signaling. Calreticulin was validated as a stress candidate gene. The present study provides evidence that chronic stress activates calreticulin and might be one of the pathological mechanisms underlying the motor coordination and motor learning dysfunctions seen in social defeat mice. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Deng, Yi-Chan; Lin, Taiyu; Kinshuk; Chan, Tak-Wai
2006-01-01
"One-to-one" technology enhanced learning research refers to the design and investigation of learning environments and learning activities where every learner is equipped with at least one portable computing device enabled by wireless capability. G1:1 is an international research community coordinated by a network of laboratories conducting…
Frontal Oscillatory Dynamics Predict Feedback Learning and Action Adjustment
ERIC Educational Resources Information Center
van de Vijver, Irene; Ridderinkhof, K. Richard; Cohen, Michael X.
2011-01-01
Frontal oscillatory dynamics in the theta (4-8 Hz) and beta (20-30 Hz) frequency bands have been implicated in cognitive control processes. Here we investigated the changes in coordinated activity within and between frontal brain areas during feedback-based response learning. In a time estimation task, participants learned to press a button after…
Prenatal Development of Interlimb Motor Learning in the Rat Fetus
Robinson, Scott R.; Kleven, Gale A.; Brumley, Michele R.
2010-01-01
The role of sensory feedback in the early ontogeny of motor coordination remains a topic of speculation and debate. On E20 of gestation (the 20th day after conception, 2 days before birth), rat fetuses can alter interlimb coordination after a period of training with an interlimb yoke, which constrains limb movement and promotes synchronized, conjugate movement of the yoked limbs. The aim of this study was to determine how the ability to express this form of motor learning may change during prenatal development. Fetal rats were prepared for in vivo study at 4 ages (E18–21) and tested in a 65-min training-and-testing session examining hind limb motor learning. A significant increase in conjugate hind limb activity was expressed by E19, but not E18 fetuses, with further increases in conjugate hind limb activity on E20 and E21. These findings suggest substantial development of the ability of fetal rats to modify patterns of interlimb coordination in response to kinesthetic feedback during motor training before birth. PMID:20198121
Computer Learning for Young Children.
ERIC Educational Resources Information Center
Choy, Anita Y.
1995-01-01
Computer activities that combine education and entertainment make learning easy and fun for preschoolers. Computers encourage social skills, language and literacy skills, cognitive development, problem solving, and eye-hand coordination. The paper describes one teacher's experiences setting up a computer center and using computers with…
Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Taoro-Gonzalez, Lucas; Gonzalez-Usano, Alba; Agusti, Ana; Balzano, Tiziano; Llansola, Marta; Felipo, Vicente
2016-04-18
Hyperammonemia induces neuroinflammation and increases GABAergic tone in the cerebellum which contributes to cognitive and motor impairment in hepatic encephalopathy (HE). The link between neuroinflammation and GABAergic tone remains unknown. New treatments reducing neuroinflammation and GABAergic tone could improve neurological impairment. The aims were, in hyperammonemic rats, to assess whether: (a) Enhancing endogenous anti-inflammatory mechanisms by sulforaphane treatment reduces neuroinflammation and restores learning and motor coordination. (b) Reduction of neuroinflammation by sulforaphane normalizes extracellular GABA and glutamate-NO-cGMP pathway and identify underlying mechanisms. (c) Identify steps by which hyperammonemia-induced microglial activation impairs cognitive and motor function and how sulforaphane restores them. We analyzed in control and hyperammonemic rats, treated or not with sulforaphane, (a) learning in the Y maze; (b) motor coordination in the beam walking; (c) glutamate-NO-cGMP pathway and extracellular GABA by microdialysis; (d) microglial activation, by analyzing by immunohistochemistry or Western blot markers of pro-inflammatory (M1) (IL-1b, Iba-1) and anti-inflammatory (M2) microglia (Iba1, IL-4, IL-10, Arg1, YM-1); and (e) membrane expression of the GABA transporter GAT-3. Hyperammonemia induces activation of astrocytes and microglia in the cerebellum as assessed by immunohistochemistry. Hyperammonemia-induced neuroinflammation is associated with increased membrane expression of the GABA transporter GAT-3, mainly in activated astrocytes. This is also associated with increased extracellular GABA in the cerebellum and with motor in-coordination and impaired learning ability in the Y maze. Sulforaphane promotes polarization of microglia from the M1 to the M2 phenotype, reducing IL-1b and increasing IL-4, IL-10, Arg1, and YM-1 in the cerebellum. This is associated with astrocytes deactivation and normalization of GAT-3 membrane expression, extracellular GABA, glutamate-nitric oxide-cGMP pathway, and learning and motor coordination. Neuroinflammation increases GABAergic tone in the cerebellum by increasing GAT-3 membrane expression. This impairs motor coordination and learning in the Y maze. Sulforaphane could be a new therapeutic approach to improve cognitive and motor function in hyperammonemia, hepatic encephalopathy, and other pathologies associated with neuroinflammation by promoting microglia differentiation from M1 to M2.
Multimodal Analysis of Language Learning in World of Warcraft Play: Languaging as Values-Realizing
ERIC Educational Resources Information Center
Zheng, Dongping; Newgarden, Kristi; Young, Michael F.
2012-01-01
Applying Communicative Project theory (Linell, 2009), we identify and distinguish between the different coordination and language activities that emerged during an episode of "World of Warcraft" ("WoW") gameplay involving English Language learners (ELLs). We further investigate ELLs' coordinations between killing and caring, self and others, in…
Welder's Helper. Coordinator's Guide. Individualized Study Guide. General Metal Trades.
ERIC Educational Resources Information Center
Dean, James W.
This guide provides information to enable coordinators to direct learning activities for students using an individualized study guide on being a welder's helper. The study material is designed for students enrolled in cooperative part-time training and employed, or desiring to be employed, as welders' helpers. Contents include a sample progress…
Lathe Operator. Coordinator's Guide. Individualized Study Guide. General Metal Trades.
ERIC Educational Resources Information Center
East Texas State Univ., Commerce. Occupational Curriculum Lab.
This guide provides information to enable coordinators to direct learning activities for students using an individualized study guide on operating a lathe. The study material is designed for students enrolled in cooperative part-time training and employed, or desiring to be employed, as lathe operators. Contents include a sample progress chart,…
ERIC Educational Resources Information Center
Bennett, Dawn; Sunderland, Naomi; Bartleet, Brydie-Leigh; Power, Anne
2016-01-01
Although the value of service-learning opportunities has long been aligned to student engagement, global citizenship, and employability, the rhetoric can be far removed from the reality of coordinating such activities within higher education. This article stems from arts-based service-learning initiatives with Indigenous communities in Australia.…
Responsibility and Reciprocity: Social Organization of Mazahua Learning Practices
ERIC Educational Resources Information Center
Paradise, Ruth; de Haan, Mariette
2009-01-01
This article describes Mazahua children's participation in learning interactions that take place when they collaborate with more knowledgeable others in everyday activities in family and community settings. During these interactions they coordinate their actions with those of other participants, switching between the roles of "knowledgeable…
Activation and motivation of medical students for learning histoembrylogy.
Stiblar-Martincic, D
1998-01-01
The paper described the present learning/teaching activities for the basic subject in the medical curriculum called histoembryology. Various forms of teaching are presented, but a special emphasis is put on computer assisted testing. The leading idea in the teaching activities is to improve the activation and motivation of the students. This goal has been only partly achieved presumably because of insufficient coordination and integration in the curriculum. The plans for further improvements in histoembryology teaching are presented, including the improvements in computer assisted testing.
ERIC Educational Resources Information Center
Caçola, Priscila
2014-01-01
The study of children with Developmental Coordination Disorder (DCD) has emerged as a vibrant line of inquiry over the last three decades. DCD is defined as a neurodevelopmental condition characterized by poor motor proficiency that interferes with a child's activities of daily living (sometimes also known as dyspraxia). Common symptoms include…
Conventional Wisdom: Negotiating Conventions of Reference Enhances Category Learning
ERIC Educational Resources Information Center
Voiklis, John; Corter, James E.
2012-01-01
Collaborators generally coordinate their activities through communication, during which they readily negotiate a shared lexicon for activity-related objects. This social-pragmatic activity both recruits and affects cognitive and social-cognitive processes ranging from selective attention to perspective taking. We ask whether negotiating reference…
Integrated Nutrition Education: Senior High.
ERIC Educational Resources Information Center
Illinois State Board of Education, Springfield.
Designed for implementation across the school year in existing curriculum areas, 18 nutrition activity units for high school students are provided. Each activity unit consists of a list of coordinated curriculum areas, a statement of objectives, guidelines for teachers, a list of learning activities, and bibliographic citations. Various…
Professional Learning and the Materiality of Social Practice
ERIC Educational Resources Information Center
Makitalo, Asa
2012-01-01
This article addresses professional learning as intrinsic to social practices. It takes its point of departure in a sociocultural notion of mediation and communication in human activity and addresses the constitutive nature of language and artefacts as material-semiotic tools in the social coordination of perspectives and action, meaning-making…
ERIC Educational Resources Information Center
Burke, James P.
The practicum designed a perceptual activities program for learning disabled second graders using computer-assisted instruction. The program develops skills involving visual motor coordination, figure-ground differentiation, form constancy, position in space, and spatial relationships. Five behavioral objectives for each developmental area were…
Taking the brakes off the learning curve.
Gheysen, Freja; Lasne, Gabriel; Pélégrini-Issac, Mélanie; Albouy, Genevieve; Meunier, Sabine; Benali, Habib; Doyon, Julien; Popa, Traian
2017-03-01
Motor learning is characterized by patterns of cerebello-striato-cortical activations shifting in time, yet the early dynamic and function of these activations remains unclear. Five groups of subjects underwent either continuous or intermittent theta-burst stimulation of one cerebellar hemisphere, or no stimulation just before learning a new motor sequence during fMRI scanning. We identified three phases during initial learning: one rapid, one slow, and one quasi-asymptotic performance phase. These phases were not changed by left cerebellar stimulation. Right cerebellar inhibition, however, accelerated learning and enhanced brain activation in critical motor learning-related areas during the first phase, continuing with reduced brain activation but high-performance in late phase. Right cerebellar excitation did not affect the early learning process, but slowed learning significantly in late phase, along with increased brain activation. We conclude that the right cerebellum is a key factor coordinating other neuronal loops in the early acquisition of an explicit motor sequential skill. Hum Brain Mapp 38:1676-1691, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.
2018-05-01
As one of the non-conventional mathematics concepts, Parallel Coordinates is potential to be learned by pre-service mathematics teachers in order to give them experiences in constructing richer schemes and doing abstraction process. Unfortunately, the study related to this issue is still limited. This study wants to answer a research question “to what extent the abstraction process of pre-service mathematics teachers in learning concept of Parallel Coordinates could indicate their performance in learning Analytic Geometry”. This is a case study that part of a larger study in examining mathematical abstraction of pre-service mathematics teachers in learning non-conventional mathematics concept. Descriptive statistics method is used in this study to analyze the scores from three different tests: Cartesian Coordinate, Parallel Coordinates, and Analytic Geometry. The participants in this study consist of 45 pre-service mathematics teachers. The result shows that there is a linear association between the score on Cartesian Coordinate and Parallel Coordinates. There also found that the higher levels of the abstraction process in learning Parallel Coordinates are linearly associated with higher student achievement in Analytic Geometry. The result of this study shows that the concept of Parallel Coordinates has a significant role for pre-service mathematics teachers in learning Analytic Geometry.
Health-Related Quality of Life for Pediatric NF-1 Patients
2007-08-01
Developmental Disorders, Mood Disorders, Anxiety Disorders Specific learning/cognitive problems and/or classroom difficulties √ √ √ √ Reading...preferring solitary activities; teasing Fine and/or gross motor coordination √ √ √ √ Handwriting , running, walking, clumsiness Concerns about...as poor fine and gross motor coordination; these were evidenced by clumsiness and handwriting problems, for example. A number of children and
Care coordination for children with special needs in Medicaid: lessons from Medicare.
Stewart, Kate A; Bradley, Katharine W V; Zickafoose, Joseph S; Hildrich, Rachel; Ireys, Henry T; Brown, Randall S
2018-04-01
To provide actionable recommendations for improving care coordination programs for children with special healthcare needs (CSHCN) in Medicaid managed care. Literature review and interviews with stakeholders and policy experts to adapt lessons learned from Medicare care coordination programs for CSHCN in Medicaid managed care. We reviewed syntheses of research on Medicare care coordination programs to identify lessons learned from successful programs. We adapted findings from Medicare to CSHCN in Medicaid based on an environmental scan and discussions with experts. The scan focused on Medicaid financing and eligibility for care coordination and how these intersect with Medicaid managed care. The expert discussions included pediatricians, Medicaid policy experts, Medicaid medical directors, and a former managed care executive, all experienced in care coordination for CSHCN. We found 6 elements that are consistently associated with improved outcomes from Medicare care coordination programs and relevant to CSHCN in Medicaid: 1) identifying and targeting high-risk patients, 2) clearly articulating what outcomes programs are likely to improve, 3) encouraging active engagement between care coordinators and primary care providers, 4) requiring some in-person contact between care coordinators and patients, 5) facilitating information sharing among providers, and 6) supplementing care coordinators' expertise with that of other clinical experts. States and Medicaid managed care organizations have many options for designing effective care coordination programs for CSHCN. Their choices should account for the diversity of conditions among CSHCN, families' capacity to coordinate care, and social determinants of health.
Aquatic Remediation of Communication Disorders.
ERIC Educational Resources Information Center
Smith, Virginia M.
1985-01-01
A 10-day aquatics program for learning disabled children with hand-eye coordination problems and low self-esteem is described. Activities for each session (including relaxation exercises) are listed. (CL)
Professional development of undergraduates in wildlife ecology and management
Moen, A.N.; Boomer, G.S.; Runge, M.C.
2000-01-01
This paper describes a cooperative learning environment and a course continuum in wildlife ecology and management which promote the professional development of undergraduates. Students learn about functional relationships in ecology and management in lecture periods that focus on concepts, with participation by students in active learning exercises. Laboratory periods are designed around learning groups, which consist of freshmen through graduate students who focus on a common theme as they work together, while each student is responsible for his or her own research. Undergraduate teaching assistants and senior wildlife management students coordinate the activities of the learning groups and supervise the student research, learning about personnel management by active participation in leadership roles. Publication of research results on a wildlife ecology and management information system in the department's Cooperative Learning Center enables students to share what they learn with their peers and with students who follow in later years.
Rapid learning in visual cortical networks.
Wang, Ye; Dragoi, Valentin
2015-08-26
Although changes in brain activity during learning have been extensively examined at the single neuron level, the coding strategies employed by cell populations remain mysterious. We examined cell populations in macaque area V4 during a rapid form of perceptual learning that emerges within tens of minutes. Multiple single units and LFP responses were recorded as monkeys improved their performance in an image discrimination task. We show that the increase in behavioral performance during learning is predicted by a tight coordination of spike timing with local population activity. More spike-LFP theta synchronization is correlated with higher learning performance, while high-frequency synchronization is unrelated with changes in performance, but these changes were absent once learning had stabilized and stimuli became familiar, or in the absence of learning. These findings reveal a novel mechanism of plasticity in visual cortex by which elevated low-frequency synchronization between individual neurons and local population activity accompanies the improvement in performance during learning.
Coordinating Formal and Informal Aspects of Mathematics in a Computer Based Learning Environment
ERIC Educational Resources Information Center
Skouras, A. S.
2006-01-01
The introduction of educational technology to school classes promises--through the students' active engagement with mathematical concepts--the creation of teaching and learning opportunities in mathematics. However, the way technological tools are used in the teaching practice as a means of human thought and action remains an unsettled matter as…
Live Cases: Service-Learning Consulting Projects in Business Courses.
ERIC Educational Resources Information Center
Godar, Susan Hayes
2000-01-01
Offers suggestions to community service coordinators on how to encourage the use of service learning projects among business faculty in the form of consulting for non-profit organizations. Provides examples of projects in marketing and management courses and discusses how to implement this type of activity in a business course. (EV)
Family Literacy Project. Learning Centers for Parents and Children. A Resource Guide.
ERIC Educational Resources Information Center
Crocker, M. Judith, Ed.; And Others
This guide is intended to help adult education programs establish family literacy programs and create Family Learning Centers in Cleveland Public Schools. The information should assist program coordinators in developing educational components that offer activities to raise the self-esteem of the parents and provide them with the knowledge and…
Integrated and Independent Learning of Hand-Related Constituent Sequences
ERIC Educational Resources Information Center
Berner, Michael P.; Hoffmann, Joachim
2009-01-01
In almost all daily activities fingers of both hands are used in coordinated succession. The present experiments explored whether learning in such tasks pertains not only to the overall sequence spanning both hands but also to the constituent sequences of each hand. In a serial reaction time task, 2 repeating hand-related sequences were…
Cellular and oscillatory substrates of fear extinction learning.
Davis, Patrick; Zaki, Yosif; Maguire, Jamie; Reijmers, Leon G
2017-11-01
The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a combination of chemogenetics, activity-based neuronal-ensemble labeling and in vivo electrophysiology, we found that fear extinction learning confers on parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6-12 Hz oscillation and a fear-associated 3-6 Hz oscillation within the BLA. Loss of this competition increases a 3-6 Hz oscillatory signature, with BLA→medial prefrontal cortex directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning.
Cellular and Oscillatory Substrates of Fear Extinction Learning
Davis, Patrick; Zaki, Yosif; Maguire, Jamie; Reijmers, Leon G.
2018-01-01
The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a novel combination of chemogenetics, activity-based neuronal-ensemble labeling, and in vivo electrophysiology, we found that fear extinction learning confers parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) with a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6–12 Hz oscillation and a fear-associated 3–6 Hz oscillation within the BLA. Loss of this competition increases a 3–6 Hz oscillatory signature, with BLA→mPFC directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV-interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning. PMID:28967909
Wade, John J.; McDaid, Liam J.; Harkin, Jim; Crunelli, Vincenzo; Kelso, J. A. Scott
2011-01-01
In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model) which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a “learning signal” to remote synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters. Although our composite AN model is presently applied to simplified neural structures and limited to coordination between localized neurons, the principle (which embodies structural, functional and dynamic complexity), and the modeling strategy may be extended to coordination among remote neuron clusters. PMID:22242121
Wholey, Douglas R; Disch, Joanne; White, Katie M; Powell, Adam; Rector, Thomas S; Sahay, Anju; Heidenreich, Paul A
2014-01-01
Leadership by health care professionals is likely to vary because of differences in the social contexts within which they are situated, socialization processes and societal expectations, education and training, and the way their professions define and operationalize key concepts such as teamwork, collaboration, and partnership. This research examines the effect of the nurse and physician leaders on interdependence and encounter preparedness in chronic disease management practice groups. The aim of this study was to examine the effect of complementary leadership by nurses and physicians involved in jointly producing a health care service on care team functioning. The design is a retrospective observational study based on survey data. The unit of analysis is heart failure care groups in U.S. Veterans Health Administration medical centers. Survey and administrative data were collected in 2009 from 68 Veterans Health Administration medical centers. Key variables include nurse and physician leadership, interdependence, psychological safety, coordination, and encounter preparedness. Reliability and validity of survey measures were assessed with exploratory factor analysis and Cronbach alphas. Multivariate analyses tested hypotheses. Professional leadership by nurses and physicians is related to encounter preparedness by different paths. Nurse leadership is associated with greater team interdependence, and interdependence is positively associated with respect. Physician leadership is positively associated with greater psychological safety, respect, and shared goals but is not associated with interdependence. Respect is associated with involvement in learning activities, and shared goals are associated with coordination. Coordination and involvement in learning activities are positively associated with encounter preparedness. By focusing on increasing interdependence and a constructive climate, nurse and physician leaders have the opportunity to increase care coordination and involvement in learning activities.
The Sensorimotor System Can Sculpt Behaviorally Relevant Representations for Motor Learning
2016-01-01
Abstract The coordinate system in which humans learn novel motor skills is controversial. The representation of sensorimotor skills has been extensively studied by examining generalization after learning perturbations specifically designed to be ambiguous as to their coordinate system. Recent studies have found that learning is not represented in any simple coordinate system and can potentially be accounted for by a mixed representation. Here, instead of probing generalization, which has led to conflicting results, we examine whether novel dynamics can be learned when explicitly and unambiguously presented in particular coordinate systems. Subjects performed center–out reaches to targets in the presence of a force field, while varying the orientation of their hand (i.e., the wrist angle) across trials. Different groups of subjects experienced force fields that were explicitly presented either in Cartesian coordinates (field independent of hand orientation), in object coordinates (field rotated with hand orientation), or in anti-object coordinates (field rotated counter to hand orientation). Subjects learned to represent the dynamics when presented in either Cartesian or object coordinates, learning these as well as an ambiguous force field. However, learning was slower for the object-based dynamics and substantially impaired for the anti-object presentation. Our results show that the motor system is able to tune its representation to at least two natural coordinate systems but is impaired when the representation of the task does not correspond to a behaviorally relevant coordinate system. Our results show that the motor system can sculpt its representation through experience to match those of natural tasks. PMID:27588304
Global Justice Protest Events and the Production of Knowledge about Differences
ERIC Educational Resources Information Center
Daro, Vinci E. F.
2009-01-01
Recent social movement activities--in particular, transnationally-coordinated global justice mobilizations--require participants to work across substantial differences in languages, cultural backgrounds, political visions, and organizing traditions. Negotiating such differences is an active, adaptive, and learning-intensive process. In contrast to…
Impact of Math Snacks Games on Students' Conceptual Understanding
ERIC Educational Resources Information Center
Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.
2016-01-01
This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…
Snapp-Childs, Winona; Wilson, Andrew D; Bingham, Geoffrey P
2015-07-01
Under certain conditions, learning can transfer from a trained task to an untrained version of that same task. However, it is as yet unclear what those certain conditions are or why learning transfers when it does. Coordinated rhythmic movement is a valuable model system for investigating transfer because we have a model of the underlying task dynamic that includes perceptual coupling between the limbs being coordinated. The model predicts that (1) coordinated rhythmic movements, both bimanual and unimanual, are organised with respect to relative motion information for relative phase in the coupling function, (2) unimanual is less stable than bimanual coordination because the coupling is unidirectional rather than bidirectional, and (3) learning a new coordination is primarily about learning to perceive and use the relevant information which, with equal perceptual improvement due to training, yields equal transfer of learning from bimanual to unimanual coordination and vice versa [but, given prediction (2), the resulting performance is also conditioned by the intrinsic stability of each task]. In the present study, two groups were trained to produce 90° either unimanually or bimanually, respectively, and tested in respect to learning (namely improved performance in the trained 90° coordination task and improved visual discrimination of 90°) and transfer of learning (to the other, untrained 90° coordination task). Both groups improved in the task condition in which they were trained and in their ability to visually discriminate 90°, and this learning transferred to the untrained condition. When scaled by the relative intrinsic stability of each task, transfer levels were found to be equal. The results are discussed in the context of the perception-action approach to learning and performance.
Vojtechova, Iveta; Petrasek, Tomas; Hatalova, Hana; Pistikova, Adela; Vales, Karel; Stuchlik, Ales
2016-05-15
The prevention of engram interference, pattern separation, flexibility, cognitive coordination and spatial navigation are usually studied separately at the behavioral level. Impairment in executive functions is often observed in patients suffering from schizophrenia. We have designed a protocol for assessing these functions all together as behavioral separation. This protocol is based on alternated or sequential training in two tasks testing different hippocampal functions (the Morris water maze and active place avoidance), and alternated or sequential training in two similar environments of the active place avoidance task. In Experiment 1, we tested, in adult rats, whether the performance in two different spatial tasks was affected by their order in sequential learning, or by their day-to-day alternation. In Experiment 2, rats learned to solve the active place avoidance task in two environments either alternately or sequentially. We found that rats are able to acquire both tasks and to discriminate both similar contexts without obvious problems regardless of the order or the alternation. We used two groups of rats, controls and a rat model of psychosis induced by a subchronic intraperitoneal application of 0.08mg/kg of dizocilpine (MK-801), a non-competitive antagonist of NMDA receptors. Dizocilpine had no selective effect on parallel/sequential learning of tasks/contexts. However, it caused hyperlocomotion and a significant deficit in learning in the active place avoidance task regardless of the task alternation. Cognitive coordination tested by this task is probably more sensitive to dizocilpine than spatial orientation because no hyperactivity or learning impairment was observed in the Morris water maze. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Robert, Jenay; Lewis, Scott E.; Oueini, Razanne; Mapugay, Andrea
2016-01-01
The research-based pedagogical strategy of flipped classes has been shown to be effective for increasing student achievement and retention in postsecondary chemistry classes. The purpose of flipped classes is to move content delivery (e.g., lecture) outside of the classroom, freeing more face-to-face time for active learning strategies. The…
Zhang, Ding; Zhang, Zheyu; Liu, Yayun; Chu, Maoquan; Yang, Chengyu; Li, Wenhao; Shao, Yuxiang; Yue, Yan; Xu, Rujiao
2015-11-01
Reduced graphene oxide (rGO), a carbon-based nanomaterial, has enormous potential in biomedical research, including in vivo cancer therapeutics. Concerns over the toxicity remain outstanding and must be investigated before clinical application. The effect of rGO exposure on animal behaviors, such as learning and memory abilities, has not been clarified. Herein, we explored the short- and long-term effects of orally administered rGO on mouse behaviors, including general locomotor activity level, balance and neuromuscular coordination, exploratory and anxiety behaviors, and learning and memory abilities using open-field, rotarod, and Morris water maze tests. Compared with mice administered buffer-dispersed mouse chow or buffer alone, mice receiving a high dose of small or large rGO nanosheets showed little change in exploratory, anxiety-like, or learning and memory behaviors, although general locomotor activity, balance, and neuromuscular coordination were initially affected, which the mechanisms (e.g. the influence of rGO exposure on the activity of superoxide dismutase in mouse serum) were discussed. The results presented in this work look to provide a deep understanding of the in vivo toxicity of rGO to animals, especially its effect on learning and memory and other behaviors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Learning Multisensory Integration and Coordinate Transformation via Density Estimation
Sabes, Philip N.
2013-01-01
Sensory processing in the brain includes three key operations: multisensory integration—the task of combining cues into a single estimate of a common underlying stimulus; coordinate transformations—the change of reference frame for a stimulus (e.g., retinotopic to body-centered) effected through knowledge about an intervening variable (e.g., gaze position); and the incorporation of prior information. Statistically optimal sensory processing requires that each of these operations maintains the correct posterior distribution over the stimulus. Elements of this optimality have been demonstrated in many behavioral contexts in humans and other animals, suggesting that the neural computations are indeed optimal. That the relationships between sensory modalities are complex and plastic further suggests that these computations are learned—but how? We provide a principled answer, by treating the acquisition of these mappings as a case of density estimation, a well-studied problem in machine learning and statistics, in which the distribution of observed data is modeled in terms of a set of fixed parameters and a set of latent variables. In our case, the observed data are unisensory-population activities, the fixed parameters are synaptic connections, and the latent variables are multisensory-population activities. In particular, we train a restricted Boltzmann machine with the biologically plausible contrastive-divergence rule to learn a range of neural computations not previously demonstrated under a single approach: optimal integration; encoding of priors; hierarchical integration of cues; learning when not to integrate; and coordinate transformation. The model makes testable predictions about the nature of multisensory representations. PMID:23637588
The Joy of Moving, Singing, and Being Silly.
ERIC Educational Resources Information Center
Liebler, Scott
1997-01-01
Explains how moving, singing, and having fun build character, confidence, and coordination while helping children grow up feeling good about themselves. These activities provide an integrated, multisensory approach to learning. Employing a variety of fun and effective activities also helps children release stress and tension. (TJQ)
Coordinating Learning Agents for Active Information Collection
2011-06-30
the experiments were not particularly sensitive to this parameter. By limiting the number of actions that are updated (DANT-L in black/ dark ), the...Bazzan, A. and Ossowski, S. (eds.), Applications of Agent Technology in Traffic and Transportation (Springer, 2005). [19] Mataric , M. J., Coordination...organizing market (1998), preprint cond- mat/9802177. [19] Jones, C. and Mataric , M. J., Adaptive division of labor in large-scale multi-robot systems, in IEEE
Active prospective control is required for effective sensorimotor learning.
Snapp-Childs, Winona; Casserly, Elizabeth; Mon-Williams, Mark; Bingham, Geoffrey P
2013-01-01
Passive modeling of movements is often used in movement therapy to overcome disabilities caused by stroke or other disorders (e.g. Developmental Coordination Disorder or Cerebral Palsy). Either a therapist or, recently, a specially designed robot moves or guides the limb passively through the movement to be trained. In contrast, action theory has long suggested that effective skill acquisition requires movements to be actively generated. Is this true? In view of the former, we explicitly tested the latter. Previously, a method was developed that allows children with Developmental Coordination Disorder to produce effective movements actively, so as to improve manual performance to match that of typically developing children. In the current study, we tested practice using such active movements as compared to practice using passive movement. The passive movement employed, namely haptic tracking, provided a strong test of the comparison, one that showed that the mere inaction of the muscles is not the problem. Instead, lack of prospective control was. The result was no effective learning with passive movement while active practice with prospective control yielded significant improvements in performance.
Handbook of Classroom and Workshop Metric Activity Stations.
ERIC Educational Resources Information Center
Illinois State Office of Education, Springfield.
The objectives of this handbook are to assist K-8 classroom teachers in launching an activity-oriented metric program that provides learning experiences in the measurement strands of linear, mass, and temperature, and to assist metric coordinators in planning metric awareness workshops for teachers, parents, and various community organizations.…
Conventional wisdom: negotiating conventions of reference enhances category learning.
Voiklis, John; Corter, James E
2012-01-01
Collaborators generally coordinate their activities through communication, during which they readily negotiate a shared lexicon for activity-related objects. This social-pragmatic activity both recruits and affects cognitive and social-cognitive processes ranging from selective attention to perspective taking. We ask whether negotiating reference also facilitates category learning or might private verbalization yield comparable facilitation? Participants in three referential conditions learned to classify imaginary creatures according to combinations of functional features-nutritive and destructive-that implicitly defined four categories. Remote partners communicated in the Dialogue condition. In the Monologue condition, participants recorded audio descriptions for their own later use. Controls worked silently. Dialogue yielded better category learning, with wider distribution of attention. Monologue offered no benefits over working silently. We conclude that negotiating reference compels collaborators to find communicable structure in their shared activity; this social-pragmatic constraint accelerates category learning and likely provides much of the benefit recently ascribed to learning labeled categories. Copyright © 2012 Cognitive Science Society, Inc.
3 CFR 8412 - Proclamation 8412 of September 4, 2009. National Preparedness Month, 2009
Code of Federal Regulations, 2010 CFR
2010-01-01
... neighbors. Additionally, the Citizen Corps educates, trains, and coordinates volunteer activities that help make our communities safer and better prepared for emergencies. I encourage all Americans to learn more...
Language used in interaction during developmental science instruction
NASA Astrophysics Data System (ADS)
Avenia-Tapper, Brianna
The coordination of theory and evidence is an important part of scientific practice. Developmental approaches to instruction, which make the relationship between the abstract and the concrete a central focus of students' learning activity, provide educators with a unique opportunity to strengthen students' coordination of theory and evidence. Therefore, developmental approaches may be a useful instructional response to documented science achievement gaps for linguistically diverse students. However, if we are to leverage the potential of developmental instruction to improve the science achievement of linguistically diverse students, we need more information on the intersection of developmental science instruction and linguistically diverse learning contexts. This manuscript style dissertation uses discourse analysis to investigate the language used in interaction during developmental teaching-learning in three linguistically diverse third grade classrooms. The first manuscript asks how language was used to construct ascension from the abstract to the concrete. The second manuscript asks how students' non-English home languages were useful (or not) for meeting the learning goals of the developmental instructional program. The third manuscript asks how students' interlocutors may influence student choice to use an important discourse practice--justification--during the developmental teaching-learning activity. All three manuscripts report findings relevant to the instructional decisions that teachers need to make when implementing developmental instruction in linguistically diverse contexts.
Social coordination in toddler's word learning: interacting systems of perception and action
NASA Astrophysics Data System (ADS)
Pereira, Alfredo; Smith, Linda; Yu, Chen
2008-06-01
We measured turn-taking in terms of hand and head movements and asked if the global rhythm of the participants' body activity relates to word learning. Six dyads composed of parents and toddlers (M=18 months) interacted in a tabletop task wearing motion-tracking sensors on their hands and head. Parents were instructed to teach the labels of 10 novel objects and the child was later tested on a name-comprehension task. Using dynamic time warping, we compared the motion data of all body-part pairs, within and between partners. For every dyad, we also computed an overall measure of the quality of the interaction, that takes into consideration the state of interaction when the parent uttered an object label and the overall smoothness of the turn-taking. The overall interaction quality measure was correlated with the total number of words learned. In particular, head movements were inversely related to other partner's hand movements, and the degree of bodily coupling of parent and toddler predicted the words that children learned during the interaction. The implications of joint body dynamics to understanding joint coordination of activity in a social interaction, its scaffolding effect on the child's learning and its use in the development of artificial systems are discussed.
Muscle recruitment and coordination with an ankle exoskeleton.
Steele, Katherine M; Jackson, Rachel W; Shuman, Benjamin R; Collins, Steven H
2017-07-05
Exoskeletons have the potential to assist and augment human performance. Understanding how users adapt their movement and neuromuscular control in response to external assistance is important to inform the design of these devices. The aim of this research was to evaluate changes in muscle recruitment and coordination for ten unimpaired individuals walking with an ankle exoskeleton. We evaluated changes in the activity of individual muscles, cocontraction levels, and synergistic patterns of muscle coordination with increasing exoskeleton work and torque. Participants were able to selectively reduce activity of the ankle plantarflexors with increasing exoskeleton assistance. Increasing exoskeleton net work resulted in greater reductions in muscle activity than increasing exoskeleton torque. Patterns of muscle coordination were not restricted or constrained to synergistic patterns observed during unassisted walking. While three synergies could describe nearly 95% of the variance in electromyography data during unassisted walking, these same synergies could describe only 85-90% of the variance in muscle activity while walking with the exoskeleton. Synergies calculated with the exoskeleton demonstrated greater changes in synergy weights with increasing exoskeleton work versus greater changes in synergy activations with increasing exoskeleton torque. These results support the theory that unimpaired individuals do not exclusively use central pattern generators or other low-level building blocks to coordinate muscle activity, especially when learning a new task or adapting to external assistance, and demonstrate the potential for using exoskeletons to modulate muscle recruitment and coordination patterns for rehabilitation or performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physical Fitness Differences in Children with and without Motor Learning Difficulties
ERIC Educational Resources Information Center
Hands, Beth; Larkin, Dawne
2006-01-01
Children with motor learning difficulties (MLD) tend to be less physically active than their coordinated peers and one likely consequence is a reduced level of physical fitness. In this study, 52 children with MLD, aged 5 to 8 years, were compared to 52 age- and gender-matched control children across a range of health and skill related fitness…
Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; ...
2015-01-31
Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less
ERIC Educational Resources Information Center
Brady, Lois Jean; Gonzalez, America X.; Zawadzki, Maciej; Presley, Corinda
2012-01-01
This practical resource is brimming with ideas and guidance for using simple ideas from speech and language pathology and occupational therapy to boost communication, sensory integration, and coordination skills in children on the autism spectrum. Suitable for use in the classroom, at home, and in community settings, it is packed with…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ordy, J.M.; Brizzee, K.R.; Dunlap, W.P.
1982-02-01
The goals of this study were to examine the effects of 0, 50, and 100 rad of /sup 60/Co administered prenatally on postnatal development of neuromuscular coordination, visual discrimination learning, spontaneous light-dark stabilimeter activity, plasma cortisol, and somatometric growth rates of diurnal squirrel monkeys from birth to 90 days. In terms of accuracy, completeness, and time required for performance of reflexes and neuromuscular coordination, the performance of 50- and 100-rad offspring was less accurate and poorly coordinated and required more time for completion to that of controls. In visual orientation, discrimination, and reversal learning, the percentage correct responses of themore » 50- and 100-rad offspring were significantly lower than those of controls. Spontaneous light-dark stabilimeter activity of 50- and 100-rad offspring was significantly higher in the dark session than that of controls. Plasma cortisol was significantly higher in 100-rad infants than in controls. Comparisons of somatometric growth rates indicated that postnatal head circumference, crown-rump length, and to a lesser extent body weight increased at significantly slower rates in 50- and 100-rad offspring. These findings should provide essential information for formulating and carrying out multivariate behavioral, biochemical, and morphometric assessments of low-dose effects on the brain of primate offspring within demonstrable dose-response curves.« less
LeaRN: A Collaborative Learning-Research Network for a WLCG Tier-3 Centre
NASA Astrophysics Data System (ADS)
Pérez Calle, Elio
2011-12-01
The Department of Modern Physics of the University of Science and Technology of China is hosting a Tier-3 centre for the ATLAS experiment. A interdisciplinary team of researchers, engineers and students are devoted to the task of receiving, storing and analysing the scientific data produced by the LHC. In order to achieve the highest performance and to develop a knowledge base shared by all members of the team, the research activities and their coordination are being supported by an array of computing systems. These systems have been designed to foster communication, collaboration and coordination among the members of the team, both face-to-face and remotely, and both in synchronous and asynchronous ways. The result is a collaborative learning-research network whose main objectives are awareness (to get shared knowledge about other's activities and therefore obtain synergies), articulation (to allow a project to be divided, work units to be assigned and then reintegrated) and adaptation (to adapt information technologies to the needs of the group). The main technologies involved are Communication Tools such as web publishing, revision control and wikis, Conferencing Tools such as forums, instant messaging and video conferencing and Coordination Tools, such as time management, project management and social networks. The software toolkit has been deployed by the members of the team and it has been based on free and open source software.
Noël, Polly Hitchcock; Lanham, Holly J; Palmer, Ray F; Leykum, Luci K; Parchman, Michael L
2013-01-01
Recent research from a complexity theory perspective suggests that implementation of complex models of care, such as the Chronic Care Model (CCM), requires strong relationships and learning capacities among primary care teams. Our primary aim was to assess the extent to which practice member perceptions of relational coordination and reciprocal learning were associated with the presence of CCM elements in community-based primary care practices. We used baseline measures from a cluster randomized controlled trial testing a practice facilitation intervention to implement the CCM and improve risk factor control for patients with Type 2 diabetes in small primary care practices. Practice members (i.e., physicians, nonphysician providers, and staff) completed baseline assessments, which included the Relational Coordination Scale, Reciprocal Learning Scale, and the Assessment of Chronic Illness Care (ACIC) survey, along with items assessing individual and clinic characteristics. To assess the association between Relational Coordination, Reciprocal Learning, and ACIC, we used a series of hierarchical linear regression models accounting for clustering of individual practice members within clinics and controlling for individual- and practice-level characteristics and tested for mediation effects. A total of 283 practice members from 39 clinics completed baseline measures. Relational Coordination scores were significantly and positively associated with ACIC scores (Model 1). When Reciprocal Learning was added, Relational Coordination remained a significant yet notably attenuated predictor of ACIC (Model 2). The mediation effect was significant (z = 9.3, p < .01); 24% of the association between Relational Coordination and ACIC scores was explained by Reciprocal Learning. Of the individual- and practice-level covariates included in Model 3, only the presence of an electronic medical record was significant; Relational Coordination and Reciprocal Learning remained significant independent predictors of ACIC. Efforts to implement complex models of care should incorporate strategies to strengthen relational coordination and reciprocal learning among team members.
Noël, Polly Hitchcock; Lanham, Holly J.; Palmer, Ray F.; Leykum, Luci K.; Parchman, Michael L.
2012-01-01
Background Recent research from a complexity theory perspective suggests that implementation of complex models of care, such as the Chronic Care Model (CCM), requires strong relationships and learning capacities among primary care teams. Purposes Our primary aim was to assess the extent to which practice member perceptions of relational coordination and reciprocal learning were associated with the presence of CCM elements in community-based primary care practices. Methodology/Approach We used baseline measures from a cluster randomized controlled trial testing a practice facilitation intervention to implement the CCM and improve risk factor control for patients with type 2 diabetes in small primary care practices. Practice members (i.e., physicians, non-physician providers, and staff) completed baseline assessments, which included the Relational Coordination Scale, Reciprocal Learning Scale, and the Assessment of Chronic Illness Care (ACIC) survey, along with items assessing individual and clinic characteristics. To assess the association between Relational Coordination, Reciprocal Learning, and ACIC, we used a series of hierarchical linear regression models accounting for clustering of individual practice members within clinics and controlling for individual- and practice-level characteristics, and tested for mediation effects. Findings 283 practice members from 39 clinics completed baseline measures. Relational Coordination scores were significantly and positively associated with ACIC scores (Model 1). When Reciprocal Learning was added, Relational Coordination remained a significant yet notably attenuated predictor of ACIC (Model 2). The mediation effect was significant (z = 9.3, p<.01); 24% of the association between Relational Coordination and ACIC scores was explained by Reciprocal Learning. Of the individual and practice level covariates included in Model 3, only the presence of an electronic medical record was significant; Relational Coordination and Reciprocal Learning remained significant independent predictors of ACIC. Practice Implications Efforts to implement complex models of care should incorporate strategies to strengthen relational coordination and reciprocal learning among team members. PMID:22310483
Total recall in distributive associative memories
NASA Technical Reports Server (NTRS)
Danforth, Douglas G.
1991-01-01
Iterative error correction of asymptotically large associative memories is equivalent to a one-step learning rule. This rule is the inverse of the activation function of the memory. Spectral representations of nonlinear activation functions are used to obtain the inverse in closed form for Sparse Distributed Memory, Selected-Coordinate Design, and Radial Basis Functions.
Follow-Up Activities for the HISD Kindergarten Screening Instrument.
ERIC Educational Resources Information Center
Perry, Pat; Cater, Margot
The Kindergarten Screening Instrument consists of five sub-scales and attempts to screen for possible difficulty in the areas of distant vision, hearing, eye-hand coordination, language learning, and gross motor performance. In response to many requests for follow-up activities after screening, this manual was prepared by Volunteers in Public…
ERIC Educational Resources Information Center
Current: The Journal of Marine Education, 1998
1998-01-01
In this group activity, children learn about the purpose of tagging and how scientists tag a shark. Using a cut-out of a shark, students identify, measure, record data, read coordinates, and tag a shark. Includes introductory information about the purpose of tagging and the procedure, a data sheet showing original tagging data from Tampa Bay, and…
... language, do mathematical calculations, coordinate movements, or direct attention. Although learning disabilities occur in very young children, ... language, do mathematical calculations, coordinate movements, or direct attention. Although learning disabilities occur in very young children, ...
Effect of reinforcement learning on coordination of multiangent systems
NASA Astrophysics Data System (ADS)
Bukkapatnam, Satish T. S.; Gao, Greg
2000-12-01
For effective coordination of distributed environments involving multiagent systems, learning ability of each agent in the environment plays a crucial role. In this paper, we develop a simple group learning method based on reinforcement, and study its effect on coordination through application to a supply chain procurement scenario involving a computer manufacturer. Here, all parties are represented by self-interested, autonomous agents, each capable of performing specific simple tasks. They negotiate with each other to perform complex tasks and thus coordinate supply chain procurement. Reinforcement learning is intended to enable each agent to reach a best negotiable price within a shortest possible time. Our simulations of the application scenario under different learning strategies reveals the positive effects of reinforcement learning on an agent's as well as the system's performance.
Leading Learning in Australian Tertiary Institutions: Narrative Support for Unit Coordinators
ERIC Educational Resources Information Center
Pepper, Coral; Roberts, Susan
2012-01-01
This research investigates the experience of unit coordinators across Australia. It builds on an earlier Australian Learning and Teaching Council (ALTC) project that examined and clarified the role of unit coordinators as leaders of learning in higher education (UCaLL). In this paper we focus on the first phase of the project that involved…
Conducting correlation seminars in basic sciences at KIST Medical College, Nepal
2011-01-01
KIST Medical College is a new medical school in Lalitpur, Nepal. In Nepal, six basic science subjects are taught together in an integrated organ system-based manner with early clinical exposure and community medicine. Correlation seminars are conducted at the end of covering each organ system. The topics are decided by the core academic group (consisting of members from each basic science department, the Department of Community Medicine, the academic director, and the clinical and program coordinators) considering the public health importance of the condition and its ability to include learning objectives from a maximum number of subjects. The learning objectives are decided by individual departments and finalized after the meeting of the core group. There are two student coordinators for each seminar and an evaluation group evaluates each seminar and presenter. Correlation seminars help students revise the organ system covered and understand its clinical importance, promote teamwork and organization, and supports active learning. Correlation seminars should be considered as a learning modality by other medical schools. PMID:22066033
Learning and coordinating in a multilayer network
Lugo, Haydée; Miguel, Maxi San
2015-01-01
We introduce a two layer network model for social coordination incorporating two relevant ingredients: a) different networks of interaction to learn and to obtain a pay-off, and b) decision making processes based both on social and strategic motivations. Two populations of agents are distributed in two layers with intralayer learning processes and playing interlayer a coordination game. We find that the skepticism about the wisdom of crowd and the local connectivity are the driving forces to accomplish full coordination of the two populations, while polarized coordinated layers are only possible for all-to-all interactions. Local interactions also allow for full coordination in the socially efficient Pareto-dominant strategy in spite of being the riskier one. PMID:25585934
Changes in Muscle and Joint Coordination in Learning to Direct Forces
Hasson, Christopher J.; Caldwell, Graham E.; van Emmerik, Richard E.A.
2008-01-01
While it has been suggested that biarticular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Subjects were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male subjects practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The monoarticular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force directing. With practice, a loosening of the coupling between biarticular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that subjects were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination. PMID:18405988
Changes in muscle and joint coordination in learning to direct forces.
Hasson, Christopher J; Caldwell, Graham E; van Emmerik, Richard E A
2008-08-01
While it has been suggested that bi-articular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Participants were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male participants practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The mono-articular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force-directing. With practice, a loosening of the coupling between bi-articular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that participants were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination.
Quantifying Learning in Young Infants: Tracking Leg Actions During a Discovery-learning Task.
Sargent, Barbara; Reimann, Hendrik; Kubo, Masayoshi; Fetters, Linda
2015-06-01
Task-specific actions emerge from spontaneous movement during infancy. It has been proposed that task-specific actions emerge through a discovery-learning process. Here a method is described in which 3-4 month old infants learn a task by discovery and their leg movements are captured to quantify the learning process. This discovery-learning task uses an infant activated mobile that rotates and plays music based on specified leg action of infants. Supine infants activate the mobile by moving their feet vertically across a virtual threshold. This paradigm is unique in that as infants independently discover that their leg actions activate the mobile, the infants' leg movements are tracked using a motion capture system allowing for the quantification of the learning process. Specifically, learning is quantified in terms of the duration of mobile activation, the position variance of the end effectors (feet) that activate the mobile, changes in hip-knee coordination patterns, and changes in hip and knee muscle torque. This information describes infant exploration and exploitation at the interplay of person and environmental constraints that support task-specific action. Subsequent research using this method can investigate how specific impairments of different populations of infants at risk for movement disorders influence the discovery-learning process for task-specific action.
Ranganathan, Rajiv
2017-09-11
Impairment of hand and finger function after stroke is common and affects the ability to perform activities of daily living. Even though many of these coordination deficits such as finger individuation have been well characterized, it is critical to understand how stroke survivors learn to explore and reorganize their finger coordination patterns for optimizing rehabilitation. In this study, I examine the use of a body-machine interface to assess how participants explore their movement repertoire, and how this changes with continued practice. Ten participants with chronic stroke wore a data glove and the finger joint angles were mapped on to the position of a cursor on a screen. The task of the participants was to move the cursor back and forth between two specified targets on a screen. Critically, the map between the finger movements and cursor motion was altered so that participants sometimes had to generate coordination patterns that required finger individuation. There were two phases to the experiment - an initial assessment phase on day 1, followed by a learning phase (days 2-5) where participants trained to reorganize their coordination patterns. Participants showed difficulty in performing tasks which had maps that required finger individuation, and the degree to which they explored their movement repertoire was directly related to clinical tests of hand function. However, over four sessions of practice, participants were able to learn to reorganize their finger movement coordination pattern and improve their performance. Moreover, training also resulted in improvements in movement repertoire outside of the context of the specific task during free exploration. Stroke survivors show deficits in movement repertoire in their paretic hand, but facilitating movement exploration during training can increase the movement repertoire. This suggests that exploration may be an important element of rehabilitation to regain optimal function.
Learning Multirobot Hose Transportation and Deployment by Distributed Round-Robin Q-Learning.
Fernandez-Gauna, Borja; Etxeberria-Agiriano, Ismael; Graña, Manuel
2015-01-01
Multi-Agent Reinforcement Learning (MARL) algorithms face two main difficulties: the curse of dimensionality, and environment non-stationarity due to the independent learning processes carried out by the agents concurrently. In this paper we formalize and prove the convergence of a Distributed Round Robin Q-learning (D-RR-QL) algorithm for cooperative systems. The computational complexity of this algorithm increases linearly with the number of agents. Moreover, it eliminates environment non sta tionarity by carrying a round-robin scheduling of the action selection and execution. That this learning scheme allows the implementation of Modular State-Action Vetoes (MSAV) in cooperative multi-agent systems, which speeds up learning convergence in over-constrained systems by vetoing state-action pairs which lead to undesired termination states (UTS) in the relevant state-action subspace. Each agent's local state-action value function learning is an independent process, including the MSAV policies. Coordination of locally optimal policies to obtain the global optimal joint policy is achieved by a greedy selection procedure using message passing. We show that D-RR-QL improves over state-of-the-art approaches, such as Distributed Q-Learning, Team Q-Learning and Coordinated Reinforcement Learning in a paradigmatic Linked Multi-Component Robotic System (L-MCRS) control problem: the hose transportation task. L-MCRS are over-constrained systems with many UTS induced by the interaction of the passive linking element and the active mobile robots.
Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.
Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla
2014-12-01
This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.
Biotteau, Maëlle; Péran, Patrice; Vayssière, Nathalie; Tallet, Jessica; Albaret, Jean-Michel; Chaix, Yves
2017-03-01
Recent theories hypothesize that procedural learning may support the frequent overlap between neurodevelopmental disorders. The neural circuitry supporting procedural learning includes, among others, cortico-cerebellar and cortico-striatal loops. Alteration of these loops may account for the frequent comorbidity between Developmental Coordination Disorder (DCD) and Developmental Dyslexia (DD). The aim of our study was to investigate cerebral changes due to the learning and automatization of a sequence learning task in children with DD, or DCD, or both disorders. fMRI on 48 children (aged 8-12) with DD, DCD or DD + DCD was used to explore their brain activity during procedural tasks, performed either after two weeks of training or in the early stage of learning. Firstly, our results indicate that all children were able to perform the task with the same level of automaticity, but recruit different brain processes to achieve the same performance. Secondly, our fMRI results do not appear to confirm Nicolson and Fawcett's model. The neural correlates recruited for procedural learning by the DD and the comorbid groups are very close, while the DCD group presents distinct characteristics. This provide a promising direction on the neural mechanisms associated with procedural learning in neurodevelopmental disorders and for understanding comorbidity. Published by Elsevier Ltd.
Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults
Niemann, Claudia; Godde, Ben; Voelcker-Rehage, Claudia
2014-01-01
Cardiovascular activity has been shown to be positively associated with gray and white matter volume of, amongst others, frontal and temporal brain regions in older adults. This is particularly true for the hippocampus, a brain structure that plays an important role in learning and memory, and whose decline has been related to the development of Alzheimer’s disease. In the current study, we were interested in whether not only cardiovascular activity but also other types of physical activity, i.e., coordination training, were also positively associated with the volume of the hippocampus in older adults. For this purpose we first collected cross-sectional data on “metabolic fitness” (cardiovascular fitness and muscular strength) and “motor fitness” (e.g., balance, movement speed, fine coordination). Second, we performed a 12-month randomized controlled trial. Results revealed that motor fitness but not metabolic fitness was associated with hippocampal volume. After the 12-month intervention period, both, cardiovascular and coordination training led to increases in hippocampal volume. Our findings suggest that a high motor fitness level as well as different types of physical activity were beneficial to diminish age-related hippocampal volume shrinkage or even increase hippocampal volume. PMID:25165446
ERIC Educational Resources Information Center
Conway, Lorraine
In an effort to provide science teachers with the tables and scales most often used in teaching earth science, this document was designed to coordinate each table with meaningful activities, projects and experiments. The major areas covered by the booklet are: (1) electromagnetic waves (with activities about light waves and sound waves); (2) the…
Removal of S6K1 and S6K2 Leads to Divergent Alterations in Learning, Memory, and Synaptic Plasticity
ERIC Educational Resources Information Center
Antion, Marcia D.; Merhav, Maayan; Hoeffer, Charles A.; Reis, Gerald; Kozma, Sara C.; Thomas, George; Schuman Erin M.; Rosenblum, Kobi; Klann, Eric
2008-01-01
Protein synthesis is required for the expression of enduring memories and long-lasting synaptic plasticity. During cellular proliferation and growth, S6 kinases (S6Ks) are activated and coordinate the synthesis of de novo proteins. We hypothesized that protein synthesis mediated by S6Ks is critical for the manifestation of learning, memory, and…
ERIC Educational Resources Information Center
Tuller, Betty; Jantzen, Kelly J.; Olvera, Dianne; Steinberg, Fred; Scott Kelso, J. A.
2007-01-01
Teenagers with nonverbal learning disabilities (NLD) have difficulty with fine-motor coordination, which may relate to the novelty of the task or the lack of "self-talk" to mediate action. In this study, we required two teenagers with NLD and two control group teenagers to touch the thumb of each hand firmly and accurately to the fingertips of the…
Valuing the Leadership Role of University Unit Coordinators
ERIC Educational Resources Information Center
Pepper, Coral; Roberts, Susan
2016-01-01
In this paper we describe the experiences of 64 unit coordinators across 15 Australian universities, gathered during 2011/2012 as part of an Office for Learning and Teaching (OLT) project. Our intention was to gain insight into how unit coordinators (academics who coordinate a discrete unit of study) perceive their role as leaders of learning in…
Neural signatures of trust in reciprocity: a coordinate-based meta-analysis
Bellucci, Gabriele; Chernyak, Sergey V.; Goodyear, Kimberly; Eickhoff, Simon B.; Krueger, Frank
2017-01-01
Trust in reciprocity (TR) is defined as the risky decision to invest valued resources in another party with the hope of mutual benefit. Several fMRI studies have investigated the neural correlates of TR in one-shot and multi-round versions of the investment game (IG). However, an overall characterization of the underlying neural networks remains elusive. Here, we employed a coordinate-based meta-analysis (activation likelihood estimation method, 30 papers) to investigate consistent brain activations in each of the IG stages (i.e., the trust, reciprocity and feedback stage). Our results showed consistent activations in the anterior insula (AI) during trust decisions in the one-shot IG and decisions to reciprocate in the multi-round IG, likely related to representations of aversive feelings. Moreover, decisions to reciprocate also consistently engaged the intraparietal sulcus, probably involved in evaluations of the reciprocity options. On the contrary, trust decisions in the multi-round IG consistently activated the ventral striatum, likely associated with reward prediction error signals. Finally, the dorsal striatum was found consistently recruited during the feedback stage of the multi-round IG, likely related to reinforcement learning. In conclusion, our results indicate different neural networks underlying trust, reciprocity and feedback learning. These findings suggest that although decisions to trust and reciprocate may elicit aversive feelings likely evoked by the uncertainty about the decision outcomes and the pressing requirements of social standards, multiple interactions allow people to build interpersonal trust for cooperation via a learning mechanism by which they arguably learn to distinguish trustworthy from untrustworthy partners. PMID:27859899
Neural signatures of trust in reciprocity: A coordinate-based meta-analysis.
Bellucci, Gabriele; Chernyak, Sergey V; Goodyear, Kimberly; Eickhoff, Simon B; Krueger, Frank
2017-03-01
Trust in reciprocity (TR) is defined as the risky decision to invest valued resources in another party with the hope of mutual benefit. Several fMRI studies have investigated the neural correlates of TR in one-shot and multiround versions of the investment game (IG). However, an overall characterization of the underlying neural networks remains elusive. Here, a coordinate-based meta-analysis was employed (activation likelihood estimation method, 30 articles) to investigate consistent brain activations in each of the IG stages (i.e., the trust, reciprocity and feedback stage). Results showed consistent activations in the anterior insula (AI) during trust decisions in the one-shot IG and decisions to reciprocate in the multiround IG, likely related to representations of aversive feelings. Moreover, decisions to reciprocate also consistently engaged the intraparietal sulcus, probably involved in evaluations of the reciprocity options. On the contrary, trust decisions in the multiround IG consistently activated the ventral striatum, likely associated with reward prediction error signals. Finally, the dorsal striatum was found consistently recruited during the feedback stage of the multiround IG, likely related to reinforcement learning. In conclusion, our results indicate different neural networks underlying trust, reciprocity, and feedback learning. These findings suggest that although decisions to trust and reciprocate may elicit aversive feelings likely evoked by the uncertainty about the decision outcomes and the pressing requirements of social standards, multiple interactions allow people to build interpersonal trust for cooperation via a learning mechanism by which they arguably learn to distinguish trustworthy from untrustworthy partners. Hum Brain Mapp 38:1233-1248, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Blais, Mélody; Amarantini, David; Albaret, Jean-Michel; Chaix, Yves; Tallet, Jessica
2018-05-01
Impairment of motor learning skills in developmental coordination disorder (DCD) has been reported in several studies. Some hypotheses on neural mechanisms of motor learning deficits in DCD have emerged but, to date, brain-imaging investigations are scarce. The aim of the present study is to assess possible changes in communication between brain areas during practice of a new bimanual coordination task in teenagers with DCD (n = 10) compared to matched controls (n = 10). Accuracy, stability and number of mirror movements were computed as behavioural variables. Neural variables were assessed by electroencephalographic coherence analyses of intra-hemispheric and inter-hemispheric fronto-central electrodes. In both groups, accuracy of the new coordination increased concomitantly with right intra-hemispheric fronto-central coherence. Compared to typically developing teenagers, DCD teenagers presented learning difficulties expressed by less stability, no stabilization of the new coordination and a greater number of mirror movements despite practice. These measures correlated with reduced inter-hemispheric communication, even after practice of the new coordination. For the first time, these findings provide neuro-imaging evidence of a kind of inter-hemispheric 'disconnection' related to altered inhibition of mirror movements during motor learning in DCD. © 2017 John Wiley & Sons Ltd.
Cognitive Plasticity and Cortical Modules
Mercado, Eduardo
2009-01-01
Some organisms learn to calculate, accumulate knowledge, and communicate in ways that others do not. What factors determine which intellectual abilities a particular species or individual can easily acquire? I propose that cognitive-skill learning capacity reflects (a) the availability of specialized cortical circuits, (b) the flexibility with which cortical activity is coordinated, and (c) the customizability of cortical networks. This framework can potentially account for differences in learning capacity across species, individuals, and developmental stages. Understanding the mechanisms that constrain cognitive plasticity is fundamental to developing new technologies and educational practices that maximize intellectual advancements. PMID:19750239
Cognitive Plasticity and Cortical Modules.
Mercado, Eduardo
2009-06-01
Some organisms learn to calculate, accumulate knowledge, and communicate in ways that others do not. What factors determine which intellectual abilities a particular species or individual can easily acquire? I propose that cognitive-skill learning capacity reflects (a) the availability of specialized cortical circuits, (b) the flexibility with which cortical activity is coordinated, and (c) the customizability of cortical networks. This framework can potentially account for differences in learning capacity across species, individuals, and developmental stages. Understanding the mechanisms that constrain cognitive plasticity is fundamental to developing new technologies and educational practices that maximize intellectual advancements.
Curriculum Guide for Day Care Primary.
ERIC Educational Resources Information Center
Radke, Mary Ann
This curriculum, designed for severely retarded children in a primary day care setting, is divided into three sections: (1) Awareness of Body Parts, (2) Gross Motor Skills, and (3) Language Arts. Detailed activities are suggested to develop and reinforce various gross motor coordinations and learning skills. (CS)
Behavior Analysis Based on Coordinates of Body Tags
NASA Astrophysics Data System (ADS)
Luštrek, Mitja; Kaluža, Boštjan; Dovgan, Erik; Pogorelc, Bogdan; Gams, Matjaž
This paper describes fall detection, activity recognition and the detection of anomalous gait in the Confidence project. The project aims to prolong the independence of the elderly by detecting falls and other types of behavior indicating a health problem. The behavior will be analyzed based on the coordinates of tags worn on the body. The coordinates will be detected with radio sensors. We describe two Confidence modules. The first one classifies the user's activity into one of six classes, including falling. The second one detects walking anomalies, such as limping, dizziness and hemiplegia. The walking analysis can automatically adapt to each person by using only the examples of normal walking of that person. Both modules employ machine learning: the paper focuses on the features they use and the effect of tag placement and sensor noise on the classification accuracy. Four tags were enough for activity recognition accuracy of over 93% at moderate sensor noise, while six were needed to detect walking anomalies with the accuracy of over 90%.
Perceptual Learning Immediately Yields New Stable Motor Coordination
ERIC Educational Resources Information Center
Wilson, Andrew D.; Snapp-Childs, Winona; Bingham, Geoffrey P.
2010-01-01
Coordinated rhythmic movement is specifically structured in humans. Movement at 0[degrees] mean relative phase is maximally stable, 180[degrees] is less stable, and other coordinations can, but must, be learned. Variations in perceptual ability play a key role in determining the observed stabilities so we investigated whether stable movements can…
Dark Skies Africa: an NOAO and IAU OAD Program on Light Pollution
NASA Astrophysics Data System (ADS)
Walker, Constance E.; Tellez, D.; Pompea, S. M.
2014-01-01
The IAU’s Office of Astronomy for Development (OAD) awarded the National Optical Astronomy Observatory (NOAO) with a grant to deliver a “Dark Skies Outreach to Sub-Saharan Africa” program to institutions in 12 African countries during 2013. The program helped students identify wasteful and inefficient lighting and provided ways to reduce consumption and to keep energy costs in check. The goal was to inspire students to be responsible stewards in helping their community safeguard one of Africa’s natural resources - a dark night sky. Thirteen kits made by the NOAO Education and Public Outreach group were sent to coordinators at university, science center and planetarium-type institutions in 12 African countries and to the IAU OAD. The program’s kit included complete instructional guides and supplies for six activities and a project on energy conservation and responsible lighting. The six activities were taught to the coordinators in a series of six Google+ Hangout sessions scheduled from June to mid-November. The coordinators at the institutions in the twelve countries in turn trained local teachers in junior and senior high schools. The Google+ Hangout sessions also included instruction on carrying out evaluations. From the end of November until mid-December students from the different African countries shared final class projects (such as posters or powerpoints) on the program’s website. The entire program was designed to help coordinators and educators work with students, parents and the community to identify dark sky resource, lighting and energy issues and to assess their status, efficiency and effectiveness. Participants will take away from the presentation new techniques on using Google+ Hangout sessions to instruct and sustain a community of coordinators and educators through distance learning as well as immersing them (and their students) in Project Based Learning after a scaffolded sequence of activities.
Kostrubiec, Viviane; Zanone, Pier-Giorgio; Fuchs, Armin; Kelso, J. A. Scott
2012-01-01
Using an approach that combines experimental studies of bimanual movements to visual stimuli and theoretical modeling, the present paper develops a dynamical account of sensorimotor learning, that is, how new skills are acquired and old ones modified. A significant aspect of our approach is the focus on the individual learner as the basic unit of analysis, in particular the quantification of predispositions and capabilities that the individual learner brings to the learning environment. Such predispositions constitute the learner's behavioral repertoire, captured here theoretically as a dynamical landscape (“intrinsic dynamics”). The learning process is demonstrated to not only lead to a relatively permanent improvement of performance in the required task—the usual outcome—but also to alter the individual's entire repertoire. Changes in the dynamical landscape due to learning are shown to result from two basic mechanisms or “routes”: bifurcation and shift. Which mechanism is selected depends the initial individual repertoire before new learning begins. Both bifurcation and shift mechanisms are accommodated by a dynamical model, a relatively straightforward development of the well-established HKB model of movement coordination. Model simulations show that although environmental or task demands may be met equally well using either mechanism, the bifurcation route results in greater stabilization of the to-be-learned behavior. Thus, stability not (or not only) error is demonstrated to be the basis of selection, both of a new pattern of behavior and the path (smooth shift versus abrupt qualitative change) that learning takes. In line with these results, recent neurophysiological evidence indicates that stability is a relevant feature around which brain activity is organized while an individual performs a coordination task. Finally, we explore the consequences of the dynamical approach to learning for theories of biological change. PMID:22876227
Constrained paths based on the Farey sequence in learning to juggle.
Yamamoto, Kota; Tsutsui, Seijiro; Yamamoto, Yuji
2015-12-01
In this article we report the results of a study conducted to investigate the learning dynamics of three-ball juggling from the perspective of frequency locking. Based on the Farey sequence, we predicted that four stable coordination patterns, corresponding to dwell ratios of 0.83, 0.75, 0.67, and 0.50, would appear in the learning process. We examined the learning process in terms of task performance, taking into account individual differences in the amount of learning. We observed that the participants acquired individual-specific coordination patterns in a relatively early stage of learning, and that those coordination patterns were preserved in subsequent learning, even though performance in terms of number of successful consecutive throws increased substantially. This increase appeared to be related to a reduction in spatial variability of the juggling movements. Finally, the observed coordination patterns were in agreement with the predicted patterns, with the proviso that the pattern corresponding to a dwell ratio of 0.50 was not realized and only a hint of evidence was found for the dwell ratio of 0.67. This implies that the dwell ratios of 0.83 and 0.75 in particular exhibited a stable coordination structure due to strong frequency locking between the temporal variables of juggling. Copyright © 2015 Elsevier B.V. All rights reserved.
Synchrony and Desynchrony in Circadian Clocks: Impacts on Learning and Memory
ERIC Educational Resources Information Center
Krishnan, Harini C.; Lyons, Lisa C.
2015-01-01
Circadian clocks evolved under conditions of environmental variation, primarily alternating light dark cycles, to enable organisms to anticipate daily environmental events and coordinate metabolic, physiological, and behavioral activities. However, modern lifestyle and advances in technology have increased the percentage of individuals working in…
Curriculum renewal in child psychiatry.
Hanson, M; Tiberius, R; Charach, A; Ulzen, T; Sackin, D; Jain, U; Reiter, S; Shomair, G
1999-11-01
To ensure uniform design and evaluation of a clerkship curriculum for child and adolescent psychiatry teaching common disorders and problems in an efficient manner across 5 teaching sites and to include structures for continuous improvement. The curriculum committee selected for course inclusion disorders and problems of child psychiatry that were commonly encountered by primary care physicians. Instruction methods that encouraged active student learning were selected. Course coordination across sites was encouraged by several methods: involving faculty, adopting a centralized examination format, and aligning teaching methods with examination format. Quantitative and qualitative methods were used to measure students' perceptions of the course's value. These evaluative results were reviewed, and course modifications were implemented and reevaluated. The average adjusted student return rate for course evaluation questionnaires for the 3-year study period was 63%. Clerks' ratings of course learning value demonstrated that the course improved significantly and continually across all sites, according to a Scheffé post-hoc analysis. Analysis of student statements from focus-group transcripts contributed to course modifications, such as the Brief Focused Interview (BFI). Our curriculum in child psychiatry, which focused on common problems and used active learning methods, was viewed as a valuable learning experience by clinical clerks. Curriculum coordination across multiple teaching sites was accomplished by including faculty in the process and by using specific teaching and examination strategies. Structures for continuous course improvement were effective.
Learning to Attend and Observe: Parent-Child Meaning Making in the Natural World
NASA Astrophysics Data System (ADS)
Marin, Ananda Maria
Observation is a traditional form of learning and a scientific practice, and as such it plays a significant role in teaching and learning both inside and outside of schools. Recently, educational researchers and philosophers have called attention to the role of observation in scientific knowledge building (Brayboy & Castagno, 2008; Cajete, 2000; Datson & Lunbeck, 2011; Eberbach, 2009; Eberbach & Crowley, 2009; Kawagley, 2006; Norris, 1985; Smith & Reiser, 2005). These scholars have foregrounded the complexity of observation, particularly as it applies to inquiry practices in those domains which are heavily reliant on observation (Eberbach & Crowley, 2009; Maltese, Balliet, & Riggs, 2013; Smith & Reiser, 2005). My dissertation research examines how families with young children engage in the coordinated activity of observation during forest walks. I focus on the ways in which attentional practices support observational inquiry among parents and children between the ages of 5 to 7. Specifically, I examine how families coordinate attention and highlight features of the environment in order to make them observable. I use a mixed methods approach to investigate the range of interactional resources parents and children use as they engage in observation and learning about the natural world. Building on Indigenous scholarship (Cajete, 2000; Deloria & Wildcat, 2010; Kawagley, 2006), sociocultural theories and ecological approaches to development (Cole, 1996; Goodwin, 1994; Ingold, 2000; Rogoff, 2003) and conversation analysis (Heritage, 2008; Pomerantz & Fehr, 1997), I develop a taxonomy of forms of coordination and discuss how spatial arrangements and language work together to link attention, observations and explanations. This work further contributes to our understanding of the situated and cultural nature of learning and serves as a resource for the design of place-based learning environments that are based on the intellectual strengths and resources of diverse families.
Using Digital Badges to Organize Student Learning Opportunities
ERIC Educational Resources Information Center
Ippoliti, Cinthya; Baeza, Victor D.
2017-01-01
A growing trend at universities is to use digital badges (micro-credentialing) for capturing the "soft skills" students gain outside of the classroom. Libraries can use this opportunity to become campus leaders in digital badges, using the system to not only promote their information literacy activities but to coordinate workshop…
Understanding the Codevelopment of Modeling Practice and Ecological Knowledge
ERIC Educational Resources Information Center
Manz, Eve
2012-01-01
Despite a recent focus on engaging students in epistemic practices, there is relatively little research on how learning environments can support the simultaneous, coordinated development of both practice and the knowledge that emerges from and supports scientific activity. This study reports on the co-construction of modeling practice and…
Redesign and Evaluation of a Patient Assessment Course
Sobieraj, Diana M.; McCaffrey, Desmond; Lee, Jennifer J.
2009-01-01
Objectives To redesign a patient assessment course using a structured instructional design process and evaluate student learning. Design Course coordinators collaborated with an instructional design and development expert to incorporate new pedagogical approaches (eg, Web-based self-tests), create new learning activities (eg, peer collaboration on worksheets, SOAP note writing), and develop grading rubrics. Assessment Formative and summative surveys were administered for student self-assessment and course evaluation. Seventy-six students (78%) completed the summative survey. The mean course grade was 91.8% ± 3.6%, with more than 75% of students reporting achievement of primary course learning objectives. All of the additional learning activities helped students meet the learning objectives with the exception of the written drug information response. Conclusion The use of a structured instructional design process to redesign a patient assessment course was successful in creating a curriculum that succeeded in teaching students the specified learning objectives. Other colleges and schools are encouraged to collaborate with an instructional design and development expert to improve the pharmacy curriculum. PMID:19960090
Difficult Dialogues about Service Learning: Embrace the Messiness
ERIC Educational Resources Information Center
Hui, S. Mei-Yen
2009-01-01
When she was graduate coordinator for the Office of Community Service-Learning's Alternative Breaks (AB) program at the University of Maryland-College Park, the author had the privilege of working with undergraduate student trip leaders as they researched, planned, and coordinated weeklong service-learning immersion trips in which students would…
(De)stabilization of Required and Spontaneous Postural Dynamics with Learning
ERIC Educational Resources Information Center
Faugloire, Elise; Bardy, Benoit G.; Stoffregen, Thomas A.
2009-01-01
The present research examined how learning a new ankle-hip coordination influenced the preexisting postural repertoire. Standing participants learned a new ankle-hip coordination mode (relative phase of 90[degrees]). Before and after practice, postural patterns were evaluated in two different tasks. In the required task, specific ankle-hip…
Beets, Iseult A. M.; Macé, Marc; Meesen, Raf L. J.; Cuypers, Koen; Levin, Oron; Swinnen, Stephan P.
2012-01-01
Perceptual processes play an important role in motor learning. While it is evident that visual information greatly contributes to learning new movements, much less is known about provision of prescriptive proprioceptive information. Here, we investigated whether passive (proprioceptively-based) movement training was comparable to active training for learning a new bimanual task. Three groups practiced a bimanual coordination pattern with a 1∶2 frequency ratio and a 90° phase offset between both wrists with Lissajous feedback over the course of four days: 1) passive training; 2) active training; 3) no training (control). Retention findings revealed that passive as compared to active training resulted in equally successful acquisition of the frequency ratio but active training was more effective for acquisition of the new relative phasing between the limbs in the presence of augmented visual feedback. However, when this feedback was removed, performance of the new relative phase deteriorated in both groups whereas the frequency ratio was better preserved. The superiority of active over passive training in the presence of augmented feedback is hypothesized to result from active involvement in processes of error detection/correction and planning. PMID:22666379
Developmental coordination disorder
Physical causes and other types of learning disabilities must be ruled out before the diagnosis can be confirmed. ... Elsevier; 2016:chap 90. Szklut SE, Philibert DB. Learning disabilities and developmental coordination disorder. In: Umphred DA, Burton ...
Medical Home Transformation in Pediatric Primary Care—What Drives Change?
McAllister, Jeanne W.; Cooley, W. Carl; Van Cleave, Jeanne; Boudreau, Alexy Arauz; Kuhlthau, Karen
2013-01-01
PURPOSE The aim of this study was to characterize essential factors to the medical home transformation of high-performing pediatric primary care practices 6 to 7 years after their participation in a national medical home learning collaborative. METHODS We evaluated the 12 primary care practice teams having the highest Medical Home Index (MHI) scores after participation in a national medical home learning collaborative with current MHI scores, a clinician staff questionnaire (assessing adaptive reserve), and semistructured interviews. We reviewed factors that emerged from interviews and analyzed domains and subdomains for their agreement with MHI and adaptive reserve domains and subthemes using a process of triangulation. RESULTS At 6 to 7 years after learning collaborative participation, 4 essential medical home attributes emerged as drivers of transformation: (1) a culture of quality improvement, (2) family-centered care with parents as improvement partners, (3) team-based care, and (4) care coordination. These high-performing practices developed comprehensive, family-centered, planned care processes including flexible access options, population approaches, and shared care plans. Eleven practices evolved to employ care coordinators. Family satisfaction appeared to stem from better access, care, and safety, and having a strong relationship with their health care team. Physician and staff satisfaction was high even while leadership activities strained personal time. CONCLUSIONS Participation in a medical home learning collaborative stimulated, but did not complete, medical home changes in 12 pediatric practices. Medical home transformation required continuous development, ongoing quality improvement, family partnership skills, an attitude of teamwork, and strong care coordination functions. PMID:23690392
Integrating interprofessional education in community-based learning activities: case study.
Hosny, Somaya; Kamel, Mohamed H; El-Wazir, Yasser; Gilbert, John
2013-01-01
Faculty of Medicine/Suez Canal University (FOM/SCU) students are exposed to clinical practice in primary care settings within the community, in which they encounter patients and begin to work within interprofessional health teams. However, there is no planned curricular interaction with learners from other professions at the learning sites. As in other schools, FOM/SCU faces major challenges with the coordination of community-based education (CBE) program, which include the complexity of the design required for Interprofessional Education (IPE) as well as the attitudinal barriers between professions. The aim of the present review is to: (i) describe how far CBE activities match the requirements of IPE, (ii) explore opinions of graduates about the effectiveness of IPE activities, and (iii) present recommendations for improvement. Graduates find the overall outcome of their IPE satisfactory and believe that it produces physicians who are familiar with the roles of other professions and can work in synergy for the sake of better patient care. However, either a specific IPE complete module needs to be developed or more IPE specific objectives need to be added to current modules. Moreover, coordination with stakeholders from other health profession education institutes needs to be maximized to achieve more effective IPE.
ERIC Educational Resources Information Center
Chapman, Betty F.; Henderson, Ronda G.
2010-01-01
Background: Business teacher educators and distance learning coordinators have the responsibility to deliver quality online courses and programs. Therefore, they must make sure that quality assurance benchmarks are present in online business education courses and programs. Purpose: The purpose of this study was to examine the extent to which…
ERIC Educational Resources Information Center
Kultti, Anne; Pramling, Niklas
2015-01-01
This article proposes a conceptualization of teaching and learning in early childhood education, as the coordination of perspectives held by children and teachers through engaging different sensory modalities in the learning process. It takes a sociocultural theoretical perspective. An empirical example from a routine mealtime situation is…
2015-01-01
The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities. PMID:26569608
Kostrubiec, Viviane; Dumas, Guillaume; Zanone, Pier-Giorgio; Kelso, J A Scott
2015-01-01
The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities.
Pape, Hans-Christian; Pare, Denis
2009-01-01
The last ten years have witnessed a surge of interest for the mechanisms underlying the acquisition and extinction of classically conditioned fear responses. In part, this results from the realization that abnormalities in fear learning mechanisms likely participate to the development and/or maintenance of human anxiety disorders. The simplicity and robustness of this learning paradigm, coupled to the fact that the underlying circuitry is evolutionarily well conserved makes it an ideal model to study the basic biology of memory and identify genetic factors and neuronal systems that regulate the normal and pathological expressions of learned fear. Critical advances have been made in determining how modified neuronal functions upon fear acquisition become stabilized during fear memory consolidation and how these processes are controlled in the course of fear memory extinction. With these advances, came the realization that activity in remote neuronal networks must be coordinated for these events to take place. In this paper, we review these mechanisms of coordinated network activity and the molecular cascades leading to enduring fear memory, and allowing for their extinction. We will focus on Pavlovian fear conditioning as a model and the amygdala as a key component for the acquisition and extinction of fear responses. PMID:20393190
Phillips, Kaye; Amar, Claudia; Elicksen-Jensen, Keesa
2016-01-01
For the Canadian Foundation for Healthcare Improvement (CFHI), the Atlantic Healthcare Collaboration (AHC) was a pivotal opportunity to build upon its experience and expertise in delivering regional change management training and to apply and refine its evaluation and performance measurement approach. This paper reports on its evaluation principles and approach, as well as the lessons learned as CFHI diligently coordinated and worked with improvement project (IP) teams and a network of stakeholders to design and undertake a suite of evaluative activities. The evaluation generated evidence and learnings about various elements of chronic disease prevention and management (CDPM) improvement processes, individual and team capacity building and the role and value of CFHI in facilitating tailored learning activities and networking among teams, coaches and other AHC stakeholders.
Coronal Magnetography of Solar Active Regions Using Coordinated SOHO/CDS and VLA Observations
NASA Technical Reports Server (NTRS)
Brosius, Jeffrey W.
1999-01-01
The purpose of this project is to apply the coronal magnetographic technique to SOHO (Solar Heliospheric Observatory) /CDS (Coronal Diagnostic Spectrometer) EUV (Extreme Ultraviolet Radiation) and coordinated VLA microwave observations of solar active regions to derive the strength and structure of the coronal magnetic field. A CDS observing plan was developed for obtaining spectra needed to derive active region differential emission measures (DEMs) required for coronal magnetography. VLA observations were proposed and obtained. SOHO JOP 100 was developed, tested, approved, and implemented to obtain coordinated CDS (Coronal Diagnostic Spectrometer)/EIT (Ultraviolet Imaging Telescope)/ VLA (Very Large Array)/ TRACE (Transition Region and Coronal Explorer)/ SXT (Solar X Ray Telescope) observations of active regions on April 12, May 9, May 13, and May 23. Analysis of all four data sets began, with heaviest concentration on COS data. It is found that 200-pixel (14 A in NIS1) wavelength windows are appropriate for extracting broadened Gaussian line profile fit parameters for lines including Fe XIV at 334.2, Fe XVI at 335.4, Fe XVI at 360.8, and Mg IX at 368.1 over the 4 arcmin by 4 arcmin CDS field of view. Extensive efforts were focused on learning and applying were focused on learning and applying CDS software, and including it in new IDL procedures to carry out calculations relating to coronal magnetography. An important step is to extract Gaussian profile fits to all the lines needed to derive the DEM in each spatial pixel of any given active region. The standard CDS absolute intensity calibration software was applied to derived intensity images, revealing that ratios between density-insensitive lines like Fe XVI 360.8/335.4 yield good agreement with theory. However, the resulting absolute intensities of those lines are very high, indicating that revisions to the CDS absolute intensity calibrations remain to be included in the CDS software, an essential step to deriving reliable coronal magnetograms. With lessons learned and high quality data obtained during the past year, coronal magnetography will be successfully pursued under my new SOHO GI program.
Kazennikov, O V; Solopova, I A; Talis, V L; Ioffe, M E
2006-01-01
The role of the motor cortex was investigated during learning unusual postural adjustment. Healthy subjects held their right (postural) forearm in a horizontal position while supporting a 1-kG load via an electromagnet. The postural forearm position was perturbed by the load release triggered by other elbow voluntary movement. Repetition of the imposed unloading test resulted in a progressive reduction of the maximal forearm rotation, accompanied by the anticipatory decrease in m. biceps brachii activity (learning). Control situation consisted of the voluntary forearm loading. Using the transcranial magnetic stimulation we examined changes in the motor evoked potential of the m. biceps brahii at the beginning and at the end of learning. The evoked potential amplitude did not significantly change in process of the decrease of m. biceps brachii activity. At the end of learning, motor evoked potential / baseline electromyogram ratio increased as compared to the beginning of learning and to the control situation. The results highlight the fundamental role of the motor cortex in suppression of synergies which interfere with formation of a new coordination during motor learning.
Oscillations, Timing, Plasticity, and Learning in the Cerebellum.
Cheron, G; Márquez-Ruiz, J; Dan, B
2016-04-01
The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás's theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito-Marr-Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.
Report on July 2015 Additional Protocol Coordinators Best Practices Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gitau, Ernest T.N.; Burbank, Roberta L.; Finch, Valerie A.
After 10 years of implementation experience, the Office of Nonproliferation and Arms Control (NPAC) within the Department of Energy/National Nuclear Security Administration (DOE/NNSA) conducted the Additional Protocol (AP) Coordinators Best Practices Workshop at Oak Ridge National Laboratory from July 29-30, 2015. The goal of this workshop was to identify implementation best practices, lessons learned, and compliance challenges from the various Additional Protocol Coordinators (APCs) at each laboratory in the DOE/NNSA complex and associated sites. The workshop provided the opportunity for participants to share their insights and establish networks that APCs can utilize to continue to discuss challenges (new and old),more » identify best practices, and enhance communication and coordination for reporting multi-lab research projects during review activities. Workshop participants included DOE/NNSA HQ, laboratory and site APCs, seasoned experts, members of the original implementation outreach team, and Field Element and site security representatives.« less
VTA neurons coordinate with the hippocampal reactivation of spatial experience
Gomperts, Stephen N; Kloosterman, Fabian; Wilson, Matthew A
2015-01-01
Spatial learning requires the hippocampus, and the replay of spatial sequences during hippocampal sharp wave-ripple (SPW-R) events of quiet wakefulness and sleep is believed to play a crucial role. To test whether the coordination of VTA reward prediction error signals with these replayed spatial sequences could contribute to this process, we recorded from neuronal ensembles of the hippocampus and VTA as rats performed appetitive spatial tasks and subsequently slept. We found that many reward responsive (RR) VTA neurons coordinated with quiet wakefulness-associated hippocampal SPW-R events that replayed recent experience. In contrast, coordination between RR neurons and SPW-R events in subsequent slow wave sleep was diminished. Together, these results indicate distinct contributions of VTA reinforcement activity associated with hippocampal spatial replay to the processing of wake and SWS-associated spatial memory. DOI: http://dx.doi.org/10.7554/eLife.05360.001 PMID:26465113
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
... defined as training/ education transpiring between trainers and facilitators at one location and... NIC's distance learning administrator (DLA) on program design, program coordination, design and field... activities that support each broadcast. A minimum of one face-to-face planning session will be held for each...
Mathematics for the Elementary School, Unit 15, Addition and Linear Translations.
ERIC Educational Resources Information Center
Clark, Julia, Ed.; Myers, Donald E., Ed.
The Minnesota School Mathematics and Science Teaching (MINNEMAST) Project is characterized by its emphasis on the coordination of mathematics and science in the elementary school curriculum. Units are planned to provide children with activities in which they learn various concepts from both subject areas. Each subject is used to support and…
Visions: The Newsletter of the National Preschool Coordination Project, 1991.
ERIC Educational Resources Information Center
Visions, 1991
1991-01-01
This document consists of all five issues of the first volume of a newsletter designed to provide information and resources to help preschool educators more effectively serve migrant children and their parents. The newsletter also provides migrant children and their parents with learning suggestions and activities. Each issue contains information…
Robotics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.
ERIC Educational Resources Information Center
Auer, Herbert J.
This instructional manual contains 20 learning activity packets for use in a workshop on robotics. The lessons cover the following topics: safety considerations in robotics; introduction to technology-level and coordinate-systems categories; the teach pendant (a hand-held computer, usually attached to the robot controller, with which the operator…
Learning LeaderShop Develops Students, Builds Group Unity.
ERIC Educational Resources Information Center
Twale, Darla; Fogle, Rick
1986-01-01
Workshops that help students develop leadership are offered twice a year by the Office of Student Activities at the University of Pittsburgh. Soon after the 12 programming committee chairs and the student coordinator are selected in December, they meet with advisory staff in a local hotel for a training workshop, the first session of the…
ERIC Educational Resources Information Center
Cheng, Wan-Lee
This instructional manual contains 12 learning activity packets for use in a workshop in computer-aided design and drafting (CADD). The lessons cover the following topics: introduction to computer graphics and computer-aided design/drafting; coordinate systems; advance space graphics hardware configuration and basic features of the IBM PC…
A Model for Linking Vocational Education and Industry.
ERIC Educational Resources Information Center
Thomas, Hollie B.
A developmental research activity was undertaken to create and field test a systematic process designed to assist vocational educators to form linkages with business and industry. The literature was synthesized to ascertain what has been learned about the linkage process and coordination theory and has served as a basis for writing a manual for…
"L'arte D'arrangiarsi": Evaluation of an Innovative Practice in a Preservice Practicum
ERIC Educational Resources Information Center
Macy, Marisa; Squires, Jane
2009-01-01
Building on Opportunities for Student Teaching and Learning (BOOST) is a community-based summer preschool program developed, implemented, and coordinated by student teachers, university supervisors, and faculty. Ten preservice graduate students participated in BOOST practicum activities during the spring and summer terms of their 1-year Early…
Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients
Jarrassé, Nathanaël; Proietti, Tommaso; Crocher, Vincent; Robertson, Johanna; Sahbani, Anis; Morel, Guillaume; Roby-Brami, Agnès
2014-01-01
Upper-limb impairment after stroke is caused by weakness, loss of individual joint control, spasticity, and abnormal synergies. Upper-limb movement frequently involves abnormal, stereotyped, and fixed synergies, likely related to the increased use of sub-cortical networks following the stroke. The flexible coordination of the shoulder and elbow joints is also disrupted. New methods for motor learning, based on the stimulation of activity-dependent neural plasticity have been developed. These include robots that can adaptively assist active movements and generate many movement repetitions. However, most of these robots only control the movement of the hand in space. The aim of the present text is to analyze the potential of robotic exoskeletons to specifically rehabilitate joint motion and particularly inter-joint coordination. First, a review of studies on upper-limb coordination in stroke patients is presented and the potential for recovery of coordination is examined. Second, issues relating to the mechanical design of exoskeletons and the transmission of constraints between the robotic and human limbs are discussed. The third section considers the development of different methods to control exoskeletons: existing rehabilitation devices and approaches to the control and rehabilitation of joint coordinations are then reviewed, along with preliminary clinical results available. Finally, perspectives and future strategies for the design of control mechanisms for rehabilitation exoskeletons are discussed. PMID:25520638
ERIC Educational Resources Information Center
Tamtik, Merli; Sá, Creso M.
2014-01-01
Mutual learning exercises have become increasingly employed in Europe over the last decade. This study examines the policy learning process in the area of internationalization of science and technology, which has been targeted as a priority for Europe. Through a case study of the open method of coordination expert group in this area, the analysis…
Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information.
Barbera, Giovanni; Liang, Bo; Zhang, Lifeng; Gerfen, Charles R; Culurciello, Eugenio; Chen, Rong; Li, Yun; Lin, Da-Ting
2016-10-05
An influential striatal model postulates that neural activities in the striatal direct and indirect pathways promote and inhibit movement, respectively. Normal behavior requires coordinated activity in the direct pathway to facilitate intended locomotion and indirect pathway to inhibit unwanted locomotion. In this striatal model, neuronal population activity is assumed to encode locomotion relevant information. Here, we propose a novel encoding mechanism for the dorsal striatum. We identified spatially compact neural clusters in both the direct and indirect pathways. Detailed characterization revealed similar cluster organization between the direct and indirect pathways, and cluster activities from both pathways were correlated with mouse locomotion velocities. Using machine-learning algorithms, cluster activities could be used to decode locomotion relevant behavioral states and locomotion velocity. We propose that neural clusters in the dorsal striatum encode locomotion relevant information and that coordinated activities of direct and indirect pathway neural clusters are required for normal striatal controlled behavior. VIDEO ABSTRACT. Published by Elsevier Inc.
Clark, Gillian M; Lum, Jarrad A G
2017-10-01
The serial reaction time task (SRTT) has been used to study procedural learning in clinical populations. In this report, second-order meta-analysis was used to investigate whether disorder type moderates performance on the SRTT. Using this approach to quantitatively summarise past research, it was tested whether autism spectrum disorder, developmental coordination disorder, dyslexia, Parkinson's disease, schizophrenia, and specific language impairment differentially affect procedural learning on the SRTT. The main analysis revealed disorder type moderated SRTT performance (p=0.010). This report demonstrates comparable levels of procedural learning impairment in developmental coordination disorder, dyslexia, Parkinson's disease, schizophrenia, and specific language impairment. However, in autism, procedural learning is spared. Copyright © 2017 Elsevier Inc. All rights reserved.
Jaw-phonatory coordination in chronic developmental stuttering.
Loucks, Torrey M J; De Nil, Luc F; Sasisekaran, Jayanthi
2007-01-01
A deficiency in sensorimotor integration in a person who stutters may be a factor in the pathophysiology of developmental stuttering. To test oral sensorimotor function in adults who stutter, we used a task that requires the coordination of a jaw-opening movement with phonation onset. The task was adapted from previous limb coordination studies, which show that movement coordination depends on intact proprioception. We hypothesized that adult stutterers would show deficient jaw-phonatory coordination relative to control participants. The task required initiation of phonation as a jaw-opening movement passed through a narrow spatial target. Target amplitude and jaw movement speed were varied. The stuttering group showed significantly higher movement error and spatial variability in jaw-phonatory coordination compared to the control group, but group differences in movement velocity or duration were not found. The aberrant jaw-phonatory coordination of the stuttering participants suggests that stuttering is associated with an oral proprioceptive limitation, although, the findings are also consistent with a motor control deficit. As a result of this activity, reader will (1) learn about a hypothesis and evidence supporting the view that a sensorimotor deficit contributes to chronic developmental stuttering and (2) will obtain information about the role of proprioception in multi-articulatory coordination and how it can be tested using an oral-phonatory coordination task.
NASA Technical Reports Server (NTRS)
Benson, T.; Galica, C.; McCredie, P.; Storm, R.
2003-01-01
This guide was produced by the NASA Glenn Research Center Office of Educational Programs in Cleveland, OH, and the NASA Aerospace Educational Coordinating Committee. It includes activity modules for students, including the history of the Wright Brothers and their family in Dayton, Ohio and flight experimentation in Kitty Hawk, North Carolina. Student activities such as building models of the Wright Brothers glider and writing press releases of the initial flight are included.
NASA Astrophysics Data System (ADS)
Degroot, R. M.; Springer, K.; Brooks, C. J.; Schuman, L.; Dalton, D.; Benthien, M. L.
2009-12-01
In 1999 the Southern California Earthquake Center initiated an effort to expand its reach to multiple target audiences through the development of an interpretive trail on the San Andreas fault at Wallace Creek and an earthquake exhibit at Fingerprints Youth Museum in Hemet. These projects and involvement with the San Bernardino County Museum in Redlands beginning in 2007 led to the creation of Earthquake Education and Public Information Centers (EPIcenters) in 2008. The impetus for the development of the network was to broaden participation in The Great Southern California ShakeOut. In 2009 it has grown to be more comprehensive in its scope including its evolution into a statewide network. EPIcenters constitute a variety of free-choice learning institutions, representing museums, science centers, libraries, universities, parks, and other places visited by a variety of audiences including families, seniors, and school groups. They share a commitment to demonstrating and encouraging earthquake preparedness. EPIcenters coordinate Earthquake Country Alliance activities in their county or region, lead presentations or organize events in their communities, or in other ways demonstrate leadership in earthquake education and risk reduction. The San Bernardino County Museum (Southern California) and The Tech Museum of Innovation (Northern California) serve as EPIcenter regional coordinating institutions. They interact with over thirty institutional partners who have implemented a variety of activities from displays and talks to earthquake exhibitions. While many activities are focused on the time leading up to and just after the ShakeOut, most EPIcenter members conduct activities year round. Network members at Kidspace Museum in Pasadena and San Diego Natural History Museum have formed EPIcenter focus groups on early childhood education and safety and security. This presentation highlights the development of the EPIcenter network, synergistic activities resulting from this collaboration, and lessons learned from interacting with free-choice learning institutions.
Normalized Index of Synergy for Evaluating the Coordination of Motor Commands
Togo, Shunta; Imamizu, Hiroshi
2015-01-01
Humans perform various motor tasks by coordinating the redundant motor elements in their bodies. The coordination of motor outputs is produced by motor commands, as well properties of the musculoskeletal system. The aim of this study was to dissociate the coordination of motor commands from motor outputs. First, we conducted simulation experiments where the total elbow torque was generated by a model of a simple human right and left elbow with redundant muscles. The results demonstrated that muscle tension with signal-dependent noise formed a coordinated structure of trial-to-trial variability of muscle tension. Therefore, the removal of signal-dependent noise effects was required to evaluate the coordination of motor commands. We proposed a method to evaluate the coordination of motor commands, which removed signal-dependent noise from the measured variability of muscle tension. We used uncontrolled manifold analysis to calculate a normalized index of synergy. Simulation experiments confirmed that the proposed method could appropriately represent the coordinated structure of the variability of motor commands. We also conducted experiments in which subjects performed the same task as in the simulation experiments. The normalized index of synergy revealed that the subjects coordinated their motor commands to achieve the task. Finally, the normalized index of synergy was applied to a motor learning task to determine the utility of the proposed method. We hypothesized that a large part of the change in the coordination of motor outputs through learning was because of changes in motor commands. In a motor learning task, subjects tracked a target trajectory of the total torque. The change in the coordination of muscle tension through learning was dominated by that of motor commands, which supported the hypothesis. We conclude that the normalized index of synergy can be used to evaluate the coordination of motor commands independently from the properties of the musculoskeletal system. PMID:26474043
Temporal learning in the cerebellum: The microcircuit model
NASA Technical Reports Server (NTRS)
Miles, Coe F.; Rogers, David
1990-01-01
The cerebellum is that part of the brain which coordinates motor reflex behavior. To perform effectively, it must learn to generate specific motor commands at the proper times. We propose a fundamental circuit, called the MicroCircuit, which is the minimal ensemble of neurons both necessary and sufficient to learn timing. We describe how learning takes place in the MicroCircuit, which then explains the global behavior of the cerebellum as coordinated MicroCircuit behavior.
Santos Monteiro, Thiago; Beets, Iseult A M; Boisgontier, Matthieu P; Gooijers, Jolien; Pauwels, Lisa; Chalavi, Sima; King, Brad; Albouy, Geneviève; Swinnen, Stephan P
2017-10-01
To study age-related differences in neural activation during motor learning, functional magnetic resonance imaging scans were acquired from 25 young (mean 21.5-year old) and 18 older adults (mean 68.6-year old) while performing a bimanual coordination task before (pretest) and after (posttest) a 2-week training intervention on the task. We studied whether task-related brain activity and training-induced brain activation changes differed between age groups, particularly with respect to the hyperactivation typically observed in older adults. Findings revealed that older adults showed lower performance levels than younger adults but similar learning capability. At the cerebral level, the task-related hyperactivation in parietofrontal areas and underactivation in subcortical areas observed in older adults were not differentially modulated by the training intervention. However, brain activity related to task planning and execution decreased from pretest to posttest in temporo-parieto-frontal areas and subcortical areas in both age groups, suggesting similar processes of enhanced activation efficiency with advanced skill level. Furthermore, older adults who displayed higher activity in prefrontal regions at pretest demonstrated larger training-induced performance gains. In conclusion, in spite of prominent age-related brain activation differences during movement planning and execution, the mechanisms of learning-related reduction of brain activation appear to be similar in both groups. Importantly, cerebral activity during early learning can differentially predict the amplitude of the training-induced performance benefit between young and older adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Pediatric Care Coordination: Lessons Learned and Future Priorities.
Cady, Rhonda G; Looman, Wendy S; Lindeke, Linda L; LaPlante, Bonnie; Lundeen, Barbara; Seeley, Amanda; Kautto, Mary E
2015-09-30
A fundamental component of the medical home model is care coordination. In Minnesota, this model informed design and implementation of the state's health care home (HCH) model, a key element of statewide healthcare reform legislation. Children with medical complexity (CMC) often require care from multiple specialists and community resources. Coordinating this multi-faceted care within the HCH is challenging. This article describes the need for specialized models of care coordination for CMC. Two models of care coordination for CMC were developed to address this challenge. The TeleFamilies Model of Pediatric Care Coordination uses an advanced practice registered nurse care (APRN) coordinator embedded within an established HCH. The PRoSPer Model of Pediatric Care Coordination uses a registered nurse/social worker care coordinator team embedded within a specialty care system. We describe key findings from implementation of these models, and conclude with lessons learned. Replication of the models is encouraged to increase the evidence base for care coordination for the growing population of children with medical complexities.
ERIC Educational Resources Information Center
Al-Dor, Nira
2006-01-01
The objective of this study is to present "The Spiral Model for the Development of Coordination" (SMDC), a learning model that reflects the complexity and possibilities embodied in the learning of movement notation Eshkol-Wachman (EWMN), an Israeli invention. This model constituted the infrastructure for a comprehensive study that examined the…
Dark Skies Africa: a Prototype Project with the IAU Office of Astronomy for Development
NASA Astrophysics Data System (ADS)
Walker, Constance Elaine; Tellez, Daniel; Pompea, Stephen M.
2015-08-01
The IAU’s Office of Astronomy for Development (OAD) awarded the National Optical Astronomy Observatory (NOAO) with a grant to deliver a “Dark Skies Outreach to Sub-Saharan Africa” program to institutions in 12 African countries during 2013: Algeria, Nigeria, Rwanda, Tanzania, Ghana, Zambia, South Africa, Ethiopia, Gabon, Kenya, Namibia and Senegal. The program helped students identify wasteful and inefficient lighting and provided ways to reduce consumption and to keep energy costs in check. The goal was to inspire students to be responsible stewards in helping their community safeguard one of Africa’s natural resources - a dark night sky.Thirteen kits made by the NOAO Education and Public Outreach group were sent to coordinators at university, science center and planetarium-type institutions in the 12 countries and to the IAU OAD. The program’s kit included complete instructional guides and supplies for six hands-on activities (e.g., on the importance of shielding lights and using energy efficient bulbs) and a project on energy conservation and responsible lighting (through energy audits). The activities were taught to the coordinators in a series of six Google+ Hangout sessions scheduled from June to mid-November. The coordinators at the institutions in turn trained local teachers in junior and senior high schools. The Google+ Hangout sessions also included instruction on carrying out evaluations. From the end of November until mid-December students from the different African countries shared final class projects (such as posters or powerpoints) on the program’s website.The entire program was designed to help coordinators and educators work with students, parents and the community to identify dark sky resource, lighting and energy issues and to assess their status, efficiency and effectiveness. The audience will take away from the presentation lessons learned on how well the techniques succeeded in using Google+ Hangout sessions to instruct and sustain a community of coordinators and educators through distance learning, as well as immersing them (and their students) in projects after a scaffolded sequence of activities.
Guo, Junqi; Zhou, Xi; Sun, Yunchuan; Ping, Gong; Zhao, Guoxing; Li, Zhuorong
2016-06-01
Smartphone based activity recognition has recently received remarkable attention in various applications of mobile health such as safety monitoring, fitness tracking, and disease prediction. To achieve more accurate and simplified medical monitoring, this paper proposes a self-learning scheme for patients' activity recognition, in which a patient only needs to carry an ordinary smartphone that contains common motion sensors. After the real-time data collection though this smartphone, we preprocess the data using coordinate system transformation to eliminate phone orientation influence. A set of robust and effective features are then extracted from the preprocessed data. Because a patient may inevitably perform various unpredictable activities that have no apriori knowledge in the training dataset, we propose a self-learning activity recognition scheme. The scheme determines whether there are apriori training samples and labeled categories in training pools that well match with unpredictable activity data. If not, it automatically assembles these unpredictable samples into different clusters and gives them new category labels. These clustered samples combined with the acquired new category labels are then merged into the training dataset to reinforce recognition ability of the self-learning model. In experiments, we evaluate our scheme using the data collected from two postoperative patient volunteers, including six labeled daily activities as the initial apriori categories in the training pool. Experimental results demonstrate that the proposed self-learning scheme for activity recognition works very well for most cases. When there exist several types of unseen activities without any apriori information, the accuracy reaches above 80 % after the self-learning process converges.
Effective collaborative learning in biomedical education using a web-based infrastructure.
Wu, Yunfeng; Zheng, Fang; Cai, Suxian; Xiang, Ning; Zhong, Zhangting; He, Jia; Xu, Fang
2012-01-01
This paper presents a feature-rich web-based system used for biomedical education at the undergraduate level. With the powerful groupware features provided by the wiki system, the instructors are able to establish a community-centered mentoring environment that capitalizes on local expertise to create a sense of online collaborative learning among students. The web-based infrastructure can help the instructors effectively organize and coordinate student research projects, and the groupware features may support the interactive activities, such as interpersonal communications and data sharing. The groupware features also provide the web-based system with a wide range of additional ways of organizing collaboratively developed materials, which makes it become an effective tool for online active learning. Students are able to learn the ability to work effectively in teams, with an improvement of project management, design collaboration, and technical writing skills. With the fruitful outcomes in recent years, it is positively thought that the web-based collaborative learning environment can perform an excellent shift away from the conventional instructor-centered teaching to community- centered collaborative learning in the undergraduate education.
Kubík, Štěpán; Buchtová, Helena; Valeš, Karel; Stuchlík, Aleš
2014-01-01
Flexible behavior in dynamic, real-world environments requires more than static spatial learning and memory. Discordant and unstable cues must be organized in coherent subsets to give rise to meaningful spatial representations. We model this form of cognitive coordination on a rotating arena – Carousel where arena- and room-bound spatial cues are dissociated. Hippocampal neuronal ensemble activity can repeatedly switch between multiple representations of such an environment. Injection of tetrodotoxin into one hippocampus prevents cognitive coordination during avoidance of a stationary room-defined place on the Carousel and increases coactivity of previously unrelated neurons in the uninjected hippocampus. Place avoidance on the Carousel is impaired after systemic administration of non-competitive NMDAr blockers (MK-801) used to model schizophrenia in animals and people. We tested if this effect is due to cognitive disorganization or other effect of NMDAr antagonism such as hyperlocomotion, spatial memory impairment, or general learning deficit. We also examined if the same dose of MK-801 alters patterns of immediate-early gene (IEG) expression in the hippocampus. IEG expression is triggered in neuronal nuclei in a context-specific manner after behavioral exploration and it is used to map activity in neuronal populations. IEG expression is critical for maintenance of synaptic plasticity and memory consolidation. We show that the same dose of MK-801 that impairs spatial coordination of rats on the Carousel also eliminates contextual specificity of IEG expression in hippocampal CA1 ensembles. This effect is due to increased similarity between ensembles activated in different environments, consistent with the idea that it is caused by increased coactivity between neurons, which did not previously fire together. Our data support the proposition of the Hypersynchrony theory that cognitive disorganization in psychosis is due to increased coactivity between unrelated neurons. PMID:24659959
Grading the Group: QUANTA 2.0 and the Peer Review
ERIC Educational Resources Information Center
Blanton, Casey; Flota, Michael; Gunshanan, Frank
2013-01-01
Can students assess their peers on collaboration, a key practice in learning communities? The QUANTA program is a team-taught, two-semester coordinated studies program that is over 25 years old. The central governing ideas for the program are a belief in the social construction of knowledge, and recognition of the value of active, collaborative…
ERIC Educational Resources Information Center
Zheng, Dongping
2012-01-01
This study provides concrete evidence of ecological, dialogical views of languaging within the dynamics of coordination and cooperation in a virtual world. Beginning level second language learners of Chinese engaged in cooperative activities designed to provide them opportunities to refine linguistic actions by way of caring for others, for the…
Movement in Steady Beat: Learning on the Move, Ages 3-7. Second Edition.
ERIC Educational Resources Information Center
Weikart, Phyllis S.
The ability to feel and maintain steady, rhythmic beat is important for children to develop in early childhood and will assist them in mastering concepts in language and literacy, mathematics, and other content areas as well as increase body coordination and related physical abilities. Designed as an activity supplement to High Scope movement and…
ERIC Educational Resources Information Center
Pansiri, Nkobi Owen
2008-01-01
A descriptive study using questionnaires was conducted in 2004 to assess the effectiveness of instructional leadership displayed by primary school management teams following the implementation of the Primary School Management Project in Botswana. Leadership skills, Coordination of instructional activities, management of curriculum and quality of…
Training Programs for Family Child Care Providers: An Analysis of Ten Curricula. Second Edition.
ERIC Educational Resources Information Center
Modigliani, Kathy
This report analyzes the following 10 curricula for training programs for family child care providers: (1) Child Care, a family day home care provider program developed by Texas A&M's Agricultural Extension Service; (2) the Family Day Care Education Series, a coordinated resource manual and independent study course, the Active Learning Series,…
ERIC Educational Resources Information Center
Gautam, Tanvi
2009-01-01
One of the important challenges for leadership in project teams is the ability to manage the knowledge, communication and coordination related activities of team. In cross-team collaboration, different boundaries contribute to the situated nature of knowledge and hamper the flow of knowledge and prevent shared understanding with those on the other…
Blackboard Overview by a Technology Coordinator
NASA Astrophysics Data System (ADS)
Rodgers, Sue
2000-06-01
Have you ever wished you could find an easier way to get course materials and other information to your students? Would you be interested in improving communication between you and your students? Over 1600 colleges, universities, and K-12 schools have discovered and adopted a software package that can do just that: Blackboard's CourseInfo, a Web-based course delivery system (http://www.blackboard.com). At San Jacinto College we are using CourseInfo to facilitate classes taught in a distance learning format and to support classroom-based classes through web-enhanced learning activities.
Flaschberger, Edith; Gugglberger, Lisa; Dietscher, Christina
2013-12-01
To change a school into a health-promoting organization, organizational learning is required. The evaluation of an Austrian regional health-promoting schools network provides qualitative data on the views of the different stakeholders on learning in this network (steering group, network coordinator and representatives of the network schools; n = 26). Through thematic analysis and deep-structure analyses, the following three forms of learning in the network were identified: (A) individual learning through input offered by the network coordination, (B) individual learning between the network schools, i.e. through exchange between the representatives of different schools and (C) learning within the participating schools, i.e. organizational learning. Learning between (B) or within the participating schools (C) seems to be rare in the network; concepts of individual teacher learning are prevalent. Difficulties detected relating to the transfer of information from the network to the member schools included barriers to organizational learning such as the lack of collaboration, coordination and communication in the network schools, which might be effects of the school system in which the observed network is located. To ensure connectivity of the information offered by the network, more emphasis should be put on linking health promotion to school development and the core processes of schools.
ERIC Educational Resources Information Center
Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio
2009-01-01
How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified…
Motor Learning as Young Gymnast's Talent Indicator.
di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio
2014-12-01
Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz's battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01) and ranking (p < 0.05) of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R(2) = 0.26, p < 0.01). Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time. Key pointsIn talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability.Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete's current performance.In this manner talent identification processes should be focused on the future performance capabilities of athletes.
Motor Learning as Young Gymnast’s Talent Indicator
di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio
2014-01-01
Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz’s battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01) and ranking (p < 0.05) of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R2 = 0.26, p < 0.01). Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time. Key points In talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability. Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete’s current performance. In this manner talent identification processes should be focused on the future performance capabilities of athletes. PMID:25435768
Chang, Hung-Cheng; Grossberg, Stephen; Cao, Yongqiang
2014-01-01
The Where’s Waldo problem concerns how individuals can rapidly learn to search a scene to detect, attend, recognize, and look at a valued target object in it. This article develops the ARTSCAN Search neural model to clarify how brain mechanisms across the What and Where cortical streams are coordinated to solve the Where’s Waldo problem. The What stream learns positionally-invariant object representations, whereas the Where stream controls positionally-selective spatial and action representations. The model overcomes deficiencies of these computationally complementary properties through What and Where stream interactions. Where stream processes of spatial attention and predictive eye movement control modulate What stream processes whereby multiple view- and positionally-specific object categories are learned and associatively linked to view- and positionally-invariant object categories through bottom-up and attentive top-down interactions. Gain fields control the coordinate transformations that enable spatial attention and predictive eye movements to carry out this role. What stream cognitive-emotional learning processes enable the focusing of motivated attention upon the invariant object categories of desired objects. What stream cognitive names or motivational drives can prime a view- and positionally-invariant object category of a desired target object. A volitional signal can convert these primes into top-down activations that can, in turn, prime What stream view- and positionally-specific categories. When it also receives bottom-up activation from a target, such a positionally-specific category can cause an attentional shift in the Where stream to the positional representation of the target, and an eye movement can then be elicited to foveate it. These processes describe interactions among brain regions that include visual cortex, parietal cortex, inferotemporal cortex, prefrontal cortex (PFC), amygdala, basal ganglia (BG), and superior colliculus (SC). PMID:24987339
Nationwide network of total solar eclipse high altitude balloon flights
NASA Astrophysics Data System (ADS)
Des Jardins, A. C.
2017-12-01
Three years ago we envisioned tapping into the strength of the National Space Grant Program to make the most of a rare astronomical event to engage the general public through education and to create meaningful long-lasting partnerships with other private and public entities. We believe strongly in giving student participants career-making opportunities through the use of the most cutting edge tools, resources, and communication. The NASA Space Grant network was in a unique position to engage the public in the eclipse in an awe-inspiring and educational way at a surprisingly small cost. In addition to public engagement, the multidisciplinary project presented an in-depth hands-on learning opportunity for the thousands of student participants. The project used a network of high altitude ballooning teams positioned along the path of totality from Oregon to South Carolina to conduct coordinated collaborative activities during the eclipse. These activities included 1) capturing and streaming live video of the eclipse from near space, 2) partnering with NASA Ames on a space biology experiment, and 3) conducting high-resolution atmospheric radiosonde measurements. This presentation will summarize the challenges, results, lessons learned, and professional evaluation from developing, training, and coordinating the collaboration. Details of the live streaming HD video and radiosonde activities are described in separate submissions to this session.
From Spontaneous Motor Activity to Coordinated Behaviour: A Developmental Model
Marques, Hugo Gravato; Bharadwaj, Arjun; Iida, Fumiya
2014-01-01
In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions. PMID:25057775
New Angles on Motor and Sensory Coordination in Learning Disabilities.
ERIC Educational Resources Information Center
Goldey, Ellen S.
1998-01-01
Provides an overview of presentations that were included in the Medical Symposium at the 1998 Learning Disabilities Association conference. The symposium addressed vestibular control and eye movement, postural sway and balance, cerebellar dysfunction, the role of the frontal lobe, developmental coordination disorder, and sensory integration…
Motor Skill Learning in Children with Developmental Coordination Disorder
ERIC Educational Resources Information Center
Bo, Jin; Lee, Chi-Mei
2013-01-01
Children with Developmental Coordination Disorder (DCD) are characterized as having motor difficulties and learning impairment that may last well into adolescence and adulthood. Although behavioral deficits have been identified in many domains such as visuo-spatial processing, kinesthetic perception, and cross-modal sensory integration, recent…
Ritchie, Ann
2011-03-01
The Northern Territory Department of Health and Families' (DHF) Library supports education programs for all staff. DHF is implementing an e-learning strategy, which may be viewed as a vehicle for coordinating the education function throughout the organisation. The objective of this study is to explore the concept of e-learning in relation to the Library's role in implementing an organisation-wide e-learning strategy. The main findings of a literature search about the effectiveness of e-learning in health professionals' education, and the responsibility and roles of health librarians in e-learning are described. A case study approach is used to outline the current role and future opportunities and challenges for the Library. The case study presents the organisation's strategic planning context. Four areas of operational activity which build on the Library's current educational activities are suggested: the integration of library resources 'learning objects' within a Learning Management System; developing online health information literacy training programs; establishing a physical and virtual 'e-Learning Library/Centre'; developing collaborative partnerships, taking on new responsibilities in e-learning development, and creating a new e-learning librarian role. The study shows that the Library's role is fundamental to developing the organisation's e-learning capacity and implementing an organisation-wide e-learning strategy. © 2010 The authors. Health Information and Libraries Journal © 2010 Health Libraries Group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SVIRIDOVA, V.V.; ERASTOV, V.V.; ISAEV, N.V.
2005-05-16
The MC&A Equipment and Methodological Support Strategic Plan (MEMS SP) for implementing modern MC&A equipment and methodologies at Rosatom facilities has been developed within the framework of the U.S.-Russian MPC&A Program. This plan developed by the Rosatom's Russian MC&A Equipment and Methodologies (MEM) Working Group and is coordinated by that group with support and coordination provided by the MC&A Measurements Project, Office of National Infrastructure and Sustainability, US DOE. Implementation of different tasks of the MEMS Strategic Plan is coordinated by Rosatom and US-DOE in cooperation with different U.S.-Russian MC&A-related working groups and joint site project teams. This cooperation allowsmore » to obtain and analyze information about problems, current needs and successes at Rosatom facilities and facilitates solution of the problems, satisfying the facilities' needs and effective exchange of expertise and lessons learned. The objective of the MEMS Strategic Plan is to enhance effectiveness of activities implementing modern equipment and methodologies in the Russian State MC&A system. These activities are conducted within the joint Russian-US MPC&A program aiming at reduction of possibility for theft or diversion of nuclear materials and enhancement of control of nuclear materials.« less
Grover, Sumit; Sood, Neena; Chaudhary, Anurag
2017-01-01
Peer-assisted learning (PAL) is a teaching-learning method in which students act as peer teachers and help other students to learn while also themselves learning by teaching. PAL through modified interest building activities (MIBAs) is seldom tried in teaching pathology in medical colleges. This study aimed to evaluate the usefulness of peer teaching using MIBA, obtain feedback from students, and compare different activities with each other and with traditional teaching-learning methods. An interventional pilot study was conducted in 2 months on the 2nd MBBS undergraduates learning pathology at a medical college in North India. Students acted as peer teachers and performed different MIBAs including role plays, demonstration of pathogenesis through props, student-led seminars such as PowerPoint teaching, blackboard teaching, multiple choice question seminars, case-based learning (CBL) exercises, and quizzes before teaching sessions. Feedback was obtained through structured questionnaires on a 5-point Likert scale. Paired t-test was used to compare traditional teaching with MIBAs, and Friedman test was used to compare among different MIBAs. Students found ease of understanding and the interaction and involvement of students as the most important benefits of PAL. MIBAs increased voluntary participation, coordination, teamwork, shared responsibility, and group dynamics among students. Quiz sessions followed by PowerPoint seminars and prop demonstrations received highest mean scores from students on most of the parameters. Quizzes, blackboard teaching, prop activities, and CBL helped students understand topics better and generated interest. Learners advocated for making MIBAs and PAL compulsory for future students. PAL complemented by MIBAs may be adopted to make teaching-learning more interesting and effective through the active involvement and participation of students.
Singer, Annabelle C.; Carr, Margaret F.; Karlsson, Mattias P.; Frank, Loren M.
2013-01-01
SUMMARY The hippocampus frequently replays memories of past experiences during sharp-wave ripple (SWR) events. These events can represent spatial trajectories extending from the animal’s current location to distant locations, suggesting a role in the evaluation of upcoming choices. While SWRs have been linked to learning and memory, the specific role of awake replay remains unclear. Here we show that there is greater coordinated neural activity during SWRs preceding correct, as compared to incorrect, trials in a spatial alternation task. As a result, the proportion of cell pairs coactive during SWRs was predictive of subsequent correct or incorrect responses on a trial-by-trial basis. This effect was seen specifically during early learning, when the hippocampus is essential for task performance. SWR activity preceding correct trials represented multiple trajectories that included both correct and incorrect options. These results suggest that reactivation during awake SWRs contributes to the evaluation of possible choices during memory-guided decision making. PMID:23522050
Schutt, Michelle A; Hightower, Barbara
2009-02-01
The American Association of Colleges of Nursing advocates that professional nurses have the information literacy skills essential for evidence-based practice. As nursing schools embrace evidence-based models to prepare students for nursing careers, faculty can collaborate with librarians to create engaging learning activities focused on the development of information literacy skills. Instructional technology tools such as course management systems, virtual classrooms, and online tutorials provide opportunities to reach students outside the traditional campus classroom. This article discusses the collaborative process between faculty and a library instruction coordinator and strategies used to create literacy learning activities focused on the development of basic database search skills for a Computers in Nursing course. The activities and an online tutorial were included in a library database module incorporated into WebCT. In addition, synchronous classroom meeting software was used by the librarian to reach students in the distance learning environment. Recommendations for module modifications and faculty, librarian, and student evaluations are offered.
Associative Learning in Invertebrates
Hawkins, Robert D.; Byrne, John H.
2015-01-01
This work reviews research on neural mechanisms of two types of associative learning in the marine mollusk Aplysia, classical conditioning of the gill- and siphon-withdrawal reflex and operant conditioning of feeding behavior. Basic classical conditioning is caused in part by activity-dependent facilitation at sensory neuron–motor neuron (SN–MN) synapses and involves a hybrid combination of activity-dependent presynaptic facilitation and Hebbian potentiation, which are coordinated by trans-synaptic signaling. Classical conditioning also shows several higher-order features, which might be explained by the known circuit connections in Aplysia. Operant conditioning is caused in part by a different type of mechanism, an intrinsic increase in excitability of an identified neuron in the central pattern generator (CPG) for feeding. However, for both classical and operant conditioning, adenylyl cyclase is a molecular site of convergence of the two signals that are associated. Learning in other invertebrate preparations also involves many of the same mechanisms, which may contribute to learning in vertebrates as well. PMID:25877219
The 50s cliff: a decline in perceptuo-motor learning, not a deficit in visual motion perception.
Ren, Jie; Huang, Shaochen; Zhang, Jiancheng; Zhu, Qin; Wilson, Andrew D; Snapp-Childs, Winona; Bingham, Geoffrey P
2015-01-01
Previously, we measured perceptuo-motor learning rates across the lifespan and found a sudden drop in learning rates between ages 50 and 60, called the "50s cliff." The task was a unimanual visual rhythmic coordination task in which participants used a joystick to oscillate one dot in a display in coordination with another dot oscillated by a computer. Participants learned to produce a coordination with a 90° relative phase relation between the dots. Learning rates for participants over 60 were half those of younger participants. Given existing evidence for visual motion perception deficits in people over 60 and the role of visual motion perception in the coordination task, it remained unclear whether the 50s cliff reflected onset of this deficit or a genuine decline in perceptuo-motor learning. The current work addressed this question. Two groups of 12 participants in each of four age ranges (20s, 50s, 60s, 70s) learned to perform a bimanual coordination of 90° relative phase. One group trained with only haptic information and the other group with both haptic and visual information about relative phase. Both groups were tested in both information conditions at baseline and post-test. If the 50s cliff was caused by an age dependent deficit in visual motion perception, then older participants in the visual group should have exhibited less learning than those in the haptic group, which should not exhibit the 50s cliff, and older participants in both groups should have performed less well when tested with visual information. Neither of these expectations was confirmed by the results, so we concluded that the 50s cliff reflects a genuine decline in perceptuo-motor learning with aging, not the onset of a deficit in visual motion perception.
A Practical Guide To Developing Effective Web-based Learning
Cook, David A; Dupras, Denise M
2004-01-01
OBJECTIVE Online learning has changed medical education, but many “educational” websites do not employ principles of effective learning. This article will assist readers in developing effective educational websites by integrating principles of active learning with the unique features of the Web. DESIGN Narrative review. RESULTS The key steps in developing an effective educational website are: Perform a needs analysis and specify goals and objectives; determine technical resources and needs; evaluate preexisting software and use it if it fully meets your needs; secure commitment from all participants and identify and address potential barriers to implementation; develop content in close coordination with website design (appropriately use multimedia, hyperlinks, and online communication) and follow a timeline; encourage active learning (self-assessment, reflection, self-directed learning, problem-based learning, learner interaction, and feedback); facilitate and plan to encourage use by the learner (make website accessible and user-friendly, provide time for learning, and motivate learners); evaluate learners and course; pilot the website before full implementation; and plan to monitor online communication and maintain the site by resolving technical problems, periodically verifying hyperlinks, and regularly updating content. CONCLUSION Teaching on the Web involves more than putting together a colorful webpage. By consistently employing principles of effective learning, educators will unlock the full potential of Web-based medical education. PMID:15209610
Achieving Quality in e-Learning through Relational Coordination
ERIC Educational Resources Information Center
Margalina, Vasilica Maria; De-Pablos-Heredero, Carmen; Montes-Botella, Jose Luis
2017-01-01
In this research, the relational coordination model has been applied to prove learners' and instructors' high levels of satisfaction in e-learning. According to the model, organizations can obtain better results in terms of satisfaction by providing shared knowledge, shared goals and mutual respect mechanisms, supported by a frequent, timely and…
ERIC Educational Resources Information Center
Kurt, Murat
2015-01-01
The purpose of this study is to develop competencies of teachers, the coordination of the education, learning activities; in having access to innovations, developments and scientific studies in the literature. In addition, the purpose is to determine how teachers' scientific research self-efficacy and attitude towards the scientific research…
Defense Science Board Task Force Report on Next-Generation Unmanned Undersea Systems
2016-10-01
active learning occurs in an environment that extends beyondchoreographed demonstrations designed to validate pre -determined hypotheses. Finally, when...4 OPNAV N99 should coordinate a broad-based design , development, and experimental effort to bypass traditional limitations for unmanned undersea...approaches that could facilitate rapid experimentation , operational demonstration of capabilities, and deployment of initial capabilities that show
Coordinating Centers in Cancer-Epidemiology Research: The Asia Cohort Consortium Coordinating Center
Rolland, Betsy; Smith, Briana R; Potter, John D
2011-01-01
Although it is tacitly recognized that a good Coordinating Center (CC) is essential to the success of any multi-site collaborative project, very little study has been done on what makes a CC successful, why some CCs fail, or how to build a CC that meets the needs of a given project. Moreover, very little published guidance is available, as few CCs outside the clinical-trial realm write about their work. The Asia Cohort Consortium (ACC) is a collaborative cancer-epidemiology research project that has made strong scientific and organizational progress over the past three years by focusing its CC on the following activities: collaboration development; operations management; statistical and data management; and communications infrastructure and tool development. Our hope is that, by sharing our experience building the ACC CC, we can begin a conversation about what it means to run a coordinating center for multi-institutional collaboration in cancer epidemiology, help other collaborative projects solve some of the issues associated with collaborative research, and learn from others. PMID:21803842
Rembado, Irene; Zanos, Stavros; Fetz, Eberhard E.
2017-01-01
Slow wave sleep (SWS) has been identified as the sleep stage involved in consolidating newly acquired information. A growing body of evidence has shown that delta (1–4 Hz) oscillatory activity, the characteristic electroencephalographic signature of SWS, is involved in coordinating interaction between the hippocampus and the neocortex and is thought to take a role in stabilizing memory traces related to a novel task. This case report describes a new protocol that uses neuroprosthetics training of a non-human primate to evaluate the effects of surface cortical electrical stimulation triggered from SWS cycles. The results suggest that stimulation phase-locked to SWS oscillatory activity promoted learning of the neuroprosthetic task. This protocol could be used to elucidate mechanisms of synaptic plasticity underlying off-line learning during sleep and offers new insights into the role of brain oscillations in information processing and memory consolidation. PMID:28450831
Direct reactivation of a coherent neocortical memory of context
Cowansage, Kiriana Kater; Shuman, Tristan; Dillingham, Blythe Christine; Chang, Allene; Golshani, Peyman; Mayford, Mark
2014-01-01
Summary Declarative memories are thought to be stored within anatomically distributed neuronal networks requiring the hippocampus; however, it is unclear how neocortical areas participate in memory at the time of encoding. Here, we use a c-fos-based genetic tagging system to selectively express the channelrhodopsin variant, ChEF, and optogenetically reactivate a specific neural ensemble in retrosplenial cortex (RSC) engaged by context fear conditioning. Artificial stimulation of RSC was sufficient to produce both context-specific behavior and downstream cellular activity commensurate with natural experience. Moreover, optogenetically, but not contextually-elicited responses were insensitive to hippocampal inactivation, suggesting that although the hippocampus is needed to coordinate activation by sensory cues, a higher-order cortical framework can independently subserve learned behavior, even shortly after learning. PMID:25308330
Gottlieb, Jacqueline
2018-05-01
In natural behavior we actively gather information using attention and active sensing behaviors (such as shifts of gaze) to sample relevant cues. However, while attention and decision making are naturally coordinated, in the laboratory they have been dissociated. Attention is studied independently of the actions it serves. Conversely, decision theories make the simplifying assumption that the relevant information is given, and do not attempt to describe how the decision maker may learn and implement active sampling policies. In this paper I review recent studies that address questions of attentional learning, cue validity and information seeking in humans and non-human primates. These studies suggest that learning a sampling policy involves large scale interactions between networks of attention and valuation, which implement these policies based on reward maximization, uncertainty reduction and the intrinsic utility of cognitive states. I discuss the importance of using such paradigms for formalizing the role of attention, as well as devising more realistic theories of decision making that capture a broader range of empirical observations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schiff, Hillary C; Johansen, Joshua P; Hou, Mian; Bush, David E A; Smith, Emily K; Klein, JoAnna E; LeDoux, Joseph E; Sears, Robert M
2017-01-01
Memory formation requires the temporal coordination of molecular events and cellular processes following a learned event. During Pavlovian threat (fear) conditioning (PTC), sensory and neuromodulatory inputs converge on post-synaptic neurons within the lateral nucleus of the amygdala (LA). By activating an intracellular cascade of signaling molecules, these G-protein-coupled neuromodulatory receptors are capable of recruiting a diverse profile of plasticity-related proteins. Here we report that norepinephrine, through its actions on β-adrenergic receptors (βARs), modulates aversive memory formation following PTC through two molecularly and temporally distinct signaling mechanisms. Specifically, using behavioral pharmacology and biochemistry in adult rats, we determined that βAR activity during, but not after PTC training initiates the activation of two plasticity-related targets: AMPA receptors (AMPARs) for memory acquisition and short-term memory and extracellular regulated kinase (ERK) for consolidating the learned association into a long-term memory. These findings reveal that βAR activity during, but not following PTC sets in motion cascading molecular events for the acquisition (AMPARs) and subsequent consolidation (ERK) of learned associations. PMID:27762270
Schiff, Hillary C; Johansen, Joshua P; Hou, Mian; Bush, David E A; Smith, Emily K; Klein, JoAnna E; LeDoux, Joseph E; Sears, Robert M
2017-03-01
Memory formation requires the temporal coordination of molecular events and cellular processes following a learned event. During Pavlovian threat (fear) conditioning (PTC), sensory and neuromodulatory inputs converge on post-synaptic neurons within the lateral nucleus of the amygdala (LA). By activating an intracellular cascade of signaling molecules, these G-protein-coupled neuromodulatory receptors are capable of recruiting a diverse profile of plasticity-related proteins. Here we report that norepinephrine, through its actions on β-adrenergic receptors (βARs), modulates aversive memory formation following PTC through two molecularly and temporally distinct signaling mechanisms. Specifically, using behavioral pharmacology and biochemistry in adult rats, we determined that βAR activity during, but not after PTC training initiates the activation of two plasticity-related targets: AMPA receptors (AMPARs) for memory acquisition and short-term memory and extracellular regulated kinase (ERK) for consolidating the learned association into a long-term memory. These findings reveal that βAR activity during, but not following PTC sets in motion cascading molecular events for the acquisition (AMPARs) and subsequent consolidation (ERK) of learned associations.
Low fidelity model making activity by students: A novel way of learning concepts of neuroanatomy.
Dixit, Shilpi Gupta; Potaliya, Pushpa; Nayeemudin, S M; Ghatak, Surajit
2018-06-01
Teaching and learning anatomy has always been an integral part of medical education. Teaching neuroanatomy has always faced innate and contextual challenges therefore various innovative teaching-learning methods have been devised on the idea of engaging learners in meaningful learning activities through apt guidance, communication among peers and cluster activities. The present study aims at such an innovative method. The study was conducted in practical sessions of first year MBBS at the Institute during second semester. Neuroanatomy topic selected for present study was 'Neural Pathways/tracts'. Participants were divided into 8 groups and each was allotted a specific activity related to a particular cross-sectional level and allowed to build with the material provided by the department. Student feedback was taken through a structured questionnaire. 81 and 82.4% of students stated that the activity was clearly explained and should be offered more frequently in curriculum. The activity also developed a positive attitude and good coordination amongst peers with increase in communication skills (89.1%, 91.8%, 89% respectively). 87.8% of students agreed that small group learning is better than didactic lectures in neuroanatomy. In current medical scenario with reduced anatomy teaching hours and a continuous pressure on undergraduates, a low-cost learning intervention formulated to deliver a complex 3-D model of tracts passing through various parts of nervous system by simple materials would show better access and understanding of the tracts with improvement of 3D visualization skills. Copyright © 2018 Elsevier Ltd. All rights reserved.
DACUM Research Chart on the Work-Based Learning Teacher Coordinator. Post Research Report
ERIC Educational Resources Information Center
Wichowski, Chester P.
2011-01-01
A research and development effort was undertaken to provide definition and validate the emerging role of the Work-Based Learning Teacher Coordinator through the use of a DACUM process in cooperation with the Pennsylvania Cooperative Education Association with funding support provided by the Pennsylvania Department of Education, Bureau of Career…
Teaching Purposes, Learning Goals, and Multimedia Production in Teacher Education
ERIC Educational Resources Information Center
Baird, John; Love, Kristina
2003-01-01
The authors of this article coordinate and teach different core subjects within a course of preservice teacher education in the Faculty of Education, University of Melbourne, Australia. Both subjects are obligatory, and are taught to the same cohort of students. The first author coordinates the subject Learning and Teaching; the second author…
Lessons Learned from the Whole Child and Coordinated School Health Approaches
ERIC Educational Resources Information Center
Rasberry, Catherine N.; Slade, Sean; Lohrmann, David K.; Valois, Robert F.
2015-01-01
Background: The new Whole School, Whole Community, Whole Child (WSCC) model, designed to depict links between health and learning, is founded on concepts of coordinated school health (CSH) and a whole child approach to education. Methods: The existing literature, including scientific articles and key publications from national agencies and…
Evidence of Early Strategies in Learning to Walk
ERIC Educational Resources Information Center
Snapp-Childs, Winona; Corbetta, Daniela
2009-01-01
Learning to walk is a dynamic process requiring the fine coordination, assembly, and balancing of many body segments at once. For the young walker, coordinating all these behavioral levels may be quite daunting. In this study, we examine the whole-body strategies to which infants resort to produce their first independent steps and progress over…
Leading team learning: what makes interprofessional teams learn to work well?
Chatalalsingh, Carole; Reeves, Scott
2014-11-01
This article describes an ethnographic study focused on exploring leaders of team learning in well-established nephrology teams in an academic healthcare organization in Canada. Employing situational theory of leadership, the article provides details on how well established team members advance as "learning leaders". Data were gathered by ethnographic methods over a 9-month period with the members of two nephrology teams. These learning to care for the sick teams involved over 30 regulated health professionals, such as physicians, nurses, social workers, pharmacists, dietitians and other healthcare practitioners, staff, students and trainees, all of whom were collectively managing obstacles and coordinating efforts. Analysis involved an inductive thematic analysis of observations, reflections, and interview transcripts. The study indicated how well established members progress as team-learning leaders, and how they adapt to an interprofessional culture through the activities they employ to enable day-to-day learning. The article uses situational theory of leadership to generate a detailed illumination of the nature of leaders' interactions within an interprofessional context.
Riklefs, Viktor; Abakassova, Gulmira; Bukeyeva, Aliya; Kaliyeva, Sholpan; Serik, Bakhtiyar; Muratova, Alma; Dosmagambetova, Raushan
2018-03-11
Medical education in Kazakhstan has been literally transformed in the past 10 years. Kazakhstan inherited the Soviet-time discipline-based teacher-centered system of education when no decisions could be made independently. The curriculum was mostly governed in a traditional way, with lectures being the core, little use of e-learning tools, and assessment through oral exams and multiple-choice questions. Most of the universities still preserve the subject-based curriculum with elements of integrated learning. Being the most active member of International Space Education, Karaganda State Medical University (KSMU) took the initiative to adapt the full integrated curriculum mostly based on problem-based, team-based learning, and use of virtual patient cases. The given approach was chosen because of active involvement of our University in nine Tempus and Erasmus+projects including reforming of Public Health and Nursing curriculum, human resources development, active learning, credit mobility, and move towards autonomy of medical schools. KSMU became the coordinator of two of these projects, taking its active position in internationalization of medical education. We actively use technology-based medical education, pro-actively adapting deliberate practice in acquiring essential practical skills, for which KSMU was recognized by an ASPIRE-to-Excellence Award in simulation. Kazakhstan hopes to become the leader in medical education in Central Asia and suggests other Universities in the area to adopt its approach to internationalization of medical education.
Fujii, Shinya; Lulic, Tea; Chen, Joyce L.
2016-01-01
Motor learning is a process whereby the acquisition of new skills occurs with practice, and can be influenced by the provision of feedback. An important question is what frequency of feedback facilitates motor learning. The guidance hypothesis assumes that the provision of less augmented feedback is better than more because a learner can use his/her own inherent feedback. However, it is unclear whether this hypothesis holds true for all types of augmented feedback, including for example sonified information about performance. Thus, we aimed to test what frequency of augmented sonified feedback facilitates the motor learning of a novel joint coordination pattern. Twenty healthy volunteers first reached to a target with their arm (baseline phase). We manipulated this baseline kinematic data for each individual to create a novel target joint coordination pattern. Participants then practiced to learn the novel target joint coordination pattern, receiving either feedback on every trial i.e., 100% feedback (n = 10), or every other trial, i.e., 50% feedback (n = 10; acquisition phase). We created a sonification system to provide the feedback. This feedback was a pure tone that varied in intensity in proportion to the error of the performed joint coordination relative to the target pattern. Thus, the auditory feedback contained information about performance in real-time (i.e., “concurrent, knowledge of performance feedback”). Participants performed the novel joint coordination pattern with no-feedback immediately after the acquisition phase (immediate retention phase), and on the next day (delayed retention phase). The root-mean squared error (RMSE) and variable error (VE) of joint coordination were significantly reduced during the acquisition phase in both 100 and 50% feedback groups. There was no significant difference in VE between the groups at immediate and delayed retention phases. However, at both these retention phases, the 100% feedback group showed significantly smaller RMSE than the 50% group. Thus, contrary to the guidance hypothesis, our findings suggest that the provision of more, concurrent knowledge of performance auditory feedback during the acquisition of a novel joint coordination pattern, may result in better skill retention. PMID:27375414
ERIC Educational Resources Information Center
Woodson, Billy Ray
2016-01-01
Using a quantitative method, this study explored the professional development activities, educational levels of faculty teaching developmental courses, and demographic profiles of faculty and students in developmental courses at a Southwestern community college. This study was framed around Malcom Knowles' Adult Learning Theory. Data were…
Gómez-Giménez, Belén; Llansola, Marta; Cabrera-Pastor, Andrea; Hernández-Rabaza, Vicente; Agustí, Ana; Felipo, Vicente
2018-02-21
Exposure to pesticides has been associated with neurodevelopmental toxicity. Usually people are exposed to mixtures of pesticides. However, most studies analyze the effects of individual pesticides. Developmental exposure to mixtures of pesticides may result in additive effects or in antagonistic or synergistic effects. The aim of this work was to compare the effects of developmental exposure of rats to cypermethrin or endosulfan with the effects of its mixture on cognitive and motor function and on some underlying mechanisms. Exposure to individual pesticides or the mixture was from gestational day 7 to postnatal day 21. We analyzed the effects, in males and females, on spatial learning and memory, associative learning, anxiety, motor coordination, and spontaneous motor activity. We also analyzed neuroinflammation and NMDA receptor subunits in hippocampus and extracellular GABA in cerebellum. Exposure to the mixture, but not to individual pesticides, impaired spatial memory in males, associative learning in females, and increased motor activity in males and females. This indicates a synergistic effect of cypermethrin and endolsufan exposure on these end points. In contrast, motor coordination was impaired by individual exposure to endosulfan or cypermethrin, associated with increased extracellular GABA in cerebellum, but these effects were prevented in rats exposed to the mixture, indicating an antagonistic effect of cypermethrin and endolsufan exposure on these end points. The results show different interaction modes (synergism or antagonism) of the pesticides, depending on the end point analyzed and the sex of the rats.
Special Education Coordinator: Learning Lessons From All Our Students
ERIC Educational Resources Information Center
Satterley, Donna
2015-01-01
As a special education coordinator of students with learning disabilities, I come into contact quite frequently with students who are considered twice exceptional. My role is to provide support to teachers on how to best meet the needs of the students with special needs in my school district. It is imperative that collaboration occurs between…
Intact Procedural Motor Sequence Learning in Developmental Coordination Disorder
ERIC Educational Resources Information Center
Lejeune, Caroline; Catale, Corinne; Willems, Sylvie; Meulemans, Thierry
2013-01-01
The purpose of the present study was to explore the possibility of a procedural learning deficit among children with developmental coordination disorder (DCD). We tested 34 children aged 6-12 years with and without DCD using the serial reaction time task, in which the standard keyboard was replaced by a touch screen in order to minimize the impact…
ERIC Educational Resources Information Center
Pieters, Stefanie; Roeyers, Herbert; Rosseel, Yves; Van Waelvelde, Hilde; Desoete, Annemie
2015-01-01
A relationship between motor and mathematical skills has been shown by previous research. However, the question of whether subtypes can be differentiated within developmental coordination disorder (DCD) and/or mathematical learning disability (MLD) remains unresolved. In a sample of children with and without DCD and/or MLD, a data-driven…
ERIC Educational Resources Information Center
Alloway, Tracy Packiam; Archibald, Lisa
2008-01-01
The authors compared 6- to 11-year-olds with developmental coordination disorder (DCD) and those with specific language impairment (SLI) on measures of memory (verbal and visuospatial short-term and working memory) and learning (reading and mathematics). Children with DCD with typical language skills were impaired in all four areas of memory…
Effects of adolescent treatment with nicotine, harmane, or norharmane in male Sprague-Dawley rats.
Goodwin, Amy K; Lantz-McPeak, Susan M; Robinson, Bonnie L; Law, C Delbert; Ali, Syed F; Ferguson, Sherry A
2015-01-01
The initiation of tobacco use occurs most often in adolescence and may be especially detrimental as the adolescent brain is undergoing substantial development. In addition to nicotine, there are over 9000 other compounds present in tobacco products, including the β-carbolines harmane and norharmane. The present study aimed to determine the long-term effects of adolescent exposure to nicotine (NIC), harmane (HAR), or norharmane (NOR) on locomotor activity, learning and memory, anxiety-like behavior, motor coordination, and monoamine/metabolite concentrations in the striatum and nucleus accumbens of male Sprague-Dawley rats. Beginning on postnatal day (PND) 27 and continuing through PND 55, subjects received twice daily intraperitoneal injections of 1ml/kg saline (CON), 0.5mg NIC/kg, 0.5mg HAR/kg, or 0.5mg NOR/kg. Body weight, food, and water intake were measured daily (PNDs 27-96). Locomotor activity was assessed on PND 40 or 41, PND 55, and PNDs 81 and 82. Other behaviors (anxiety-like behavior, motor coordination, and spatial learning and memory) were assessed at least 25 days after drug exposure ended (PNDs 80-91). On PND 97, subjects were decapitated and the striatum and nucleus accumbens were dissected and frozen for analysis. NIC treatment significantly decreased food intake, but did not alter locomotor activity during or after treatment. HAR and NOR treatment, however, caused significant open field hypoactivity. Motor coordination, water maze performance, and concentrations of monoamines and metabolites in the striatum and nucleus accumbens were unaltered by any drug treatment. These results indicate a long-lasting effect on activity levels from adolescent HAR or NOR treatment; however, there were few long-lasting NIC effects. Given the paucity of data describing effects of HAR or NOR exposure, these data should encourage additional studies of these tobacco constituents as well as constituent combination studies. Published by Elsevier Inc.
Neural correlates of learning and trajectory planning in the posterior parietal cortex
Torres, Elizabeth B.; Quian Quiroga, Rodrigo; Cui, He; Buneo, Christopher A.
2013-01-01
The posterior parietal cortex (PPC) is thought to play an important role in the planning of visually-guided reaching movements. However, the relative roles of the various subdivisions of the PPC in this function are still poorly understood. For example, studies of dorsal area 5 point to a representation of reaches in both extrinsic (endpoint) and intrinsic (joint or muscle) coordinates, as evidenced by partial changes in preferred directions and positional discharge with changes in arm posture. In contrast, recent findings suggest that the adjacent medial intraparietal area (MIP) is involved in more abstract representations, e.g., encoding reach target in visual coordinates. Such a representation is suitable for planning reach trajectories involving shortest distance paths to targets straight ahead. However, it is currently unclear how MIP contributes to the planning of other types of trajectories, including those with various degrees of curvature. Such curved trajectories recruit different joint excursions and might help us address whether their representation in the PPC is purely in extrinsic coordinates or in intrinsic ones as well. Here we investigated the role of the PPC in these processes during an obstacle avoidance task for which the animals had not been explicitly trained. We found that PPC planning activity was predictive of both the spatial and temporal aspects of upcoming trajectories. The same PPC neurons predicted the upcoming trajectory in both endpoint and joint coordinates. The predictive power of these neurons remained stable and accurate despite concomitant motor learning across task conditions. These findings suggest the role of the PPC can be extended from specifying abstract movement goals to expressing these plans as corresponding trajectories in both endpoint and joint coordinates. Thus, the PPC appears to contribute to reach planning and approach-avoidance arm motions at multiple levels of representation. PMID:23730275
Smits-Engelsman, Bouwien C. M.; Jelsma, Lemke Dorothee; Ferguson, Gillian D.; Geuze, Reint H.
2015-01-01
Objective Although Developmental Coordination Disorder (DCD) is often characterized as a skill acquisition deficit disorder, few studies have addressed the process of motor learning. This study examined learning of a novel motor task; the Wii Fit ski slalom game. The main objectives were to determine: 1) whether learning occurs over 100 trial runs of the game, 2) if the learning curve is different between children with and without DCD, 3) if learning is different in an easier or harder version of the task, 4) if learning transfers to other balance tasks. Method 17 children with DCD (6–10 years) and a matched control group of 17 typically developing (TD) children engaged in 20 minutes of gaming, twice a week for five weeks. Each training session comprised of alternating trial runs, with five runs at an easy level and five runs at a difficult level. Wii scores, which combine speed and accuracy per run, were recorded. Standardized balance tasks were used to measure transfer. Results Significant differences in initial performance were found between groups on the Wii score and balance tasks. Both groups improved their Wii score over the five weeks. Improvement in the easy and in the hard task did not differ between groups. Retention in the time between training sessions was not different between TD and DCD groups either. The DCD group improved significantly on all balance tasks. Conclusions The findings in this study give a fairly coherent picture of the learning process over a medium time scale (5 weeks) in children novice to active computer games; they learn, retain and there is evidence of transfer to other balance tasks. The rate of motor learning is similar for those with and without DCD. Our results raise a number of questions about motor learning that need to be addressed in future research. PMID:26466324
Neural networks supporting switching, hypothesis testing, and rule application
Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S.; Seger, Carol A.
2015-01-01
We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example “choose the blue letter.” Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. PMID:26197092
Neural networks supporting switching, hypothesis testing, and rule application.
Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S; Seger, Carol A
2015-10-01
We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example "choose the blue letter". Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Oklahoma bombing. Lessons learned.
Anteau, C M; Williams, L A
1997-06-01
The Oklahoma City bombing experience in April of 1995 provided a unique opportunity to test the effectiveness of an existing disaster plan. The critical care nurses at Columbia Presbyterian Hospital learned valuable lessons about managing intense activity, equipment and supplies, staffing resources, and visitor issues. The degree to which the bombing affected the emotional state of personnel was unanticipated, and leaders learned that critical stress management interventions should be included in every emergency preparedness plan. Additionally, recommendations include using runners for communication; assigning specific roles (supplies, staffing, triage); keeping additional staff in reserve for shift relief; ensuring ample hospital staff members are available to coordinate visitors and media; and setting up record systems to preserve continuity. The unique lessons learned as a result of this terrorist attack can be used by other critical care nurses to understand and refine disaster plans.
Clumsiness in Children: Developmental Coordination Disorder.
ERIC Educational Resources Information Center
Fox, Mervyn A.
1998-01-01
Explores the diagnostic criteria of developmental coordination disorder, a condition that is characterized by motor awkwardness and has a strong association with psychiatric disorders and learning disabilities. Delineates the nature of developmental coordination disorder and discusses its treatment through occupational therapy and cognitive…
Garrison, Gina Daubney; Baia, Patricia; Canning, Jacquelyn E; Strang, Aimee F
2015-03-25
To describe the shift to an asynchronous online approach for pedagogy instruction within a pharmacy resident teaching program offered by a dual-campus college. The pedagogy instruction component of the teaching program (Part I) was redesigned with a focus on the content, delivery, and coordination of the learning environment. Asynchronous online learning replaced distance technology or lecture capture. Using a pedagogical content knowledge framework, residents participated in self-paced online learning using faculty recordings, readings, and discussion board activities. A learning management system was used to assess achievement of learning objectives and participation prior to progressing to the teaching experiences component of the teaching program (Part II). Evaluation of resident pedagogical knowledge development and participation in Part I of the teaching program was achieved through the learning management system. Participant surveys and written reflections showed general satisfaction with the online learning environment. Future considerations include addition of a live orientation session and increased faculty presence in the online learning environment. An online approach framed by educational theory can be an effective way to provide pedagogy instruction within a teaching program.
Wang, Chuangqi; Choi, Hee June; Kim, Sung-Jin; Desai, Aesha; Lee, Namgyu; Kim, Dohoon; Bae, Yongho; Lee, Kwonmoo
2018-04-27
Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the mechanism of cell protrusion has been understood based on the ensemble average of actin regulator dynamics. Here, we establish a computational framework called HACKS (deconvolution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging. HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using our method, we discover "accelerating protrusion", which is driven by the temporally ordered coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment associated with accelerating protrusion. Our study suggests HACKS can identify specific subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal how actin regulator dynamics are changed by the perturbation.
Actively Learning about the Active Sun: Using JHelioviewer in Undergraduate Astronomy
NASA Astrophysics Data System (ADS)
Stage, Michael D.
2018-06-01
Solar phenomena of the chromosphere, corona and photosphere are only truly revealed through multi-wavelength and time-dependent study. While one can show slides of models of the solar convection zone, videos of granulation, and magnetogram and UV images, it is now possible to engage students much more fully in learning about dynamic solar phenomena such as the evolution of sunspots and the magentic field. JHelioviewer is professional solar visualization tool developed by an international team as part of the ESA/NASA Helioviewer project (Muller et al., 2017, A&A 606, A10), which allows users to select and overlay movies of solar data from multiple instruments of multiple satellite and ground-based observatories, with complete control over time-sequencing, image overlays, solar coordinate grids, rotational tracking, and export functions. I developed materials using the viewer for my sophomore-level undergraduate solar astronomy course to introduce students to the dynamics of the solar surface and atmosphere. The lab-like projects, suitable for in-class, labs, or home-work assignments, allow students to watch the formation, strengthening, movement, and dissipation of sunspots; to classify spots; to study the magnetic flux tubes connecting spots; to see reconnection; to learn about the solar coordinate systems (Stonyhurst, Carrington, etc.); to see how line emission (H-alpha, C, Fe and He UV lines from SDO, etc.) traces the structure of the atmosphere at different heights and temperatures; to observe the Wilson effect; and to measure motions such as moat flow and photospheric flow by tracking individual elements in magnetograms. In this presentation I share my activities and approach, which can be tailored to suit gen-ed, intermediate, or advanced astrophysics majors. (The author has no connection with the JHelioviewer project or team.)
Laks, Jordana; Wilson, Lindsay A; Khandelwal, Christine; Footman, Eleni; Jamison, Margaret; Roberts, Ellen
2016-01-01
Medical students have limited exposure to Geriatrics in their traditional training. Service-learning offers students the opportunity to engage with older adult communities and become more comfortable interacting with this population. A preclinical elective course was developed to expand medical students' experiences in Geriatrics through service-learning. In this course, students conducted needs assessments in diverse older adult communities, created health education projects to address community-identified needs, and reflected on their experiences through written assignments and presentations. The course instructor presented lectures on special topics in Geriatrics, including ageism and health literacy. The curriculum aimed to familiarize students with older adults' needs in a variety of settings. Over 3 years, 74 students participated in the service-learning course. Students were assigned to older adult community sites, where they conducted needs assessments and designed and implemented original educational projects targeting community concerns. Program evaluation methods included a validated survey assessing students' attitudes toward older adults, course evaluations, review of student assignments and projects, and feedback from older adult participants and site coordinators. Students gained hands-on experience working with older adults and designing appropriate health education projects. Analysis of attitude surveys demonstrated students' increased interest in Geriatrics as a career. Both students and older adult participants described enjoyable, valuable experiences gained from service-learning activities. Students appreciated the combination of community and classroom learning about Geriatrics. Service-learning was most constructive at sites with responsive coordinators, engaged older adults, and a need for health education resources. The course challenged students to assess health needs in communities that included cognitively impaired elders and to design educational projects tailored to older adults.
Neural reactivations during sleep determine network credit assignment
Gulati, Tanuj; Guo, Ling; Ramanathan, Dhakshin S.; Bodepudi, Anitha; Ganguly, Karunesh
2018-01-01
A fundamental goal of motor learning is to establish neural patterns that produce a desired behavioral outcome. It remains unclear how and when the nervous system solves this “credit–assignment” problem. Using neuroprosthetic learning where we could control the causal relationship between neurons and behavior, here we show that sleep–dependent processing is required for credit-assignment and the establishment of task-related functional connectivity reflecting the casual neuron-behavior relationship. Importantly, we found a strong link between the microstructure of sleep reactivations and credit assignment, with downscaling of non–causal activity. Strikingly, decoupling of spiking to slow–oscillations using optogenetic methods eliminated rescaling. Thus, our results suggest that coordinated firing during sleep plays an essential role in establishing sparse activation patterns that reflect the causal neuron–behavior relationship. PMID:28692062
Experimental climate information services in support of risk management
NASA Astrophysics Data System (ADS)
Webb, R. S.; Pulwarty, R. S.; Davidson, M. A.; Shea, E. E.; Nierenberg, C.; Dole, R. M.
2009-12-01
Climate variability and change impact national and local economies and environments. Developing and communicating climate and climate impacts information to inform decision making requires an understanding of context, societal objectives, and identification of factors important to the management of risk. Information sensitive to changing baselines or extremes is a critical emergent need. Meeting this need requires timely production and delivery of useful climate data, information and knowledge within familiar pathways. We identify key attributes for a climate service , and the network and infrastructure to develop and coordinate the resulting services based on lessons learned in experimental implementations of climate services. "Service-type" activities already exist in many settings within federal, state, academic, and private sectors. The challenge for a climate service is to find effective implementation strategies for improving decision quality (not just meeting user needs). These strategies include upfront infrastructure investments, learning from event to event, coordinated innovation and diffusion, and highlighting common adaptation interests. Common to these strategies is the production of reliable and accessible data, analyses of emergent conditions and needs, and deliberative processes to identify appropriate entry points and uses for improved knowledge. Experimental climate services show that the development of well-structured paths among observations, projections, risk assessments and usable information requires sustained participation in “knowledge management systems” for early warning across temporal and spatial scales. Central to these systems is a collaborative framework between research and management to ensure anticipatory coordination between decision makers and information providers, allowing for emerging research findings and their attendant uncertainties to be considered. Early warnings in this context are not simply forecasts or predictions but information on potential “futures” derived from past records, expert judgments, scenarios, and availability of mechanisms and capacity to use such information. Effective experimental climate services facilitate ongoing appraisals of knowledge needs for informing adaptation and mitigation options across sectors and across scenarios of near and longer-term future climates. Analyses show that climate service experiments drawing on data, applied research and prototyping functions of activities such as RISAs and RCCs are critical to developing the learning needed to inform and structure the flow of knowledge and understanding from problem definition and applications research to information delivery, use and evaluation. These activities effectively serve to inform services implementation when overarching cross-agency coordination, knowledge management, and innovation diffusion mechanisms such as afforded by NIDIS and the Coastal Services Center are engaged. We also demonstrate the importance of positioning climate research to engage and inform the decision-making process as society anticipates and responds to climate and its impacts.
Hippocampal brain-network coordination during volitional exploratory behavior enhances learning
Voss, Joel L.; Gonsalves, Brian D.; Federmeier, Kara D.; Tranel, Daniel; Cohen, Neal J.
2010-01-01
Exploratory behaviors during learning determine what is studied and when, helping to optimize subsequent memory performance. We manipulated how much control subjects had over the position of a moving window through which they studied objects and their locations, in order to elucidate the cognitive and neural determinants of exploratory behaviors. Our behavioral, neuropsychological, and neuroimaging data indicate volitional control benefits memory performance, and is linked to a brain network centered on the hippocampus. Increases in correlated activity between the hippocampus and other areas were associated with specific aspects of memory, suggesting that volitional control optimizes interactions among specialized neural systems via the hippocampus. Memory is therefore an active process intrinsically linked to behavior. Furthermore, brain structures typically seen as passive participants in memory encoding (e.g., the hippocampus) are actually part of an active network that controls behavior dynamically as it unfolds. PMID:21102449
Hippocampal brain-network coordination during volitional exploratory behavior enhances learning.
Voss, Joel L; Gonsalves, Brian D; Federmeier, Kara D; Tranel, Daniel; Cohen, Neal J
2011-01-01
Exploratory behaviors during learning determine what is studied and when, helping to optimize subsequent memory performance. To elucidate the cognitive and neural determinants of exploratory behaviors, we manipulated the control that human subjects had over the position of a moving window through which they studied objects and their locations. Our behavioral, neuropsychological and neuroimaging data indicate that volitional control benefits memory performance and is linked to a brain network that is centered on the hippocampus. Increases in correlated activity between the hippocampus and other areas were associated with specific aspects of memory, which suggests that volitional control optimizes interactions among specialized neural systems through the hippocampus. Memory is therefore an active process that is intrinsically linked to behavior. Furthermore, brain structures that are typically seen as passive participants in memory encoding (for example, the hippocampus) are actually part of an active network that controls behavior dynamically as it unfolds.
NASA Astrophysics Data System (ADS)
Mendez, B. J.; Smith, D.; Shipp, S. S.; Schwerin, T. G.; Stockman, S. A.; Cooper, L. P.; Peticolas, L. M.
2009-12-01
NASA is working with four newly-formed Science Education and Public Outreach Forums (SEPOFs) to increase the overall coherence of the Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program. SEPOFs support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: * E/PO Community Engagement and Development * E/PO Product and Project Activity Analysis * Science Education and Public Outreach Forum Coordination Committee Service. SEPOFs are collaborating with NASA and external science and education and outreach communities in E/PO on multiple levels ranging from the mission and non-mission E/PO project activity managers, project activity partners, and scientists and researchers, to front line agents such as naturalists/interpreters, teachers, and higher education faculty, to high level agents such as leadership at state education offices, local schools, higher education institutions, and professional societies. The overall goal for the SEPOFs is increased awareness, knowledge, and understanding of scientists, researchers, engineers, technologists, educators, product developers, and dissemination agents of best practices, existing NASA resources, and community expertise applicable to E/PO. By coordinating and supporting the NASA E/PO Community, the NASA/SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.
Local Area Co-Ordination: Strengthening Support for People with Learning Disabilities in Scotland
ERIC Educational Resources Information Center
Stalker, Kirsten Ogilvie; Malloch, Margaret; Barry, Monica Anne; Watson, June Ann
2008-01-01
This paper reports the findings of a study commissioned by the Scottish Executive which examined the introduction and implementation of local area co-ordination (LAC) in Scotland. A questionnaire about their posts was completed by 44 local area co-ordinators, interviews were conducted with 35 local area co-ordinators and 14 managers and case…
The Effects of the Coordination Support on Shared Mental Models and Coordinated Action
ERIC Educational Resources Information Center
Kim, Hyunsong; Kim, Dongsik
2008-01-01
The purpose of this study was to examine the effects of coordination support (tool support and tutor support) on the development of shared mental models (SMMs) and coordinated action in a computer-supported collaborative learning environment. Eighteen students were randomly assigned to one of three conditions, including the tool condition, the…
Develop a Professional Learning Plan
ERIC Educational Resources Information Center
Journal of Staff Development, 2013
2013-01-01
A professional learning plan establishes short-and long-term plans for professional learning and implementation of the learning. Such plans guide individuals, schools, districts, and states in coordinating learning experiences designed to achieve outcomes for educators and students. Professional learning plans focus on the program of educator…
Coordinated Implicitly? An Empirical Study on the Role of Social Media in Collaborative Learning
ERIC Educational Resources Information Center
Zhang, Xi; Chen, Hui; Ordóñez de Pablos, Patricia; Lytras, Miltiadis D.; Sun, Yongqiang
2016-01-01
As social media is widely adopted in collaborative learning, which places teams in a virtual environment, it is critical for teams to identify and leverage the knowledge of their members. Yet little is known about how social media influences teams to coordinate their knowledge and collaborate effectively. In this research, we explore the roles of…
ERIC Educational Resources Information Center
Schumacher, Rachel; Greenberg, Mark; Lombardi, Joan
While current early education and care funding still reaches only a fraction of preschool children, some states now have considerable experience in coordinating subsidized child care, Head Start, and state prekindergarten initiatives to enhance early education and learning opportunities for young children. Drawing on the experiences of Georgia,…
Bimanual Coordination Learning with Different Augmented Feedback Modalities and Information Types
Chiou, Shiau-Chuen; Chang, Erik Chihhung
2016-01-01
Previous studies have shown that bimanual coordination learning is more resistant to the removal of augmented feedback when acquired with auditory than with visual channel. However, it is unclear whether this differential “guidance effect” between feedback modalities is due to enhanced sensorimotor integration via the non-dominant auditory channel or strengthened linkage to kinesthetic information under rhythmic input. The current study aimed to examine how modalities (visual vs. auditory) and information types (continuous visuospatial vs. discrete rhythmic) of concurrent augmented feedback influence bimanual coordination learning. Participants either learned a 90°-out-of-phase pattern for three consecutive days with Lissajous feedback indicating the integrated position of both arms, or with visual or auditory rhythmic feedback reflecting the relative timing of the movement. The results showed diverse performance change after practice when the feedback was removed between Lissajous and the other two rhythmic groups, indicating that the guidance effect may be modulated by the type of information provided during practice. Moreover, significant performance improvement in the dual-task condition where the irregular rhythm counting task was applied as a secondary task also suggested that lower involvement of conscious control may result in better performance in bimanual coordination. PMID:26895286
Bimanual Coordination Learning with Different Augmented Feedback Modalities and Information Types.
Chiou, Shiau-Chuen; Chang, Erik Chihhung
2016-01-01
Previous studies have shown that bimanual coordination learning is more resistant to the removal of augmented feedback when acquired with auditory than with visual channel. However, it is unclear whether this differential "guidance effect" between feedback modalities is due to enhanced sensorimotor integration via the non-dominant auditory channel or strengthened linkage to kinesthetic information under rhythmic input. The current study aimed to examine how modalities (visual vs. auditory) and information types (continuous visuospatial vs. discrete rhythmic) of concurrent augmented feedback influence bimanual coordination learning. Participants either learned a 90°-out-of-phase pattern for three consecutive days with Lissajous feedback indicating the integrated position of both arms, or with visual or auditory rhythmic feedback reflecting the relative timing of the movement. The results showed diverse performance change after practice when the feedback was removed between Lissajous and the other two rhythmic groups, indicating that the guidance effect may be modulated by the type of information provided during practice. Moreover, significant performance improvement in the dual-task condition where the irregular rhythm counting task was applied as a secondary task also suggested that lower involvement of conscious control may result in better performance in bimanual coordination.
Miconi, Thomas
2017-01-01
Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior. DOI: http://dx.doi.org/10.7554/eLife.20899.001 PMID:28230528
Miconi, Thomas
2017-02-23
Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.
Learning comunication strategies for distributed artificial intelligence
NASA Astrophysics Data System (ADS)
Kinney, Michael; Tsatsoulis, Costas
1992-08-01
We present a methodology that allows collections of intelligent system to automatically learn communication strategies, so that they can exchange information and coordinate their problem solving activity. In our methodology communication between agents is determined by the agents themselves, which consider the progress of their individual problem solving activities compared to the communication needs of their surrounding agents. Through learning, communication lines between agents might be established or disconnected, communication frequencies modified, and the system can also react to dynamic changes in the environment that might force agents to cease to exist or to be added. We have established dynamic, quantitative measures of the usefulness of a fact, the cost of a fact, the work load of an agent, and the selfishness of an agent (a measure indicating an agent's preference between transmitting information versus performing individual problem solving), and use these values to adapt the communication between intelligent agents. In this paper we present the theoretical foundations of our work together with experimental results and performance statistics of networks of agents involved in cooperative problem solving activities.
Shi, Leiyu; Chowdhury, Joya; Sripipatana, Alek; Zhu, Jinsheng; Sharma, Ravi; Hayashi, A. Seiji; Daly, Charles A.; Tomoyasu, Naomi; Nair, Suma; Ngo-Metzger, Quyen
2012-01-01
Objectives. We examined primary care and public health activities among federally funded health centers, to better understand their successes, the barriers encountered, and the lessons learned. Methods. We used qualitative and quantitative methods to collect data from 9 health centers, stratified by administrative division, urban–rural location, and race/ethnicity of patients served. Descriptive data on patient and institutional characteristics came from the Uniform Data System, which collects data from all health centers annually. We administered questionnaires and conducted phone interviews with key informants. Results. Health centers performed well on primary care coordination and community orientation scales and reported conducting many essential public health activities. We identified specific needs for integrating primary care and public health: (1) more funding for collaborations and for addressing the social determinants of health, (2) strong leadership to champion collaborations, (3) trust building among partners, with shared missions and clear expectations of responsibilities, and (4) alignment and standardization of data collection, analysis, and exchange. Conclusions. Lessons learned from health centers should inform strategies to better integrate public health with primary care. PMID:22690975
Hilar GABAergic Interneuron Activity Controls Spatial Learning and Memory Retrieval
Andrews-Zwilling, Yaisa; Gillespie, Anna K.; Kravitz, Alexxai V.; Nelson, Alexandra B.; Devidze, Nino; Lo, Iris; Yoon, Seo Yeon; Bien-Ly, Nga; Ring, Karen; Zwilling, Daniel; Potter, Gregory B.; Rubenstein, John L. R.; Kreitzer, Anatol C.; Huang, Yadong
2012-01-01
Background Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear. Methodology and Principal Findings We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)—a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity. Conclusions and Significance Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD. PMID:22792368
Different propagation speeds of recalled sequences in plastic spiking neural networks
NASA Astrophysics Data System (ADS)
Huang, Xuhui; Zheng, Zhigang; Hu, Gang; Wu, Si; Rasch, Malte J.
2015-03-01
Neural networks can generate spatiotemporal patterns of spike activity. Sequential activity learning and retrieval have been observed in many brain areas, and e.g. is crucial for coding of episodic memory in the hippocampus or generating temporal patterns during song production in birds. In a recent study, a sequential activity pattern was directly entrained onto the neural activity of the primary visual cortex (V1) of rats and subsequently successfully recalled by a local and transient trigger. It was observed that the speed of activity propagation in coordinates of the retinotopically organized neural tissue was constant during retrieval regardless how the speed of light stimulation sweeping across the visual field during training was varied. It is well known that spike-timing dependent plasticity (STDP) is a potential mechanism for embedding temporal sequences into neural network activity. How training and retrieval speeds relate to each other and how network and learning parameters influence retrieval speeds, however, is not well described. We here theoretically analyze sequential activity learning and retrieval in a recurrent neural network with realistic synaptic short-term dynamics and STDP. Testing multiple STDP rules, we confirm that sequence learning can be achieved by STDP. However, we found that a multiplicative nearest-neighbor (NN) weight update rule generated weight distributions and recall activities that best matched the experiments in V1. Using network simulations and mean-field analysis, we further investigated the learning mechanisms and the influence of network parameters on recall speeds. Our analysis suggests that a multiplicative STDP rule with dominant NN spike interaction might be implemented in V1 since recall speed was almost constant in an NMDA-dominant regime. Interestingly, in an AMPA-dominant regime, neural circuits might exhibit recall speeds that instead follow the change in stimulus speeds. This prediction could be tested in experiments.
Haley, David W; Grunau, Ruth E; Weinberg, Joanne; Keidar, Adi; Oberlander, Tim F
2010-04-01
We examined the role of physiological regulation (heart rate, vagal tone, and salivary cortisol) in short-term memory in preterm and full-term 6-month-old infants. Using a deferred imitation task to evaluate social learning and memory recall, an experimenter modeled three novel behaviors (removing, shaking, and replacing a glove) on a puppet. Infants were tested immediately after being shown the behaviors as well as following a 10-min delay. We found that greater suppression of vagal tone was related to better memory recall in full-term infants tested immediately after the demonstration as well as in preterm infants tested later after a 10-min delay. We also found that preterm infants showed greater coordination of physiology (i.e., tighter coupling of vagal tone, heart rate, and cortisol) at rest and during retrieval than full-term infants. These findings provide new evidence of the important links between changes in autonomic activity and memory recall in infancy. They also raise the intriguing possibility that social learning, imitation behavior, and the formation of new memories are modulated by autonomic activity that is coordinated differently in preterm and full-term infants. Copyright 2009 Elsevier Inc. All rights reserved.
Schema-based learning of adaptable and flexible prey-catching in anurans I. The basic architecture.
Corbacho, Fernando; Nishikawa, Kiisa C; Weerasuriya, Ananda; Liaw, Jim-Shih; Arbib, Michael A
2005-12-01
A motor action often involves the coordination of several motor synergies and requires flexible adjustment of the ongoing execution based on feedback signals. To elucidate the neural mechanisms underlying the construction and selection of motor synergies, we study prey-capture in anurans. Experimental data demonstrate the intricate interaction between different motor synergies, including the interplay of their afferent feedback signals (Weerasuriya 1991; Anderson and Nishikawa 1996). Such data provide insights for the general issues concerning two-way information flow between sensory centers, motor circuits and periphery in motor coordination. We show how different afferent feedback signals about the status of the different components of the motor apparatus play a critical role in motor control as well as in learning. This paper, along with its companion paper, extend the model by Liaw et al. (1994) by integrating a number of different motor pattern generators, different types of afferent feedback, as well as the corresponding control structure within an adaptive framework we call Schema-Based Learning. We develop a model of the different MPGs involved in prey-catching as a vehicle to investigate the following questions: What are the characteristic features of the activity of a single muscle? How can these features be controlled by the premotor circuit? What are the strategies employed to generate and synchronize motor synergies? What is the role of afferent feedback in shaping the activity of a MPG? How can several MPGs share the same underlying circuitry and yet give rise to different motor patterns under different input conditions? In the companion paper we also extend the model by incorporating learning components that give rise to more flexible, adaptable and robust behaviors. To show these aspects we incorporate studies on experiments on lesions and the learning processes that allow the animal to recover its proper functioning.
Fay, Nicolas; Walker, Bradley; Swoboda, Nik; Garrod, Simon
2018-05-01
Human cognition and behavior are dominated by symbol use. This paper examines the social learning strategies that give rise to symbolic communication. Experiment 1 contrasts an individual-level account, based on observational learning and cognitive bias, with an inter-individual account, based on social coordinative learning. Participants played a referential communication game in which they tried to communicate a range of recurring meanings to a partner by drawing, but without using their conventional language. Individual-level learning, via observation and cognitive bias, was sufficient to produce signs that became increasingly effective, efficient, and shared over games. However, breaking a referential precedent eliminated these benefits. The most effective, most efficient, and most shared signs arose when participants could directly interact with their partner, indicating that social coordinative learning is important to the creation of shared symbols. Experiment 2 investigated the contribution of two distinct aspects of social interaction: behavior alignment and concurrent partner feedback. Each played a complementary role in the creation of shared symbols: Behavior alignment primarily drove communication effectiveness, and partner feedback primarily drove the efficiency of the evolved signs. In conclusion, inter-individual social coordinative learning is important to the evolution of effective, efficient, and shared symbols. Copyright © 2018 Cognitive Science Society, Inc.
A self-learning algorithm for biased molecular dynamics
Tribello, Gareth A.; Ceriotti, Michele; Parrinello, Michele
2010-01-01
A new self-learning algorithm for accelerated dynamics, reconnaissance metadynamics, is proposed that is able to work with a very large number of collective coordinates. Acceleration of the dynamics is achieved by constructing a bias potential in terms of a patchwork of one-dimensional, locally valid collective coordinates. These collective coordinates are obtained from trajectory analyses so that they adapt to any new features encountered during the simulation. We show how this methodology can be used to enhance sampling in real chemical systems citing examples both from the physics of clusters and from the biological sciences. PMID:20876135
ERIC Educational Resources Information Center
Pavón Vázquez, Víctor; Ávila López, Javier; Gallego Segador, Arturo; Espejo Mohedano, Roberto
2015-01-01
Content and language integrated learning (CLIL) is generally recognised as a fruitful example of bilingual education. However, success in CLIL may not be straightforward and may require the establishment of coordination between content and language teachers. The aim of this study is to investigate if content and language teachers are able to plan…
2012-11-01
Urban Area Recovery Planning with CBR Hazards: Lessons Learned from Seattle and Denver 16 THE PUGET SOUND CATASTROPHIC DISASTER COORDINATION...PLAN – TRANSPORTATION RECOVERY ANNEX The Puget Sound Transportation Recovery Annex supplements the Puget Sound Regional Catastrophic Coordination... Puget Sound Region after a catastrophic incident. This Annex addresses transportation issues in Island, King, Kitsap, Mason, Pierce, Skagit, Snohomish
Acquisition of joint attention by olive baboons gesturing toward humans.
Lamaury, Augustine; Cochet, Hélène; Bourjade, Marie
2017-07-10
Joint attention is a core ability of human social cognition which broadly refers to the coordination of attention with both the presence and activity of social partners. In both human and non-human primates, joint attention can be assessed from behaviour; gestures and gaze alternation between the partner and a distal object are standard behavioural manifestations of joint attention. Here we examined the acquisition of joint attention in olive baboons as a function of their individual experience of a human partner's attentional states during training regimes. Eleven olive baboons (Papio anubis) were observed during their training to perform food-requesting gestures, which occurred either by (1) a human facing them (face condition), or (2) by a human positioned in profile who never turned to them (profile condition). We found neither gestures nor gaze alternation were present at the start of the training but rather developed over the training period. Only baboons in the face condition showed an increase in the number of gaze alternations, and their gaze pattern progressively shifted to a coordinated sequence in which gazes and gestures were coordinated in time. In contrast, baboons trained by a human in profile showed significantly less coordination of gazes with gestures but still learned to request food with their gestures. These results suggest that the partner's social attention plays an important role in the acquisition of visual joint attention and, to a lesser extent, in gesture learning in baboons. Interspecific interactions appear to offer rich opportunities to manipulate and thus identify the social contexts in which socio-communicative skills develop.
MODIS Science Algorithms and Data Systems Lessons Learned
NASA Technical Reports Server (NTRS)
Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.
2009-01-01
For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.
Frankel, Richard M; Saleem, Jason J
2013-12-01
Technical and interpersonal challenges of using electronic health records (EHRs) in ambulatory care persist. We use cockpit communication as an example of highly coordinated complex activity during flight and compare it with providers' communication when computers are used in the exam room. Maximum variation sampling was used to identify two videotapes from a parent study of primary care physicians' exam room computer demonstrating the greatest variation. We then produced and analyzed visualizations of the time providers spent looking at the computer and looking at the patient. Unlike the cockpit which is engineered to optimize joint attention on complex coordinated activities, we found polar extremes in the use of joint focus of attention to manage the medical encounter. We conclude that there is a great deal of room for improving the balance of interpersonal and technical attention that occurs in routine ambulatory visits in which computers are present in the exam room. Using well-known aviation practices can help primary care providers become more aware of the opportunities and challenges for enhancing the physician patient relationship in an era of exam room computing. Published by Elsevier Ireland Ltd.
Ecological strategies to promote healthy body image among children.
Evans, Retta R; Roy, Jane; Geiger, Brian F; Werner, Karen A; Burnett, Donna
2008-07-01
Personal habits of children and adolescents related to healthy body image (BI) are influenced by various determinants in the micro- and macroenvironment. These include attitudes and behaviors about eating; exercise and physical appearance modeled by parents, teachers, and peers; as well as opportunities to learn new habits and social praise for healthy choices. The coordinated school health program (CSHP) is compatible with the 5 levels of an ecological approach to developing new health behaviors. Authors systematically applied the ecological model to all 8 components of coordinated school health. Next, strategies for each of the components were developed using the professional literature as well as author expertise in the areas of health education, exercise science, and dietetics. For each strategy, applicable health and physical education standards, as well as goals for each strategy and additional Web resources, were provided to assist educators and administrators in supporting healthy BI among students. Educators may effectively use a coordinated approach to guide multiple intervention activities aimed at increasing healthy habits among adolescents and their families. The strength of the CSHP is its collaborative nature with active participation by students, faculty members, family caregivers, agency professionals, community residents, and health care providers.
Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo
2015-01-01
Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the interlimb coordination appeared in a manner that was similar to the late-type adaptations and after-effects observed in humans. The adaptation results of the robot were then evaluated in comparison with human split-belt treadmill walking, and the adaptation mechanism was clarified from a dynamic viewpoint. PMID:26289658
Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo
2015-09-06
Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the interlimb coordination appeared in a manner that was similar to the late-type adaptations and after-effects observed in humans. The adaptation results of the robot were then evaluated in comparison with human split-belt treadmill walking, and the adaptation mechanism was clarified from a dynamic viewpoint. © 2015 The Authors.
Coordinating Units at the Candy Depot
ERIC Educational Resources Information Center
Norton, Anderson; Boyce, Steven; Hatch, Jennifer
2015-01-01
In general, units coordination refers to the relationships that students can maintain between various units when working within a numerical situation. It is critical that middle school students learn to coordinate three levels of units not only because of their importance in understanding fractions but also because of their implications for…
Carroll, Timothy J.
2016-01-01
Insights into the neural representation of motor learning can be obtained by investigating how learning transfers to novel task conditions. We recently demonstrated that visuomotor rotation learning transferred strongly between left and right limbs when the task was performed in a sagittal workspace, which afforded a consistent remapping for the two limbs in both extrinsic and joint-based coordinates. In contrast, transfer was absent when performed in horizontal workspace, where the extrinsically defined perturbation required conflicting joint-based remapping for the left and right limbs. Because visuomotor learning is thought to be supported by both implicit and explicit forms of learning, however, it is unclear to what extent these distinct forms of learning contribute to interlimb transfer. In this study, we assessed the degree to which interlimb transfer, following visuomotor rotation training, reflects explicit vs. implicit learning by obtaining verbal reports of participants' aiming direction before each movement. We also determined the extent to which these distinct components of learning are constrained by the compatibility of coordinate systems by comparing transfer between groups of participants who reached to targets arranged in the horizontal and sagittal planes. Both sagittal and horizontal conditions displayed complete transfer of explicit learning to the untrained limb. In contrast, transfer of implicit learning was incomplete, but the sagittal condition showed greater transfer than the horizontal condition. These findings suggest that explicit strategies developed with one limb can be fully implemented in the opposite limb, whereas implicit transfer depends on the degree to which new sensorimotor maps are spatially compatible for the two limbs. PMID:27334955
Poh, Eugene; Carroll, Timothy J; Taylor, Jordan A
2016-09-01
Insights into the neural representation of motor learning can be obtained by investigating how learning transfers to novel task conditions. We recently demonstrated that visuomotor rotation learning transferred strongly between left and right limbs when the task was performed in a sagittal workspace, which afforded a consistent remapping for the two limbs in both extrinsic and joint-based coordinates. In contrast, transfer was absent when performed in horizontal workspace, where the extrinsically defined perturbation required conflicting joint-based remapping for the left and right limbs. Because visuomotor learning is thought to be supported by both implicit and explicit forms of learning, however, it is unclear to what extent these distinct forms of learning contribute to interlimb transfer. In this study, we assessed the degree to which interlimb transfer, following visuomotor rotation training, reflects explicit vs. implicit learning by obtaining verbal reports of participants' aiming direction before each movement. We also determined the extent to which these distinct components of learning are constrained by the compatibility of coordinate systems by comparing transfer between groups of participants who reached to targets arranged in the horizontal and sagittal planes. Both sagittal and horizontal conditions displayed complete transfer of explicit learning to the untrained limb. In contrast, transfer of implicit learning was incomplete, but the sagittal condition showed greater transfer than the horizontal condition. These findings suggest that explicit strategies developed with one limb can be fully implemented in the opposite limb, whereas implicit transfer depends on the degree to which new sensorimotor maps are spatially compatible for the two limbs. Copyright © 2016 the American Physiological Society.
Generation of novel motor sequences: the neural correlates of musical improvisation.
Berkowitz, Aaron L; Ansari, Daniel
2008-06-01
While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.
Generalization in Adaptation to Stable and Unstable Dynamics
Kadiallah, Abdelhamid; Franklin, David W.; Burdet, Etienne
2012-01-01
Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. PMID:23056191
Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task
Marchal-Crespo, Laura; Michels, Lars; Jaeger, Lukas; López-Olóriz, Jorge; Riener, Robert
2017-01-01
Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS) in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL), i.e., precuneus, and temporal cortex. These neuroimaging findings indicate that gait-like motor learning depends on interplay between subcortical, cerebellar, and fronto-parietal brain regions. An interesting observation was the low activation observed in the brain's reward system after training with error amplification compared to training without perturbations. Our results suggest that to enhance learning of a locomotor task, errors should be augmented based on subjects' skill level. The impacts of these strategies on motor learning, brain activation, and motivation in neurological patients need further investigation. PMID:29021739
Seizing the Moment: State Lessons for Transforming Professional Learning
ERIC Educational Resources Information Center
Learning Forward, 2013
2013-01-01
Explore this first look at lessons learned through Learning Forward's ongoing initiative to develop a comprehensive system of professional learning that spans the distance from the statehouse to the classroom. This policy brief underscores the importance of a coordinated state professional learning strategy, the adoption of professional learning…
Baia, Patricia; Canning, Jacquelyn E.; Strang, Aimee F.
2015-01-01
Objective. To describe the shift to an asynchronous online approach for pedagogy instruction within a pharmacy resident teaching program offered by a dual-campus college. Design. The pedagogy instruction component of the teaching program (Part I) was redesigned with a focus on the content, delivery, and coordination of the learning environment. Asynchronous online learning replaced distance technology or lecture capture. Using a pedagogical content knowledge framework, residents participated in self-paced online learning using faculty recordings, readings, and discussion board activities. A learning management system was used to assess achievement of learning objectives and participation prior to progressing to the teaching experiences component of the teaching program (Part II). Assessment. Evaluation of resident pedagogical knowledge development and participation in Part I of the teaching program was achieved through the learning management system. Participant surveys and written reflections showed general satisfaction with the online learning environment. Future considerations include addition of a live orientation session and increased faculty presence in the online learning environment. Conclusion. An online approach framed by educational theory can be an effective way to provide pedagogy instruction within a teaching program. PMID:25861110
When kinesthetic information is neglected in learning a Novel bimanual rhythmic coordination.
Zhu, Qin; Mirich, Todd; Huang, Shaochen; Snapp-Childs, Winona; Bingham, Geoffrey P
2017-08-01
Many studies have shown that rhythmic interlimb coordination involves perception of the coupled limb movements, and different sensory modalities can be used. Using visual displays to inform the coupled bimanual movement, novel bimanual coordination patterns can be learned with practice. A recent study showed that similar learning occurred without vision when a coach provided manual guidance during practice. The information provided via the two different modalities may be same (amodal) or different (modality specific). If it is different, then learning with both is a dual task, and one source of information might be used in preference to the other in performing the task when both are available. In the current study, participants learned a novel 90° bimanual coordination pattern without or with visual information in addition to kinesthesis. In posttest, all participants were tested without and with visual information in addition to kinesthesis. When tested with visual information, all participants exhibited performance that was significantly improved by practice. When tested without visual information, participants who practiced using only kinesthetic information showed improvement, but those who practiced with visual information in addition showed remarkably less improvement. The results indicate that (1) the information is not amodal, (2) use of a single type of information was preferred, and (3) the preferred information was visual. We also hypothesized that older participants might be more likely to acquire dual task performance given their greater experience of the two sensory modes in combination, but results were replicated with both 20- and 50-year-olds.
ERIC Educational Resources Information Center
Pelaez, Nancy; Anderson, Trevor R.; Gardner, Stephanie M.; Yin, Yue; Abraham, Joel K.; Barlett, Edward L.; Gormally, Cara; Hurney, Carol A.; Long, Tammy M.; Newman, Dina L.; Sirum, Karen; Stevens, Michael T.
2018-01-01
Since 2009, the U.S. National Science Foundation Directorate for Biological Sciences has funded Research Coordination Networks (RCN) aimed at collaborative efforts to improve participation, learning, and assessment in undergraduate biology education (UBE). RCN-UBE projects focus on coordination and communication among scientists and educators who…
Survey on Early Childhood Advisory Councils. NGA Center for Best Practices Backgrounder
ERIC Educational Resources Information Center
National Governors Association, 2007
2007-01-01
During fall 2007, the NGA Center surveyed states regarding the presence and nature of state early childhood coordinating councils, which may exist as Early Learning Councils, Task Forces, Children's Cabinets, Interagency Coordinating Councils, etc. For brevity, these coordinating entities are referred to below as Early Childhood Advisory Councils…
The Neural Network In Coordinate Transformation
NASA Astrophysics Data System (ADS)
Urusan, Ahmet Yucel
2011-12-01
In international literature, Coordinate operations is divided into two categories. They are coordinate conversion and coordinate transformation. Coordinates converted from coordinate system A to coordinate system B in the same datum (mean origine, scale and axis directions are same) by coordinate conversion. There are two different datum in coordinate transformation. The basis of each datum to a different coordinate reference system. In Coordinate transformation, coordinates are transformed from coordinate reference system A to coordinate referance system B. Geodetic studies based on physical measurements. Coordinate transformation needs identical points which were measured in each coordinate reference system (A and B). However it is difficult (and need a big reserved budget) to measure in some places like as top of mountain, boundry of countries and seaside. In this study, this sample problem solution was researched. The method of learning which is one of the neural network methods, was used for solution of this problem.
Learning from the implementation of inter-organisational web-based care planning and coordination.
Walker, Rae; Blacker, Vivian; Pandita, Linda; Close, Jacky; Mason, Wendy; Watson, Julie
2013-01-01
In Victoria, despite strong policy support, e-care planning and coordination is poorly developed. The action research project discussed here was developed to overcome organisational and worker-level barriers to change. The project outcomes highlighted the need for work on the building blocks of e-care coordination that enhance workers' knowledge and skills, and provide permission and support for appropriate collaborative system and services coordination practices.
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Vengerov, David
1999-01-01
Successful operations of future multi-agent intelligent systems require efficient cooperation schemes between agents sharing learning experiences. We consider a pseudo-realistic world in which one or more opportunities appear and disappear in random locations. Agents use fuzzy reinforcement learning to learn which opportunities are most worthy of pursuing based on their promise rewards, expected lifetimes, path lengths and expected path costs. We show that this world is partially observable because the history of an agent influences the distribution of its future states. We consider a cooperation mechanism in which agents share experience by using and-updating one joint behavior policy. We also implement a coordination mechanism for allocating opportunities to different agents in the same world. Our results demonstrate that K cooperative agents each learning in a separate world over N time steps outperform K independent agents each learning in a separate world over K*N time steps, with this result becoming more pronounced as the degree of partial observability in the environment increases. We also show that cooperation between agents learning in the same world decreases performance with respect to independent agents. Since cooperation reduces diversity between agents, we conclude that diversity is a key parameter in the trade off between maximizing utility from cooperation when diversity is low and maximizing utility from competitive coordination when diversity is high.
Written expression disorder; Specific learning disorder with impairment in written expression ... can have dysgraphia only or along with other learning disabilities, such as: Developmental coordination disorder (includes poor handwriting) ...
A neural network-based exploratory learning and motor planning system for co-robots
Galbraith, Byron V.; Guenther, Frank H.; Versace, Massimiliano
2015-01-01
Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or “learning by doing,” an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object. PMID:26257640
A neural network-based exploratory learning and motor planning system for co-robots.
Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano
2015-01-01
Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.
Crew resource management: applications in healthcare organizations.
Oriol, Mary David
2006-09-01
Healthcare organizations continue their struggle to establish a culture of open communication and collaboration. Lessons are learned from the aviation industry, which long ago acknowledged that most errors were the result of poor communication and coordination rather than individual mistakes. The author presents a review of how some healthcare organizations have successfully adopted aviation's curriculum called Crew Resource Management, which promotes and reinforces the conscious, learned team behaviors of cooperation, coordination, and sharing.
Exploring biology with small organic molecules
Stockwell, Brent R.
2011-01-01
Small organic molecules have proven to be invaluable tools for investigating biological systems, but there is still much to learn from their use. To discover and to use more effectively new chemical tools to understand biology, strategies are needed that allow us to systematically explore ‘biological-activity space’. Such strategies involve analysing both protein binding of, and phenotypic responses to, small organic molecules. The mapping of biological-activity space using small molecules is akin to mapping the stars — uncharted territory is explored using a system of coordinates that describes where each new feature lies. PMID:15602550
Zeuner, Kirsten E; Knutzen, Arne; Granert, Oliver; Sablowsky, Simone; Götz, Julia; Wolff, Stephan; Jansen, Olav; Dressler, Dirk; Schneider, Susanne A; Klein, Christine; Deuschl, Günther; van Eimeren, Thilo; Witt, Karsten
2016-01-01
Previous receptor binding studies suggest dopamine function is altered in the basal ganglia circuitry in task-specific dystonia, a condition characterized by contraction of agonist and antagonist muscles while performing specific tasks. Dopamine plays a role in reward-based learning. Using fMRI, this study compared 31 right-handed writer's cramp patients to 35 controls in reward-based learning of a probabilistic reversal-learning task. All subjects chose between two stimuli and indicated their response with their left or right index finger. One stimulus response was rewarded 80%, the other 20%. After contingencies reversal, the second stimulus response was rewarded in 80%. We further linked the DRD2/ANKK1-TaqIa polymorphism, which is associated with 30% reduction of the striatal dopamine receptor density with reward-based learning and assumed impaired reversal learning in A + subjects. Feedback learning in patients was normal. Blood-oxygen level dependent (BOLD) signal in controls increased with negative feedback in the insula, rostral cingulate cortex, middle frontal gyrus and parietal cortex (pFWE < 0.05). In comparison to controls, patients showed greater increase in BOLD activity following negative feedback in the dorsal anterior cingulate cortex (BA32). The genetic status was not correlated with the BOLD activity. The Brodmann area 32 (BA32) is part of the dorsal anterior cingulate cortex (dACC) that plays an important role in coordinating and integrating information to guide behavior and in reward-based learning. The dACC is connected with the basal ganglia-thalamo-loop modulated by dopaminergic signaling. This finding suggests disturbed integration of reinforcement history in decision making and implicate that the reward system might contribute to the pathogenesis in writer's cramp.
NASA Astrophysics Data System (ADS)
Lecusay, Robert A.
For several decades improvement of science education has been a major concern of policy makers concerned that the U.S. is a "nation at risk" owing to the dearth of students pursing careers in science. Recent policy proposals have argued that provision of broadband digital connectivity to organizations in the informal sector would increase the reach of the formal, academic sector to raise the overall level of science literacy in the country. This dissertation reports on a longitudinal study of a physics telementoring activity jointly run by a university-community collaborative at a community learning center. The activity implemented a digital infrastructure that exceeds the technical and social-institutional arrangements promoted by policy makers. In addition to broadband internet access (for tele-conferencing between students at the community center and physicists at a university), supplemented by digital software designed to promote physics education, the activity included the presence of a collaborating researcher/tutor at the community learning center to coordinate and document the instructional activities. The current research revealed a fundamental contradiction between the logic, goals, and practices of the physics instructors, and the corresponding logic, goals, and practices of the participants at the community learning center. This contradiction revolves around a contrast between the physicists' formal, logocentric ways of understanding expressed in the ability to explain the scientific rules underlying physical phenomena and the informal, pragmatic orientation of the youth and adults at the learning center. The observations in this dissertation should remind techno-enthusiasts, especially in the arena of public education policy, that there are no turnkey solutions in "distance" science education. Technically "connecting" people is not equivalent to creating conditions that expand opportunities to learn and a functioning socio-technical system that supports learning. Secondly, for designers and practitioners of informal learning in community-university collaborative settings, it is critically important to understand distance learning activities as developing "cross-cultural, " collaborative encounters, the results of which are more likely to be hybrids of different ways of learning and knowing than the conversion of informal learning into a tool for instruction that will allow youth to "think like physicists."
Visuomotor coordination and cortical connectivity of modular motor learning.
Burgos, Pablo I; Mariman, Juan J; Makeig, Scott; Rivera-Lillo, Gonzalo; Maldonado, Pedro E
2018-05-15
The ability to transfer sensorimotor skill components to new actions and the capacity to use skill components from whole actions are characteristic of the adaptability of the human sensorimotor system. However, behavioral evidence suggests complex limitations for transfer after combined or modular learning of motor adaptations. Also, to date, only behavioral analysis of the consequences of the modular learning has been reported, with little understanding of the sensorimotor mechanisms of control and the interaction between cortical areas. We programmed a video game with distorted kinematic and dynamic features to test the ability to combine sensorimotor skill components learned modularly (composition) and the capacity to use separate sensorimotor skill components learned in combination (decomposition). We examined motor performance, eye-hand coordination, and EEG connectivity. When tested for integrated learning, we found that combined practice initially performed better than separated practice, but differences disappeared after integrated practice. Separate learning promotes fewer anticipatory control mechanisms (depending more on feedback control), evidenced in a lower gaze leading behavior and in higher connectivity between visual and premotor domains, in comparison with the combined practice. The sensorimotor system can acquire motor modules in a separated or integrated manner. However, the system appears to require integrated practice to coordinate the adaptations with the skill learning and the networks involved in the integrated behavior. This integration seems to be related to the acquisition of anticipatory mechanism of control and with the decrement of feedback control. © 2018 Wiley Periodicals, Inc.
Challenges in Modeling and Measuring Learning Trajectories
ERIC Educational Resources Information Center
Confrey, Jere; Jones, R. Seth; Gianopulos, Garron
2015-01-01
Briggs and Peck make a compelling case for creating new, more intuitive measures of learning, based on creating vertical scales using learning trajectories (LT) in place of "domain sampling." We believe that the importance of creating measurement scales that coordinate recognizable landmarks in learning trajectories with interval scales…
Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tass, P. A.; Barnikol, U. B.; Department of Stereotaxic and Functional Neurosurgery, University of Cologne, D-50931 Cologne
2009-07-15
In computational models it has been shown that appropriate stimulation protocols may reshape the connectivity pattern of neural or oscillator networks with synaptic plasticity in a way that the network learns or unlearns strong synchronization. The underlying mechanism is that a network is shifted from one attractor to another, so that long-lasting stimulation effects are caused which persist after the cessation of stimulation. Here we study long-lasting effects of multisite electrical stimulation in a rat hippocampal slice rendered epileptic by magnesium withdrawal. We show that desynchronizing coordinated reset stimulation causes a long-lasting desynchronization between hippocampal neuronal populations together with amore » widespread decrease in the amplitude of the epileptiform activity. In contrast, periodic stimulation induces a long-lasting increase in both synchronization and amplitude.« less
The relationship of neurogenesis and growth of brain regions to song learning
Kirn, John R.
2009-01-01
Song learning, maintenance and production require coordinated activity across multiple auditory, sensory-motor, and neuromuscular structures. Telencephalic components of the sensory-motor circuitry are unique to avian species that engage in song learning. The song system shows protracted development that begins prior to hatching but continues well into adulthood. The staggered developmental timetable for construction of the song system provides clues of subsystems involved in specific stages of song learning and maintenance. Progressive events, including neurogenesis and song system growth, as well as regressive events such as apoptosis and synapse elimination, occur during periods of song learning and the transitions between stereotyped and variable song during both development and adulthood. There is clear evidence that gonadal steroids influence the development of song attributes and shape the underlying neural circuitry. Some aspects of song system development are influenced by sensory, motor and social experience, while other aspects of neural development appear to be experience-independent. Although there are species differences in the extent to which song learning continues into adulthood, growing evidence suggests that despite differences in learning trajectories, adult refinement of song motor control and song maintenance can require remarkable behavioral and neural flexibility reminiscent of sensory-motor learning. PMID:19853905
Program for coordinated dental care under general anaesthesia for children with special needs.
de Nova-García, M Joaquín; Martínez, M Rosa Mourelle; Sanjuán, Carmen Martín; López, Nuria E Gallardo; Cabaleiro, Esther Carracedo; García, Yolanda Alonso
2007-12-01
To draw up a program for coordination of dental care for children with special needs between the Course at the Universidad Complutense de Madrid (UCMC) (Specialisation in holistic dental care for children with special needs), and the Disabled Children's Oral Health Unit (DCOHU) within the Madrid Health Service (SERMAS). UCMC Protocol for children with special needs. Design of a clinical pathway based on consensus amongst the professionals involved. Algorithm for dental care for children with special needs. Matrix covering all activities and timing for full dental diagnosis in such patients (general health, oral health and behaviour) to facilitate proper referral of patients requiring general anaesthesia. Inclusion in the matrix of those responsible for each activity. Improved team work (University - primary health care) in patient evaluation, in provision of information to parents and guardians and in health care quality. From the teaching point of view, students learn to adopt a systematic approach in the decision-making process.
Coordination games, anti-coordination games, and imitative learning.
McCain, Roger A; Hamilton, Richard
2014-02-01
Bentley et al.'s scheme generates distributions characteristic of situations of high and low social influence on decisions and of high and low salience ("transparency") of rewards. Another element of decisions that may influence the placement of a decision process in their map is the way in which individual decisions interact to determine the payoffs. This commentary discusses the role of Nash equilibria in game theory, focusing especially on coordination and anti-coordination games.
Sharing Teaching Ideas: Starship.
ERIC Educational Resources Information Center
Camp, Dane R.
1995-01-01
Presents a game used to help students learning polar coordinates in precalculus class. The game is a variation of the game Battleship with the major difference being that students use polar coordinates. Includes reproducible student worksheets and directions. (MKR)
Internet-Mediated Learning in Public Affairs Programs: Issues and Implications.
ERIC Educational Resources Information Center
Rahm, Dianne; Reed, B. J.; Rydl, Teri L.
1999-01-01
An overview of Internet-mediated learning in public affairs programs identifies issues for faculty, students, and administrators, including intellectual property rights, instructional issues, learning approaches, student expectations, logistics and support, complexity of coordination, and organizational control. (DB)
Learning other agents` preferences in multiagent negotiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bui, H.H.; Kieronska, D.; Venkatesh, S.
In multiagent systems, an agent does not usually have complete information about the preferences and decision making processes of other agents. This might prevent the agents from making coordinated choices, purely due to their ignorance of what others want. This paper describes the integration of a learning module into a communication-intensive negotiating agent architecture. The learning module gives the agents the ability to learn about other agents` preferences via past interactions. Over time, the agents can incrementally update their models of other agents` preferences and use them to make better coordinated decisions. Combining both communication and learning, as two complementmore » knowledge acquisition methods, helps to reduce the amount of communication needed on average, and is justified in situations where communication is computationally costly or simply not desirable (e.g. to preserve the individual privacy).« less
An evaluation of the role of the clinical education facilitator.
McCormack, Brendan; Slater, Paul
2006-02-01
The objective of the study was to identify whether clinical education facilitators made a difference to the learning experiences of nurses in a large teaching hospital. Strategies for enabling continuous professional development are well established in health care organizations as key components of approaches to lifelong learning. The benefits of continuous professional development include the maintenance of high standards of care, the improvement and development of services, ensuring the competency of all nursing staff and guaranteeing the accountability of nurses for their actions. The role of clinical education facilitator is relatively new and little evaluation of this role has been undertaken. This study highlights important issues to be considered in developing a 'learning culture' in a hospital organization, through the adoption of such roles as clinical education facilitators. Whilst the roles have had an important function in the active coordination of learning activities in the hospital, there is little evidence of the role directly impacting on the learning culture of clinical settings. Learning mechanisms have been identified. The results of this evaluation can be subjected to further testing through ongoing evaluation of the outcomes arising from the learning mechanisms in place. Given the emphasis on work-based learning and continuing professional development in health care, then this ongoing evaluation can yield important information about future directions for nurse education. The study highlights the importance of supported learning in the workplace. However, more importantly, it identifies the need for a culture of professional practice to be developed in order to sustain learning in practice. Classroom-based learning alone, cannot create a culture of development in nursing and there is thus a need for models of work-based learning to be integrated into practice environments.
Negrón-Oyarzo, Ignacio; Espinosa, Nelson; Aguilar, Marcelo; Fuenzalida, Marco; Aboitiz, Francisco; Fuentealba, Pablo
2018-06-18
Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.
Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors.
Quintana, Albert; Sanz, Elisenda; Wang, Wengang; Storey, Granville P; Güler, Ali D; Wanat, Matthew J; Roller, Bryan A; La Torre, Anna; Amieux, Paul S; McKnight, G Stanley; Bamford, Nigel S; Palmiter, Richard D
2012-11-01
The striatum regulates motor control, reward and learning. Abnormal function of striatal GABAergic medium spiny neurons (MSNs) is believed to contribute to the deficits in these processes that are observed in many neuropsychiatric diseases. The orphan G protein-coupled receptor GPR88 is robustly expressed in MSNs and is regulated by neuropharmacological drugs, but its contribution to MSN physiology and behavior is unclear. We found that, in the absence of GPR88, MSNs showed increased glutamatergic excitation and reduced GABAergic inhibition, which promoted enhanced firing rates in vivo, resulting in hyperactivity, poor motor coordination and impaired cue-based learning in mice. Targeted viral expression of GPR88 in MSNs rescued the molecular and electrophysiological properties and normalized behavior, suggesting that aberrant MSN activation in the absence of GPR88 underlies behavioral deficits and its dysfunction may contribute to behaviors observed in neuropsychiatric disease.
Transparency in Teaching: Faculty Share Data and Improve Students' Learning
ERIC Educational Resources Information Center
Winkelmes, Mary-Ann
2013-01-01
The Illinois Initiative on Transparency in Learning and Teaching is a grassroots assessment project designed to promote students' conscious understanding of how they learn and to enable faculty to gather, share, and promptly benefit from data about students' learning by coordinating their efforts across disciplines, institutions, and countries.…
Road to Success: Service Learning Enhances Tech Ed Experience
ERIC Educational Resources Information Center
Howell, Robert T.
2008-01-01
Service learning, a form of experiential learning, is not a new idea. Students learn through participation in thoughtfully organized service experiences that meet real community needs are are coordinated in collaboration with schools/faculty and community organizations. the service experiences are integrated into the students' academic curriculum,…
Prior Learning Assessment Workgroup: 2014 Progress Report
ERIC Educational Resources Information Center
West, Jim
2015-01-01
Legislation passed in 2011 required the Washington Student Achievement Council (WSAC) to convene a Prior Learning Assessment Workgroup. The workgroup was tasked with coordinating and implementing seven goals, described in statute, to promote the award of college credit for prior learning. Awarding college credit for prior learning increases access…
Play along: effects of music and social interaction on word learning.
Verga, Laura; Bigand, Emmanuel; Kotz, Sonja A
2015-01-01
Learning new words is an increasingly common necessity in everyday life. External factors, among which music and social interaction are particularly debated, are claimed to facilitate this task. Due to their influence on the learner's temporal behavior, these stimuli are able to drive the learner's attention to the correct referent of new words at the correct point in time. However, do music and social interaction impact learning behavior in the same way? The current study aims to answer this question. Native German speakers (N = 80) were requested to learn new words (pseudo-words) during a contextual learning game. This learning task was performed alone with a computer or with a partner, with or without music. Results showed that music and social interaction had a different impact on the learner's behavior: Participants tended to temporally coordinate their behavior more with a partner than with music, and in both cases more than with a computer. However, when both music and social interaction were present, this temporal coordination was hindered. These results suggest that while music and social interaction do influence participants' learning behavior, they have a different impact. Moreover, impaired behavior when both music and a partner are present suggests that different mechanisms are employed to coordinate with the two types of stimuli. Whether one or the other approach is more efficient for word learning, however, is a question still requiring further investigation, as no differences were observed between conditions in a retrieval phase, which took place immediately after the learning session. This study contributes to the literature on word learning in adults by investigating two possible facilitating factors, and has important implications for situations such as music therapy, in which music and social interaction are present at the same time.
Play along: effects of music and social interaction on word learning
Verga, Laura; Bigand, Emmanuel; Kotz, Sonja A.
2015-01-01
Learning new words is an increasingly common necessity in everyday life. External factors, among which music and social interaction are particularly debated, are claimed to facilitate this task. Due to their influence on the learner’s temporal behavior, these stimuli are able to drive the learner’s attention to the correct referent of new words at the correct point in time. However, do music and social interaction impact learning behavior in the same way? The current study aims to answer this question. Native German speakers (N = 80) were requested to learn new words (pseudo-words) during a contextual learning game. This learning task was performed alone with a computer or with a partner, with or without music. Results showed that music and social interaction had a different impact on the learner’s behavior: Participants tended to temporally coordinate their behavior more with a partner than with music, and in both cases more than with a computer. However, when both music and social interaction were present, this temporal coordination was hindered. These results suggest that while music and social interaction do influence participants’ learning behavior, they have a different impact. Moreover, impaired behavior when both music and a partner are present suggests that different mechanisms are employed to coordinate with the two types of stimuli. Whether one or the other approach is more efficient for word learning, however, is a question still requiring further investigation, as no differences were observed between conditions in a retrieval phase, which took place immediately after the learning session. This study contributes to the literature on word learning in adults by investigating two possible facilitating factors, and has important implications for situations such as music therapy, in which music and social interaction are present at the same time. PMID:26388818
Inter-cortical Modulation from Premotor to Motor Plasticity.
Huang, Ying-Zu; Chen, Rou-Shayn; Fong, Po-Yu; Rothwell, John C; Chuang, Wen-Li; Weng, Yi-Hsin; Lin, Wey-Yil; Lu, Chin-Song
2018-06-11
Plasticity is involved in daily activities but abnormal plasticity may be deleterious. In this study, we found that motor plasticity could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Such changes in motor plasticity were associated with reduced learning of a simple motor task. We postulate that the premotor cortex adjusts the amount of motor plasticity to modulate motor learning through heterosynaptic metaplasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. This concept could be employed to intervene in diseases with abnormal plasticity. Primary motor cortex (M1) plasticity is known to be influenced by the excitability and prior activation history of M1 itself. However, little is known about how its plasticity is influenced by other areas of the brain. In the present study on humans of either sex who were known to respond to theta burst stimulation from previous studies, we found plasticity of M1 could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Motor plasticity was distorted and disappeared 30 min and 120 min respectively after premotor excitability was suppressed. Further evaluation revealed that such changes in motor plasticity were associated with impaired learning of a simple motor task. We postulate that the premotor cortex modulates the amount of plasticity within M1 through heterosynaptic metaplasticity, and that this may impact on learning of a simple motor task previously shown to be directly affected by M1 plasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. Furthermore, such concepts could be translated into therapeutic approaches for diseases with aberrant plasticity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Network mechanisms of intentional learning
Hampshire, Adam; Hellyer, Peter J.; Parkin, Beth; Hiebert, Nole; MacDonald, Penny; Owen, Adrian M.; Leech, Robert; Rowe, James
2016-01-01
The ability to learn new tasks rapidly is a prominent characteristic of human behaviour. This ability relies on flexible cognitive systems that adapt in order to encode temporary programs for processing non-automated tasks. Previous functional imaging studies have revealed distinct roles for the lateral frontal cortices (LFCs) and the ventral striatum in intentional learning processes. However, the human LFCs are complex; they house multiple distinct sub-regions, each of which co-activates with a different functional network. It remains unclear how these LFC networks differ in their functions and how they coordinate with each other, and the ventral striatum, to support intentional learning. Here, we apply a suite of fMRI connectivity methods to determine how LFC networks activate and interact at different stages of two novel tasks, in which arbitrary stimulus-response rules are learnt either from explicit instruction or by trial-and-error. We report that the networks activate en masse and in synchrony when novel rules are being learnt from instruction. However, these networks are not homogeneous in their functions; instead, the directed connectivities between them vary asymmetrically across the learning timecourse and they disengage from the task sequentially along a rostro-caudal axis. Furthermore, when negative feedback indicates the need to switch to alternative stimulus–response rules, there is additional input to the LFC networks from the ventral striatum. These results support the hypotheses that LFC networks interact as a hierarchical system during intentional learning and that signals from the ventral striatum have a driving influence on this system when the internal program for processing the task is updated. PMID:26658925
Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Alfaro-Rodríguez, Alfonso; Reyes-Legorreta, Celia; Garza-Montaño, Paloma; González-Piña, Rigoberto; Bueno-Nava, Antonio
2018-01-15
The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function that is associated with skilled movements and motor learning, which are functions that may be modulated by dopamine (DA). In this study, we explored motor coordination and balance in order to investigate whether the activation of D 1 receptors (D 1 Rs) modulates functional recovery after cortical injury. The results of the beam-walking test showed motor deficit in the injured group at 24, 48 and 96h post-injury, and the recovery time was observed at 192h after cortical injury. In the sham and injured rats, systemic administration of the D 1 R antagonist SCH-23390 (1mg/kg) alone at 24, 48, 96 and 192h significantly (P<0.01) increased the motor deficit, while administration of the D 1 R agonist SKF-38393 alone (2, 3 and 4mg/kg) at 24, 48, 96 and 192h post-injury did not produce a significant difference; however, the co-administration of SKF-38393 and SCH-23390 prevented the antagonist-induced increase in the motor deficit. The cortical+striatal injury showed significantly increased the motor deficit at 24, 48, 96 and 192h post-injury (P<0.01) but did not show recovery at 192h. In conclusion, the administration of the D 1 R agonist did not accelerate the motor recovery, but the activation of D 1 Rs maintained motor coordination, confirming that an intact striatum may be necessary for achieving recovery. Copyright © 2017 Elsevier B.V. All rights reserved.
The Consortium of E-Learning in Geriatrics Instruction.
Ruiz, Jorge G; Teasdale, Thomas A; Hajjar, Ihab; Shaughnessy, Marianne; Mintzer, Michael J
2007-03-01
This paper describes the activities of the Consortium of E-Learning in Geriatrics Instruction (CELGI), a group dedicated to creating, using, and evaluating e-learning to enhance geriatrics education. E-learning provides a relatively new approach to addressing geriatrics educators' concerns, such as the shortage of professionals trained to care for older people, overcrowded medical curricula, the move to transfer teaching venues to community settings, and the switch to competency-based education models. However, this innovative education technology is facing a number of challenges as its use and influence grow, including proof of effectiveness and efficiency. CELGI was created in response to these challenges, with the goal of facilitating the development and portability of e-learning materials for geriatrics educators. Members represent medical and nursing schools, the Department of Veterans Affairs healthcare system, long-term care facilities, and other institutions that rely on continuing streams of quality health education. CELGI concentrates on providing a coordinated approach to formulating and adapting specifications, standards, and guidelines; developing education and training in e-learning competencies; developing e-learning products; evaluating the effect of e-learning materials; and disseminating these materials. The vision of consortium members is that e-learning for geriatric education will become the benchmark for valid and successful e-learning throughout medical education.
Experiences from tsunami relief activity: implications for medical education.
Balasubramaniam, Sudharsanam Manni; Mohan, Yogesh; Roy, Gautam
2012-01-01
A tsunami struck the coast of Tamilnadu and Pondicherry on 26 December 2004. Jawaharlal Institute of Postgraduate Medical Education & Research, (JIPMER) in Pondicherry played a vital role in providing medical relief. The experiences from the relief activities revealed areas of deficiency in medical education in regards to disaster preparedness. A qualitative study using focus group discussion was employed to find the lacunae in skills in managing medical relief measures. Many skills were identified; the most important of which was addressing the psychological impact of the tsunami on the victims. Limited coordination and leadership skills were also identified. It is recommended that activity-based learning can be included in the curriculum to improve these skills.
An Integrated Approach to Student Services.
ERIC Educational Resources Information Center
Kelly, Rob
2001-01-01
Describes the comprehensive, coordinated approach to student support services at the University of Wisconsin Learning Innovations, an electronic learning consultation utility that develops online programs for distance learning. Topics include the Learner Relationship Management System, advising opportunities, help desk, administrative Web site,…
Buchanan, John J
2016-01-01
The primary goal of this chapter is to merge together the visual perception perspective of observational learning and the coordination dynamics theory of pattern formation in perception and action. Emphasis is placed on identifying movement features that constrain and inform action-perception and action-production processes. Two sources of visual information are examined, relative motion direction and relative phase. The visual perception perspective states that the topological features of relative motion between limbs and joints remains invariant across an actor's motion and therefore are available for pickup by an observer. Relative phase has been put forth as an informational variable that links perception to action within the coordination dynamics theory. A primary assumption of the coordination dynamics approach is that environmental information is meaningful only in terms of the behavior it modifies. Across a series of single limb tasks and bimanual tasks it is shown that the relative motion and relative phase between limbs and joints is picked up through visual processes and supports observational learning of motor skills. Moreover, internal estimations of motor skill proficiency and competency are linked to the informational content found in relative motion and relative phase. Thus, the chapter links action to perception and vice versa and also links cognitive evaluations to the coordination dynamics that support action-perception and action-production processes.
NASA Astrophysics Data System (ADS)
Meng, Qinggang; Lee, M. H.
2007-03-01
Advanced autonomous artificial systems will need incremental learning and adaptive abilities similar to those seen in humans. Knowledge from biology, psychology and neuroscience is now inspiring new approaches for systems that have sensory-motor capabilities and operate in complex environments. Eye/hand coordination is an important cross-modal cognitive function, and is also typical of many of the other coordinations that must be involved in the control and operation of embodied intelligent systems. This paper examines a biologically inspired approach for incrementally constructing compact mapping networks for eye/hand coordination. We present a simplified node-decoupled extended Kalman filter for radial basis function networks, and compare this with other learning algorithms. An experimental system consisting of a robot arm and a pan-and-tilt head with a colour camera is used to produce results and test the algorithms in this paper. We also present three approaches for adapting to structural changes during eye/hand coordination tasks, and the robustness of the algorithms under noise are investigated. The learning and adaptation approaches in this paper have similarities with current ideas about neural growth in the brains of humans and animals during tool-use, and infants during early cognitive development.
Nunez-Iglesias, Juan; Kennedy, Ryan; Plaza, Stephen M.; Chakraborty, Anirban; Katz, William T.
2014-01-01
The aim in high-resolution connectomics is to reconstruct complete neuronal connectivity in a tissue. Currently, the only technology capable of resolving the smallest neuronal processes is electron microscopy (EM). Thus, a common approach to network reconstruction is to perform (error-prone) automatic segmentation of EM images, followed by manual proofreading by experts to fix errors. We have developed an algorithm and software library to not only improve the accuracy of the initial automatic segmentation, but also point out the image coordinates where it is likely to have made errors. Our software, called gala (graph-based active learning of agglomeration), improves the state of the art in agglomerative image segmentation. It is implemented in Python and makes extensive use of the scientific Python stack (numpy, scipy, networkx, scikit-learn, scikit-image, and others). We present here the software architecture of the gala library, and discuss several designs that we consider would be generally useful for other segmentation packages. We also discuss the current limitations of the gala library and how we intend to address them. PMID:24772079
Constitutions of Nature by Teacher Practice and Discourse in Ontario Grade 9 and 10 Academic Science
NASA Astrophysics Data System (ADS)
Hoeg, Darren Glen
This thesis presents an ethnographic study, based broadly on principles and methods of institutional ethnography, on the constitution of nature by nine Ontario Grade 9 and 10 Academic Science teachers. The intent of this methodological approach is to examine how the daily practice of participants works toward constituting nature in specific ways that are coordinated by the institution (Ontario public school and/or school science). Critical Discourse Analysis and general inductive analysis were performed on interview transcripts, texts related to teaching science selected by participants, and policy documents (i.e. curriculum; assessment policy) that coordinate science teacher practice. Findings indicate specific, dominant, and relatively uniform ontological and epistemological constitutions of nature. Nature was frequently constituted as a remote object, distant from and different than students studying it. More complex representations included constituting nature as a model, machine, or mathematical algorithm. Epistemological constitutions of nature were enacted through practices that engaged students in manipulating nature; controlling nature, and dominating nature. Relatively few practices that allow students to construct different constitutions of nature than those prioritized by the institution were observed. Dominant constitutions generally assume nature is simply the material to study, from which scientific knowledge can be obtained, with little ethical or moral consideration about nature itself, or how these constitutions produce discourse and relationships that may be detrimental to nature. Dominant constitutions of nature represent a type of objective knowledge that is prioritized, and made accessible to students, through science activities that attain a position of privilege in local science teacher cultures. The activities that allow students to attain the requisite knowledge of nature are collected, collated, and shared among existing science teachers. Activities are adapted to meet the knowledge requirements of the curriculum, which is institutionally coordinated by a system of management, based on accountability and performance. Thus, teachers come to see teaching practice that 'works' as contained in those science activities that engage students in learning nature as a specific representation (model/machine) or through science methods that control students learning so that they arrive at the correct knowledge. This allows teachers to assess and evaluate students' acquisition of the institutionally valued knowledge of nature. This system of coordination is sustained through discourse that enables teaching practices that aligns with institutional priorities of measuring performance, while at the same time, limiting teachers from being able to conceive of other teaching practices that might enable different constitutions of nature.
Virtual Simulated Care Coordination Rounds for Nursing Students.
Badowski, Donna M
Implementation of the Affordable Care Act has nursing education reflecting on paradigm shifts in order to prepare nursing students for the evolving health care environment. The traditional focus of nursing education on nursing care in acute care settings does not provide learning experiences in care coordination and transitional care management skills. Virtual simulated care coordination rounds, using the National League for Nursing Advancing Care Excellence resources, offer nursing students an innovative experience in care coordination and transition care management.
Unique characteristics of motor adaptation during walking in young children.
Musselman, Kristin E; Patrick, Susan K; Vasudevan, Erin V L; Bastian, Amy J; Yang, Jaynie F
2011-05-01
Children show precocious ability in the learning of languages; is this the case with motor learning? We used split-belt walking to probe motor adaptation (a form of motor learning) in children. Data from 27 children (ages 8-36 mo) were compared with those from 10 adults. Children walked with the treadmill belts at the same speed (tied belt), followed by walking with the belts moving at different speeds (split belt) for 8-10 min, followed again by tied-belt walking (postsplit). Initial asymmetries in temporal coordination (i.e., double support time) induced by split-belt walking were slowly reduced, with most children showing an aftereffect (i.e., asymmetry in the opposite direction to the initial) in the early postsplit period, indicative of learning. In contrast, asymmetries in spatial coordination (i.e., center of oscillation) persisted during split-belt walking and no aftereffect was seen. Step length, a measure of both spatial and temporal coordination, showed intermediate effects. The time course of learning in double support and step length was slower in children than in adults. Moreover, there was a significant negative correlation between the size of the initial asymmetry during early split-belt walking (called error) and the aftereffect for step length. Hence, children may have more difficulty learning when the errors are large. The findings further suggest that the mechanisms controlling temporal and spatial adaptation are different and mature at different times.
ERIC Educational Resources Information Center
Blank, Rainer
2012-01-01
Developmental coordination disorder (DCD) is a condition characterized by difficulty in the development of motor coordination and learning new motor skills. It impacts on a child's ability to carry out everyday tasks such as getting dressed, using cutlery, writing or drawing, running, and playing sport. It is not due to any intellectual difficulty…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Zhongping; Qi, Ji; Xu, Xinxin, E-mail: xuxx@mail.neu.edu.cn
2013-09-15
To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer compositemore » material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future.« less
NASA Astrophysics Data System (ADS)
Pratama, A. Y.; Sariffuddin, S.
2018-02-01
This article aimed to review community-based disaster management in terms of its independent coordination and disaster management. Community resilience was tested during disaster emergency. While panic, the community is required to be viable and able to evacuate, manage logistic, collect data on damage and the victim, and coordinate with outsiders independently. The community in Gununglurah Village, Banyumas Regency which was hit by a landslide in 2015 provides a lesson learned about community based disaster management. This research used qualitative descriptive methodology with in-depth interview with 23 informants from the community, donor institution, village officers, and government officers. Through traditional and informal methods, the community implemented disaster management that was categorized into 3 mechanisms that were social, functional, and sequential mechanism. These mechanisms controlled different portion in which social mechanism holds the most important role in disaster management, then functional mechanism and sequential mechanism. Various community activities in the village equipped the community with organizational experience to manage logistic, human resource and other coordination. In 2007, in fact, there was vulnerability risk assessment done by the local government, which recommended efforts to be done by the community to reduce the disaster risk, yet it was not implemented. It was interesting to note that in spite of the independent disaster management there was a scientific assessment neglected. Based on this research, a new discussion on how to synchronize the endogenous knowledge with scientific modern knowledge was opened.
ACTIVIS: Visual Exploration of Industry-Scale Deep Neural Network Models.
Kahng, Minsuk; Andrews, Pierre Y; Kalro, Aditya; Polo Chau, Duen Horng
2017-08-30
While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers at Facebook, we have developed, deployed, and iteratively improved ACTIVIS, an interactive visualization system for interpreting large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural network models at both the instance- and subset-level. ACTIVIS has been deployed on Facebook's machine learning platform. We present case studies with Facebook researchers and engineers, and usage scenarios of how ACTIVIS may work with different models.
Software Development Cost Estimation Executive Summary
NASA Technical Reports Server (NTRS)
Hihn, Jairus M.; Menzies, Tim
2006-01-01
Identify simple fully validated cost models that provide estimation uncertainty with cost estimate. Based on COCOMO variable set. Use machine learning techniques to determine: a) Minimum number of cost drivers required for NASA domain based cost models; b) Minimum number of data records required and c) Estimation Uncertainty. Build a repository of software cost estimation information. Coordinating tool development and data collection with: a) Tasks funded by PA&E Cost Analysis; b) IV&V Effort Estimation Task and c) NASA SEPG activities.
DOT National Transportation Integrated Search
2012-01-01
This report documents the evolution, development, and lessons learned while attempting to identify, modify, and deploy Intelligent Transportation System (ITS) and advanced technology tools to facilitate coordination of public transit and social (huma...
ERIC Educational Resources Information Center
Advance CTE: State Leaders Connecting Learning to Work, 2016
2016-01-01
Work-based learning is an educational strategy that offers students an opportunity to reinforce and deepen their classroom learning, explore future career fields and demonstrate their skills in an authentic setting. Managing work-based learning requires layers of coordination, which is typically done by an individual or organizational…
Hierarchical control of procedural and declarative category-learning systems
Turner, Benjamin O.; Crossley, Matthew J.; Ashby, F. Gregory
2017-01-01
Substantial evidence suggests that human category learning is governed by the interaction of multiple qualitatively distinct neural systems. In this view, procedural memory is used to learn stimulus-response associations, and declarative memory is used to apply explicit rules and test hypotheses about category membership. However, much less is known about the interaction between these systems: how is control passed between systems as they interact to influence motor resources? Here, we used fMRI to elucidate the neural correlates of switching between procedural and declarative categorization systems. We identified a key region of the cerebellum (left Crus I) whose activity was bidirectionally modulated depending on switch direction. We also identified regions of the default mode network (DMN) that were selectively connected to left Crus I during switching. We propose that the cerebellum—in coordination with the DMN—serves a critical role in passing control between procedural and declarative memory systems. PMID:28213114
The role of intrinsic motivations in attention allocation and shifting
Di Nocera, Dario; Finzi, Alberto; Rossi, Silvia; Staffa, Mariacarla
2014-01-01
The concepts of attention and intrinsic motivations are of great interest within adaptive robotic systems, and can be exploited in order to guide, activate, and coordinate multiple concurrent behaviors. Attention allocation strategies represent key capabilities of human beings, which are strictly connected with action selection and execution mechanisms, while intrinsic motivations directly affect the allocation of attentional resources. In this paper we propose a model of Reinforcement Learning (RL), where both these capabilities are involved. RL is deployed to learn how to allocate attentional resources in a behavior-based robotic system, while action selection is obtained as a side effect of the resulting motivated attentional behaviors. Moreover, the influence of intrinsic motivations in attention orientation is obtained by introducing rewards associated with curiosity drives. In this way, the learning process is affected not only by goal-specific rewards, but also by intrinsic motivations. PMID:24744746
Oscillations, neural computations and learning during wake and sleep.
Penagos, Hector; Varela, Carmen; Wilson, Matthew A
2017-06-01
Learning and memory theories consider sleep and the reactivation of waking hippocampal neural patterns to be crucial for the long-term consolidation of memories. Here we propose that precisely coordinated representations across brain regions allow the inference and evaluation of causal relationships to train an internal generative model of the world. This training starts during wakefulness and strongly benefits from sleep because its recurring nested oscillations may reflect compositional operations that facilitate a hierarchical processing of information, potentially including behavioral policy evaluations. This suggests that an important function of sleep activity is to provide conditions conducive to general inference, prediction and insight, which contribute to a more robust internal model that underlies generalization and adaptive behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stanhope, Victoria; Henwood, Benjamin F
2014-08-01
One of the primary goals of health care reform is improving the quality and reducing the costs of care for people with co-morbid mental health and physical health conditions. One strategy is to integrate primary and behavioral health care through care coordination and patient activation. This qualitative study using community based participatory research methods informs the development of integrated care by presenting the perspectives of those with lived experience of chronic illnesses and homelessness. Themes presented include the internal and external barriers to addressing health needs and the key role of peer support in overcoming these barriers.
Lehotzky, K; Szeberenyi, J M; Gonda, Z; Horkay, F; Kiss, A
1982-01-01
Neurotoxic effects of the fungicide triphenyl-tin acetate were examined in pups of mothers treated perorally on day 7-15 of gestation. The gait and development of motor coordination did not differ from those of control animals, in spite of the high mortality rate of control pups during the nursing period. Spontaneous locomotor activity of treated pups at the age of 23 and 36 days was increased, however by the age of 90 days activity returned to control levels. Conditioned avoidance was acquired more rapidly, but was also extinguished sooner in animals born from, the nursed by poisoned mothers than in control.
Agent-based real-time signal coordination in congested networks.
DOT National Transportation Integrated Search
2014-01-01
This study is the continuation of a previous NEXTRANS study on agent-based reinforcement : learning methods for signal coordination in congested networks. In the previous study, the : formulation of a real-time agent-based traffic signal control in o...
Precise Synaptic Efficacy Alignment Suggests Potentiation Dominated Learning.
Hartmann, Christoph; Miner, Daniel C; Triesch, Jochen
2015-01-01
Recent evidence suggests that parallel synapses from the same axonal branch onto the same dendritic branch have almost identical strength. It has been proposed that this alignment is only possible through learning rules that integrate activity over long time spans. However, learning mechanisms such as spike-timing-dependent plasticity (STDP) are commonly assumed to be temporally local. Here, we propose that the combination of temporally local STDP and a multiplicative synaptic normalization mechanism is sufficient to explain the alignment of parallel synapses. To address this issue, we introduce three increasingly complex models: First, we model the idealized interaction of STDP and synaptic normalization in a single neuron as a simple stochastic process and derive analytically that the alignment effect can be described by a so-called Kesten process. From this we can derive that synaptic efficacy alignment requires potentiation-dominated learning regimes. We verify these conditions in a single-neuron model with independent spiking activities but more realistic synapses. As expected, we only observe synaptic efficacy alignment for long-term potentiation-biased STDP. Finally, we explore how well the findings transfer to recurrent neural networks where the learning mechanisms interact with the correlated activity of the network. We find that due to the self-reinforcing correlations in recurrent circuits under STDP, alignment occurs for both long-term potentiation- and depression-biased STDP, because the learning will be potentiation dominated in both cases due to the potentiating events induced by correlated activity. This is in line with recent results demonstrating a dominance of potentiation over depression during waking and normalization during sleep. This leads us to predict that individual spine pairs will be more similar after sleep compared to after sleep deprivation. In conclusion, we show that synaptic normalization in conjunction with coordinated potentiation--in this case, from STDP in the presence of correlated pre- and post-synaptic activity--naturally leads to an alignment of parallel synapses.
Jointly structuring triadic spaces of meaning and action: book sharing from 3 months on
Rossmanith, Nicole; Costall, Alan; Reichelt, Andreas F.; López, Beatriz; Reddy, Vasudevi
2014-01-01
This study explores the emergence of triadic interactions through the example of book sharing. As part of a naturalistic study, 10 infants were visited in their homes from 3–12 months. We report that (1) book sharing as a form of infant-caregiver-object interaction occurred from as early as 3 months. Using qualitative video analysis at a micro-level adapting methodologies from conversation and interaction analysis, we demonstrate that caregivers and infants practiced book sharing in a highly co-ordinated way, with caregivers carving out interaction units and shaping actions into action arcs and infants actively participating and co-ordinating their attention between mother and object from the beginning. We also (2) sketch a developmental trajectory of book sharing over the first year and show that the quality and dynamics of book sharing interactions underwent considerable change as the ecological situation was transformed in parallel with the infants' development of attention and motor skills. Social book sharing interactions reached an early peak at 6 months with the infants becoming more active in the coordination of attention between caregiver and book. From 7 to 9 months, the infants shifted their interest largely to solitary object exploration, in parallel with newly emerging postural and object manipulation skills, disrupting the social coordination and the cultural frame of book sharing. In the period from 9 to 12 months, social book interactions resurfaced, as infants began to effectively integrate manual object actions within the socially shared activity. In conclusion, to fully understand the development and qualities of triadic cultural activities such as book sharing, we need to look especially at the hitherto overlooked early period from 4 to 6 months, and investigate how shared spaces of meaning and action are structured together in and through interaction, creating the substrate for continuing cooperation and cultural learning. PMID:25540629
Jointly structuring triadic spaces of meaning and action: book sharing from 3 months on.
Rossmanith, Nicole; Costall, Alan; Reichelt, Andreas F; López, Beatriz; Reddy, Vasudevi
2014-01-01
This study explores the emergence of triadic interactions through the example of book sharing. As part of a naturalistic study, 10 infants were visited in their homes from 3-12 months. We report that (1) book sharing as a form of infant-caregiver-object interaction occurred from as early as 3 months. Using qualitative video analysis at a micro-level adapting methodologies from conversation and interaction analysis, we demonstrate that caregivers and infants practiced book sharing in a highly co-ordinated way, with caregivers carving out interaction units and shaping actions into action arcs and infants actively participating and co-ordinating their attention between mother and object from the beginning. We also (2) sketch a developmental trajectory of book sharing over the first year and show that the quality and dynamics of book sharing interactions underwent considerable change as the ecological situation was transformed in parallel with the infants' development of attention and motor skills. Social book sharing interactions reached an early peak at 6 months with the infants becoming more active in the coordination of attention between caregiver and book. From 7 to 9 months, the infants shifted their interest largely to solitary object exploration, in parallel with newly emerging postural and object manipulation skills, disrupting the social coordination and the cultural frame of book sharing. In the period from 9 to 12 months, social book interactions resurfaced, as infants began to effectively integrate manual object actions within the socially shared activity. In conclusion, to fully understand the development and qualities of triadic cultural activities such as book sharing, we need to look especially at the hitherto overlooked early period from 4 to 6 months, and investigate how shared spaces of meaning and action are structured together in and through interaction, creating the substrate for continuing cooperation and cultural learning.
The race to learn: spike timing and STDP can coordinate learning and recall in CA3.
Nolan, Christopher R; Wyeth, Gordon; Milford, Michael; Wiles, Janet
2011-06-01
The CA3 region of the hippocampus has long been proposed as an autoassociative network performing pattern completion on known inputs. The dentate gyrus (DG) region is often proposed as a network performing the complementary function of pattern separation. Neural models of pattern completion and separation generally designate explicit learning phases to encode new information and assume an ideal fixed threshold at which to stop learning new patterns and begin recalling known patterns. Memory systems are significantly more complex in practice, with the degree of memory recall depending on context-specific goals. Here, we present our spike-timing separation and completion (STSC) model of the entorhinal cortex (EC), DG, and CA3 network, ascribing to each region a role similar to that in existing models but adding a temporal dimension by using a spiking neural network. Simulation results demonstrate that (a) spike-timing dependent plasticity in the EC-CA3 synapses provides a pattern completion ability without recurrent CA3 connections, (b) the race between activation of CA3 cells via EC-CA3 synapses and activation of the same cells via DG-CA3 synapses distinguishes novel from known inputs, and (c) modulation of the EC-CA3 synapses adjusts the learned versus test input similarity required to evoke a direct CA3 response prior to any DG activity, thereby adjusting the pattern completion threshold. These mechanisms suggest that spike timing can arbitrate between learning and recall based on the novelty of each individual input, ensuring control of the learn-recall decision resides in the same subsystem as the learned memories themselves. The proposed modulatory signal does not override this decision but biases the system toward either learning or recall. The model provides an explanation for empirical observations that a reduction in novelty produces a corresponding reduction in the latency of responses in CA3 and CA1. Copyright © 2010 Wiley-Liss, Inc.
Adaptive, fast walking in a biped robot under neuronal control and learning.
Manoonpong, Poramate; Geng, Tao; Kulvicius, Tomas; Porr, Bernd; Wörgötter, Florentin
2007-07-01
Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori-motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (>3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks.
ERIC Educational Resources Information Center
Belton, Ellen R.; Lander, Tracey F.
2008-01-01
One of the greatest difficulties facing learning community programs at urban non-residential colleges and universities is the challenge of promoting communication and collaboration among faculty from different disciplines. In this article, the authors, a learning communities coordinator and a learning communities faculty team member, describe and…
Planning the Learning Environment.
ERIC Educational Resources Information Center
Singel, Raymond J.
The learning environment and its interrelationship with educational policies and the coordinated planning and design of schools and their facilities are discussed in the light of the human organism or student. The problems and hazards of present learning environments are reviewed in conjunction with environmental control and its influence on…
Multilevel Assessment for Discourse, Understanding, and Achievement
ERIC Educational Resources Information Center
Hickey, Daniel T.; Zuiker, Steven J.
2012-01-01
Evaluating the impact of instructional innovations and coordinating instruction, assessment, and testing present complex tensions. Many evaluation and coordination efforts aim to address these tensions by using the coherence provided by modern cognitive science perspectives on domain-specific learning. This paper introduces an alternative…
Aleci, Carlo; Piccoli, Marzia; Melotti, Valentina; Melis, Elena; Canavese, Lorenzo
2017-12-01
Purpose A model aimed at detecting the proportion of visuoperceptive and visuomotor coordination impairment in children with ascertained or suspected learning disability is described. The final purpose is to provide customized rehabilitation programs. Methods In this pilot study, four children (8-9 years) were administered a set of standardized tests to evaluate their ability to perform visuoperceptive and visuomotor tasks. Depending on the individual outcomes, two indexes have been computed from the resulting z-scores: η (Eta) that quantifies the visuoperceptive impairment, and μ (Mu) that expresses the alteration in visuomotor coordination. Results A condition of abnormality was evident in each patient: Subjects 1 and 3 suffered mainly from a visuoperceptive alteration (η higher than expected), while Subject 4 had reduced visuomotor coordination (μ higher than expected). Subject 2 showed balanced visuoperceptive and visuomotor impairment. Based on the obtained η and μ values, each child underwent a customized rehabilitation treatment, then they were examined again. At re-test, η or μ turned balanced and z-scores improved in the four patients. Conclusions The Eta/Mu model is effective in detecting the type of damage by quantifying the share of visuoperceptive and visuomotor coordination involvement in dyslexic children, allowing a customized rehabilitative approach. Such an approach, focused on treating the function found to be defective, appears to be effective in rebalancing individual visuomotor and visuoperceptive skills; it should, therefore, be taken into consideration when updating the rehabilitation plans of learning disabled children.
The relationship of neurogenesis and growth of brain regions to song learning.
Kirn, John R
2010-10-01
Song learning, maintenance and production require coordinated activity across multiple auditory, sensory-motor, and neuromuscular structures. Telencephalic components of the sensory-motor circuitry are unique to avian species that engage in song learning. The song system shows protracted development that begins prior to hatching but continues well into adulthood. The staggered developmental timetable for construction of the song system provides clues of subsystems involved in specific stages of song learning and maintenance. Progressive events, including neurogenesis and song system growth, as well as regressive events such as apoptosis and synapse elimination, occur during periods of song learning and the transitions between variable and stereotyped song during both development and adulthood. There is clear evidence that gonadal steroids influence the development of song attributes and shape the underlying neural circuitry. Some aspects of song system development are influenced by sensory, motor and social experience, while other aspects of neural development appear to be experience-independent. Although there are species differences in the extent to which song learning continues into adulthood, growing evidence suggests that despite differences in learning trajectories, adult refinement of song motor control and song maintenance can require remarkable behavioral and neural flexibility reminiscent of sensory-motor learning. Copyright © 2009 Elsevier Inc. All rights reserved.
Dubois, Eline Agnès; Franson, Kari Lanette
2009-09-01
Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.
Thürer, Benjamin; Focke, Anne; Stein, Thorsten
2015-01-01
Intermanual transfer, i.e., generalization of motor learning across hands, is a well-accepted phenomenon of motor learning. Yet, there are open questions regarding the characteristics of this transfer, particularly the intermanual transfer of dynamic learning. In this study, we investigated intermanual transfer in a force field adaptation task concerning the direction and the coordinate frame of transfer as well as the influence of a 24-h consolidation period on the transfer. We tested 48 healthy human subjects for transfer from dominant to nondominant hand, and vice versa. We considered two features of transfer. First, we examined transfer to the untrained hand using force channel trials that suppress error feedback and learning mechanisms to assess intermanual transfer in the form of a practice-dependent bias. Second, we considered transfer by exposing the subjects to the force field with the untrained hand to check for faster learning of the dynamics (interlimb savings). Half of the subjects were tested for transfer immediately after adaptation, whereas the other half were tested after a 24-h consolidation period. Our results showed intermanual transfer both from dominant to nondominant hand and vice versa in extrinsic coordinates. After the consolidation period, transfer effects were weakened. Moreover, the transfer effects were negligible compared with the subjects' ability to rapidly adapt to the force field condition. We conclude that intermanual transfer is a bidirectional phenomenon that vanishes with time. However, the ability to transfer motor learning seems to play a minor role compared with the rapid adaptation processes. PMID:26424581
Cortical inter-hemispheric circuits for multimodal vocal learning in songbirds.
Paterson, Amy K; Bottjer, Sarah W
2017-10-15
Vocal learning in songbirds and humans is strongly influenced by social interactions based on sensory inputs from several modalities. Songbird vocal learning is mediated by cortico-basal ganglia circuits that include the SHELL region of lateral magnocellular nucleus of the anterior nidopallium (LMAN), but little is known concerning neural pathways that could integrate multimodal sensory information with SHELL circuitry. In addition, cortical pathways that mediate the precise coordination between hemispheres required for song production have been little studied. In order to identify candidate mechanisms for multimodal sensory integration and bilateral coordination for vocal learning in zebra finches, we investigated the anatomical organization of two regions that receive input from SHELL: the dorsal caudolateral nidopallium (dNCL SHELL ) and a region within the ventral arcopallium (Av). Anterograde and retrograde tracing experiments revealed a topographically organized inter-hemispheric circuit: SHELL and dNCL SHELL , as well as adjacent nidopallial areas, send axonal projections to ipsilateral Av; Av in turn projects to contralateral SHELL, dNCL SHELL , and regions of nidopallium adjacent to each. Av on each side also projects directly to contralateral Av. dNCL SHELL and Av each integrate inputs from ipsilateral SHELL with inputs from sensory regions in surrounding nidopallium, suggesting that they function to integrate multimodal sensory information with song-related responses within LMAN-SHELL during vocal learning. Av projections share this integrated information from the ipsilateral hemisphere with contralateral sensory and song-learning regions. Our results suggest that the inter-hemispheric pathway through Av may function to integrate multimodal sensory feedback with vocal-learning circuitry and coordinate bilateral vocal behavior. © 2017 Wiley Periodicals, Inc.
Design and Control of Large Collections of Learning Agents
NASA Technical Reports Server (NTRS)
Agogino, Adrian
2001-01-01
The intelligent control of multiple autonomous agents is an important yet difficult task. Previous methods used to address this problem have proved to be either too brittle, too hard to use, or not scalable to large systems. The 'Collective Intelligence' project at NASA/Ames provides an elegant, machine-learning approach to address these problems. This approach mathematically defines some essential properties that a reward system should have to promote coordinated behavior among reinforcement learners. This work has focused on creating additional key properties and algorithms within the mathematics of the Collective Intelligence framework. One of the additions will allow agents to learn more quickly, in a more coordinated manner. The other will let agents learn with less knowledge of their environment. These additions will allow the framework to be applied more easily, to a much larger domain of multi-agent problems.
NASA Astrophysics Data System (ADS)
Close, Hunter G.; Scherr, Rachel E.
2015-04-01
We demonstrate that a particular blended learning space is especially productive in developing understanding of energy transfers and transformations. In this blended space, naturally occurring learner interactions like body movement, gesture, and metaphorical speech are blended with a conceptual metaphor of energy as a substance in a class of activities called Energy Theater. We illustrate several mechanisms by which the blended aspect of the learning environment promotes productive intellectual engagement with key conceptual issues in the learning of energy, including distinguishing among energy processes, disambiguating matter and energy, identifying energy transfer, and representing energy as a conserved quantity. Conceptual advancement appears to be promoted especially by the symbolic material and social structure of the Energy Theater environment, in which energy is represented by participants and objects are represented by areas demarcated by loops of rope, and by Energy Theater's embodied action, including body locomotion, gesture, and coordination of speech with symbolic spaces in the Energy Theater arena. Our conclusions are (1) that specific conceptual metaphors can be leveraged to benefit science instruction via the blending of an abstract space of ideas with multiple modes of concrete human action, and (2) that participants' structured improvisation plays an important role in leveraging the blend for their intellectual development.
Lessons Learned for Improving Spacecraft Ground Operations
NASA Technical Reports Server (NTRS)
Bell, Michael; Henderson, Gena; Stambolian, Damon
2013-01-01
NASA policy requires each Program or Project to develop a plan for how they will address Lessons Learned. Projects have the flexibility to determine how best to promote and implement lessons learned. A large project might budget for a lessons learned position to coordinate elicitation, documentation and archival of the project lessons. The lessons learned process crosses all NASA Centers and includes the contactor community. o The Office of The Chief Engineer at NASA Headquarters in Washington D.C., is the overall process owner, and field locations manage the local implementation. One tool used to transfer knowledge between program and projects is the Lessons Learned Information System (LLIS). Most lessons come from NASA in partnership with support contractors. A search for lessons that might impact a new design is often performed by a contractor team member. Knowledge is not found with only one person, one project team, or one organization. Sometimes, another project team, or person, knows something that can help your project or your task. Knowledge sharing is an everyday activity at the Kennedy Space Center through storytelling, Kennedy Engineering Academy presentations and through searching the Lessons Learned Information system. o Project teams search the lessons repository to ensure the best possible results are delivered. o The ideas from the past are not always directly applicable but usually spark new ideas and innovations. Teams have a great responsibility to collect and disseminate these lessons so that they are shared with future generations of space systems designers. o Leaders should set a goal for themselves to host a set numbers of lesson learned events each year and do more to promote multiple methods of lessons learned activities. o High performing employees are expected to share their lessons, however formal knowledge sharing presentation are not the norm for many employees.
Widget, Widget on the Wall, Am I Performing Well at All?
ERIC Educational Resources Information Center
Scheffel, Maren; Drachsler, Hendrik; de Kraker, Joop
2017-01-01
In collaborative learning environments, students work together on assignments in virtual teams and depend on each other's contribution to achieve their learning objectives. The online learning environment, however, may not only facilitate but also hamper group communication, coordination, and collaboration. Group awareness widgets that visualize…
ERIC Educational Resources Information Center
Missouri Department of Higher Education, 2009
2009-01-01
The Learning Assessment in Missouri Postsecondary Education (LAMP) Advisory Council was created to consider the issues surrounding statewide learning assessment and to make recommendations for policy. LAMP is comprised of a voluntary group of assessment professionals, postsecondary faculty and administrators, secondary educators and…
Flexible Learning in Perspective.
ERIC Educational Resources Information Center
Further Education Unit, London (England).
Those responsible for coordinating flexible and open learning in colleges should consider whether the time may be right to seek common ground on the issues and principles shared by the many related initiatives in Great Britain during the last two decades. Two principles that are important to flexible learning are that education's effectiveness is…
Maddaus, Michael A; Chipman, Jeffrey G; Whitson, Bryan A; Groth, Shawn S; Schmitz, Connie C
2008-01-01
To improve the consistency and the quality of resident education on clinical rotations, 5 surgical rotations (thoracic, bariatrics, surgical oncology, pediatrics, and critical care) were restructured "as courses" with learning objectives, educational activities (online and on-ground), pretests, posttests, and oral examinations. University surgical training program in a large metropolitan area, which serves approximately 65 residents per year. The online course management system, WebCT/VISTA (Blackboard Inc., Washington, DC), was used to build 5 online course sites. To engage and garner support from faculty, several organizational change tactics and resources were employed, such as Grand Rounds presentations, a faculty retreat, consultation and support from professional staff, and the use of residents as reviewers and codevelopers. To support resident use of the online sites, a designated education coordinator provided individual and group orientation sessions and employed weekly tracking and reminder systems; completion of pretests and posttests was mandated. Between 6 and 8 learning modules were created per rotation, with over 50 reading assignments (collectively) and 45 online presentations. Since July 2006, 53 residents have completed a total of 106 rotations on these services. Preliminary results from a longitudinal study suggest that the hybrid approach is well received and effective when fully executed, but that online course materials are used by residents only if they feel that the faculty members are truly engaged and actively promoting the site. Changing the culture of learning on rotation to include learning objectives, assessment, and integrated online/on-ground activities takes significant leadership, resident input, professional staff support, faculty engagement, and time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillings, Neil; Wenk, Laura
Hampshire College's Center for Science Education (Center) focuses on teacher professional development, curriculum development, and student enrichment programs. The Center also maintains research programs on teacher change, student learning and instructional effectiveness. The Center's work promotes learning that persists over time and transfers to new situations in and out of school. The projects develop the implications of the increasing agreement among teachers and researchers that effective learning involves active concept mastery and consistent practice with inquiry and critical thinking. The Center's objective is to help strengthen the pipeline of U.S. students pursuing postsecondary study in STEM fields. The Center achievesmore » this by fostering an educational environment in which science is taught as an active, directly experienced endeavor across the K-16 continuum. Too often, young people are dissuaded from pursuing science because they do not see its relevance, instead experiencing it as dry, rote, technical. In contrast, when science is taught as a hands-on, inquiry-driven process, students are encouraged to ask questions grounded in their own curiosity and seek experimental solutions accordingly. In this way, they quickly discover both the profound relevance of science to their daily lives and its accessibility to them. Essentially, they learn to think and act like real scientists. The Center’s approach is multi-faceted: it includes direct inquiry-based science instruction to secondary and postsecondary students, educating the next generation of teachers, and providing new educational opportunities for teachers already working in the schools. Funding from the Department of Energy focused on the last population, enabling in-service teachers to explore and experience the pedagogy of inquiry-based science for themselves, and to take it back to their classrooms and students. The Center has demonstrated that the inquiry-based approach to science learning is compatible with existing state curriculum frameworks and produces students who understand and are positively inclined toward science. Funds from this Department of Energy grant supported three projects that involved K-16 science outreach: 1. Teaching Issues and Experiments in Ecology (TIEE). TIEE a peer-reviewed online journal and curriculum resource for postsecondary science teachers. 2. The Collaboration for Excellence in Science Education (CESE). CESE is a partnership with the Amherst, Massachusetts school system to foster the professional development of science teachers, and to perform research on student learning in the sciences and on teacher change. The project draws on Hampshire's long experience with inquiry-oriented and interdisciplinary education, as well as on its unique strengths in cognitive science. The project is run as design research, working with teachers to improve their practices and studying student and/or teacher outcomes. 3. Day in the Lab. Grant funds partially supported the expansion of the ongoing science outreach activities of the School of Natural Science. These activities are focused on local districts with large minority enrollments, including the Amherst, Holyoke and Springfield Public School Districts, and the Pioneer Valley Performing Arts Charter School (PVPA). Each of the three projects supported by the grant met or exceeded its goals. In part, the successes we met were due to continuity and communication among the staff of the programs. At the beginning of the CESE project, a science outreach coordinator was recruited. He worked throughout the grant period along with a senior researcher and the project's curriculum director. Additionally, the director and an undergraduate student conducted research on teacher change. The science outreach coordinator acted as a liaison among Hampshire College, the school districts, and a number of local businesses and agencies, providing organizational support, discussion facilitation, classroom support for teachers, and materials purchase. His presence in the schools kept teachers engaged and supported. He also brought the PVPA Charter School into the project. He worked closely with the educational outreach coordinator at Hampshire who oversaw the Day in the Lab program. Together, they have ensured the continuity of support to the schools through the use and placement of student interns. Finally, the director and coordinators worked with the Hitchock Center for the Environment to bring the two science professional development efforts in Amherst together. The joint development of workshops for elementary teachers was extremely successful. A major reason for the successes of the CESE program was the strength of the teacher outreach team and the sheer number of hours spent building relationships, talking about teaching and learning, planning projects, developing curriculum, and working with experts throughout the Pioneer Valley.« less
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC. Office of Noise Abatement and Control.
The document offers guidelines for administration of the Hearing Test Noise Education Program, a program to teach students the harmful effects of excessive moise on their hearing and learning ability. Section 1 outlines the program strategy in terms of program initiation, suggested program coordination, suggested coordinator's responsibilities,…
Teles-Grilo Ruivo, Leonor M; Baker, Keeley L; Conway, Michael W; Kinsley, Peter J; Gilmour, Gary; Phillips, Keith G; Isaac, John T R; Lowry, John P; Mellor, Jack R
2017-01-24
Cholinergic neurotransmission throughout the neocortex and hippocampus regulates arousal, learning, and attention. However, owing to the poorly characterized timing and location of acetylcholine release, its detailed behavioral functions remain unclear. Using electrochemical biosensors chronically implanted in mice, we made continuous measurements of the spatiotemporal dynamics of acetylcholine release across multiple behavioral states. We found that tonic levels of acetylcholine release were coordinated between the prefrontal cortex and hippocampus and maximal during training on a rewarded working memory task. Tonic release also increased during REM sleep but was contingent on subsequent wakefulness. In contrast, coordinated phasic acetylcholine release occurred only during the memory task and was strongly localized to reward delivery areas without being contingent on trial outcome. These results show that coordinated acetylcholine release between the prefrontal cortex and hippocampus is associated with reward and arousal on distinct timescales, providing dual mechanisms to support learned behavior acquisition during cognitive task performance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Santanu; Baer, Marcel D.; Mundy, Christopher J.
We present a theory for ion pair dissociation and association, motivated by the concepts of the Marcus theory of electron transfer. Despite the extensive research on ion-pairing in many chemical and biological processes, much can be learned from the exploration of collective reaction coordinates. To this end, we explore two reaction coordinates, ion pair distance and coordination number. The study of the correlation between these reaction coordinates provides a new insight into the mechanism and kinetics of ion pair dissociation and association in water. The potential of mean force on these 2D-surfaces computed from molecular dynamics simulations of different monovalentmore » ion pairs reveal a Marcus-like mechanism for ion-pairing: Water molecules rearrange forming an activated coordination state prior to ion pair dissociation or association, followed by relaxation of the coordination state due to further water rearrangement. Like Marcus theory, we find the existence of an inverted region where the transition rates are slower with increasing exergonicity. This study provides a new perspective for the future investigations of ion-pairing and transport. SR, CJM, and GKS were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). The research was performed using PNNL Institutional Computing. PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy.« less
45 CFR 2516.320 - Is a participant eligible to receive an AmeriCorps educational award?
Code of Federal Regulations, 2010 CFR
2010-10-01
...) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE SCHOOL-BASED SERVICE-LEARNING PROGRAMS Eligibility To..., service-learning coordinators who are approved AmeriCorps positions are eligible for AmeriCorps...
45 CFR 2516.320 - Is a participant eligible to receive an AmeriCorps educational award?
Code of Federal Regulations, 2011 CFR
2011-10-01
...) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE SCHOOL-BASED SERVICE-LEARNING PROGRAMS Eligibility To..., service-learning coordinators who are approved AmeriCorps positions are eligible for AmeriCorps...
Ferrari, Lynne R; Ziniel, Sonja I; Antonelli, Richard C
2016-03-01
The relationship of care coordination activities and outcomes to resource utilization and personnel costs has been evaluated for a number of pediatric medical home practices. One of the first tools designed to evaluate the activities and outcomes for pediatric care coordination is the Care Coordination Measurement Tool (CCMT). It has become widely used as an instrument for health care providers in both primary and subspecialty care settings. This tool enables the user to stratify patients based on acuity and complexity while documenting the activities and outcomes of care coordination. We tested the feasibility of adapting the CCMT to a pediatric surgical population at Boston Children's Hospital. The tool was used to assess the preoperative care coordination activities. Care coordination activities were tracked during the interval from the date the patient was scheduled for a surgical or interventional procedure through the day of the procedure. A care coordination encounter was defined as any task, whether face to face or not, supporting the development or implementation of a plan of care. Data were collected to enable analysis of 5675 care coordination encounters supporting the care provided to 3406 individual surgical cases (patients). The outcomes of care coordination, as documented by the preoperative nursing staff, included the elaboration of the care plan through patient-focused communication among specialist, facilities, perioperative team, and primary care physicians in 80.5% of cases. The average time spent on care coordination activities increased incrementally by 30 minutes with each additional care coordination encounter for a surgical case. Surgical cases with 1 care coordination encounter took an average of 35.7 minutes of preoperative care coordination, whereas those with ≥4 care coordination encounters reported an average of 121.6 minutes. We successfully adapted and implemented the CCMT for a pediatric surgical population and measured nonface-to-face, nonbillable encounters performed by perioperative nursing staff. The care coordination activities integrated into the preoperative process include elaboration of care plans and identification and remediation of discrepancies. Capturing the activities and outcomes of care coordination for preoperative care provides a framework for quality improvement and enables documentation of the value of nonface-to-face perioperative nursing encounters that comprise care coordination.
ERIC Educational Resources Information Center
Suddaby, Gordon; Milne, John
2008-01-01
Purpose: The paper aims to discusses two complementary initiatives focussed on developing and implementing e-learning guidelines to support good pedagogy in e-learning practice. Design/methodology/approach: The first initiative is the development of a coherent set of open access e-learning guidelines for the New Zealand tertiary sector. The second…
Embedding Learning How to Learn in School Policy: The Challenge for Leadership
ERIC Educational Resources Information Center
Swaffield, Sue; MacBeath, John
2006-01-01
Achieving lasting and deep-seated change in schools through the embedding of a new set of practices with associated values is a familiar goal. This paper draws upon interviews with school coordinators and head teachers participating in the Learning How to Learn Project to explore the nature of embedding and the related challenges for leadership.…
NASA Astrophysics Data System (ADS)
Nagai, Yukie; Hosoda, Koh; Morita, Akio; Asada, Minoru
This study argues how human infants acquire the ability of joint attention through interactions with their caregivers from a viewpoint of cognitive developmental robotics. In this paper, a mechanism by which a robot acquires sensorimotor coordination for joint attention through bootstrap learning is described. Bootstrap learning is a process by which a learner acquires higher capabilities through interactions with its environment based on embedded lower capabilities even if the learner does not receive any external evaluation nor the environment is controlled. The proposed mechanism for bootstrap learning of joint attention consists of the robot's embedded mechanisms: visual attention and learning with self-evaluation. The former is to find and attend to a salient object in the field of the robot's view, and the latter is to evaluate the success of visual attention, not joint attention, and then to learn the sensorimotor coordination. Since the object which the robot looks at based on visual attention does not always correspond to the object which the caregiver is looking at in an environment including multiple objects, the robot may have incorrect learning situations for joint attention as well as correct ones. However, the robot is expected to statistically lose the learning data of the incorrect ones as outliers because of its weaker correlation between the sensor input and the motor output than that of the correct ones, and consequently to acquire appropriate sensorimotor coordination for joint attention even if the caregiver does not provide any task evaluation to the robot. The experimental results show the validity of the proposed mechanism. It is suggested that the proposed mechanism could explain the developmental mechanism of infants' joint attention because the learning process of the robot's joint attention can be regarded as equivalent to the developmental process of infants' one.
Price, Michelle A; Beilman, Gregory J; Fabian, Timothy C; Hoyt, David B; Jurkovich, Gregory J; Knudson, M Margaret; MacKenzie, Ellen J; Marshall, Vivienne S; Overton, Kimberly E; Peitzman, Andrew B; Phillips, Monica J; Pruitt, Basil A; Smith, Sharon L; Stewart, Ronald M; Jenkins, Donald H
2016-09-01
To increase trauma-related research and elevate trauma on the national research agenda, the National Trauma Institute (NTI) issued calls for proposals, selected funding recipients, and coordinated 16 federally funded (Department of Defense) trauma research awards over a 4-year period. We sought to collect and describe the lessons learned from this activity to inform future researchers of barriers and facilitators. Fifteen principal investigators participated in semistructured interviews focused on study management issues such as securing institutional approvals, screening and enrollment, multisite trials management, project funding, staffing, and institutional support. NTI Science Committee meeting minutes and study management data were included in the analysis. Simple descriptive statistics were generated and textual data were analyzed for common themes. Principal investigators reported challenges in obtaining institutional approvals, delays in study initiation, screening and enrollment, multisite management, and study funding. Most were able to successfully resolve challenges and have been productive in terms of scholarly publications, securing additional research funding, and training future trauma investigators. Lessons learned in the conduct of the first two funding rounds managed by NTI are instructive in four key areas: regulatory processes, multisite coordination, adequate funding, and the importance of an established research infrastructure to ensure study success. Recommendations for addressing institution-related and investigator-related challenges are discussed along with ongoing advocacy efforts to secure sustained federal funding of a national trauma research program commensurate with the burden of injury.
QUICR-learning for Multi-Agent Coordination
NASA Technical Reports Server (NTRS)
Agogino, Adrian K.; Tumer, Kagan
2006-01-01
Coordinating multiple agents that need to perform a sequence of actions to maximize a system level reward requires solving two distinct credit assignment problems. First, credit must be assigned for an action taken at time step t that results in a reward at time step t > t. Second, credit must be assigned for the contribution of agent i to the overall system performance. The first credit assignment problem is typically addressed with temporal difference methods such as Q-learning. The second credit assignment problem is typically addressed by creating custom reward functions. To address both credit assignment problems simultaneously, we propose the "Q Updates with Immediate Counterfactual Rewards-learning" (QUICR-learning) designed to improve both the convergence properties and performance of Q-learning in large multi-agent problems. QUICR-learning is based on previous work on single-time-step counterfactual rewards described by the collectives framework. Results on a traffic congestion problem shows that QUICR-learning is significantly better than a Q-learner using collectives-based (single-time-step counterfactual) rewards. In addition QUICR-learning provides significant gains over conventional and local Q-learning. Additional results on a multi-agent grid-world problem show that the improvements due to QUICR-learning are not domain specific and can provide up to a ten fold increase in performance over existing methods.
Bonney, Emmanuel; Jelsma, Dorothee; Ferguson, Gillian; Smits-Engelsman, Bouwien
2017-03-01
Little is known about the influence of practice schedules on motor learning and skills transfer in children with and without developmental coordination disorder (DCD). Understanding how practice schedules affect motor learning is necessary for motor skills development and rehabilitation. The study investigated whether active video games (exergames) training delivered under variable practice led to better learning and transfer than repetitive practice. 111 children aged 6-10 years (M=8.0, SD=1.0) with no active exergaming experience were randomized to receive exergames training delivered under variable (Variable Game Group (VGG), n=56) or repetitive practice schedule (Repetitive Game Group (RGG), n=55). Half the participants were identified as DCD using the DSM-5 criteria, while the rest were typically developing (TD), age-matched children. Both groups participated in two 20min sessions per week for 5 weeks. Both participant groups (TD and DCD) improved equally well on game performance. There was no significant difference in positive transfer to balance tasks between practice schedules (Repetitive and Variable) and participant groups (TD and DCD). Children with and without DCD learn balance skills quite well when exposed to exergames. Gains in learning and transfer are similar regardless of the form of practice schedule employed. This is the first paper to compare the effect of practice schedules on learning in children with DCD and those with typical development. No differences in motor learning were found between repetitive and variable practice schedules. When children with and without DCD spend the same amount of time on exergames, they do not show any differences in acquisition of motor skills. Transfer of motor skills is similar in children with and without DCD regardless of differences in practice schedules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robust recognition of handwritten numerals based on dual cooperative network
NASA Technical Reports Server (NTRS)
Lee, Sukhan; Choi, Yeongwoo
1992-01-01
An approach to robust recognition of handwritten numerals using two operating parallel networks is presented. The first network uses inputs in Cartesian coordinates, and the second network uses the same inputs transformed into polar coordinates. How the proposed approach realizes the robustness to local and global variations of input numerals by handling inputs both in Cartesian coordinates and in its transformed Polar coordinates is described. The required network structures and its learning scheme are discussed. Experimental results show that by tracking only a small number of distinctive features for each teaching numeral in each coordinate, the proposed system can provide robust recognition of handwritten numerals.
A Qualitative Examination of Exergame Motivations in Geocaching.
Garney, Whitney R; Young, Audrey; McLeroy, Kenneth R; Wendel, Monica L; Schudiske, Eric
2016-02-01
Exergames are an innovative type of physical activity that engages participants through interactive gameplay. One exergame growing in popularity is geocaching. Geocaching is a high-tech treasure hunt that uses GPS-enabled technology to locate hidden caches. Caches are hidden all over the world, and their coordinates are listed in an online forum ( Geocaching.com ). Exergames like geocaching are widely endorsed; however, there is a lot of information that still needs to be learned about why people participate in these activities. Thirty-four current geocachers were recruited from a larger geocaching study to learn about their motivations for engaging in the game. Individuals were asked to respond to a 30-minute phone interview, and 12 both consented and participated the interviews. Interviews assessed how individuals became involved in geocaching, how frequently they participated, who they went geocaching with, and their motivations behind geocaching. Interviews were recorded and then thematically coded. The majority of participants had geocached for more than 5 years and had learned about the activity through media. All 12 participants geocached at least once a week. The primary motivations behind geocaching were being outdoors, social interaction, physical activity, and relaxation. Individuals described geocaching as being part of a community. They typically made friends while geocaching or when they were on Geocaching.com and felt connected to other geocachers through their mutual interest. Geocaching and other exergames that use game-like properties to engage users, specifically though technology, have the potential to impact individual health through nontraditional methods of activity and socialization.
NASA Astrophysics Data System (ADS)
Lira, Matthew
This dissertation explores the Knowledge in Pieces (KiP) theory to account for how students learn to coordinate knowledge of mathematical and physical models in biology education. The KiP approach characterizes student knowledge as a fragmented collection of knowledge elements as opposed to stable and theory-like knowledge. This dissertation sought to use this theoretical lens to account for how students understand and learn with mathematical models and representations, such as equations. Cellular physiology provides a quantified discipline that leverages concepts from mathematics, physics, and chemistry to understand cellular functioning. Therefore, this discipline provides an exemplary context for assessing how biology students think and learn with mathematical models. In particular, the resting membrane potential provides an exemplary concept well defined by models of dynamic equilibrium borrowed from physics and chemistry. In brief, membrane potentials, or voltages, "rest" when the electrical and chemical driving forces for permeable ionic species are equal in magnitude but opposite in direction. To assess students' understandings of this concept, this dissertation employed three studies: the first study employed the cognitive clinical interview to assess student thinking in the absence and presence of equations. The second study employed an intervention to assess student learning and the affordances of an innovative assessment. The third student employed a human-computer-interaction paradigm to assess how students learn with a novel multi-representational technology. Study 1 revealed that students saw only one influence--the chemical gradient--and that students coordinated knowledge of only this gradient with the related equations. Study 2 revealed that students benefited from learning with the multi-representational technology and that the assessment detected performance gains across both calculation and explanation tasks. Last, Study 3 revealed how students shift from recognizing one influence to recognizing both the chemical and the electrical gradients as responsible for a cell's membrane potential reaching dynamic equilibrium. Together, the studies illustrate that to coordinate knowledge, students need opportunities to reflect upon relations between representations of mathematical and physical models as well as distinguish between physical quantities such as molarities for ions and transmembrane voltages.
Procedural Learning in Children With Developmental Coordination, Reading, and Attention Disorders.
Magallón, Sara; Crespo-Eguílaz, Nerea; Narbona, Juan
2015-10-01
The aim is to assess repetition-based learning of procedures in children with developmental coordination disorder (DCD), reading disorder (RD) and attention-deficit hyperactivity disorder (ADHD). Participants included 187 children, studied in 4 groups: (a) DCD comorbid with RD and ADHD (DCD+RD+ADHD) (n = 30); (b) RD comorbid with ADHD (RD+ADHD) (n = 48); (c) ADHD (n = 19); and typically developing children (control group) (n = 90). Two procedural learning tasks were used: Assembly learning and Mirror drawing. Children were tested on 4 occasions for each task: 3 trials were consecutive and the fourth trial was performed after an interference task. Task performance by DCD+RD+ADHD children improved with training (P < .05); however, the improvement was significantly lower than that achieved by the other groups (RD+ADHD, ADHD and controls) (P < .05). In conclusion, children with DCD+RD+ADHD improve in their use of cognitive-motor procedures over a short training period. Aims of intervention in DCD+RD+ADHD should be based on individual learning abilities. © The Author(s) 2015.
[Problem based learning by distance education and analysis of a training system].
Dury, Cécile
2004-12-01
This article presents and analyses a training system aiming at acquiring skills in nursing cares. The aims followed are the development: --of an active pedagogic method: learning through problems (LTP); --of the interdisciplinary and intercultural approach, the same problems being solves by students from different disciplines and cultures; --of the use of the new technologies of information and communication (NTIC) so as to enable a maximal "distance" cooperation between the various partners of the project. The analysis of the system shows that the pedagogic aims followed by LTP are reached. The pluridisciplinary and pluricultural approach, to be optimal, requires great coordination between the partners, balance between the groups of students from different countries and disciplines, training and support from the tutors in the use of the distance teaching platform.
Mathematical Abstraction: Constructing Concept of Parallel Coordinates
NASA Astrophysics Data System (ADS)
Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.
2017-09-01
Mathematical abstraction is an important process in teaching and learning mathematics so pre-service mathematics teachers need to understand and experience this process. One of the theoretical-methodological frameworks for studying this process is Abstraction in Context (AiC). Based on this framework, abstraction process comprises of observable epistemic actions, Recognition, Building-With, Construction, and Consolidation called as RBC + C model. This study investigates and analyzes how pre-service mathematics teachers constructed and consolidated concept of Parallel Coordinates in a group discussion. It uses AiC framework for analyzing mathematical abstraction of a group of pre-service teachers consisted of four students in learning Parallel Coordinates concepts. The data were collected through video recording, students’ worksheet, test, and field notes. The result shows that the students’ prior knowledge related to concept of the Cartesian coordinate has significant role in the process of constructing Parallel Coordinates concept as a new knowledge. The consolidation process is influenced by the social interaction between group members. The abstraction process taken place in this group were dominated by empirical abstraction that emphasizes on the aspect of identifying characteristic of manipulated or imagined object during the process of recognizing and building-with.
Trevarthen, C
2000-01-01
Colwyn Trevarthen, working on autism, discussed the importance of time, rhythm and temporal processing in brain function. The brains of new born infants show highly coherent and coordinated patterns of activity over time, and their rhythms are remarkably similar to those of adults. Since the cortex has not yet developed, this coordination must be subcortical in origin. The likely source is the emotional motor system. He noted that the cerebellum might regulate the intricate timing of the development and expression of emotional communication. He also pointed out that emotional and motivational factors have often been seriously neglected in psychology (largely owing to a misplaced focus on 'cognition' as some isolated entity) and emphasized the potential importance of empathetic support and music therapy in helping autistic children. Copyright 2000 Harcourt Publishers Ltd.
Information from multiple modalities helps 5-month-olds learn abstract rules.
Frank, Michael C; Slemmer, Jonathan A; Marcus, Gary F; Johnson, Scott P
2009-07-01
By 7 months of age, infants are able to learn rules based on the abstract relationships between stimuli (Marcus et al., 1999), but they are better able to do so when exposed to speech than to some other classes of stimuli. In the current experiments we ask whether multimodal stimulus information will aid younger infants in identifying abstract rules. We habituated 5-month-olds to simple abstract patterns (ABA or ABB) instantiated in coordinated looming visual shapes and speech sounds (Experiment 1), shapes alone (Experiment 2), and speech sounds accompanied by uninformative but coordinated shapes (Experiment 3). Infants showed evidence of rule learning only in the presence of the informative multimodal cues. We hypothesize that the additional evidence present in these multimodal displays was responsible for the success of younger infants in learning rules, congruent with both a Bayesian account and with the Intersensory Redundancy Hypothesis.
Proactive transfer of learning depends on the evolution of prior learned task in memory.
Tallet, Jessica; Kostrubiec, Viviane; Zanone, Pier-Giorgio
2010-06-01
The aim of the present study was to investigate the processes underlying the proactive interference effect using bimanual coordination. Our rationale was that interference would only occur when the prior learned A coordination pattern enters in competition with the required subsequent B pattern. We hypothesized that competition would arise only if the A pattern persists in memory before introducing the B pattern. In the experimental group, both A and B patterns were practiced and recalled, whereas in the control group only the B pattern was practiced and recalled. In Experiment 1, which involved initially bistable participants, the persistence of the A pattern led to interference, while, surprisingly, the A pattern forgetting entailed facilitation. In Experiment 2, which involved initially tristable participants, no such transfer effect was found. The apparently contradictory results can be interpreted coherently in the light of dynamical principles of learning. (c) 2010 Elsevier B.V. All rights reserved.
Khoshnoud, Mohammad Javad; Siavashpour, Asma; Bakhshizadeh, Mojgan; Rashedinia, Marzieh
2018-02-01
Sodium benzoate (SB) is a widely used preservative and antimicrobial substance in many foods and soft drinks. However, this compound is generally recognized as safe food additives, but evidence has suggested that a high intake of SB may link to attention deficit-hyperactivity disorder in children. Present study investigate the effects of oral administration of different concentrations of SB (0.56, 1.125, and 2.25 mg/mL) for 4 weeks, on the learning and memory performance tests, and also the levels of malondialdehyde (MDA), reduced glutathione (GSH), and acetylcholinesterase activity (AChE) in the mouse brain. The results showed that SB significantly impaired memory and motor coordination. Moreover, SB decreased reduced GSH and increased the MDA level in the brain significantly (P < 0.001). However, nonsignificant alteration was observed in the AChE activity. These findings suggest that short-term consumption of SB can impair memory performance and increased brain oxidative stress in mice. © 2017 Wiley Periodicals, Inc.
Synchrony and desynchrony in circadian clocks: impacts on learning and memory
Krishnan, Harini C.
2015-01-01
Circadian clocks evolved under conditions of environmental variation, primarily alternating light dark cycles, to enable organisms to anticipate daily environmental events and coordinate metabolic, physiological, and behavioral activities. However, modern lifestyle and advances in technology have increased the percentage of individuals working in phases misaligned with natural circadian activity rhythms. Endogenous circadian oscillators modulate alertness, the acquisition of learning, memory formation, and the recall of memory with examples of circadian modulation of memory observed across phyla from invertebrates to humans. Cognitive performance and memory are significantly diminished when occurring out of phase with natural circadian rhythms. Disruptions in circadian regulation can lead to impairment in the formation of memories and manifestation of other cognitive deficits. This review explores the types of interactions through which the circadian clock modulates cognition, highlights recent progress in identifying mechanistic interactions between the circadian system and the processes involved in memory formation, and outlines methods used to remediate circadian perturbations and reinforce circadian adaptation. PMID:26286653
Adding Value to the Health Care System: Identifying Value-Added Systems Roles for Medical Students.
Gonzalo, Jed D; Graaf, Deanna; Johannes, Bobbie; Blatt, Barbara; Wolpaw, Daniel R
To catalyze learning in Health Systems Science and add value to health systems, education programs are seeking to incorporate students into systems roles, which are not well described. The authors sought to identify authentic roles for students within a range of clinical sites and explore site leaders' perceptions of the value of students performing these roles. From 2013 to 2015, site visits and interviews with leadership from an array of clinical sites (n = 30) were conducted. Thematic analysis was used to identify tasks and benefits of integrating students into interprofessional care teams. Types of systems roles included direct patient benefit activities, including monitoring patient progress with care plans and facilitating access to resources, and clinic benefit activities, including facilitating coordination and improving clinical processes. Perceived benefits included improved value of the clinical mission and enhanced student education. These results elucidate a framework for student roles that enhance learning and add value to health systems.
Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Community Collaborations
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Lawton, B. L.; Bartolone, L.; Schultz, G. R.; Blair, W. P.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team
2013-01-01
The NASA Astrophysics Science Education and Public Outreach Forum is one of four scientist-educator teams that support NASA's Science Mission Directorate and its nationwide education and public outreach community in increasing the coherence, efficiency, and effectiveness of their education and public outreach efforts. NASA Astrophysics education and outreach teams collaborate with each other through the Astrophysics Forum to place individual programs in context, connect with broader education and public outreach activities, learn and share successful strategies and techniques, and develop new partnerships. This poster highlights examples of collaborative efforts designed to engage youth and adults across the full spectrum of learning environments, from public outreach venues, to centers of informal learning, to K-12 and higher education classrooms. These include coordinated efforts to support major outreach events such as the USA Science and Engineering Festival; pilot "Astro4Girls" activities in public libraries to engage girls and their families in science during Women’s History Month; and a pilot "NASA's Multiwavelength Universe" online professional development course for middle and high school educators. Resources to assist scientists and Astro101 instructors in incorporating NASA Astrophysics discoveries into their education and public outreach efforts are also discussed.
Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition.
Fong, Simon; Song, Wei; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K L
2017-02-27
In this paper, a novel training/testing process for building/using a classification model based on human activity recognition (HAR) is proposed. Traditionally, HAR has been accomplished by a classifier that learns the activities of a person by training with skeletal data obtained from a motion sensor, such as Microsoft Kinect. These skeletal data are the spatial coordinates (x, y, z) of different parts of the human body. The numeric information forms time series, temporal records of movement sequences that can be used for training a classifier. In addition to the spatial features that describe current positions in the skeletal data, new features called 'shadow features' are used to improve the supervised learning efficacy of the classifier. Shadow features are inferred from the dynamics of body movements, and thereby modelling the underlying momentum of the performed activities. They provide extra dimensions of information for characterising activities in the classification process, and thereby significantly improve the classification accuracy. Two cases of HAR are tested using a classification model trained with shadow features: one is by using wearable sensor and the other is by a Kinect-based remote sensor. Our experiments can demonstrate the advantages of the new method, which will have an impact on human activity detection research.
Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition
Fong, Simon; Song, Wei; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K. L.
2017-01-01
In this paper, a novel training/testing process for building/using a classification model based on human activity recognition (HAR) is proposed. Traditionally, HAR has been accomplished by a classifier that learns the activities of a person by training with skeletal data obtained from a motion sensor, such as Microsoft Kinect. These skeletal data are the spatial coordinates (x, y, z) of different parts of the human body. The numeric information forms time series, temporal records of movement sequences that can be used for training a classifier. In addition to the spatial features that describe current positions in the skeletal data, new features called ‘shadow features’ are used to improve the supervised learning efficacy of the classifier. Shadow features are inferred from the dynamics of body movements, and thereby modelling the underlying momentum of the performed activities. They provide extra dimensions of information for characterising activities in the classification process, and thereby significantly improve the classification accuracy. Two cases of HAR are tested using a classification model trained with shadow features: one is by using wearable sensor and the other is by a Kinect-based remote sensor. Our experiments can demonstrate the advantages of the new method, which will have an impact on human activity detection research. PMID:28264470
NOAA Education: Adventures in Strategic Planning, External Review, and Evaluation
NASA Astrophysics Data System (ADS)
Michalopoulos, C.
2010-12-01
Since late 2007, the National Oceanic and Atmospheric Administration has undertaken the development of a 20-year Education Strategic Plan, has undergone an external review by the National Research Council of the National Academies, and has drafted a guiding document on an agency-wide approach for monitoring and evaluation of its education activities and programs. This presentation will review all these processes with special emphasis on lessons learned and on the implications of each one on NOAA’s ability to improve and better coordinate its educational portfolio.
"Getting Practical" and the National Network of Science Learning Centres
ERIC Educational Resources Information Center
Chapman, Georgina; Langley, Mark; Skilling, Gus; Walker, John
2011-01-01
The national network of Science Learning Centres is a co-ordinating partner in the Getting Practical--Improving Practical Work in Science programme. The principle of training provision for the "Getting Practical" programme is a cascade model. Regional trainers employed by the national network of Science Learning Centres trained the cohort of local…
Educating Professional Musicians: Lessons Learned from School Music
ERIC Educational Resources Information Center
Carruthers, Glen
2008-01-01
Music in Canadian schools at one time focused on skills development. Building on talent, aptitude, prior learning and physical coordination, students would become better at singing or playing an instrument by studying it at school. Over time, new approaches to music teaching and learning opened the umbrella to a more comprehensive range of…
ERIC Educational Resources Information Center
Betenbough, T. J., Ed.; Biggs, Shirley A., Ed.
This eighth yearbook of innovative learning strategies presents the following articles, grouped in three major sections. The first section, Program Models, contains: (1) "Welcome Back: Meeting the Needs of Nontraditional Students" (Kathy Carpenter); (2) "A Model Coordinated Curriculum for the First-Term Community College Learning Disabled Student"…
Illinois Work-Based Learning Programs: Worksite Mentor Knowledge and Training
ERIC Educational Resources Information Center
Chadd, Julie; Anderson, Marcia A.
2005-01-01
Teacher-coordinators and worksite mentors of high school work-based learning programs throughout Illinois were the subjects of this study which described worksite mentors' knowledge of teaching work skills to students participating in work-based learning programs and the nature of the training provided to these worksite mentors. There were no…
Procedural Learning during Declarative Control
ERIC Educational Resources Information Center
Crossley, Matthew J.; Ashby, F. Gregory
2015-01-01
There is now abundant evidence that human learning and memory are governed by multiple systems. As a result, research is now turning to the next question of how these putative systems interact. For instance, how is overall control of behavior coordinated, and does learning occur independently within systems regardless of what system is in control?…
Communities Can Work Together to Strengthen Summer Learning for Youth
ERIC Educational Resources Information Center
Willse, Katie
2015-01-01
High-quality summer learning programs in a given city are often only able to address a fraction of the need. Lack of access to program data and absence of stakeholder coordination compounds the problem. Working together to systematically increase program quality and provide more high-quality summer learning opportunities where families need them…
Exploring Conditions for Transformative Learning in Work-Integrated Education
ERIC Educational Resources Information Center
McRae, Norah
2015-01-01
A qualitative study was undertaken that explored the conditions for transformative learning in cooperative education as a form of work-integrated learning (WIL), towards the development of a theoretical model. Four case studies were analyzed based on interviews with WIL students, supervisors and their co-op coordinator. The findings revealed that…
Learning alternative movement coordination patterns using reinforcement feedback.
Lin, Tzu-Hsiang; Denomme, Amber; Ranganathan, Rajiv
2018-05-01
One of the characteristic features of the human motor system is redundancy-i.e., the ability to achieve a given task outcome using multiple coordination patterns. However, once participants settle on using a specific coordination pattern, the process of learning to use a new alternative coordination pattern to perform the same task is still poorly understood. Here, using two experiments, we examined this process of how participants shift from one coordination pattern to another using different reinforcement schedules. Participants performed a virtual reaching task, where they moved a cursor to different targets positioned on the screen. Our goal was to make participants use a coordination pattern with greater trunk motion, and to this end, we provided reinforcement by making the cursor disappear if the trunk motion during the reach did not cross a specified threshold value. In Experiment 1, we compared two reinforcement schedules in two groups of participants-an abrupt group, where the threshold was introduced immediately at the beginning of practice; and a gradual group, where the threshold was introduced gradually with practice. Results showed that both abrupt and gradual groups were effective in shifting their coordination patterns to involve greater trunk motion, but the abrupt group showed greater retention when the reinforcement was removed. In Experiment 2, we examined the basis of this advantage in the abrupt group using two additional control groups. Results showed that the advantage of the abrupt group was because of a greater number of practice trials with the desired coordination pattern. Overall, these results show that reinforcement can be successfully used to shift coordination patterns, which has potential in the rehabilitation of movement disorders.
25 CFR 170.105 - Are funds available for consultation, collaboration, and coordination activities?
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Are funds available for consultation, collaboration, and... Consultation, Collaboration, Coordination § 170.105 Are funds available for consultation, collaboration, and coordination activities? To fund consultation, collaboration, and coordination of IRR Program activities...
25 CFR 170.105 - Are funds available for consultation, collaboration, and coordination activities?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Are funds available for consultation, collaboration, and... Consultation, Collaboration, Coordination § 170.105 Are funds available for consultation, collaboration, and coordination activities? To fund consultation, collaboration, and coordination of IRR Program activities...
Viejo, Guillaume; Khamassi, Mehdi; Brovelli, Andrea; Girard, Benoît
2015-01-01
Current learning theory provides a comprehensive description of how humans and other animals learn, and places behavioral flexibility and automaticity at heart of adaptive behaviors. However, the computations supporting the interactions between goal-directed and habitual decision-making systems are still poorly understood. Previous functional magnetic resonance imaging (fMRI) results suggest that the brain hosts complementary computations that may differentially support goal-directed and habitual processes in the form of a dynamical interplay rather than a serial recruitment of strategies. To better elucidate the computations underlying flexible behavior, we develop a dual-system computational model that can predict both performance (i.e., participants' choices) and modulations in reaction times during learning of a stimulus–response association task. The habitual system is modeled with a simple Q-Learning algorithm (QL). For the goal-directed system, we propose a new Bayesian Working Memory (BWM) model that searches for information in the history of previous trials in order to minimize Shannon entropy. We propose a model for QL and BWM coordination such that the expensive memory manipulation is under control of, among others, the level of convergence of the habitual learning. We test the ability of QL or BWM alone to explain human behavior, and compare them with the performance of model combinations, to highlight the need for such combinations to explain behavior. Two of the tested combination models are derived from the literature, and the latter being our new proposal. In conclusion, all subjects were better explained by model combinations, and the majority of them are explained by our new coordination proposal. PMID:26379518
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A
2017-12-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction.
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A.
2017-01-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction. PMID:29376111
Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds
Veit, Lena; Aronov, Dmitriy
2011-01-01
How do animals with learned vocalizations coordinate vocal production with respiration? Songbirds such as the zebra finch learn their songs, beginning with highly variable babbling vocalizations known as subsong. After several weeks of practice, zebra finches are able to produce a precisely timed pattern of syllables and silences, precisely coordinated with expiratory and inspiratory pulses (Franz M, Goller F. J Neurobiol 51: 129–141, 2002). While respiration in adult song is well described, relatively little is known about respiratory patterns in subsong or about the processes by which respiratory and vocal patterns become coordinated. To address these questions, we recorded thoracic air sac pressure in juvenile zebra finches prior to the appearance of any consistent temporal or acoustic structure in their songs. We found that subsong contains brief inspiratory pulses (50 ms) alternating with longer pulses of sustained expiratory pressure (50–500 ms). In striking contrast to adult song, expiratory pulses often contained multiple (0–8) variably timed syllables separated by expiratory gaps and were only partially vocalized. During development, expiratory pulses became shorter and more stereotyped in duration with shorter and fewer nonvocalized parts. These developmental changes eventually resulted in the production of a single syllable per expiratory pulse and a single inspiratory pulse filling each gap, forming a coordinated sequence similar to that of adult song. To examine the role of forebrain song-control nuclei in the development of respiratory patterns, we performed pressure recordings before and after lesions of nucleus HVC (proper name) and found that this manipulation reverses the developmental trends in measures of the respiratory pattern. PMID:21697438
Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds.
Veit, Lena; Aronov, Dmitriy; Fee, Michale S
2011-10-01
How do animals with learned vocalizations coordinate vocal production with respiration? Songbirds such as the zebra finch learn their songs, beginning with highly variable babbling vocalizations known as subsong. After several weeks of practice, zebra finches are able to produce a precisely timed pattern of syllables and silences, precisely coordinated with expiratory and inspiratory pulses (Franz M, Goller F. J Neurobiol 51: 129-141, 2002). While respiration in adult song is well described, relatively little is known about respiratory patterns in subsong or about the processes by which respiratory and vocal patterns become coordinated. To address these questions, we recorded thoracic air sac pressure in juvenile zebra finches prior to the appearance of any consistent temporal or acoustic structure in their songs. We found that subsong contains brief inspiratory pulses (50 ms) alternating with longer pulses of sustained expiratory pressure (50-500 ms). In striking contrast to adult song, expiratory pulses often contained multiple (0-8) variably timed syllables separated by expiratory gaps and were only partially vocalized. During development, expiratory pulses became shorter and more stereotyped in duration with shorter and fewer nonvocalized parts. These developmental changes eventually resulted in the production of a single syllable per expiratory pulse and a single inspiratory pulse filling each gap, forming a coordinated sequence similar to that of adult song. To examine the role of forebrain song-control nuclei in the development of respiratory patterns, we performed pressure recordings before and after lesions of nucleus HVC (proper name) and found that this manipulation reverses the developmental trends in measures of the respiratory pattern.
Identifying Internet Sites to Coordinate with National Science Education Standards
ERIC Educational Resources Information Center
Fehrenbach, Carolyn R.; Morris, Maxine G.
2004-01-01
Identifying Internet sites to coordinate with National Science Education Standards can be challenging for teachers and students. By identifying quality free Internet sites in science, teachers and students can use the extensive resources of the Internet to enhance learning and instruction while meeting National Science Education Content Standards…
Multiple Sensory-Motor Pathways Lead to Coordinated Visual Attention
ERIC Educational Resources Information Center
Yu, Chen; Smith, Linda B.
2017-01-01
Joint attention has been extensively studied in the developmental literature because of overwhelming evidence that the ability to socially coordinate visual attention to an object is essential to healthy developmental outcomes, including language learning. The goal of this study was to understand the complex system of sensory-motor behaviors that…
Current Approaches to Intervention in Children with Developmental Coordination Disorder
ERIC Educational Resources Information Center
Sugden, David
2007-01-01
This review analyzes approaches to intervention in children with developmental coordination disorder within the framework of how children develop and learn motor skills, drawing upon maturational, cognitive, and dynamic systems models. The approaches to intervention are divided into two categories: (1) process or deficit-oriented approaches; and…
Coordinated Vocational Academic Education. Home and Community Services Instructor's Handbook.
ERIC Educational Resources Information Center
Baca, Patricia
This instructor's handbook contains information on the Coordinated Vocational Academic Education program (CVAE) designed for special learning needs students (in-school youth possessing academic, socio-economic, or other handicaps). Academic instruction is provided for the areas of math, science, English, and social studies. Home economics skills…
Examining Individual and Collective Level Mathematical Progress
ERIC Educational Resources Information Center
Rasmussen, Chris; Wawro, Megan; Zandieh, Michelle
2015-01-01
A challenge in mathematics education research is to coordinate different analyses to develop a more comprehensive account of teaching and learning. We contribute to these efforts by expanding the constructs in Cobb and Yackel's (Educational Psychologist 31:175-190, 1996) interpretive framework that allow for coordinating social and individual…
Installé, Arnaud Jf; Van den Bosch, Thierry; De Moor, Bart; Timmerman, Dirk
2014-10-20
Using machine-learning techniques, clinical diagnostic model research extracts diagnostic models from patient data. Traditionally, patient data are often collected using electronic Case Report Form (eCRF) systems, while mathematical software is used for analyzing these data using machine-learning techniques. Due to the lack of integration between eCRF systems and mathematical software, extracting diagnostic models is a complex, error-prone process. Moreover, due to the complexity of this process, it is usually only performed once, after a predetermined number of data points have been collected, without insight into the predictive performance of the resulting models. The objective of the study of Clinical Data Miner (CDM) software framework is to offer an eCRF system with integrated data preprocessing and machine-learning libraries, improving efficiency of the clinical diagnostic model research workflow, and to enable optimization of patient inclusion numbers through study performance monitoring. The CDM software framework was developed using a test-driven development (TDD) approach, to ensure high software quality. Architecturally, CDM's design is split over a number of modules, to ensure future extendability. The TDD approach has enabled us to deliver high software quality. CDM's eCRF Web interface is in active use by the studies of the International Endometrial Tumor Analysis consortium, with over 4000 enrolled patients, and more studies planned. Additionally, a derived user interface has been used in six separate interrater agreement studies. CDM's integrated data preprocessing and machine-learning libraries simplify some otherwise manual and error-prone steps in the clinical diagnostic model research workflow. Furthermore, CDM's libraries provide study coordinators with a method to monitor a study's predictive performance as patient inclusions increase. To our knowledge, CDM is the only eCRF system integrating data preprocessing and machine-learning libraries. This integration improves the efficiency of the clinical diagnostic model research workflow. Moreover, by simplifying the generation of learning curves, CDM enables study coordinators to assess more accurately when data collection can be terminated, resulting in better models or lower patient recruitment costs.
ERIC Educational Resources Information Center
Kapon, Suulamit
2017-01-01
Learning science involves an ongoing process in which learners construct and reconstruct self-explanations and evaluate their relative soundness. This work coordinates and aligns complementary methodological and theoretical approaches to learning to both unpack sensemaking and better understand the conditions that facilitate it. I conceptualize…
Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals
Zhang, Qin; Liu, Runfeng; Chen, Wenbin; Xiong, Caihua
2017-01-01
In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions. PMID:28611573
Cignetti, Fabien; Vaugoyeau, Marianne; Fontan, Aurelie; Jover, Marianne; Livet, Marie-Odile; Hugonenq, Catherine; Audic, Frédérique; Chabrol, Brigitte; Assaiante, Christine
2018-05-01
Feedforward and online controls are two facets of predictive motor control from internal models, which is suspected to be impaired in learning disorders. We examined whether the feedforward component is affected in children (8-12 years) with developmental dyslexia (DD) and/or with developmental coordination disorder (DCD) compared to typically developing (TD) children. Children underwent a bimanual unloading paradigm during which a load supported to one arm, the postural arm, was either unexpectedly unloaded by a computer or voluntary unloaded by the subject with the other arm. All children showed a better stabilization (lower flexion) of the postural arm and an earlier inhibition of the arm flexors during voluntary unloading, indicating anticipation of unloading. Between-group comparisons of kinematics and electromyographic activity of the postural arm revealed that the difference during voluntary unloading was between DD-DCD children and the other groups, with the former showing a delayed inhibition of the flexor muscles. Deficit of the feedforward component of motor control may particularly apply to comorbid subtypes, here the DD-DCD subtype. The development of a comprehensive framework for motor performance deficits in children with learning disorders will be achieved only by dissociating key components of motor prediction and focusing on subtypes and comorbidities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Frankford, D M; Patterson, M A; Konrad, T R
2000-07-01
Practice organizations will increasingly engage in activities that are the functional equivalents of continuing medical education. The authors maintain that if these activities are properly structured within practice organizations, they can become powerful engines of socialization to enhance physicians' lifelong learning and commitment to medical professionalism. They propose that this promise can be realized if new or reformed practice organizations combine education and service delivery and institutionalize processes of individual and collective reflection. The resulting "institutions of reflective practice" would be ones of collegial, experiential, reflective lifelong learning concerning the technical and normative aspects of medical work. They would extend recent methods of medical education such as problem-based learning into the practice setting and draw on extant methods used in complex organizations to maximize the advantages and minimize the disadvantages that practice organizations typically present for adult learning. As such, these institutions would balance the potentially conflicting organizational needs for, on the one hand, (1) self-direction, risk taking, and creativity; (2) specialization; and (3) collegiality; and, on the other hand, (4) organizational structure, (5) coordination of division of labor, and (6) hierarchy. Overall, this institutionalization of reflective practice would enrich practice with education and education with practice, and accomplish the ideals of what the authors call "responsive medical professionalism." The medical profession would both contribute and be responsive to social values, and medical work would be valued intrinsically and as central to practitioners' self-identity and as a contribution to the public good.
Sangster Jokić, Claire A; Whitebread, David
2016-11-01
Children with developmental coordination disorder (DCD) experience difficulty learning and performing everyday motor tasks due to poor motor coordination. Recent research applying a cognitive learning paradigm has argued that children with DCD have less effective cognitive and metacognitive skills with which to effectively acquire motor skills. However, there is currently limited research examining individual differences in children's use of self-regulatory and metacognitive skill during motor learning. This exploratory study aimed to compare the self-regulatory performance of children with and without DCD. Using a mixed methods approach, this study observed and compared the self-regulatory behavior of 15 children with and without DCD, aged between 7 and 9 years, during socially mediated motor practice. Observation was conducted using a quantitative coding scheme and qualitative analysis of video-recorded sessions. This paper will focus on the results of quantitative analysis, while data arising from the qualitative analysis will be used to support quantitative findings. In general, findings indicate that children with DCD exhibit less independent and more ineffective self-regulatory skill during motor learning than their typically developing peers. In addition, children with DCD rely more heavily on external support for effective regulation and are more likely to exhibit negative patterns of motivational regulation. These findings provide further support for the notion that children with DCD experience difficulty effectively self-regulating motor learning. Implications for practice and directions for future research are discussed.
Ferrante, Jeanne M; Friedman, Asia; Shaw, Eric K; Howard, Jenna; Cohen, Deborah J; Shahidi, Laleh
2015-10-18
While an increasing number of researchers are using online discussion forums for qualitative research, few authors have documented their experiences and lessons learned to demonstrate this method's viability and validity in health services research. We comprehensively describe our experiences, from start to finish, of designing and using an asynchronous online discussion forum for collecting and analyzing information elicited from care coordinators in Patient-Centered Medical Homes across the United States. Our lessons learned from each phase, including planning, designing, implementing, using, and ending this private online discussion forum, provide some recommendations for other health services researchers considering this method. An asynchronous online discussion forum is a feasible, efficient, and effective method to conduct a qualitative study, particularly when subjects are health professionals. © The Author(s) 2015.
Lessons Learned Designing and Using an Online Discussion Forum for Care Coordinators in Primary Care
Ferrante, Jeanne M.; Friedman, Asia; Shaw, Eric K.; Howard, Jenna; Cohen, Deborah J.; Shahidi, Laleh
2016-01-01
While an increasing number of researchers are using online discussion forums for qualitative research, few authors have documented their experiences and lessons learned to demonstrate this method’s viability and validity in health services research. We comprehensively describe our experiences, from start to finish, of designing and using an asynchronous online discussion forum for collecting and analyzing information elicited from care coordinators in Patient-Centered Medical Homes across the United States. Our lessons learned from each phase, including planning, designing, implementing, using, and ending this private online discussion forum, provide some recommendations for other health services researchers considering this method. An asynchronous online discussion forum is a feasible, efficient, and effective method to conduct a qualitative study, particularly when subjects are health professionals. PMID:26481942
ERIC Educational Resources Information Center
Nyden, Agneta; Niklasson, Lena; Stahlberg, Ola; Anckarsater, Henrik; Dahlgren-Sandberg, Annika; Wentz, Elisabet; Rastam, Maria
2010-01-01
Asperger syndrome (AS) and non-verbal learning disability (NLD) are both characterized by impairments in motor coordination, visuo-perceptual abilities, pragmatics and comprehension of language and social understanding. NLD is also defined as a learning disorder affecting functions in the right cerebral hemisphere. The present study investigates…
ERIC Educational Resources Information Center
De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores
2016-01-01
Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…
45 CFR 2516.400 - What must a State or Indian tribe include in an application for a grant?
Code of Federal Regulations, 2010 CFR
2010-10-01
... (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE SCHOOL-BASED SERVICE-LEARNING PROGRAMS Application... following: (a) A three-year strategic plan for promoting service-learning through programs under this part... include a description of how the SEA will coordinate its service-learning plan with the State Plan under...
45 CFR 2516.400 - What must a State or Indian tribe include in an application for a grant?
Code of Federal Regulations, 2011 CFR
2011-10-01
... (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE SCHOOL-BASED SERVICE-LEARNING PROGRAMS Application... following: (a) A three-year strategic plan for promoting service-learning through programs under this part... include a description of how the SEA will coordinate its service-learning plan with the State Plan under...
ERIC Educational Resources Information Center
Ciudad-Gómez, Adelaida
2010-01-01
The framework of the European Higher Education Area (EHEA) has turned the student into the main protagonist of the new educational scenario, and the teacher into the coordinator of teaching-learning process instead of transmitter of knowledge. In this new model of learning, the use of ICT is facilitating competency-based learning and the…
Technology Leaders Wanted: Acknowledging the Leadership Role of a Technology Coordinator
ERIC Educational Resources Information Center
Sugar, William; Holloman, Harold
2009-01-01
Technology currently plays a crucial role in impacting teaching practices within schools. Similarly, a technology coordinator performs several tasks within a school environment and plays multiple roles that influence teaching and learning each day. Described as a "position with a protocol," Frazier and Bailey (2004) noted that effective technology…
Health Is Academic. A Guide to Coordinated School Health Programs.
ERIC Educational Resources Information Center
Marx, Eva, Ed.; Wooley, Susan Frelick, Ed.; Northrop, Daphne, Ed.
This book presents a collection of papers that define comprehensive school health programs and their components and provide action steps for their implementation at the local, state, and national levels: (1) "Linking Health and Learning: An Overview of Coordinated School Health Programs" (Floretta Dukes McKenzie and Julius B. Richmond); (2)…
Community Education Parenting Resource Guide. Bulletin 1982, No. 5.
ERIC Educational Resources Information Center
Bradwell, John; And Others
Designed for use by community education coordinators, elementary classroom teachers, PTA workers, school volunteers, and parents, this guide offers suggestions about ways to unite the school and the home in efforts to help children learn. The first section discusses the expanded role of the community education coordinator in parenting programs and…
Parenting Education: An Exemplary Program for Rural/Migrant Youth and Adults. Final Report.
ERIC Educational Resources Information Center
Baum, Rosemere; And Others
Designed for use in a parenting education course for rural/migrant youth and adults, this parenting education learning kit consists of a coordinator's manual and bilingual instructional materials for seven course sessions. Issues addressed in the coordinator's manual include program content, program format, orientation for experienced parents,…
The School Counsellor: An Essential Partner in Today's Coordinated School Health Climate
ERIC Educational Resources Information Center
Henry, Jean; McNab, Warren; Coker, J. Kelly
2005-01-01
Youth today face many health, educational, and social challenges not experienced at such epidemic levels by previous generations of young people. By providing collaborative, comprehensive services that address student needs and promote learning and healthy development, a coordinated school health team can help students succeed in school, as well…
Stages in Constructing and Coordinating Units Additively and Multiplicatively (Part 2)
ERIC Educational Resources Information Center
Ulrich, Catherine
2016-01-01
This is the second of a two-part article that presents a theory of unit construction and coordination that underlies radical constructivist empirical studies of student learning ranging from young students' counting strategies to high school students' algebraic reasoning. In Part I, I discussed the formation of arithmetical units and composite…
Stages in Constructing and Coordinating Units Additively and Multiplicatively (Part 1)
ERIC Educational Resources Information Center
Ulrich, Catherine
2015-01-01
This is the first of a two-part article that presents a theory of unit construction and coordination that underlies radical constructivist empirical studies of student learning ranging from young students' counting strategies to high school students' algebraic reasoning. My explanation starts with the formation of arithmetical units, which presage…
C.I.E. Teacher-Coordinator Training Plans.
ERIC Educational Resources Information Center
Natale, Don; And Others
The stated purpose of this training plan manual is to assist the cooperative industrial education coordinator in determining the student's performance both in school and on the job in order that the student learner may reach his/her occupational goal. Major contents are training plans (lists of learning experiences and job tasks to be undertaken…
Language Coordinators Resource Kit. Section Ten: Picture Bank.
ERIC Educational Resources Information Center
Peace Corps, Washington, DC. Information Collection and Exchange Div.
The guide is one section of a resource kit designed to assist Peace Corps language instruction coordinators in countries around the world in understanding the principles underlying second language learning and teaching and in organizing instructional programs. This section contains a collection of pictures that can be used as visual aids in…
Prospects for stakeholder coordination by protected-area managers in Europe.
Mattsson, Brady J; Vacik, Harald
2018-02-01
Growing resource demands by humans, invasive species, natural hazards, and a changing climate have created broad-scale impacts and the need for broader-extent conservation activities that span ownerships and even political borders. Implementing regional-scale conservation brings great challenges, and learning how to overcome these challenges is essential for maintaining biodiversity (i.e., richness and evenness of biological communities) and ecosystem functions and services across scales and borders in the face of system change. We administered an online survey to examine factors potentially driving perspectives of protected-area (PA) managers regarding coordination with neighboring PAs and other stakeholders (i.e., stakeholder coordination) for conserving biodiversity and ecosystem services during the next decade within diverse regions across Europe. Although >70% (n = 58) of responding PA managers indicated that climate change and invasive species are relevant for their PAs, they gave <50% probability that these threats could be mitigated through stakeholder coordination. They thought there was a >60% probability (n = 85) that stakeholder coordination would take place with the aim to improve conservation outcomes. Consistent with the foundation on which many European PAs were established, managers viewed maintaining or enhancing biodiversity as the most important (>70%; n = 61) expected benefit. Other benefits included maintaining or enhancing human resources and environmental education (range of Bayesian credibility intervals [CIs] 57-93%). They thought the main barriers to stakeholder coordination were the lack of human and economic resources (CI 59-67% chance of hindering; n = 64) followed by communication and interstakeholder differences in political structures and laws (CI 51-64% probability of hindering). European policies and strategies that address these hindering factors could be particularly effective means of enabling implementation of green infrastructure networks in which PAs are the nodes. © 2017 Society for Conservation Biology.
Wiestler, Tobias; Waters-Metenier, Sheena; Diedrichsen, Jörn
2014-04-02
Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere.
Wiestler, Tobias; Waters-Metenier, Sheena
2014-01-01
Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere. PMID:24695723
Assessment of multi-wildfire occurrence data for machine learning based risk modelling
NASA Astrophysics Data System (ADS)
Lim, C. H.; Kim, M.; Kim, S. J.; Yoo, S.; Lee, W. K.
2017-12-01
The occurrence of East Asian wildfires is mainly caused by human-activities, but the extreme drought increased due to the climate change caused wildfires and they spread to large-scale fires. Accurate occurrence location data is required for modelling wildfire probability and risk. In South Korea, occurrence data surveyed through KFS (Korea Forest Service) and MODIS (MODerate-resolution Imaging Spectroradiometer) satellite-based active fire data can be utilized. In this study, two sorts of wildfire occurrence data were applied to select suitable occurrence data for machine learning based wildfire risk modelling. MaxEnt (Maximum Entropy) model based on machine learning is used for wildfire risk modelling, and two types of occurrence data and socio-economic and climate-environment data are applied to modelling. In the results with KFS survey based data, the low relationship was shown with climate-environmental factors, and the uncertainty of coordinate information appeared. The MODIS-based active fire data were found outside the forests, and there were a lot of spots that did not match the actual wildfires. In order to utilize MODIS-based active fire data, it was necessary to extract forest area and utilize only high-confidence level data. In KFS data, it was necessary to separate the analysis according to the damage scale to improve the modelling accuracy. Ultimately, it is considered to be the best way to simulate the wildfire risk by constructing more accurate information by combining two sorts of wildfire occurrence data.
Caring for a major government official: challenges and lessons learned.
Weiss, Yoram G; Mor-Yosef, Shlomo; Sprung, Charles L; Weissman, Charles; Weiss, Yuval
2007-07-01
Analysis of the medical, organizational, and administrative issues surrounding the care of a dignitary in an intensive care unit. On January 4, 2006, Ariel Sharon, the Israeli Prime Minister was emergently admitted to the Hadassah-Hebrew University Medical Center in Jerusalem owing to a severe intracranial hemorrhage. Immediately following his admission, he underwent an extensive neurosurgical procedure to control the bleeding. Thereafter, he required intensive care for 5 months and underwent additional procedures. This admission presented organizational and administrative challenges. The major challenge was to provide the Prime Minister with the best medical care while avoiding the "very important person syndrome" and simultaneously continuing routine hospital activities. To coordinate his complicated medical management, a consultation forum was established composed of all the physicians directly involved in Mr. Sharon's care. Additionally, a senior intensivist was chosen to coordinate the medical care and, along with a physician from the hospital administration, assist with administrative issues. Among the issues that the coordinating team addressed, with the help of many other hospital services, included patient confidentiality vs. public information, security of the patient's medical chart (including laboratory data and imaging), and coordination with security personnel. The acute care of a major governmental official requires the medical staff to address many administrative issues, while providing the "very important person" patient with appropriate intensive medical care. This article presents a strategy for addressing these issues.
Luo, Airong; Omollo, Kathleen Ludewig
2013-11-01
There is a growing trend of academic partnerships between U.S., Canadian, and European health science institutions and academic health centers in low- and middle-income countries. These partnerships often encounter challenges such as resource disparities and power differentials, which affect the motivations, expectations, balance of benefits, and results of the joint projects. Little has been discussed in previous literature regarding the communication and project management processes that affect the success of such partnerships. To fill the gap in the literature, the authors present lessons learned from the African Health Open Educational Resources Network, a multicountry, multiorganizational partnership established in May 2008. The authors introduce the history of the network, then discuss actively engaging stakeholders throughout the project's life cycle (design, planning, execution, and closure) through professional development, relationship building, and assessment activities. They focus on communication and management practices used to identify mutually beneficial project goals, ensure timely completion of deliverables, and develop sustainable sociotechnical infrastructure for future collaborative projects. These activities yielded an interactive process of action, assessment, and reflection to ensure that project goals and values were aligned with implementation. The authors conclude with a discussion of lessons learned and how the partnership project may serve as a model for other universities and academic health centers in high-income countries and low- and middle-income countries that are interested in or currently pursuing international academic partnerships.
Artifact-based reflective interviews for identifying pragmatic epistemological resources
NASA Astrophysics Data System (ADS)
Shubert, Christopher Walden
Physics Education Research studies the science of teaching and learning physics. The process of student learning is complex, and the factors that affect it are numerous. Describing students' understanding of physics knowledge and reasoning is the basis for much productive research; however, such research fails to account for certain types of student learning difficulties. In this dissertation, I explore one source of student difficulty: personal epistemology, students' ideas about knowledge and knowing. Epistemology traditionally answers three questions: What is knowledge? How is knowledge created? And, how do we know what we know? An individual's responses to these questions can affect learning in terms of how they approach tasks involving the construction and application of knowledge. The key issue addressed in this dissertation is the effect of methodological choices on the validity and reliability of claims concerning personal epistemology. My central concern is contextual validity, how what is said about one's epistemology is not identical to how one behaves epistemologically. In response to these issues, I present here a new methodology for research on student epistemology: video artifact-based reflective interview protocols. These protocols begin with video taping students in their natural classroom activities, and then asking the participants epistemological questions immediately after watching selected scenes from their activity, contextually anchoring them in their actual learning experience. The data from these interviews is viewed in the framework of Epistemological Resource Theory, a framework of small bits of knowledge whose coordination in a given context is used to describe personal epistemology. I claim that the privileged data from these interviews allows detailed epistemological resources to be identified, and that these resources can provide greater insight into how student epistemologies are applied in learning activities. This research, situated within an algebra-based physics for life scientists course reform project, focuses on student work in Modeling Informed Instruction (MII) laboratory activities, which are an adaptation of Modeling Instruction. The development of these activities is based on the epistemological foundations of Modeling Instruction, and these foundations are used to describe a potential assessment for the epistemological effectiveness of a curriculum.
ERIC Educational Resources Information Center
Hendrickson, Homer
1988-01-01
Spelling problems arise due to problems with form discrimination and inadequate visualization. A child's sequence of visual development involves learning motor control and coordination, with vision directing and monitoring the movements; learning visual comparison of size, shape, directionality, and solidity; developing visual memory or recall;…
Evans, A; Ranjit, N; Hoelscher, D; Jovanovic, C; Lopez, M; McIntosh, A; Ory, M; Whittlesey, L; McKyer, L; Kirk, A; Smith, C; Walton, C; Heredia, N I; Warren, J
2016-09-13
Coordinated, multi-component school-based interventions can improve health behaviors in children, as well as parents, and impact the weight status of students. By leveraging a unique collaboration between Texas AgriLife Extension (a federal, state and county funded educational outreach organization) and the University of Texas School of Public Health, the Texas Grow! Eat! Go! Study (TGEG) modeled the effectiveness of utilizing existing programs and volunteer infrastructure to disseminate an enhanced Coordinated School Health program. The five-year TGEG study was developed to assess the independent and combined impact of gardening, nutrition and physical activity intervention(s) on the prevalence of healthy eating, physical activity and weight status among low-income elementary students. The purpose of this paper is to report on study design, baseline characteristics, intervention approaches, data collection and baseline data. The study design for the TGEG study consisted of a factorial group randomized controlled trial (RCT) in which 28 schools were randomly assigned to one of 4 treatment groups: (1) Coordinated Approach to Child Health (CATCH) only (Comparison), (2) CATCH plus school garden intervention [Learn, Grow, Eat & Go! (LGEG)], (3) CATCH plus physical activity intervention [Walk Across Texas (WAT)], and (4) CATCH plus LGEG plus WAT (Combined). The outcome variables include student's weight status, vegetable and sugar sweetened beverage consumption, physical activity, and sedentary behavior. Parents were assessed for home environmental variables including availability of certain foods, social support of student health behaviors, parent engagement and behavior modeling. Descriptive data are presented for students (n = 1369) and parents (n = 1206) at baseline. The sample consisted primarily of Hispanic and African American (53 % and 18 %, respectively) and low-income (i.e., 78 % eligible for Free and Reduced Price School Meals program and 43 % food insecure) students. On average, students did not meet national guidelines for vegetable consumption or physical activity. At baseline, no statistical differences for demographic or key outcome variables among the 4 treatment groups were observed. The TGEG study targets a population of students and parents at high risk of obesity and related chronic conditions, utilizing a novel and collaborative approach to program formulation and delivery, and a rigorous, randomized study design.
Developmental coordination disorders: state of art.
Vaivre-Douret, L
2014-01-01
In the literature, descriptions of children with motor coordination difficulties and clumsy movements have been discussed since the early 1900s. According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), it is a marked impairment in the development of fine or global motor coordination, affecting 6% of school-age children. All these children are characterized for developmental coordination disorder (DCD) in motor learning and new motor skill acquisition, in contrast to adult apraxia which is a disorder in the execution of already learned movements. No consensus has been established about etiology of DCD. Intragroup approach through factor and cluster analysis highlights that motor impairment in DCD children varies both in severity and nature. Indeed, most studies have used screening measures of performance on some developmental milestones derived from global motor tests. A few studies have investigated different functions together with standardized assessments, such as neuromuscular tone and soft signs, qualitative and quantitative measures related to gross and fine motor coordination and the specific difficulties -academic, language, gnosic, visual motor/visual-perceptual, and attentional/executive- n order to allow a better identification of DCD subtypes with diagnostic criteria and to provide an understanding of the mechanisms and of the cerebral involvement. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Self-development of visual space perception by learning from the hand
NASA Astrophysics Data System (ADS)
Chung, Jae-Moon; Ohnishi, Noboru
1998-10-01
Animals have been considered to develop ability for interpreting images captured on their retina by themselves gradually from their birth. For this they do not need external supervisor. We think that the visual function is obtained together with the development of hand reaching and grasping operations which are executed by active interaction with environment. On the viewpoint of hand teaches eye, this paper shows how visual space perception is developed in a simulated robot. The robot has simplified human-like structure used for hand-eye coordination. From the experimental results it may be possible to validate the method to describe how visual space perception of biological systems is developed. In addition the description gives a way to self-calibrate the vision of intelligent robot based on learn by doing manner without external supervision.
García-Mangas, José Alberto; Viniegra-Velázquez, Leonardo
2008-01-01
The teachers' formation program at IMSS includes the methodological diplomate in teaching level I (DMDI) and level II (DMDII). This program is based in educational strategies that promote the participation (guide towards knowledge elaboration). The importance of discussion in small groups (subgroups) to increase learning has been showed as part of such strategies. To evaluate the influence in learning of the professors' experience in coordinating the subgroup discussion. Three groups of students were included (professors in teaching formation) that had consecutively studied the DMDI: DMDIa, DMDIb, and DMDIc. There was also included a group of DMDII whose students had participated in DMDI as coordinators of the subgroup discussion of DMDIb and DMDIc (DMDIa did not count with coordinators). Two instruments previously validated were used to evaluate the development of a position about education and scientific work (indicator of both: % of consequence). Evaluations were made at the beginning and end of each DMDI. Position in education: at the beginning DMDIa = 36; DMDIb = 30, DMDIc = 31, without differences among them (p 0.65). After the interventions the increases were: DMDIa from 36 to 75 (p < 0.01), DMDIb from 30 to 91 (p < 0.01), DMDIc from 31 to 90 (p < 0.01). When comparing the groups among themselves, differences were found between DMDIa and DMDIb, DMDIa and DMDIc, and no differences were found between DMDIb and DMDIc. Position about scientific work: at the beginning DMDIa = 20; DMDIb = 14; DMDIc = 15 (p. 0.35). After the interventions the increases were: DMDIa from 20 to 35 (p < 0.05); DMDIb from 14 to 53 (p < 0.02), DMDIc from 15 to 79 (p < 0.001). When comparing the groups among themselves, difference was found between DMDIb and DMDIc (p < 0.02) and from these two and DMDIa. The results support the hypothesis that the professor's experience in the coordination of subgroup discussion has a notorious influence in learning. The DMDIa group that did not have this support showed lower advances with both instruments. The DMDIb group that had coordinating professors with little experience had equivalent advances to DMDIc in position about education, and lower advances in the position about scientific work. The DMDIc group whose coordinating professors had a previous experience with the DMDIb group showed the greatest increases. Features of educational strategy promoting the participation are described as well as the importance of the experience of the professor in coordinating the discussion, to increase learning.
In Living Memory: The Dying Art of Learning Poetry and a Case for Revival
ERIC Educational Resources Information Center
Pullinger, Debbie
2012-01-01
This article considers the practice of learning poems and the value of poetry in the memory, and emerges from the Cambridge Poetry Teaching Project, a small-scale research study co-ordinated through the Faculty of Education at the University of Cambridge. Drawing on the subset of findings in relation to learning and memory, the essay locates the…
ERIC Educational Resources Information Center
Illinois State Board of Education, Springfield.
This document sets forth the state goals for learning in the area of physical development and health for elementary and secondary students in Illinois. The final objective of this schooling is to provide students with the knowledge and attitudes to achieve healthful living throughout their lives and to acquire physical fitness, coordination, and…
Acquisition of Internal Models of Motor Tasks in Children with Autism
ERIC Educational Resources Information Center
Gidley Larson, Jennifer C.; Bastian, Amy J.; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H.
2008-01-01
Children with autism exhibit a host of motor disorders including poor coordination, poor tool use and delayed learning of complex motor skills like riding a tricycle. Theory suggests that one of the crucial steps in motor learning is the ability to form internal models: to predict the sensory consequences of motor commands and learn from errors to…
Hitting the TARGET? A Case Study of the Experiences of Teachers in Steel Mill Learning Centers.
ERIC Educational Resources Information Center
Rose, Amy D.; Jeris, Laurel; Smith, Robert
Part of a larger study on the experience of teaching in the steel mill learning environment was an inquiry focused on professional development. Teachers and coordinators were all members of the Teachers Action Research Group for Educational Technology (TARGET), a group of adult educators interested in improving learning and teaching in career…
What Difference Can ePortfolio Make? A Field Report from the Connect to Learning Project
ERIC Educational Resources Information Center
Eynon, Bret; Gambino, Laura M.; Török, Judit
2014-01-01
Connect to Learning (C2L) is a FIPSE-funded project coordinated by LaGuardia Community College (CUNY) that links ePortfolio teams from 24 campuses nationwide into a supportive community of practice. Launched in 2011, C2L focused on exploring and documenting ePortfolio strategies to advance student, faculty, and institutional learning. Working…
ERIC Educational Resources Information Center
Williams, Andrea L.; Verwood, Roselynn; Beery, Theresa A.; Dalton, Helen; McKinnon, James; Strickland, Karen; Pace, Jessica; Poole, Gary
2013-01-01
This paper offers a guide for those seeking to integrate the Scholarship of Teaching and Learning (SoTL) into higher education institutions to improve the quality of student learning. The authors posit that weaving SoTL into institutional cultures requires the coordinated actions of individuals working in linked social networks rather than…
26 CFR 1.25A-1 - Calculation of education tax credit and general eligibility requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Scholarship Credit (as described in § 1.25A-3) plus the Lifetime Learning Credit (as described in § 1.25A-4... Internal Revenue Code, see section 26. (b) Coordination of Hope Scholarship Credit and Lifetime Learning... Learning Credit for one or more other students' qualified tuition and related expenses. However, a taxpayer...
ERIC Educational Resources Information Center
Gilbert, Greg, Ed.; Buechner, Marybeth, Ed.
2007-01-01
Formally stating and assessing student learning outcomes (SLOs) is a new focus for California community colleges required by the 2002 Accreditation Standards. This paper, the first in a series, explores one aspect of this sea change across the state: the emergence of a new group of faculty leaders, Student Learning Outcomes and Assessment…
26 CFR 1.25A-1 - Calculation of education tax credit and general eligibility requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Scholarship Credit (as described in § 1.25A-3) plus the Lifetime Learning Credit (as described in § 1.25A-4... Internal Revenue Code, see section 26. (b) Coordination of Hope Scholarship Credit and Lifetime Learning... Learning Credit for one or more other students' qualified tuition and related expenses. However, a taxpayer...
Work-based learning in health and social care.
Phillips, Sue
This article examines some of the issues encountered in helping to develop and facilitate work-based learning (WBL) in clinical areas from the author's perspective of APEL/WBL co-ordinator. The advantages of work-based learning to both organisations and practitioners are discussed, together with possible drawbacks. The article concludes by identifying the positive aspects, including that of practice development, but suggests caution in attempting to use work-based learning in all circumstances.
Muscle coordination is habitual rather than optimal.
de Rugy, Aymar; Loeb, Gerald E; Carroll, Timothy J
2012-05-23
When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the effort or variability of movement. How the nervous system achieves this behavior, however, is unknown. Here we show that contrary to predictions from optimal control theory, habitual muscle activation patterns are surprisingly robust to changes in limb biomechanics. We first developed a method to simulate joint forces in real time from electromyographic recordings of the wrist muscles. When the model was altered to simulate the effects of paralyzing a muscle, the subjects simply increased the recruitment of all muscles to accomplish the task, rather than recruiting only the useful muscles. When the model was altered to make the force output of one muscle unusually noisy, the subjects again persisted in recruiting all muscles rather than eliminating the noisy one. Such habitual coordination patterns were also unaffected by real modifications of biomechanics produced by selectively damaging a muscle without affecting sensory feedback. Subjects naturally use different patterns of muscle contraction to produce the same forces in different pronation-supination postures, but when the simulation was based on a posture different from the actual posture, the recruitment patterns tended to agree with the actual rather than the simulated posture. The results appear inconsistent with computation of motor programs by an optimal controller in the brain. Rather, the brain may learn and recall command programs that result in muscle coordination patterns generated by lower sensorimotor circuitry that are functionally "good-enough."
A medical student leadership course led to teamwork, advocacy, and mindfulness.
Warde, Carole M; Vermillion, Michelle; Uijtdehaage, Sebastian
2014-06-01
Many medical trainees seek work among underserved communities but may be unprepared to cope with the challenges. Relationship-centered qualities have been shown to promote physician resilience and prevent burnout. The UCLA-PRIME program aims to prepare medical students to work among vulnerable groups and begins with a 3-week leadership course. We describe this course and share lessons with those seeking to foster leadership, advocacy, and resiliency in our future physician workforce. Twenty students participated in our curriculum that emphasized five competencies: leadership, advocacy, teamwork, mindfulness, and self-care. Course activities complemented the students' work as they developed a community outreach project. They assessed and reflected on their leadership, relationship, and team behaviors, were coached to improve these, learned mindfulness meditation, and participated in community forums. Our evaluation assessed course quality, project completion, leadership, mindfulness, and team relational coordination. Students were very satisfied with all aspects of the course. They designed a medical student elective addressing the health challenges of an incarcerated and formerly incarcerated population. While we found no change in leadership practices scores, students had high team relational coordination scores and improved mindfulness scores upon course completion. Our course to develop medical students as resilient leaders, team members, and advocates for medically underserved groups consisted of a community-based service project, coupled with a facilitated relationship-centered curriculum. It promoted qualities in students that characterize effective and resilient physician leaders; they were more mindful, related to each other effectively, and coordinated their activities well with one another.
Scalable Nonparametric Low-Rank Kernel Learning Using Block Coordinate Descent.
Hu, En-Liang; Kwok, James T
2015-09-01
Nonparametric kernel learning (NPKL) is a flexible approach to learn the kernel matrix directly without assuming any parametric form. It can be naturally formulated as a semidefinite program (SDP), which, however, is not very scalable. To address this problem, we propose the combined use of low-rank approximation and block coordinate descent (BCD). Low-rank approximation avoids the expensive positive semidefinite constraint in the SDP by replacing the kernel matrix variable with V(T)V, where V is a low-rank matrix. The resultant nonlinear optimization problem is then solved by BCD, which optimizes each column of V sequentially. It can be shown that the proposed algorithm has nice convergence properties and low computational complexities. Experiments on a number of real-world data sets show that the proposed algorithm outperforms state-of-the-art NPKL solvers.
A Research Agenda for Geospatial Technologies and Learning
ERIC Educational Resources Information Center
Baker, Tom R.; Battersby, Sarah; Bednarz, Sarah W.; Bodzin, Alec M.; Kolvoord, Bob; Moore, Steven; Sinton, Diana; Uttal, David
2015-01-01
Knowledge around geospatial technologies and learning remains sparse, inconsistent, and overly anecdotal. Studies are needed that are better structured; more systematic and replicable; attentive to progress and findings in the cognate fields of science, technology, engineering, and math education; and coordinated for multidisciplinary approaches.…
Teaching Principles of Management through Experiential and Service Learning
ERIC Educational Resources Information Center
Furutan, Omid
2014-01-01
Management faculties often use cases, simulations, and research projects to achieve learning objectives in the Principles of Management class. This class typically aims to introduce students to the topics of "planning, organizing, coordinating, staffing, directing, budgeting, controlling, and evaluating functions of management; leadership…
ERIC Educational Resources Information Center
Carter, John L.; Russell, Harold L.
1985-01-01
In two studies, 16 learning disabled elementary-aged boys receiving electromyographs for biofeedback muscle relaxation training showed significant improvement over controls on a variety of measures, including reading, spelling, verbal IQ, eye-hand coordination, and handwriting. (CL)
ERIC Educational Resources Information Center
Kramer-Simpson, Elisabeth
2018-01-01
This article offers empirical data to explore ways that both industry mentors and academic internship coordinators support student interns in ways that optimize the workplace experience. Rich description of qualitative data from case studies and interviews shows that to optimize the internship, both the industry mentor and the academic internship…
How Students Learn from Multiple Contexts and Definitions: Proper Time as a Coordination Class
ERIC Educational Resources Information Center
Levrini, Olivia; diSessa, Andrea A.
2008-01-01
This article provides an empirical analysis of a single classroom episode in which students reveal difficulties with the concept of proper time in special relativity but slowly make progress in improving their understanding. The theoretical framework used is "coordination class theory," which is an evolving model of concepts and conceptual change.…
ERIC Educational Resources Information Center
Exley, I. Sheck
The high percentage of high school pre-algebra students having difficulty learning the abstract concept of graphing ordered pairs on the Cartesian rectangular coordinate system was addressed by the creation and implementation of a computer-managed instructional program. Modules consisted of a pretest, instruction, two practice sessions, and a…
Coordination of Teachers in New Undergraduate Degrees Adapted to European Higher Education Area
ERIC Educational Resources Information Center
Mondéjar-Jiménez, Juan-Antonio; Cordente-Rodríguez, María; Meseguer-Santamaría, María-Leticia; Vargas-Vargas, Manuel; Mondéjar-Jiménez, José
2010-01-01
The introduction of new undergraduate degrees adapted to the European Higher Education Area (EHEA) requires a coordinated effort by teachers, because the different subjects are based on a new methodology of teaching and learning. The Social Sciences School of Cuenca offers degrees in Business Administration, Law and Labor Sciences. The progressive…
Neuromotor Deficits in Developmental Coordination Disorder: Evidence from a Reach-to-Grasp Task
ERIC Educational Resources Information Center
Biancotto, Marina; Skabar, Aldo; Bulgheroni, Maria; Carrozzi, Marco; Zoia, Stefania
2011-01-01
Developmental coordination disorder (DCD) has been classified as a specific learning disability, nonetheless the underlying cognitive mechanisms are still a matter of discussion. After a summary of the main hypotheses on the principal neuromotor causes of DCD, this study applies a causal model framework to describe the possible coexistence of more…
20 CFR 670.760 - How will Job Corps coordinate with other agencies?
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Participant assessment; (3) Pre-employment and work maturity skills training; (4) Work-based learning; (5) Job... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false How will Job Corps coordinate with other... LABOR THE JOB CORPS UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Placement and Continued Services § 670...
Garden, Derek L. F.; Rinaldi, Arianna
2016-01-01
Key points We establish experimental preparations for optogenetic investigation of glutamatergic input to the inferior olive.Neurones in the principal olivary nucleus receive monosynaptic extra‐somatic glutamatergic input from the neocortex.Glutamatergic inputs to neurones in the inferior olive generate bidirectional postsynaptic potentials (PSPs), with a fast excitatory component followed by a slower inhibitory component.Small conductance calcium‐activated potassium (SK) channels are required for the slow inhibitory component of glutamatergic PSPs and oppose temporal summation of inputs at intervals ≤ 20 ms.Active integration of synaptic input within the inferior olive may play a central role in control of olivo‐cerebellar climbing fibre signals. Abstract The inferior olive plays a critical role in motor coordination and learning by integrating diverse afferent signals to generate climbing fibre inputs to the cerebellar cortex. While it is well established that climbing fibre signals are important for motor coordination, the mechanisms by which neurones in the inferior olive integrate synaptic inputs and the roles of particular ion channels are unclear. Here, we test the hypothesis that neurones in the inferior olive actively integrate glutamatergic synaptic inputs. We demonstrate that optogenetically activated long‐range synaptic inputs to the inferior olive, including projections from the motor cortex, generate rapid excitatory potentials followed by slower inhibitory potentials. Synaptic projections from the motor cortex preferentially target the principal olivary nucleus. We show that inhibitory and excitatory components of the bidirectional synaptic potentials are dependent upon AMPA (GluA) receptors, are GABAA independent, and originate from the same presynaptic axons. Consistent with models that predict active integration of synaptic inputs by inferior olive neurones, we find that the inhibitory component is reduced by blocking large conductance calcium‐activated potassium channels with iberiotoxin, and is abolished by blocking small conductance calcium‐activated potassium channels with apamin. Summation of excitatory components of synaptic responses to inputs at intervals ≤ 20 ms is increased by apamin, suggesting a role for the inhibitory component of glutamatergic responses in temporal integration. Our results indicate that neurones in the inferior olive implement novel rules for synaptic integration and suggest new principles for the contribution of inferior olive neurones to coordinated motor behaviours. PMID:27767209
Huau, Andréa; Velay, Jean-Luc; Jover, Marianne
2015-08-01
The aim of the present study was to analyze handwriting difficulties in children with developmental coordination disorder (DCD) and investigate the hypothesis that a deficit in procedural learning could help to explain them. The experimental set-up was designed to compare the performances of children with DCD with those of a non-DCD group on tasks that rely on motor learning in different ways, namely handwriting and learning a new letter. Ten children with DCD and 10 non-DCD children, aged 8-10 years, were asked to perform handwriting tasks (letter/word/sentence; normal/fast), and a learning task (new letter) on a graphic tablet. The BHK concise assessment scale for children's handwriting was used to evaluate their handwriting quality. Results showed that both the handwriting and learning tasks differentiated between the groups. Furthermore, when speed or length constraints were added, handwriting was more impaired in children with DCD than in non-DCD children. Greater intra-individual variability was observed in the group of children with DCD, arguing in favor of a deficit in motor pattern stabilization. The results of this study could support both the hypothesis of a deficit in procedural learning and the hypothesis of neuromotor noise in DCD. Copyright © 2015 Elsevier B.V. All rights reserved.
Care Coordination for the Chronically Ill: Understanding the Patient's Perspective
Maeng, Daniel D; Martsolf, Grant R; Scanlon, Dennis P; Christianson, Jon B
2012-01-01
Objective To identify factors associated with perception of care coordination problems among chronically ill patients. Methods Patient-level data were obtained from a random-digit dial telephone survey of adults with chronic conditions. The survey measured respondents' self-report of care coordination problems and level of patient activation, using the Patient Activation Measure (PAM-13). Logistic regression was used to assess association between respondents' self-report of care coordination problems and a set of patient characteristics. Results Respondents in the highest activation stage had roughly 30–40 percent lower odds of reporting care coordination problems compared to those in the lowest stage (p < .01). Respondents with multiple chronic conditions were significantly more likely to report coordination problems than those with hypertension only. Respondents' race/ethnicity, employment, insurance status, income, and length of illness were not significantly associated with self-reported care coordination problems. Conclusion We conclude that patient activation and complexity of chronic illness are strongly associated with patients' self-report of care coordination problems. Developing targeted strategies to improve care coordination around these patient characteristics may be an effective way to address the issue. PMID:22985032
NASA Astrophysics Data System (ADS)
Sheffield, A. M.
2017-12-01
After more than 5 years of drought, extreme precipitation brought drought relief in California and Nevada and presents an opportunity to reflect upon lessons learned while planning for the future. NOAA's National Integrated Drought Information System (NIDIS) California-Nevada Drought Early Warning System (DEWS) in June 2017 convened a regional coordination workshop to provide a forum to discuss and build upon past drought efforts in the region and increase coordination, collaboration and information sharing across the region as a whole. Participants included federal, tribal, state, academic, and local partners who provided a post-mortem on the recent drought and impacts as well as recent innovations in drought monitoring, forecasts, and decision support tools in response to the historic drought. This presentation will highlight lessons learned from stakeholder outreach and engagement around flooding during drought, and pathways for moving forward coordination and collaboration in the region. Additional focus will be on the potential opportunities from examining California decision making calendars from this drought. Identified gaps and challenges will also be shared, such as the need to connect observations with social impacts, capacity building around available tools and resources, and future drought monitoring needs. Drought will continue to impact California and Nevada, and the CA-NV DEWS works to make climate and drought science readily available, easily understandable and usable for decision makers; and to improve the capacity of stakeholders to better monitor, forecast, plan for and cope with the impacts of drought.
NASA Technical Reports Server (NTRS)
Rosenchein, Stanley J.; Burns, J. Brian; Chapman, David; Kaelbling, Leslie P.; Kahn, Philip; Nishihara, H. Keith; Turk, Matthew
1993-01-01
This report is concerned with agents that act to gain information. In previous work, we developed agent models combining qualitative modeling with real-time control. That work, however, focused primarily on actions that affect physical states of the environment. The current study extends that work by explicitly considering problems of active information-gathering and by exploring specialized aspects of information-gathering in computational perception, learning, and language. In our theoretical investigations, we analyzed agents into their perceptual and action components and identified these with elements of a state-machine model of control. The mathematical properties of each was developed in isolation and interactions were then studied. We considered the complexity dimension and the uncertainty dimension and related these to intelligent-agent design issues. We also explored active information gathering in visual processing. Working within the active vision paradigm, we developed a concept of 'minimal meaningful measurements' suitable for demand-driven vision. We then developed and tested an architecture for ongoing recognition and interpretation of visual information. In the area of information gathering through learning, we explored techniques for coping with combinatorial complexity. We also explored information gathering through explicit linguistic action by considering the nature of conversational rules, coordination, and situated communication behavior.
Moss, Jarrod; Schunn, Christian D; Schneider, Walter; McNamara, Danielle S; Vanlehn, Kurt
2011-09-15
Neuroimaging studies of text comprehension conducted thus far have shed little light on the brain mechanisms underlying strategic learning from text. Thus, the present study was designed to answer the question of what brain areas are active during performance of complex reading strategies. Reading comprehension strategies are designed to improve a reader's comprehension of a text. For example, self-explanation is a complex reading strategy that enhances existing comprehension processes. It was hypothesized that reading strategies would involve areas of the brain that are normally involved in reading comprehension along with areas that are involved in strategic control processes because the readers are intentionally using a complex reading strategy. Subjects were asked to reread, paraphrase, and self-explain three different texts in a block design fMRI study. Activation was found in both executive control and comprehension areas, and furthermore, learning from text was associated with activation in the anterior prefrontal cortex (aPFC). The authors speculate that the aPFC may play a role in coordinating the internal and external modes of thought that are necessary for integrating new knowledge from texts with prior knowledge. Copyright © 2011 Elsevier Inc. All rights reserved.
Ganokendra: An Innovative Model for Poverty Alleviation In Bangladesh
NASA Astrophysics Data System (ADS)
Alam, Kazi Rafiqul
2006-05-01
Ganokendras (people's learning centers) employ a literacy-based approach to alleviating poverty in Bangladesh. They give special attention to empowering rural women, among whom poverty is widespread. The present study reviews the Ganokendra-approach to facilitating increased political and economic awareness and improving community conditions in line with government initiatives for poverty reduction. Many Ganokendras implement programmes geared towards income-generating activities and establish linkages with other service providers, both governmental and non-governmental. As is shown, one particularly successful strategy for facilitating women's economic empowerment involves co-ordinating micro-credit available through other agencies.
Collett, Thomas S; de Ibarra, Natalie Hempel; Riabinina, Olena; Philippides, Andrew
2013-03-15
Bumblebees tend to face their nest over a limited range of compass directions when learning the nest's location on departure and finding it on their approach after foraging. They thus obtain similar views of the nest and its surroundings on their learning and return flights. How do bees coordinate their flights relative to nest-based and compass-based reference frames to get such similar views? We show, first, that learning and return flights contain straight segments that are directed along particular compass bearings, which are independent of the orientation of a bee's body. Bees are thus free within limits to adjust their viewing direction relative to the nest, without disturbing flight direction. Second, we examine the coordination of nest-based and compass-based control during likely information gathering segments of these flights: loops during learning flights and zigzags on return flights. We find that bees tend to start a loop or zigzag when flying within a restricted range of compass directions and to fly towards the nest and face it after a fixed change in compass direction, without continuous interactions between their nest-based and compass-based directions of flight. A preferred trajectory of compass-based flight over the course of a motif, combined with the tendency of the bees to keep their body oriented towards the nest automatically narrows the range of compass directions over which bees view the nest. Additionally, the absence of interactions between the two reference frames allows loops and zigzags to have a stereotyped form that can generate informative visual feedback.
Xu, Xin-Xin; Cui, Zhong-Ping; Qi, Ji; Liu, Xiao-Xia
2013-03-21
To improve the photocatalytic activity of a coordination polymer in the visible light region, polyaniline (PANI) was loaded onto its surface through a facile in situ chemical oxidation polymerization process. The resulting PANI loaded coordination polymer composite materials with excellent stability exhibit significantly higher photocatalytic activities than the pure coordination polymer photocatalyst on the degradation of methyl orange (MO) under visible light irradiation. This enhancement can be ascribed to the introduction of PANI on the surface of the coordination polymer, which leads to efficient separation of photogenerated electron-hole pairs as well as a significant expansion of the photoresponse region. Finally, we discussed the influence of acidity on the morphology and photocatalytic activity of the composite material. An optimal condition to obtain the PANI loaded coordination polymer composite material with excellent photocatalytic activity has been obtained.
Quantifying care coordination using natural language processing and domain-specific ontology
Popejoy, Lori L; Khalilia, Mohammed A; Popescu, Mihail; Galambos, Colleen; Lyons, Vanessa; Rantz, Marilyn; Hicks, Lanis; Stetzer, Frank
2015-01-01
Objective This research identifies specific care coordination activities used by Aging in Place (AIP) nurse care coordinators and home healthcare (HHC) nurses when coordinating care for older community-dwelling adults and suggests a method to quantify care coordination. Methods A care coordination ontology was built based on activities extracted from 11 038 notes labeled with the Omaha Case management category. From the parsed narrative notes of every patient, we mapped the extracted activities to the ontology, from which we computed problem profiles and quantified care coordination for all patients. Results We compared two groups of patients: AIP who received enhanced care coordination (n=217) and HHC who received traditional care (n=691) using 128 135 narratives notes. Patients were tracked from the time they were admitted to AIP or HHC until they were discharged. We found that patients in AIP received a higher dose of care coordination than HHC in most Omaha problems, with larger doses being given in AIP than in HHC in all four Omaha categories. Conclusions ‘Communicate’ and ‘manage’ activities are widely used in care coordination. This confirmed the expert hypothesis that nurse care coordinators spent most of their time communicating about their patients and managing problems. Overall, nurses performed care coordination in both AIP and HHC, but the aggregated dose across Omaha problems and categories is larger in AIP. PMID:25324557
Behavioural effects of prenatal exposure to carbon disulphide and to aromatol in rats.
Lehotzky, K; Szeberényi, J M; Ungváry, G; Kiss, A
1985-01-01
The neurotoxic effects of prenatal organosolvent inhalation were studied in rats, because of the expectation that a developing organism may be more sensitive than the adult to the induction of functional deficits. The aim was to determine whether prenatal exposure to the new organosolvent mixture, Aromatol, and the well known neurotoxic carbon disulphide, would impair reflex ontogeny or produce neurobehavioural dysfunctions in the offspring. Development of gait, motor coordination, and activity, avoidance learning and swimming were tested in the offspring of CFY rat mothers, exposed to CS2 inhalation (0, less than 10, 700 and 2000 mg/m3) and to Aromatol (0, 600, 1000 and 2000 mg/m3) on days 7-15 gestation. Prenatal CS2 inhalation induced dose related perinatal mortality of pups. Eye opening and the auditory startle were retarded. There were immature gait, motor incoordination, diminished open field activity and altered behavioural patterns on day 21 and 36 but they were nearly age-appropriate on day 90. As signs of disturbed learning ability, there were diminished performance and lengthened latency of the conditioned avoidance response, related to the concentrations administered. Contrary to expectations, prenatal Aromatol inhalation had no effect on maturation of gait, behaviour patterns, or learning ability.
The Incoherence of Contemporary Pedagogical Reform: Metacognition through Crossdisciplinary Lenses
ERIC Educational Resources Information Center
Kirshner, David
2010-01-01
This paper critiques the historical partnership between Education and Psychology in their coordinated search for theorizations of learning and teaching. Psychologists' construction of learning as an integrated set of processes (albeit complex and multifaceted) subserves the historical imperative of this preparadigmatic science to achieve…
A Learning Progression for Elementary Students' Functional Thinking
ERIC Educational Resources Information Center
Stephens, Ana C.; Fonger, Nicole; Strachota, Susanne; Isler, Isil; Blanton, Maria; Knuth, Eric; Murphy Gardiner, Angela
2017-01-01
In this article we advance characterizations of and supports for elementary students' progress in generalizing and representing functional relationships as part of a comprehensive approach to early algebra. Our learning progressions approach to early algebra research involves the coordination of a curricular framework and progression, an…
Heidi's and Philip's Stories: Transitions to Post-Secondary Education
ERIC Educational Resources Information Center
Wilson, Heidi; Bialk, Philip; Freeze, Trevi B.; Freeze, Rick; Lutfiyya, Zana M.
2012-01-01
Building a meaningful and valued life for individuals with learning disabilities requires the sustained, diligent and coordinated efforts of family members, supporters, educators and the individuals themselves. In this article, the formative childhood and adolescent experiences of two young adults with learning disabilities, leading to their…
Remediating Handwriting Skills for Learning Disabled Students.
ERIC Educational Resources Information Center
Highsmith, Victoria
The paper describes strategies for teaching six different handwriting skills to learning disabled (LD) elementary students. A rationale for each strategy precedes step-by-step procedural descriptions. Strategies in the following areas are described: (1) introducing LD children with motor coordination deficits to alphabetic symbols using sandpaper…
Improving care coordination in primary care.
Wagner, Edward H; Sandhu, Nirmala; Coleman, Katie; Phillips, Kathryn E; Sugarman, Jonathan R
2014-11-01
Although coordinating care is a defining characteristic of primary care, evidence suggests that both patients and providers perceive failures in communication and care when care is received from multiple sources. To examine the utility of a newly developed Care Coordination Model in improving care coordination among participating practices in the Safety Net Medical Home Initiative (SNMHI). In this paper, we used correlation analysis to evaluate whether application of the elements of the Care Coordination Model by SNMHI sites, as measured by the Key Activities Checklist (KAC), was associated with more effective care coordination as measured by another instrument, the PCMH-A. SNMHI measures are practice self-assessments based on the 8 change concepts that define a PCMH, one of which is Care Coordination. For this study, we correlated 12 KAC items that describe activities felt to improve coordination of care with 5 PCMH-A items that indicate the extent to which a practice has developed the capability to effectively coordinate care. Practice staff indicated whether any of the KAC activities were being test, implemented, sustained, or not on 4 occasions. The Care Coordination Model elements-assume accountability, build relationships with care partners, support patients through the referral or transition process, and create connections to support information exchange-were positively correlated with some PCMH-A care coordination items but not others. Activities related to the model were most strongly correlated with following up patients seen in the Emergency Department or discharged from hospital. The analysis provides suggestive evidence that activities consistent with the 4 elements of the Care Coordination Model may enable safety net primary care to better coordinate care for its patients, but further study is clearly needed.
Teaching and Learning in the Virtual Campus: The Case of the University of Barcelona
ERIC Educational Resources Information Center
Gil, Juana M. Sancho; Sanchez, Joan-Anton
2012-01-01
This article is based on a research project aimed at analysing the teaching and learning models explicit and implicit in the different uses of e-learning platforms. From qualitative analysis of the interview with the coordinator of the Virtual Campus of the University of Barcelona (VC-UB) and the focus group with the 8 lecturers, emerged both the…
Models for Evaluating and Improving Architecture Competence
2008-03-01
learned better methods than it engaged in the past. 36 | CMU/SEI-2008-TR-006 SOFTWARE ENGINEERING INSTITUTE | 37 6 Considering the Models ...and groups must have a repository of ac- cumulated knowledge and experience. The Organizational Learning model provides a way to eva- luate how...effective that repository is. It also tells us how ―mindful‖ the learning needs to be. The organizational coordination model
Neural correlates of object-in-place learning in hippocampus and prefrontal cortex.
Kim, Jangjin; Delcasso, Sébastien; Lee, Inah
2011-11-23
Hippocampus and prefrontal cortex (PFC) process spatiotemporally discrete events while maintaining goal-directed task demands. Although some studies have reported that neural activities in the two regions are coordinated, such observations have rarely been reported in an object-place paired-associate (OPPA) task in which animals must learn an object-in-place rule. In this study, we recorded single units and local field potentials simultaneously from the CA1 subfield of the hippocampus and PFC as rats learned that Object A, but not Object B, was rewarded in Place 1, but not in Place 2 (vice versa for Object B). Both hippocampus and PFC are required for normal performance in this task. PFC neurons fired in association with the regularity of the occurrence of a certain type of event independent of space, whereas neuronal firing in CA1 was spatially localized for representing a discrete place. Importantly, the differential firing patterns were observed in tandem with common learning-related changes in both regions. Specifically, once OPPA learning occurred and rats used an object-in-place strategy, (1) both CA1 and PFC neurons exhibited spatially more similar and temporally more synchronized firing patterns, (2) spiking activities in both regions were more phase locked to theta rhythms, and (3) CA1-medial PFC coherence in theta oscillation was maximal before entering a critical place for decision making. The results demonstrate differential as well as common neural dynamics between hippocampus and PFC in acquiring the OPPA task and strongly suggest that both regions form a unified functional network for processing an episodic event.
Neural correlates of object-in-place learning in hippocampus and prefrontal cortex
Kim, Jangjin; Delcasso, Sébastien; Lee, Inah
2011-01-01
Hippocampus and prefrontal cortex (PFC) process spatiotemporally discrete events while maintaining goal-directed task demands. Although some studies have reported that neural activities in the two regions are coordinated, such observations have rarely been reported in an object-place paired-associate (OPPA) task in which animals must learn an object-in-place rule. In this study, we recorded single units and local field potentials simultaneously from the CA1 subfield of the hippocampus and PFC as rats learned that object A, but not object B, was rewarded in place 1, but not in place 2 (vice versa for object B). Both hippocampus and PFC are required for normal performance in this task. PFC neurons fired in association with the regularity of the occurrence of a certain type of event independent of space, whereas neuronal firing in CA1 was spatially localized for representing a discrete place. Importantly, the differential firing patterns were observed in tandem with common learning-related changes in both regions. Specifically, once OPPA learning occurred and rats used an object-in-place strategy, (i) both CA1 and PFC neurons exhibited spatially more similar and temporally more synchronized firing patterns, (ii) spiking activities in both regions were more phase-locked to theta rhythms, (iii) CA1-mPFC coherence in theta oscillation was maximal before entering a critical place for decision making. The results demonstrate differential as well as common neural dynamics between hippocampus and PFC in acquiring the OPPA task and strongly suggest that both regions form a unified functional network for processing an episodic event. PMID:22114269
Active learning in camera calibration through vision measurement application
NASA Astrophysics Data System (ADS)
Li, Xiaoqin; Guo, Jierong; Wang, Xianchun; Liu, Changqing; Cao, Binfang
2017-08-01
Since cameras are increasingly more used in scientific application as well as in the applications requiring precise visual information, effective calibration of such cameras is getting more important. There are many reasons why the measurements of objects are not accurate. The largest reason is that the lens has a distortion. Another detrimental influence on the evaluation accuracy is caused by the perspective distortions in the image. They happen whenever we cannot mount the camera perpendicularly to the objects we want to measure. In overall, it is very important for students to understand how to correct lens distortions, that is camera calibration. If the camera is calibrated, the images are rectificated, and then it is possible to obtain undistorted measurements in world coordinates. This paper presents how the students should develop a sense of active learning for mathematical camera model besides the theoretical scientific basics. The authors will present the theoretical and practical lectures which have the goal of deepening the students understanding of the mathematical models of area scan cameras and building some practical vision measurement process by themselves.
International Cooperation at NASA
NASA Astrophysics Data System (ADS)
Tawney, Timothy; Feldstein, Karen
International cooperation is a cornerstone principle of NASA’s activities, especially within the activities of the Science Mission Directorate. Nearly two thirds of the flight missions in which NASA leads or participates involve international cooperation. Numerous ground based activities also rely on international cooperation, whether because of unique expertise, unique geography, or the need for a global response. Going forward, in an era of tighter budgets and a more integrated global perspective, NASA and the rest of the space agencies around the world will be forced to work more closely together, in a broader array of activities than ever before, in order to be able to afford to push the boundaries of space exploration. The goal of this presentation is to provide an overview of NASA’s current international science cooperative activities. It will include a discussion of why NASA conducts international cooperation and look at the mechanisms through which international cooperation can occur at NASA, including peer-to-peer development of relationships. It will also discuss some of the limiting factors of international cooperation, such as export control, and ways in which to manage those constraints. Finally, the presentation would look at some of the present examples where NASA is working to increase international cooperation and improve coordination. Case studies will be used to demonstrate these mechanisms and concepts. For example, NASA continues to participate in international coordination groups such as the International Mars Exploration Working Group (IMEWG) and International Space Exploration Coordination Group (ISECG), but is expanding into new areas as well. NASA is one of the leaders in expanding and improving international coordination in the area of Near-Earth Object detection, characterization, and mitigation. Having participated in the first meetings of such groups as the International Asteroid Warning Network (IAWN) and Space Missions Planning Advisory Group (SMPAG), NASA is placing an ever greater emphasis on sharing information among members and working to avoid duplication of effort for the betterment of all humanity. International cooperation at NASA takes many forms. In some cases NASA leads, while in other cases it follows the lead of our many international partners, all in the name of obtaining the best science. In many cases, truly stellar partnerships emerge. In a few cases, the partnership is ended before it can flourish. But in all cases, the partners are learning to work more closely together so that in the future, our partnerships will yield ever better results.
Straker, Leon M; Campbell, Amity C; Jensen, Lyn M; Metcalf, Deborah R; Smith, Anne J; Abbott, Rebecca A; Pollock, Clare M; Piek, Jan P
2011-08-18
A healthy start to life requires adequate motor development and physical activity participation. Currently 5-15% of children have impaired motor development without any obvious disorder. These children are at greater risk of obesity, musculoskeletal disorders, low social confidence and poor mental health. Traditional electronic game use may impact on motor development and physical activity creating a vicious cycle. However new virtual reality (VR) game interfaces may provide motor experiences that enhance motor development and lead to an increase in motor coordination and better physical activity and mental health outcomes. VR games are beginning to be used for rehabilitation, however there is no reported trial of the impact of these games on motor coordination in children with developmental coordination disorder. This cross-over randomised and controlled trial will examine whether motor coordination is enhanced by access to active electronic games and whether daily activity, attitudes to physical activity and mental health are also enhanced. Thirty children aged 10-12 years with poor motor coordination (≤ 15th percentile) will be recruited and randomised to a balanced ordering of 'no active electronic games' and 'active electronic games'. Each child will participate in both conditions for 16 weeks, and be assessed prior to participation and at the end of each condition. The primary outcome is motor coordination, assessed by kinematic and kinetic motion analysis laboratory measures. Physical activity and sedentary behaviour will be assessed by accelerometry, coordination in daily life by parent report questionnaire and attitudes to physical activity, self-confidence, anxiety and depressed mood will be assessed by self report questionnaire. A sample of 30 will provide a power of > 0.9 for detecting a 5 point difference in motor coordination on the MABC-2 TIS scale (mean 17, sd = 5). This is the first trial to examine the impact of new virtual reality games on motor coordination in children with developmental coordination disorder. The findings will provide critical information to understand whether these electronic games can be used to have a positive impact on the physical and mental health of these children. Given the importance of adequate motor coordination, physical activity and mental health in childhood, this project can inform interventions which could have a profound impact on the long term health of this group of children. Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12611000400965.
2011-01-01
Background A healthy start to life requires adequate motor development and physical activity participation. Currently 5-15% of children have impaired motor development without any obvious disorder. These children are at greater risk of obesity, musculoskeletal disorders, low social confidence and poor mental health. Traditional electronic game use may impact on motor development and physical activity creating a vicious cycle. However new virtual reality (VR) game interfaces may provide motor experiences that enhance motor development and lead to an increase in motor coordination and better physical activity and mental health outcomes. VR games are beginning to be used for rehabilitation, however there is no reported trial of the impact of these games on motor coordination in children with developmental coordination disorder. Methods This cross-over randomised and controlled trial will examine whether motor coordination is enhanced by access to active electronic games and whether daily activity, attitudes to physical activity and mental health are also enhanced. Thirty children aged 10-12 years with poor motor coordination (≤ 15th percentile) will be recruited and randomised to a balanced ordering of 'no active electronic games' and 'active electronic games'. Each child will participate in both conditions for 16 weeks, and be assessed prior to participation and at the end of each condition. The primary outcome is motor coordination, assessed by kinematic and kinetic motion analysis laboratory measures. Physical activity and sedentary behaviour will be assessed by accelerometry, coordination in daily life by parent report questionnaire and attitudes to physical activity, self-confidence, anxiety and depressed mood will be assessed by self report questionnaire. A sample of 30 will provide a power of > 0.9 for detecting a 5 point difference in motor coordination on the MABC-2 TIS scale (mean 17, sd = 5). Discussion This is the first trial to examine the impact of new virtual reality games on motor coordination in children with developmental coordination disorder. The findings will provide critical information to understand whether these electronic games can be used to have a positive impact on the physical and mental health of these children. Given the importance of adequate motor coordination, physical activity and mental health in childhood, this project can inform interventions which could have a profound impact on the long term health of this group of children. Trial registration Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12611000400965 PMID:21851587
Facilitators and barriers to students' learning in an obesity prevention graduate program.
Do, Kieu Anh; Anderson-Knott, Mindy; de Guzman, Maria Rosario T; Boeckner, Linda; Koszewski, Wanda
2018-01-01
Childhood obesity is a major public health concern with underpinnings at the individual, family, community and societal levels. The Transdisciplinary Childhood Obesity Prevention Graduate Certificate Program (TOP) is an innovative graduate-level certificate program developed to train professionals to understand and address obesity from multiple perspectives using an interprofessional education (IPE) approach. Currently, there is limited knowledge on what promotes or hinders learning in IPE approaches dealing with obesity prevention. The goal of this report is to address this gap by describing facilitators and barriers to learning in a graduate-level training program. Using a qualitative research design, semi-structured interviews were collected from 23 professional students, as part of a larger program evaluation project for TOP. Thematic analysis revealed the challenges and strengths of the program that relate specifically to: its interprofessional approach, its structure, and its activities. Interprofessional exchanges were reported to expand students' learning, but adequate interprofessional representation must be maintained, and the complexity of interprofessional collaborations must also be well-coordinated. Standardising the program structure and courses for consistency across professions, and clear communication are critical to program success. Findings add to the existing literature on what promotes effective learning in a professional obesity prevention program using an IPE approach.
Chen, Hao; Wang, Yi-jie; Yang, Li; Sui, Jian-feng; Hu, Zhi-an; Hu, Bo
2016-01-01
Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0–12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization. PMID:26879632
ERIC Educational Resources Information Center
Sexton, Matt; Downton, Ann
2014-01-01
It is not uncommon in many Australian primary schools for a teaching staff member to undertake the leadership or coordination of mathematics in his or her school. Some research (e.g., Cheeseman & Clarke, 2005) suggests that coordinators and leaders play an important role in the leadership and management of mathematics teaching and learning in…
ERIC Educational Resources Information Center
Ainsworth, Jessica Marie
2016-01-01
Formative assessments have been deemed the key to effectively measuring if students have mastered the understanding of curriculum standards. Thus, allowing teachers to use the results to tailor remediation and use other efforts to support mastery of student learning before the end of the school year has positive effects on student achievement.…
ERIC Educational Resources Information Center
Cheng, Hsiang-Chun; Chen, Jenn-Yeu; Tsai, Chia-Liang; Shen, Miau-Lin; Cherng, Rong-Ju
2011-01-01
Developmental coordination disorder (DCD) refers to a delay in motor development that does not have any known medical cause. Studies conducted in English speaking societies have found that children with DCD display a higher co-occurrence rate of learning difficulties (e.g., problems in reading and writing) than typically developing (TD) children.…
Transferring Learning from the Workshop to the Classroom
ERIC Educational Resources Information Center
Johnson, Kimberly A.
2009-01-01
As coordinator of the ABE Teaching and Learning Advancement System (ATLAS) based in the Hamline University School of Education in St. Paul, the author does many workshops or conference sessions in Minnesota's nine professional development regions each year. Typical single-day events offer multiple 90-minute workshops. She often questions the…
Advanced Education and Technology Business Plan, 2010-13
ERIC Educational Resources Information Center
Alberta Advanced Education and Technology, 2010
2010-01-01
This paper presents the business plan of the Ministry of Advanced Education and Technology for 2010 to 2013. Advanced Education and Technology supports the advanced learning system by providing funding for advanced learning providers, coordinating and approving programs of study at public institutions, licensing and approving programs at private…
Experience-Dependent Epigenomic Reorganization in the Hippocampus
ERIC Educational Resources Information Center
Duke, Corey G.; Kennedy, Andrew J.; Gavin, Cristin F.; Day, Jeremy J.; Sweatt, J. David
2017-01-01
Using a hippocampus-dependent contextual threat learning and memory task, we report widespread, coordinated DNA methylation changes in CA1 hippocampus of Sprague-Dawley rats specific to threat learning at genes involved in synaptic transmission. Experience-dependent alternations in gene expression and DNA methylation were observed as early as 1 h…
WISC-R Types of Learning Disabilities: A Profile Analysis with Cross-Validation.
ERIC Educational Resources Information Center
Holcomb, William R.; And Others
1987-01-01
Profiles (Wechsler Intelligence Scale for Children - Revised) of 119 children in five learning disability programs were placed in six homogeneous groups using cluster analysis. One group showed superior intelligence quotient (IQ) with motor coordination deficits and severe emotional problems, while three groups represented children with low IQs…
Designing a Children's Water Garden as an Outdoor Learning Lab for Environmental Education
ERIC Educational Resources Information Center
Byrd, Renee K.; Haque, Mary Taylor; Tai, Lolly; McLellan, Gina K.; Knight, Erin Jordan
2007-01-01
A Clemson University introductory landscape design class collaborated with South Carolina Botanical Gardens (SCBG) staff and coordinators of Sprouting Wings to design an exploratory Children's Garden within the SCBG. Service learning provides students with invaluable real-world experiences solving problems and interacting with clients while…
The Administrative Mode and Academic Corruption at China's State-Run Universities
ERIC Educational Resources Information Center
Bin, Wang; Qichun, Chen
2007-01-01
Institutions of higher learning, as social organizations, rely on their administrations to harmonize their resources and coordinate relations. Meanwhile, institutions of higher learning are also important links in political socialization, and state forces intervene to a certain extent in school administration and regulate their developmental…
Towards a Framework for Student Self-Assessment.
ERIC Educational Resources Information Center
Adams, Carl; King, Karen
1995-01-01
Discusses the case for self-assessment and examines its value as a teaching and learning aid, its usefulness to business, and as a means of coping with high student numbers. Describes learning tasks that may develop this skill and argues that these need to be put into a coordinated framework. (Author/AEF)
A Physical Education Teacher's Journey: From District Coordinator to Facilitator
ERIC Educational Resources Information Center
Hunuk, Deniz
2017-01-01
Background: Despite the accumulating evidence highlighting the significant roles of an effective facilitator and appropriate pedagogies that a facilitator employs in shaping the professional learning environment, there is a paucity of research that explores how facilitators learn to facilitate. Purpose: The overall purpose of this study was to…
The Open Learning Initiative: New Directions for Higher Education.
ERIC Educational Resources Information Center
King, Bruce
This paper describes the Australian Open Learning Initiative (OLI), a program to facilitate access to postsecondary education. The program will provide off-campus or distance education courses for which there is evident high demand. Program features include an independent brokering agency, coordination by a university or group of universities,…
A European Vision for Adult Education
ERIC Educational Resources Information Center
Waddington, Sue; Tuckett, Alan; Boucher, Fiona
2012-01-01
The National Institute of Adult Continuing Education (NIACE) is the UK national coordinator for the European Agenda for Adult Learning, with the challenge of creating a coherent message across the four countries to inform European cooperation on adult learning. To start the debate, the journal staff asked Sue Waddington, Alan Tuckett, and Fiona…
A Coordinated Decentralized Approach to Online Project Development
ERIC Educational Resources Information Center
Mykota, David
2013-01-01
With the growth rate of online learning outpacing traditional face-to-face instruction, universities are beginning to recognize the importance of strategic planning in its development. Making the case for online learning requires sound project management practices and an understanding of the business models on which it is predicated. The objective…
ERIC Educational Resources Information Center
Virk, Satyugjit; Clark, Douglas; Sengupta, Pratim
2015-01-01
Environments in which learning involves coordinating multiple external representations (MERs) can productively support learners in making sense of complex models and relationships. Educational digital games provide an increasing popular medium for engaging students in manipulating and exploring such models and relationships. This article applies…
Woodruff Carr, Kali; Fitzroy, Ahren B; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina
2017-01-01
Speech communication involves integration and coordination of sensory perception and motor production, requiring precise temporal coupling. Beat synchronization, the coordination of movement with a pacing sound, can be used as an index of this sensorimotor timing. We assessed adolescents' synchronization and capacity to correct asynchronies when given online visual feedback. Variability of synchronization while receiving feedback predicted phonological memory and reading sub-skills, as well as maturation of cortical auditory processing; less variable synchronization during the presence of feedback tracked with maturation of cortical processing of sound onsets and resting gamma activity. We suggest the ability to incorporate feedback during synchronization is an index of intentional, multimodal timing-based integration in the maturing adolescent brain. Precision of temporal coding across modalities is important for speech processing and literacy skills that rely on dynamic interactions with sound. Synchronization employing feedback may prove useful as a remedial strategy for individuals who struggle with timing-based language learning impairments. Copyright © 2016 Elsevier Inc. All rights reserved.
Thermal Model Development for Ares I-X
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; DelCorso, Joe
2008-01-01
Thermal analysis for the Ares I-X vehicle has involved extensive thermal model integration, since thermal models of vehicle elements came from several different NASA and industry organizations. Many valuable lessons were learned in terms of model integration and validation. Modeling practices such as submodel, analysis group and symbol naming were standardized to facilitate the later model integration. Upfront coordination of coordinate systems, timelines, units, symbols and case scenarios was very helpful in minimizing integration rework. A process for model integration was developed that included pre-integration runs and basic checks of both models, and a step-by-step process to efficiently integrate one model into another. Extensive use of model logic was used to create scenarios and timelines for avionics and air flow activation. Efficient methods of model restart between case scenarios were developed. Standardization of software version and even compiler version between organizations was found to be essential. An automated method for applying aeroheating to the full integrated vehicle model, including submodels developed by other organizations, was developed.
Accountable care around the world: a framework to guide reform strategies.
McClellan, Mark; Kent, James; Beales, Stephen J; Cohen, Samuel I A; Macdonnell, Michael; Thoumi, Andrea; Abdulmalik, Mariam; Darzi, Ara
2014-09-01
Accountable care--a way to align health care payments with patient-focused reform goals--is currently being pursued in the United States, but its principles are also being applied in many other countries. In this article we review experiences with such reforms to offer a globally applicable definition of an accountable care system and propose a conceptual framework for characterizing and assessing accountable care reforms. The framework consists of five components: population, outcomes, metrics and learning, payments and incentives, and coordinated delivery. We describe how the framework applies to accountable care reforms that are already being implemented in Spain and Singapore. We also describe how it can be used to map progress through increasingly sophisticated levels of reforms. We recommend that policy makers pursuing accountable care reforms emphasize the following steps: highlight population health and wellness instead of just treating illness; pay for outcomes instead of activities; create a more favorable environment for collaboration and coordinated care; and promote interoperable data systems. Project HOPE—The People-to-People Health Foundation, Inc.
Barriers and Facilitators to Sustaining School Health Teams in Coordinated School Health Programs.
Cheung, Karen; Lesesne, Catherine A; Rasberry, Catherine N; Kroupa, Elizabeth; Fisher, Deborah; Robin, Leah; Pitt Barnes, Seraphine
2017-05-01
Coordinated school health (CSH) programs address multiple factors related to students' overall health, thereby increasing their physical and mental readiness to learn. A formative evaluation of three school districts in 2010-2011 examined strategies for sustaining the school health teams (SHTs) that lead CSH efforts. Qualitative data from 39 interviews and 13 focus groups revealed facilitators and barriers for sustaining SHTs. Quantitative data from 68 questionnaires completed by SHT members and school principals examined factors associated with having more active SHTs and district and school characteristics SHT members believed to be important to their schools' efforts to implement CSH. Facilitators of sustaining SHTs included administrative support, staff engagement in the SHT, and shared goals and responsibility. Barriers to sustaining SHTs included limited time and competing priorities, budget and funding constraints, and staff turnover. Findings provide valuable insight into challenges and potential solutions for improving the sustainability of SHTs to enable them to better support CSH efforts.
Switching Adaptability in Human-Inspired Sidesteps: A Minimal Model.
Fujii, Keisuke; Yoshihara, Yuki; Tanabe, Hiroko; Yamamoto, Yuji
2017-01-01
Humans can adapt to abruptly changing situations by coordinating redundant components, even in bipedality. Conventional adaptability has been reproduced by various computational approaches, such as optimal control, neural oscillator, and reinforcement learning; however, the adaptability in bipedal locomotion necessary for biological and social activities, such as unpredicted direction change in chase-and-escape, is unknown due to the dynamically unstable multi-link closed-loop system. Here we propose a switching adaptation model for performing bipedal locomotion by improving autonomous distributed control, where autonomous actuators interact without central control and switch the roles for propulsion, balancing, and leg swing. Our switching mobility model achieved direction change at any time using only three actuators, although it showed higher motor costs than comparable models without direction change. Our method of evaluating such adaptation at any time should be utilized as a prerequisite for understanding universal motor control. The proposed algorithm may simply explain and predict the adaptation mechanism in human bipedality to coordinate the actuator functions within and between limbs.
Wu, Jingheng; Shen, Lin; Yang, Weitao
2017-10-28
Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.
Intelligent cooperation: A framework of pedagogic practice in the operating room.
Sutkin, Gary; Littleton, Eliza B; Kanter, Steven L
2018-04-01
Surgeons who work with trainees must address their learning needs without compromising patient safety. We used a constructivist grounded theory approach to examine videos of five teaching surgeries. Attending surgeons were interviewed afterward while watching cued videos of their cases. Codes were iteratively refined into major themes, and then constructed into a larger framework. We present a novel framework, Intelligent Cooperation, which accounts for the highly adaptive, iterative features of surgical teaching in the operating room. Specifically, we define Intelligent Cooperation as a sequence of coordinated exchanges between attending and trainee that accomplishes small surgical steps while simultaneously uncovering the trainee's learning needs. Intelligent Cooperation requires the attending to accurately determine learning needs, perform real-time needs assessment, provide critical scaffolding, and work with the learner to accomplish the next step in the surgery. This is achieved through intense, coordinated verbal and physical cooperation. Copyright © 2017 Elsevier Inc. All rights reserved.
Recombination and the evolution of coordinated phenotypic expression in a frequency-dependent game
Arbilly, Michal; Motro, Uzi; Feldman, Marcus W.; Lotem, Arnon
2011-01-01
A long standing question in evolutionary biology concerns the maintenance of adaptive combinations of traits in the presence of recombination. This problem may be solved if positive epistasis selects for reducing the rate of recombination between such traits, but this requires sufficiently strong epistasis. Here we use a model that we developed previously to analyze a frequency-dependent strategy game in asexual populations, to study how adaptive combinations of traits may be maintained in the presence of recombination when epistasis is too weak to select for genetic linkage. Previously, in the asexual case, our model demonstrated the evolution of adaptive associations between social foraging strategies and learning rules. We verify that these adaptive associations, which are represented by different two-locus haplotypes, can easily be broken by genetic recombination. We also confirm that a modifier allele that reduces the rate of recombination fails to evolve (due to weak epistasis). However, we find that under the same conditions of weak epistasis, there is an alternative mechanism that allows association between traits to evolve. This is based on a genetic switch that responds to the presence of one social foraging allele by activating one of two alternative learning alleles that are carried by all individuals. We suggest that such coordinated phenotypic expression by genetic switches offers a general and robust mechanism for the evolution of adaptive combinations of traits in the presence of recombination. PMID:21945887
77 FR 14951 - Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... reflect changes in the coordination of Departmental remote sensing activities. These responsibilities are... responsible for coordinating USDA remote sensing activities (7 CFR 2.29(a)(6)). Within the Office of the Chief... Outlook Board (WAOB) (7 CFR 2.72(a)(4)). WAOB coordinates USDA remote sensing activities by chairing the...
Quantifying care coordination using natural language processing and domain-specific ontology.
Popejoy, Lori L; Khalilia, Mohammed A; Popescu, Mihail; Galambos, Colleen; Lyons, Vanessa; Rantz, Marilyn; Hicks, Lanis; Stetzer, Frank
2015-04-01
This research identifies specific care coordination activities used by Aging in Place (AIP) nurse care coordinators and home healthcare (HHC) nurses when coordinating care for older community-dwelling adults and suggests a method to quantify care coordination. A care coordination ontology was built based on activities extracted from 11,038 notes labeled with the Omaha Case management category. From the parsed narrative notes of every patient, we mapped the extracted activities to the ontology, from which we computed problem profiles and quantified care coordination for all patients. We compared two groups of patients: AIP who received enhanced care coordination (n=217) and HHC who received traditional care (n=691) using 128,135 narratives notes. Patients were tracked from the time they were admitted to AIP or HHC until they were discharged. We found that patients in AIP received a higher dose of care coordination than HHC in most Omaha problems, with larger doses being given in AIP than in HHC in all four Omaha categories. 'Communicate' and 'manage' activities are widely used in care coordination. This confirmed the expert hypothesis that nurse care coordinators spent most of their time communicating about their patients and managing problems. Overall, nurses performed care coordination in both AIP and HHC, but the aggregated dose across Omaha problems and categories is larger in AIP. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Motivations of hospice volunteers.
Planalp, Sally; Trost, Melanie
2009-01-01
To recruit and retain volunteers, coordinators need to understand volunteers' motivations. In this study, 351 volunteers from 32 hospices in the western United States answered questions on a mailed survey about their motivations. The motivations reported were, in order of overall importance: to help others and learn, foster social relationships, feel better, and pursue career goals. Younger volunteers reported stronger career motivations, and retired and unemployed volunteers reported stronger social motivations. Volunteer coordinators should consider these motivations in communicating with potential and current volunteers, with special emphasis on compassion for those in need and the importance of helping, on fostering hospice volunteering as a learning experience, and in accessing and building social networks around hospice volunteering.
Knox, G
1995-01-01
The Drought Network for information sharing eventually led to the establishment of the more formal Southern Region AIDS Network (SORAN) where representatives from government and nongovernmental organizations (NGOs) focused on awareness raising, lobbying, and advocacy. As an initial step towards networking on HIV/AIDS issues, a festival was organized in Blantyre on December 4, 1993, by NGOs, private companies, church groups, school children, and volunteers to bring about behavior change. About 2000 people gathered to listen to music, learn about HIV transmission through drama group presentations, watch videos with HIV/STD prevention messages, and learn about proper condom use. The participants officially established SORAN in February 1994 to act as a coordinating body for organizations working in prevention and care for HIV/STD-infected persons and their families. Network activities endeavored: to assist organizations interested in developing HIV/AIDS programs and activities; to encourage the business communities to participate in multisectoral coordination and to help channel funds from them to HIV/AIDS programs; to act as a resource center for information about HIV/AIDS; and to lobby among politicians as well as traditional local and religious leaders. When the first multi-party parliamentary election approached in May 1994, SORAN challenged representatives of 7 political parties and a women's organization to speak out publicly on what they envisioned doing about HIV/AIDS. The Grand Walk was also organized by SORAN members representing the Catholic Episcopal Conference of Malawi, the Protestant Blantyre Synod, a local brewery, and UNICEF. About 500 walkers received support from passersby. 70% were school children 10-18 years old who sang AIDS awareness songs and passed out flyers. Three months later the National AIDS Program's Big Walk for AIDS, following a National AIDS Crisis Conference, signaled the government's public recognition of the need for a multisectoral approach to combatting HIV/AIDS.
Kim, Yong-Sik; Harry, G Jean; Kang, Hong Soon; Goulding, David; Wine, Rob N; Kissling, Grace E; Liao, Grace; Jetten, Anton M
2010-09-01
Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.
NASA Astrophysics Data System (ADS)
Salmun, H.
2015-12-01
As a major component of an NSF-funded STEM program, a seminar-style course called the Catalyst Seminar was developed and offered over three consecutive semesters. The program included undergraduate students in the geosciences, computer science, mathematics and physics. The Catalyst Seminar was designed to expose scholars to the interdisciplinary research options and careers in these disciplines. The Seminar also provided a venue for scholars to meet regularly, build a sense of community and to engage in research projects that would enhance their preparation for multi and interdisciplinary careers in the sciences. The first semester of the Seminar was devoted to Exposure and Connections, accomplished through lectures by invited speakers on topics related to the disciplines participating in the Program. Scholars were required to read journal articles related to the lectures and to write a final short paper reflecting on the experience, all activities that are known to students at this level. Overall, this was a somewhat passive learning approach to research in classrooms. In the following two semesters a more active approach to engage students in interdisciplinary research was used. Students were asked to take ownership of their learning process through disciplinary and interdisciplinary engagement in a project. In one semester this process was guided by the seminar coordinator who was in charge of selecting and leading the 'research project' which although challenging to scholars, was 'safe' enough that answers were readily available. In the other semester the approach was student-centered, with a coordinator that merely facilitated the formation of interdisciplinary research teams that took complete charge of the entire research enterprise. I will discuss our observations and assessment of the outcomes of this instructional experience with relation to the teaching of geoscience, in particular to attracting students into this field.
Online interprofessional health sciences education: From theory to practice.
Luke, Robert; Solomon, Patty; Baptiste, Sue; Hall, Pippa; Orchard, Carole; Rukholm, Ellen; Carter, Lorraine
2009-01-01
Online learning (e-learning) has a nascent but established history. Its application to interprofessional education (IPE), however, is relatively new. Over the past 2 decades the Internet has been used increasingly to mediate education. We have come past the point of "should we use the Internet for education" to "how should we use the Internet for education." Research has begun on the optimal development of online learning environments to support IPE. Developing online IPE should follow best practices in e-learning generally, though there are some special considerations for acknowledging the interprofessional context and clinical environments that online IPE is designed to support. The design, development, and deployment of effective online IPE must therefore pay special attention to the particular constraints of the health care worker educational matrix, both pre- and postlicensure. In this article we outline the design of online, interprofessional health sciences education. Our work has involved 4 educational and 4 clinical service institutions. We establish the context in which we situate our development activities that created learning modules designed to support IPE and its transfer into new interprofessional health care practices. We illustrate some best practices for the design of effective online IPE, and show how this design can create effective learning for IPE. Challenges exist regarding the full implementation of interprofessional clinical practice that are beginning to be met by coordinated efforts of multiple health care education silos.