Science.gov

Sample records for coordinated scheduling problem

  1. Coordinating, Scheduling, Processing and Analyzing IYA09

    NASA Technical Reports Server (NTRS)

    Gipson, John; Behrend, Dirk; Gordon, David; Himwich, Ed; MacMillan, Dan; Titus, Mike; Corey, Brian

    2010-01-01

    The IVS scheduled a special astrometric VLBI session for the International Year of Astronomy 2009 (IYA09) commemorating 400 years of optical astronomy and 40 years of VLBI. The IYA09 session is the most ambitious geodetic session to date in terms of network size, number of sources, and number of observations. We describe the process of designing, coordinating, scheduling, pre-session station checkout, correlating, and analyzing this session.

  2. The Microchp Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Bosman, M. G. C.; Bakker, V.; Molderink, A.; Hurink, J. L.; Smit, G. J. M.

    2009-08-01

    The increasing penetration of renewable energy sources, the demand for more energy efficient electricity production and the increase in distributed electricity generation causes a shift in the way electricity is produced and consumed. The downside of these changes in the electricity grid is that network stability and controllability becomes more difficult compared to the old situation. The new network has to accommodate various means of production, consumption and buffering and needs to offer control over the energy flows between these three elements. In order to offer such a control mechanism we need to know more about the individual aspects. In this paper we focus on the modelling of distributed production. Especially we look at the use of microCHP (Combined Heat and Power) appliances in a group of houses. The problem of planning the production runs of the microCHP is modelled via an ILP formulation both for a single house and for a group of houses.

  3. Coordinated Science Campaign Scheduling for Sensor Webs

    NASA Technical Reports Server (NTRS)

    Edgington, Will; Morris, Robert; Dungan, Jennifer; Williams, Jenny; Carlson, Jean; Fleming, Damian; Wood, Terri; Yorke-Smith, Neil

    2005-01-01

    Future Earth observing missions will study different aspects and interacting pieces of the Earth's eco-system. Scientists are designing increasingly complex, interdisciplinary campaigns to exploit the diverse capabilities of multiple Earth sensing assets. In addition, spacecraft platforms are being configured into clusters, trains, or other distributed organizations in order to improve either the quality or the coverage of observations. These simultaneous advances in the design of science campaigns and in the missions that will provide the sensing resources to support them offer new challenges in the coordination of data and operations that are not addressed by current practice. For example, the scheduling of scientific observations for satellites in low Earth orbit is currently conducted independently by each mission operations center. An absence of an information infrastructure to enable the scheduling of coordinated observations involving multiple sensors makes it difficult to execute campaigns involving multiple assets. This paper proposes a software architecture and describes a prototype system called DESOPS (Distributed Earth Science Observation Planning and Scheduling) that will address this deficiency.

  4. 32 CFR 644.395 - Coordination on disposal problems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Coordination on disposal problems. 644.395... PROPERTY REAL ESTATE HANDBOOK Disposal Predisposal Action § 644.395 Coordination on disposal problems. If any major change or problem requires a significant revision in the time schedule for disposal,...

  5. Integrated network design and scheduling problems :

    SciTech Connect

    Nurre, Sarah G.; Carlson, Jeffrey J.

    2014-01-01

    We consider the class of integrated network design and scheduling problems. These problems focus on selecting and scheduling operations that will change the characteristics of a network, while being speci cally concerned with the performance of the network over time. Motivating applications of INDS problems include infrastructure restoration after extreme events and building humanitarian distribution supply chains. While similar models have been proposed, no one has performed an extensive review of INDS problems from their complexity, network and scheduling characteristics, information, and solution methods. We examine INDS problems under a parallel identical machine scheduling environment where the performance of the network is evaluated by solving classic network optimization problems. We classify that all considered INDS problems as NP-Hard and propose a novel heuristic dispatching rule algorithm that selects and schedules sets of arcs based on their interactions in the network. We present computational analysis based on realistic data sets representing the infrastructures of coastal New Hanover County, North Carolina, lower Manhattan, New York, and a realistic arti cial community CLARC County. These tests demonstrate the importance of a dispatching rule to arrive at near-optimal solutions during real-time decision making activities. We extend INDS problems to incorporate release dates which represent the earliest an operation can be performed and exible release dates through the introduction of specialized machine(s) that can perform work to move the release date earlier in time. An online optimization setting is explored where the release date of a component is not known.

  6. Group scheduling problems in directional sensor networks

    NASA Astrophysics Data System (ADS)

    Singh, Alok; Rossi, André

    2015-12-01

    This article addresses the problem of scheduling a set of groups of directional sensors arising as a result of applying an exact or a heuristic approach for solving a problem involving directional sensors. The problem seeks a schedule for these groups that minimizes the total energy consumed in switching from one group to the next group in the schedule. In practice, when switching from a group to the next one, active sensors in the new group have to rotate in order to face their working direction. These rotations consume energy, and the problem is to schedule the groups so as to minimize the total amount of energy consumed by all the sensor rotations, knowing the initial angular positions of all the sensors. In this article, it is assumed that energy consumption is proportional to the angular movement for all the sensors. Another problem version is also investigated that seeks to minimize the total time during which the sensor network cannot cover all the targets because active sensors are rotating. Both problems are proved to be ?-hard, and a lower bound for the first problem is presented. A greedy heuristic and a genetic algorithm are also proposed for addressing the problem of minimizing total rotation in the general case. Finally, a local search is also proposed to improve the solutions obtained through a genetic algorithm.

  7. Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow.

    PubMed

    Liu, Cong; Shahidehpour, Mohammad; Wang, Jianhui

    2011-06-01

    This paper focuses on transient characteristics of natural gas flow in the coordinated scheduling of security-constrained electricity and natural gas infrastructures. The paper takes into account the slow transient process in the natural gas transmission systems. Considering their transient characteristics, natural gas transmission systems are modeled as a set of partial differential equations (PDEs) and algebraic equations. An implicit finite difference method is applied to approximate PDEs by difference equations. The coordinated scheduling of electricity and natural gas systems is described as a bi-level programming formulation from the independent system operator's viewpoint. The objective of the upper-level problem is to minimize the operating cost of electric power systems while the natural gas scheduling optimization problem is nested within the lower-level problem. Numerical examples are presented to verify the effectiveness of the proposed solution and to compare the solutions for steady-state and transient models of natural gas transmission systems.

  8. Coordinated Transportation: Problems and Promise?

    ERIC Educational Resources Information Center

    Fickes, Michael

    1998-01-01

    Examines the legal, administrative, and logistical barriers that have prevented the wide acceptance of coordinating community and school transportation services and why these barriers may be breaking down. Two examples of successful implementation of coordinated transportation are examined: employing a single system to serve all transportation…

  9. Separation Assurance and Scheduling Coordination in the Arrival Environment

    NASA Technical Reports Server (NTRS)

    Aweiss, Arwa S.; Cone, Andrew C.; Holladay, Joshua J.; Munoz, Epifanio; Lewis, Timothy A.

    2016-01-01

    Separation assurance (SA) automation has been proposed as either a ground-based or airborne paradigm. The arrival environment is complex because aircraft are being sequenced and spaced to the arrival fix. This paper examines the effect of the allocation of the SA and scheduling functions on the performance of the system. Two coordination configurations between an SA and an arrival management system are tested using both ground and airborne implementations. All configurations have a conflict detection and resolution (CD&R) system and either an integrated or separated scheduler. Performance metrics are presented for the ground and airborne systems based on arrival traffic headed to Dallas/ Fort Worth International airport. The total delay, time-spacing conformance, and schedule conformance are used to measure efficiency. The goal of the analysis is to use the metrics to identify performance differences between the configurations that are based on different function allocations. A surveillance range limitation of 100 nmi and a time delay for sharing updated trajectory intent of 30 seconds were implemented for the airborne system. Overall, these results indicate that the surveillance range and the sharing of trajectories and aircraft schedules are important factors in determining the efficiency of an airborne arrival management system. These parameters are not relevant to the ground-based system as modeled for this study because it has instantaneous access to all aircraft trajectories and intent. Creating a schedule external to the CD&R and the scheduling conformance system was seen to reduce total delays for the airborne system, and had a minor effect on the ground-based system. The effect of an external scheduler on other metrics was mixed.

  10. Optimal pre-scheduling of problem remappings

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Saltz, Joel H.

    1987-01-01

    A large class of scientific computational problems can be characterized as a sequence of steps where a significant amount of computation occurs each step, but the work performed at each step is not necessarily identical. Two good examples of this type of computation are: (1) regridding methods which change the problem discretization during the course of the computation, and (2) methods for solving sparse triangular systems of linear equations. Recent work has investigated a means of mapping such computations onto parallel processors; the method defines a family of static mappings with differing degrees of importance placed on the conflicting goals of good load balance and low communication/synchronization overhead. The performance tradeoffs are controllable by adjusting the parameters of the mapping method. To achieve good performance it may be necessary to dynamically change these parameters at run-time, but such changes can impose additional costs. If the computation's behavior can be determined prior to its execution, it can be possible to construct an optimal parameter schedule using a low-order-polynomial-time dynamic programming algorithm. Since the latter can be expensive, the performance is studied of the effect of a linear-time scheduling heuristic on one of the model problems, and it is shown to be effective and nearly optimal.

  11. Coordinated scheduling for dynamic real-time systems

    NASA Technical Reports Server (NTRS)

    Natarajan, Swaminathan; Zhao, Wei

    1994-01-01

    In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.

  12. Multiprocessor scheduling problem with machine constraints

    NASA Astrophysics Data System (ADS)

    He, Yong; Tan, Zhiyi

    2001-09-01

    This paper investigates multiprocessor scheduling with machine constraints, which has many applications in the flexible manufacturing systems and in VLSI chip design. Machines have different starting times and each machine can schedule at most k jobs in a period. The objective is to minimizing the makespan. For this strogly NP-hard problem, it is important to design near-optimal approximation algorithms. It is known that Modified LPT algorithm has a worst-case ratio of 3/2-1/(2m) for kequals2 where m is the number of machines. For k>2, no good algorithm has been got in the literature. In this paper, we prove the worst-case ratio of Modified LPT is less than 2. We further present an approximation algorithm Matching and show it has a worst-case ratio 2-1/m for every k>2. By introducing parameters, we get two better worst-case ratios which show the Matching algorithm is near optimal for two special cases.

  13. An algorithm for a single machine scheduling problem with sequence dependent setup times and scheduling windows

    NASA Technical Reports Server (NTRS)

    Moore, J. E.

    1975-01-01

    An enumeration algorithm is presented for solving a scheduling problem similar to the single machine job shop problem with sequence dependent setup times. The scheduling problem differs from the job shop problem in two ways. First, its objective is to select an optimum subset of the available tasks to be performed during a fixed period of time. Secondly, each task scheduled is constrained to occur within its particular scheduling window. The algorithm is currently being used to develop typical observational timelines for a telescope that will be operated in earth orbit. Computational times associated with timeline development are presented.

  14. The comparison of predictive scheduling algorithms for different sizes of job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Paprocka, I.; Kempa, W. M.; Grabowik, C.; Kalinowski, K.; Krenczyk, D.

    2016-08-01

    In the paper a survey of predictive and reactive scheduling methods is done in order to evaluate how the ability of prediction of reliability characteristics influences over robustness criteria. The most important reliability characteristics are: Mean Time to Failure, Mean Time of Repair. Survey analysis is done for a job shop scheduling problem. The paper answers the question: what method generates robust schedules in the case of a bottleneck failure occurrence before, at the beginning of planned maintenance actions or after planned maintenance actions? Efficiency of predictive schedules is evaluated using criteria: makespan, total tardiness, flow time, idle time. Efficiency of reactive schedules is evaluated using: solution robustness criterion and quality robustness criterion. This paper is the continuation of the research conducted in the paper [1], where the survey of predictive and reactive scheduling methods is done only for small size scheduling problems.

  15. Analysis of the integration of the physician rostering problem and the surgery scheduling problem.

    PubMed

    Van Huele, Christophe; Vanhoucke, Mario

    2014-06-01

    In this paper, we present the Integrated Physician and Surgery Scheduling Problem (IPSSP) as a new approach for solving operating room scheduling problems where staff rosters for the physicians are integrated in the optimization. A mixed integer linear programming formulation is created based on the most frequently observed objective and restrictions of the surgery scheduling and the physician rostering problem in the literature. We analyze schedules by relaxing both surgery and physician related constraints. We then measure the implications of setting these physician preferences on the surgery schedule. Our experiments show two main interesting insights for physician roster schedulers as well as operating theatre scheduling managers.

  16. Job shop scheduling problem with late work criterion

    NASA Astrophysics Data System (ADS)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    Scheduling is considered as a key task in many industries, such as project based scheduling, crew scheduling, flight scheduling, machine scheduling, etc. In the machine scheduling area, the job shop scheduling problems are considered to be important and highly complex, in which they are characterized as NP-hard. The job shop scheduling problems with late work criterion and non-preemptive jobs are addressed in this paper. Late work criterion is a fairly new objective function. It is a qualitative measure and concerns with late parts of the jobs, unlike classical objective functions that are quantitative measures. In this work, simulated annealing was presented to solve the scheduling problem. In addition, operation based representation was used to encode the solution, and a neighbourhood search structure was employed to search for the new solutions. The case studies are Lawrence instances that were taken from the Operations Research Library. Computational results of this probabilistic meta-heuristic algorithm were compared with a conventional genetic algorithm, and a conclusion was made based on the algorithm and problem.

  17. AI techniques for a space application scheduling problem

    NASA Technical Reports Server (NTRS)

    Thalman, N.; Sparn, T.; Jaffres, L.; Gablehouse, D.; Judd, D.; Russell, C.

    1991-01-01

    Scheduling is a very complex optimization problem which can be categorized as an NP-complete problem. NP-complete problems are quite diverse, as are the algorithms used in searching for an optimal solution. In most cases, the best solutions that can be derived for these combinatorial explosive problems are near-optimal solutions. Due to the complexity of the scheduling problem, artificial intelligence (AI) can aid in solving these types of problems. Some of the factors are examined which make space application scheduling problems difficult and presents a fairly new AI-based technique called tabu search as applied to a real scheduling application. the specific problem is concerned with scheduling application. The specific problem is concerned with scheduling solar and stellar observations for the SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) instrument in a constrained environment which produces minimum impact on the other instruments and maximizes target observation times. The SOLSTICE instrument will gly on-board the Upper Atmosphere Research Satellite (UARS) in 1991, and a similar instrument will fly on the earth observing system (Eos).

  18. Handling Deafness Problem of Scheduled Multi-Channel Polling MACs

    NASA Astrophysics Data System (ADS)

    Jiang, Fulong; Liu, Hao; Shi, Longxing

    Combining scheduled channel polling with channel diversity is a promising way for a MAC protocol to achieve high energy efficiency and performance under both light and heavy traffic conditions. However, the deafness problem may cancel out the benefit of channel diversity. In this paper, we first investigate the deafness problem of scheduled multi-channel polling MACs with experiments. Then we propose and evaluate two schemes to handle the deafness problem. Our experiment shows that deafness is a significant reason for performance degradation in scheduled multi-channel polling MACs. A proper scheme should be chosen depending on the traffic pattern and the design objective.

  19. The application of artificial intelligence to astronomical scheduling problems

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1992-01-01

    Efficient utilization of expensive space- and ground-based observatories is an important goal for the astronomical community; the cost of modern observing facilities is enormous, and the available observing time is much less than the demand from astronomers around the world. The complexity and variety of scheduling constraints and goals has led several groups to investigate how artificial intelligence (AI) techniques might help solve these kinds of problems. The earliest and most successful of these projects was started at Space Telescope Science Institute in 1987 and has led to the development of the Spike scheduling system to support the scheduling of Hubble Space Telescope (HST). The aim of Spike at STScI is to allocate observations to timescales of days to a week observing all scheduling constraints and maximizing preferences that help ensure that observations are made at optimal times. Spike has been in use operationally for HST since shortly after the observatory was launched in Apr. 1990. Although developed specifically for HST scheduling, Spike was carefully designed to provide a general framework for similar (activity-based) scheduling problems. In particular, the tasks to be scheduled are defined in the system in general terms, and no assumptions about the scheduling timescale are built in. The mechanisms for describing, combining, and propagating temporal and other constraints and preferences are quite general. The success of this approach has been demonstrated by the application of Spike to the scheduling of other satellite observatories: changes to the system are required only in the specific constraints that apply, and not in the framework itself. In particular, the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. This talk will discuss recent progress made in scheduling search techniques, the lessons learned from early HST operations, the application of Spike

  20. Children use salience to solve coordination problems.

    PubMed

    Grueneisen, Sebastian; Wyman, Emily; Tomasello, Michael

    2015-05-01

    Humans are routinely required to coordinate with others. When communication is not possible, adults often achieve this by using salient cues in the environment (e.g. going to the Eiffel Tower, as an obvious meeting point). To explore the development of this capacity, we presented dyads of 3-, 5-, and 8-year-olds (N = 144) with a coordination problem: Two balls had to be inserted into the same of four boxes to obtain a reward. Identical pictures were attached to three boxes whereas a unique--and thus salient--picture was attached to the fourth. Children either received one ball each, and so had to choose the same box (experimental condition), or they received both balls and could get the reward independently (control condition). In all cases, children could neither communicate nor see each other's choices. Children were significantly more likely to choose the salient option in the experimental condition than in the control condition. However, only the two older age groups chose the salient box above chance levels. This study is the first to show that children from at least age 5 can solve coordination problems by converging on a salient solution.

  1. Flexible Job-Shop Scheduling Problem by Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Ida, Kenichi; Oka, Kensaku

    Flexible Job-shop Scheduling Problem is expansion of the traditional Job-shop Scheduling Problem that an operation can be processed one or more machines. The purpose of this problem is to look for the smallest makespan. For that purpose, it is necessary to decide optimal assignment of machines to operations and order of operations on machines. In this paper, we focus on maximum of workloads for all machines and propose new suvival selection, creation method of initial solution, mutation, and escape method to Genetic Algorithm for this problem. The efficacy of our method is demonstrated by comparing its numerical experiment results with another methods.

  2. Analysis of Feeder Bus Network Design and Scheduling Problems

    PubMed Central

    Almasi, Mohammad Hadi; Karim, Mohamed Rehan

    2014-01-01

    A growing concern for public transit is its inability to shift passenger's mode from private to public transport. In order to overcome this problem, a more developed feeder bus network and matched schedules will play important roles. The present paper aims to review some of the studies performed on Feeder Bus Network Design and Scheduling Problem (FNDSP) based on three distinctive parts of the FNDSP setup, namely, problem description, problem characteristics, and solution approaches. The problems consist of different subproblems including data preparation, feeder bus network design, route generation, and feeder bus scheduling. Subsequently, descriptive analysis and classification of previous works are presented to highlight the main characteristics and solution methods. Finally, some of the issues and trends for future research are identified. This paper is targeted at dealing with the FNDSP to exhibit strategic and tactical goals and also contributes to the unification of the field which might be a useful complement to the few existing reviews. PMID:24526890

  3. Coordinating space telescope operations in an integrated planning and scheduling architecture

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Stephen F.; Cesta, Amedeo; D'Aloisi, Daniela

    1992-01-01

    The Heuristic Scheduling Testbed System (HSTS), a software architecture for integrated planning and scheduling, is discussed. The architecture has been applied to the problem of generating observation schedules for the Hubble Space Telescope. This problem is representative of the class of problems that can be addressed: their complexity lies in the interaction of resource allocation and auxiliary task expansion. The architecture deals with this interaction by viewing planning and scheduling as two complementary aspects of the more general process of constructing behaviors of a dynamical system. The principal components of the software architecture are described, indicating how to model the structure and dynamics of a system, how to represent schedules at multiple levels of abstraction in the temporal database, and how the problem solving machinery operates. A scheduler for the detailed management of Hubble Space Telescope operations that has been developed within HSTS is described. Experimental performance results are given that indicate the utility and practicality of the approach.

  4. Extended precedence preservative crossover for job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Ong, Chung Sin; Moin, Noor Hasnah; Omar, Mohd

    2013-04-01

    Job shop scheduling problems (JSSP) is one of difficult combinatorial scheduling problems. A wide range of genetic algorithms based on the two parents crossover have been applied to solve the problem but multi parents (more than two parents) crossover in solving the JSSP is still lacking. This paper proposes the extended precedence preservative crossover (EPPX) which uses multi parents for recombination in the genetic algorithms. EPPX is a variation of the precedence preservative crossover (PPX) which is one of the crossovers that perform well to find the solutions for the JSSP. EPPX is based on a vector to determine the gene selected in recombination for the next generation. Legalization of children (offspring) can be eliminated due to the JSSP representation encoded by using permutation with repetition that guarantees the feasibility of chromosomes. The simulations are performed on a set of benchmarks from the literatures and the results are compared to ensure the sustainability of multi parents recombination in solving the JSSP.

  5. Solving Open Job-Shop Scheduling Problems by SAT Encoding

    NASA Astrophysics Data System (ADS)

    Koshimura, Miyuki; Nabeshima, Hidetomo; Fujita, Hiroshi; Hasegawa, Ryuzo

    This paper tries to solve open Job-Shop Scheduling Problems (JSSP) by translating them into Boolean Satisfiability Testing Problems (SAT). The encoding method is essentially the same as the one proposed by Crawford and Baker. The open problems are ABZ8, ABZ9, YN1, YN2, YN3, and YN4. We proved that the best known upper bounds 678 of ABZ9 and 884 of YN1 are indeed optimal. We also improved the upper bound of YN2 and lower bounds of ABZ8, YN2, YN3 and YN4.

  6. A canned food scheduling problem with batch due date

    NASA Astrophysics Data System (ADS)

    Chung, Tsui-Ping; Liao, Ching-Jong; Smith, Milton

    2014-09-01

    This article considers a canned food scheduling problem where jobs are grouped into several batches. Jobs can be sent to the next operation only when all the jobs in the same batch have finished their processing, i.e. jobs in a batch, have a common due date. This batch due date problem is quite common in canned food factories, but there is no efficient heuristic to solve the problem. The problem can be formulated as an identical parallel machine problem with batch due date to minimize the total tardiness. Since the problem is NP hard, two heuristics are proposed to find the near-optimal solution. Computational results comparing the effectiveness and efficiency of the two proposed heuristics with an existing heuristic are reported and discussed.

  7. 48 CFR 552.236-78 - Shop Drawings, Coordination Drawings, and Schedules.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Shop Drawings, Coordination Drawings, and Schedules. 552.236-78 Section 552.236-78 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 552.236-78 Shop...

  8. Artificial immune algorithm for multi-depot vehicle scheduling problems

    NASA Astrophysics Data System (ADS)

    Wu, Zhongyi; Wang, Donggen; Xia, Linyuan; Chen, Xiaoling

    2008-10-01

    In the fast-developing logistics and supply chain management fields, one of the key problems in the decision support system is that how to arrange, for a lot of customers and suppliers, the supplier-to-customer assignment and produce a detailed supply schedule under a set of constraints. Solutions to the multi-depot vehicle scheduling problems (MDVRP) help in solving this problem in case of transportation applications. The objective of the MDVSP is to minimize the total distance covered by all vehicles, which can be considered as delivery costs or time consumption. The MDVSP is one of nondeterministic polynomial-time hard (NP-hard) problem which cannot be solved to optimality within polynomial bounded computational time. Many different approaches have been developed to tackle MDVSP, such as exact algorithm (EA), one-stage approach (OSA), two-phase heuristic method (TPHM), tabu search algorithm (TSA), genetic algorithm (GA) and hierarchical multiplex structure (HIMS). Most of the methods mentioned above are time consuming and have high risk to result in local optimum. In this paper, a new search algorithm is proposed to solve MDVSP based on Artificial Immune Systems (AIS), which are inspirited by vertebrate immune systems. The proposed AIS algorithm is tested with 30 customers and 6 vehicles located in 3 depots. Experimental results show that the artificial immune system algorithm is an effective and efficient method for solving MDVSP problems.

  9. Automated problem scheduling and reduction of synchronization delay effects

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.

    1987-01-01

    It is anticipated that in order to make effective use of many future high performance architectures, programs will have to exhibit at least a medium grained parallelism. A framework is presented for partitioning very sparse triangular systems of linear equations that is designed to produce favorable preformance results in a wide variety of parallel architectures. Efficient methods for solving these systems are of interest because: (1) they provide a useful model problem for use in exploring heuristics for the aggregation, mapping and scheduling of relatively fine grained computations whose data dependencies are specified by directed acrylic graphs, and (2) because such efficient methods can find direct application in the development of parallel algorithms for scientific computation. Simple expressions are derived that describe how to schedule computational work with varying degrees of granularity. The Encore Multimax was used as a hardware simulator to investigate the performance effects of using the partitioning techniques presented in shared memory architectures with varying relative synchronization costs.

  10. Children Use Salience to Solve Coordination Problems

    ERIC Educational Resources Information Center

    Grueneisen, Sebastian; Wyman, Emily; Tomasello, Michael

    2015-01-01

    Humans are routinely required to coordinate with others. When communication is not possible, adults often achieve this by using salient cues in the environment (e.g. going to the Eiffel Tower, as an obvious meeting point). To explore the development of this capacity, we presented dyads of 3-, 5-, and 8-year-olds (N = 144) with a coordination…

  11. Petri Net Modeling and Decomposition Method for Solving Production Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Nishi, Tatsushi; Maeno, Ryota

    Considering the need to develop general scheduling problem solver, the recent integration of Petri Nets as modeling tools into effective optimization methods for scheduling problems is very promising. The paper addresses a Petri Net modeling and decomposition method for solving a wide variety of scheduling problems. The scheduling problems are represented as the optimal transition firing sequence problems for timed Petri Nets. The Petri Net is decomposed into several subnets in which each subproblem can be easily solved by Dijkstra' algorithm. The approach is applied to a flowshop scheduling problem. The performance of the proposed algorithm is compared with that of a simulated annealing method.

  12. An Improved Differential Evolution Solution for Software Project Scheduling Problem

    PubMed Central

    Biju, A. C.; Victoire, T. Aruldoss Albert; Mohanasundaram, Kumaresan

    2015-01-01

    This paper proposes a differential evolution (DE) method for the software project scheduling problem (SPSP). The interest on finding a more efficient solution technique for SPSP is always a topic of interest due to the fact of ever growing challenges faced by the software industry. The curse of dimensionality is introduced in the scheduling problem by ever increasing software assignments and the number of staff who handles it. Thus the SPSP is a class of NP-hard problem, which requires a rigorous solution procedure which guarantees a reasonably better solution. Differential evolution is a direct search stochastic optimization technique that is fairly fast and reasonably robust. It is also capable of handling nondifferentiable, nonlinear, and multimodal objective functions like SPSP. This paper proposes a refined DE where a new mutation mechanism is introduced. The superiority of the proposed method is experimented and demonstrated by solving the SPSP on 50 random instances and the results are compared with some of the techniques in the literature. PMID:26495419

  13. Applications of dynamic scheduling technique to space related problems: Some case studies

    NASA Technical Reports Server (NTRS)

    Nakasuka, Shinichi; Ninomiya, Tetsujiro

    1994-01-01

    The paper discusses the applications of 'Dynamic Scheduling' technique, which has been invented for the scheduling of Flexible Manufacturing System, to two space related scheduling problems: operation scheduling of a future space transportation system, and resource allocation in a space system with limited resources such as space station or space shuttle.

  14. Walking (Gait), Balance, and Coordination Problems

    MedlinePlus

    ... tizanidine are generally effective in treating this symptom. Balance : Balance problems typically result in a swaying and “drunken” ... factors for falls are complex and include: poor balance and slowed walking reduced proprioception (the sensation of ...

  15. JIT single machine scheduling problem with periodic preventive maintenance

    NASA Astrophysics Data System (ADS)

    Shahriari, Mohammadreza; Shoja, Naghi; Zade, Amir Ebrahimi; Barak, Sasan; Sharifi, Mani

    2016-03-01

    This article investigates a JIT single machine scheduling problem with a periodic preventive maintenance. Also to maintain the quality of the products, there is a limitation on the maximum number of allowable jobs in each period. The proposed bi-objective mixed integer model minimizes total earliness-tardiness and makespan simultaneously. Due to the computational complexity of the problem, multi-objective particle swarm optimization (MOPSO) algorithm is implemented. Also, as well as MOPSO, two other optimization algorithms are used for comparing the results. Eventually, Taguchi method with metrics analysis is presented to tune the algorithms' parameters and a multiple criterion decision making technique based on the technique for order of preference by similarity to ideal solution is applied to choose the best algorithm. Comparison results confirmed the supremacy of MOPSO to the other algorithms.

  16. Nurse Scheduling System based on Dynamic Weighted Maximal Constraint Satisfaction Problem

    NASA Astrophysics Data System (ADS)

    Hattori, Hiromitsu; Isomura, Atsushi; Ito, Takayuki; Ozono, Tadachika; Shintani, Toramatsu

    Scheduling has been an important research field in Artificial Intelligence. Because typical scheduling problems could be modeled as a Constraint Satisfaction Problem(CSP), several constraint satisfaction techniques have been proposed. In order to handle the different levels of importance of the constraints, solving a problem as a Weighted Maximal Constraint Satisfaction Problem(W-MaxCSP) is an promising approach. However, there exists the case where unexpected events are added and some sudden changes are required, i.e., the case with dynamic changes in scheduling problems. In this paper, we describe such dynamic scheduling problem as a Dynamic Weighted Maximal Constraint Satisfaction Problem(DW-MaxCSP) in which constraints would changes dynamically. Generally, it is undesirable to determine vastly modified schedule even if re-scheduling is needed. A new schedule should be close to the current one as much as possible. In order to obtain stable solutions, we propose the methodology to maintain portions of the current schedule using the provisional soft constraints, which explicitly penalize the changes from the current schedule. We have experimentally confirmed the efficacy of re-scheduling based on our method with provisional constraints. In this paper, we construct the nurse scheduling system for applying the proposed scheduling method.

  17. Performance comparison of some evolutionary algorithms on job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Rao, C. S. P.

    2016-09-01

    Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.

  18. Balancing antagonistic time and resource utilization constraints in over-subscribed scheduling problems

    NASA Technical Reports Server (NTRS)

    Smith, Stephen F.; Pathak, Dhiraj K.

    1991-01-01

    In this paper, we report work aimed at applying concepts of constraint-based problem structuring and multi-perspective scheduling to an over-subscribed scheduling problem. Previous research has demonstrated the utility of these concepts as a means for effectively balancing conflicting objectives in constraint-relaxable scheduling problems, and our goal here is to provide evidence of their similar potential in the context of HST observation scheduling. To this end, we define and experimentally assess the performance of two time-bounded heuristic scheduling strategies in balancing the tradeoff between resource setup time minimization and satisfaction of absolute time constraints. The first strategy considered is motivated by dispatch-based manufacturing scheduling research, and employs a problem decomposition that concentrates local search on minimizing resource idle time due to setup activities. The second is motivated by research in opportunistic scheduling and advocates a problem decomposition that focuses attention on the goal activities that have the tightest temporal constraints. Analysis of experimental results gives evidence of differential superiority on the part of each strategy in different problem solving circumstances. A composite strategy based on recognition of characteristics of the current problem solving state is then defined and tested to illustrate the potential benefits of constraint-based problem structuring and multi-perspective scheduling in over-subscribe scheduling problems.

  19. Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling

    PubMed Central

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220

  20. Spreading order: religion, cooperative niche construction, and risky coordination problems.

    PubMed

    Bulbulia, Joseph

    2012-01-01

    Adaptationists explain the evolution of religion from the cooperative effects of religious commitments, but which cooperation problem does religion evolve to solve? I focus on a class of symmetrical coordination problems for which there are two pure Nash equilibriums: (1) ALL COOPERATE, which is efficient but relies on full cooperation; (2) ALL DEFECT, which is inefficient but pays regardless of what others choose. Formal and experimental studies reveal that for such risky coordination problems, only the defection equilibrium is evolutionarily stable. The following makes sense of otherwise puzzling properties of religious cognition and cultures as features of cooperative designs that evolve to stabilise such risky exchange. The model is interesting because it explains lingering puzzles in the data on religion, and better integrates evolutionary theories of religion with recent, well-motivated models of cooperative niche construction. PMID:22207773

  1. Spreading order: religion, cooperative niche construction, and risky coordination problems.

    PubMed

    Bulbulia, Joseph

    2012-01-01

    Adaptationists explain the evolution of religion from the cooperative effects of religious commitments, but which cooperation problem does religion evolve to solve? I focus on a class of symmetrical coordination problems for which there are two pure Nash equilibriums: (1) ALL COOPERATE, which is efficient but relies on full cooperation; (2) ALL DEFECT, which is inefficient but pays regardless of what others choose. Formal and experimental studies reveal that for such risky coordination problems, only the defection equilibrium is evolutionarily stable. The following makes sense of otherwise puzzling properties of religious cognition and cultures as features of cooperative designs that evolve to stabilise such risky exchange. The model is interesting because it explains lingering puzzles in the data on religion, and better integrates evolutionary theories of religion with recent, well-motivated models of cooperative niche construction.

  2. Protocols for distributive scheduling

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.; Fox, Barry

    1993-01-01

    The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of space shuttle mission planning.

  3. Coordinating complex problem-solving among distributed intelligent agents

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1992-01-01

    A process-oriented control model is described for distributed problem solving. The model coordinates the transfer and manipulation of information across independent networked applications, both intelligent and conventional. The model was implemented using SOCIAL, a set of object-oriented tools for distributing computing. Complex sequences of distributed tasks are specified in terms of high level scripts. Scripts are executed by SOCIAL objects called Manager Agents, which realize an intelligent coordination model that routes individual tasks to suitable server applications across the network. These tools are illustrated in a prototype distributed system for decision support of ground operations for NASA's Space Shuttle fleet.

  4. An Optimization Model for Scheduling Problems with Two-Dimensional Spatial Resource Constraint

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher; Rabadi, Ghaith

    2010-01-01

    Traditional scheduling problems involve determining temporal assignments for a set of jobs in order to optimize some objective. Some scheduling problems also require the use of limited resources, which adds another dimension of complexity. In this paper we introduce a spatial resource-constrained scheduling problem that can arise in assembly, warehousing, cross-docking, inventory management, and other areas of logistics and supply chain management. This scheduling problem involves a twodimensional rectangular area as a limited resource. Each job, in addition to having temporal requirements, has a width and a height and utilizes a certain amount of space inside the area. We propose an optimization model for scheduling the jobs while respecting all temporal and spatial constraints.

  5. Parallel-batch scheduling and transportation coordination with waiting time constraint.

    PubMed

    Gong, Hua; Chen, Daheng; Xu, Ke

    2014-01-01

    This paper addresses a parallel-batch scheduling problem that incorporates transportation of raw materials or semifinished products before processing with waiting time constraint. The orders located at the different suppliers are transported by some vehicles to a manufacturing facility for further processing. One vehicle can load only one order in one shipment. Each order arriving at the facility must be processed in the limited waiting time. The orders are processed in batches on a parallel-batch machine, where a batch contains several orders and the processing time of the batch is the largest processing time of the orders in it. The goal is to find a schedule to minimize the sum of the total flow time and the production cost. We prove that the general problem is NP-hard in the strong sense. We also demonstrate that the problem with equal processing times on the machine is NP-hard. Furthermore, a dynamic programming algorithm in pseudopolynomial time is provided to prove its ordinarily NP-hardness. An optimal algorithm in polynomial time is presented to solve a special case with equal processing times and equal transportation times for each order.

  6. What Causes Care Coordination Problems? A Case for Microanalysis

    PubMed Central

    Zachary, Wayne; Maulitz, Russell Charles; Zachary, Drew A.

    2016-01-01

    Introduction: Care coordination (CC) is an important fulcrum for pursuing a range of health care goals. Current research and policy analyses have focused on aggregated data rather than on understanding what happens within individual cases. At the case level, CC emerges as a complex network of communications among providers over time, crossing and recrossing many organizational boundaries. Micro-level analysis is needed to understand where and how CC fails, as well as to identify best practices and root causes of problems. Coordination Process Diagramming: Coordination Process Diagramming (CPD) is a new framework for representing and analyzing CC arcs at the micro level, separating an arc into its participants and roles, communication structure, organizational structures, and transitions of care, all on a common time line. Conclusion: Comparative CPD analysis across a sample of CC arcs identifies common CC problems and potential root causes, showing the potential value of the framework. The analyses also suggest intervention strategies that could be applied to attack the root causes of CC problems, including organizational changes, education and training, and additional health information technology development. PMID:27563685

  7. The problem of scheduling for the linear section of a single-track railway

    NASA Astrophysics Data System (ADS)

    Akimova, Elena N.; Gainanov, Damir N.; Golubev, Oleg A.; Kolmogortsev, Ilya D.; Konygin, Anton V.

    2016-06-01

    The paper is devoted to the problem of scheduling for the linear section of a single-track railway: how to organize the flow in both directions in the most efficient way. In this paper, the authors propose an algorithm for scheduling, examine the properties of this algorithm and perform the computational experiments.

  8. Electric power scheduling - A distributed problem-solving approach

    NASA Technical Reports Server (NTRS)

    Mellor, Pamela A.; Dolce, James L.; Krupp, Joseph C.

    1990-01-01

    Space Station Freedom's power system, along with the spacecraft's other subsystems, needs to carefully conserve its resources and yet strive to maximize overall Station productivity. Due to Freedom's distributed design, each subsystem must work cooperatively within the Station community. There is a need for a scheduling tool which will preserve this distributed structure, allow each subsystem the latitude to satisfy its own constraints, and preserve individual value systems while maintaining Station-wide integrity.

  9. The Impact of Competing Time Delays in Stochastic Coordination Problems

    NASA Astrophysics Data System (ADS)

    Korniss, G.; Hunt, D.; Szymanski, B. K.

    2011-03-01

    Coordinating, distributing, and balancing resources in coupled systems is a complex task as these operations are very sensitive to time delays. Delays are present in most real communication and information systems, including info-social and neuro-biological networks, and can be attributed to both non-zero transmission times between different units of the system and to non-zero times it takes to process the information and execute the desired action at the individual units. Here, we investigate the importance and impact of these two types of delays in a simple coordination (synchronization) problem in a noisy environment. We establish the scaling theory for the phase boundary of synchronization and for the steady-state fluctuations in the synchronizable regime. Further, we provide the asymptotic behavior near the boundary of the synchronizable regime. Our results also imply the potential for optimization and trade-offs in stochastic synchronization and coordination problems with time delays. Supported in part by DTRA, ARL, and ONR.

  10. Mathematical problems in children with developmental coordination disorder.

    PubMed

    Pieters, Stefanie; Desoete, Annemie; Van Waelvelde, Hilde; Vanderswalmen, Ruth; Roeyers, Herbert

    2012-01-01

    Developmental coordination disorder (DCD) is a heterogeneous disorder, which is often co-morbid with learning disabilities. However, mathematical problems have rarely been studied in DCD. The aim of this study was to investigate the mathematical problems in children with various degrees of motor problems. Specifically, this study explored if the development of mathematical skills in children with DCD is delayed or deficient. Children with DCD performed significantly worse for number fact retrieval and procedural calculation in comparison with age-matched control children. Moreover, children with mild DCD differed significantly from children with severe DCD on both number fact retrieval and procedural calculation. In addition, we found a developmental delay of 1 year for number fact retrieval in children with mild DCD and a developmental delay of 2 years in children with severe DCD. No evidence for a mathematical deficit was found. Diagnostic implications are discussed. PMID:22502838

  11. Electric power scheduling: A distributed problem-solving approach

    NASA Technical Reports Server (NTRS)

    Mellor, Pamela A.; Dolce, James L.; Krupp, Joseph C.

    1990-01-01

    Space Station Freedom's power system, along with the spacecraft's other subsystems, needs to carefully conserve its resources and yet strive to maximize overall Station productivity. Due to Freedom's distributed design, each subsystem must work cooperatively within the Station community. There is a need for a scheduling tool which will preserve this distributed structure, allow each subsystem the latitude to satisfy its own constraints, and preserve individual value systems while maintaining Station-wide integrity. The value-driven free-market economic model is such a tool.

  12. Solving a real-world problem using an evolving heuristically driven schedule builder.

    PubMed

    Hart, E; Ross, P; Nelson, J

    1998-01-01

    This work addresses the real-life scheduling problem of a Scottish company that must produce daily schedules for the catching and transportation of large numbers of live chickens. The problem is complex and highly constrained. We show that it can be successfully solved by division into two subproblems and solving each using a separate genetic algorithm (GA). We address the problem of whether this produces locally optimal solutions and how to overcome this. We extend the traditional approach of evolving a "permutation + schedule builder" by concentrating on evolving the schedule builder itself. This results in a unique schedule builder being built for each daily scheduling problem, each individually tailored to deal with the particular features of that problem. This results in a robust, fast, and flexible system that can cope with most of the circumstances imaginable at the factory. We also compare the performance of a GA approach to several other evolutionary methods and show that population-based methods are superior to both hill-climbing and simulated annealing in the quality of solutions produced. Population-based methods also have the distinct advantage of producing multiple, equally fit solutions, which is of particular importance when considering the practical aspects of the problem. PMID:10021741

  13. Solving a real-world problem using an evolving heuristically driven schedule builder.

    PubMed

    Hart, E; Ross, P; Nelson, J

    1998-01-01

    This work addresses the real-life scheduling problem of a Scottish company that must produce daily schedules for the catching and transportation of large numbers of live chickens. The problem is complex and highly constrained. We show that it can be successfully solved by division into two subproblems and solving each using a separate genetic algorithm (GA). We address the problem of whether this produces locally optimal solutions and how to overcome this. We extend the traditional approach of evolving a "permutation + schedule builder" by concentrating on evolving the schedule builder itself. This results in a unique schedule builder being built for each daily scheduling problem, each individually tailored to deal with the particular features of that problem. This results in a robust, fast, and flexible system that can cope with most of the circumstances imaginable at the factory. We also compare the performance of a GA approach to several other evolutionary methods and show that population-based methods are superior to both hill-climbing and simulated annealing in the quality of solutions produced. Population-based methods also have the distinct advantage of producing multiple, equally fit solutions, which is of particular importance when considering the practical aspects of the problem.

  14. Solving scheduling tournament problems using a new version of CLONALG

    NASA Astrophysics Data System (ADS)

    Pérez-Cáceres, Leslie; Riff, María Cristina

    2015-01-01

    The travelling tournament problem (TTP) is an important and well-known problem within the collective sports research community. The problem is NP-hard which makes difficult finding quality solution in short amount of time. Recently a new kind of TTP has been proposed 'The Relaxed Travelling Tournament Problem'. This version of the problem allows teams to have some days off during the tournament. In this paper, we propose an immune algorithm that is able to solve both problem versions. The algorithm uses moves which are based on the team home/away patterns. One of these moves has been specially designed for the relaxed travel tournament instances. We have tested the algorithm using well-known problem benchmarks and the results obtained are very encouraging.

  15. Three-index Model for Westenberger-Kallrath Benchmark Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Vooradi, Ramsagar; Shaik, Munawar A.; Gupta, Nikhil M.

    2010-10-01

    Short-term scheduling of batch operations has become an important research area in the last two decades. Recently Shaik and Floudas (2009) proposed a novel unified model for short-term scheduling using unit-specific event based continuous time representation employing three-index binary and continuous variables. In this work, we extend this three index model to solve a challenging benchmark problem from the scheduling literature that covers most of the features contributing to the complexity of batch process scheduling in industry. In order to implement the problem, new sets of constraints and modifications are incorporated into the three-index model. The different demand instances of the benchmark problem have been solved using the developed model and the results are compared with the literature to demonstrate the effectiveness of the proposed three-index model.

  16. An efficient game for vehicle-to-grid coordination problems in smart grids

    NASA Astrophysics Data System (ADS)

    Shi, Xingyu; Ma, Zhongjing

    2015-11-01

    Emerging plug-in electric vehicles (PEVs), as distributed energy sources, are promising to provide vehicle-to-grid (V2G) services for power grids, like frequency and voltage regulations, by coordinating their active and reactive power rates. However, due to the autonomy of PEVs, it is challenging how to efficiently schedule the coordination behaviours among these units in a distributed way. In this paper, we formulate the underlying coordination problems as a novel class of Vickrey-Clarke-Groves style (VCG-style) auction games where players, power grids and PEVs do not report a full cost or valuation function but only a multidimensional bid signal: the maximum active and reactive power quantities that a power grid wants and the maximum per unit prices it is willing to pay, and the maximum active and reactive power quantities that a PEV can provide and the minimum per unit prices it asks for. We show the existence of the efficient Nash equilibrium (NE) for the underlying auction games, though there may exist other inefficient NEs. In order to deal with large-scale PEVs, we design games with aggregator players each of which submits bid profiles representing the overall utility for a collection of PEVs, and extend the so-called quantised-progressive second price mechanism to the underlying auction games to implement the efficient NE.

  17. A modify ant colony optimization for the grid jobs scheduling problem with QoS requirements

    NASA Astrophysics Data System (ADS)

    Pu, Xun; Lu, XianLiang

    2011-10-01

    Job scheduling with customers' quality of service (QoS) requirement is challenging in grid environment. In this paper, we present a modify Ant colony optimization (MACO) for the Job scheduling problem in grid. Instead of using the conventional construction approach to construct feasible schedules, the proposed algorithm employs a decomposition method to satisfy the customer's deadline and cost requirements. Besides, a new mechanism of service instances state updating is embedded to improve the convergence of MACO. Experiments demonstrate the effectiveness of the proposed algorithm.

  18. Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Cruz-Chávez, Marco Antonio

    2015-11-01

    This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.

  19. Application of a hybrid generation/utility assessment heuristic to a class of scheduling problems

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.

    1989-01-01

    A two-stage heuristic solution approach for a class of multiobjective, n-job, 1-machine scheduling problems is described. Minimization of job-to-job interference for n jobs is sought. The first stage generates alternative schedule sequences by interchanging pairs of schedule elements. The set of alternative sequences can represent nodes of a decision tree; each node is reached via decision to interchange job elements. The second stage selects the parent node for the next generation of alternative sequences through automated paired comparison of objective performance for all current nodes. An application of the heuristic approach to communications satellite systems planning is presented.

  20. Psychometric Properties of the Disability Assessment Schedule (DAS) for Behavior Problems: An Independent Investigation

    ERIC Educational Resources Information Center

    Tsakanikos, Elias; Underwood, Lisa; Sturmey, Peter; Bouras, Nick; McCarthy, Jane

    2011-01-01

    The present study employed the Disability Assessment Schedule (DAS) to assess problem behaviors in a large sample of adults with ID (N = 568) and evaluate the psychometric properties of this instrument. Although the DAS problem behaviors were found to be internally consistent (Cronbach's [alpha] = 0.87), item analysis revealed one weak item…

  1. A duty-period-based formulation of the airline crew scheduling problem

    SciTech Connect

    Hoffman, K.

    1994-12-31

    We present a new formulation of the airline crew scheduling problem that explicitly considers the duty periods. We suggest an algorithm for solving the formulation by a column generation approach with branch-and-bound. Computational results are reported for a number of test problems.

  2. Automated telescope scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  3. A Genetic Algorithm Tool (splicer) for Complex Scheduling Problems and the Space Station Freedom Resupply Problem

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Valenzuela-Rendon, Manuel

    1993-01-01

    The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.

  4. Scheduling Earth Observing Fleets Using Evolutionary Algorithms: Problem Description and Approach

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Morris, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We describe work in progress concerning multi-instrument, multi-satellite scheduling. Most, although not all, Earth observing instruments currently in orbit are unique. In the relatively near future, however, we expect to see fleets of Earth observing spacecraft, many carrying nearly identical instruments. This presents a substantially new scheduling challenge. Inspired by successful commercial applications of evolutionary algorithms in scheduling domains, this paper presents work in progress regarding the use of evolutionary algorithms to solve a set of Earth observing related model problems. Both the model problems and the software are described. Since the larger problems will require substantial computation and evolutionary algorithms are embarrassingly parallel, we discuss our parallelization techniques using dedicated and cycle-scavenged workstations.

  5. Peer Problems Mediate the Relationship between Developmental Coordination Disorder and Behavioral Problems in School-Aged Children

    ERIC Educational Resources Information Center

    Wagner, Matthias Oliver; Bos, Klaus; Jascenoka, Julia; Jekauc, Darko; Petermann, Franz

    2012-01-01

    The aim of this study was to gain insights into the relationship between developmental coordination disorder, peer problems, and behavioral problems in school-aged children where both internalizing and externalizing behavioral problems were considered. We assumed that the relationship between developmental coordination disorder and…

  6. Nonstandard maternal work schedules during infancy: Implications for children's early behavior problems

    PubMed Central

    Daniel, Stephanie S.; Grzywacz, Joseph G.; Leerkes, Esther; Tucker, Jenna; Han, Wen-Jui

    2009-01-01

    This paper examines the associations between maternal nonstandard work schedules during infancy and children's early behavior problems, and the extent to which infant temperament may moderate these associations. Hypothesized associations were tested using data from the National Institute of Child Health and Human Development (NICHD) Study of Early Child Care (Phase I). Analyses focused on mothers who returned to work by the time the child was 6 months of age, and who worked an average of at least 35 h per week from 6 through 36 months. At 24 and 36 months, children whose mothers worked a nonstandard schedule had higher internalizing and externalizing behaviors. Modest, albeit inconsistent, evidence suggests that temperamentally reactive children may be more vulnerable to maternal work schedules. Maternal depressive symptoms partially mediated associations between nonstandard maternal work schedules and child behavior outcomes. PMID:19233479

  7. Efficient Genetic Algorithm for Flexible Job-Shop Scheduling Problem Using Minimise Makespan

    NASA Astrophysics Data System (ADS)

    Farashahi, Hamid Ghaani; Baharudin, B. T. H. T.; Shojaeipour, Shahed; Jaberi, Mohammad

    The aim of this paper is to minimise the makespan. The flexible job-shop scheduling is very common in practice and parallel machine is used in job-shop environment as flexibility. These flexibilities could be used for increasing the throughput rate, avoiding the production stop, removing bottleneck problems and finally achieving competitive advantages in economical environments. In opposition to classic job-shop where there is one machine in each stage, in this problem production system consists of multistage which in each stage there are one or several parallel machines with different speeds. The flexible job-shop scheduling with parallel machines problem consists of two sub-problems for solving: assigning and sequencing sub-problem.

  8. A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Thammano, Arit; Teekeng, Wannaporn

    2015-05-01

    The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.

  9. Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.

  10. Active Solution Space and Search on Job-shop Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Watanabe, Masato; Ida, Kenichi; Gen, Mitsuo

    In this paper we propose a new searching method of Genetic Algorithm for Job-shop scheduling problem (JSP). The coding method that represent job number in order to decide a priority to arrange a job to Gannt Chart (called the ordinal representation with a priority) in JSP, an active schedule is created by using left shift. We define an active solution at first. It is solution which can create an active schedule without using left shift, and set of its defined an active solution space. Next, we propose an algorithm named Genetic Algorithm with active solution space search (GA-asol) which can create an active solution while solution is evaluated, in order to search the active solution space effectively. We applied it for some benchmark problems to compare with other method. The experimental results show good performance.

  11. Fuzzy evolutionary algorithm to solve chromosomes conflict and its application to lecture schedule problems

    NASA Astrophysics Data System (ADS)

    Marwati, Rini; Yulianti, Kartika; Pangestu, Herny Wulandari

    2016-02-01

    A fuzzy evolutionary algorithm is an integration of an evolutionary algorithm and a fuzzy system. In this paper, we present an application of a genetic algorithm to a fuzzy evolutionary algorithm to detect and to solve chromosomes conflict. A chromosome conflict is identified by existence of any two genes in a chromosome that has the same values as two genes in another chromosome. Based on this approach, we construct an algorithm to solve a lecture scheduling problem. Time codes, lecture codes, lecturer codes, and room codes are defined as genes. They are collected to become chromosomes. As a result, the conflicted schedule turns into chromosomes conflict. Built in the Delphi program, results show that the conflicted lecture schedule problem is solvable by this algorithm.

  12. Some problems in sequencing and scheduling utilizing branch and bound algorithms

    SciTech Connect

    Gim, B.

    1988-01-01

    This dissertation deals with branch and bound algorithms which are applied to the two-machine flow-shop problem with sparse precedence constraints and the optimal sequencing and scheduling of multiple feedstocks in a batch-type digester problem. The problem studied here is to find a schedule which minimizes the maximum flow time with the requirement that the schedule does not violate a set of sparse precedence constraints. This research provides a branch and bound algorithm which employs a lower bounding rule and is based on an adjustment of the sequence obtained by applying Johnson's algorithm. It is demonstrated that this lower bounding procedure in conjunction with Kurisu's branching rule is effective for the sparse precedence constraints problem case. Biomass to methane production systems have the potential of supplying 25% of the national gas demand. The optimal operation of a batch digester system requires the sequencing and scheduling of all batches from multiple feedstocks during a fixed time horizon. A significant characteristic of these systems is that the feedstock decays in storage before use in the digester system. The operational problem is to determine the time to allocate to each batch of several feedstocks and then sequence the individual batches so as to maximize biogas production for a single batch type digester over a fixed planning horizon. This research provides a branch and bound algorithm for sequencing and a two-step hierarchical dynamic programming procedure for time allocation scheduling. An efficient heuristic algorithm is developed for large problems and demonstrated to yield excellent results.

  13. An information theoretic view of the scheduling problem in whole-body CAD

    NASA Astrophysics Data System (ADS)

    Zhan, Yiqiang; Zhou, Xiang Sean; Krishnan, Arun

    2008-03-01

    Emerging whole-body imaging technologies push computer aided detection/diagnosis (CAD) to scale up to a whole-body level, which involves multiple organs or anatomical structure. To be exploited in this paper is the fact that the various tasks in whole-body CAD are often highly dependent (e.g., the localization of the femur heads strongly predicts the position of the iliac bifurcation of the aorta). One way to effectively employ task dependency is to schedule the tasks such that outputs of some tasks are used to guide the others. In this sense, optimal task scheduling is key to improve overall performance of a whole-body CAD system. In this paper, we propose a method for task scheduling that is optimal in an information-theoretic sense. The central idea is to schedule tasks in such an order that each operation achieves maximum expected information gain over all the tasks. The formulation embeds two intuitive principles: (1) a task with higher confidence tends to be scheduled earlier; (2) a task with higher predictive power for other tasks tends to be scheduled earlier. More specifically, task dependency is modeled by conditional probability; the outcome of each task is assumed to be probabilistic as well; and the objective function is based on the reduction of the summed conditional entropy over all tasks. The validation is carried out on a challenging CAD problem, multi-organ localization in whole-body CT. Compared to unscheduled and ad hoc scheduled organ detection/localization, our scheduled execution achieves higher accuracy with much less computation time.

  14. Concurrent Reinforcement Schedules for Problem Behavior and Appropriate Behavior: Experimental Applications of the Matching Law

    ERIC Educational Resources Information Center

    Borrero, Carrie S. W.; Vollmer, Timothy R.; Borrero, John C.; Bourret, Jason C.; Sloman, Kimberly N.; Samaha, Andrew L.; Dallery, Jesse

    2010-01-01

    This study evaluated how children who exhibited functionally equivalent problem and appropriate behavior allocate responding to experimentally arranged reinforcer rates. Relative reinforcer rates were arranged on concurrent variable-interval schedules and effects on relative response rates were interpreted using the generalized matching equation.…

  15. Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem.

    PubMed

    Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue

    2015-01-01

    As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods.

  16. Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem.

    PubMed

    Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue

    2015-01-01

    As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods. PMID:26176764

  17. Performance of Extended Local Clustering Organization (LCO) for Large Scale Job-Shop Scheduling Problem (JSP)

    NASA Astrophysics Data System (ADS)

    Konno, Yohko; Suzuki, Keiji

    This paper describes an approach to development of a solution algorithm of a general-purpose for large scale problems using “Local Clustering Organization (LCO)” as a new solution for Job-shop scheduling problem (JSP). Using a performance effective large scale scheduling in the study of usual LCO, a solving JSP keep stability induced better solution is examined. In this study for an improvement of a performance of a solution for JSP, processes to a optimization by LCO is examined, and a scheduling solution-structure is extended to a new solution-structure based on machine-division. A solving method introduced into effective local clustering for the solution-structure is proposed as an extended LCO. An extended LCO has an algorithm which improves scheduling evaluation efficiently by clustering of parallel search which extends over plural machines. A result verified by an application of extended LCO on various scale of problems proved to conduce to minimizing make-span and improving on the stable performance.

  18. Minimizing conflicts: A heuristic repair method for constraint-satisfaction and scheduling problems

    NASA Technical Reports Server (NTRS)

    Minton, Steve; Johnston, Mark; Philips, Andrew; Laird, Phil

    1992-01-01

    This paper describes a simple heuristic approach to solving large-scale constraint satisfaction and scheduling problems. In this approach one starts with an inconsistent assignment for a set of variables and searches through the space of possible repairs. The search can be guided by a value-ordering heuristic, the min-conflicts heuristic, that attempts to minimize the number of constraint violations after each step. The heuristic can be used with a variety of different search strategies. We demonstrate empirically that on the n-queens problem, a technique based on this approach performs orders of magnitude better than traditional backtracking techniques. We also describe a scheduling application where the approach has been used successfully. A theoretical analysis is presented both to explain why this method works well on certain types of problems and to predict when it is likely to be most effective.

  19. An ant colony optimization heuristic for an integrated production and distribution scheduling problem

    NASA Astrophysics Data System (ADS)

    Chang, Yung-Chia; Li, Vincent C.; Chiang, Chia-Ju

    2014-04-01

    Make-to-order or direct-order business models that require close interaction between production and distribution activities have been adopted by many enterprises in order to be competitive in demanding markets. This article considers an integrated production and distribution scheduling problem in which jobs are first processed by one of the unrelated parallel machines and then distributed to corresponding customers by capacitated vehicles without intermediate inventory. The objective is to find a joint production and distribution schedule so that the weighted sum of total weighted job delivery time and the total distribution cost is minimized. This article presents a mathematical model for describing the problem and designs an algorithm using ant colony optimization. Computational experiments illustrate that the algorithm developed is capable of generating near-optimal solutions. The computational results also demonstrate the value of integrating production and distribution in the model for the studied problem.

  20. Single-machine group scheduling problems with deteriorating and learning effect

    NASA Astrophysics Data System (ADS)

    Xingong, Zhang; Yong, Wang; Shikun, Bai

    2016-07-01

    The concepts of deteriorating jobs and learning effects have been individually studied in many scheduling problems. However, most studies considering the deteriorating and learning effects ignore the fact that production efficiency can be increased by grouping various parts and products with similar designs and/or production processes. This phenomenon is known as 'group technology' in the literature. In this paper, a new group scheduling model with deteriorating and learning effects is proposed, where learning effect depends not only on job position, but also on the position of the corresponding job group; deteriorating effect depends on its starting time of the job. This paper shows that the makespan and the total completion time problems remain polynomial optimal solvable under the proposed model. In addition, a polynomial optimal solution is also presented to minimise the maximum lateness problem under certain agreeable restriction.

  1. Separate and Combined Effects of Visual Schedules and Extinction Plus Differential Reinforcement on Problem Behavior Occasioned by Transitions

    ERIC Educational Resources Information Center

    Waters, Melissa B.; Lerman, Dorothea C.; Hovanetz, Alyson N.

    2009-01-01

    The separate and combined effects of visual schedules and extinction plus differential reinforcement of other behavior (DRO) were evaluated to decrease transition-related problem behavior of 2 children diagnosed with autism. Visual schedules alone were ineffective in reducing problem behavior when transitioning from preferred to nonpreferred…

  2. 48 CFR 552.236-78 - Shop Drawings, Coordination Drawings, and Schedules.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., manufacturers' scale drawings, wriring and control diagrams, cuts or entire catalogs, pamphlets, descriptive literature, and performance and test data. (c) Drawings and schedules, other than catalogs, pamphlets and... specifications. The Contractor shall submit shop drawings in catalog, pamphlet and similar printed form in...

  3. Capability of the Maximax&Maximin selection operator in the evolutionary algorithm for a nurse scheduling problem

    NASA Astrophysics Data System (ADS)

    Ramli, Razamin; Tein, Lim Huai

    2016-08-01

    A good work schedule can improve hospital operations by providing better coverage with appropriate staffing levels in managing nurse personnel. Hence, constructing the best nurse work schedule is the appropriate effort. In doing so, an improved selection operator in the Evolutionary Algorithm (EA) strategy for a nurse scheduling problem (NSP) is proposed. The smart and efficient scheduling procedures were considered. Computation of the performance of each potential solution or schedule was done through fitness evaluation. The best so far solution was obtained via special Maximax&Maximin (MM) parent selection operator embedded in the EA, which fulfilled all constraints considered in the NSP.

  4. Meta-RaPS Algorithm for the Aerial Refueling Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Kaplan, Sezgin; Arin, Arif; Rabadi, Ghaith

    2011-01-01

    The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the refueling completion times for each fighter aircraft (job) on multiple tankers (machines). ARSP assumes that jobs have different release times and due dates, The total weighted tardiness is used to evaluate schedule's quality. Therefore, ARSP can be modeled as a parallel machine scheduling with release limes and due dates to minimize the total weighted tardiness. Since ARSP is NP-hard, it will be more appropriate to develop a pproimate or heuristic algorithm to obtain solutions in reasonable computation limes. In this paper, Meta-Raps-ATC algorithm is implemented to create high quality solutions. Meta-RaPS (Meta-heuristic for Randomized Priority Search) is a recent and promising meta heuristic that is applied by introducing randomness to a construction heuristic. The Apparent Tardiness Rule (ATC), which is a good rule for scheduling problems with tardiness objective, is used to construct initial solutions which are improved by an exchanging operation. Results are presented for generated instances.

  5. Enhancements of evolutionary algorithm for the complex requirements of a nurse scheduling problem

    NASA Astrophysics Data System (ADS)

    Tein, Lim Huai; Ramli, Razamin

    2014-12-01

    Over the years, nurse scheduling is a noticeable problem that is affected by the global nurse turnover crisis. The more nurses are unsatisfied with their working environment the more severe the condition or implication they tend to leave. Therefore, the current undesirable work schedule is partly due to that working condition. Basically, there is a lack of complimentary requirement between the head nurse's liability and the nurses' need. In particular, subject to highly nurse preferences issue, the sophisticated challenge of doing nurse scheduling is failure to stimulate tolerance behavior between both parties during shifts assignment in real working scenarios. Inevitably, the flexibility in shifts assignment is hard to achieve for the sake of satisfying nurse diverse requests with upholding imperative nurse ward coverage. Hence, Evolutionary Algorithm (EA) is proposed to cater for this complexity in a nurse scheduling problem (NSP). The restriction of EA is discussed and thus, enhancement on the EA operators is suggested so that the EA would have the characteristic of a flexible search. This paper consists of three types of constraints which are the hard, semi-hard and soft constraints that can be handled by the EA with enhanced parent selection and specialized mutation operators. These operators and EA as a whole contribute to the efficiency of constraint handling, fitness computation as well as flexibility in the search, which correspond to the employment of exploration and exploitation principles.

  6. A divide-and-conquer strategy with particle swarm optimization for the job shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wu, Cheng

    2010-07-01

    An optimization algorithm based on the 'divide-and-conquer' methodology is proposed for solving large job shop scheduling problems with the objective of minimizing total weighted tardiness. The algorithm adopts a non-iterative framework. It first searches for a promising decomposition policy for the operation set by using a simulated annealing procedure in which the solutions are evaluated with reference to the upper bound and the lower bound of the final objective value. Subproblems are then constructed according to the output decomposition policy and each subproblem is related to a subset of operations from the original operation set. Subsequently, all these subproblems are sequentially solved by a particle swarm optimization algorithm, which leads directly to a feasible solution to the original large-scale scheduling problem. Numerical computational experiments are carried out for both randomly generated test problems and the real-world production data from a large speed-reducer factory in China. Results show that the proposed algorithm can achieve satisfactory solution quality within reasonable computational time for large-scale job shop scheduling problems.

  7. Cultural algorithms, an alternative heuristic to solve the job shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Cortes Rivera, Daniel; Landa Becerra, Ricardo; Coello Coello, Carlos A.

    2007-01-01

    In this work, an approach for solving the job shop scheduling problem using a cultural algorithm is proposed. Cultural algorithms are evolutionary computation methods that extract domain knowledge during the evolutionary process. Additional to this extracted knowledge, the proposed approach also uses domain knowledge given a priori (based on specific domain knowledge available for the job shop scheduling problem). The proposed approach is compared with respect to a Greedy Randomized Adaptive Search Procedure (GRASP), a Parallel GRASP, a Genetic Algorithm, a Hybrid Genetic Algorithm, and a deterministic method called shifting bottleneck. The cultural algorithm proposed in this article is able to produce competitive results with respect to the two approaches previously indicated at a significantly lower computational cost than at least one of them and without using any sort of parallel processing.

  8. Simultaneous planning of the project scheduling and material procurement problem under the presence of multiple suppliers

    NASA Astrophysics Data System (ADS)

    Tabrizi, Babak H.; Farid Ghaderi, Seyed

    2016-09-01

    Simultaneous planning of project scheduling and material procurement can improve the project execution costs. Hence, the issue has been addressed here by a mixed-integer programming model. The proposed model facilitates the procurement decisions by accounting for a number of suppliers offering a distinctive discount formula from which to purchase the required materials. It is aimed at developing schedules with the best net present value regarding the obtained benefit and costs of the project execution. A genetic algorithm is applied to deal with the problem, in addition to a modified version equipped with a variable neighbourhood search. The underlying factors of the solution methods are calibrated by the Taguchi method to obtain robust solutions. The performance of the aforementioned methods is compared for different problem sizes, in which the utilized local search proved efficient. Finally, a sensitivity analysis is carried out to check the effect of inflation on the objective function value.

  9. Developmental and physical-fitness associations with gross motor coordination problems in Peruvian children.

    PubMed

    de Chaves, Raquel Nichele; Bustamante Valdívia, Alcibíades; Nevill, Alan; Freitas, Duarte; Tani, Go; Katzmarzyk, Peter T; Maia, José António Ribeiro

    2016-01-01

    The aims of this cross-sectional study were to examine the developmental characteristics (biological maturation and body size) associated with gross motor coordination problems in 5193 Peruvian children (2787 girls) aged 6-14 years from different geographical locations, and to investigate how the probability that children suffer with gross motor coordination problems varies with physical fitness. Children with gross motor coordination problems were more likely to have lower flexibility and explosive strength levels, having adjusted for age, sex, maturation and study site. Older children were more likely to suffer from gross motor coordination problems, as were those with greater body mass index. However, more mature children were less likely to have gross motor coordination problems, although children who live at sea level or at high altitude were more likely to suffer from gross motor coordination problems than children living in the jungle. Our results provide evidence that children and adolescents with lower physical fitness are more likely to have gross motor coordination difficulties. The identification of youths with gross motor coordination problems and providing them with effective intervention programs is an important priority in order to overcome such developmental problems, and help to improve their general health status.

  10. The problem of organization of a coastal coordinating computer center

    NASA Technical Reports Server (NTRS)

    Dyubkin, I. A.; Lodkin, I. I.

    1974-01-01

    The fundamental principles of the operation of a coastal coordinating and computing center under conditions of automation are presented. Special attention is devoted to the work of Coastal Computer Center of the Arctic and Antarctic Scientific Research Institute. This center generalizes from data collected in expeditions and also from observations made at polar stations.

  11. A Novel Joint Problem of Routing, Scheduling, and Variable-Width Channel Allocation in WMNs

    PubMed Central

    Liu, Wan-Yu; Chou, Chun-Hung

    2014-01-01

    This paper investigates a novel joint problem of routing, scheduling, and channel allocation for single-radio multichannel wireless mesh networks in which multiple channel widths can be adjusted dynamically through a new software technology so that more concurrent transmissions and suppressed overlapping channel interference can be achieved. Although the previous works have studied this joint problem, their linear programming models for the problem were not incorporated with some delicate constraints. As a result, this paper first constructs a linear programming model with more practical concerns and then proposes a simulated annealing approach with a novel encoding mechanism, in which the configurations of multiple time slots are devised to characterize the dynamic transmission process. Experimental results show that our approach can find the same or similar solutions as the optimal solutions for smaller-scale problems and can efficiently find good-quality solutions for a variety of larger-scale problems. PMID:24982990

  12. Hybrid metaheuristics for solving a fuzzy single batch-processing machine scheduling problem.

    PubMed

    Molla-Alizadeh-Zavardehi, S; Tavakkoli-Moghaddam, R; Lotfi, F Hosseinzadeh

    2014-01-01

    This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms.

  13. The Research of Solution to the Problems of Complex Task Scheduling Based on Self-adaptive Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Li; He, Yongxiang; Xue, Haidong; Chen, Leichen

    Traditional genetic algorithms (GA) displays a disadvantage of early-constringency in dealing with scheduling problem. To improve the crossover operators and mutation operators self-adaptively, this paper proposes a self-adaptive GA at the target of multitask scheduling optimization under limited resources. The experiment results show that the proposed algorithm outperforms the traditional GA in evolutive ability to deal with complex task scheduling optimization.

  14. Maximizing the nurses' preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithm

    NASA Astrophysics Data System (ADS)

    Jafari, Hamed; Salmasi, Nasser

    2015-04-01

    The nurse scheduling problem (NSP) has received a great amount of attention in recent years. In the NSP, the goal is to assign shifts to the nurses in order to satisfy the hospital's demand during the planning horizon by considering different objective functions. In this research, we focus on maximizing the nurses' preferences for working shifts and weekends off by considering several important factors such as hospital's policies, labor laws, governmental regulations, and the status of nurses at the end of the previous planning horizon in one of the largest hospitals in Iran i.e., Milad Hospital. Due to the shortage of available nurses, at first, the minimum total number of required nurses is determined. Then, a mathematical programming model is proposed to solve the problem optimally. Since the proposed research problem is NP-hard, a meta-heuristic algorithm based on simulated annealing (SA) is applied to heuristically solve the problem in a reasonable time. An initial feasible solution generator and several novel neighborhood structures are applied to enhance performance of the SA algorithm. Inspired from our observations in Milad hospital, random test problems are generated to evaluate the performance of the SA algorithm. The results of computational experiments indicate that the applied SA algorithm provides solutions with average percentage gap of 5.49 % compared to the upper bounds obtained from the mathematical model. Moreover, the applied SA algorithm provides significantly better solutions in a reasonable time than the schedules provided by the head nurses.

  15. Concurrent reinforcement schedules for problem behavior and appropriate behavior: experimental applications of the matching law.

    PubMed

    Borrero, Carrie S W; Vollmer, Timothy R; Borrero, John C; Bourret, Jason C; Sloman, Kimberly N; Samaha, Andrew L; Dallery, Jesse

    2010-05-01

    This study evaluated how children who exhibited functionally equivalent problem and appropriate behavior allocate responding to experimentally arranged reinforcer rates. Relative reinforcer rates were arranged on concurrent variable-interval schedules and effects on relative response rates were interpreted using the generalized matching equation. Results showed that relative rates of responding approximated relative rates of reinforcement. Finally, interventions for problem behavior were evaluated and differential reinforcement of alternative behavior and extinction procedures were implemented to increase appropriate behavior and decrease problem behavior. Practical considerations for the application of the generalized matching equation specific to severe problem behavior are discussed, including difficulties associated with defining a reinforced response, and obtaining steady state responding in clinical settings.

  16. Laplace Boundary-Value Problem in Paraboloidal Coordinates

    ERIC Educational Resources Information Center

    Duggen, L.; Willatzen, M.; Voon, L. C. Lew Yan

    2012-01-01

    This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a…

  17. Preserving spherical symmetry in axisymmetric coordinates for diffusion problems

    SciTech Connect

    Brunner, T. A.; Kolev, T. V.; Bailey, T. S.; Till, A. T.

    2013-07-01

    Persevering symmetric solutions, even in the under-converged limit, is important to the robustness of production simulation codes. We explore the symmetry preservation in both a continuous nodal and a mixed finite element method. In their standard formulation, neither method preserves spherical solution symmetry in axisymmetric (RZ) coordinates. We propose two methods, one for each family of finite elements, that recover spherical symmetry for low-order finite elements on linear or curvilinear meshes. This is a first step toward understanding achieving symmetry for higher-order elements. (authors)

  18. A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao

    A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.

  19. A modified generalized extremal optimization algorithm for the quay crane scheduling problem with interference constraints

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Cheng, Wenming; Wang, Yi

    2014-10-01

    The quay crane scheduling problem (QCSP) determines the handling sequence of tasks at ship bays by a set of cranes assigned to a container vessel such that the vessel's service time is minimized. A number of heuristics or meta-heuristics have been proposed to obtain the near-optimal solutions to overcome the NP-hardness of the problem. In this article, the idea of generalized extremal optimization (GEO) is adapted to solve the QCSP with respect to various interference constraints. The resulting GEO is termed the modified GEO. A randomized searching method for neighbouring task-to-QC assignments to an incumbent task-to-QC assignment is developed in executing the modified GEO. In addition, a unidirectional search decoding scheme is employed to transform a task-to-QC assignment to an active quay crane schedule. The effectiveness of the developed GEO is tested on a suite of benchmark problems introduced by K.H. Kim and Y.M. Park in 2004 (European Journal of Operational Research, Vol. 156, No. 3). Compared with other well-known existing approaches, the experiment results show that the proposed modified GEO is capable of obtaining the optimal or near-optimal solution in a reasonable time, especially for large-sized problems.

  20. Solving a Production Scheduling Problem by Means of Two Biobjective Metaheuristic Procedures

    NASA Astrophysics Data System (ADS)

    Toncovich, Adrián; Oliveros Colay, María José; Moreno, José María; Corral, Jiménez; Corral, Rafael

    2009-11-01

    Production planning and scheduling problems emphasize the need for the availability of management tools that can help to assure proper service levels to customers, maintaining, at the same time, the production costs at acceptable levels and maximizing the utilization of the production facilities. In this case, a production scheduling problem that arises in the context of the activities of a company dedicated to the manufacturing of furniture for children and teenagers is addressed. Two bicriteria metaheuristic procedures are proposed to solve the sequencing problem in a production equipment that constitutes the bottleneck of the production process of the company. The production scheduling problem can be characterized as a general flow shop with sequence dependant setup times and additional inventory constraints. Two objectives are simultaneously taken into account when the quality of the candidate solutions is evaluated: the minimization of completion time of all jobs, or makespan, and the minimization of the total flow time of all jobs. Both procedures are based on a local search strategy that responds to the structure of the simulated annealing metaheuristic. In this case, both metaheuristic approaches generate a set of solutions that provides an approximation to the optimal Pareto front. In order to evaluate the performance of the proposed techniques a series of experiments was conducted. After analyzing the results, it can be said that the solutions provided by both approaches are adequate from the viewpoint of the quality as well as the computational effort involved in their generation. Nevertheless, a further refinement of the proposed procedures should be implemented with the aim of facilitating a quasi-automatic definition of the solution parameters.

  1. Laplace boundary-value problem in paraboloidal coordinates

    NASA Astrophysics Data System (ADS)

    Duggen, L.; Willatzen, M.; Voon, L. C. Lew Yan

    2012-05-01

    This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a boundary-value problem on a paraboloidal surface. In spite of the complex nature of the former, it is shown that the latter solution can be quite simple. Results are provided for the equipotential surfaces and electric field lines are given near a paraboloidal conductor.

  2. From Number Lines to Graphs in the Coordinate Plane: Investigating Problem Solving across Mathematical Representations

    ERIC Educational Resources Information Center

    Earnest, Darrell

    2015-01-01

    This article reports on students' problem-solving approaches across three representations--number lines, coordinate planes, and function graphs--the axes of which conventional mathematics treats in terms of consistent geometric and numeric coordinations. I consider these representations to be a part of a "hierarchical representational…

  3. Research on earth observing satellite segmenting and scheduling problem for area targets

    NASA Astrophysics Data System (ADS)

    He, Renjie; Ruan, Qiming

    2005-10-01

    The mission of an Earth Observing Satellite (EOS) is to acquire images of specified areas on the Earth surface, in response to observation requests from customers for strategic, environmental, commercial, agricultural, and civil analysis and research. A target imaged can have one out of two shapes: a spot and a large polygonal area. A spot can be covered by a single scene of satellite sensor, while a polygonal area may require cutting-up into several contiguous strips to be completely imaged. Because of the orbit restriction, satellite can only view target during specific windows of opportunity when flying over the target. Furthermore, the satellite can only be tasked during such access time windows. Hence a scheduling method of satellite observing tasks has to be taken into account for utilizing satellite sensor efficiently. This paper intends to solve a specific segmenting and scheduling problem for area targets, which concerned with an optical observing satellite equipped with line array CCD sensor. In the paper, based on the analysis of characters of satellite sensor and observed area target, a new method of segmenting area target is given. And on the basis of segmenting results of area target, a scheduling model for multi area targets is proposed. In the paper end, experimental results and analysis are also presented.

  4. An Efficient Estimation of Distribution Algorithm for Job Shop Scheduling Problem

    NASA Astrophysics Data System (ADS)

    He, Xiao-Juan; Zeng, Jian-Chao; Xue, Song-Dong; Wang, Li-Fang

    An estimation of distribution algorithm with probability model based on permutation information of neighboring operations for job shop scheduling problem was proposed. The probability model was given using frequency information of pair-wise operations neighboring. Then the structure of optimal individual was marked and the operations of optimal individual were partitioned to some independent sub-blocks. To avoid repeating search in same area and improve search speed, each sub-block was taken as a whole to be adjusted. Also, stochastic adjustment to the operations within each sub-block was introduced to enhance the local search ability. The experimental results show that the proposed algorithm is more robust and efficient.

  5. Coordination of Maternal Directives with Preschoolers' Behavior in Compliance-Problem and Healthy Dyads.

    ERIC Educational Resources Information Center

    Westerman, Michael A.

    1990-01-01

    A group of healthy mothers were compared with a group of mothers who had problems with getting their children to comply. Healthy mothers more effectively modulated their directives and had significantly higher scores on a measure of maternal coordination. (RH)

  6. Internal or shape coordinates in the {ital n}-body problem

    SciTech Connect

    Littlejohn, R.G.; Reinsch, M.

    1995-09-01

    The construction of global shape coordinates for the {ital n}-body problem is considered. Special attention is given to the three- and four-body problems. Quantities, including candidates for coordinates, are organized according to their transformation properties under so-called democracy transformations (orthogonal transformations of Jacobi vectors). Important submanifolds of shape space are identified and their topology studied, including the manifolds upon which shapes are coplanar or collinear, and the manifolds upon which the moment of inertia tensor is degenerate.

  7. Meta-heuristic algorithms for parallel identical machines scheduling problem with weighted late work criterion and common due date.

    PubMed

    Xu, Zhenzhen; Zou, Yongxing; Kong, Xiangjie

    2015-01-01

    To our knowledge, this paper investigates the first application of meta-heuristic algorithms to tackle the parallel machines scheduling problem with weighted late work criterion and common due date ([Formula: see text]). Late work criterion is one of the performance measures of scheduling problems which considers the length of late parts of particular jobs when evaluating the quality of scheduling. Since this problem is known to be NP-hard, three meta-heuristic algorithms, namely ant colony system, genetic algorithm, and simulated annealing are designed and implemented, respectively. We also propose a novel algorithm named LDF (largest density first) which is improved from LPT (longest processing time first). The computational experiments compared these meta-heuristic algorithms with LDF, LPT and LS (list scheduling), and the experimental results show that SA performs the best in most cases. However, LDF is better than SA in some conditions, moreover, the running time of LDF is much shorter than SA. PMID:26702371

  8. Solving short-term electric hydrothermal scheduling problems by exponential multiplier methods

    NASA Astrophysics Data System (ADS)

    Mijangos, Eugenio

    2008-06-01

    The short-term electric hydrothermal scheduling (STEHS) problem consists in optimizing the production of hydro and thermal electric generation units over a short time period (up to one week long). The problem described in this work can be modelled as a nonlinear network flow problem with linear and nonlinear side constraints. The minimization of this kind of problem can be performed by exploiting the efficiency of network flow techniques. It lies in minimizing approximately a series of augmented Lagrangian functions including only the side constraints, subject to balance constraints in the nodes and capacity bounds. One of the drawbacks of the multiplier methods with quadratic penalty function is that the augmented Lagrangian is not twice differentiable when it is applied to problems with inequality constraints. This article overcomes this difficulty by using the exponential multiplier method. In order to improve the performance some parameters are tuned. The efficiency of this method over STEHS test problems is illustrated by comparing its CPU-times with those of the quadratic multiplier method and with those of the general purpose codes MINOS, SNOPT, and KNITRO. Numerical results are promising.

  9. An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min

    2014-09-01

    In this article, an effective hybrid immune algorithm (HIA) is presented to solve the distributed permutation flow-shop scheduling problem (DPFSP). First, a decoding method is proposed to transfer a job permutation sequence to a feasible schedule considering both factory dispatching and job sequencing. Secondly, a local search with four search operators is presented based on the characteristics of the problem. Thirdly, a special crossover operator is designed for the DPFSP, and mutation and vaccination operators are also applied within the framework of the HIA to perform an immune search. The influence of parameter setting on the HIA is investigated based on the Taguchi method of design of experiment. Extensive numerical testing results based on 420 small-sized instances and 720 large-sized instances are provided. The effectiveness of the HIA is demonstrated by comparison with some existing heuristic algorithms and the variable neighbourhood descent methods. New best known solutions are obtained by the HIA for 17 out of 420 small-sized instances and 585 out of 720 large-sized instances.

  10. Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities

    PubMed Central

    Li, Jun-qing; Pan, Quan-ke; Mao, Kun

    2014-01-01

    A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414

  11. An issue encountered in solving problems in electricity and magnetism: curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Gülçiçek, Çağlar; Damlı, Volkan

    2016-11-01

    In physics lectures on electromagnetic theory and mathematical methods, physics teacher candidates have some difficulties with curvilinear coordinate systems. According to our experience, based on both in-class interactions and teacher candidates’ answers in test papers, they do not seem to have understood the variables in curvilinear coordinate systems very well. For this reason, the problems that physics teacher candidates have with variables in curvilinear coordinate systems have been selected as a study subject. The aim of this study is to find the physics teacher candidates’ problems with determining the variables of drawn shapes, and problems with drawing shapes based on given variables in curvilinear coordinate systems. Two different assessment tests were used in the study to achieve this aim. The curvilinear coordinates drawing test (CCDrT) was used to discover their problems related to drawing shapes, and the curvilinear coordinates detection test (CCDeT) was used to find out about problems related to determining variables. According to the findings obtained from both tests, most physics teacher candidates have problems with the ϕ variable, while they have limited problems with the r variable. Questions that are mostly answered wrongly have some common properties, such as value. According to inferential statistics, there is no significant difference between the means of the CCDeT and CCDrT scores. The mean of the CCDeT scores is only 4.63 and the mean of the CCDrT is only 4.66. Briefly, we can say that most physics teacher candidates have problems with drawing a shape using the variables of curvilinear coordinate systems or in determining the variables of drawn shapes. Part of this study was presented at the XI. National Science and Mathematics Education Congress (UFBMEK) in 2014.

  12. A Genetic Algorithm for Solving Job-shop Scheduling Problems using the Parameter-free Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Matsui, Shouichi; Watanabe, Isamu; Tokoro, Ken-Ichi

    A new genetic algorithm is proposed for solving job-shop scheduling problems where the total number of search points is limited. The objective of the problem is to minimize the makespan. The solution is represented by an operation sequence, i.e., a permutation of operations. The proposed algorithm is based on the framework of the parameter-free genetic algorithm. It encodes a permutation using random keys into a chromosome. A schedule is derived from a permutation using a hybrid scheduling (HS), and the parameter of HS is also encoded in a chromosome. Experiments using benchmark problems show that the proposed algorithm outperforms the previously proposed algorithms, genetic algorithm by Shi et al. and the improved local search by Nakano et al., for large-scale problems under the constraint of limited number of search points.

  13. A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad

    2010-01-01

    Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.

  14. Performance evaluation of different types of particle representation procedures of Particle Swarm Optimization in Job-shop Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Izah Anuar, Nurul; Saptari, Adi

    2016-02-01

    This paper addresses the types of particle representation (encoding) procedures in a population-based stochastic optimization technique in solving scheduling problems known in the job-shop manufacturing environment. It intends to evaluate and compare the performance of different particle representation procedures in Particle Swarm Optimization (PSO) in the case of solving Job-shop Scheduling Problems (JSP). Particle representation procedures refer to the mapping between the particle position in PSO and the scheduling solution in JSP. It is an important step to be carried out so that each particle in PSO can represent a schedule in JSP. Three procedures such as Operation and Particle Position Sequence (OPPS), random keys representation and random-key encoding scheme are used in this study. These procedures have been tested on FT06 and FT10 benchmark problems available in the OR-Library, where the objective function is to minimize the makespan by the use of MATLAB software. Based on the experimental results, it is discovered that OPPS gives the best performance in solving both benchmark problems. The contribution of this paper is the fact that it demonstrates to the practitioners involved in complex scheduling problems that different particle representation procedures can have significant effects on the performance of PSO in solving JSP.

  15. On Several Fundamental Problems of Optimization, Estimation, and Scheduling in Wireless Communications

    NASA Astrophysics Data System (ADS)

    Gao, Qian

    For both the conventional radio frequency and the comparably recent optical wireless communication systems, extensive effort from the academia had been made in improving the network spectrum efficiency and/or reducing the error rate. To achieve these goals, many fundamental challenges such as power efficient constellation design, nonlinear distortion mitigation, channel training design, network scheduling and etc. need to be properly addressed. In this dissertation, novel schemes are proposed accordingly to deal with specific problems falling in category of these challenges. Rigorous proofs and analyses are provided for each of our work to make a fair comparison with the corresponding peer works to clearly demonstrate the advantages. The first part of this dissertation considers a multi-carrier optical wireless system employing intensity modulation (IM) and direct detection (DD). A block-wise constellation design is presented, which treats the DC-bias that conventionally used solely for biasing purpose as an information basis. Our scheme, we term it MSM-JDCM, takes advantage of the compactness of sphere packing in a higher dimensional space, and in turn power efficient constellations are obtained by solving an advanced convex optimization problem. Besides the significant power gains, the MSM-JDCM has many other merits such as being capable of mitigating nonlinear distortion by including a peak-to-power ratio (PAPR) constraint, minimizing inter-symbol-interference (ISI) caused by frequency-selective fading with a novel precoder designed and embedded, and further reducing the bit-error-rate (BER) by combining with an optimized labeling scheme. The second part addresses several optimization problems in a multi-color visible light communication system, including power efficient constellation design, joint pre-equalizer and constellation design, and modeling of different structured channels with cross-talks. Our novel constellation design scheme, termed CSK-Advanced, is

  16. An extended abstract: A heuristic repair method for constraint-satisfaction and scheduling problems

    NASA Technical Reports Server (NTRS)

    Minton, Steven; Johnston, Mark D.; Philips, Andrew B.; Laird, Philip

    1992-01-01

    The work described in this paper was inspired by a surprisingly effective neural network developed for scheduling astronomical observations on the Hubble Space Telescope. Our heuristic constraint satisfaction problem (CSP) method was distilled from an analysis of the network. In the process of carrying out the analysis, we discovered that the effectiveness of the network has little to do with its connectionist implementation. Furthermore, the ideas employed in the network can be implemented very efficiently within a symbolic CSP framework. The symbolic implementation is extremely simple. It also has the advantage that several different search strategies can be employed, although we have found that hill-climbing methods are particularly well-suited for the applications that we have investigated. We begin the paper with a brief review of the neural network. Following this, we describe our symbolic method for heuristic repair.

  17. Scheduling of flow shop problems on 3 machines in fuzzy environment with double transport facility

    NASA Astrophysics Data System (ADS)

    Sathish, Shakeela; Ganesan, K.

    2016-06-01

    Flow shop scheduling is a decision making problem in production and manufacturing field which has a significant impact on the performance of an organization. When the machines on which jobs are to be processed are placed at different places, the transportation time plays a significant role in production. Further two different transport agents where 1st takes the job from 1st machine to 2nd machine and then returns back to the first machine and the 2nd takes the job from 2nd machine to 3rd machine and then returns back to the 2nd machine are also considered. We propose a method to minimize the total make span; without converting the fuzzy processing time to classical numbers by using a new type of fuzzy arithmetic and a fuzzy ranking method. A numerical example is provided to explain the proposed method.

  18. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  19. Decision theory for computing variable and value ordering decisions for scheduling problems

    NASA Technical Reports Server (NTRS)

    Linden, Theodore A.

    1993-01-01

    Heuristics that guide search are critical when solving large planning and scheduling problems, but most variable and value ordering heuristics are sensitive to only one feature of the search state. One wants to combine evidence from all features of the search state into a subjective probability that a value choice is best, but there has been no solid semantics for merging evidence when it is conceived in these terms. Instead, variable and value ordering decisions should be viewed as problems in decision theory. This led to two key insights: (1) The fundamental concept that allows heuristic evidence to be merged is the net incremental utility that will be achieved by assigning a value to a variable. Probability distributions about net incremental utility can merge evidence from the utility function, binary constraints, resource constraints, and other problem features. The subjective probability that a value is the best choice is then derived from probability distributions about net incremental utility. (2) The methods used for rumor control in Bayesian Networks are the primary way to prevent cycling in the computation of probable net incremental utility. These insights lead to semantically justifiable ways to compute heuristic variable and value ordering decisions that merge evidence from all available features of the search state.

  20. Integrated production and distribution scheduling problems related to fixed delivery departure dates and weights of late orders.

    PubMed

    Li, Shanlin; Li, Maoqin

    2015-01-01

    We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the vehicles have fixed departure dates which are not part of the decisions. The problem is to find a feasible schedule that minimizes one of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both problems are solvable in polynomial time.

  1. Analytical solution of the problem of a shock wave in the collapsing gas in Lagrangian coordinates

    NASA Astrophysics Data System (ADS)

    Kuropatenko, V. F.; Shestakovskaya, E. S.

    2016-10-01

    It is proposed the exact solution of the problem of a convergent shock wave and gas dynamic compression in a spherical vessel with an impermeable wall in Lagrangian coordinates. At the initial time the speed of cold ideal gas is equal to zero, and a negative velocity is set on boundary of the sphere. When t > t0 the shock wave spreads from this point into the gas. The boundary of the sphere will move under the certain law correlated with the motion of the shock wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the structure of the gas flow between the shock front and gas border have been found as a function of time and Lagrangian coordinate. The dependence of the entropy on the velocity of the shock wave has been found too. For Lagrangian coordinates the problem is first solved. It is fundamentally different from previously known formulations of the problem of the self-convergence of the self-similar shock wave to the center of symmetry and its reflection from the center, which was built up for the infinite area in Euler coordinates.

  2. Novel hysteretic noisy chaotic neural network for broadcast scheduling problems in packet radio networks.

    PubMed

    Sun, Ming; Zhao, Lin; Cao, Wei; Xu, Yaoqun; Dai, Xuefeng; Wang, Xiaoxu

    2010-09-01

    Noisy chaotic neural network (NCNN), which can exhibit stochastic chaotic simulated annealing (SCSA), has been proven to be a powerful tool in solving combinatorial optimization problems. In order to retain the excellent optimization property of SCSA and improve the optimization performance of the NCNN using hysteretic dynamics without increasing network parameters, we first construct an equivalent model of the NCNN and then control noises in the equivalent model to propose a novel hysteretic noisy chaotic neural network (HNCNN). Compared with the NCNN, the proposed HNCNN can exhibit both SCSA and hysteretic dynamics without introducing extra system parameters, and can increase the effective convergence toward optimal or near-optimal solutions at higher noise levels. Broadcast scheduling problem (BSP) in packet radio networks (PRNs) is to design an optimal time-division multiple-access (TDMA) frame structure with minimal frame length, maximal channel utilization, and minimal average time delay. In this paper, the proposed HNCNN is applied to solve BSP in PRNs to demonstrate its performance. Simulation results show that the proposed HNCNN with higher noise amplitudes is more likely to find an optimal or near-optimal TDMA frame structure with a minimal average time delay than previous algorithms.

  3. Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization.

    PubMed

    Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng

    2016-01-01

    Taking resource allocation into account, flexible job shop problem (FJSP) is a class of complex scheduling problem in manufacturing system. In order to utilize the machine resources rationally, multi-objective particle swarm optimization (MOPSO) integrating with variable neighborhood search is introduced to address FJSP efficiently. Firstly, the assignment rules (AL) and dispatching rules (DR) are provided to initialize the population. And then special discrete operators are designed to produce new individuals and earliest completion machine (ECM) is adopted in the disturbance operator to escape the optima. Secondly, personal-best archives (cognitive memories) and global-best archive (social memory), which are updated by the predefined non-dominated archive update strategy, are simultaneously designed to preserve non-dominated individuals and select personal-best positions and the global-best position. Finally, three neighborhoods are provided to search the neighborhoods of global-best archive for enhancing local search ability. The proposed algorithm is evaluated by using Kacem instances and Brdata instances, and a comparison with other approaches shows the effectiveness of the proposed algorithm for FJSP.

  4. An Approximation Solution to Refinery Crude Oil Scheduling Problem with Demand Uncertainty Using Joint Constrained Programming

    PubMed Central

    Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun

    2014-01-01

    This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation. PMID:24757433

  5. Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization.

    PubMed

    Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng

    2016-01-01

    Taking resource allocation into account, flexible job shop problem (FJSP) is a class of complex scheduling problem in manufacturing system. In order to utilize the machine resources rationally, multi-objective particle swarm optimization (MOPSO) integrating with variable neighborhood search is introduced to address FJSP efficiently. Firstly, the assignment rules (AL) and dispatching rules (DR) are provided to initialize the population. And then special discrete operators are designed to produce new individuals and earliest completion machine (ECM) is adopted in the disturbance operator to escape the optima. Secondly, personal-best archives (cognitive memories) and global-best archive (social memory), which are updated by the predefined non-dominated archive update strategy, are simultaneously designed to preserve non-dominated individuals and select personal-best positions and the global-best position. Finally, three neighborhoods are provided to search the neighborhoods of global-best archive for enhancing local search ability. The proposed algorithm is evaluated by using Kacem instances and Brdata instances, and a comparison with other approaches shows the effectiveness of the proposed algorithm for FJSP. PMID:27652008

  6. An approximation solution to refinery crude oil scheduling problem with demand uncertainty using joint constrained programming.

    PubMed

    Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun

    2014-01-01

    This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation. PMID:24757433

  7. An approximation solution to refinery crude oil scheduling problem with demand uncertainty using joint constrained programming.

    PubMed

    Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun

    2014-01-01

    This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation.

  8. Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Tang, Dunbing; Dai, Min

    2015-09-01

    The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.

  9. High Order Finite Difference Methods, Multidimensional Linear Problems and Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1999-01-01

    Boundary and interface conditions are derived for high order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met.

  10. The Relationship Between Bullying and Self-Worth in Children with Movement Coordination Problems

    ERIC Educational Resources Information Center

    Piek, J. P.; Barrett, N. C.; Allen, L. S. R.; Jones, A.; Louise, M.

    2005-01-01

    Past research has indicated that there is a negative relationship between victimization and self-worth. Furthermore, children with movement problems such as developmental coordination disorder (DCD) are considered at risk of both victimization and low self-worth. This study investigated the relationship between peer-victimization and self-worth in…

  11. Finite element method formulation in polar coordinates for transient heat conduction problems

    NASA Astrophysics Data System (ADS)

    Duda, Piotr

    2016-04-01

    The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method (FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.

  12. Variable sleep schedules and outcomes in children with psychopathological problems: preliminary observations

    PubMed Central

    Spruyt, Karen; Raubuck, Danielle L; Grogan, Katie; Gozal, David; Stein, Mark A

    2012-01-01

    Background Night-to-night variability in sleep of children with attention deficit hyperactivity disorder (ADHD) may be a mediator of behavioral phenotype. We examined the potential association between alertness, sleep, and eating behaviors in children with ADHD and comorbid problems. Methods Sleep was monitored by actigraphy for 7 days. Questionnaires were used to assess sleep complaints, habits and food patterns by parental report, and sleep complaints and sleepiness by child report. Results The group comprised 18 children, including 15 boys, aged 9.4 ± 1.7 years, 88.9% Caucasian, who took one or multiple medications. Children slept on average for 6 hours and 58 minutes with a variability of 1 hour 3 minutes relative to the mean, and their sleepiness scores were highly variable from day to day. Most children had a normal body mass index (BMI). Sleepiness and BMI were associated with sleep schedules and food patterns, such that they accounted for 76% of variance, predominantly by the association of BMI with mean wake after sleep onset and by bedtime sleepiness, with wake after sleep onset variability. Similarly, 97% of variance was shared with eating behaviors, such as desserts and snacks, and fast food meals were associated with morning sleepiness. Conclusion Disrupted sleep and sleepiness appears to favor unhealthy food patterns and may place children with ADHD at increased risk for obesity. PMID:23616725

  13. A note on: A modified generalized extremal optimization algorithm for the quay crane scheduling problem with interference constraints

    NASA Astrophysics Data System (ADS)

    Trunfio, Roberto

    2015-06-01

    In a recent article, Guo, Cheng and Wang proposed a randomized search algorithm, called modified generalized extremal optimization (MGEO), to solve the quay crane scheduling problem for container groups under the assumption that schedules are unidirectional. The authors claim that the proposed algorithm is capable of finding new best solutions with respect to a well-known set of benchmark instances taken from the literature. However, as shown in this note, there are some errors in their work that can be detected by analysing the Gantt charts of two solutions provided by MGEO. In addition, some comments on the method used to evaluate the schedule corresponding to a task-to-quay crane assignment and on the search scheme of the proposed algorithm are provided. Finally, to assess the effectiveness of the proposed algorithm, the computational experiments are repeated and additional computational experiments are provided.

  14. A Novel Strategy Using Factor Graphs and the Sum-Product Algorithm for Satellite Broadcast Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh

    This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.

  15. Regularization of the circular restricted three-body problem using `similar' coordinate systems

    NASA Astrophysics Data System (ADS)

    Roman, R.; Szücs-Csillik, I.

    2012-04-01

    The regularization of a new problem, namely the three-body problem, using `similar' coordinate system is proposed. For this purpose we use the relation of `similarity', which has been introduced as an equivalence relation in a previous paper (see Roman in Astrophys. Space Sci. doi:10.1007/s10509-011-0747-1, 2011). First we write the Hamiltonian function, the equations of motion in canonical form, and then using a generating function, we obtain the transformed equations of motion. After the coordinates transformations, we introduce the fictitious time, to regularize the equations of motion. Explicit formulas are given for the regularization in the coordinate systems centered in the more massive and the less massive star of the binary system. The `similar' polar angle's definition is introduced, in order to analyze the regularization's geometrical transformation. The effect of Levi-Civita's transformation is described in a geometrical manner. Using the resulted regularized equations, we analyze and compare these canonical equations numerically, for the Earth-Moon binary system.

  16. A Study on Machine Maintenance Scheduling Using Distributed Cooperative Approach

    NASA Astrophysics Data System (ADS)

    Tsujibe, Akihisa; Kaihara, Toshiya; Fujii, Nobutada; Nonaka, Youichi

    In this study, we propose a distributed cooperative scheduling method, and apply the method into a machine maintenance scheduling problem in re-entrant production systems. As one of the distributed cooperative scheduling methods, we focus on Lagrangian decomposition and coordination (LDC) method, and formulate the machine maintenance scheduling problem with LDC so as to improve computational efficiency by decomposing an original scheduling problem into several sub-problems. The derived solutions by solving the decomposed dual problem are converted into feasible solutions with a heuristic procedure applied in this study. The proposed approach regards maintenance as job with starting and finishing time constraints, so that product and maintenance schedule can realize proper maintenance operations without losing productivity. We show the effectiveness of the proposed method in several simulation experiments.

  17. Personalized Education; Solving a Group Formation and Scheduling Problem for Educational Content

    ERIC Educational Resources Information Center

    Bahargam, Sanaz; Erdos, Dóra; Bestavros, Azer; Terzi, Evimaria

    2015-01-01

    Whether teaching in a classroom or a Massive Online Open Course it is crucial to present the material in a way that benefits the audience as a whole. We identify two important tasks to solve towards this objective; (1) group students so that they can maximally benefit from peer interaction and (2) find an optimal schedule of the educational…

  18. Space languages: Solving the classic scheduling problem in Ada and Lisp

    NASA Technical Reports Server (NTRS)

    Davis, Stephen; Hays, Dan; Wolfsberger, John W.

    1988-01-01

    The comparison of programming languages is best seen while evaluating similar systems. The strengths and weaknesses of both languages were investigated as the scheduler was being implemented. Some features used in both languages shall be object-oriented paradigms, parallel programming, search and production heuristics, and other classical artificial intelligence implementations.

  19. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  20. Asymptotic analysis of online algorithms and improved scheme for the flow shop scheduling problem with release dates

    NASA Astrophysics Data System (ADS)

    Bai, Danyu

    2015-08-01

    This paper discusses the flow shop scheduling problem to minimise the total quadratic completion time (TQCT) with release dates in offline and online environments. For this NP-hard problem, the investigation is focused on the performance of two online algorithms based on the Shortest Processing Time among Available jobs rule. Theoretical results indicate the asymptotic optimality of the algorithms as the problem scale is sufficiently large. To further enhance the quality of the original solutions, the improvement scheme is provided for these algorithms. A new lower bound with performance guarantee is provided, and computational experiments show the effectiveness of these heuristics. Moreover, several results of the single-machine TQCT problem with release dates are also obtained for the deduction of the main theorem.

  1. An effective shuffled frog-leaping algorithm for solving the hybrid flow-shop scheduling problem with identical parallel machines

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min

    2013-12-01

    In this article, an effective shuffled frog-leaping algorithm (SFLA) is proposed to solve the hybrid flow-shop scheduling problem with identical parallel machines (HFSP-IPM). First, some novel heuristic decoding rules for both job order decision and machine assignment are proposed. Then, three hybrid decoding schemes are designed to decode job order sequences to schedules. A special bi-level crossover and multiple local search operators are incorporated in the searching framework of the SFLA to enrich the memetic searching behaviour and to balance the exploration and exploitation capabilities. Meanwhile, some theoretical analysis for the local search operators is provided for guiding the local search. The parameter setting of the algorithm is also investigated based on the Taguchi method of design of experiments. Finally, numerical testing based on well-known benchmarks and comparisons with some existing algorithms are carried out to demonstrate the effectiveness of the proposed algorithm.

  2. Robust telescope scheduling

    NASA Technical Reports Server (NTRS)

    Swanson, Keith; Bresina, John; Drummond, Mark

    1994-01-01

    This paper presents a technique for building robust telescope schedules that tend not to break. The technique is called Just-In-Case (JIC) scheduling and it implements the common sense idea of being prepared for likely errors, just in case they should occur. The JIC algorithm analyzes a given schedule, determines where it is likely to break, reinvokes a scheduler to generate a contingent schedule for each highly probable break case, and produces a 'multiply contingent' schedule. The technique was developed for an automatic telescope scheduling problem, and the paper presents empirical results showing that Just-In-Case scheduling performs extremely well for this problem.

  3. Domestic dogs (Canis familiaris) coordinate their actions in a problem-solving task.

    PubMed

    Bräuer, Juliane; Bös, Milena; Call, Josep; Tomasello, Michael

    2013-03-01

    Cooperative hunting is a cognitively challenging activity since individuals have to coordinate movements with a partner and at the same time react to the prey. Domestic dogs evolved from wolves, who engage in cooperative hunting regularly, but it is not clear whether dogs have kept their cooperative hunting skills. We presented pairs of dogs with a reward behind a fence with two openings in it. A sliding door operated by the experimenter could block one opening but not both simultaneously. The dogs needed to coordinate their actions, so that each was in front of a different opening, if one of them was to cross through and get food. All 24 dog pairs solved the problem. In study 1, we demonstrated that dogs understood how the apparatus worked. In study 2, we found that, although the performance of the pairs did not depend on the divisibility of the reward, pairs were quicker at coordinating their actions when both anticipated rewards. However, the dogs did not monitor one another, suggesting that their solutions were achieved by each individual attempting to maximize for itself. PMID:23090682

  4. Multiobjective optimisation design for enterprise system operation in the case of scheduling problem with deteriorating jobs

    NASA Astrophysics Data System (ADS)

    Wang, Hongfeng; Fu, Yaping; Huang, Min; Wang, Junwei

    2016-03-01

    The operation process design is one of the key issues in the manufacturing and service sectors. As a typical operation process, the scheduling with consideration of the deteriorating effect has been widely studied; however, the current literature only studied single function requirement and rarely considered the multiple function requirements which are critical for a real-world scheduling process. In this article, two function requirements are involved in the design of a scheduling process with consideration of the deteriorating effect and then formulated into two objectives of a mathematical programming model. A novel multiobjective evolutionary algorithm is proposed to solve this model with combination of three strategies, i.e. a multiple population scheme, a rule-based local search method and an elitist preserve strategy. To validate the proposed model and algorithm, a series of randomly-generated instances are tested and the experimental results indicate that the model is effective and the proposed algorithm can achieve the satisfactory performance which outperforms the other state-of-the-art multiobjective evolutionary algorithms, such as nondominated sorting genetic algorithm II and multiobjective evolutionary algorithm based on decomposition, on all the test instances.

  5. Solving Bernstein's problem: a proposal for the development of coordinated movement by selection.

    PubMed

    Sporns, O; Edelman, G M

    1993-08-01

    In recent years, many established concepts in the theory of human motor development have undergone profound change, and our knowledge has increased greatly. Nevertheless, some outstanding problems remain unsolved. A central problem concerns the redundancy of effective movements, first pointed out by N. A. Bernstein. The human motor system is mechanically complex and can make use of a large number of degrees of freedom. The controlled operation of such a system requires a reduction of mechanical redundancy, effectively by reducing the number of degrees of freedom. More recent work has shown that this problem is hard to solve explicitly by computing solutions to the equations of motion of the system. Equally challenging to traditional computational approaches is the fact the motor systems show remarkable adaptability and flexibility in the presence of changing biomechanical properties of motor organs during development and when faced with different environmental conditions or tasks. Solutions to these problems would have a large impact on a variety of issues in child development. In this article, we stress the importance of the somatic selection of neuronal groups in maps for the progressive transformation of a primary movement repertoire into a set of motor synergies and adaptive action patterns. We present results from computer simulations of a simple motor system that works according to such selectional principles. This approach suggests a provisional solution to Bernstein's problem and provides new parameters to guide experimental approaches to the development of sensorimotor coordination.

  6. Solving Bernstein's problem: a proposal for the development of coordinated movement by selection.

    PubMed

    Sporns, O; Edelman, G M

    1993-08-01

    In recent years, many established concepts in the theory of human motor development have undergone profound change, and our knowledge has increased greatly. Nevertheless, some outstanding problems remain unsolved. A central problem concerns the redundancy of effective movements, first pointed out by N. A. Bernstein. The human motor system is mechanically complex and can make use of a large number of degrees of freedom. The controlled operation of such a system requires a reduction of mechanical redundancy, effectively by reducing the number of degrees of freedom. More recent work has shown that this problem is hard to solve explicitly by computing solutions to the equations of motion of the system. Equally challenging to traditional computational approaches is the fact the motor systems show remarkable adaptability and flexibility in the presence of changing biomechanical properties of motor organs during development and when faced with different environmental conditions or tasks. Solutions to these problems would have a large impact on a variety of issues in child development. In this article, we stress the importance of the somatic selection of neuronal groups in maps for the progressive transformation of a primary movement repertoire into a set of motor synergies and adaptive action patterns. We present results from computer simulations of a simple motor system that works according to such selectional principles. This approach suggests a provisional solution to Bernstein's problem and provides new parameters to guide experimental approaches to the development of sensorimotor coordination. PMID:8404271

  7. A discrete artificial bee colony algorithm incorporating differential evolution for the flow-shop scheduling problem with blocking

    NASA Astrophysics Data System (ADS)

    Han, Yu-Yan; Gong, Dunwei; Sun, Xiaoyan

    2015-07-01

    A flow-shop scheduling problem with blocking has important applications in a variety of industrial systems but is underrepresented in the research literature. In this study, a novel discrete artificial bee colony (ABC) algorithm is presented to solve the above scheduling problem with a makespan criterion by incorporating the ABC with differential evolution (DE). The proposed algorithm (DE-ABC) contains three key operators. One is related to the employed bee operator (i.e. adopting mutation and crossover operators of discrete DE to generate solutions with good quality); the second is concerned with the onlooker bee operator, which modifies the selected solutions using insert or swap operators based on the self-adaptive strategy; and the last is for the local search, that is, the insert-neighbourhood-based local search with a small probability is adopted to improve the algorithm's capability in exploitation. The performance of the proposed DE-ABC algorithm is empirically evaluated by applying it to well-known benchmark problems. The experimental results show that the proposed algorithm is superior to the compared algorithms in minimizing the makespan criterion.

  8. Development of integrated model for continuous berth allocation problem and quay crane scheduling with non crossing constraint

    NASA Astrophysics Data System (ADS)

    Basri, Azyanzuhaila Hasan; Zainuddin, Zaitul Marlizawati

    2014-09-01

    High efficiency of port operation is required to succeed in the competition between port container terminals. Berth Allocation and Quay Crane Scheduling are the most important part in container terminal operations. The integrated model is formulated as a MIP problem with the objective to minimize the sum of the dwell times, where a vessel's dwell time is measured between arrival and departure including both times waiting to be berthed and servicing time while berthed. The construction of suitable mathematical model is formulated by considering various practical constraints.

  9. A Human-in-the Loop Evaluation of a Coordinated Arrival Departure Scheduling Operations for Managing Departure Delays at LaGuardia Airport

    NASA Technical Reports Server (NTRS)

    Lee, Paul U.; Smith, Nancy M.; Bienert, Nancy; Brasil, Connie; Buckley, Nathan; Chevalley, Eric; Homola, Jeffrey; Omar, Faisal; Parke, Bonny; Yoo, Hyo-Sang

    2016-01-01

    LaGuardia (LGA) departure delay was identified by the stakeholders and subject matter experts as a significant bottleneck in the New York metropolitan area. Departure delay at LGA is primarily due to dependency between LGA's arrival and departure runways: LGA departures cannot begin takeoff until arrivals have cleared the runway intersection. If one-in one-out operations are not maintained and a significant arrival-to-departure imbalance occurs, the departure backup can persist through the rest of the day. At NASA Ames Research Center, a solution called "Departure-sensitive Arrival Spacing" (DSAS) was developed to maximize the departure throughput without creating significant delays in the arrival traffic. The concept leverages a Terminal Sequencing and Spacing (TSS) operations that create and manage the arrival schedule to the runway threshold and added an interface enhancement to the traffic manager's timeline to provide the ability to manually adjust inter-arrival spacing to build precise gaps for multiple departures between arrivals. A more complete solution would include a TSS algorithm enhancement that could automatically build these multi-departure gaps. With this set of capabilities, inter-arrival spacing could be controlled for optimal departure throughput. The concept was prototyped in a human-in-the- loop (HITL) simulation environment so that operational requirements such as coordination procedures, timing and magnitude of TSS schedule adjustments, and display features for Tower, TRACON and Traffic Management Unit could be determined. A HITL simulation was conducted in August 2014 to evaluate the concept in terms of feasibility, controller workload impact, and potential benefits. Three conditions were tested, namely a Baseline condition without scheduling, TSS condition that schedules the arrivals to the runway threshold, and TSS+DSAS condition that adjusts the arrival schedule to maximize the departure throughput. The results showed that during high

  10. Aspects of job scheduling

    NASA Technical Reports Server (NTRS)

    Phillips, K.

    1976-01-01

    A mathematical model for job scheduling in a specified context is presented. The model uses both linear programming and combinatorial methods. While designed with a view toward optimization of scheduling of facility and plant operations at the Deep Space Communications Complex, the context is sufficiently general to be widely applicable. The general scheduling problem including options for scheduling objectives is discussed and fundamental parameters identified. Mathematical algorithms for partitioning problems germane to scheduling are presented.

  11. A decomposition approach for the combined master surgical schedule and surgical case assignment problems.

    PubMed

    Agnetis, Alessandro; Coppi, Alberto; Corsini, Matteo; Dellino, Gabriella; Meloni, Carlo; Pranzo, Marco

    2014-03-01

    This research aims at supporting hospital management in making prompt Operating Room (OR) planning decisions, when either unpredicted events occur or alternative scenarios or configurations need to be rapidly evaluated. We design and test a planning tool enabling managers to efficiently analyse several alternatives to the current OR planning and scheduling. To this aim, we propose a decomposition approach. More specifically, we first focus on determining the Master Surgical Schedule (MSS) on a weekly basis, by assigning the different surgical disciplines to the available sessions. Next, we allocate surgeries to each session, focusing on elective patients only. Patients are selected from the waiting lists according to several parameters, including surgery duration, waiting time and priority class of the operations. We performed computational experiments to compare the performance of our decomposition approach with an (exact) integrated approach. The case study selected for our simulations is based on the characteristics of the operating theatre (OT) of a medium-size public Italian hospital. Scalability of the method is tested for different OT sizes. A pilot example is also proposed to highlight the usefulness of our approach for decision support. The proposed decomposition approach finds satisfactory solutions with significant savings in computation time.

  12. Learning to integrate reactivity and deliberation in uncertain planning and scheduling problems

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Gervasio, Melinda T.; Dejong, Gerald F.

    1992-01-01

    This paper describes an approach to planning and scheduling in uncertain domains. In this approach, a system divides a task on a goal by goal basis into reactive and deliberative components. Initially, a task is handled entirely reactively. When failures occur, the system changes the reactive/deliverative goal division by moving goals into the deliberative component. Because our approach attempts to minimize the number of deliberative goals, we call our approach Minimal Deliberation (MD). Because MD allows goals to be treated reactively, it gains some of the advantages of reactive systems: computational efficiency, the ability to deal with noise and non-deterministic effects, and the ability to take advantage of unforseen opportunities. However, because MD can fall back upon deliberation, it can also provide some of the guarantees of classical planning, such as the ability to deal with complex goal interactions. This paper describes the Minimal Deliberation approach to integrating reactivity and deliberation and describe an ongoing application of the approach to an uncertain planning and scheduling domain.

  13. A decomposition approach for the combined master surgical schedule and surgical case assignment problems.

    PubMed

    Agnetis, Alessandro; Coppi, Alberto; Corsini, Matteo; Dellino, Gabriella; Meloni, Carlo; Pranzo, Marco

    2014-03-01

    This research aims at supporting hospital management in making prompt Operating Room (OR) planning decisions, when either unpredicted events occur or alternative scenarios or configurations need to be rapidly evaluated. We design and test a planning tool enabling managers to efficiently analyse several alternatives to the current OR planning and scheduling. To this aim, we propose a decomposition approach. More specifically, we first focus on determining the Master Surgical Schedule (MSS) on a weekly basis, by assigning the different surgical disciplines to the available sessions. Next, we allocate surgeries to each session, focusing on elective patients only. Patients are selected from the waiting lists according to several parameters, including surgery duration, waiting time and priority class of the operations. We performed computational experiments to compare the performance of our decomposition approach with an (exact) integrated approach. The case study selected for our simulations is based on the characteristics of the operating theatre (OT) of a medium-size public Italian hospital. Scalability of the method is tested for different OT sizes. A pilot example is also proposed to highlight the usefulness of our approach for decision support. The proposed decomposition approach finds satisfactory solutions with significant savings in computation time. PMID:23783452

  14. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    PubMed

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems. PMID:27652166

  15. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    PubMed

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.

  16. The study of atomic three-body problems in hyperspherical coordinates

    SciTech Connect

    Lin, C.D.

    1985-08-01

    In this review the application of hyperspherical coordinates is discussed for the solution of some of the typical atomic and molecular problems, and the new physical insights obtained from such studies are shown. In particular, it is shown how correlations between two excited electrons can be conveniently understood in terms of the surface harmonics at a constant hyperradius and visualized by displaying the surface charge densities on the angular coordinates that describe radial and angular correlations. It is shown that a new set of correlation quantum numbers K, T and A for any two-electron states can be deduced by analyzing the surface harmonics; here K and T describe angular correlation and A = +1, -1 or 0) describes radial correlation. Because of the isomorphic correlations, states which have A = +1 or -1 are shown to exhibit supermultiplet structure while states which have A = 0 are shown to behave like singly excited states. Therefore this classification scheme includes the independent particle approximation as a subset. The relations of these quantum numbers to the collective vibrations and rotations of molecule-like normal modes are also discussed. Applications of hyperspherical harmonics to the three-body breakup and linear triatomic collisions are also discussed briefly. 57 refs., 15 figs.

  17. Integrated scheduling and resource management. [for Space Station Information System

    NASA Technical Reports Server (NTRS)

    Ward, M. T.

    1987-01-01

    This paper examines the problem of integrated scheduling during the Space Station era. Scheduling for Space Station entails coordinating the support of many distributed users who are sharing common resources and pursuing individual and sometimes conflicting objectives. This paper compares the scheduling integration problems of current missions with those anticipated for the Space Station era. It examines the facilities and the proposed operations environment for Space Station. It concludes that the pattern of interdependecies among the users and facilities, which are the source of the integration problem is well structured, allowing a dividing of the larger problem into smaller problems. It proposes an architecture to support integrated scheduling by scheduling efficiently at local facilities as a function of dependencies with other facilities of the program. A prototype is described that is being developed to demonstrate this integration concept.

  18. Analysis of Issues for Project Scheduling by Multiple, Dispersed Schedulers (distributed Scheduling) and Requirements for Manual Protocols and Computer-based Support

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.

    1991-01-01

    Although computerized operations have significant gains realized in many areas, one area, scheduling, has enjoyed few benefits from automation. The traditional methods of industrial engineering and operations research have not proven robust enough to handle the complexities associated with the scheduling of realistic problems. To address this need, NASA has developed the computer-aided scheduling system (COMPASS), a sophisticated, interactive scheduling tool that is in wide-spread use within NASA and the contractor community. Therefore, COMPASS provides no explicit support for the large class of problems in which several people, perhaps at various locations, build separate schedules that share a common pool of resources. This research examines the issue of distributing scheduling, as applied to application domains characterized by the partial ordering of tasks, limited resources, and time restrictions. The focus of this research is on identifying issues related to distributed scheduling, locating applicable problem domains within NASA, and suggesting areas for ongoing research. The issues that this research identifies are goals, rescheduling requirements, database support, the need for communication and coordination among individual schedulers, the potential for expert system support for scheduling, and the possibility of integrating artificially intelligent schedulers into a network of human schedulers.

  19. Distributed adaptive fuzzy iterative learning control of coordination problems for higher order multi-agent systems

    NASA Astrophysics Data System (ADS)

    Li, Jinsha; Li, Junmin

    2016-07-01

    In this paper, the adaptive fuzzy iterative learning control scheme is proposed for coordination problems of Mth order (M ≥ 2) distributed multi-agent systems. Every follower agent has a higher order integrator with unknown nonlinear dynamics and input disturbance. The dynamics of the leader are a higher order nonlinear systems and only available to a portion of the follower agents. With distributed initial state learning, the unified distributed protocols combined time-domain and iteration-domain adaptive laws guarantee that the follower agents track the leader uniformly on [0, T]. Then, the proposed algorithm extends to achieve the formation control. A numerical example and a multiple robotic system are provided to demonstrate the performance of the proposed approach.

  20. Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester

    NASA Astrophysics Data System (ADS)

    Cram, Ana Catalina

    As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

  1. A Method of Solving Scheduling Problems Using Improved Guided Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Ou, Gyouhi; Tamura, Hiroki; Tanno, Koichi; Tang, Zheng

    In this paper, an improved guided genetic algorithm is proposed forJob-shop schueduling problem. The proposed method is improved by genetic algorithm using multipliers which can be adjusted during the search process. The simulation results based on some benchmark problems that proves the proposed method can find better solutions than genetic algorithm and original guided genetic algorithm.

  2. Distributed project scheduling at NASA: Requirements for manual protocols and computer-based support

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.

    1992-01-01

    The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of Space Shuttle mission planning.

  3. Effects of fixed-time reinforcement schedules on resurgence of problem behavior.

    PubMed

    Marsteller, Tonya M; St Peter, Claire C

    2014-01-01

    Resurgence of problem behavior following the discontinuation of differential reinforcement of alternative behavior (DRA) may be prevented by response-independent reinforcer delivery. In basic research, response-independent reinforcer delivery following DRA prevented resurgence of the initially reinforced response and maintained alternative responding (Lieving & Lattal, 2003, Experiment 3). We evaluated the generality of these results by assessing if fixed-time (FT) reinforcer delivery following DRA would prevent resurgence of problem behavior and maintain appropriate behavior with 4 children with disabilities. For all participants, extinction following DRA produced resurgence of previously reinforced problem behavior and reduced appropriate requests, but FT reinforcer delivery following DRA mitigated resurgence of problem behavior and maintained appropriate requests.

  4. Cooccurrence of problems in activity level, attention, psychosocial adjustment, reading and writing in children with developmental coordination disorder.

    PubMed

    Tseng, Mei-Hui; Howe, Tsu-Hsin; Chuang, I-Ching; Hsieh, Ching-Lin

    2007-12-01

    The purpose of this paper was to investigate the cooccurrence of problems in activity level, attention, reading, writing and psychosocial adjustment of children with developmental coordination disorder (DCD). A parent-report questionnaire, the Developmental Coordination Disorder Questionnaire - Chinese version (DCDQ-C), was used to screen first to third graders from 13 mainstream schools in Taipei. Two standardized motor tests were then administered to those who scored below 10% on the DCDQ-C. Tests of activity level, attention, reading, writing and psychosocial adjustment were then administered to this sample. Thirty-eight children identified as DCD, 32 as suspect for DCD and 82 as normal comparison were included in the final sample. Multivariate analysis of variance comparing the three groups (DCD, suspect DCD, and comparison) revealed that both children with DCD and suspect for DCD obtained significantly poorer scores on measures of attention and reading, and were more hyperactive than comparison children. Children with DCD and suspect for DCD were also reported to have more internalizing and social problems than children without motor problems. No significant differences, however, were noted between children with different degree of motor coordination problems (categorized as DCD and suspect for DCD) on any measure. Furthermore, a high percentage of children in both the DCD and suspect groups fell in the clinical range of attention, activity level and psychosocial adjustment problems. The results revealed a high risk for these problems in nonreferred children with motor coordination problems. The high percentage of clinical range behavioral problems warrants attention of clinicians who work with children with motor coordination difficulties to the need to promote early identification and referral.

  5. An Exact Algorithm using Edges and Routes Pegging Test for the Input-Output Scheduling Problem in Automated Warehouses

    NASA Astrophysics Data System (ADS)

    Kubota, Yoshitsune; Numata, Kazumiti

    In this paper we propose and evaluate some idea to improve an existing exact algorithm for Input-Output Scheduling Problem (IOSP) in automated warehouses. The existing algorithm is based on LP relaxation of IOSP, which is solved by the column generation method allowing relaxed columns (routes). Our idea is, expecting to enhance LP solution, to impliment the column generation using only exact routes, and to reduce consequently increasing calculation cost by dropping (pegging) unusable edges. The pegging test is done in the preprocessing phase by solving Lagrangian relaxation of IOSP formulated in node cover decision variables. The results of computational experiments show that the proposed algorithm can solve slightly large sized instances in less execution time than existing one.

  6. Non-clairvoyant Scheduling Games

    NASA Astrophysics Data System (ADS)

    Dürr, Christoph; Nguyen, Kim Thang

    In a scheduling game, each player owns a job and chooses a machine to execute it. While the social cost is the maximal load over all machines (makespan), the cost (disutility) of each player is the completion time of its own job. In the game, players may follow selfish strategies to optimize their cost and therefore their behaviors do not necessarily lead the game to an equilibrium. Even in the case there is an equilibrium, its makespan might be much larger than the social optimum, and this inefficiency is measured by the price of anarchy - the worst ratio between the makespan of an equilibrium and the optimum. Coordination mechanisms aim to reduce the price of anarchy by designing scheduling policies that specify how jobs assigned to a same machine are to be scheduled. Typically these policies define the schedule according to the processing times as announced by the jobs. One could wonder if there are policies that do not require this knowledge, and still provide a good price of anarchy. This would make the processing times be private information and avoid the problem of truthfulness. In this paper we study these so-called non-clairvoyant policies. In particular, we study the RANDOM policy that schedules the jobs in a random order without preemption, and the EQUI policy that schedules the jobs in parallel using time-multiplexing, assigning each job an equal fraction of CPU time.

  7. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    NASA Technical Reports Server (NTRS)

    Rash, James

    2014-01-01

    NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial

  8. Revealing hot executive function in children with motor coordination problems: What's the go?

    PubMed

    Rahimi-Golkhandan, S; Steenbergen, B; Piek, J P; Caeyenberghs, K; Wilson, P H

    2016-07-01

    Recent research suggests that children with Developmental Coordination Disorder (DCD) often show deficits in executive functioning (EF) and, more specifically, the ability to use inhibitory control in 'hot', emotionally rewarding contexts. This study optimized the assessment of sensitivity of children with DCD to emotionally significant stimuli by using easily discriminable emotional expressions in a go/no-go task. Thirty-six children (12 with DCD), aged 7-12years, completed an emotional go/no-go task in which neutral facial expressions were paired with either happy or sad ones. Each expression was used as both, a go and no-go target in different runs of the task. There were no group differences in omission errors; however, the DCD group made significantly more commission errors to happy no-go faces. The particular pattern of performance in DCD confirms earlier reports of (hot) EF deficits. Specifically, a problem of inhibitory control appears to underlie the atypical pattern of performance seen in DCD on both cold and hot EF tasks. Disrupted coupling between cognitive control and emotion processing networks, such as fronto-parietal and fronto-striatal networks, may contribute to reduced inhibitory control in DCD. The implications for a broader theoretical account of DCD are discussed, as are implications for intervention. PMID:27254817

  9. Reinforcement learning in scheduling

    NASA Technical Reports Server (NTRS)

    Dietterich, Tom G.; Ok, Dokyeong; Zhang, Wei; Tadepalli, Prasad

    1994-01-01

    The goal of this research is to apply reinforcement learning methods to real-world problems like scheduling. In this preliminary paper, we show that learning to solve scheduling problems such as the Space Shuttle Payload Processing and the Automatic Guided Vehicle (AGV) scheduling can be usefully studied in the reinforcement learning framework. We discuss some of the special challenges posed by the scheduling domain to these methods and propose some possible solutions we plan to implement.

  10. Integrated resource scheduling in a distributed scheduling environment

    NASA Technical Reports Server (NTRS)

    Zoch, David; Hall, Gardiner

    1988-01-01

    The Space Station era presents a highly-complex multi-mission planning and scheduling environment exercised over a highly distributed system. In order to automate the scheduling process, customers require a mechanism for communicating their scheduling requirements to NASA. A request language that a remotely-located customer can use to specify his scheduling requirements to a NASA scheduler, thus automating the customer-scheduler interface, is described. This notation, Flexible Envelope-Request Notation (FERN), allows the user to completely specify his scheduling requirements such as resource usage, temporal constraints, and scheduling preferences and options. The FERN also contains mechanisms for representing schedule and resource availability information, which are used in the inter-scheduler inconsistency resolution process. Additionally, a scheduler is described that can accept these requests, process them, generate schedules, and return schedule and resource availability information to the requester. The Request-Oriented Scheduling Engine (ROSE) was designed to function either as an independent scheduler or as a scheduling element in a network of schedulers. When used in a network of schedulers, each ROSE communicates schedule and resource usage information to other schedulers via the FERN notation, enabling inconsistencies to be resolved between schedulers. Individual ROSE schedules are created by viewing the problem as a constraint satisfaction problem with a heuristically guided search strategy.

  11. Minimizing the makespan for the two-machine scheduling problem with a single server: Two algorithms for very large instances

    NASA Astrophysics Data System (ADS)

    Hasani, Keramat; Kravchenko, Svetlana A.; Werner, Frank

    2016-01-01

    This article considers the problem of scheduling a given set of n jobs on two identical parallel machines with a single server. Each job must be processed on one of the machines. Before processing, the server has to set up the relevant machine. The objective is to minimize the makespan. For this unary NP-hard problem, two fast constructive algorithms with a complexity of O(n2) are presented. The performance of these algorithms is evaluated for instances with up to 10,000 jobs. Computational results indicate that the algorithms have an excellent performance for very large instances so that the obtained objective function values are very close to a lower bound, and in many cases even an optimal solution is achieved. Superiority over all existing algorithms is obtained by sequencing the jobs on the two machines so that the machine idle time and the server waiting time are minimized. In doing so, the characteristics of an optimal solution resulting from its relevant lower bound are taken into account.

  12. Shared Activity Coordination

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Barrett, Anthony C.

    2003-01-01

    Interacting agents that interleave planning and execution must reach consensus on their commitments to each other. In domains where agents have varying degrees of interaction and different constraints on communication and computation, agents will require different coordination protocols in order to efficiently reach consensus in real time. We briefly describe a largely unexplored class of real-time, distributed planning problems (inspired by interacting spacecraft missions), new challenges they pose, and a general approach to solving the problems. These problems involve self-interested agents that have infrequent communication but collaborate on joint activities. We describe a Shared Activity Coordination (SHAC) framework that provides a decentralized algorithm for negotiating the scheduling of shared activities in a dynamic environment, a soft, real-time approach to reaching consensus during execution with limited communication, and a foundation for customizing protocols for negotiating planner interactions. We apply SHAC to a realistic simulation of interacting Mars missions and illustrate the simplicity of protocol development.

  13. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    NASA Technical Reports Server (NTRS)

    Rash, James L.

    2010-01-01

    NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems.

  14. Flexible Scheduling.

    ERIC Educational Resources Information Center

    Davis, Harold S.; Bechard, Joseph E.

    A flexible schedule allows teachers to change group size, group composition, and class length according to the purpose of the lesson. This pamphlet presents various "master" schedules for flexible scheduling: (1) Simple block schedules, (2) back-to-back schedules, (3) interdisciplinary schedules, (4) school-wide block schedules, (5) open-lab…

  15. Alternative choice of the Bondi radial coordinate and news function for the axisymmetric two-body problem

    NASA Astrophysics Data System (ADS)

    Bonanos, S.

    2006-06-01

    In the Bondi formulation of the axisymmetric vacuum Einstein equations, we argue that the “surface area” coordinate condition determining the “radial” coordinate can be considered as part of the initial data and should be chosen in a way that gives information about the physical problem whose solution is sought. For the two-body problem, we choose this coordinate by imposing a condition that allows it to be interpreted, near infinity, as the (inverse of the) Newtonian potential. In this way, two quantities that specify the problem—the separation of the two particles and their mass ratio—enter the equations from the very beginning. The asymptotic solution (near infinity) is obtained and a natural identification of the Bondi “news function” in terms of the source parameters is suggested, leading to an expression for the radiated energy that differs from the standard quadrupole formula but agrees with recent nonlinear calculations. When the free function of time describing the separation of the two particles is chosen so as to make the new expression agree with the classical result, closed-form analytic expressions are obtained, the resulting metric approaching the Schwarzschild solution with time. As all physical quantities are defined with respect to the flat metric at infinity, the physical interpretation of this solution depends strongly on how these definitions are extended to the near-zone and, in particular, how the “time” function in the near-zone is related to Bondi’s null coordinate.

  16. Polynomial optimization techniques for activity scheduling. Optimization based prototype scheduler

    NASA Technical Reports Server (NTRS)

    Reddy, Surender

    1991-01-01

    Polynomial optimization techniques for activity scheduling (optimization based prototype scheduler) are presented in the form of the viewgraphs. The following subject areas are covered: agenda; need and viability of polynomial time techniques for SNC (Space Network Control); an intrinsic characteristic of SN scheduling problem; expected characteristics of the schedule; optimization based scheduling approach; single resource algorithms; decomposition of multiple resource problems; prototype capabilities, characteristics, and test results; computational characteristics; some features of prototyped algorithms; and some related GSFC references.

  17. Preventing Alcohol-Related Problems on Campus: Acquaintance Rape. A Guide for Program Coordinators.

    ERIC Educational Resources Information Center

    Finn, Peter

    This is a guide for college and university program coordinators and planning committees on how to establish, expand, or improve a program on the prevention of acquaintance rape. Information is given for Presidents, Vice Presidents, and Deans on the relationship between acquaintance rape and alcohol, reasons for top administrators to become…

  18. Analyzing Group Coordination when Solving Geometry Problems with Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Oner, Diler

    2013-01-01

    In CSCL research, collaborative activity is conceptualized along various yet intertwined dimensions. When functioning within these multiple dimensions, participants make use of several resources, which can be social or content-related (and sometimes temporal) in nature. It is the effective coordination of these resources that appears to…

  19. Scaling Up Coordinate Descent Algorithms for Large ℓ1 Regularization Problems

    SciTech Connect

    Scherrer, Chad; Halappanavar, Mahantesh; Tewari, Ambuj; Haglin, David J.

    2012-07-03

    We present a generic framework for parallel coordinate descent (CD) algorithms that has as special cases the original sequential algorithms of Cyclic CD and Stochastic CD, as well as the recent parallel Shotgun algorithm of Bradley et al. We introduce two novel parallel algorithms that are also special cases---Thread-Greedy CD and Coloring-Based CD---and give performance measurements for an OpenMP implementation of these.

  20. Grid-based methods for diatomic quantum scattering problems: a finite-element, discrete variable representation in prolate spheroidal coordinates

    SciTech Connect

    Tao, Liang; McCurdy, C.W.; Rescigno, T.N.

    2008-11-25

    We show how to combine finite elements and the discrete variable representation in prolate spheroidal coordinates to develop a grid-based approach for quantum mechanical studies involving diatomic molecular targets. Prolate spheroidal coordinates are a natural choice for diatomic systems and have been used previously in a variety of bound-state applications. The use of exterior complex scaling in the present implementation allows for a transparently simple way of enforcing Coulomb boundary conditions and therefore straightforward application to electronic continuum problems. Illustrative examples involving the bound and continuum states of H2+, as well as the calculation of photoionization cross sections, show that the speed and accuracy of the present approach offer distinct advantages over methods based on single-center expansions.

  1. Coordinate transformation method for the solution of inverse problem in 2D and 3D scatterometry

    NASA Astrophysics Data System (ADS)

    Ponnusamy, Sekar

    2005-05-01

    For scatterometry applications, diffraction analysis of gratings is carried out by using Rigorous Coupled Wave Analysis (RCWA). Though RCWA method is originally developed for lamellar gratings, arbitrary profiles can be analyzed using staircase approximation with S-Matrix propagation of field components. For improved accuracy, more number of Fourier waves need to be included in Floquet-Bloch expansion of the field components and also more number of slices are to be made in staircase approximation. These requirements increase the time required for the analysis. A coordinate transformation method (CTM) developed by Chandezon et. al renders the arbitrary grating profile into a plane surface in the new coordinate system and hence it does not require slicing. This method is extended to 3D structures by several authors notably, by Harris et al for non-orthogonal unit cells and by Granet for correct Fourier expansion. Also extended is to handle sharp-edged gratings through adaptive spatial resolution. In this paper, an attempt is made to employ CTM with correct Fourier expansion in conjunction with adaptive spatial resolution, for scatterometry applications. A MATLAB program is developed, and thereby, demonstrated that CTM can be used for diffraction analysis of trapezoidal profiles that are typically encountered in scatterometry applications.

  2. A Comparison of Techniques for Scheduling Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2004-01-01

    Scheduling observations by coordinated fleets of Earth Observing Satellites (EOS) involves large search spaces, complex constraints and poorly understood bottlenecks, conditions where evolutionary and related algorithms are often effective. However, there are many such algorithms and the best one to use is not clear. Here we compare multiple variants of the genetic algorithm: stochastic hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on ten realistically-sized EOS scheduling problems. Schedules are represented by a permutation (non-temperal ordering) of the observation requests. A simple deterministic scheduler assigns times and resources to each observation request in the order indicated by the permutation, discarding those that violate the constraints created by previously scheduled observations. Simulated annealing performs best. Random mutation outperform a more 'intelligent' mutator. Furthermore, the best mutator, by a small margin, was a novel approach we call temperature dependent random sampling that makes large changes in the early stages of evolution and smaller changes towards the end of search.

  3. Behavioural coordination of dogs in a cooperative problem-solving task with a conspecific and a human partner.

    PubMed

    Ostojić, Ljerka; Clayton, Nicola S

    2014-03-01

    The process of domestication has arguably provided dogs (Canis familiaris) with decreased emotional reactivity (reduced fear and aggression) and increased socio-cognitive skills adaptive for living with humans. It has been suggested that dogs are uniquely equipped with abilities that have been identified as crucial in cooperative problem-solving, namely social tolerance and the ability to attend to other individuals' behaviour. Accordingly, dogs might be hypothesised to perform well in tasks in which they have to work together with a human partner. Recently, researchers have found that dogs successfully solved a simple cooperative task with another dog. Due to the simplicity of the task, this study was, however, unable to provide clear evidence as to whether the dogs' successful performance was based on the cognitive ability of behavioural coordination, namely the capacity to link task requirements to the necessity of adjusting one's actions to the partner's behaviour. Here, we tested dogs with the most commonly used cooperative task, appropriate to test behavioural coordination. In addition, we paired dogs with both a conspecific and a human partner. Although dogs had difficulties in inhibiting the necessary action when required to wait for their partner, they successfully attended to the two cues that predicted a successful outcome, namely their partner's behaviour and the incremental movement of rewards towards themselves. This behavioural coordination was shown with both a conspecific and a human partner, in line with the recent findings suggesting that dogs exhibit highly developed socio-cognitive skills in interactions with both humans and other dogs.

  4. Automated Scheduling Via Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  5. Preventing Alcohol-Related Problems on Campus: Impaired Driving. A Guide for Program Coordinators.

    ERIC Educational Resources Information Center

    DeJong, William

    This guide presents detailed descriptions of potentially effective approaches to preventing impaired driving by college students due to alcohol abuse. Chapter 1 provides an overview of alcohol-impaired driving and discusses changes in public attitudes, the scope of the problem, involvement of teens and young adults, and the challenge of reaching…

  6. "Playing the Game" of Story Problems: Coordinating Situation-Based Reasoning with Algebraic Representation

    ERIC Educational Resources Information Center

    Walkington, Candace; Sherman, Milan; Petrosino, Anthony

    2012-01-01

    This study critically examines a key justification used by educational stakeholders for placing mathematics in context--the idea that contextualization provides students with access to mathematical ideas. We present interviews of 24 ninth grade students from a low-performing urban school solving algebra story problems, some of which were…

  7. The impact of Wii Fit intervention on dynamic balance control in children with probable Developmental Coordination Disorder and balance problems.

    PubMed

    Jelsma, Dorothee; Geuze, Reint H; Mombarg, Remo; Smits-Engelsman, Bouwien C M

    2014-02-01

    The aim of this study was to examine differences in the performance of children with probable Developmental Coordination Disorder (p-DCD) and balance problems (BP) and typical developing children (TD) on a Wii Fit task and to measure the effect on balance skills after a Wii Fit intervention. Twenty-eight children with BP and 20 TD-children participated in the study. Motor performance was assessed with the Movement Assessment Battery for Children (MABC2), three subtests of the Bruininks Oseretsky Test (BOT2): Bilateral Coordination, Balance and Running Speed & Agility, and a Wii Fit ski slalom test. The TD children and half of the children in the BP group were tested before and after a 6weeks non-intervention period. All children with BP received 6weeks of Wii Fit intervention (with games other than the ski game) and were tested before and afterwards. Children with BP were less proficient than TD children in playing the Wii Fit ski slalom game. Training with the Wii Fit improved their motor performance. The improvement was significantly larger after intervention than after a period of non-intervention. Therefore the change cannot solely be attributed to spontaneous development or test-retest effect. Nearly all children enjoyed participation during the 6weeks of intervention. Our study shows that Wii Fit intervention is effective and is potentially a method to support treatment of (dynamic) balance control problems in children. PMID:24444657

  8. Scheduling Earth Observing Satellites with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.

  9. DSN Resource Scheduling

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Baldwin, John

    2007-01-01

    TIGRAS is client-side software, which provides tracking-station equipment planning, allocation, and scheduling services to the DSMS (Deep Space Mission System). TIGRAS provides functions for schedulers to coordinate the DSN (Deep Space Network) antenna usage time and to resolve the resource usage conflicts among tracking passes, antenna calibrations, maintenance, and system testing activities. TIGRAS provides a fully integrated multi-pane graphical user interface for all scheduling operations. This is a great improvement over the legacy VAX VMS command line user interface. TIGRAS has the capability to handle all DSN resource scheduling aspects from long-range to real time. TIGRAS assists NASA mission operations for DSN tracking of station equipment resource request processes from long-range load forecasts (ten years or longer), to midrange, short-range, and real-time (less than one week) emergency tracking plan changes. TIGRAS can be operated by NASA mission operations worldwide to make schedule requests for the DSN station equipment.

  10. Deconstructing Nowicki and Smutnickis i-TSAB tabu search algorithm for the job-shop scheduling problem.

    SciTech Connect

    Whitley, L. Darrell; Watson, Jean-Paul; Howe, Adele E.

    2005-06-01

    Over the last decade and a half, tabu search algorithms for machine scheduling have gained a near-mythical reputation by consistently equaling or establishing state-of-the-art performance levels on a range of academic and real-world problems. Yet, despite these successes, remarkably little research has been devoted to developing an understanding of why tabu search is so effective on this problem class. In this paper, we report results that provide significant progress in this direction. We consider Nowicki and Smutnicki's i-TSAB tabu search algorithm, which represents the current state-of-the-art for the makespan-minimization form of the classical jobshop scheduling problem. Via a series of controlled experiments, we identify those components of i-TSAB that enable it to achieve state-of-the-art performance levels. In doing so, we expose a number of misconceptions regarding the behavior and/or benefits of tabu search and other local search metaheuristics for the job-shop problem. Our results also serve to focus future research, by identifying those specific directions that are most likely to yield further improvements in performance.

  11. Continual coordination through shared activities

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Barrett, Anthony C.

    2003-01-01

    Interacting agents that interleave planning and execution must reach consensus on their commitments to each other. In domains where agents have varying degrees of interaction and different constraints on communication and computation, agents will require different coordination protocols in order to efficiently reach consensus in real time. We briefly describe a largely unexplored class of realtime, distributed planning problems (inspired by interacting spacecraft missions), new challenges they pose, and a general approach to solving the problems. These problems involve self-interested agents that have infrequent communication but collaborate on joint activities. We describe a Shared Activity Coordination (SHAC) framework that provides a decentralized algorithm for negotiating the scheduling of shared activities over the lifetimes of separate missions, a soft, real-time approach to reaching consensus during execution with limited communication, and a foundation for customizing protocols for negotiating planner interactions. We apply SHAC to a realistic simulation of interacting Mars missions and illustrate the simplicity of protocol development.

  12. Behavioural coordination of dogs in a cooperative problem-solving task with a conspecific and a human partner.

    PubMed

    Ostojić, Ljerka; Clayton, Nicola S

    2014-03-01

    The process of domestication has arguably provided dogs (Canis familiaris) with decreased emotional reactivity (reduced fear and aggression) and increased socio-cognitive skills adaptive for living with humans. It has been suggested that dogs are uniquely equipped with abilities that have been identified as crucial in cooperative problem-solving, namely social tolerance and the ability to attend to other individuals' behaviour. Accordingly, dogs might be hypothesised to perform well in tasks in which they have to work together with a human partner. Recently, researchers have found that dogs successfully solved a simple cooperative task with another dog. Due to the simplicity of the task, this study was, however, unable to provide clear evidence as to whether the dogs' successful performance was based on the cognitive ability of behavioural coordination, namely the capacity to link task requirements to the necessity of adjusting one's actions to the partner's behaviour. Here, we tested dogs with the most commonly used cooperative task, appropriate to test behavioural coordination. In addition, we paired dogs with both a conspecific and a human partner. Although dogs had difficulties in inhibiting the necessary action when required to wait for their partner, they successfully attended to the two cues that predicted a successful outcome, namely their partner's behaviour and the incremental movement of rewards towards themselves. This behavioural coordination was shown with both a conspecific and a human partner, in line with the recent findings suggesting that dogs exhibit highly developed socio-cognitive skills in interactions with both humans and other dogs. PMID:23995845

  13. Completable scheduling: An integrated approach to planning and scheduling

    NASA Technical Reports Server (NTRS)

    Gervasio, Melinda T.; Dejong, Gerald F.

    1992-01-01

    The planning problem has traditionally been treated separately from the scheduling problem. However, as more realistic domains are tackled, it becomes evident that the problem of deciding on an ordered set of tasks to achieve a set of goals cannot be treated independently of the problem of actually allocating resources to the tasks. Doing so would result in losing the robustness and flexibility needed to deal with imperfectly modeled domains. Completable scheduling is an approach which integrates the two problems by allowing an a priori planning module to defer particular planning decisions, and consequently the associated scheduling decisions, until execution time. This allows a completable scheduling system to maximize plan flexibility by allowing runtime information to be taken into consideration when making planning and scheduling decision. Furthermore, through the criteria of achievability placed on deferred decision, a completable scheduling system is able to retain much of the goal-directedness and guarantees of achievement afforded by a priori planning. The completable scheduling approach is further enhanced by the use of contingent explanation-based learning, which enables a completable scheduling system to learn general completable plans from example and improve its performance through experience. Initial experimental results show that completable scheduling outperforms classical scheduling as well as pure reactive scheduling in a simple scheduling domain.

  14. Job-base conditions in the three-machine flow-shop makespan scheduling problem with separated sequence-independent setup times

    NASA Astrophysics Data System (ADS)

    Nabeshima, I.

    1986-09-01

    The purpose of this paper is to present sufficiently optimal job-base conditions for a specified sequence in the NP-complete three-machine permutation flow-shop makespan scheduling problem with separated sequence-independent setup times, contrary to the machine-base conditions proposed in the previous papers. Those conditions give us a chance to identify an optimal sequence in O (n sub 2) operations especially in the case where no existing machine-base condition can identify an optimal sequence. As a special case, we have similar known results associated with the usual flow-shop case with setup times included.

  15. Prototype resupply scheduler

    NASA Technical Reports Server (NTRS)

    Tanner, Steve; Hughes, Angi; Byrd, Jim

    1987-01-01

    Resupply scheduling for the Space Station presents some formidable logistics problems. One of the most basic problems is assigning supplies to a series of shuttle resupply missions. A prototype logistics expert system which constructs resupply schedules was developed. This prototype is able to reconstruct feasible resupply plans. In addition, analysts can use the system to evaluate the impact of adding, deleting or modifying launches, cargo space, experiments, etc.

  16. Scheduling a C-Section

    MedlinePlus

    ... Labor & birth > Scheduling a c-section Scheduling a c-section E-mail to a friend Please fill ... develop before she’s born. Why can scheduling a c-section for non-medical reasons be a problem? ...

  17. The Real-World Problem of Care Coordination: A Longitudinal Qualitative Study with Patients Living with Advanced Progressive Illness and Their Unpaid Caregivers

    PubMed Central

    Daveson, Barbara A.; Harding, Richard; Shipman, Cathy; Mason, Bruce L.; Epiphaniou, Eleni; Higginson, Irene J.; Ellis-Smith, Clare; Henson, Lesley; Munday, Dan; Nanton, Veronica; Dale, Jeremy R.; Boyd, Kirsty; Worth, Allison; Barclay, Stephen; Donaldson, Anne; Murray, Scott

    2014-01-01

    Objectives To develop a model of care coordination for patients living with advanced progressive illness and their unpaid caregivers, and to understand their perspective regarding care coordination. Design A prospective longitudinal, multi-perspective qualitative study involving a case-study approach. Methods Serial in-depth interviews were conducted, transcribed verbatim and then analyzed through open and axial coding in order to construct categories for three cases (sites). This was followed by continued thematic analysis to identify underlying conceptual coherence across all cases in order to produce one coherent care coordination model. Participants Fifty-six purposively sampled patients and 27 case-linked unpaid caregivers. Settings Three cases from contrasting primary, secondary and tertiary settings within Britain. Results Coordination is a deliberate cross-cutting action that involves high-quality, caring and well-informed staff, patients and unpaid caregivers who must work in partnership together across health and social care settings. For coordination to occur, it must be adequately resourced with efficient systems and services that communicate. Patients and unpaid caregivers contribute substantially to the coordination of their care, which is sometimes volunteered at a personal cost to them. Coordination is facilitated through flexible and patient-centered care, characterized by accurate and timely information communicated in a way that considers patients’ and caregivers’ needs, preferences, circumstances and abilities. Conclusions Within the midst of advanced progressive illness, coordination is a shared and complex intervention involving relational, structural and information components. Our study is one of the first to extensively examine patients’ and caregivers’ views about coordination, thus aiding conceptual fidelity. These findings can be used to help avoid oversimplifying a real-world problem, such as care coordination. Avoiding

  18. Bi-Objective Modelling for Hazardous Materials Road-Rail Multimodal Routing Problem with Railway Schedule-Based Space-Time Constraints.

    PubMed

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-01-01

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing-Tianjin-Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294

  19. Bi-Objective Modelling for Hazardous Materials Road–Rail Multimodal Routing Problem with Railway Schedule-Based Space–Time Constraints

    PubMed Central

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-01-01

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing–Tianjin–Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294

  20. Bi-Objective Modelling for Hazardous Materials Road-Rail Multimodal Routing Problem with Railway Schedule-Based Space-Time Constraints.

    PubMed

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-07-28

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing-Tianjin-Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study.

  1. Adaptive Parallel Job Scheduling with Flexible CoScheduling

    SciTech Connect

    Frachtenberg, Eitan; Feitelson, Dror; Petrini, Fabrizio; Fernandez, Juan

    2005-11-01

    Abstract—Many scientific and high-performance computing applications consist of multiple processes running on different processors that communicate frequently. Because of their synchronization needs, these applications can suffer severe performance penalties if their processes are not all coscheduled to run together. Two common approaches to coscheduling jobs are batch scheduling, wherein nodes are dedicated for the duration of the run, and gang scheduling, wherein time slicing is coordinated across processors. Both work well when jobs are load-balanced and make use of the entire parallel machine. However, these conditions are rarely met and most realistic workloads consequently suffer from both internal and external fragmentation, in which resources and processors are left idle because jobs cannot be packed with perfect efficiency. This situation leads to reduced utilization and suboptimal performance. Flexible CoScheduling (FCS) addresses this problem by monitoring each job’s computation granularity and communication pattern and scheduling jobs based on their synchronization and load-balancing requirements. In particular, jobs that do not require stringent synchronization are identified, and are not coscheduled; instead, these processes are used to reduce fragmentation. FCS has been fully implemented on top of the STORM resource manager on a 256-processor Alpha cluster and compared to batch, gang, and implicit coscheduling algorithms. This paper describes in detail the implementation of FCS and its performance evaluation with a variety of workloads, including large-scale benchmarks, scientific applications, and dynamic workloads. The experimental results show that FCS saturates at higher loads than other algorithms (up to 54 percent higher in some cases), and displays lower response times and slowdown than the other algorithms in nearly all scenarios.

  2. Scheduling Software

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Advanced Scheduling Environment is a software product designed and marketed by AVYX, Inc. to provide scheduling solutions for complex manufacturing environments. It can be adapted to specific scheduling and manufacturing processes and has led to substantial cost savings. The system was originally developed for NASA use in scheduling Space Shuttle flights and satellite activities. AVYX, Inc. is an offshoot of a company formed to provide computer-related services to NASA. TREES-plus, the company's initial product became the programming language for the advanced scheduling environment system.

  3. Solving a supply chain scheduling problem with non-identical job sizes and release times by applying a novel effective heuristic algorithm

    NASA Astrophysics Data System (ADS)

    Pei, Jun; Liu, Xinbao; Pardalos, Panos M.; Fan, Wenjuan; Wang, Ling; Yang, Shanlin

    2016-03-01

    Motivated by applications in manufacturing industry, we consider a supply chain scheduling problem, where each job is characterised by non-identical sizes, different release times and unequal processing times. The objective is to minimise the makespan by making batching and sequencing decisions. The problem is formalised as a mixed integer programming model and proved to be strongly NP-hard. Some structural properties are presented for both the general case and a special case. Based on these properties, a lower bound is derived, and a novel two-phase heuristic (TP-H) is developed to solve the problem, which guarantees to obtain a worst case performance ratio of ?. Computational experiments with a set of different sizes of random instances are conducted to evaluate the proposed approach TP-H, which is superior to another two heuristics proposed in the literature. Furthermore, the experimental results indicate that TP-H can effectively and efficiently solve large-size problems in a reasonable time.

  4. Multimode resource-constrained multiple project scheduling problem under fuzzy random environment and its application to a large scale hydropower construction project.

    PubMed

    Xu, Jiuping; Feng, Cuiying

    2014-01-01

    This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method.

  5. Multimode Resource-Constrained Multiple Project Scheduling Problem under Fuzzy Random Environment and Its Application to a Large Scale Hydropower Construction Project

    PubMed Central

    Xu, Jiuping

    2014-01-01

    This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method. PMID:24550708

  6. Guidelines for Implementation of an Advanced Outage Control Center to Improve Outage Coordination, Problem Resolution, and Outage Risk Management

    SciTech Connect

    St. Germain, Shawn W.; Farris, Ronald K.; Whaley, April M.; Medema, Heather D.; Gertman, David I.

    2014-09-01

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The purpose of this research is to improve management of nuclear power plant (NPP) outages through the development of an advanced outage control center (AOCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This technical report for industry implementation outlines methods and considerations for the establishment of an AOCC. This report provides a process for implementation of a change management plan, evaluation of current outage processes, the selection of technology, and guidance for the implementation of the selected technology. Methods are presented for both adoption of technologies within an existing OCC and for a complete OCC replacement, including human factors considerations for OCC design and setup.

  7. NASA Schedule Management Handbook

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The purpose of schedule management is to provide the framework for time-phasing, resource planning, coordination, and communicating the necessary tasks within a work effort. The intent is to improve schedule management by providing recommended concepts, processes, and techniques used within the Agency and private industry. The intended function of this handbook is two-fold: first, to provide guidance for meeting the scheduling requirements contained in NPR 7120.5, NASA Space Flight Program and Project Management Requirements, NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Requirements, NPR 7120.8, NASA Research and Technology Program and Project Management Requirements, and NPD 1000.5, Policy for NASA Acquisition. The second function is to describe the schedule management approach and the recommended best practices for carrying out this project control function. With regards to the above project management requirements documents, it should be noted that those space flight projects previously established and approved under the guidance of prior versions of NPR 7120.5 will continue to comply with those requirements until project completion has been achieved. This handbook will be updated as needed, to enhance efficient and effective schedule management across the Agency. It is acknowledged that most, if not all, external organizations participating in NASA programs/projects will have their own internal schedule management documents. Issues that arise from conflicting schedule guidance will be resolved on a case by case basis as contracts and partnering relationships are established. It is also acknowledged and understood that all projects are not the same and may require different levels of schedule visibility, scrutiny and control. Project type, value, and complexity are factors that typically dictate which schedule management practices should be employed.

  8. Artificial intelligence approaches to astronomical observation scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Miller, Glenn

    1988-01-01

    Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.

  9. Planning and Scheduling for Environmental Sensor Networks

    NASA Astrophysics Data System (ADS)

    Frank, J. D.

    2005-12-01

    resources and to reduce the costs of communication. Planning and scheduling is generally a heavy consumer of time, memory and energy resources. This means careful thought must be given to how much planning and scheduling should be done on the sensors themselves, and how much to do elsewhere. The difficulty of planning and scheduling is exacerbated when reasoning about uncertainty. More time, memory and energy is needed to solve such problems, leading either to more expensive sensors, or suboptimal plans. For example, scientifically interesting events may happen at random times, making it difficult to ensure that sufficient resources are availanble. Since uncertainty is usually lowest in proximity to the sensors themselves, this argues for planning and scheduling onboard the sensors. However, cost minimization dictates sensors be kept as simple as possible, reducing the amount of planning and scheduling they can do themselves. Furthermore, coordinating each sensor's independent plans can be difficult. In the full presentation, we will critically review the planning and scheduling systems used by previously fielded sensor networks. We do so primarily from the perspective of the computational sciences, with a focus on taming computational complexity when operating sensor networks. The case studies are derived from sensor networks based on UAVs, satellites, and planetary rovers. Planning and scheduling considerations include multi-sensor coordination, optimizing science value, onboard power management, onboard memory, planning movement actions to acquire data, and managing communications.These case studies offer lessons for future designs of environmental sensor networks.

  10. Stability of Motor Problems in Young Children with or at Risk of Autism Spectrum Disorders, ADHD, and or Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    van Waelvelde, Hilde; Oostra, Ann; DeWitte, Griet; van den Broeck, Christine; Jongmans, Marian J.

    2010-01-01

    Aim: The aim of this study was to investigate the stability of motor problems in a clinically referred sample of children with, or at risk of, autism spectrum disorders (ASDs), attention-deficit-hyperactivity disorder (ADHD), and/or developmental coordination disorder (DCD). Method: Participants were 49 children (39 males, 10 females; mean age 5y…

  11. DTS: Building custom, intelligent schedulers

    NASA Technical Reports Server (NTRS)

    Hansson, Othar; Mayer, Andrew

    1994-01-01

    DTS is a decision-theoretic scheduler, built on top of a flexible toolkit -- this paper focuses on how the toolkit might be reused in future NASA mission schedulers. The toolkit includes a user-customizable scheduling interface, and a 'Just-For-You' optimization engine. The customizable interface is built on two metaphors: objects and dynamic graphs. Objects help to structure problem specifications and related data, while dynamic graphs simplify the specification of graphical schedule editors (such as Gantt charts). The interface can be used with any 'back-end' scheduler, through dynamically-loaded code, interprocess communication, or a shared database. The 'Just-For-You' optimization engine includes user-specific utility functions, automatically compiled heuristic evaluations, and a postprocessing facility for enforcing scheduling policies. The optimization engine is based on BPS, the Bayesian Problem-Solver (1,2), which introduced a similar approach to solving single-agent and adversarial graph search problems.

  12. Solving Energy-Aware Real-Time Tasks Scheduling Problem with Shuffled Frog Leaping Algorithm on Heterogeneous Platforms

    PubMed Central

    Zhang, Weizhe; Bai, Enci; He, Hui; Cheng, Albert M.K.

    2015-01-01

    Reducing energy consumption is becoming very important in order to keep battery life and lower overall operational costs for heterogeneous real-time multiprocessor systems. In this paper, we first formulate this as a combinatorial optimization problem. Then, a successful meta-heuristic, called Shuffled Frog Leaping Algorithm (SFLA) is proposed to reduce the energy consumption. Precocity remission and local optimal avoidance techniques are proposed to avoid the precocity and improve the solution quality. Convergence acceleration significantly reduces the search time. Experimental results show that the SFLA-based energy-aware meta-heuristic uses 30% less energy than the Ant Colony Optimization (ACO) algorithm, and 60% less energy than the Genetic Algorithm (GA) algorithm. Remarkably, the running time of the SFLA-based meta-heuristic is 20 and 200 times less than ACO and GA, respectively, for finding the optimal solution. PMID:26110406

  13. Solving Energy-Aware Real-Time Tasks Scheduling Problem with Shuffled Frog Leaping Algorithm on Heterogeneous Platforms.

    PubMed

    Zhang, Weizhe; Bai, Enci; He, Hui; Cheng, Albert M K

    2015-06-11

    Reducing energy consumption is becoming very important in order to keep battery life and lower overall operational costs for heterogeneous real-time multiprocessor systems. In this paper, we first formulate this as a combinatorial optimization problem. Then, a successful meta-heuristic, called Shuffled Frog Leaping Algorithm (SFLA) is proposed to reduce the energy consumption. Precocity remission and local optimal avoidance techniques are proposed to avoid the precocity and improve the solution quality. Convergence acceleration significantly reduces the search time. Experimental results show that the SFLA-based energy-aware meta-heuristic uses 30% less energy than the Ant Colony Optimization (ACO) algorithm, and 60% less energy than the Genetic Algorithm (GA) algorithm. Remarkably, the running time of the SFLA-based meta-heuristic is 20 and 200 times less than ACO and GA, respectively, for finding the optimal solution.

  14. Automated Platform Management System Scheduling

    NASA Technical Reports Server (NTRS)

    Hull, Larry G.

    1990-01-01

    The Platform Management System was established to coordinate the operation of platform systems and instruments. The management functions are split between ground and space components. Since platforms are to be out of contact with the ground more than the manned base, the on-board functions are required to be more autonomous than those of the manned base. Under this concept, automated replanning and rescheduling, including on-board real-time schedule maintenance and schedule repair, are required to effectively and efficiently meet Space Station Freedom mission goals. In a FY88 study, we developed several promising alternatives for automated platform planning and scheduling. We recommended both a specific alternative and a phased approach to automated platform resource scheduling. Our recommended alternative was based upon use of exactly the same scheduling engine in both ground and space components of the platform management system. Our phased approach recommendation was based upon evolutionary development of the platform. In the past year, we developed platform scheduler requirements and implemented a rapid prototype of a baseline platform scheduler. Presently we are rehosting this platform scheduler rapid prototype and integrating the scheduler prototype into two Goddard Space Flight Center testbeds, as the ground scheduler in the Scheduling Concepts, Architectures, and Networks Testbed and as the on-board scheduler in the Platform Management System Testbed. Using these testbeds, we will investigate rescheduling issues, evaluate operational performance and enhance the platform scheduler prototype to demonstrate our evolutionary approach to automated platform scheduling. The work described in this paper was performed prior to Space Station Freedom rephasing, transfer of platform responsibility to Code E, and other recently discussed changes. We neither speculate on these changes nor attempt to predict the impact of the final decisions. As a consequence some of our

  15. Scheduling game

    SciTech Connect

    Kleck, W

    1982-04-01

    Structuring a schedule - whether by Critical Path Method (CPM) or Precedence Charting System (PCS) - involves estimating the duration of one or more activities and arranging them in the most logical sequence. Given the start date, the completion date is relatively simple to determine. What is then so complicated about the process. It is complicated by the people involved - the people who make the schedules and the people who attempt to follow them. Schedules are an essential part of project management and construction contract administration. Much of the material available pertains to the mechanics of schedules, the types of logic networks, the ways that data can be generated and presented. This paper sheds light on other facets of the subject - the statistical and philosophical fundamentals involved in scheduling.

  16. Scheduling: A guide for program managers

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The following topics are discussed concerning scheduling: (1) milestone scheduling; (2) network scheduling; (3) program evaluation and review technique; (4) critical path method; (5) developing a network; (6) converting an ugly duckling to a swan; (7) network scheduling problem; (8) (9) network scheduling when resources are limited; (10) multi-program considerations; (11) influence on program performance; (12) line-of-balance technique; (13) time management; (14) recapitulization; and (15) analysis.

  17. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocations for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its applications to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  18. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  19. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1993-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  20. Training and Operations Integrated Calendar Scheduler - TROPICS

    SciTech Connect

    J.E. Oppenlander; A.J. Levy; V.A. Arbige; A.H. Shoop

    2003-01-27

    TROPICS is a rule-based scheduling system that optimizes the training experience for students in a power (note this change should be everywhere, i.e. Not reactor) plant environment. The problem is complicated by the condition that plant resources and users' time must be simultaneously scheduled to make best use of both. The training facility is highly constrained in how it is used, and, as in many similar environments, subject to dynamic change with little or no advance notice. The flexibility required extends to changes resulting from students' actions such as absences. Even though the problem is highly constrained by plant usage and student objectives, the large number of possible schedules is a concern. TROPICS employs a control strategy for rule firing to prune the possibility tree and avoid combinatorial explosion. The application has been in use since 1996, first as a prototype for testing and then in production. Training Coordinators have a philosophical aspect to teaching students that has made the rule-based approach much more verifiable and satisfying to the domain experts than other forms of capturing expertise.

  1. A synergetic combination of small and large neighborhood schemes in developing an effective procedure for solving the job shop scheduling problem.

    PubMed

    Amirghasemi, Mehrdad; Zamani, Reza

    2014-01-01

    This paper presents an effective procedure for solving the job shop problem. Synergistically combining small and large neighborhood schemes, the procedure consists of four components, namely (i) a construction method for generating semi-active schedules by a forward-backward mechanism, (ii) a local search for manipulating a small neighborhood structure guided by a tabu list, (iii) a feedback-based mechanism for perturbing the solutions generated, and (iv) a very large-neighborhood local search guided by a forward-backward shifting bottleneck method. The combination of shifting bottleneck mechanism and tabu list is used as a means of the manipulation of neighborhood structures, and the perturbation mechanism employed diversifies the search. A feedback mechanism, called repeat-check, detects consequent repeats and ignites a perturbation when the total number of consecutive repeats for two identical makespan values reaches a given threshold. The results of extensive computational experiments on the benchmark instances indicate that the combination of these four components is synergetic, in the sense that they collectively make the procedure fast and robust. PMID:24808999

  2. A synergetic combination of small and large neighborhood schemes in developing an effective procedure for solving the job shop scheduling problem.

    PubMed

    Amirghasemi, Mehrdad; Zamani, Reza

    2014-01-01

    This paper presents an effective procedure for solving the job shop problem. Synergistically combining small and large neighborhood schemes, the procedure consists of four components, namely (i) a construction method for generating semi-active schedules by a forward-backward mechanism, (ii) a local search for manipulating a small neighborhood structure guided by a tabu list, (iii) a feedback-based mechanism for perturbing the solutions generated, and (iv) a very large-neighborhood local search guided by a forward-backward shifting bottleneck method. The combination of shifting bottleneck mechanism and tabu list is used as a means of the manipulation of neighborhood structures, and the perturbation mechanism employed diversifies the search. A feedback mechanism, called repeat-check, detects consequent repeats and ignites a perturbation when the total number of consecutive repeats for two identical makespan values reaches a given threshold. The results of extensive computational experiments on the benchmark instances indicate that the combination of these four components is synergetic, in the sense that they collectively make the procedure fast and robust.

  3. User requirements for a patient scheduling system

    NASA Technical Reports Server (NTRS)

    Zimmerman, W.

    1979-01-01

    A rehabilitation institute's needs and wants from a scheduling system were established by (1) studying the existing scheduling system and the variables that affect patient scheduling, (2) conducting a human-factors study to establish the human interfaces that affect patients' meeting prescribed therapy schedules, and (3) developing and administering a questionnaire to the staff which pertains to the various interface problems in order to identify staff requirements to minimize scheduling problems and other factors that may limit the effectiveness of any new scheduling system.

  4. Grid-based methods for diatomic quantum scattering problems III: Double photoionization of molecular hydrogen in prolate spheroidal coordinates

    SciTech Connect

    Tao, Liang; McCurdy, Bill; Rescigno, Tom

    2010-06-10

    Our previously developed finite-element/ discrete variable representation in prolate spheroidal coordinates is extended to two-electron systems with a study of double ionization of H$_2$ with fixed-nuclei. Particular attention is paid to the development of fast and accurate methods for treating the electron-electron interaction. The use of exterior complex scaling in the implementation offers a simple way of enforcing Coulomb boundary conditions for the electronic double continuum. While the angular distributions calculated in this study are found to be completely consistent with our earlier treatments that employed single-center expansions in spherical coordinates, we find that the magnitude of the integrated cross sections are sensitive to small changes in the initial-state wave function. The present formulation offers significant advantages with respect to convergence and efficiency and opens the way to calculations on more complicated diatomic targets.

  5. Coordinating Shared Activities

    NASA Technical Reports Server (NTRS)

    Clement, Bradley

    2004-01-01

    Shared Activity Coordination (ShAC) is a computer program for planning and scheduling the activities of an autonomous team of interacting spacecraft and exploratory robots. ShAC could also be adapted to such terrestrial uses as helping multiple factory managers work toward competing goals while sharing such common resources as floor space, raw materials, and transports. ShAC iteratively invokes the Continuous Activity Scheduling Planning Execution and Replanning (CASPER) program to replan and propagate changes to other planning programs in an effort to resolve conflicts. A domain-expert specifies which activities and parameters thereof are shared and reports the expected conditions and effects of these activities on the environment. By specifying these conditions and effects differently for each planning program, the domain-expert subprogram defines roles that each spacecraft plays in a coordinated activity. The domain-expert subprogram also specifies which planning program has scheduling control over each shared activity. ShAC enables sharing of information, consensus over the scheduling of collaborative activities, and distributed conflict resolution. As the other planning programs incorporate new goals and alter their schedules in the changing environment, ShAC continually coordinates to respond to unexpected events.

  6. Motor Coordination Difficulties in 5-6-Year-Old Children with Severe Behavioural and Emotional Problems

    ERIC Educational Resources Information Center

    Iversen, Synnove; Knivsberg, Ann-Mari; Ellertsen, Bjorn; Nodland, Magne; Larsen, Tommy Bade

    2006-01-01

    Incidence, severity and types of motor difficulties in children with severe behavioural and emotional problems were evaluated. A group of 6-year-olds (n = 29) with such problems and controls (n = 29) were compared on the Movement Assessment Battery for Children (M-ABC). The groups were compared on total scores as well as manual dexterity, ball…

  7. Using Software to Elicit User Needs for Clinical Research Visit Scheduling

    PubMed Central

    Weng, Chunhua; Boland, Mary Regina; So, Yat; Rusanov, Alexander; Lopez, Carlos; Steinman, Richard; Busacca, Linda; Bakken, Suzanne; Bigger, J Thomas

    2014-01-01

    User needs understanding is critical for developing useful and usable clinical research decision support. Existing methods largely depend on self-reporting and often fail to elicit implicit or fine-grained user needs. We hypothesized that functional software would address this problem by presenting to users existing technology while simultaneously encouraging users to optimize workflow. Using clinical research visit scheduling as an example, we used a piece of software under development that was called IMPACT to reveal user needs iteratively. The identified user needs explained why most clinical research coordinators still rely on paper to schedule clinical research visits. The common user needs themes such as information completeness for software to be useful may generalize to other clinical decision support. This paper contributes valuable firsthand knowledge about user needs for decision support for clinical research visit scheduling among clinical research coordinators and a generalizable methodology for collecting and analyzing software usage data to inform user needs elicitation. PMID:25954586

  8. "The problem with running"--comparing the propulsion strategy of children with developmental coordination disorder and typically developing children.

    PubMed

    Diamond, Nicola; Downs, Jenny; Morris, Susan

    2014-01-01

    Children with Developmental Coordination Disorder (DCD) often have difficulties running. This study compared strategies of propulsion and power generation at the ankle during late stance/early swing in both walking and running in children with and without DCD. Eleven children (six male) aged nine to 12 years with DCD were matched by sex and age with 11 typically developing (TD) children. Gait kinematics and kinetics were measured during 4 gait types; normal walking, fast walking, jogging and sprinting using three-dimensional motion analysis. Propulsion strategy during gait was calculated as ankle power divided by the sum of ankle and hip power (A2/A2+H3). The children with DCD ran slower than the TD children (mean difference [MD] when jogging 0.3m/s and sprinting 0.8m/s). Adjusting for speed, those with DCD had smaller propulsion strategy values during jogging (p=0.001) and sprinting (p=0.012), explained by reduced ankle power generation at push off (A2) (jogging, MD 2.5 W/kg, p<0.001) and greater hip flexor power generation at pull off (H3) (jogging, MD 0.75 W/kg, p=0.013). Similar findings were observed during sprinting. Children with DCD ran with a slow and less efficient running style compared with TD children. Physiotherapy targeting running-specific needs in relation to ankle muscle strength and coordination could enable more participation in running activities.

  9. Scheduling with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Fennel, Theron R.; Underbrink, A. J., Jr.; Williams, George P. W., Jr.

    1994-01-01

    In many domains, scheduling a sequence of jobs is an important function contributing to the overall efficiency of the operation. At Boeing, we develop schedules for many different domains, including assembly of military and commercial aircraft, weapons systems, and space vehicles. Boeing is under contract to develop scheduling systems for the Space Station Payload Planning System (PPS) and Payload Operations and Integration Center (POIC). These applications require that we respect certain sequencing restrictions among the jobs to be scheduled while at the same time assigning resources to the jobs. We call this general problem scheduling and resource allocation. Genetic algorithms (GA's) offer a search method that uses a population of solutions and benefits from intrinsic parallelism to search the problem space rapidly, producing near-optimal solutions. Good intermediate solutions are probabalistically recombined to produce better offspring (based upon some application specific measure of solution fitness, e.g., minimum flowtime, or schedule completeness). Also, at any point in the search, any intermediate solution can be accepted as a final solution; allowing the search to proceed longer usually produces a better solution while terminating the search at virtually any time may yield an acceptable solution. Many processes are constrained by restrictions of sequence among the individual jobs. For a specific job, other jobs must be completed beforehand. While there are obviously many other constraints on processes, it is these on which we focussed for this research: how to allocate crews to jobs while satisfying job precedence requirements and personnel, and tooling and fixture (or, more generally, resource) requirements.

  10. Integrated scheduling of a container handling system with simultaneous loading and discharging operations

    NASA Astrophysics Data System (ADS)

    Li, Chen; Lu, Zhiqiang; Han, Xiaole; Zhang, Yuejun; Wang, Li

    2016-03-01

    The integrated scheduling of container handling systems aims to optimize the coordination and overall utilization of all handling equipment, so as to minimize the makespan of a given set of container tasks. A modified disjunctive graph is proposed and a mixed 0-1 programming model is formulated. A heuristic algorithm is presented, in which the original problem is divided into two subproblems. In the first subproblem, contiguous bay crane operations are applied to obtain a good quay crane schedule. In the second subproblem, proper internal truck and yard crane schedules are generated to match the given quay crane schedule. Furthermore, a genetic algorithm based on the heuristic algorithm is developed to search for better solutions. The computational results show that the proposed algorithm can efficiently find high-quality solutions. They also indicate the effectiveness of simultaneous loading and discharging operations compared with separate ones.

  11. Intelligent perturbation algorithms for space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1991-01-01

    Intelligent perturbation algorithms for space scheduling optimization are presented in the form of the viewgraphs. The following subject areas are covered: optimization of planning, scheduling, and manifesting; searching a discrete configuration space; heuristic algorithms used for optimization; use of heuristic methods on a sample scheduling problem; intelligent perturbation algorithms are iterative refinement techniques; properties of a good iterative search operator; dispatching examples of intelligent perturbation algorithm and perturbation operator attributes; scheduling implementations using intelligent perturbation algorithms; major advances in scheduling capabilities; the prototype ISF (industrial Space Facility) experiment scheduler; optimized schedule (max revenue); multi-variable optimization; Space Station design reference mission scheduling; ISF-TDRSS command scheduling demonstration; and example task - communications check.

  12. Compiling Planning into Scheduling: A Sketch

    NASA Technical Reports Server (NTRS)

    Bedrax-Weiss, Tania; Crawford, James M.; Smith, David E.

    2004-01-01

    Although there are many approaches for compiling a planning problem into a static CSP or a scheduling problem, current approaches essentially preserve the structure of the planning problem in the encoding. In this pape: we present a fundamentally different encoding that more accurately resembles a scheduling problem. We sketch the approach and argue, based on an example, that it is possible to automate the generation of such an encoding for problems with certain properties and thus produce a compiler of planning into scheduling problems. Furthermore we argue that many NASA problems exhibit these properties and that such a compiler would provide benefits to both theory and practice.

  13. Scheduler Design Criteria: Requirements and Considerations

    NASA Technical Reports Server (NTRS)

    Lee, Hanbong

    2016-01-01

    This presentation covers fundamental requirements and considerations for developing schedulers in airport operations. We first introduce performance and functional requirements for airport surface schedulers. Among various optimization problems in airport operations, we focus on airport surface scheduling problem, including runway and taxiway operations. We then describe a basic methodology for airport surface scheduling such as node-link network model and scheduling algorithms previously developed. Next, we explain how to design a mathematical formulation in more details, which consists of objectives, decision variables, and constraints. Lastly, we review other considerations, including optimization tools, computational performance, and performance metrics for evaluation.

  14. Decomposability and scalability in space-based observatory scheduling

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Stephen F.

    1992-01-01

    In this paper, we discuss issues of problem and model decomposition within the HSTS scheduling framework. HSTS was developed and originally applied in the context of the Hubble Space Telescope (HST) scheduling problem, motivated by the limitations of the current solution and, more generally, the insufficiency of classical planning and scheduling approaches in this problem context. We first summarize the salient architectural characteristics of HSTS and their relationship to previous scheduling and AI planning research. Then, we describe some key problem decomposition techniques supported by HSTS and underlying our integrated planning and scheduling approach, and we discuss the leverage they provide in solving space-based observatory scheduling problems.

  15. The problem of temporal validity of reference coordinates in the context of reliability of the ETRS89 system realization in Poland

    NASA Astrophysics Data System (ADS)

    Szafranek, K.

    2012-12-01

    The IAG (International Association of Geodesy) Sub-Commission for the European reference frame (EUREF) passed a resolution recommending application of the ETRF2000 frame as national realizations of the ETRS89 reference system during the XXth EUREF Symposium in Gävle (Sweden) in 2010. The PL-ETRF2000 system is comprised of EPN (EUREF Permanent Network) sites. Their coordinates and their temporal changes (velocities) were accurately determined on the basis of long-term GNSS observations. The transfer of the PLETRF2000 system onto the territory of Poland is realized by the ASG-EUPOS (Active Geodetic Network - European Position Determination System) permanent sites network. The ASG-EUPOS tasks include also system maintenance by continuous or periodical control of the coordinates and velocities constancy. According to the current Regulation of the Ministry of Administration and Digitization concerning geodesic, gravimetric and magnetic warps, the accuracy of sites of the fundamental warp (EPN sites belonging to ASG-EUPOS) may not be worse than 0.01 m for horizontal position and 0.02 m for geodesic height. It results in the necessity to monitor the performance of the reference sites for proper maintenance of the reference system. A new team for modeling deformations in Europe was established within the EUREF Working Group (The EUREF Working Group on Deformation Models) during the EUREF 2012 Symposium in Paris. One of its tasks is taking geo-kinematic models into consideration for national realizations of the ETRS89 and maximum usage of knowledge concerning the velocity field. The paper deals with the problem of temporal validity of the catalogue coordinates and the necessity of periodical updating them on the basis of velocities derived from long-term observations. Although Poland is located in a tectonically calm area and the intraplate velocities are small, some of the EPN and ASG-EUPOS sites have significant velocities and are subject to vertical movements. Lack of

  16. On viscous limit solutions of the Riemann problem for the equations of isentropic gas dynamics in Eulerian coordinates

    SciTech Connect

    Andreianov, B P

    2003-06-30

    For the problem {rho}{sub t}+({rho}u){sub x}=0, ({rho}u){sub t}+({rho}u{sup 2}+p({rho})){sub x}=0, ({rho},u)|{sub t=0,x<0}=({rho}{sub -},u{sub -}), ({rho},u)|{sub t=0,x>0}=({rho}{sub +},u{sub +}) one shows the existence and uniqueness of a solution obtainable as a limit as {epsilon} tends to zero of the bounded self-similar solutions of the regularized problem with additional viscosity term {epsilon}tu{sub xx}, {epsilon}>0, in the second equation. The structure of the solutions is described in detail, in particular, when they contain vacuum states.

  17. A procedure for thinning the schedule of time-out.

    PubMed

    Donaldson, Jeanne M; Vollmer, Timothy R

    2012-01-01

    Few studies have evaluated ways to thin punishment schedules. The purpose of this study was to examine the effects of using variable ratio (VR) schedules to thin the time-out schedule gradually. Warnings were used in some conditions to assist potentially with schedule thinning, but this analysis was limited. Participants were 3 young students who engaged in problem behavior during enriched time-in periods. Dense schedules of intermittent time-out were effective at reducing problem behavior.

  18. Gang scheduling a parallel machine

    SciTech Connect

    Gorda, B.C.; Brooks, E.D. III.

    1991-03-01

    Program development on parallel machines can be a nightmare of scheduling headaches. We have developed a portable time sharing mechanism to handle the problem of scheduling gangs of processors. User program and their gangs of processors are put to sleep and awakened by the gang scheduler to provide a time sharing environment. Time quantums are adjusted according to priority queues and a system of fair share accounting. The initial platform for this software is the 128 processor BBN TC2000 in use in the Massively Parallel Computing Initiative at the Lawrence Livermore National Laboratory. 2 refs., 1 fig.

  19. Bridging the Gap Between Planning and Scheduling

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Frank, Jeremy; Jonsson, Ari K.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Planning research in Artificial Intelligence (AI) has often focused on problems where there are cascading levels of action choice and complex interactions between actions. In contrast. Scheduling research has focused on much larger problems where there is little action choice, but the resulting ordering problem is hard. In this paper, we give an overview of M planning and scheduling techniques, focusing on their similarities, differences, and limitations. We also argue that many difficult practical problems lie somewhere between planning and scheduling, and that neither area has the right set of tools for solving these vexing problems.

  20. Scheduling the Secondary School.

    ERIC Educational Resources Information Center

    Dempsey, Richard A.; Traverso, Henry P.

    This "how-to-do-it" manual on the intricacies of school scheduling offers both technical information and common sense advice about the process of secondary school scheduling. The first of six chapters provides an overview of scheduling; chapter 2 examines specific considerations for scheduling; chapter 3 surveys the scheduling models and their…

  1. Future aircraft networks and schedules

    NASA Astrophysics Data System (ADS)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  2. Implementation of a Relay Coordination System for the Mars Network

    NASA Technical Reports Server (NTRS)

    Allard, Daniel A.

    2010-01-01

    Mars network relay operations involve the coordination of lander and orbiter teams through long-term and short-term planning, tactical changes and post-pass analysis. Much of this coordination is managed through email traffic and point-to-point file data exchanges. It is often difficult to construct a complete and accurate picture of the relay situation at any given moment, as there is no centralized store of correlated relay data. The Mars Relay Operations Service (MaROS) is being implemented to address the problem of relay coordination for current and next-generation relay missions. The service is provided for the purpose of coordinating communications sessions between landed spacecraft assets and orbiting spacecraft assets at Mars. The service centralizes a set of functions previously distributed across multiple spacecraft operations teams, and as such greatly improves visibility into the end-to-end strategic coordination process. Most of the process revolves around the scheduling of communications sessions between the spacecraft during periods of time when a landed asset on Mars is geometrically visible by an orbiting spacecraft. These "relay" sessions are used to transfer data both to and from the landed asset via the orbiting asset on behalf of Earth-based spacecraft operators. This paper will discuss the relay coordination problem space, overview the architecture and design selected to meet system requirements, and describe the first phase of system implementation

  3. A System for Automatically Generating Scheduling Heuristics

    NASA Technical Reports Server (NTRS)

    Morris, Robert

    1996-01-01

    The goal of this research is to improve the performance of automated schedulers by designing and implementing an algorithm by automatically generating heuristics by selecting a schedule. The particular application selected by applying this method solves the problem of scheduling telescope observations, and is called the Associate Principal Astronomer. The input to the APA scheduler is a set of observation requests submitted by one or more astronomers. Each observation request specifies an observation program as well as scheduling constraints and preferences associated with the program. The scheduler employs greedy heuristic search to synthesize a schedule that satisfies all hard constraints of the domain and achieves a good score with respect to soft constraints expressed as an objective function established by an astronomer-user.

  4. Dawn Usage, Scheduling, and Governance Model

    SciTech Connect

    Louis, S

    2009-11-02

    This document describes Dawn use, scheduling, and governance concerns. Users started running full-machine science runs in early April 2009 during the initial open shakedown period. Scheduling Dawn while in the Open Computing Facility (OCF) was controlled and coordinated via phone calls, emails, and a small number of controlled banks. With Dawn moving to the Secure Computing Facility (SCF) in fall of 2009, a more detailed scheduling and governance model is required. The three major objectives are: (1) Ensure Dawn resources are allocated on a program priority-driven basis; (2) Utilize Dawn resources on the job mixes for which they were intended; and (3) Minimize idle cycles through use of partitions, banks and proper job mix. The SCF workload for Dawn will be inherently different than Purple or BG/L, and therefore needs a different approach. Dawn's primary function is to permit adequate access for tri-lab code development in preparation for Sequoia, and in particular for weapons multi-physics codes in support of UQ. A second purpose is to provide time allocations for large-scale science runs and for UQ suite calculations to advance SSP program priorities. This proposed governance model will be the basis for initial time allocation of Dawn computing resources for the science and UQ workloads that merit priority on this class of resource, either because they cannot be reasonably attempted on any other resources due to size of problem, or because of the unavailability of sizable allocations on other ASC capability or capacity platforms. This proposed model intends to make the most effective use of Dawn as possible, but without being overly constrained by more formal proposal processes such as those now used for Purple CCCs.

  5. Scheduling Reconsidered (Again!)

    ERIC Educational Resources Information Center

    Hentschke, Guilbert C.; Fowler, William J.

    1974-01-01

    Computer technicians bring to school scheduling a certain naivete regarding the operation of schools. School administrators play a fundamental role of informing technicians about education scheduling needs. (Author)

  6. Iterative refinement scheduling

    NASA Technical Reports Server (NTRS)

    Biefeld, Eric

    1992-01-01

    We present a heuristics-based approach to deep space mission scheduling which is modeled on the approach used by expert human schedulers in producing schedules for planetary encounters. New chronological evaluation techniques are used to focus the search by using information gained during the scheduling process to locate, classify, and resolve regions of conflict. Our approach is based on the assumption that during the construction of a schedule there exist several disjunct temporal regions where the demand for one resource type or a single temporal constraint dominates (bottleneck regions). If the scheduler can identify these regions and classify them based on their dominant constraint, then the scheduler can select the scheduling heuristic.

  7. Developmental coordination disorder

    MedlinePlus

    Physical causes and other types of learning disabilities must be ruled out before the diagnosis can be confirmed. ... Developmental coordination disorder can lead to: Learning problems ... wanting to participate in physical activities (such as sports)

  8. Flexible CoScheduling : mitigating load imbalance and improving utilization of heterogeneous resources

    SciTech Connect

    Frachtenberg, E.; Feitelson, Dror G.; Petrini, F.; Fernández, J. C.

    2002-01-01

    Fine-grained parallel applications require all their processes to run simultaneously on distinct processors to achieve good efficiency. This is typically accomplished by space slicing, wherein nodes are dedicated for the duration of the run, or by gang scheduling, wherein time slicing is coordinated across processors. Both schemes suffer from fragmentation, where processors are left idle because jobs cannot be packed with perfect efficiency. Obviously, this leads to reduced utilization and sub-optimal performance. Flexible coscheduling (FCS) solves this problem by monitoring each job's granularity and communication activity, and using gang scheduling only for those jobs that require it. Processes from other jobs, which can be scheduled without any constraints, are used as filler to reduce fragmentation. In addition, inefficiencies due to load imbalance and hardware heterogeneity are also reduced because the classification is done on a per-process basis. FCS has been fully implemented as part of the STORM resource manager, and shown to be competitive with gang scheduling and implicit coscheduling. Keywords: Cluster computing, load balancing, job scheduling, gang scheduling, parallel architectures, heterogeneous clusters, STORM

  9. Optimization-based manufacturing scheduling with multiple resources and setup requirements

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Luh, Peter B.; Thakur, Lakshman S.; Moreno, Jack, Jr.

    1998-10-01

    The increasing demand for on-time delivery and low price forces manufacturer to seek effective schedules to improve coordination of multiple resources and to reduce product internal costs associated with labor, setup and inventory. This study describes the design and implementation of a scheduling system for J. M. Product Inc. whose manufacturing is characterized by the need to simultaneously consider machines and operators while an operator may attend several operations at the same time, and the presence of machines requiring significant setup times. The scheduling problem with these characteristics are typical for many manufacturers, very difficult to be handled, and have not been adequately addressed in the literature. In this study, both machine and operators are modeled as resources with finite capacities to obtain efficient coordination between them, and an operator's time can be shared by several operations at the same time to make full use of the operator. Setups are explicitly modeled following our previous work, with additional penalties on excessive setups to reduce setup costs and avoid possible scraps. An integer formulation with a separable structure is developed to maximize on-time delivery of products, low inventory and small number of setups. Within the Lagrangian relaxation framework, the problem is decomposed into individual subproblems that are effectively solved by using dynamic programming with additional penalties embedded in state transitions. Heuristics is then developed to obtain a feasible schedule following on our previous work with new mechanism to satisfy operator capacity constraints. The method has been implemented using the object-oriented programming language C++ with a user-friendly interface, and numerical testing shows that the method generates high quality schedules in a timely fashion. Through simultaneous consideration of machines and operators, machines and operators are well coordinated to facilitate the smooth flow of

  10. Intelligent perturbation algorithms to space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1991-01-01

    The limited availability and high cost of crew time and scarce resources make optimization of space operations critical. Advances in computer technology coupled with new iterative search techniques permit the near optimization of complex scheduling problems that were previously considered computationally intractable. Described here is a class of search techniques called Intelligent Perturbation Algorithms. Several scheduling systems which use these algorithms to optimize the scheduling of space crew, payload, and resource operations are also discussed.

  11. Optimal randomized scheduling by replacement

    SciTech Connect

    Saias, I.

    1996-05-01

    In the replacement scheduling problem, a system is composed of n processors drawn from a pool of p. The processors can become faulty while in operation and faulty processors never recover. A report is issued whenever a fault occurs. This report states only the existence of a fault but does not indicate its location. Based on this report, the scheduler can reconfigure the system and choose another set of n processors. The system operates satisfactorily as long as, upon report of a fault, the scheduler chooses n non-faulty processors. We provide a randomized protocol maximizing the expected number of faults the system can sustain before the occurrence of a crash. The optimality of the protocol is established by considering a closely related dual optimization problem. The game-theoretic technical difficulties that we solve in this paper are very general and encountered whenever proving the optimality of a randomized algorithm in parallel and distributed computation.

  12. Scheduling of an aircraft fleet

    NASA Technical Reports Server (NTRS)

    Paltrinieri, Massimo; Momigliano, Alberto; Torquati, Franco

    1992-01-01

    Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as the routing problem. In particular, if vehicles are aircraft and stations are airports, the problem is known as aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative Management of Aircraft Routing), a system implemented by Bull HN for Alitalia. In our approach, aircraft routing is viewed as a Constraint Satisfaction Problem. The solving strategy combines network consistency and tree search techniques.

  13. A simple neural network scheduler for real-time machine task scheduling

    SciTech Connect

    Gritzo, R.E.

    1991-01-01

    The recent development of a new generation of automated radionuclide assay equipment in our facility requires embedded software at each machine for the scheduling of tasks. The execution time requirements of real-time embedded software limit the complexity of the scheduler design. By representing the scheduling problem properly, a simple backpropagation neural network performs the scheduling function within the imposed requirements. Operational tests have demonstrated that the neural network scheduler has met all development goals and is superior to the previous approaches. 3 refs., 1 tab.

  14. Four barges mobilized for job: Indian offshore pipeline work demands comprehensive coordination

    SciTech Connect

    Schmidt, J. )

    1994-02-01

    This paper describes the design, installation, and commissioning timeframe developed for the Oil and Natural Gas Commission of India. Offshore Hyundai International Inc. and Offshore Pipelines International have completed the installation of 47 pipelines, six platforms, and a single-point mooring system in the Arabian Sea. The coordination and work scheduling problems are described along with the engineered placement of the pipelines in an already congested area.

  15. Multicore job scheduling in the Worldwide LHC Computing Grid

    NASA Astrophysics Data System (ADS)

    Forti, A.; Pérez-Calero Yzquierdo, A.; Hartmann, T.; Alef, M.; Lahiff, A.; Templon, J.; Dal Pra, S.; Gila, M.; Skipsey, S.; Acosta-Silva, C.; Filipcic, A.; Walker, R.; Walker, C. J.; Traynor, D.; Gadrat, S.

    2015-12-01

    After the successful first run of the LHC, data taking is scheduled to restart in Summer 2015 with experimental conditions leading to increased data volumes and event complexity. In order to process the data generated in such scenario and exploit the multicore architectures of current CPUs, the LHC experiments have developed parallelized software for data reconstruction and simulation. However, a good fraction of their computing effort is still expected to be executed as single-core tasks. Therefore, jobs with diverse resources requirements will be distributed across the Worldwide LHC Computing Grid (WLCG), making workload scheduling a complex problem in itself. In response to this challenge, the WLCG Multicore Deployment Task Force has been created in order to coordinate the joint effort from experiments and WLCG sites. The main objective is to ensure the convergence of approaches from the different LHC Virtual Organizations (VOs) to make the best use of the shared resources in order to satisfy their new computing needs, minimizing any inefficiency originated from the scheduling mechanisms, and without imposing unnecessary complexities in the way sites manage their resources. This paper describes the activities and progress of the Task Force related to the aforementioned topics, including experiences from key sites on how to best use different batch system technologies, the evolution of workload submission tools by the experiments and the knowledge gained from scale tests of the different proposed job submission strategies.

  16. 48 CFR 38.201 - Coordination requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Coordination requirements. 38.201 Section 38.201 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL... Schedules 38.201 Coordination requirements. (a) Subject to interagency agreements, contracting...

  17. [Fee schedules and cost containment].

    PubMed

    Herrmann, François R; Perneger, Thomas

    2009-11-11

    Medical fee schedules are controversial. In this paper we examine the reasons that justify the imposition of fee schedules in the presence of a socially financed health insurance system, and examine the ways of constructing a medical fee schedule. The weakness of fee-for-service tariffs is that they do not allow a control of health care costs if the volume of services is unchecked. Current solutions to this problem--audit of doctors' average cost per case, freeze on new medical practices, or the insurers' discretion in choosing the doctors they reimburse--have multiple drawbacks. Alternatives to fee-for-service payment--such as flat fees, or payment based on the quality of medical services--are discussed.

  18. Integrating Reservations and Queuing in Remote Laboratory Scheduling

    ERIC Educational Resources Information Center

    Lowe, D.

    2013-01-01

    Remote laboratories (RLs) have become increasingly seen as a useful tool in supporting flexible shared access to scarce laboratory resources. An important element in supporting shared access is coordinating the scheduling of the laboratory usage. Optimized scheduling can significantly decrease access waiting times and improve the utilization level…

  19. 7 CFR 1927.56 - Scheduling loan closing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Scheduling loan closing. 1927.56 Section 1927.56... REGULATIONS TITLE CLEARANCE AND LOAN CLOSING Real Estate Title Clearance and Loan Closing § 1927.56 Scheduling loan closing. The agency, in coordination with the closing agent, will arrange a loan closing and...

  20. 41 CFR 101-5.104-4 - Scheduling feasibility studies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... studies. 101-5.104-4 Section 101-5.104-4 Public Contracts and Property Management Federal Property... FEDERAL BUILDINGS AND COMPLEXES 5.1-General § 101-5.104-4 Scheduling feasibility studies. The schedule of feasibility studies will be coordinated by GSA with its construction, space management, and...

  1. 41 CFR 101-5.104-4 - Scheduling feasibility studies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... studies. 101-5.104-4 Section 101-5.104-4 Public Contracts and Property Management Federal Property... FEDERAL BUILDINGS AND COMPLEXES 5.1-General § 101-5.104-4 Scheduling feasibility studies. The schedule of feasibility studies will be coordinated by GSA with its construction, space management, and...

  2. 41 CFR 101-5.104-4 - Scheduling feasibility studies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... studies. 101-5.104-4 Section 101-5.104-4 Public Contracts and Property Management Federal Property... FEDERAL BUILDINGS AND COMPLEXES 5.1-General § 101-5.104-4 Scheduling feasibility studies. The schedule of feasibility studies will be coordinated by GSA with its construction, space management, and...

  3. 41 CFR 101-5.104-4 - Scheduling feasibility studies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... studies. 101-5.104-4 Section 101-5.104-4 Public Contracts and Property Management Federal Property... FEDERAL BUILDINGS AND COMPLEXES 5.1-General § 101-5.104-4 Scheduling feasibility studies. The schedule of feasibility studies will be coordinated by GSA with its construction, space management, and...

  4. 41 CFR 101-5.104-4 - Scheduling feasibility studies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... studies. 101-5.104-4 Section 101-5.104-4 Public Contracts and Property Management Federal Property... FEDERAL BUILDINGS AND COMPLEXES 5.1-General § 101-5.104-4 Scheduling feasibility studies. The schedule of feasibility studies will be coordinated by GSA with its construction, space management, and...

  5. Batch Scheduling a Fresh Approach

    NASA Technical Reports Server (NTRS)

    Cardo, Nicholas P.; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    The Network Queueing System (NQS) was designed to schedule jobs based on limits within queues. As systems obtain more memory, the number of queues increased to take advantage of the added memory resource. The problem now becomes too many queues. Having a large number of queues provides users with the capability to gain an unfair advantage over other users by tailoring their job to fit in an empty queue. Additionally, the large number of queues becomes confusing to the user community. The High Speed Processors group at the Numerical Aerodynamics Simulation (NAS) Facility at NASA Ames Research Center developed a new approach to batch job scheduling. This new method reduces the number of queues required by eliminating the need for queues based on resource limits. The scheduler examines each request for necessary resources before initiating the job. Also additional user limits at the complex level were added to provide a fairness to all users. Additional tools which include user job reordering are under development to work with the new scheduler. This paper discusses the objectives, design and implementation results of this new scheduler

  6. Dedicated heterogeneous node scheduling including backfill scheduling

    DOEpatents

    Wood, Robert R.; Eckert, Philip D.; Hommes, Gregg

    2006-07-25

    A method and system for job backfill scheduling dedicated heterogeneous nodes in a multi-node computing environment. Heterogeneous nodes are grouped into homogeneous node sub-pools. For each sub-pool, a free node schedule (FNS) is created so that the number of to chart the free nodes over time. For each prioritized job, using the FNS of sub-pools having nodes useable by a particular job, to determine the earliest time range (ETR) capable of running the job. Once determined for a particular job, scheduling the job to run in that ETR. If the ETR determined for a lower priority job (LPJ) has a start time earlier than a higher priority job (HPJ), then the LPJ is scheduled in that ETR if it would not disturb the anticipated start times of any HPJ previously scheduled for a future time. Thus, efficient utilization and throughput of such computing environments may be increased by utilizing resources otherwise remaining idle.

  7. Noncontingent Reinforcement: A Further Examination of Schedule Effects during Treatment

    ERIC Educational Resources Information Center

    Wallace, Michelle D.; Iwata, Brian A.; Hanley, Gregory P.; Thompson, Rachel H.; Roscoe, Eileen M.

    2012-01-01

    We conducted 2 studies to determine whether dense and thin NCR schedules exert different influences over behavior and whether these influences change as dense schedules are thinned. In Study 1, we observed that thin as well as dense NCR schedules effectively decreased problem behavior exhibited by 3 individuals. In Study 2, we compared the effects…

  8. Deep Space Network Scheduling Using Evolutionary Computational Methods

    NASA Technical Reports Server (NTRS)

    Guillaume, Alexandre; Lee, Seugnwon; Wang, Yeou-Fang; Terrile, Richard J.

    2007-01-01

    The paper presents the specific approach taken to formulate the problem in terms of gene encoding, fitness function, and genetic operations. The genome is encoded such that a subset of the scheduling constraints is automatically satisfied. Several fitness functions are formulated to emphasize different aspects of the scheduling problem. The optimal solutions of the different fitness functions demonstrate the trade-off of the scheduling problem and provide insight into a conflict resolution process.

  9. The Composition of the Master Schedule

    NASA Technical Reports Server (NTRS)

    Thomas, Cynthia C.; Behrend, Dirk; MacMillan, Daniel S.

    2010-01-01

    Over a period of about four months, the IVS Coordinating Center (IVSCC) each year composes the Master Schedule for the IVS observing program of the next calendar year. The process begins in early July when the IVSCC contacts the IVS Network Stations to request information about available station time as well as holiday and maintenance schedules for the upcoming year. Going through various planning stages and a review process with the IVS Observing Program Committee (OPC), the final version of the Master Schedule is posted by early November. We describe the general steps of the composition and illustrate them with the example of the planning for the Master Schedule of the 2010 observing year.

  10. Chemical Kiloton Experiment schedules

    NASA Astrophysics Data System (ADS)

    The Lawrence Livermore National Laboratory will conduct a large chemical explosion (CE) called the Chemical Kiloton Experiment (CKE) in the Rainier Mesa area of the Nevada Test site. The explosion will involve a 30/70 Emulsion-to-ANFO blend of 1,147,000 kg to supply 1 kt, and is scheduled for January 29. It will be heavily instrumented with close-in, free-field surface seismic and regional seismic measurements. The CKE is located near several DNA-sponsored nuclear explosions (NEs) and will provide a unique opportunity for fundamental studies on explosion phenomenology (for example, CE/NE equivalence), scaling with CEs and NEs, and integration of multiple monitoring methods. This experiment will also address some critical proliferation monitoring problems such as CE masking of NEs, CEs as false alarms, CEs for regional calibration, and on-site inspection.

  11. Immunization Schedules for Adults

    MedlinePlus

    ... ACIP Vaccination Recommendations Why Immunize? Vaccines: The Basics Immunization Schedules for Adults in Easy-to-read Formats ... previous immunizations. View or Print a Schedule Recommended Immunizations for Adults (19 Years and Older) by Age ...

  12. Childhood Immunization Schedule

    MedlinePlus

    ... Recommendations Why Immunize? Vaccines: The Basics Instant Childhood Immunization Schedule Recommend on Facebook Tweet Share Compartir Get ... date. See Disclaimer for additional details. Based on Immunization Schedule for Children 0 through 6 Years of ...

  13. Multi-Objective Scheduling for the Cluster II Constellation

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Giuliano, Mark

    2011-01-01

    This paper describes the application of the MUSE multiobjecctive scheduling framework to the Cluster II WBD scheduling domain. Cluster II is an ESA four-spacecraft constellation designed to study the plasma environment of the Earth and it's magnetosphere. One of the instruments on each of the four spacecraft is the Wide Band Data (WBD) plasma wave experiment. We have applied the MUSE evolutionary algorithm to the scheduling problem represented by this instrument, and the result has been adopted and utilized by the WBD schedulers for nearly a year. This paper describes the WBD scheduling problem, its representation in MUSE, and some of the visualization elements that provide insight into objective value tradeoffs.

  14. Job Scheduling in a Heterogeneous Grid Environment

    NASA Technical Reports Server (NTRS)

    Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak

    2004-01-01

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

  15. Job scheduling in a heterogenous grid environment

    SciTech Connect

    Oliker, Leonid; Biswas, Rupak; Shan, Hongzhang; Smith, Warren

    2004-02-11

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

  16. Block Scheduling. Research Brief

    ERIC Educational Resources Information Center

    Muir, Mike

    2003-01-01

    What are the effects of block scheduling? Results of transitioning from traditional to block scheduling are mixed. Some studies indicate no change in achievement results, nor change in teachers' opinions about instructional strategies. Other studies show that block scheduling doesn't work well for Advanced Placement or Music courses, that "hard to…

  17. Coordinating Networks of Robotic Observatories

    NASA Astrophysics Data System (ADS)

    Mason, C. L.

    1993-12-01

    This abstract describes our project on scheduling for networks of remote robotic telescopes. The project is being developed as part of our larger goal to build automated tools to address the complete life-cycle of an observation request, from electronic transmission of the observation request to the return of raw and reduced data, using the Automatic Telescope Instruction Set, or ATIS. With distributed artificial intelligence (DAI) software techniques, we have designed a network scheduling system as a collection of distributed, cooperating scheduling agents. Each agent is responsible for the scheduling of observation requests for one robotic telescope. This perspective allows the network scheduling system to preserve the individualized priorities and policies that may exist for any one telescope while promoting the collaborative behavior required for acquiring and providing telescope time in a network. We are interested in heterogeneous networks that are made by connecting pre-existing fully automated remote telescopes. Providers of telescopes are anyone with a fully automated telescope and telecommunication capabilities. In essence, the network system is created by interconnecting multiple stand-alone systems. The scheduling software for each stand-alone system (or agent) is based on two primary components: an advanced scheduling system, CERES, that employs look-ahead contingent scheduling methods, and a collaborator, that communicates with other agents in the network, both written in C and Lisp. Cooperation among agents is based on the premise that astronomers at one telescope are often willing to trade for time on another telescope. In general, agents are autonomous but may react cooperatively to observational requests communicated by other scheduling agents. Our work involves engineering the protocols for cooperation, and the development of a programming language and agent architecture to express such protocols. The system is being constructed with the help of

  18. Technology coordination

    NASA Technical Reports Server (NTRS)

    Hartman, Steven

    1992-01-01

    Viewgraphs on technology coordination are provided. Topics covered include: technology coordination process to date; goals; how the Office of Aeronautics and Space Technology (OAST) can support the Office of Space Science and Applications (OSSA); how OSSA can support OAST; steps to technology transfer; and recommendations.

  19. Education and Social Equity: With a Special Focus on Scheduled Castes and Scheduled Tribes in Elementary Education. CREATE Pathways to Access. Research Monograph No. 19

    ERIC Educational Resources Information Center

    Sedwal, Mona; Kamat, Sangeeta

    2008-01-01

    The Scheduled Castes (SCs, also known as Dalits) and Scheduled Tribes (STs, also known as Adivasis) are among the most socially and educationally disadvantaged groups in India. This paper examines issues concerning school access and equity for Scheduled Caste and Scheduled Tribe communities and also highlights their unique problems, which may…

  20. Camera scheduling and energy allocation for lifetime maximization in user-centric visual sensor networks.

    PubMed

    Yu, Chao; Sharma, Gaurav

    2010-08-01

    We explore camera scheduling and energy allocation strategies for lifetime optimization in image sensor networks. For the application scenarios that we consider, visual coverage over a monitored region is obtained by deploying wireless, battery-powered image sensors. Each sensor camera provides coverage over a part of the monitored region and a central processor coordinates the sensors in order to gather required visual data. For the purpose of maximizing the network operational lifetime, we consider two problems in this setting: a) camera scheduling, i.e., the selection, among available possibilities, of a set of cameras providing the desired coverage at each time instance, and b) energy allocation, i.e., the distribution of total available energy between the camera sensor nodes. We model the network lifetime as a stochastic random variable that depends upon the coverage geometry for the sensors and the distribution of data requests over the monitored region, two key characteristics that distinguish our problem from other wireless sensor network applications. By suitably abstracting this model of network lifetime and utilizing asymptotic analysis, we propose lifetime-maximizing camera scheduling and energy allocation strategies. The effectiveness of the proposed camera scheduling and energy allocation strategies is validated by simulations. PMID:20350857

  1. Experiments with a decision-theoretic scheduler

    NASA Technical Reports Server (NTRS)

    Hansson, Othar; Holt, Gerhard; Mayer, Andrew

    1992-01-01

    This paper describes DTS, a decision-theoretic scheduler designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems, and using probabilistic inference to aggregate this information in light of features of a given problem. BPS, the Bayesian Problem-Solver, introduced a similar approach to solving single-agent and adversarial graph search problems, yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.

  2. DSN Scheduling Engine

    NASA Technical Reports Server (NTRS)

    Clement, Bradley; Johnston, Mark; Wax, Allan; Chouinard, Caroline

    2008-01-01

    The DSN (Deep Space Network) Scheduling Engine targets all space missions that use DSN services. It allows clients to issue scheduling, conflict identification, conflict resolution, and status requests in XML over a Java Message Service interface. The scheduling requests may include new requirements that represent a set of tracks to be scheduled under some constraints. This program uses a heuristic local search to schedule a variety of schedule requirements, and is being infused into the Service Scheduling Assembly, a mixed-initiative scheduling application. The engine resolves conflicting schedules of resource allocation according to a range of existing and possible requirement specifications, including optional antennas; start of track and track duration ranges; periodic tracks; locks on track start, duration, and allocated antenna; MSPA (multiple spacecraft per aperture); arraying/VLBI (very long baseline interferometry)/delta DOR (differential one-way ranging); continuous tracks; segmented tracks; gap-to-track ratio; and override or block-out of requirements. The scheduling models now include conflict identification for SOA(start of activity), BOT (beginning of track), RFI (radio frequency interference), and equipment constraints. This software will search through all possible allocations while providing a best-effort solution at any time. The engine reschedules to accommodate individual emergency tracks in 0.2 second, and emergency antenna downtime in 0.2 second. The software handles doubling of one mission's track requests over one week (to 42 total) in 2.7 seconds. Further tests will be performed in the context of actual schedules.

  3. NASA scheduling technologies

    NASA Technical Reports Server (NTRS)

    Adair, Jerry R.

    1994-01-01

    This paper is a consolidated report on ten major planning and scheduling systems that have been developed by the National Aeronautics and Space Administration (NASA). A description of each system, its components, and how it could be potentially used in private industry is provided in this paper. The planning and scheduling technology represented by the systems ranges from activity based scheduling employing artificial intelligence (AI) techniques to constraint based, iterative repair scheduling. The space related application domains in which the systems have been deployed vary from Space Shuttle monitoring during launch countdown to long term Hubble Space Telescope (HST) scheduling. This paper also describes any correlation that may exist between the work done on different planning and scheduling systems. Finally, this paper documents the lessons learned from the work and research performed in planning and scheduling technology and describes the areas where future work will be conducted.

  4. 18 CFR 35.12 - Filing of initial rate schedules and tariffs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... schedules and tariffs. 35.12 Section 35.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT FILING OF RATE SCHEDULES... schedules of rates for emergency energy, spinning reserve or economy energy or in cases of coordination...

  5. 18 CFR 35.12 - Filing of initial rate schedules and tariffs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... schedules and tariffs. 35.12 Section 35.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT FILING OF RATE SCHEDULES... schedules of rates for emergency energy, spinning reserve or economy energy or in cases of coordination...

  6. 18 CFR 35.12 - Filing of initial rate schedules and tariffs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... schedules and tariffs. 35.12 Section 35.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT FILING OF RATE SCHEDULES... schedules of rates for emergency energy, spinning reserve or economy energy or in cases of coordination...

  7. 18 CFR 35.12 - Filing of initial rate schedules and tariffs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... schedules and tariffs. 35.12 Section 35.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT FILING OF RATE SCHEDULES... schedules of rates for emergency energy, spinning reserve or economy energy or in cases of coordination...

  8. Integrated online job-shop scheduling system

    NASA Astrophysics Data System (ADS)

    Zhao, Xing; Chen, Kuan H.; Luh, Peter B.; Chiueh, T. D.; Chang, ShihChang; Thakur, Lakshman S.

    1999-11-01

    The rapid development of information technology and e- commerce requires fast response form scheduling systems. Based on the Lagrangian relaxation approach for job shop scheduling, this paper present an integrated system that will generate schedules quickly. The Lagrangian relaxation approach is an iterative optimization process, where dynamic programming is solved in each iteration. Since dynamic programming is computational expensive especially for large problems, this paper develops the simplified dynamic programming, which will cut the computation time of each iteration by one order. Furthermore, a digital circuit to be embedded in PC is designed to implement the iterative optimization algorithm, leading to another order of speed improvement. The resulting integrated scheduling system consists of the hardware for optimization and the related software. It is estimated that two orders of magnitude gain in speed can be obtained, which will make on-line scheduling for practical job shops possible.

  9. Poisson Coordinates.

    PubMed

    Li, Xian-Ying; Hu, Shi-Min

    2013-02-01

    Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

  10. Developmental Coordination Disorder and Other Motor Control Problems in Girls with Autism Spectrum Disorder and/or Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Kopp, Svenny; Beckung, Eva; Gillberg, Christopher

    2010-01-01

    Examine the rate, predictors, and effect on daily life skills of developmental coordination disorder (DCD) and other motor control difficulties in school age girls with autism spectrum disorder (ASD) and/or attention-deficit/hyperactivity disorder (ADHD), in preschool age girls with ASD referred to a neuropsychiatric clinic, and in a community…

  11. Space communications scheduler: A rule-based approach to adaptive deadline scheduling

    NASA Technical Reports Server (NTRS)

    Straguzzi, Nicholas

    1990-01-01

    Job scheduling is a deceptively complex subfield of computer science. The highly combinatorial nature of the problem, which is NP-complete in nearly all cases, requires a scheduling program to intelligently transverse an immense search tree to create the best possible schedule in a minimal amount of time. In addition, the program must continually make adjustments to the initial schedule when faced with last-minute user requests, cancellations, unexpected device failures, quests, cancellations, unexpected device failures, etc. A good scheduler must be quick, flexible, and efficient, even at the expense of generating slightly less-than-optimal schedules. The Space Communication Scheduler (SCS) is an intelligent rule-based scheduling system. SCS is an adaptive deadline scheduler which allocates modular communications resources to meet an ordered set of user-specified job requests on board the NASA Space Station. SCS uses pattern matching techniques to detect potential conflicts through algorithmic and heuristic means. As a result, the system generates and maintains high density schedules without relying heavily on backtracking or blind search techniques. SCS is suitable for many common real-world applications.

  12. Scheduling and rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper describes the GERRY scheduling and rescheduling system being applied to coordinate Space Shuttle Ground Processing. The system uses constraint-based iterative repair, a technique that starts with a complete but possibly flawed schedule and iteratively improves it by using constraint knowledge within repair heuristics. In this paper we explore the tradeoff between the informedness and the computational cost of several repair heuristics. We show empirically that some knowledge can greatly improve the convergence speed of a repair-based system, but that too much knowledge, such as the knowledge embodied within the MIN-CONFLICTS lookahead heuristic, can overwhelm a system and result in degraded performance.

  13. Investigations into Generalization of Constraint-Based Scheduling Theories with Applications to Space Telescope Observation Scheduling

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Steven S.

    1996-01-01

    This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.

  14. Investigations into Generalization of Constraint-Based Scheduling Theories with Applications to Space Telescope Observation Scheduling

    NASA Astrophysics Data System (ADS)

    Muscettola, Nicola; Smith, Steven S.

    1996-09-01

    This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.

  15. Quay crane scheduling with dual cycling

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Li, Xiaoping

    2015-10-01

    In this article, the dual cycling quay crane scheduling problem (D-QCSP) with hatches is addressed to minimize the operation cycles of quay cranes. The problem is decomposed into two sub-problems: the intra-group stage (sequencing stacks within each hatch) and the inter-group stage (scheduling all hatches). A new stack sequencing method is constructed for stacks of each hatch, which is modelled as a two-machine non-permutation flow shop scheduling problem. By removing inner gaps using left-shifting, the adapted hatch scheduling sub-problem is modelled as a two-machine grouped flow shop scheduling problem, which contains more precise processing times. A composite heuristic is proposed for the D-QCSP. Based on the derived lower bound, the heuristic is compared with the best existing heuristics on a large number of instances. Experimental results illustrate that the proposal outperforms the existing methods on all instances and dual cycling needs many fewer quay crane operating cycles than single cycling.

  16. A scheduling model for astronomy

    NASA Astrophysics Data System (ADS)

    Solar, M.; Michelon, P.; Avarias, J.; Garces, M.

    2016-04-01

    Astronomical scheduling problem has several external conditions that change dynamically at any time during observations, like weather condition (humidity, temperature, wind speed, opacity, etc.), and target visibility conditions (target over the horizon, Sun/Moon blocking the target). Therefore, a dynamic re-scheduling is needed. An astronomical project will be scheduled as one or more Scheduling Blocks (SBs) as an atomic unit of astronomical observations. We propose a mixed integer linear programming (MILP) solution to select the best SBs, favors SBs with high scientific values, and thus maximizing the quantity of completed observation projects. The data content of Atacama Large Millimeter/Submillimeter Array (ALMA) projects of cycle 0 and cycle 1 were analyzed, and a synthetic set of tests of the real instances was created. Two configurations, one of 5000 SBs in a 3 months season and another 10,000 SBs a 6 months season were created. These instances were evaluated with excellent results. Through the testing it is showed that the MILP proposal has optimal solutions.

  17. A coordination theory for intelligent machines

    NASA Technical Reports Server (NTRS)

    Wang, Fei-Yue; Saridis, George N.

    1990-01-01

    A formal model for the coordination level of intelligent machines is established. The framework of the coordination level investigated consists of one dispatcher and a number of coordinators. The model called coordination structure has been used to describe analytically the information structure and information flow for the coordination activities in the coordination level. Specifically, the coordination structure offers a formalism to (1) describe the task translation of the dispatcher and coordinators; (2) represent the individual process within the dispatcher and coordinators; (3) specify the cooperation and connection among the dispatcher and coordinators; (4) perform the process analysis and evaluation; and (5) provide a control and communication mechanism for the real-time monitor or simulation of the coordination process. A simple procedure for the task scheduling in the coordination structure is presented. The task translation is achieved by a stochastic learning algorithm. The learning process is measured with entropy and its convergence is guaranteed. Finally, a case study of the coordination structure with three coordinators and one dispatcher for a simple intelligent manipulator system illustrates the proposed model and the simulation of the task processes performed on the model verifies the soundness of the theory.

  18. Gang scheduling a parallel machine. Revision 1

    SciTech Connect

    Gorda, B.C.; Brooks, E.D. III

    1991-12-01

    Program development on parallel machines can be a nightmare of scheduling headaches. We have developed a portable time sharing mechanism to handle the problem of scheduling gangs of processes. User programs and their gangs of processes are put to sleep and awakened by the gang scheduler to provide a time sharing environment. Time quantum are adjusted according to priority queues and a system of fair share accounting. The initial platform for this software is the 128 processor BBN TC2000 in use in the Massively Parallel Computing Initiative at the Lawrence Livermore National Laboratory.

  19. Schedule Uncertainty Control: A Literature Review

    NASA Astrophysics Data System (ADS)

    Jun-yan, Liu

    Risk control on project schedule is one of the focus problems in the academic circle and the practical area all the time. Lots of research about risk control on project schedule have been fulfilled and many achievements have appeared in recent several decades. The literature on the techniques of schedule uncertainty control was reviewed. A summary analysis on those chievements is presented such as CPM, PERT, MC, BBN, and so on and in light of that summary analysis a deep discussion in terms of advantages and disadvantages of existing research has been analyzed, so that researchers can continue to refine their research.

  20. Intelligent scheduling support for the US Coast Guard

    SciTech Connect

    Darby-Dowman, K.; Lucas, C.; Mitra, G.; Fink, R.; Kingsley, L.; Smith, J.W.

    1992-12-31

    This paper will discuss a joint effort by the U.S. Coast Guard Research & Development Center, Idaho National Engineering Laboratory and Brunel University to provide the necessary tools to increase the human scheduler`s capability to handle the scheduling process more efficiently and effectively. Automating the scheduling process required a system that could think independently of the scheduler, that is, the systems needed its own control mechanism and knowledge base. Further, automated schedule generation became a design requirement and sophisticated algorithms were formulated to solve a complex combinatorial problem. In short, the resulting design can be viewed as a hybrid knowledge-based mathematical programming application system. This document contains an overview of the integrated system, a discrete optimization model for scheduling, and schedule diagnosis and analysis.

  1. Reinforcement Schedule Thinning Following Functional Communication Training: Review and Recommendations

    PubMed Central

    Hagopian, Louis P; Boelter, Eric W; Jarmolowicz, David P

    2011-01-01

    This paper extends the Tiger, Hanley, and Bruzek (2008) review of functional communication training (FCT) by reviewing the published literature on reinforcement schedule thinning following FCT. As noted by Tiger et al. and others, schedule thinning may be necessary when the newly acquired communication response occurs excessively, to the extent that reinforcing it consistently is not practical in the natural environment. We provide a review of this literature including a discussion of each of the more commonly used schedule arrangements used for this purpose, outcomes obtained, a description of methods for progressing toward the terminal schedule, and a description of supplemental treatment components aimed at maintaining low levels of problem behavior during schedule thinning. Recommendations for schedule thinning are then provided. Finally, conceptual issues related to the reemergence of problem behavior during schedule thinning and areas for future research are discussed. PMID:22532899

  2. Procurement team and intensive care specialists in Russia: the conflict of professional interests. Transplant coordinators as a key of problem solution.

    PubMed

    Reznik, O N; Bagnenko, S F; Loginov, I V; Fedotov, V A; Moisiuk, Y G

    2006-01-01

    The condition of organ donation and organ transplantation is extremely unsatisfactory in Russia. The main reason for that is the rules and professionals forms regulating the Russian organ donation activities have become logically and morally outdated. As a way to improve the situation there is the first effort to establish the institute of transplant coordination in Russia in order to avoid the conflict between different groups of medical staff and the public.

  3. The range scheduling aid

    NASA Technical Reports Server (NTRS)

    Halbfinger, Eliezer M.; Smith, Barry D.

    1991-01-01

    The Air Force Space Command schedules telemetry, tracking and control activities across the Air Force Satellite Control network. The Range Scheduling Aid (RSA) is a rapid prototype combining a user-friendly, portable, graphical interface with a sophisticated object-oriented database. The RSA has been a rapid prototyping effort whose purpose is to elucidate and define suitable technology for enhancing the performance of the range schedulers. Designing a system to assist schedulers in their task and using their current techniques as well as enhancements enabled by an electronic environment, has created a continuously developing model that will serve as a standard for future range scheduling systems. The RSA system is easy to use, easily ported between platforms, fast, and provides a set of tools for the scheduler that substantially increases his productivity.

  4. Sleep Problems as Consequence, Contributor, and Comorbidity: Introduction to the Special Issue on Sleep, Published in Coordination With Special Issues in Clinical Practice in Pediatric Psychology and Journal of Developmental and Behavioral Pediatrics.

    PubMed

    Beebe, Dean W

    2016-07-01

    Despite long-standing public and scientific interest in the phenomenon of sleep, the current decade has shown tremendous growth in our understanding of the sleep of children who have medical or developmental conditions. To accommodate, promote, and guide that growth, Journal of Pediatric Psychology, Clinical Practice in Pediatric Psychology, and Journal of Developmental and Behavioral Pediatrics have published coordinated special issues, encompassing >30 relevant articles. This article introduces the special issue in Journal of Pediatric Psychology, highlighting papers that illustrate how sleep problems are not only commonly comorbid with childhood medical and developmental conditions; they are also likely caused by and contribute to these conditions. In doing so, these coordinated special issues guide clinical care and reveal opportunities for future research. PMID:27189693

  5. Sleep Problems as Consequence, Contributor, and Comorbidity: Introduction to the Special Issue on Sleep, Published in Coordination With Special Issues in Clinical Practice in Pediatric Psychology and Journal of Developmental and Behavioral Pediatrics.

    PubMed

    Beebe, Dean W

    2016-07-01

    Despite long-standing public and scientific interest in the phenomenon of sleep, the current decade has shown tremendous growth in our understanding of the sleep of children who have medical or developmental conditions. To accommodate, promote, and guide that growth, Journal of Pediatric Psychology, Clinical Practice in Pediatric Psychology, and Journal of Developmental and Behavioral Pediatrics have published coordinated special issues, encompassing >30 relevant articles. This article introduces the special issue in Journal of Pediatric Psychology, highlighting papers that illustrate how sleep problems are not only commonly comorbid with childhood medical and developmental conditions; they are also likely caused by and contribute to these conditions. In doing so, these coordinated special issues guide clinical care and reveal opportunities for future research.

  6. Wave scheduling - Decentralized scheduling of task forces in multicomputers

    NASA Technical Reports Server (NTRS)

    Van Tilborg, A. M.; Wittie, L. D.

    1984-01-01

    Decentralized operating systems that control large multicomputers need techniques to schedule competing parallel programs called task forces. Wave scheduling is a probabilistic technique that uses a hierarchical distributed virtual machine to schedule task forces by recursively subdividing and issuing wavefront-like commands to processing elements capable of executing individual tasks. Wave scheduling is highly resistant to processing element failures because it uses many distributed schedulers that dynamically assign scheduling responsibilities among themselves. The scheduling technique is trivially extensible as more processing elements join the host multicomputer. A simple model of scheduling cost is used by every scheduler node to distribute scheduling activity and minimize wasted processing capacity by using perceived workload to vary decentralized scheduling rules. At low to moderate levels of network activity, wave scheduling is only slightly less efficient than a central scheduler in its ability to direct processing elements to accomplish useful work.

  7. SOFIA's Choice: Automating the Scheduling of Airborne Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Norvig, Peter (Technical Monitor)

    1999-01-01

    This paper describes the problem of scheduling observations for an airborne telescope. Given a set of prioritized observations to choose from, and a wide range of complex constraints governing legitimate choices and orderings, how can we efficiently and effectively create a valid flight plan which supports high priority observations? This problem is quite different from scheduling problems which are routinely solved automatically in industry. For instance, the problem requires making choices which lead to other choices later, and contains many interacting complex constraints over both discrete and continuous variables. Furthermore, new types of constraints may be added as the fundamental problem changes. As a result of these features, this problem cannot be solved by traditional scheduling techniques. The problem resembles other problems in NASA and industry, from observation scheduling for rovers and other science instruments to vehicle routing. The remainder of the paper is organized as follows. In 2 we describe the observatory in order to provide some background. In 3 we describe the problem of scheduling a single flight. In 4 we compare flight planning and other scheduling problems and argue that traditional techniques are not sufficient to solve this problem. We also mention similar complex scheduling problems which may benefit from efforts to solve this problem. In 5 we describe an approach for solving this problem based on research into a similar problem, that of scheduling observations for a space-borne probe. In 6 we discuss extensions of the flight planning problem as well as other problems which are similar to flight planning. In 7 we conclude and discuss future work.

  8. Optimal radiotherapy dose schedules under parametric uncertainty

    NASA Astrophysics Data System (ADS)

    Badri, Hamidreza; Watanabe, Yoichi; Leder, Kevin

    2016-01-01

    We consider the effects of parameter uncertainty on the optimal radiation schedule in the context of the linear-quadratic model. Our interest arises from the observation that if inter-patient variability in normal and tumor tissue radiosensitivity or sparing factor of the organs-at-risk (OAR) are not accounted for during radiation scheduling, the performance of the therapy may be strongly degraded or the OAR may receive a substantially larger dose than the allowable threshold. This paper proposes a stochastic radiation scheduling concept to incorporate inter-patient variability into the scheduling optimization problem. Our method is based on a probabilistic approach, where the model parameters are given by a set of random variables. Our probabilistic formulation ensures that our constraints are satisfied with a given probability, and that our objective function achieves a desired level with a stated probability. We used a variable transformation to reduce the resulting optimization problem to two dimensions. We showed that the optimal solution lies on the boundary of the feasible region and we implemented a branch and bound algorithm to find the global optimal solution. We demonstrated how the configuration of optimal schedules in the presence of uncertainty compares to optimal schedules in the absence of uncertainty (conventional schedule). We observed that in order to protect against the possibility of the model parameters falling into a region where the conventional schedule is no longer feasible, it is required to avoid extremal solutions, i.e. a single large dose or very large total dose delivered over a long period. Finally, we performed numerical experiments in the setting of head and neck tumors including several normal tissues to reveal the effect of parameter uncertainty on optimal schedules and to evaluate the sensitivity of the solutions to the choice of key model parameters.

  9. Mixed-Integer Formulations for Constellation Scheduling

    NASA Astrophysics Data System (ADS)

    Valicka, C.; Hart, W.; Rintoul, M.

    Remote sensing systems have expanded the set of capabilities available for and critical to national security. Cooperating, high-fidelity sensing systems and growing mission applications have exponentially increased the set of potential schedules. A definitive lack of advanced tools places an increased burden on operators, as planning and scheduling remain largely manual tasks. This is particularly true in time-critical planning activities where operators aim to accomplish a large number of missions through optimal utilization of single or multiple sensor systems. Automated scheduling through identification and comparison of alternative schedules remains a challenging problem applicable across all remote sensing systems. Previous approaches focused on a subset of sensor missions and do not consider ad-hoc tasking. We have begun development of a robust framework that leverages the Pyomo optimization modeling language for the design of a tool to assist sensor operators planning under the constraints of multiple concurrent missions and uncertainty. Our scheduling models have been formulated to address the stochastic nature of ad-hoc tasks inserted under a variety of scenarios. Operator experience is being leveraged to select appropriate model objectives. Successful development of the framework will include iterative development of high-fidelity mission models that consider and expose various schedule performance metrics. Creating this tool will aid time-critical scheduling by increasing planning efficiency, clarifying the value of alternative modalities uniquely provided by multi-sensor systems, and by presenting both sets of organized information to operators. Such a tool will help operators more quickly and fully utilize sensing systems, a high interest objective within the current remote sensing operations community. Preliminary results for mixed-integer programming formulations of a sensor scheduling problem will be presented. Assumptions regarding sensor geometry

  10. Schedule Matters: Understanding the Relationship between Schedule Delays and Costs on Overruns

    NASA Technical Reports Server (NTRS)

    Majerowicz, Walt; Shinn, Stephen A.

    2016-01-01

    This paper examines the relationship between schedule delays and cost overruns on complex projects. It is generally accepted by many project practitioners that cost overruns are directly related to schedule delays. But what does "directly related to" actually mean? Some reasons or root causes for schedule delays and associated cost overruns are obvious, if only in hindsight. For example, unrealistic estimates, supply chain difficulties, insufficient schedule margin, technical problems, scope changes, or the occurrence of risk events can negatively impact schedule performance. Other factors driving schedule delays and cost overruns may be less obvious and more difficult to quantify. Examples of these less obvious factors include project complexity, flawed estimating assumptions, over-optimism, political factors, "black swan" events, or even poor leadership and communication. Indeed, is it even possible the schedule itself could be a source of delay and subsequent cost overrun? Through literature review, surveys of project practitioners, and the authors' own experience on NASA programs and projects, the authors will categorize and examine the various factors affecting the relationship between project schedule delays and cost growth. The authors will also propose some ideas for organizations to consider to help create an awareness of the factors which could cause or influence schedule delays and associated cost growth on complex projects.

  11. Designing a fuzzy scheduler for hard real-time systems

    NASA Technical Reports Server (NTRS)

    Yen, John; Lee, Jonathan; Pfluger, Nathan; Natarajan, Swami

    1992-01-01

    In hard real-time systems, tasks have to be performed not only correctly, but also in a timely fashion. If timing constraints are not met, there might be severe consequences. Task scheduling is the most important problem in designing a hard real-time system, because the scheduling algorithm ensures that tasks meet their deadlines. However, the inherent nature of uncertainty in dynamic hard real-time systems increases the problems inherent in scheduling. In an effort to alleviate these problems, we have developed a fuzzy scheduler to facilitate searching for a feasible schedule. A set of fuzzy rules are proposed to guide the search. The situation we are trying to address is the performance of the system when no feasible solution can be found, and therefore, certain tasks will not be executed. We wish to limit the number of important tasks that are not scheduled.

  12. Smart sensing to drive real-time loads scheduling algorithm in a domotic architecture

    NASA Astrophysics Data System (ADS)

    Santamaria, Amilcare Francesco; Raimondo, Pierfrancesco; De Rango, Floriano; Vaccaro, Andrea

    2014-05-01

    Nowadays the focus on power consumption represent a very important factor regarding the reduction of power consumption with correlated costs and the environmental sustainability problems. Automatic control load based on power consumption and use cycle represents the optimal solution to costs restraint. The purpose of these systems is to modulate the power request of electricity avoiding an unorganized work of the loads, using intelligent techniques to manage them based on real time scheduling algorithms. The goal is to coordinate a set of electrical loads to optimize energy costs and consumptions based on the stipulated contract terms. The proposed algorithm use two new main notions: priority driven loads and smart scheduling loads. The priority driven loads can be turned off (stand by) according to a priority policy established by the user if the consumption exceed a defined threshold, on the contrary smart scheduling loads are scheduled in a particular way to don't stop their Life Cycle (LC) safeguarding the devices functions or allowing the user to freely use the devices without the risk of exceeding the power threshold. The algorithm, using these two kind of notions and taking into account user requirements, manages loads activation and deactivation allowing the completion their operation cycle without exceeding the consumption threshold in an off-peak time range according to the electricity fare. This kind of logic is inspired by industrial lean manufacturing which focus is to minimize any kind of power waste optimizing the available resources.

  13. SOFIA's Choice: Scheduling Observations for an Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Kurklu, Elif; Koga, Dennis (Technical Monitor)

    2002-01-01

    We describe the problem of scheduling observations for an airborne observatory. The problem is more complex than traditional scheduling problems in that it incorporates complex constraints relating the feasibility of an astronomical observation to the position and time of a mobile observatory, as well as traditional temporal constraints and optimization criteria. We describe the problem, its proposed solution and the empirical validation of that solution.

  14. Coordination challenges for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Clement, B. J.; Barrett, A.

    2002-01-01

    While past flight projects involved a single spacecraft in isolation, over forty proposed future missions involve multiple coordinated spacecraft. This paper presents characteristics of such missions in terms of properties of the phenomena being measured as well as the rationale for using multiple spacecraft. We describe the coordination problems associated with operating these missions and identify needed technologies.

  15. LiveGantt: Interactively Visualizing a Large Manufacturing Schedule.

    PubMed

    Jo, Jaemin; Huh, Jaeseok; Park, Jonghun; Kim, Bohyoung; Seo, Jinwook

    2014-12-01

    In this paper, we introduce LiveGantt as a novel interactive schedule visualization tool that helps users explore highly-concurrent large schedules from various perspectives. Although a Gantt chart is the most common approach to illustrate schedules, currently available Gantt chart visualization tools suffer from limited scalability and lack of interactions. LiveGantt is built with newly designed algorithms and interactions to improve conventional charts with better scalability, explorability, and reschedulability. It employs resource reordering and task aggregation to display the schedules in a scalable way. LiveGantt provides four coordinated views and filtering techniques to help users explore and interact with the schedules in more flexible ways. In addition, LiveGantt is equipped with an efficient rescheduler to allow users to instantaneously modify their schedules based on their scheduling experience in the fields. To assess the usefulness of the application of LiveGantt, we conducted a case study on manufacturing schedule data with four industrial engineering researchers. Participants not only grasped an overview of a schedule but also explored the schedule from multiple perspectives to make enhancements.

  16. Transportation Baseline Schedule

    SciTech Connect

    Fawcett, Ricky Lee; John, Mark Earl

    2000-01-01

    The “1999 National Transportation Program - Transportation Baseline Report” presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste/material transportation. The companion “1999 Transportation ‘Barriers’ Analysis” analyzes the data and identifies existing and potential problems that may prevent or delay transportation activities based on the data presented. The “1999 Transportation Baseline Schedule” (this report) uses the same data to provide an overview of the transportation activities of DOE EM waste/materials. This report can be used to identify areas where stakeholder interface is needed, and to communicate to stakeholders the quantity/schedule of shipments going through their area. Potential bottlenecks in the transportation system can be identified; the number of packages needed, and the capacity needed at receiving facilities can be planned. This report offers a visualization of baseline DOE EM transportation activities for the 11 major sites and the “Geologic Repository Disposal” site (GRD).

  17. Scheduling: Seven Period Day

    ERIC Educational Resources Information Center

    Williamson, Ronald

    2010-01-01

    Driven by stable or declining financial resources many school districts are considering the costs and benefits of a seven-period day. While there is limited evidence that any particular scheduling model has a greater impact on student learning than any other, it is clear that the school schedule is a tool that can significantly impact teacher…

  18. A Fluid Block Schedule

    ERIC Educational Resources Information Center

    Ubben, Gerald C.

    1976-01-01

    Achieving flexibility without losing student accountability is a challenge that faces every school. With a fluid block schedule, as described here, accountability is maintained without inhibiting flexibility. An additional advantage is that three levels of schedule decision making take some of the pressure off the principal. (Editor)

  19. Surviving Block Scheduling.

    ERIC Educational Resources Information Center

    Haley, Marjorie

    A discussion of block scheduling for second language instruction looks at the advantages and disadvantages and offers some suggestions for classroom management and course organization. It is argued that block scheduling may offer a potential solution to large classes, insufficient time for labs, too little individualized instruction; few…

  20. Fundamentals of School Scheduling.

    ERIC Educational Resources Information Center

    Schroth, Gwen

    The ability of the school administrator to schedule teachers' and students' time so that each receives the most from each school day has become an essential skill. This book has been prepared for school administrators at the elementary and middle school levels who need appropriate management techniques for scheduling students into classes. Chapter…

  1. Range Scheduling Aid (RSA)

    NASA Technical Reports Server (NTRS)

    Logan, J. R.; Pulvermacher, M. K.

    1991-01-01

    Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.

  2. What's behind Block Scheduling?

    ERIC Educational Resources Information Center

    Gierke, Carolyn

    1999-01-01

    Discussion of block scheduling in secondary schools focuses on its impact on the school library media center. Discusses increased demand for library services, scheduling classes, the impact on librarians' time, teaching information technology, local area networks, and the increased pace of activity. (LRW)

  3. Mission Operations Planning and Scheduling System (MOPSS)

    NASA Technical Reports Server (NTRS)

    Wood, Terri; Hempel, Paul

    2011-01-01

    MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.

  4. Schedule-Aware Workflow Management Systems

    NASA Astrophysics Data System (ADS)

    Mans, Ronny S.; Russell, Nick C.; van der Aalst, Wil M. P.; Moleman, Arnold J.; Bakker, Piet J. M.

    Contemporary workflow management systems offer work-items to users through specific work-lists. Users select the work-items they will perform without having a specific schedule in mind. However, in many environments work needs to be scheduled and performed at particular times. For example, in hospitals many work-items are linked to appointments, e.g., a doctor cannot perform surgery without reserving an operating theater and making sure that the patient is present. One of the problems when applying workflow technology in such domains is the lack of calendar-based scheduling support. In this paper, we present an approach that supports the seamless integration of unscheduled (flow) and scheduled (schedule) tasks. Using CPN Tools we have developed a specification and simulation model for schedule-aware workflow management systems. Based on this a system has been realized that uses YAWL, Microsoft Exchange Server 2007, Outlook, and a dedicated scheduling service. The approach is illustrated using a real-life case study at the AMC hospital in the Netherlands. In addition, we elaborate on the experiences obtained when developing and implementing a system of this scale using formal techniques.

  5. COORDINATED AV.

    ERIC Educational Resources Information Center

    CLEAVES, PAUL C.; AND OTHERS

    THE INSTRUCTIONAL MATERIALS CENTER IS LOCATED IN THE LOCAL HIGH SCHOOL AND SUPPLIES ALL SCHOOLS IN THE AREA. AUDIOVISUAL EQUIPMENT ORDERS, AFTER SELECTIONS ARE MADE BY THE CLASSROOM TEACHER, ARE PROCESSED BY THE CENTER, CONFIRMED AND DELIVERED BY TRUCK THREE TIMES EACH WEEK. EACH SCHOOL HAS A BUILDING COORDINATOR WHO CHECKS THE ORDERS INTO THE…

  6. Chandra mission scheduling on-orbit experience

    NASA Astrophysics Data System (ADS)

    Bucher, Sabina; Williams, Brent; Pendexter, Misty; Balke, David

    2008-07-01

    Scheduling observatory time to maximize both day-to-day science target integration time and the lifetime of the observatory is a formidable challenge. Furthermore, it is not a static problem. Of course, every schedule brings a new set of observations, but the boundaries of the problem change as well. As spacecraft ages, its capabilities may degrade. As in-flight experience grows, capabilities may expand. As observing programs are completed, the needs and expectations of the science community may evolve. Changes such as these impact the rules by which a mission scheduled. In eight years on orbit, the Chandra X-Ray Observatory Mission Planning process has adapted to meet the challenge of maximizing day-to-day and mission lifetime science return, despite a consistently evolving set of scheduling constraints. The success of the planning team has been achieved, not through the use of complex algorithms and optimization routines, but through processes and home grown tools that help individuals make smart short term and long term Mission Planning decisions. This paper walks through the processes and tools used to plan and produce mission schedules for the Chandra X-Ray Observatory. Nominal planning and scheduling, target of opportunity response, and recovery from on-board autonomous safing actions are all addressed. Evolution of tools and processes, best practices, and lessons learned are highlighted along the way.

  7. Scheduling periodic jobs using imprecise results

    NASA Technical Reports Server (NTRS)

    Chung, Jen-Yao; Liu, Jane W. S.; Lin, Kwei-Jay

    1987-01-01

    One approach to avoid timing faults in hard, real-time systems is to make available intermediate, imprecise results produced by real-time processes. When a result of the desired quality cannot be produced in time, an imprecise result of acceptable quality produced before the deadline can be used. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. Since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result, the amount of processor time assigned to any task in a valid schedule can be less than the amount of time required to complete the task. A meaningful formulation of the scheduling problem must take into account the overall quality of the results. Depending on the different types of undesirable effects caused by errors, jobs are classified as type N or type C. For type N jobs, the effects of errors in results produced in different periods are not cumulative. A reasonable performance measure is the average error over all jobs. Three heuristic algorithms that lead to feasible schedules with small average errors are described. For type C jobs, the undesirable effects of errors produced in different periods are cumulative. Schedulability criteria of type C jobs are discussed.

  8. Intelligent perturbation algorithms for space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1990-01-01

    The optimization of space operations is examined in the light of optimization heuristics for computer algorithms and iterative search techniques. Specific attention is given to the search concepts known collectively as intelligent perturbation algorithms (IPAs) and their application to crew/resource allocation problems. IPAs iteratively examine successive schedules which become progressively more efficient, and the characteristics of good perturbation operators are listed. IPAs can be applied to aerospace systems to efficiently utilize crews, payloads, and resources in the context of systems such as Space-Station scheduling. A program is presented called the MFIVE Space Station Scheduling Worksheet which generates task assignments and resource usage structures. The IPAs can be used to develop flexible manifesting and scheduling for the Industrial Space Facility.

  9. Monitoring Building Systems for Schedule Compliance

    SciTech Connect

    Jensen, Andrew M.; Belew, Shan T.

    2013-02-19

    As Pacific Northwest National Laboratory (PNNL) initiated a Core Business Hours program, it became a challenge to ensure that the hundreds of systems campus wide were operating within their programmed schedules. Therefore, a collaborative exchange between PNNL operations and PNNL researchers developing the Decision Support for Operations and Maintenance (DSOM) software package was initiated to create a tool to solve this problem. This new DSOM tool verifies systems are operating within scheduled operation times by polling Building Automation and Control Network (BACnet) identifiers of systems’ on/off or command statuses. The tool records the time spent in operation state (ON) and totalizes each system over a rolling 7-day period, highlighting systems that are running over the scheduled hours. This snapshot view allows building management to look quickly at the entire campus to ensure that systems are not operating beyond their scheduled hours.

  10. A synthesized heuristic task scheduling algorithm.

    PubMed

    Dai, Yanyan; Zhang, Xiangli

    2014-01-01

    Aiming at the static task scheduling problems in heterogeneous environment, a heuristic task scheduling algorithm named HCPPEFT is proposed. In task prioritizing phase, there are three levels of priority in the algorithm to choose task. First, the critical tasks have the highest priority, secondly the tasks with longer path to exit task will be selected, and then algorithm will choose tasks with less predecessors to schedule. In resource selection phase, the algorithm is selected task duplication to reduce the interresource communication cost, besides forecasting the impact of an assignment for all children of the current task permits better decisions to be made in selecting resources. The algorithm proposed is compared with STDH, PEFT, and HEFT algorithms through randomly generated graphs and sets of task graphs. The experimental results show that the new algorithm can achieve better scheduling performance.

  11. Decision-theoretic control of EUVE telescope scheduling

    NASA Technical Reports Server (NTRS)

    Hansson, Othar; Mayer, Andrew

    1993-01-01

    This paper describes a decision theoretic scheduler (DTS) designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems and using probabilistic inference to aggregate this information in light of the features of a given problem. The Bayesian Problem-Solver (BPS) introduced a similar approach to solving single agent and adversarial graph search patterns yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.

  12. Coordinating complex decision support activities across distributed applications

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1994-01-01

    Knowledge-based technologies have been applied successfully to automate planning and scheduling in many problem domains. Automation of decision support can be increased further by integrating task-specific applications with supporting database systems, and by coordinating interactions between such tools to facilitate collaborative activities. Unfortunately, the technical obstacles that must be overcome to achieve this vision of transparent, cooperative problem-solving are daunting. Intelligent decision support tools are typically developed for standalone use, rely on incompatible, task-specific representational models and application programming interfaces (API's), and run on heterogeneous computing platforms. Getting such applications to interact freely calls for platform independent capabilities for distributed communication, as well as tools for mapping information across disparate representations. Symbiotics is developing a layered set of software tools (called NetWorks! for integrating and coordinating heterogeneous distributed applications. he top layer of tools consists of an extensible set of generic, programmable coordination services. Developers access these services via high-level API's to implement the desired interactions between distributed applications.

  13. Scheduling Projects with Multiskill Learning Effect

    PubMed Central

    2014-01-01

    We investigate the project scheduling problem with multiskill learning effect. A new model is proposed to deal with the problem, where both autonomous and induced learning are considered. In order to obtain the optimal solution, a genetic algorithm with specific encoding and decoding schemes is introduced. A numerical example is used to illustrate the proposed model. The computational results show that the learning effect cannot be neglected in project scheduling. By means of determining the level of induced learning, the project manager can balance the project makespan with total cost. PMID:24683355

  14. Temporal planning for transportation planning and scheduling

    NASA Technical Reports Server (NTRS)

    Frederking, Robert E.; Muscettola, Nicola

    1992-01-01

    In this paper we describe preliminary work done in the CORTES project, applying the Heuristic Scheduling Testbed System (HSTS) to a transportation planning and scheduling domain. First, we describe in more detail the transportation problems that we are addressing. We then describe the fundamental characteristics of HSTS and we concentrate on the representation of multiple capacity resources. We continue with a more detailed description of the transportation planning problem that we have initially addressed in HSTS and of its solution. Finally we describe future directions for our research.

  15. Computerizing the Reference Desk Schedule.

    ERIC Educational Resources Information Center

    deHaas, Pat

    1983-01-01

    Discussion of the scheduling procedures of librarians' hours at the reference desk at the Rutherford Humanities and Social Sciences Library, University of Alberta, highlights services provided, the preference table system, and manual scheduling versus computer scheduling. (EJS)

  16. Intelligent scheduling support for the US Coast Guard

    SciTech Connect

    Darby-Dowman, K.; Lucas, C.; Mitra, G. ); Fink, R. ); Kingsley, L.; Smith, J.W. )

    1992-01-01

    This paper will discuss a joint effort by the U.S. Coast Guard Research Development Center, Idaho National Engineering Laboratory and Brunel University to provide the necessary tools to increase the human scheduler's capability to handle the scheduling process more efficiently and effectively. Automating the scheduling process required a system that could think independently of the scheduler, that is, the systems needed its own control mechanism and knowledge base. Further, automated schedule generation became a design requirement and sophisticated algorithms were formulated to solve a complex combinatorial problem. In short, the resulting design can be viewed as a hybrid knowledge-based mathematical programming application system. This document contains an overview of the integrated system, a discrete optimization model for scheduling, and schedule diagnosis and analysis.

  17. Effective scheduling of looking and talking during rapid automatized naming.

    PubMed

    Gordon, Peter C; Hoedemaker, Renske S

    2016-05-01

    Rapid automatized naming (RAN) is strongly related to literacy gains in developing readers, reading disabilities, and reading ability in children and adults. Because successful RAN performance depends on the close coordination of a number of abilities, it is unclear what specific skills drive this RAN-reading relationship. The current study used concurrent recordings of young adult participants' vocalizations and eye movements during the RAN task to assess how individual variation in RAN performance depends on the coordination of visual and vocal processes. Results showed that fast RAN times are facilitated by having the eyes 1 or more items ahead of the current vocalization, as long as the eyes do not get so far ahead of the voice as to require a regressive eye movement to an earlier item. These data suggest that optimizing RAN performance is a problem of scheduling eye movements and vocalization given memory constraints and the efficiency of encoding and articulatory control. Both RAN completion time (conventionally used to indicate RAN performance) and eye-voice relations predicted some aspects of participants' eye movements on a separate sentence reading task. However, eye-voice relations predicted additional features of first-pass reading that were not predicted by RAN completion time. This shows that measurement of eye-voice patterns can identify important aspects of individual variation in reading that are not identified by the standard measure of RAN performance. We argue that RAN performance predicts reading ability because both tasks entail challenges of scheduling cognitive and linguistic processes that operate simultaneously on multiple linguistic inputs.

  18. Effective scheduling of looking and talking during rapid automatized naming.

    PubMed

    Gordon, Peter C; Hoedemaker, Renske S

    2016-05-01

    Rapid automatized naming (RAN) is strongly related to literacy gains in developing readers, reading disabilities, and reading ability in children and adults. Because successful RAN performance depends on the close coordination of a number of abilities, it is unclear what specific skills drive this RAN-reading relationship. The current study used concurrent recordings of young adult participants' vocalizations and eye movements during the RAN task to assess how individual variation in RAN performance depends on the coordination of visual and vocal processes. Results showed that fast RAN times are facilitated by having the eyes 1 or more items ahead of the current vocalization, as long as the eyes do not get so far ahead of the voice as to require a regressive eye movement to an earlier item. These data suggest that optimizing RAN performance is a problem of scheduling eye movements and vocalization given memory constraints and the efficiency of encoding and articulatory control. Both RAN completion time (conventionally used to indicate RAN performance) and eye-voice relations predicted some aspects of participants' eye movements on a separate sentence reading task. However, eye-voice relations predicted additional features of first-pass reading that were not predicted by RAN completion time. This shows that measurement of eye-voice patterns can identify important aspects of individual variation in reading that are not identified by the standard measure of RAN performance. We argue that RAN performance predicts reading ability because both tasks entail challenges of scheduling cognitive and linguistic processes that operate simultaneously on multiple linguistic inputs. PMID:26689309

  19. A comparison of dense-to-lean and fixed lean schedules of alternative reinforcement and extinction.

    PubMed Central

    Hagopian, Louis P; Toole, Lisa M; Long, Ethan S; Bowman, Lynn G; Lieving, Gregory A

    2004-01-01

    Behavior-reduction interventions typically employ dense schedules of alternative reinforcement in conjunction with operant extinction for problem behavior. After problem behavior is reduced in the initial treatment stages, schedule thinning is routinely conducted to make the intervention more practical in natural environments. In the current investigation, two methods for thinning alternative reinforcement schedules were compared for 3 clients who exhibited severe problem behavior. In the dense-to-lean (DTL) condition, reinforcement was delivered on relatively dense schedules (using noncontingent reinforcement for 1 participant and functional communication training for 2 participants), followed by systematic schedule thinning to progressively leaner schedules. During the fixed lean (FL) condition, reinforcement was delivered on lean schedules (equivalent to the terminal schedule of the DTL condition). The FL condition produced a quicker attainment of individual treatment goals for 2 of the 3 participants. The results are discussed in terms of the potential utility of using relatively lean schedules at treatment outset. PMID:15529889

  20. Ada and cyclic runtime scheduling

    NASA Technical Reports Server (NTRS)

    Hood, Philip E.

    1986-01-01

    An important issue that must be faced while introducing Ada into the real time world is efficient and prodictable runtime behavior. One of the most effective methods employed during the traditional design of a real time system is the cyclic executive. The role cyclic scheduling might play in an Ada application in terms of currently available implementations and in terms of implementations that might be developed especially to support real time system development is examined. The cyclic executive solves many of the problems faced by real time designers, resulting in a system for which it is relatively easy to achieve approporiate timing behavior. Unfortunately a cyclic executive carries with it a very high maintenance penalty over the lifetime of the software that is schedules. Additionally, these cyclic systems tend to be quite fragil when any aspect of the system changes. The findings are presented of an ongoing SofTech investigation into Ada methods for real time system development. The topics covered include a description of the costs involved in using cyclic schedulers, the sources of these costs, and measures for future systems to avoid these costs without giving up the runtime performance of a cyclic system.

  1. Development of Methodologies for Technology Deployment for Advanced Outage Control Centers that Improve Outage Coordination, Problem Resolution and Outage Risk Management

    SciTech Connect

    Shawn St. Germain; Ronald Farris; Heather Medeman

    2013-09-01

    schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.

  2. Steps Toward Optimal Competitive Scheduling

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Crawford, James; Khatib, Lina; Brafman, Ronen

    2006-01-01

    This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, se@sh preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource. This problem arises in many institutional settings where, e.g., different departments, agencies, or personal, compete for a single resource. We are particularly motivated by the problem of scheduling NASA's Deep Space Satellite Network (DSN) among different users within NASA. Access to DSN is needed for transmitting data from various space missions to Earth. Each mission has different needs for DSN time, depending on satellite and planetary orbits. Typically, the DSN is over-subscribed, in that not all missions will be allocated as much time as they want. This leads to various inefficiencies - missions spend much time and resource lobbying for their time, often exaggerating their needs. NASA, on the other hand, would like to make optimal use of this resource, ensuring that the good for NASA is maximized. This raises the thorny problem of how to measure the utility to NASA of each allocation. In the typical case, it is difficult for the central agency, NASA in our case, to assess the value of each interval to each user - this is really only known to the users who understand their needs. Thus, our problem is more precisely formulated as follows: find an allocation schedule for the resource that maximizes the sum of users preferences, when the preference values are private information of the users. We bypass this problem by making the assumptions that one can assign money to customers. This assumption is reasonable; a

  3. A component analysis of schedule thinning during functional communication training.

    PubMed

    Betz, Alison M; Fisher, Wayne W; Roane, Henry S; Mintz, Joslyn C; Owen, Todd M

    2013-01-01

    One limitation of functional communication training (FCT) is that individuals may request reinforcement via the functional communication response (FCR) at exceedingly high rates. Multiple schedules with alternating periods of reinforcement and extinction of the FCR combined with gradually lengthening the extinction-component interval can effectively address this limitation. However, the extent to which each of these components contributes to the effectiveness of the overall approach remains uncertain. In the current investigation, we evaluated the first component by comparing rates of the FCR and problem behavior under mixed and multiple schedules and evaluated the second component by rapidly switching from dense mixed and multiple schedules to lean multiple schedules without gradually thinning the density of reinforcement. Results indicated that multiple schedules decreased the overall rate of reinforcement for the FCR and maintained the strength of the FCR and low rates of problem behavior without gradually thinning the reinforcement schedule.

  4. Scheduling Future Water Supply Investments Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Huskova, I.; Matrosov, E. S.; Harou, J. J.; Kasprzyk, J. R.; Reed, P. M.

    2014-12-01

    Uncertain hydrological impacts of climate change, population growth and institutional changes pose a major challenge to planning of water supply systems. Planners seek optimal portfolios of supply and demand management schemes but also when to activate assets whilst considering many system goals and plausible futures. Incorporation of scheduling into the planning under uncertainty problem strongly increases its complexity. We investigate some approaches to scheduling with many-objective heuristic search. We apply a multi-scenario many-objective scheduling approach to the Thames River basin water supply system planning problem in the UK. Decisions include which new supply and demand schemes to implement, at what capacity and when. The impact of different system uncertainties on scheme implementation schedules are explored, i.e. how the choice of future scenarios affects the search process and its outcomes. The activation of schemes is influenced by the occurrence of extreme hydrological events in the ensemble of plausible scenarios and other factors. The approach and results are compared with a previous study where only the portfolio problem is addressed (without scheduling).

  5. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    SciTech Connect

    Cardoso, Goncalo; Stadler, Michael; Bozchalui, Mohammed C.; Sharma, Ratnesh; Marnay, Chris; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-12-06

    The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

  6. Improving Resource Selection and Scheduling Using Predictions. Chapter 1

    NASA Technical Reports Server (NTRS)

    Smith, Warren

    2003-01-01

    The introduction of computational grids has resulted in several new problems in the area of scheduling that can be addressed using predictions. The first problem is selecting where to run an application on the many resources available in a grid. Our approach to help address this problem is to provide predictions of when an application would start to execute if submitted to specific scheduled computer systems. The second problem is gaining simultaneous access to multiple computer systems so that distributed applications can be executed. We help address this problem by investigating how to support advance reservations in local scheduling systems. Our approaches to both of these problems are based on predictions for the execution time of applications on space- shared parallel computers. As a side effect of this work, we also discuss how predictions of application run times can be used to improve scheduling performance.

  7. Reinforcement schedule thinning following treatment with functional communication training.

    PubMed Central

    Hanley, G P; Iwata, B A; Thompson, R H

    2001-01-01

    We evaluated four methods for increasing the practicality of functional communication training (FCT) by decreasing the frequency of reinforcement for alternative behavior. Three participants whose problem behaviors were maintained by positive reinforcement were treated successfully with FCT in which reinforcement for alternative behavior was initially delivered on fixed-ratio (FR) 1 schedules. One participant was then exposed to increasing delays to reinforcement under FR 1, a graduated fixed-interval (FI) schedule, and a graduated multiple-schedule arrangement in which signaled periods of reinforcement and extinction were alternated. Results showed that (a) increasing delays resulted in extinction of the alternative behavior, (b) the FI schedule produced undesirably high rates of the alternative behavior, and (c) the multiple schedule resulted in moderate and stable levels of the alternative behavior as the duration of the extinction component was increased. The other 2 participants were exposed to graduated mixed-schedule (unsignaled alternation between reinforcement and extinction components) and multiple-schedule (signaled alternation between reinforcement and extinction components) arrangements in which the durations of the reinforcement and extinction components were modified. Results obtained for these 2 participants indicated that the use of discriminative stimuli in the multiple schedule facilitated reinforcement schedule thinning. Upon completion of treatment, problem behavior remained low (or at zero), whereas alternative behavior was maintained as well as differentiated during a multiple-schedule arrangement consisting of a 4-min extinction period followed by a 1-min reinforcement period. PMID:11317985

  8. Scheduling in the Face of Uncertain Resource Consumption and Utility

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Dearden, Richard

    2003-01-01

    We discuss the problem of scheduling tasks that consume uncertain amounts of a resource with known capacity and where the tasks have uncertain utility. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We show that the problems are NP- complete, and present some results that characterize the behavior of some simple heuristics over a variety of problem classes.

  9. Spike: Artificial intelligence scheduling for Hubble space telescope

    NASA Technical Reports Server (NTRS)

    Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert

    1990-01-01

    Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.

  10. Research on schedulers for astronomical observatories

    NASA Astrophysics Data System (ADS)

    Colome, Josep; Colomer, Pau; Guàrdia, Josep; Ribas, Ignasi; Campreciós, Jordi; Coiffard, Thierry; Gesa, Lluis; Martínez, Francesc; Rodler, Florian

    2012-09-01

    The main task of a scheduler applied to astronomical observatories is the time optimization of the facility and the maximization of the scientific return. Scheduling of astronomical observations is an example of the classical task allocation problem known as the job-shop problem (JSP), where N ideal tasks are assigned to M identical resources, while minimizing the total execution time. A problem of higher complexity, called the Flexible-JSP (FJSP), arises when the tasks can be executed by different resources, i.e. by different telescopes, and it focuses on determining a routing policy (i.e., which machine to assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each operation). In most cases there is no single best approach to solve the planning system and, therefore, various mathematical algorithms (Genetic Algorithms, Ant Colony Optimization algorithms, Multi-Objective Evolutionary algorithms, etc.) are usually considered to adapt the application to the system configuration and task execution constraints. The scheduling time-cycle is also an important ingredient to determine the best approach. A shortterm scheduler, for instance, has to find a good solution with the minimum computation time, providing the system with the capability to adapt the selected task to varying execution constraints (i.e., environment conditions). We present in this contribution an analysis of the task allocation problem and the solutions currently in use at different astronomical facilities. We also describe the schedulers for three different projects (CTA, CARMENES and TJO) where the conclusions of this analysis are applied to develop a suitable routine.

  11. Scheduling constrained tools using heuristic techniques

    NASA Astrophysics Data System (ADS)

    Maram, Venkataramana; Rahman, Syariza Abdul; Maram, Sandhya Rani

    2015-12-01

    One of the main challenge to the current manufacturing production planning is to provide schedules of operations to maximize resource utilization to yield highest overall productivity. This is achieved by scheduling available resources to activities. There can be many different real time scenarios with different combination of input resources to produce parts. In this paper, the problem is simplified to single machine with individual process times and due dates to represent the real world scheduling problem. The main objective function is to minimize the total tardiness or late jobs. Nearest greedy method of assignment problem algorithm is used to find the initial solution followed by Simulated Annealing (SA) algorithm for the improvement part. Simulated Annealing is one of the meta-heuristic techniques in solving combinatorial optimization problem. The general purpose Microsoft Visual C++ is used to developed algorithm for finding the best solution. The proposed hybrid approach able to generate best schedule in 7th and optimal in 170th iteration with tardiness 8 and 7 hours respectively.

  12. A flexible nurse scheduling support system.

    PubMed

    Ozkarahan, I

    1989-01-01

    Salaries paid to nursing personnel constitute the largest chunk of a hospital's budget. Therefore, this human resource must be utilized efficiently. Hospitals provide continuous service without the exception of holidays and personal preferences. This causes the nurses' discontent in shift scheduling. And the consequence of this discontent is the nurse shortage. This and the pressures on hospitals to limit costs increase the importance of the nurse scheduling problem. Scheduling nursing personnel in hospitals is very complex due to the variety of conflicting interests or objectives between hospitals and nurses. Also, the demand, which varies widely 24-h a day 7-day a week is skill specific and hard to forecast. In the face of this complexity, the present nurse scheduling models have met with little success. In this paper, we propose a more flexible decision support system that will satisfy the interests of both hospitals and nurses through alternative models that attempt to accommodate flexible work patterns as it integrates time of the day (TOD) and day of the week (DOW) scheduling problems. PMID:2582748

  13. APGEN Scheduling: 15 Years of Experience in Planning Automation

    NASA Technical Reports Server (NTRS)

    Maldague, Pierre F.; Wissler, Steve; Lenda, Matthew; Finnerty, Daniel

    2014-01-01

    In this paper, we discuss the scheduling capability of APGEN (Activity Plan Generator), a multi-mission planning application that is part of the NASA AMMOS (Advanced Multi- Mission Operations System), and how APGEN scheduling evolved over its applications to specific Space Missions. Our analysis identifies two major reasons for the successful application of APGEN scheduling to real problems: an expressive DSL (Domain-Specific Language) for formulating scheduling algorithms, and a well-defined process for enlisting the help of auxiliary modeling tools in providing high-fidelity, system-level simulations of the combined spacecraft and ground support system.

  14. A harmonized immunization schedule for Canada: A call to action

    PubMed Central

    MacDonald, NE; Bortolussi, R

    2011-01-01

    In Canada, the National Advisory Committee on Immunization systematically reviews the evidence for the effectiveness and safety of new and old vaccines, and sets a ‘minimum’ recommended schedule. However, in contrast to other industrialized countries where single, harmonized countrywide immunization schedules are de rigeur, Canada has a confusing system, with each province and territory defining its own schedule – and none are the same. The time has come to rectify this decades-old patient equity and safety problem. The Canadian Paediatric Society calls for a harmonized schedule to improve the health and safety of Canadian children and youth. PMID:22211070

  15. A software tool for dataflow graph scheduling

    NASA Technical Reports Server (NTRS)

    Jones, Robert L., III

    1994-01-01

    A graph-theoretic design process and software tool is presented for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described using a dataflow graph and are intended to be executed repetitively on multiple processors. The dataflow paradigm is very useful in exposing the parallelism inherent in algorithms. It provides a graphical and mathematical model which describes a partial ordering of algorithm tasks based on data precedence.

  16. Automatic Generation of Heuristics for Scheduling

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Bresina, John L.; Rodgers, Stuart M.

    1997-01-01

    This paper presents a technique, called GenH, that automatically generates search heuristics for scheduling problems. The impetus for developing this technique is the growing consensus that heuristics encode advice that is, at best, useful in solving most, or typical, problem instances, and, at worst, useful in solving only a narrowly defined set of instances. In either case, heuristic problem solvers, to be broadly applicable, should have a means of automatically adjusting to the idiosyncrasies of each problem instance. GenH generates a search heuristic for a given problem instance by hill-climbing in the space of possible multi-attribute heuristics, where the evaluation of a candidate heuristic is based on the quality of the solution found under its guidance. We present empirical results obtained by applying GenH to the real world problem of telescope observation scheduling. These results demonstrate that GenH is a simple and effective way of improving the performance of an heuristic scheduler.

  17. Scheduling Real-Time Mixed-Criticality Jobs

    NASA Astrophysics Data System (ADS)

    Baruah, Sanjoy K.; Bonifaci, Vincenzo; D'Angelo, Gianlorenzo; Li, Haohan; Marchetti-Spaccamela, Alberto; Megow, Nicole; Stougie, Leen

    Many safety-critical embedded systems are subject to certification requirements; some systems may be required to meet multiple sets of certification requirements, from different certification authorities. Certification requirements in such "mixed-criticality" systems give rise to interesting scheduling problems, that cannot be satisfactorily addressed using techniques from conventional scheduling theory. In this paper, we study a formal model for representing such mixed-criticality workloads. We demonstrate first the intractability of determining whether a system specified in this model can be scheduled to meet all its certification requirements, even for systems subject to two sets of certification requirements. Then we quantify, via the metric of processor speedup factor, the effectiveness of two techniques, reservation-based scheduling and priority-based scheduling, that are widely used in scheduling such mixed-criticality systems, showing that the latter of the two is superior to the former. We also show that the speedup factors are tight for these two techniques.

  18. Markov Tracking for Agent Coordination

    NASA Technical Reports Server (NTRS)

    Washington, Richard; Lau, Sonie (Technical Monitor)

    1998-01-01

    Partially observable Markov decision processes (POMDPs) axe an attractive representation for representing agent behavior, since they capture uncertainty in both the agent's state and its actions. However, finding an optimal policy for POMDPs in general is computationally difficult. In this paper we present Markov Tracking, a restricted problem of coordinating actions with an agent or process represented as a POMDP Because the actions coordinate with the agent rather than influence its behavior, the optimal solution to this problem can be computed locally and quickly. We also demonstrate the use of the technique on sequential POMDPs, which can be used to model a behavior that follows a linear, acyclic trajectory through a series of states. By imposing a "windowing" restriction that restricts the number of possible alternatives considered at any moment to a fixed size, a coordinating action can be calculated in constant time, making this amenable to coordination with complex agents.

  19. Expanding symmetric multiprocessor capability through gang scheduling

    SciTech Connect

    Jette, M.A.

    1998-03-01

    Symmetric Multiprocessor (SMP) systems normally provide both space- sharing and time-sharing to insure high system utilization and good responsiveness. However the prevailing lack of concurrent scheduling for parallel programs precludes SMP use in addressing many large-scale problems. Tightly synchronized communications are impractical and normal time-sharing reduces the benefit of cache memory. Evidence gathered at Lawrence Livermore National Laboratory (LLNL) indicates that gang scheduling can increase the capability of SMP systems and parallel program performance without adverse impact upon system utilization or responsiveness.

  20. Autonomous scheduling technology for Earth orbital missions

    NASA Technical Reports Server (NTRS)

    Srivastava, S.

    1982-01-01

    The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system.

  1. Planning, scheduling, and control for automatic telescopes

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Swanson, Keith; Philips, Andy; Levinson, Rich; Bresina, John

    1992-01-01

    This paper presents an argument for the appropriateness of Entropy Reduction Engine (ERE) technology to the planning, scheduling, and control components of Automatic Photoelectric Telescope (APT) management. The paper is organized as follows. In the next section, we give a brief summary of the planning and scheduling requirements for APTs. Following this, in section 3, we give an ERE project precis, couched primarily in terms of project objectives. Section 4 gives a sketch of the match-up between problem and technology, and section 5 outlines where we want to go with this work.

  2. Workshop Scheduling in the MRO Context

    NASA Astrophysics Data System (ADS)

    Rupp, Benjamin; Pauli, Dirk; Feller, Sebastian; Skyttä, Manu

    2010-09-01

    Scheduling is an important task in production planning, as it can significantly increase the productivity of a workshop. In this paper we concentrate on a job-shop problem which arises at workshops of typical MRO service providers. An MRO does not only need to minimize the production time (the makespan) and maximize the plant utilization, it also needs to maximize the service and protection level of its stock. Hence, it has several objective functions which usually contradict each other. In this paper we present the novel CTO algorithm which helps to find a schedule regarding the mentioned objective functions.

  3. 76 FR 25355 - HIT Standards Committee; Schedule for the Assessment of HIT Policy Committee Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND... Recommendations AGENCY: Office of the National Coordinator for Health Information Technology, HHS. ACTION: Notice..., clinical operations, implementation, and privacy and security. HIT Standards Committee's Schedule for...

  4. Intelligent retail logistics scheduling

    SciTech Connect

    Rowe, J.; Jewers, K.; Codd, A.; Alcock, A.

    1996-12-31

    The Supply Chain Integrated Ordering Network (SCION) Depot Bookings system automates the planning and scheduling of perishable and non-perishable commodities and the vehicles that carry them into J. Sainsbury depots. This is a strategic initiative, enabling the business to make the key move from weekly to daily ordering. The system is mission critical, managing the inwards flow of commodities from suppliers into J. Sainsbury`s depots. The system leverages Al techniques to provide a business solution that meets challenging functional and performance needs. The SCION Depot Bookings system is operational providing schedules for 22 depots across the UK.

  5. A nurse-coordinated educational initiative addressing primary care professionals' attitudes to and problem-solving in depression in older people--a pilot study.

    PubMed

    Livingston, G; Yard, P; Beard, A; Katona, C

    2000-05-01

    This study assessed the feasibility and efficacy of an intervention focusing on primary care professionals' attitudes to, problem-solving in and practice relating to depression in old age before and after a nurse-implemented educational intervention. One hundred and twenty-one practices were approached, in which 297 doctors worked. Most practices did not want to be involved in this study. Evidence from previous studies and this one suggests that GPs are more amenable to interventions which are implemented by doctors rather than other health personnel. In addition, the lack of interest in this intervention may be a reflection of the therapeutic nihilism of primary care physicians regarding depression in older people. Sixteen surgeries expressed an interest in the study, of whom 14 participated in the study comprising 40 GPs. Thirty-one GPs and 24 nurses completed the baseline questionnaires. Only six GPs and no nurses returned completed questionnaires post-intervention. The only statistically significant before versus after change in the attitude questionnaire was found in 'I need more training to be able to deal effectively with depression in the elderly'. Mean scores were 0.73 and 0.47 respectively (p<0.05; 95%CI 3.2-47.1). Significant improvements post-intervention were, however, found in the answers to three questions (all p<0.05) addressing whether patients with depression complicated by or presenting with physical illness were referred appropriately and/or followed up. The results of our study do not indicate that the evaluation of nurse-led educational interventions in primary care is feasible in the field of depression in old age. The belief that all that is needed is the provision of accessible education of professionals by experts in the field to change attitudes and practice has not been reinforced. The high refusal rate suggests that such interventions are unlikely in any case to be generally acceptable.

  6. Planning and Scheduling for Fleets of Earth Observing Satellites

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  7. Time-critical multirate scheduling using contemporary real-time operating system services

    NASA Technical Reports Server (NTRS)

    Eckhardt, D. E., Jr.

    1983-01-01

    Although real-time operating systems provide many of the task control services necessary to process time-critical applications (i.e., applications with fixed, invariant deadlines), it may still be necessary to provide a scheduling algorithm at a level above the operating system in order to coordinate a set of synchronized, time-critical tasks executing at different cyclic rates. The scheduling requirements for such applications and develops scheduling algorithms using services provided by contemporary real-time operating systems.

  8. 78 FR 59949 - Wildland Fire Executive Council Meeting Schedule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... Office of the Secretary Wildland Fire Executive Council Meeting Schedule AGENCY: Office of the Secretary... ] Committee Act, 5 U.S.C. App., 2, the U.S. Department of the Interior, Office of the Secretary, Wildland Fire... interest. The purpose of the WFEC is to provide advice on coordinated national-level wildland fire...

  9. 77 FR 35420 - Wildland Fire Executive Council Meeting Schedule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Office of the Secretary Wildland Fire Executive Council Meeting Schedule AGENCY: Office of the Secretary... Committee Act, 5 U.S.C. App., 2, the U.S. Department of the Interior, Office of the Secretary, Wildland Fire... provide advice on coordinated national-level wildland fire policy and to provide leadership,...

  10. 76 FR 59418 - Wildland Fire Executive Council Meeting Schedule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... Office of the Secretary Wildland Fire Executive Council Meeting Schedule AGENCY: Office of the Secretary... Committee Act, 5 U.S.C. App., 2, the U.S. Department of the Interior, Office of the Secretary, Wildland Fire... to provide advice on coordinated national-level wildland fire policy and to provide...

  11. 77 FR 63326 - Wildland Fire Executive Council Meeting Schedule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... Office of the Secretary Wildland Fire Executive Council Meeting Schedule AGENCY: Office of the Secretary... Committee Act, 5 U.S.C. App., 2, the U.S. Department of the Interior, Office of the Secretary, Wildland Fire... is to provide advice on coordinated national-level wildland fire policy and to provide...

  12. 76 FR 15332 - Wildland Fire Executive Council Meeting Schedule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... Office of the Secretary Wildland Fire Executive Council Meeting Schedule AGENCY: Office of the Secretary... Committee Act, 5 U.S.C. App., 2, the U.S. Department of the Interior, Office of the Secretary, Wildland Fire... is to provide advice on coordinated national-level wildland fire policy and to provide...

  13. 78 FR 15033 - Wildland Fire Executive Council Meeting Schedule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Office of the Secretary Wildland Fire Executive Council Meeting Schedule AGENCY: Office of the Secretary..., Wildland Fire Executive Council (WFEC) will meet as indicated below. DATES: The next meeting will be held... interest. The purpose of the WFEC is to provide advice on coordinated national-level wildland fire...

  14. 78 FR 45949 - Wildland Fire Executive Council Meeting Schedule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... Office of the Secretary Wildland Fire Executive Council Meeting Schedule AGENCY: Office of the Secretary... Committee Act, 5 U.S.C. App. 2, the U.S. Department of the Interior, Office of the Secretary, Wildland Fire... interest. The purpose of the WFEC is to provide advice on coordinated national-level wildland fire...

  15. 76 FR 28445 - Wildland Fire Executive Council Meeting Schedule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Office of the Secretary Wildland Fire Executive Council Meeting Schedule AGENCY: Office of the Secretary... Committee Act, 5 U.S.C. App. 2, the U.S. Department of the Interior, Office of the Secretary, Wildland Fire... is to provide advice on coordinated national-level wildland fire policy and to provide...

  16. 76 FR 79205 - Wildland Fire Executive Council Meeting Schedule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... Office of the Secretary Wildland Fire Executive Council Meeting Schedule AGENCY: Office of the Secretary... Committee Act, 5 U.S.C. App., 2, the U.S. Department of the Interior, Office of the Secretary, Wildland Fire... provide advice on coordinated national-level wildland fire policy and to provide leadership,...

  17. 76 FR 22130 - Wildland Fire Executive Council Meeting Schedule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Office of the Secretary Wildland Fire Executive Council Meeting Schedule AGENCY: Office of the Secretary... Committee Act, 5 U.S.C. App. 2, the U.S. Department of the Interior, Office of the Secretary, Wildland Fire... interest. The purpose of the WFEC is to provide advice on coordinated national-level wildland fire...

  18. Network Coordinator Report

    NASA Technical Reports Server (NTRS)

    Himwich, Ed; Strand, Richard

    2013-01-01

    This report includes an assessment of the network performance in terms of lost observing time for the 2012 calendar year. Overall, the observing time loss was about 12.3%, which is in-line with previous years. A table of relative incidence of problems with various subsystems is presented. The most significant identified causes of loss were electronics rack problems (accounting for about 21.8% of losses), antenna reliability (18.1%), RFI (11.8%), and receiver problems (11.7%). About 14.2% of the losses occurred for unknown reasons. New antennas are under development in the USA, Germany, and Spain. There are plans for new telescopes in Norway and Sweden. Other activities of the Network Coordinator are summarized.

  19. What is a "schedule of reinforcement"?

    PubMed

    Schoenfeld, W N; Cole, B K

    1975-01-01

    Several ambiguities in the present terminology of behavior theory obscure some important theoretical assumptions and experimental details in current research. Left unclarified, such ambiguities impede the accurate analysis of laboratory procedures, and prevent reliable communication among researchers. This paper focuses on the term "schedule of reinforcement". It points out that two distinguishable operational rules are implicated in the term: in the case where reinforcement is of the so-called response contingent type, the "schedule" is really a rule to identify the response to be reinforced; in the case of non-contingent reinforcement, the "schedule" is truly a rule for delivery of reinforcement. Other terminological ambiguities that are encountered in a discussion of this term include "reinforcement" and "intermittency." A resolution of these problems will necessarily involve the procedures of non-contingent reinforcement, and the parameter of reinforcement probability.

  20. Scheduling in the Face of Uncertain Resource Consumption and Utility

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Frank, Jeremy; Dearden, Richard

    2003-01-01

    We discuss the problem of scheduling tasks that consume a resource with known capacity and where the tasks have varying utility. We consider problems in which the resource consumption and utility of each activity is described by probability distributions. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We first show that while some of these problems are NP-complete, others are only NP-Hard. We then describe various heuristic search algorithms to solve these problems and their drawbacks. Finally, we present empirical results that characterize the behavior of these heuristics over a variety of problem classes.

  1. Scheduling prioritized patients in emergency department laboratories.

    PubMed

    Azadeh, A; Hosseinabadi Farahani, M; Torabzadeh, S; Baghersad, M

    2014-11-01

    This research focuses on scheduling patients in emergency department laboratories according to the priority of patients' treatments, determined by the triage factor. The objective is to minimize the total waiting time of patients in the emergency department laboratories with emphasis on patients with severe conditions. The problem is formulated as a flexible open shop scheduling problem and a mixed integer linear programming model is proposed. A genetic algorithm (GA) is developed for solving the problem. Then, the response surface methodology is applied for tuning the GA parameters. The algorithm is tested on a set of real data from an emergency department. Simulation results show that the proposed algorithm can significantly improve the efficiency of the emergency department by reducing the total waiting time of prioritized patients.

  2. Parent Interview Schedule.

    ERIC Educational Resources Information Center

    Purdue Univ., Lafayette, IN. Educational Research Center.

    This 116-item interview schedule designed for parents who failed to respond to the Questionnaire for Parents, is individually administered to the mother of the child of elementary school age. It consists of scales measuring 14 parent variables plus a section devoted to demographic variables: (1) parent's achievement aspirations for the child, (2)…

  3. CMS multicore scheduling strategy

    SciTech Connect

    Perez-Calero Yzquierdo, Antonio; Hernandez, Jose; Holzman, Burt; Majewski, Krista; McCrea, Alison

    2014-01-01

    In the next years, processor architectures based on much larger numbers of cores will be most likely the model to continue 'Moore's Law' style throughput gains. This not only results in many more jobs in parallel running the LHC Run 1 era monolithic applications, but also the memory requirements of these processes push the workernode architectures to the limit. One solution is parallelizing the application itself, through forking and memory sharing or through threaded frameworks. CMS is following all of these approaches and has a comprehensive strategy to schedule multicore jobs on the GRID based on the glideinWMS submission infrastructure. The main component of the scheduling strategy, a pilot-based model with dynamic partitioning of resources that allows the transition to multicore or whole-node scheduling without disallowing the use of single-core jobs, is described. This contribution also presents the experiences made with the proposed multicore scheduling schema and gives an outlook of further developments working towards the restart of the LHC in 2015.

  4. CMS multicore scheduling strategy

    NASA Astrophysics Data System (ADS)

    Pérez-Calero Yzquierdo, Antonio; Hernández, Jose; Holzman, Burt; Majewski, Krista; McCrea, Alison; Cms Collaboration

    2014-06-01

    In the next years, processor architectures based on much larger numbers of cores will be most likely the model to continue "Moore's Law" style throughput gains. This not only results in many more jobs in parallel running the LHC Run 1 era monolithic applications, but also the memory requirements of these processes push the workernode architectures to the limit. One solution is parallelizing the application itself, through forking and memory sharing or through threaded frameworks. CMS is following all of these approaches and has a comprehensive strategy to schedule multicore jobs on the GRID based on the glideinWMS submission infrastructure. The main component of the scheduling strategy, a pilot-based model with dynamic partitioning of resources that allows the transition to multicore or whole-node scheduling without disallowing the use of single-core jobs, is described. This contribution also presents the experiences made with the proposed multicore scheduling schema and gives an outlook of further developments working towards the restart of the LHC in 2015.

  5. Class Schedules--Computer Loaded or Student Self-Scheduled?

    ERIC Educational Resources Information Center

    Wall, Edward F.

    1979-01-01

    In the two-step process of student scheduling, the initial phase of course selection is the most important. At Chesterton High School in Indiana, student self-scheduling is preferred over computer loading. (Author/MLF)

  6. The role of artificial intelligence techniques in scheduling systems

    NASA Technical Reports Server (NTRS)

    Geoffroy, Amy L.; Britt, Daniel L.; Gohring, John R.

    1990-01-01

    Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture.

  7. HEAO-A nominal scanning observation schedule

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Stone, R. L.

    1977-01-01

    The HEAO-A observatory, scheduled for launch in late June 1977, will spend most of its orbital lifetime in a scanning mode, spining from 0.03 to 0.1 rpm about an axis aligned with the sun. The dates of availability in the scan band are given for a list of 248 X-ray sources. Celestial maps of source locations and scan planes, and examples of the nighttime elevation of available sources are presented. This document is intended to aid ground-based observers in planning coordinated observations with HEAO-A.

  8. Scheduling techniques in the Request Oriented Scheduling Engine (ROSE)

    NASA Technical Reports Server (NTRS)

    Zoch, David R.

    1991-01-01

    Scheduling techniques in the ROSE are presented in the form of the viewgraphs. The following subject areas are covered: agenda; ROSE summary and history; NCC-ROSE task goals; accomplishments; ROSE timeline manager; scheduling concerns; current and ROSE approaches; initial scheduling; BFSSE overview and example; and summary.

  9. Scheduling logic for Miles-In-Trail traffic management

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert G.; Swenson, Harry; Erzberger, Heinz

    1995-01-01

    This paper presents an algorithm which can be used for scheduling arrival air traffic in an Air Route Traffic Control Center (ARTCC or Center) entering a Terminal Radar Approach Control (TRACON) Facility . The algorithm aids a Traffic Management Coordinator (TMC) in deciding how to restrict traffic while the traffic expected to arrive in the TRACON exceeds the TRACON capacity. The restrictions employed fall under the category of Miles-in-Trail, one of two principal traffic separation techniques used in scheduling arrival traffic . The algorithm calculates aircraft separations for each stream of aircraft destined to the TRACON. The calculations depend upon TRACON characteristics, TMC preferences, and other parameters adapted to the specific needs of scheduling traffic in a Center. Some preliminary results of traffic simulations scheduled by this algorithm are presented, and conclusions are drawn as to the effectiveness of using this algorithm in different traffic scenarios.

  10. 29 CFR 778.327 - Temporary or sporadic reduction in schedule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COMPENSATION Special Problems Reduction in Workweek Schedule with No Change in Pay § 778.327 Temporary or sporadic reduction in schedule. (a) The problem of reduction in the workweek is somewhat different where a... announced above. However, reduction on a more temporary or sporadic basis presents a different problem....

  11. Minimizing metastatic risk in radiotherapy fractionation schedules

    NASA Astrophysics Data System (ADS)

    Badri, Hamidreza; Ramakrishnan, Jagdish; Leder, Kevin

    2015-11-01

    Metastasis is the process by which cells from a primary tumor disperse and form new tumors at distant anatomical locations. The treatment and prevention of metastatic cancer remains an extremely challenging problem. This work introduces a novel biologically motivated objective function to the radiation optimization community that takes into account metastatic risk instead of the status of the primary tumor. In this work, we consider the problem of developing fractionated irradiation schedules that minimize production of metastatic cancer cells while keeping normal tissue damage below an acceptable level. A dynamic programming framework is utilized to determine the optimal fractionation scheme. We evaluated our approach on a breast cancer case using the heart and the lung as organs-at-risk (OAR). For small tumor α /β values, hypo-fractionated schedules were optimal, which is consistent with standard models. However, for relatively larger α /β values, we found the type of schedule depended on various parameters such as the time when metastatic risk was evaluated, the α /β values of the OARs, and the normal tissue sparing factors. Interestingly, in contrast to standard models, hypo-fractionated and semi-hypo-fractionated schedules (large initial doses with doses tapering off with time) were suggested even with large tumor α/β values. Numerical results indicate the potential for significant reduction in metastatic risk.

  12. Advance Resource Provisioning in Bulk Data Scheduling

    SciTech Connect

    Balman, Mehmet

    2012-10-01

    Today?s scientific and business applications generate mas- sive data sets that need to be transferred to remote sites for sharing, processing, and long term storage. Because of increasing data volumes and enhancement in current net- work technology that provide on-demand high-speed data access between collaborating institutions, data handling and scheduling problems have reached a new scale. In this paper, we present a new data scheduling model with ad- vance resource provisioning, in which data movement operations are defined with earliest start and latest comple- tion times. We analyze time-dependent resource assign- ment problem, and propose a new methodology to improve the current systems by allowing researchers and higher-level meta-schedulers to use data-placement as-a-service, so they can plan ahead and submit transfer requests in advance. In general, scheduling with time and resource conflicts is NP-hard. We introduce an efficient algorithm to organize multiple requests on the fly, while satisfying users? time and resource constraints. We successfully tested our algorithm in a simple benchmark simulator that we have developed, and demonstrated its performance with initial test results.

  13. Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm

    NASA Astrophysics Data System (ADS)

    Civicioglu, Pinar

    2012-09-01

    In order to solve numerous practical navigational, geodetic and astro-geodetic problems, it is necessary to transform geocentric cartesian coordinates into geodetic coordinates or vice versa. It is very easy to solve the problem of transforming geodetic coordinates into geocentric cartesian coordinates. On the other hand, it is rather difficult to solve the problem of transforming geocentric cartesian coordinates into geodetic coordinates as it is very hard to define a mathematical relationship between the geodetic latitude (φ) and the geocentric cartesian coordinates (X, Y, Z). In this paper, a new algorithm, the Differential Search Algorithm (DS), is presented to solve the problem of transforming the geocentric cartesian coordinates into geodetic coordinates and its performance is compared with the performances of the classical methods (i.e., Borkowski, 1989; Bowring, 1976; Fukushima, 2006; Heikkinen, 1982; Jones, 2002; Zhang, 2005; Borkowski, 1987; Shu, 2010 and Lin, 1995) and Computational-Intelligence algorithms (i.e., ABC, JDE, JADE, SADE, EPSDE, GSA, PSO2011, and CMA-ES). The statistical tests realized for the comparison of performances indicate that the problem-solving success of DS algorithm in transforming the geocentric cartesian coordinates into geodetic coordinates is higher than those of all classical methods and Computational-Intelligence algorithms used in this paper.

  14. Utilizing AI in Temporal, Spatial, and Resource Scheduling

    NASA Technical Reports Server (NTRS)

    Stottler, Richard; Kalton, Annaka; Bell, Aaron

    2006-01-01

    Aurora is a software system enabling the rapid, easy solution of complex scheduling problems involving spatial and temporal constraints among operations and scarce resources (such as equipment, workspace, and human experts). Although developed for use in the International Space Station Processing Facility, Aurora is flexible enough that it can be easily customized for application to other scheduling domains and adapted as the requirements change or become more precisely known over time. Aurora s scheduling module utilizes artificial-intelligence (AI) techniques to make scheduling decisions on the basis of domain knowledge, including knowledge of constraints and their relative importance, interdependencies among operations, and possibly frequent changes in governing schedule requirements. Unlike many other scheduling software systems, Aurora focuses on resource requirements and temporal scheduling in combination. For example, Aurora can accommodate a domain requirement to schedule two subsequent operations to locations adjacent to a shared resource. The graphical interface allows the user to quickly visualize the schedule and perform changes reflecting additional knowledge or alterations in the situation. For example, the user might drag the activity corresponding to the start of operations to reflect a late delivery.

  15. Automatic generation of efficient orderings of events for scheduling applications

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.

    1994-01-01

    In scheduling a set of tasks, it is often not known with certainty how long a given event will take. We call this duration uncertainty. Duration uncertainty is a primary obstacle to the successful completion of a schedule. If a duration of one task is longer than expected, the remaining tasks are delayed. The delay may result in the abandonment of the schedule itself, a phenomenon known as schedule breakage. One response to schedule breakage is on-line, dynamic rescheduling. A more recent alternative is called proactive rescheduling. This method uses statistical data about the durations of events in order to anticipate the locations in the schedule where breakage is likely prior to the execution of the schedule. It generates alternative schedules at such sensitive points, which can be then applied by the scheduler at execution time, without the delay incurred by dynamic rescheduling. This paper proposes a technique for making proactive error management more effective. The technique is based on applying a similarity-based method of clustering to the problem of identifying similar events in a set of events.

  16. Status Report on the Development of Micro-Scheduling Software for the Advanced Outage Control Center Project

    SciTech Connect

    Shawn St. Germain; Kenneth Thomas; Ronald Farris; Jeffrey Joe

    2014-09-01

    The long-term viability of existing nuclear power plants (NPPs) in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet, refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are difficult to coordinate. Finding ways to improve refueling outage performance while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center project is a research and development (R&D) demonstration activity under the Light Water Reactor Sustainability (LWRS) Program. LWRS is a R&D program which works with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current NPPs. The Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, this INL R&D project is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report describes specific recent efforts to develop a capability called outage Micro-Scheduling. Micro-Scheduling is the ability to allocate and schedule outage support task resources on a sub-hour basis. Micro-Scheduling is the real-time fine-tuning of the outage schedule to react to the actual progress of the primary outage activities to ensure that support task resources are

  17. Using the principles of circadian physiology enhances shift schedule design

    SciTech Connect

    Connolly, J.J.; Moore-Ede, M.C.

    1987-01-01

    Nuclear power plants must operate 24 h, 7 days a week. For the most part, shift schedules currently in use at nuclear power plants have been designed to meet operational needs without considering the biological clocks of the human operators. The development of schedules that also take circadian principles into account is a positive step that can be taken to improve plant safety by optimizing operator alertness. These schedules reduce the probability of human errors especially during backshifts. In addition, training programs that teach round-the-clock workers how to deal with the problems of shiftwork can help to optimize performance and alertness. These programs teach shiftworkers the underlying causes of the sleep problems associated with shiftwork and also provide coping strategies for improving sleep and dealing with the transition between shifts. When these training programs are coupled with an improved schedule, the problems associated with working round-the-clock can be significantly reduced.

  18. Departure Trajectory Synthesis and the Intercept Problem

    NASA Technical Reports Server (NTRS)

    Bolender, Michael A.; Slater, G. L.

    1997-01-01

    Two areas of the departure problem in air traffic control are discussed. The first topic is the generation of climb-out trajectories to a fix. The trajectories would be utilized by a scheduling algorithm to allocate runways, sequence the proposed departures, and assign a departure time. The second area is concerned with finding horizontal trajectories to merge aircraft from the TRACON to an open slot in the en-route environment. Solutions are presented for the intercept problem for two cases: (1) the aircraft is traveling at the speed of the aircraft in the jetway; (2) the merging aircraft has to accelerate to reach the speed of the aircraft in the en-route stream. An algorithm is given regarding the computation of a solution for the latter case. For the former, a set of equations is given that allows us to numerically solve for the coordinate where the merge will occur.

  19. Surprise Benefits of Arena Scheduling

    ERIC Educational Resources Information Center

    Surloff, Andrew

    2008-01-01

    One of the most challenging tasks a principal must accomplish every year is the construction of the master schedule. Free from the magnetic scheduling boards and wall charts of yesteryear, principals now have technological tools--such as programs that offer schools solutions for their scheduling needs--that can save time and enable them to work…

  20. Scheduling and Achievement. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2006-01-01

    To use a block schedule or a traditional schedule? Which structure will produce the best and highest achievement rates for students? The research is mixed on this due to numerous variables such as: (1) socioeconomic levels; (2) academic levels; (3) length of time a given schedule has been in operation; (4) strategies being used in the classrooms;…

  1. FlexMod Scheduling Redux

    ERIC Educational Resources Information Center

    Murray, Shannon

    2008-01-01

    Flexible modular scheduling (flex mod)--a schedule philosophy and system that has been in place at Wausau West High School in Wausau, Wisconsin, for the last 35 years and aligns nicely with current research on student learning--is getting more and more attention from high school administrators across the country. Flexible modular scheduling was…

  2. Flexible Scheduling: Making the Transition

    ERIC Educational Resources Information Center

    Creighton, Peggy Milam

    2008-01-01

    Citing literature that supports the benefits of flexible scheduling on student achievement, the author exhorts readers to campaign for flexible scheduling in their library media centers. She suggests tips drawn from the work of Graziano (2002), McGregor (2006) and Stripling (1997) for making a smooth transition from fixed to flexible scheduling:…

  3. EOTAS dynamic scheduling method based on wearable man-machine synergy

    NASA Astrophysics Data System (ADS)

    Liu, Zhijun; Wang, Dongmei; Yang, Yukun; Zhao, Jie

    2011-12-01

    By analyzing the dynamic scheduling needs of its inherent nature, made wearable computing based on human-computer natural interaction forms the basis of EOTAS dynamic scheduling methods, and the targeted building, a new concept of wearable man-machine cooperative forms, turn around its concrete implementation and application, a color based on extended fuzzy Petri net EOTAS dynamic scheduling method for the preliminary settlement of the business operating environment EOTAS field applications of the fast scheduling problem.

  4. EOTAS dynamic scheduling method based on wearable man-machine synergy

    NASA Astrophysics Data System (ADS)

    Liu, ZhiJun; Wang, DongMei; Yang, YuKun; Zhao, Jie

    2012-01-01

    By analyzing the dynamic scheduling needs of its inherent nature, made wearable computing based on human-computer natural interaction forms the basis of EOTAS dynamic scheduling methods, and the targeted building, a new concept of wearable man-machine cooperative forms, turn around its concrete implementation and application, a color based on extended fuzzy Petri net EOTAS dynamic scheduling method for the preliminary settlement of the business operating environment EOTAS field applications of the fast scheduling problem.

  5. 75 FR 42831 - Proposed Collection; Comment Request for Form 1065, Schedule C, Schedule D, Schedule K-1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Items), Schedule L (Balance Sheets per Books), Schedule M-1 (Reconciliation of Income (Loss) per Books.... (Schedule K-1), Balance Sheets per Books (Schedule L), Reconciliation of Income (Loss) per Books With...

  6. Revisiting conjugate schedules.

    PubMed

    MacAleese, Kenneth R; Ghezzi, Patrick M; Rapp, John T

    2015-07-01

    The effects of conjugate reinforcement on the responding of 13 college students were examined in three experiments. Conjugate reinforcement was provided via key presses that changed the clarity of pictures displayed on a computer monitor in a manner proportional to the rate of responding. Experiment 1, which included seven parameters of clarity change per response, revealed that responding decreased as the percentage clarity per response increased for all five participants. These results indicate that each participant's responding was sensitive to intensity change, which is a parameter of conjugate reinforcement schedules. Experiment 2 showed that responding increased during conjugate reinforcement phases and decreased during extinction phases for all four participants. Experiment 3 also showed that responding increased during conjugate reinforcement and further showed that responding decreased during a conjugate negative punishment condition for another four participants. Directions for future research with conjugate schedules are briefly discussed. PMID:26150349

  7. Revisiting conjugate schedules.

    PubMed

    MacAleese, Kenneth R; Ghezzi, Patrick M; Rapp, John T

    2015-07-01

    The effects of conjugate reinforcement on the responding of 13 college students were examined in three experiments. Conjugate reinforcement was provided via key presses that changed the clarity of pictures displayed on a computer monitor in a manner proportional to the rate of responding. Experiment 1, which included seven parameters of clarity change per response, revealed that responding decreased as the percentage clarity per response increased for all five participants. These results indicate that each participant's responding was sensitive to intensity change, which is a parameter of conjugate reinforcement schedules. Experiment 2 showed that responding increased during conjugate reinforcement phases and decreased during extinction phases for all four participants. Experiment 3 also showed that responding increased during conjugate reinforcement and further showed that responding decreased during a conjugate negative punishment condition for another four participants. Directions for future research with conjugate schedules are briefly discussed.

  8. Independent Validation of Specifications: A Coordination Headache

    NASA Technical Reports Server (NTRS)

    Easterbrook, Steve; Callahan, John

    1996-01-01

    Large, complex projects face significant barriers to coordination and communication due to continuous, rapid changes during a project's life cycle. Such changes must be tracked, analyzed, and reconciled to ensure high quality in the end product, otherwise problems may get lost or ignored in the overall complexity. We report on 'work-in-progress' in the study of coordination problems between two independent, separate groups: software development and software analysis. We have begun to construct a taxonomy of coordination problems, which we illustrate with two scenarios. We briefly describe current attempts to introduce incremental improvements to coordination problems in such projects via World Wide Web tools. Based on actual project experiences, we plan to deploy such tools in a non-intrusive fashion to improve coordination and communication between software development groups.

  9. Reference coordinate systems: An update. Supplement 11

    NASA Technical Reports Server (NTRS)

    Mueller, Ivan I.

    1988-01-01

    A common requirement for all geodetic investigations is a well-defined coordinate system attached to the earth in some prescribed way, as well as a well-defined inertial coordinate system in which the motions of the terrestrial frame can be monitored. The paper deals with the problems encountered when establishing such coordinate systems and the transformations between them. In addition, problems related to the modeling of the deformable earth are discussed. This paper is an updated version of the earlier work, Reference Coordinate Systems for Earth Dynamics: A Preview, by the author.

  10. Constraint-based integration of planning and scheduling for space-based observatory management

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Steven F.

    1994-01-01

    Progress toward the development of effective, practical solutions to space-based observatory scheduling problems within the HSTS scheduling framework is reported. HSTS was developed and originally applied in the context of the Hubble Space Telescope (HST) short-term observation scheduling problem. The work was motivated by the limitations of the current solution and, more generally, by the insufficiency of classical planning and scheduling approaches in this problem context. HSTS has subsequently been used to develop improved heuristic solution techniques in related scheduling domains and is currently being applied to develop a scheduling tool for the upcoming Submillimeter Wave Astronomy Satellite (SWAS) mission. The salient architectural characteristics of HSTS and their relationship to previous scheduling and AI planning research are summarized. Then, some key problem decomposition techniques underlying the integrated planning and scheduling approach to the HST problem are described; research results indicate that these techniques provide leverage in solving space-based observatory scheduling problems. Finally, more recently developed constraint-posting scheduling procedures and the current SWAS application focus are summarized.

  11. Scheduling in multibeam satellites with interfering zones

    NASA Astrophysics Data System (ADS)

    Gopal, I. S.; Wong, C. K.; Bonuccelli, M. A.

    1983-08-01

    The traffic scheduling problem in a satellite-switched time-division multiple-access (SS/TDMA) system with interfering beams is studied. A two-step approach to this problem is investigated, in which the first step is the assignment of orthogonal polarization to reduce the interference and the second step is the scheduling of traffic, taking into account the 'resultant' interference. It is shown that the first step can be solved in polynomial time in most cases, while the second step is proved to be NP-complete, even for very simple patterns. Several suboptimal algorithms are suggested for this second step, and it is shown by experimental trials on randomly generated traffic patterns that on the average these algorithms produce close to optimal solutions.

  12. A differentiable dual approach to large scale 01-problems

    SciTech Connect

    Nou, A.; Lindberg, P.O.

    1994-12-31

    We present a differentiable dual approach to binary optimization problems. We solve a sequence of, parameterized, differentiable dual problems, which in the limit converge to the standard Lagrangean dual. We start with a large parameter value, giving us a very smooth dual problem. For a given parameter value the dual is maximized by a coordinate ascent method. The parameter is successively decreased towards zero, yielding, in the limit, a good estimate of the optimum value of the LP-relaxation. In addition, the relaxed primal solutions, interpreted as probabilities, enable us to generate near optimal primal feasible solutions. The method is applied to a set of set-covering problems originating from airline crew scheduling.

  13. The In Vitro Fertilization Scheduler at the University of North Carolina and Its Satellite Clinics

    PubMed Central

    Cahill, Laurie; Bailey, Linda

    1988-01-01

    To facilitate scheduling of in vitro fertilization and gamete intrafallopian tube transfer (IVF-GIFT) patients, we developed a program (the IVF Scheduler) which uses the starting date of the last menstrual period, the number of days between starting dates of the last two menstrual periods (cycle length), and the month of requested treatment to calculate the date on which IVF-GIFT treatment should begin. Since cycle length is variable for each patient this calculation is performed for each of the three cycles prior to treatment so a multi-service, multi-site team can efficiently plan its operation. The program is menu-driven for ease of use. Benefits include allowing the nurse-coordinator to adjust treatment schedules easily; the development of the Scheduler into a pre-admission chart for nursing notes; and the delegation of primary scheduling duties from the nurse-coordinator to the IVF-GIFT secretary.

  14. Automated Long - Term Scheduling for the SOFIA Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Civeit, Thomas

    2013-01-01

    The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project to develop and operate a gyro-stabilized 2.5-meter telescope in a Boeing 747SP. SOFIA's first science observations were made in December 2010. During 2011, SOFIA accomplished 30 flights in the "Early Science" program as well as a deployment to Germany. The new observing period, known as Cycle 1, is scheduled to begin in 2012. It includes 46 science flights grouped in four multi-week observing campaigns spread through a 13-month span. Automation of the flight scheduling process offers a major challenge to the SOFIA mission operations. First because it is needed to mitigate its relatively high cost per unit observing time compared to space-borne missions. Second because automated scheduling techniques available for ground-based and space-based telescopes are inappropriate for an airborne observatory. Although serious attempts have been made in the past to solve part of the problem, until recently mission operations staff was still manually scheduling flights. We present in this paper a new automated solution for generating SOFIA long-term schedules that will be used in operations from the Cycle 1 observing period. We describe the constraints that should be satisfied to solve the SOFIA scheduling problem in the context of real operations. We establish key formulas required to efficiently calculate the aircraft course over ground when evaluating flight schedules. We describe the foundations of the SOFIA long-term scheduler, the constraint representation, and the random search based algorithm that generates observation and instrument schedules. Finally, we report on how the new long-term scheduler has been used in operations to date.

  15. Automated long-term scheduling for the SOFIA airborne observatory

    NASA Astrophysics Data System (ADS)

    Civeit, Thomas

    The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project to develop and operate a gyro-stabilized 2.5-meter telescope in a Boeing 747SP. SOFIA's first science observations were made in December 2010. During 2011, SOFIA accomplished 30 flights in the “ Early Science” program as well as a deployment to Germany. The next observing period, known as Cycle 1, is scheduled to begin in late fall 2012. It includes 46 science flights grouped in four multi-week observing campaigns spread through a 13-month span. Automation of the flight scheduling process offers a major challenge to the SOFIA mission operations. First because it is needed to mitigate its relatively high cost per unit observing time compared to space-borne missions. Second because automated scheduling techniques available for ground-based and space-based telescopes are inappropriate for an airborne observatory. Although serious attempts have been made in the past to solve part of the problem, until recently mission operations staff was still manually scheduling flights. We present in this paper a new automated solution for generating SOFIA's long-term schedules. We describe the constraints that should be satisfied to solve the SOFIA scheduling problem in the context of real operations. We establish key formulas required to efficiently calculate the aircraft course over ground when evaluating flight schedules. We describe the foundations of the SOFIA long-term scheduler, the constraint representation, and the random search based algorithm that generates observation and instrument schedules. Finally, we report on how the new long-term scheduler has been used in operations to date.

  16. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  17. Effects of industrialization on working schedules.

    PubMed

    Kogi, K

    1976-12-01

    Recent increase in industrialization has resulted in attention being drawn to diversity of working schedules and their interrelation with content of work. The results of joint research revealed that adaptation to industrial jobs is made difficult because of urban conditions and modern work-control systems, such as workers in flexible-working-time systems who apparently favored regular daily working cycles. Long overtime work in smaller undertakings and the spread of shift systems are two important features of industrial work schedules, each being dominant among skilled and non-skilled jobs. Another important facet is the problem of intra-shift work-rest schedules significant for machine operations and vigilance tasks. It is suggested that phases of work that become intolerable are correlated with unnatural work rhythms. More emphasis should thus be laid on both phase-shifted work and non-self-governing work, the key factor being the relevance of attained data to real work in the whole course of schedules of work and rest.

  18. Quantifying Scheduling Challenges for Exascale System Software

    SciTech Connect

    Mondragon, Oscar; Bridges, Patrick G.; Jones, Terry R

    2015-01-01

    The move towards high-performance computing (HPC) ap- plications comprised of coupled codes and the need to dra- matically reduce data movement is leading to a reexami- nation of time-sharing vs. space-sharing in HPC systems. In this paper, we discuss and begin to quantify the perfor- mance impact of a move away from strict space-sharing of nodes for HPC applications. Specifically, we examine the po- tential performance cost of time-sharing nodes between ap- plication components, we determine whether a simple coor- dinated scheduling mechanism can address these problems, and we research how suitable simple constraint-based opti- mization techniques are for solving scheduling challenges in this regime. Our results demonstrate that current general- purpose HPC system software scheduling and resource al- location systems are subject to significant performance de- ciencies which we quantify for six representative applica- tions. Based on these results, we discuss areas in which ad- ditional research is needed to meet the scheduling challenges of next-generation HPC systems.

  19. Hierarchical scheduling method of UAV resources for emergency surveying

    NASA Astrophysics Data System (ADS)

    Zhang, Junxiao; Zhu, Qing; Shen, Fuqiang; Miao, Shuangxi; Cao, Zhenyu; Weng, Qiqiang

    2015-12-01

    Traditional mission scheduling methods are unable to meet the timeliness requirements of emergency surveying. Different size and overlaps of different missions lead to inefficient scheduling and poor mission returns. Especially for UAVs, based on their agile and flexible ability, the scheduling result becomes diversiform; as affected by environment and unmanned aerial vehicle performance, different scheduling will lead to different time costs and mission payoffs. An effective scheduling solution is to arrange the UAVs reasonably to complete as many as missions possible with better quality and satisfaction of different demands. This paper proposes a method for mission decomposition or aggregation to generate a mission unit for specific UAVs based on the spatio-temporal constraints of different missions and UAV observation ability demands. In this way, the problems of lack or redundancy of resource scheduling, which can be caused by mission overload, various information demands and spatial overlapping will be effectively reduced. Furthermore, the global efficiency evaluation function is built by considering typical scheduling objectives, such as mission returns, priority and load balancing of resources. Then, an improved ant colony algorithm is designed to acquire an optimal scheduling scheme and the dynamic adjustment strategy is employed. Finally, the correctness and validity are demonstrated by the simulation experiment.

  20. Coordinating Group report

    SciTech Connect

    Not Available

    1994-01-01

    In December 1992, western governors and four federal agencies established a Federal Advisory Committee to Develop On-site Innovative Technologies for Environmental Restoration and Waste Management (the DOIT Committee). The purpose of the Committee is to advise the federal government on ways to improve waste cleanup technology development and the cleanup of federal sites in the West. The Committee directed in January 1993 that information be collected from a wide range of potential stakeholders and that innovative technology candidate projects be identified, organized, set in motion, and evaluated to test new partnerships, regulatory approaches, and technologies which will lead to improve site cleanup. Five working groups were organized, one to develop broad project selection and evaluation criteria and four to focus on specific contaminant problems. A Coordinating Group comprised of working group spokesmen and federal and state representatives, was set up to plan and organize the routine functioning of these working groups. The working groups were charged with defining particular contaminant problems; identifying shortcomings in technology development, stakeholder involvement, regulatory review, and commercialization which impede the resolution of these problems; and identifying candidate sites or technologies which could serve as regional innovative demonstration projects to test new approaches to overcome the shortcomings. This report from the Coordinating Group to the DOIT Committee highlights the key findings and opportunities uncovered by these fact-finding working groups. It provides a basis from which recommendations from the DOIT Committee to the federal government can be made. It also includes observations from two public roundtables, one on commercialization and another on regulatory and institutional barriers impeding technology development and cleanup.

  1. Predit: A temporal predictive framework for scheduling systems

    NASA Technical Reports Server (NTRS)

    Paolucci, E.; Patriarca, E.; Sem, M.; Gini, G.

    1992-01-01

    Scheduling can be formalized as a Constraint Satisfaction Problem (CSP). Within this framework activities belonging to a plan are interconnected via temporal constraints that account for slack among them. Temporal representation must include methods for constraints propagation and provide a logic for symbolic and numerical deductions. In this paper we describe a support framework for opportunistic reasoning in constraint directed scheduling. In order to focus the attention of an incremental scheduler on critical problem aspects, some discrete temporal indexes are presented. They are also useful for the prediction of the degree of resources contention. The predictive method expressed through our indexes can be seen as a Knowledge Source for an opportunistic scheduler with a blackboard architecture.

  2. Dynamic scheduling and planning parallel observations on large Radio Telescope Arrays with the Square Kilometre Array in mind

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes

    2011-12-01

    Scheduling, the task of producing a time table for resources and tasks, is well-known to be a difficult problem the more resources are involved (a NP-hard problem). This is about to become an issue in Radio astronomy as observatories consisting of hundreds to thousands of telescopes are planned and operated. The Square Kilometre Array (SKA), which Australia and New Zealand bid to host, is aiming for scales where current approaches -- in construction, operation but also scheduling -- are insufficent. Although manual scheduling is common today, the problem is becoming complicated by the demand for (1) independent sub-arrays doing simultaneous observations, which requires the scheduler to plan parallel observations and (2) dynamic re-scheduling on changed conditions. Both of these requirements apply to the SKA, especially in the construction phase. We review the scheduling approaches taken in the astronomy literature, as well as investigate techniques from human schedulers and today's observatories. The scheduling problem is specified in general for scientific observations and in particular on radio telescope arrays. Also taken into account is the fact that the observatory may be oversubscribed, requiring the scheduling problem to be integrated with a planning process. We solve this long-term scheduling problem using a time-based encoding that works in the very general case of observation scheduling. This research then compares algorithms from various approaches, including fast heuristics from CPU scheduling, Linear Integer Programming and Genetic algorithms, Branch-and-Bound enumeration schemes. Measures include not only goodness of the solution, but also scalability and re-scheduling capabilities. In conclusion, we have identified a fast and good scheduling approach that allows (re-)scheduling difficult and changing problems by combining heuristics with a Genetic algorithm using block-wise mutation operations. We are able to explain and eradicate two problems in the

  3. 2007 Wholesale Power Rate Schedules : 2007 General Rate Schedule Provisions.

    SciTech Connect

    United States. Bonneville Power Administration.

    2006-11-01

    This schedule is available for the contract purchase of Firm Power to be used within the Pacific Northwest (PNW). Priority Firm (PF) Power may be purchased by public bodies, cooperatives, and Federal agencies for resale to ultimate consumers, for direct consumption, and for Construction, Test and Start-Up, and Station Service. Rates in this schedule are in effect beginning October 1, 2006, and apply to purchases under requirements Firm Power sales contracts for a three-year period. The Slice Product is only available for public bodies and cooperatives who have signed Slice contracts for the FY 2002-2011 period. Utilities participating in the Residential Exchange Program (REP) under Section 5(c) of the Northwest Power Act may purchase Priority Firm Power pursuant to the Residential Exchange Program. Rates under contracts that contain charges that escalate based on BPA's Priority Firm Power rates shall be based on the three-year rates listed in this rate schedule in addition to applicable transmission charges. This rate schedule supersedes the PF-02 rate schedule, which went into effect October 1, 2001. Sales under the PF-07 rate schedule are subject to BPA's 2007 General Rate Schedule Provisions (2007 GRSPs). Products available under this rate schedule are defined in the 2007 GRSPs. For sales under this rate schedule, bills shall be rendered and payments due pursuant to BPA's 2007 GRSPs and billing process.

  4. Schedule-induced licking during multiple schedules1

    PubMed Central

    Jacquet, Yasuko Filby

    1972-01-01

    Schedule-induced polydipsia was studied in rats bar pressing under two-component multiple schedules of food reinforcement. The first component of the multiple schedule was a variable-interval 1-min schedule throughout the experiment. The schedule comprising the second component was varied over blocks of sessions in terms of rate and magnitude of reinforcement, and was either variable-interval 3-min (one pellet), variable-interval 3-min (three pellets), variable-interval 1-min (one pellet), or extinction. Water intake per session varied with the rate of reinforcement in the schedule comprising the second component and was highest when the schedule was variable-interval 1-min. Both bar-pressing behavior and licking behavior showed behavioral interactions between the two components of the multiple schedules. With magnitude of reinforcement held constant, a matching relationship was observed between lick rate and reinforcement rate; the relative frequency of licks in the constant component matched the relative frequency of reinforcement in that component. Bar pressing, however, showed only a moderate degree of relativity matching. During the schedule-induced licking, a burst of licking followed each delivery of a pellet (post-prandial drinking). The duration of these bursts of licking was observed to be a function of the inter-reinforcement interval. PMID:16811598

  5. A Novel Particle Swarm Optimization Approach for Grid Job Scheduling

    NASA Astrophysics Data System (ADS)

    Izakian, Hesam; Tork Ladani, Behrouz; Zamanifar, Kamran; Abraham, Ajith

    This paper represents a Particle Swarm Optimization (PSO) algorithm, for grid job scheduling. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. In this paper we used a PSO approach for grid job scheduling. The scheduler aims at minimizing makespan and flowtime simultaneously. Experimental studies show that the proposed novel approach is more efficient than the PSO approach reported in the literature.

  6. Job Shop Scheduling Focusing on Role of Buffer

    NASA Astrophysics Data System (ADS)

    Hino, Rei; Kusumi, Tetsuya; Yoo, Jae-Kyu; Shimizu, Yoshiaki

    A scheduling problem is formulated in order to consistently manage each manufacturing resource, including machine tools, assembly robots, AGV, storehouses, material shelves, and so on. The manufacturing resources are classified into three types: producer, location, and mover. This paper focuses especially on the role of the buffer, and the differences among these types are analyzed. A unified scheduling formulation is derived from the analytical results based on the resource’s roles. Scheduling procedures based on dispatching rules are also proposed in order to numerically evaluate job shop-type production having finite buffer capacity. The influences of the capacity of bottle-necked production devices and the buffer on productivity are discussed.

  7. Spike: AI scheduling for Hubble Space Telescope after 18 months of orbital operations

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1992-01-01

    This paper is a progress report on the Spike scheduling system, developed by the Space Telescope Science Institute for long-term scheduling of Hubble Space Telescope (HST) observations. Spike is an activity-based scheduler which exploits artificial intelligence (AI) techniques for constraint representation and for scheduling search. The system has been in operational use since shortly after HST launch in April 1990. Spike was adopted for several other satellite scheduling problems; of particular interest was the demonstration that the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. We describe the recent progress made in scheduling search techniques, the lessons learned from early HST operations, and the application of Spike to other problem domains. We also describe plans for the future evolution of the system.

  8. 1993 Wholesale Power and Transmission Rate Schedules.

    SciTech Connect

    US Bonneville Power Administration

    1993-10-01

    Bonneville Power Administration 1993 Wholesale Power Rate Schedules and General Rate Schedule Provisions and 1993 Transmission Rate Schedules and General Transmission Rate Schedule Provisions, contained herein, were approved on an interim basis effective October 1, 1993. These rate schedules and provisions were approved by the Federal Energy Commission, United States Department of Energy, in September, 1993. These rate schedules and provisions supersede the Administration`s Wholesale Power Rate Schedules and General Rate Schedule Provisions and Transmission Rate Schedules and General Transmission Rate Schedule Provisions effective October 1, 1991.

  9. Solution and reasoning reuse in space planning and scheduling applications

    NASA Technical Reports Server (NTRS)

    Verfaillie, Gerard; Schiex, Thomas

    1994-01-01

    In the space domain, as in other domains, the CSP (Constraint Satisfaction Problems) techniques are increasingly used to represent and solve planning and scheduling problems. But these techniques have been developed to solve CSP's which are composed of fixed sets of variables and constraints, whereas many planning and scheduling problems are dynamic. It is therefore important to develop methods which allow a new solution to be rapidly found, as close as possible to the previous one, when some variables or constraints are added or removed. After presenting some existing approaches, this paper proposes a simple and efficient method, which has been developed on the basis of the dynamic backtracking algorithm. This method allows previous solution and reasoning to be reused in the framework of a CSP which is close to the previous one. Some experimental results on general random CSPs and on operation scheduling problems for remote sensing satellites are given.

  10. Automated Planning and Scheduling for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Jonsson, Ari; Knight, Russell

    2005-01-01

    Research Trends: a) Finite-capacity scheduling under more complex constraints and increased problem dimensionality (subcontracting, overtime, lot splitting, inventory, etc.) b) Integrated planning and scheduling. c) Mixed-initiative frameworks. d) Management of uncertainty (proactive and reactive). e) Autonomous agent architectures and distributed production management. e) Integration of machine learning capabilities. f) Wider scope of applications: 1) analysis of supplier/buyer protocols & tradeoffs; 2) integration of strategic & tactical decision-making; and 3) enterprise integration.

  11. The LSST OCS scheduler design

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco; Schumacher, German

    2014-08-01

    The Large Synoptic Survey Telescope (LSST) is a complex system of systems with demanding performance and operational requirements. The nature of its scientific goals requires a special Observatory Control System (OCS) and particularly a very specialized automatic Scheduler. The OCS Scheduler is an autonomous software component that drives the survey, selecting the detailed sequence of visits in real time, taking into account multiple science programs, the current external and internal conditions, and the history of observations. We have developed a SysML model for the OCS Scheduler that fits coherently in the OCS and LSST integrated model. We have also developed a prototype of the Scheduler that implements the scheduling algorithms in the simulation environment provided by the Operations Simulator, where the environment and the observatory are modeled with real weather data and detailed kinematics parameters. This paper expands on the Scheduler architecture and the proposed algorithms to achieve the survey goals.

  12. Scheduling and Delivering Aircraft to Departure Fixes in the NY Metroplex with Controller-Managed Spacing Tools

    NASA Technical Reports Server (NTRS)

    Chevalley, Eric; Parke, Bonny; Kraut, Josh M.; Bienert, Nancy; Omar, Faisal; Palmer, Everett A.

    2015-01-01

    In this paper, successful Time-Based Flow Management (TBFM) scheduling systems for arrivals are considered and adapted to apply to departures. We present a concept of operations that integrates Controller-Managed Spacing tools for departures (CMS-D) with existing tactical departure scheduling tools to coordinate demand at departure fixes in a metroplex environment. We tested our concept in a Human-in-the-Loop simulation and compared the effect of two scheduling conditions: 1) "Departure Scheduling" consisting of an emulation of the Integrated Departure and Arrival Capability (IDAC) where Towers and a Planner (Traffic Management Coordinator at the appropriate facility) coordinate aircraft scheduled takeoff times to departure fixes; and 2) "Arrival Sensitive Departure Scheduling" where, in addition, the Tower and Planner also consider arrival Scheduled Time of Arrivals (STAs) at the airport's dependent runway. Results indicate little difference between the two scheduling conditions, but a large difference between the No Tools and the two scheduling conditions with CMS-D tools. The scheduling/CMS-D tools conditions markedly reduced heading, speed clearances, and workload for controllers who were merging flows at the departure fixes. In the tool conditions, departure controllers conditioned departures earlier rather than later when aircraft were tied near the departure fixes. In the scheduling/CMS-D tools conditions, departures crossed the departure fixes 50 seconds earlier and with an 8% error rate (consisting of time ahead or behind desired time of arrival) compared to a 19% error rate in the No Tool condition. Two exploratory runs showed that similar beneficial effects can be obtained only with the CMS-D tools without scheduling takeoff times, but at the cost of a somewhat higher workload for controllers, indicating the benefits of pre-departure scheduling of aircraft with minimal delays. Hence, we found that CMS-D tools were very beneficial in the metroplex

  13. Learning Search Control Knowledge for Deep Space Network Scheduling

    NASA Technical Reports Server (NTRS)

    Gratch, Jonathan; Chien, Steve; DeJong, Gerald

    1993-01-01

    While the general class of most scheduling problems is NP-hard in worst-case complexity, in practice, for specific distributions of problems and constraints, domain-specific solutions have been shown to perform in much better than exponential time.

  14. A Comparison of Dense-to-Lean and Fixed Lean Schedules of Alternative Reinforcement and Extinction

    ERIC Educational Resources Information Center

    Hagopian, Louis P.; Toole, Lisa M.; Long, Ethan S.; Bowman, Lynn G.; Lieving, Gregory A.

    2004-01-01

    Behavior-reduction interventions typically employ dense schedules of alternative reinforcement in conjunction with operant extinction for problem behavior. After problem behavior is reduced in the initial treatment stages, schedule thinning is routinely conducted to make the intervention more practical in natural environments. In the current…

  15. A Constraint Integer Programming Approach for Resource-Constrained Project Scheduling

    NASA Astrophysics Data System (ADS)

    Berthold, Timo; Heinz, Stefan; Lübbecke, Marco E.; Möhring, Rolf H.; Schulz, Jens

    We propose a hybrid approach for solving the resource-constrained project scheduling problem which is an extremely hard to solve combinatorial optimization problem of practical relevance. Jobs have to be scheduled on (renewable) resources subject to precedence constraints such that the resource capacities are never exceeded and the latest completion time of all jobs is minimized.

  16. COMPASS: An Ada based scheduler

    NASA Technical Reports Server (NTRS)

    Mcmahon, Mary Beth; Culbert, Chris

    1992-01-01

    COMPASS is a generic scheduling system developed by McDonnell Douglas and funded by the Software Technology Branch of NASA Johnson Space Center. The motivation behind COMPASS is to illustrate scheduling technology and provide a basis from which custom scheduling systems can be built. COMPASS was written in Ada to promote readability and to conform to DOD standards. COMPASS has some unique characteristics that distinguishes it from commercial products. This paper discusses these characteristics and uses them to illustrate some differences between scheduling tools.

  17. Feature Clustering for Accelerating Parallel Coordinate Descent

    SciTech Connect

    Scherrer, Chad; Tewari, Ambuj; Halappanavar, Mahantesh; Haglin, David J.

    2012-12-06

    We demonstrate an approach for accelerating calculation of the regularization path for L1 sparse logistic regression problems. We show the benefit of feature clustering as a preconditioning step for parallel block-greedy coordinate descent algorithms.

  18. Neurosimulation modeling of a scheduled bus route

    SciTech Connect

    Lee, S.G.; Khoo, L.P.

    1997-05-01

    In a densely built-up urban society, operators of public bus services are faced with the recurrent problem of providing timely and reliable service. Wile they have no control over dynamically changing extraneous factors (such as passenger loads or road conditions) that may suddenly degrade the quality of the service provided, it is nonetheless desirable for management to study the extent to which these factors affect their business, and what measures, if any, can be adopted to neutralize them. This paper discusses how a simulation model of a bus route, embellished by a neural network, was created to model the historical pattern of the inputs (namely, passenger loads and road conditions) that affect the overall scheduled terminus-to-terminus time. Thus, in a case study of a bus route running from a suburb to the city center, it was found that the neurosimulation model could predict the cumulative terminus-to-terminus times better than a conventional simulation model could. A software module, embedded into the neurosimulation model for the purposes of speed regulation, was able to minimize the deviation of the bus service from schedule. When intentional delays were further introduced into the bus route, it was discovered that the speed regulator was more effective the longer the delay, and the further the bus traveled into the bus route. There is potential in applying neural computing in a dynamic bus scheduling problem such as the one discussed here.

  19. Knowledge based tools for Hubble Space Telescope planning and scheduling: Constraints and strategies

    NASA Technical Reports Server (NTRS)

    Miller, Glenn; Johnston, Mark; Vick, Shon; Sponsler, Jeff; Lindenmayer, Kelly

    1988-01-01

    The Hubble Space Telescope (HST) presents an especially challenging scheduling problem since a year's observing program encompasses tens of thousands of exposures facing numerous coupled constraints. Recent progress in the development of planning and scheduling tools is discussed which augment the existing HST ground system. General methods for representing activities, constraints, and constraint satisfaction, and time segmentation were implemented in a scheduling testbed. The testbed permits planners to evaluate optimal scheduling time intervals, calculate resource usage, and to generate long and medium range plans. Graphical displays of activities, constraints, and plans are an important feature of the system. High-level scheduling strategies using rule based and neural net approaches were implemented.

  20. Scheduling language and algorithm development study. Volume 1, phase 2: Design considerations for a scheduling and resource allocation system

    NASA Technical Reports Server (NTRS)

    Morrell, R. A.; Odoherty, R. J.; Ramsey, H. R.; Reynolds, C. C.; Willoughby, J. K.; Working, R. D.

    1975-01-01

    Data and analyses related to a variety of algorithms for solving typical large-scale scheduling and resource allocation problems are presented. The capabilities and deficiencies of various alternative problem solving strategies are discussed from the viewpoint of computer system design.

  1. Artificial intelligence for the CTA Observatory scheduler

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro

    2014-08-01

    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint

  2. Optimum connection management scheduling

    NASA Astrophysics Data System (ADS)

    Kadar, Ivan

    2000-08-01

    Connection Management plays a key role in both distributed 'local' network-centric and 'globally' connected info- centric systems. The role of Connection Management is to provide seamless demand-based sharing of the information products. For optimum distributed information fusion performance, these systems must minimize communications delays and maximize message throughput, and at the same time take into account relative-sensors-targets geometrical constraints and data pedigree. In order to achieve overall distributed 'network' effectiveness, these systems must be adaptive, and be able to distribute data s needed in real- time. A system concept will be described which provides optimum capacity-based information scheduling. A specific example, based on a satellite channel, is used to illustrate simulated performance results and their effects on fusion systems performance.

  3. Multiple arm coordination using concurrent processing

    NASA Technical Reports Server (NTRS)

    Basta, Robert A.

    1987-01-01

    The use of concurrent processing for robot arm coordination is considered, and a hierarchically structured set of routines for the completion of coordinated tasks is discussed. Concurrent programming controls interacting concurrent processes by providing techniques to handle the problems of mutual exclusion, synchronization, and communication. The process is demonstrated for the example of the producer-consumer problem. Software supporting a concurrent environment to control a robotic system is being developed in which parallel rather than sequential thought processes are used.

  4. Two-machine flow shop scheduling integrated with preventive maintenance planning

    NASA Astrophysics Data System (ADS)

    Wang, Shijin; Liu, Ming

    2016-02-01

    This paper investigates an integrated optimisation problem of production scheduling and preventive maintenance (PM) in a two-machine flow shop with time to failure of each machine subject to a Weibull probability distribution. The objective is to find the optimal job sequence and the optimal PM decisions before each job such that the expected makespan is minimised. To investigate the value of integrated scheduling solution, computational experiments on small-scale problems with different configurations are conducted with total enumeration method, and the results are compared with those of scheduling without maintenance but with machine degradation, and individual job scheduling combined with independent PM planning. Then, for large-scale problems, four genetic algorithm (GA) based heuristics are proposed. The numerical results with several large problem sizes and different configurations indicate the potential benefits of integrated scheduling solution and the results also show that proposed GA-based heuristics are efficient for the integrated problem.

  5. A Comparison of Techniques for Scheduling Fleets of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    Earth observing satellite (EOS) scheduling is a complex real-world domain representative of a broad class of over-subscription scheduling problems. Over-subscription problems are those where requests for a facility exceed its capacity. These problems arise in a wide variety of NASA and terrestrial domains and are .XI important class of scheduling problems because such facilities often represent large capital investments. We have run experiments comparing multiple variants of the genetic algorithm, hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on two variants of a realistically-sized model of the EOS scheduling problem. These are implemented as permutation-based methods; methods that search in the space of priority orderings of observation requests and evaluate each permutation by using it to drive a greedy scheduler. Simulated annealing performs best and random mutation operators outperform our squeaky (more intelligent) operator. Furthermore, taking smaller steps towards the end of the search improves performance.

  6. Astro-E's Mission Independent Scheduling Suite

    NASA Astrophysics Data System (ADS)

    Antunes, A.; Saunders, A.; Hilton, P.

    The next generation of Mission Scheduling software will be cheaper, easier to customize for a mission, and faster than current planning systems. TAKO (``Timeline Assembler, Keyword Oriented'', or in Japanese, ``octopus'') is our in-progress suite of software that takes database input and produces mission timelines. Our approach uses openly available hardware, software, and compilers, and applies current scheduling and N-body methods to reduce the scope of the problem. A flexible set of keywords lets the user define mission-wide and individual target constraints, and alter them on-the-fly. Our goal is that TAKO will be easily adapted for many missions, and will be usable with a minimum of training. The especially pertinent deadline of Astro-E's launch motivates us to convert theory into software within 2 years. The design choices, methods for reducing the data and providing flexibility, and steps to get TAKO up and running for any mission are discussed.

  7. Grid scheduling divisible loads from two sources

    SciTech Connect

    Moges, M.A.; Yu, D.; Robertazzi, T.

    2009-07-10

    To date closed form solutions for optimal finish time and job allocation are largely obtained only for network topologies with a single load originating (root) processor. However in large-scale data intensive problems with geographically distributed resources, load is generated from multiple sources. This paper introduces a new divisible load scheduling strategy for single level tree networks with two load originating processors. Solutions for an optimal allocation of fractions of load to nodes in single level tree networks are obtained via linear programming. A unique scheduling strategy that allows one to obtain closed form solutions for the optimal finish time and load allocation for each processor in the network is also presented. The tradeoff between linear programming and closed form solutions in terms of underlying assumptions is examined. Finally, a performance evaluation of a two source homogeneous single level tree network with concurrent communication strategy is presented.

  8. Visually Exploring Transportation Schedules.

    PubMed

    Palomo, Cesar; Guo, Zhan; Silva, Cláudio T; Freire, Juliana

    2016-01-01

    Public transportation schedules are designed by agencies to optimize service quality under multiple constraints. However, real service usually deviates from the plan. Therefore, transportation analysts need to identify, compare and explain both eventual and systemic performance issues that must be addressed so that better timetables can be created. The purely statistical tools commonly used by analysts pose many difficulties due to the large number of attributes at trip- and station-level for planned and real service. Also challenging is the need for models at multiple scales to search for patterns at different times and stations, since analysts do not know exactly where or when relevant patterns might emerge and need to compute statistical summaries for multiple attributes at different granularities. To aid in this analysis, we worked in close collaboration with a transportation expert to design TR-EX, a visual exploration tool developed to identify, inspect and compare spatio-temporal patterns for planned and real transportation service. TR-EX combines two new visual encodings inspired by Marey's Train Schedule: Trips Explorer for trip-level analysis of frequency, deviation and speed; and Stops Explorer for station-level study of delay, wait time, reliability and performance deficiencies such as bunching. To tackle overplotting and to provide a robust representation for a large numbers of trips and stops at multiple scales, the system supports variable kernel bandwidths to achieve the level of detail required by users for different tasks. We justify our design decisions based on specific analysis needs of transportation analysts. We provide anecdotal evidence of the efficacy of TR-EX through a series of case studies that explore NYC subway service, which illustrate how TR-EX can be used to confirm hypotheses and derive new insights through visual exploration.

  9. Conforming to coordinate: children use majority information for peer coordination.

    PubMed

    Grueneisen, Sebastian; Wyman, Emily; Tomasello, Michael

    2015-03-01

    Humans are constantly required to coordinate their behaviour with others. As this often relies on everyone's convergence on the same strategy (e.g., driving on the left side of the road), a common solution is to conform to majority behaviour. In this study, we presented 5-year-old children with a coordination problem: To retrieve some rewards, they had to choose the same of four options as a peer partner--in reality a stooge--whose decision they were unable to see. Before making a choice, they watched a video showing how other children from their partner's peer group had behaved; a majority chose the same option and a minority chose a different one. In a control condition, children watched the same video but could then retrieve the reward irrespective of their partner's choice (i.e., no coordination was necessary). Children followed the majority more often when coordination was required. Moreover, conformers mostly justified their choices by referring to the majority from the video demonstration. This study is the first to show that young children are able to strategically coordinate decisions with peers by conforming to the majority.

  10. Modeling the Cray memory scheduler

    SciTech Connect

    Wickham, K.L.; Litteer, G.L.

    1992-04-01

    This report documents the results of a project to evaluate low cost modeling and simulation tools when applied to modeling the Cray memory scheduler. The specific tool used is described and the basics of the memory scheduler are covered. Results of simulations using the model are discussed and a favorable recommendation is made to make more use of this inexpensive technology.

  11. Block Schedule: Breaking the Barriers.

    ERIC Educational Resources Information Center

    West, Mike

    As of 1996, Chaparral High School in Las Vegas, Nevada, was in the fourth year of a radical restructuring effort. The school changed from a 6-period day, composed of 51-minute periods, to an alternating day schedule, composed of 3 102-minute periods per day. This report describes how the school developed and implemented the new schedule. Faculty…

  12. Flexible Work Schedules. ERIC Digest.

    ERIC Educational Resources Information Center

    Kerka, Sandra

    Flexible work schedules are one response to changes in the composition of the work force, new life-styles, and changes in work attitudes. Types of alternative work schedules are part-time and temporary employment, job sharing, and flextime. Part-time workers are a diverse group--women, the very young, and older near-retirees. Although part-time…

  13. CABINS: Case-based interactive scheduler

    NASA Technical Reports Server (NTRS)

    Miyashita, Kazuo; Sycara, Katia

    1992-01-01

    In this paper we discuss the need for interactive factory schedule repair and improvement, and we identify case-based reasoning (CBR) as an appropriate methodology. Case-based reasoning is the problem solving paradigm that relies on a memory for past problem solving experiences (cases) to guide current problem solving. Cases similar to the current case are retrieved from the case memory, and similarities and differences of the current case to past cases are identified. Then a best case is selected, and its repair plan is adapted to fit the current problem description. If a repair solution fails, an explanation for the failure is stored along with the case in memory, so that the user can avoid repeating similar failures in the future. So far we have identified a number of repair strategies and tactics for factory scheduling and have implemented a part of our approach in a prototype system, called CABINS. As a future work, we are going to scale up CABINS to evaluate its usefulness in a real manufacturing environment.

  14. Scheduling Software for MS-DOS Microcomputers.

    ERIC Educational Resources Information Center

    Carlson, David H.; Prior, Barbara

    1991-01-01

    Identifies four microcomputer-based software packages for scheduling and evaluates their usefulness for scheduling employees in a library setting. Evaluation criteria are applied to (1) Schedule Master, from Schedule Master Corporation; (2) Schedule Plus, from Cyclesoft, Inc.; (3) Who Works When, from Newport Systems; and (4) Working Hours, from…

  15. Solve Your Scheduling Puzzle without a Computer.

    ERIC Educational Resources Information Center

    Toy, Steve

    1982-01-01

    The small Lone Star school district in Otis (Colorado) developed a year-long process for creating its master course schedule. The scheduling process includes a needs assessment, a curriculum scheduling committee of teachers and students, a trial run of the schedule, and board approval of the master schedule. (RW)

  16. Scheduling real-time, periodic jobs using imprecise results

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Natarajan, Swaminathan

    1987-01-01

    A process is called a monotone process if the accuracy of its intermediate results is non-decreasing as more time is spent to obtain the result. The result produced by a monotone process upon its normal termination is the desired result; the error in this result is zero. External events such as timeouts or crashes may cause the process to terminate prematurely. If the intermediate result produced by the process upon its premature termination is saved and made available, the application may still find the result unusable and, hence, acceptable; such a result is said to be an imprecise one. The error in an imprecise result is nonzero. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. This problem differs from the traditional scheduling problems since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result. Consequently, the amounts of processor time assigned to tasks in a valid schedule can be less than the amounts of time required to complete the tasks. A meaningful formulation of this problem taking into account the quality of the overall result is discussed. Three algorithms for scheduling jobs for which the effects of errors in results produced in different periods are not cumulative are described, and their relative merits are evaluated.

  17. The APT/ERE planning and scheduling manifesto

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John; Swanson, Keith; Philips, Andy; Levinson, Rich

    1991-01-01

    The Entropy Reduction Engine, ERE project, is focusing on the construction of integrated planning and scheduling systems. Specifically, the project is studying the problem of integrating planning and scheduling in the context of the closed loop plan use. The results of this research are particularly relevant when there is some element of dynamism in the environment, and thus some chance that a previously formed plan will fail. After a preliminary study of the APT management and control problem, it was felt that it presents an excellent opportunity to show some of the ERE Project's technical results. Of course, the alignment between technology and problem is not perfect, so planning and scheduling for APTs presents some new and difficult challenges as well.

  18. A new distributed systems scheduling algorithm: a swarm intelligence approach

    NASA Astrophysics Data System (ADS)

    Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi

    2011-12-01

    The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.

  19. Optimal physicians schedule in an Intensive Care Unit

    NASA Astrophysics Data System (ADS)

    Hidri, L.; Labidi, M.

    2016-05-01

    In this paper, we consider a case study for the problem of physicians scheduling in an Intensive Care Unit (ICU). The objective is to minimize the total overtime under complex constraints. The considered ICU is composed of three buildings and the physicians are divided accordingly into six teams. The workload is assigned to each team under a set of constraints. The studied problem is composed of two simultaneous phases: composing teams and assigning the workload to each one of them. This constitutes an additional major hardness compared to the two phase's process: composing teams and after that assigning the workload. The physicians schedule in this ICU is used to be done manually each month. In this work, the studied physician scheduling problem is formulated as an integer linear program and solved optimally using state of the art software. The preliminary experimental results show that 50% of the overtime can be saved.

  20. Intercell scheduling: A negotiation approach using multi-agent coalitions

    NASA Astrophysics Data System (ADS)

    Tian, Yunna; Li, Dongni; Zheng, Dan; Jia, Yunde

    2016-10-01

    Intercell scheduling problems arise as a result of intercell transfers in cellular manufacturing systems. Flexible intercell routes are considered in this article, and a coalition-based scheduling (CBS) approach using distributed multi-agent negotiation is developed. Taking advantage of the extended vision of the coalition agents, the global optimization is improved and the communication cost is reduced. The objective of the addressed problem is to minimize mean tardiness. Computational results show that, compared with the widely used combinatorial rules, CBS provides better performance not only in minimizing the objective, i.e. mean tardiness, but also in minimizing auxiliary measures such as maximum completion time, mean flow time and the ratio of tardy parts. Moreover, CBS is better than the existing intercell scheduling approach for the same problem with respect to the solution quality and computational costs.

  1. Astronaut Office Scheduling System Software

    NASA Technical Reports Server (NTRS)

    Brown, Estevancio

    2010-01-01

    AOSS is a highly efficient scheduling application that uses various tools to schedule astronauts weekly appointment information. This program represents an integration of many technologies into a single application to facilitate schedule sharing and management. It is a Windows-based application developed in Visual Basic. Because the NASA standard office automation load environment is Microsoft-based, Visual Basic provides AO SS developers with the ability to interact with Windows collaboration components by accessing objects models from applications like Outlook and Excel. This also gives developers the ability to create newly customizable components that perform specialized tasks pertaining to scheduling reporting inside the application. With this capability, AOSS can perform various asynchronous tasks, such as gathering/ sending/ managing astronauts schedule information directly to their Outlook calendars at any time.

  2. The GBT Dynamic Scheduling System: A New Scheduling Paradigm

    NASA Astrophysics Data System (ADS)

    O'Neil, K.; Balser, D.; Bignell, C.; Clark, M.; Condon, J.; McCarty, M.; Marganian, P.; Shelton, A.; Braatz, J.; Harnett, J.; Maddalena, R.; Mello, M.; Sessoms, E.

    2009-09-01

    The Robert C. Byrd Green Bank Telescope (GBT) is implementing a new Dynamic Scheduling System (DSS) designed to maximize the observing efficiency of the telescope while ensuring that none of the flexibility and ease of use of the GBT is harmed and that the data quality of observations is not adversely affected. To accomplish this, the GBT DSS is implementing a dynamic scheduling system which schedules observers, rather than running scripts. The DSS works by breaking each project into one or more sessions which have associated observing criteria such as RA, Dec, and frequency. Potential observers may also enter dates when members of their team will not be available for either on-site or remote observing. The scheduling algorithm uses those data, along with the predicted weather, to determine the most efficient schedule for the GBT. The DSS provides all observers at least 24 hours notice of their upcoming observing. In the uncommon (< 20%) case where the actual weather does not match the predictions, a backup project, chosen from the database, is run instead. Here we give an overview of the GBT DSS project, including the ranking and scheduling algorithms for the sessions, the scheduling probabilities generation, the web framework for the system, and an overview of the results from the beta testing which were held from June - September, 2008.

  3. Contingency and stimulus change in chained schedules of reinforcement.

    PubMed

    Catania, A C; Yohalem, R; Silverman, P J

    1980-03-01

    Higher rates of pecking were maintained by pigeons in the middle component of three-component chained fixed-interval schedules than in that component of corresponding multiple schedules (two extinction components followed by a fixed-interval component). This rate difference did not occur in equivalent tandem and mixed schedules, in which a single stimulus was correlated with the three components. The higher rates in components of chained schedules demonstrate a reinforcing effect of the stimulus correlated with the next component; the acquired functions of this stimulus make the vocabulary of conditioned reinforcement appropriate. Problems in defining conditioned reinforcement arise not from difficulties in demonstrating reinforcing effects but from disagreements about which experimental operations allow such reinforcing effects to be called conditioned.

  4. Movement and Coordination

    MedlinePlus

    ... will seem to be continually on the go—running, kicking, climbing, jumping. His attention span, which was ... his coordination. In the months ahead, your child’s running will become smoother and more coordinated. He’ll ...

  5. Design tool for multiprocessor scheduling and evaluation of iterative dataflow algorithms

    NASA Technical Reports Server (NTRS)

    Jones, Robert L., III

    1995-01-01

    A graph-theoretic design process and software tool is defined for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. Graph-search algorithms and analysis techniques are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool applies the design process to a given problem and includes performance optimization through the inclusion of additional precedence constraints among the schedulable tasks.

  6. Immunization Schedules for Infants and Children

    MedlinePlus

    ... ACIP Vaccination Recommendations Why Immunize? Vaccines: The Basics Immunization Schedules for Infants and Children Recommend on Facebook ... any questions. View or Print a Schedule Recommended Immunizations for Children (Birth through 6 years) Schedule for ...

  7. Blood Glucose Levels and Problem Behavior

    ERIC Educational Resources Information Center

    Valdovinos, Maria G.; Weyand, David

    2006-01-01

    The relationship between varying blood glucose levels and problem behavior during daily scheduled activities was examined. The effects that varying blood glucose levels had on problem behavior during daily scheduled activities were examined. Prior research has shown that differing blood glucose levels can affect behavior and mood. Results of this…

  8. A dynamic scheduling method of Earth-observing satellites by employing rolling horizon strategy.

    PubMed

    Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma

    2013-01-01

    Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments.

  9. Analysis Coordinator Report

    NASA Technical Reports Server (NTRS)

    Nothnagel, A.

    2013-01-01

    We present the IVS analysis coordination issues of 2012. The IVS Analysis Coordinator is responsible for generating and disseminating the official IVS products. This requires consistency of the input data by strict adherence to models and conventions. The term of the current IVS Analysis Coordinator will end on February 28, 2013.

  10. Processing Coordination Ambiguity

    ERIC Educational Resources Information Center

    Engelhardt, Paul E.; Ferreira, Fernanda

    2010-01-01

    We examined temporarily ambiguous coordination structures such as "put the butter in the bowl and the pan on the towel." Minimal Attachment predicts that the ambiguous noun phrase "the pan" will be interpreted as a noun-phrase coordination structure because it is syntactically simpler than clausal coordination. Constraint-based theories assume…

  11. Literacy Coordinators' Handbook.

    ERIC Educational Resources Information Center

    Department for Education and Skills, London (England).

    This handbook is designed to provide support for England's National Literacy Strategy's Literacy Coordinators leading and coordinating literacy across the school. The handbook is designed as a working document and will contain additional materials, LEA (local education authorities) guidance, and additional papers which Coordinators may choose to…

  12. Scheduling periodic jobs that allow imprecise results

    NASA Technical Reports Server (NTRS)

    Chung, Jen-Yao; Liu, Jane W. S.; Lin, Kwei-Jay

    1990-01-01

    The problem of scheduling periodic jobs in hard real-time systems that support imprecise computations is discussed. Two workload models of imprecise computations are presented. These models differ from traditional models in that a task may be terminated any time after it has produced an acceptable result. Each task is logically decomposed into a mandatory part followed by an optional part. In a feasible schedule, the mandatory part of every task is completed before the deadline of the task. The optional part refines the result produced by the mandatory part to reduce the error in the result. Applications are classified as type N and type C, according to undesirable effects of errors. The two workload models characterize the two types of applications. The optional parts of the tasks in an N job need not ever be completed. The resulting quality of each type-N job is measured in terms of the average error in the results over several consecutive periods. A class of preemptive, priority-driven algorithms that leads to feasible schedules with small average error is described and evaluated.

  13. Scheduling Aircraft Landings under Constrained Position Shifting

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Hamsa; Chandran, Bala

    2006-01-01

    Optimal scheduling of airport runway operations can play an important role in improving the safety and efficiency of the National Airspace System (NAS). Methods that compute the optimal landing sequence and landing times of aircraft must accommodate practical issues that affect the implementation of the schedule. One such practical consideration, known as Constrained Position Shifting (CPS), is the restriction that each aircraft must land within a pre-specified number of positions of its place in the First-Come-First-Served (FCFS) sequence. We consider the problem of scheduling landings of aircraft in a CPS environment in order to maximize runway throughput (minimize the completion time of the landing sequence), subject to operational constraints such as FAA-specified minimum inter-arrival spacing restrictions, precedence relationships among aircraft that arise either from airline preferences or air traffic control procedures that prevent overtaking, and time windows (representing possible control actions) during which each aircraft landing can occur. We present a Dynamic Programming-based approach that scales linearly in the number of aircraft, and describe our computational experience with a prototype implementation on realistic data for Denver International Airport.

  14. Optimized Treatment Schedules for Chronic Myeloid Leukemia

    PubMed Central

    He, Qie; Dingli, David; Foo, Jasmine; Leder, Kevin Zox

    2016-01-01

    Over the past decade, several targeted therapies (e.g. imatinib, dasatinib, nilotinib) have been developed to treat Chronic Myeloid Leukemia (CML). Despite an initial response to therapy, drug resistance remains a problem for some CML patients. Recent studies have shown that resistance mutations that preexist treatment can be detected in a substantial number of patients, and that this may be associated with eventual treatment failure. One proposed method to extend treatment efficacy is to use a combination of multiple targeted therapies. However, the design of such combination therapies (timing, sequence, etc.) remains an open challenge. In this work we mathematically model the dynamics of CML response to combination therapy and analyze the impact of combination treatment schedules on treatment efficacy in patients with preexisting resistance. We then propose an optimization problem to find the best schedule of multiple therapies based on the evolution of CML according to our ordinary differential equation model. This resulting optimization problem is nontrivial due to the presence of ordinary different equation constraints and integer variables. Our model also incorporates drug toxicity constraints by tracking the dynamics of patient neutrophil counts in response to therapy. We determine optimal combination strategies that maximize time until treatment failure on hypothetical patients, using parameters estimated from clinical data in the literature. PMID:27764087

  15. CARMENES instrument control system and operational scheduler

    NASA Astrophysics Data System (ADS)

    Garcia-Piquer, Alvaro; Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Gesa, Lluis; Morales, Juan Carlos; Pérez-Calpena, Ana; Seifert, Walter; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, José A.; Reiners, Ansgar

    2014-07-01

    The main goal of the CARMENES instrument is to perform high-accuracy measurements of stellar radial velocities (1m/s) with long-term stability. CARMENES will be installed in 2015 at the 3.5 m telescope in the Calar Alto Observatory (Spain) and it will be equipped with two spectrographs covering from the visible to the near-infrared. It will make use of its near-IR capabilities to observe late-type stars, whose peak of the spectral energy distribution falls in the relevant wavelength interval. The technology needed to develop this instrument represents a challenge at all levels. We present two software packages that play a key role in the control layer for an efficient operation of the instrument: the Instrument Control System (ICS) and the Operational Scheduler. The coordination and management of CARMENES is handled by the ICS, which is responsible for carrying out the operations of the different subsystems providing a tool to operate the instrument in an integrated manner from low to high user interaction level. The ICS interacts with the following subsystems: the near-IR and visible channels, composed by the detectors and exposure meters; the calibration units; the environment sensors; the front-end electronics; the acquisition and guiding module; the interfaces with telescope and dome; and, finally, the software subsystems for operational scheduling of tasks, data processing, and data archiving. We describe the ICS software design, which implements the CARMENES operational design and is planned to be integrated in the instrument by the end of 2014. The CARMENES operational scheduler is the second key element in the control layer described in this contribution. It is the main actor in the translation of the survey strategy into a detailed schedule for the achievement of the optimization goals. The scheduler is based on Artificial Intelligence techniques and computes the survey planning by combining the static constraints that are known a priori (i.e., target

  16. Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.

    PubMed

    Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.

  17. Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Fox, Mark; Tate, Austin; Zweben, Monte

    1992-01-01

    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques.

  18. Development of Improved Graphical Displays for an Advanced Outage Control Center, Employing Human Factors Principles for Outage Schedule Management

    SciTech Connect

    St Germain, Shawn Walter; Farris, Ronald Keith; Thomas, Kenneth David

    2015-09-01

    The long-term viability of existing nuclear power plants in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are somewhat challenging to coordinate; therefore, finding ways to improve refueling outage performance, while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center (AOCC) project is a research and development (R&D) demonstration activity under the LWRS Program. LWRS is an R&D program that works closely with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current fleet of NPPs. As such, the LWRS Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, INL is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. The overall focus is on developing an AOCC with the following capabilities that enables plant and OCC staff to; Collaborate in real-time to address emergent issues; Effectively communicate outage status to all workers involved in the outage; Effectively communicate discovered conditions in the field to the OCC; Provide real-time work status; Provide automatic pending support notifications

  19. Playing Games with Optimal Competitive Scheduling

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Crawford, James; Khatib, Lina; Brafman, Ronen

    2005-01-01

    This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, selfish preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource.

  20. Flexible Job Shop Scheduling with Multi-level Job Structures

    NASA Astrophysics Data System (ADS)

    Jang, Yang-Ja; Kim, Ki-Dong; Jang, Seong-Yong; Park, Jinwoo

    This paper deals with a scheduling problem in a flexible job shop with multi-level job structures where end products are assembled from sub-assemblies or manufactured components. For such shops MRP (Material Requirement Planning) logic is frequently used to synchronize and pace the production activities for the required parts. However, in MRP, the planning of operational-level activities is left to short term scheduling. So, we need a good scheduling algorithm to generate feasible schedules taking into account shop floor characteristics and multi-level job structures used in MRP. In this paper, we present a GA (Genetic Algorithm) solution for this complex scheduling problem based on a new gene to reflect the machine assignment, operation sequences and the levels of the operations relative to final assembly operation. The relative operation level is the control parameter that paces the completion timing of the components belonging to the same branch in the multi-level job hierarchy. We compare the genetic algorithm with several dispatching rules in terms of total tardiness and the genetic algorithm shows outstanding performance for about forty modified standard job-shop problem instances.

  1. 5 CFR 532.254 - Special schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... exist in the private sector that are incompatible with regular schedule practices, and serious... authorization for a special schedule shall include instructions for its construction, application,...

  2. The piecewise-parabolic method in curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Blondin, John M.; Lufkin, Eric A.

    1993-01-01

    We derive interpolation formulae for a third-order finite difference method in curvilinear, orthogonal coordinate systems. These formulae serve as a supplement to Colella and Woodward's PPM scheme for problems where the coordinate origin is included in the computational domain. Numerical examples of the improved accuracy of the advection scheme near coordinate singularities are shown.

  3. 30 CFR 229.122 - Coordination of audit activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Coordination of audit activities. 229.122... MANAGEMENT DELEGATION TO STATES Oil and Gas, Onshore Delegation Requirements § 229.122 Coordination of audit... resolution of any coordination problems encountered during the conduct of delegation activities....

  4. FIXED-TIME SCHEDULE EFFECTS IN COMBINATION WITH RESPONSE-DEPENDENT SCHEDULES

    PubMed Central

    Borrero, John C; Bartels-Meints, Jamie A; Sy, Jolene R; Francisco, Monica T

    2011-01-01

    We evaluated the effects of fixed-interval (FI), fixed-time (FT), and conjoint (combined) FI FT reinforcement schedules on the responding of 3 adults who had been diagnosed with schizophrenia. Responding on vocational tasks decreased for 2 of 3 participants under FT alone relative to FI alone. Responding under FI FT resulted in response persistence for 2 of 3 participants. Results have implications for the maintenance of desirable behavior, as well as for situations in which FT treatment has been implemented for problem behavior and problem behavior is nevertheless reinforced by caregivers. PMID:21541131

  5. Movement coordination during conversation.

    PubMed

    Latif, Nida; Barbosa, Adriano V; Vatikiotis-Bateson, Eric; Vatiokiotis-Bateson, Eric; Castelhano, Monica S; Munhall, K G

    2014-01-01

    Behavioral coordination and synchrony contribute to a common biological mechanism that maintains communication, cooperation and bonding within many social species, such as primates and birds. Similarly, human language and social systems may also be attuned to coordination to facilitate communication and the formation of relationships. Gross similarities in movement patterns and convergence in the acoustic properties of speech have already been demonstrated between interacting individuals. In the present studies, we investigated how coordinated movements contribute to observers' perception of affiliation (friends vs. strangers) between two conversing individuals. We used novel computational methods to quantify motor coordination and demonstrated that individuals familiar with each other coordinated their movements more frequently. Observers used coordination to judge affiliation between conversing pairs but only when the perceptual stimuli were restricted to head and face regions. These results suggest that observed movement coordination in humans might contribute to perceptual decisions based on availability of information to perceivers. PMID:25119189

  6. Movement Coordination during Conversation

    PubMed Central

    Latif, Nida; Barbosa, Adriano V.; Vatiokiotis-Bateson, Eric; Castelhano, Monica S.; Munhall, K. G.

    2014-01-01

    Behavioral coordination and synchrony contribute to a common biological mechanism that maintains communication, cooperation and bonding within many social species, such as primates and birds. Similarly, human language and social systems may also be attuned to coordination to facilitate communication and the formation of relationships. Gross similarities in movement patterns and convergence in the acoustic properties of speech have already been demonstrated between interacting individuals. In the present studies, we investigated how coordinated movements contribute to observers’ perception of affiliation (friends vs. strangers) between two conversing individuals. We used novel computational methods to quantify motor coordination and demonstrated that individuals familiar with each other coordinated their movements more frequently. Observers used coordination to judge affiliation between conversing pairs but only when the perceptual stimuli were restricted to head and face regions. These results suggest that observed movement coordination in humans might contribute to perceptual decisions based on availability of information to perceivers. PMID:25119189

  7. Range and mission scheduling automation using combined AI and operations research techniques

    NASA Technical Reports Server (NTRS)

    Arbabi, Mansur; Pfeifer, Michael

    1987-01-01

    Ground-based systems for Satellite Command, Control, and Communications (C3) operations require a method for planning, scheduling and assigning the range resources such as: antenna systems scattered around the world, communications systems, and personnel. The method must accommodate user priorities, last minute changes, maintenance requirements, and exceptions from nominal requirements. Described are computer programs which solve 24 hour scheduling problems, using heuristic algorithms and a real time interactive scheduling process.

  8. Scheduling Spitzer: The SIRPASS Story

    NASA Technical Reports Server (NTRS)

    Mittman, David S.; Hawkins, Robert

    2013-01-01

    NASA's Spitzer Space Telescope was launched on August 25, 2003 from Florida's Cape Canaveral Air Force Base. Drifting in a unique Earth-trailing orbit around the Sun, Spitzer sees an optically invisible universe dominated by dust and stars. Since 1997, the Spitzer Integrated Resource Planning and Scheduling System (SIRPASS) has helped produce spacecraft activity plans for the Spitzer Space Telescope. SIRPASS is used by members of the Observatory Planning and Scheduling Team to plan, schedule and sequence the Telescope from data made available to them from the science and engineering community. Because of the volume of data that needs to be scheduled, SIRPASS offers a variety of automated assistants to aid in this task. This paper will describe the functional elements of the SIRPASS software system -- emphasizing the role that automation plays in the system -- and will highlight lessons learned for the software developer from a decade of Spitzer Space Telescope operations experience.

  9. Progressive Ratio Schedules of Reinforcement

    PubMed Central

    Killeen, Peter R.; Posadas-Sanchez, Diana; Johansen, Espen Borgå; Thrailkill, Eric A.

    2009-01-01

    Pigeons’ pecks produced grain under progressive ratio (PR) schedules, whose response requirements increased systematically within sessions. Experiment 1 compared arithmetic (AP) and geometric (GP) progressions. Response rates increased as a function of the component ratio requirement, then decreased linearly (AP) or asymptotically (GP). Experiment 2 found the linear decrease in AP rates to be relatively independent of step size. Experiment 3 showed pausing to be controlled by the prior component length, which predicted the differences between PR and regressive ratio schedules found in Experiment 4. When the longest component ratios were signaled by different key colors, rates at moderate ratios increased, demonstrating control by forthcoming context. Models for response rate and pause duration described performance on AP schedules; GP schedules required an additional parameter representing the contextual reinforcement. PMID:19159161

  10. The GBT Dynamic Scheduling System

    NASA Astrophysics Data System (ADS)

    McCarty, M. T.; Balser, D. S.; Braatz, J.; Clark, M. H.; Condon, J.; Creager, R. E.; Maddalena, R. J.; Marganian, P.; O'Neil, K.; Sessoms, E.; Shelton, A. L.

    2012-09-01

    The Robert C. Byrd Green Bank Telescope (GBT) Dynamic Scheduling System (DSS), in use since September, 2009, was designed to maximize observing efficiency while preserving telescope flexibility and data quality without creating undue adversity for the observers. Using observing criteria; observer availability and qualifications for remote observing; three-dimensional weather forecasts; and telescope state, the DSS software optimally schedules observers 24 to 48 hours in advance for a telescope that has a wide-range of capabilities and a geographical location with variable weather patterns. The DSS project was closed October 28, 2011 and will now enter a continuing maintenance and enhancement phase. Recent improvements include a new resource calendar for incorporating telescope maintenance activities, a sensitivity calculator that leverages the scheduling algorithms to facilitate consistent tools for proposal preparation, improved support for monitoring observations, scheduling of high frequency continuum and spectral line observations for both sparse and fully sampled array receivers, and additional session parameters for observations having special requirements.

  11. A MEMORY SCHEDULE.

    ERIC Educational Resources Information Center

    PIMSLEUR, PAUL

    A POSSIBLE SOLUTION FOR PROBLEMS OF MEMORY IN FOREIGN LANGUAGE LEARNING IS THE "GRADUATED INTERVAL RECALL," A PROCEDURE FOR AIDING STUDENTS TO REMEMBER THE VOCABULARY AND STRUCTURES THEY HAVE LEARNED. WHEN A NEW WORD IS LEARNED, THE PROCESS OF FORGETTING BEGINS AT ONCE AND PROCEEDS VERY RAPIDLY. IF THE STUDENT IS REMINDED OF THE WORD BEFORE HE HAS…

  12. Scheduling for energy and reliability management on multiprocessor real-time systems

    NASA Astrophysics Data System (ADS)

    Qi, Xuan

    Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.

  13. Stochastic programming methods for scheduling of airport runway operations under uncertainty

    NASA Astrophysics Data System (ADS)

    Solveling, Gustaf

    Runway systems at airports have been identified as a major source of delay in the aviation system and efficient runway operations are, therefore, important to maintain and/or increase the capacity of the entire aviation system. The goal of the airport runway scheduling problem is to schedule a set of aircraft and minimize a given objective while maintaining separation requirements and enforcing other operational constraints. Uncertain factors such as weather, surrounding traffic and pilot behavior affect when aircraft can be scheduled, and these factors need to be considered in planning models. In this thesis we propose two stochastic programs to address the stochastic airport runway scheduling problem and similarly structured machine scheduling problems. In the first part, we develop a two-stage stochastic integer programming model and analyze it by developing alternative formulations and solution methods. As part of our analysis, we first show that a restricted version of the stochastic runway scheduling problem is equivalent to a machine scheduling problem on a single machine with sequence dependent setup times and stochastic due dates. We then extend this restricted model by considering characteristics specific to the runway scheduling problem and present two different stochastic integer programming models. We derive some tight valid inequalities for these formulations, and we propose a solution methodology based on sample average approximation and Lagrangian based scenario decomposition. Realistic data sets are then used to perform a detailed computational study involving implementations and analyses of several different configurations of the models. The results from the computational tests indicate that practically implementable truncated versions of the proposed solution algorithm almost always produce very high quality solutions. In the second part, we propose a sampling based stochastic program for a general machine scheduling problem with similar

  14. Planning and scheduling for success

    NASA Technical Reports Server (NTRS)

    Manzanera, Ignacio

    1994-01-01

    Planning and scheduling programs are excellent management tools when properly introduced to the project management team and regularly maintained. Communications, creativity, flexibility and accuracy are substantially improved by following a simple set of rules. A planning and scheduling program will work for you if you believe in it, make others in your project team realize its benefits, and make it an extension of your project cost control philosophy.

  15. Non-Evolutionary Algorithms for Scheduling Dependent Tasks in Distributed Heterogeneous Computing Environments

    SciTech Connect

    Wayne F. Boyer; Gurdeep S. Hura

    2005-09-01

    The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized task orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,

  16. 77 FR 64848 - Proposed Collection; Comment Request for Form 1120S, Schedule D, Schedule K-1, and Schedule M-3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... Internal Revenue Service Proposed Collection; Comment Request for Form 1120S, Schedule D, Schedule K-1, and... With Total Assets of $10 Million or More, and Schedule K-1 (Form 1120S), Shareholder's Share of Income... Losses and Built-in Gains, Schedule K-1 (Form 1120S), Shareholder's Share of Income, Credits,...

  17. Opportunistic Resource Scheduling for a Wireless Network with Relay Stations

    NASA Astrophysics Data System (ADS)

    Kwon, Jeong-Ahn; Lee, Jang-Won

    In this paper, we study an opportunistic scheduling scheme for the TDMA wireless network with relay stations. We model the time-varying channel condition of a wireless link as a stochastic process. Based on this model, we formulate an optimization problem for the opportunistic scheduling scheme that maximizes the expected system throughput while satisfying the QoS constraint of each user. In the opportunistic scheduling scheme for the system without relay stations, each user has only one communication path between the base station and itself, and thus only user selection is considered. However, in our opportunistic scheduling scheme for the system with relay stations, since there may exist multiple paths between the base station and a user, not only user selection but also path selection for the scheduled user is considered. In addition, we also propose an opportunistic time-sharing method for time-slot sharing between base station and relay stations. With the opportunistic time-sharing method, our opportunistic scheduling provides opportunistic resource sharing in three places in the system: user selection in a time-slot, path selection for the selected user, and time-slot sharing between base station and relay stations. Simulation results show that as the number of places that opportunistic resource sharing is applied to increases, the performance improvement also increases.

  18. Self-scheduling in the emergency department.

    PubMed

    Zimmermann, P G

    1995-02-01

    The primary steps to accomplish successful self-scheduling programs are as follows: 1. An appropriate amount of time must be committed for a trial period; a minimum of 6 months is recommended. In the initial phases of the program, it is important that the manager refrain from intervening in conflict resolution or allowing the staff members to abdicate decision making to management when problems arise. Changes in staff attitudes to assume responsibility for unit coverage emerge, in part, as a result of observing the consequences when it is not done. 2. At least 1 year, and often almost 2 years, are required to achieve smooth-flowing systems. 3. Time is needed for the staff members to become proficient in negotiation. The key to mutual cooperation is that everyone eventually experiences a need for a change in his or her particular schedule. The staff may need assistance in learning how to perceive possible changes or how to approach others. 4. Problems are usually resolved by staff-suggested rule additions or modifications. Rules can be used to help enforce consideration and fairness, but a noncompliant person may need individual attention. PMID:7776585

  19. E-Scheduling the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Wang, Yeou-Fang

    2001-01-01

    This paper describes an operations concept for electronic scheduling and software interface for organizations to extract required views of the schedule. Advantages include widespread accessibility to a common schedule document, virtually instantaneous distribution of new schedule releases, and the ability of missions to perfom conflict resolution off-line without time-consuming meetings.

  20. The entropy reduction engine: Integrating planning, scheduling, and control

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John L.; Kedar, Smadar T.

    1991-01-01

    The Entropy Reduction Engine, an architecture for the integration of planning, scheduling, and control, is described. The architecture is motivated, presented, and analyzed in terms of its different components; namely, problem reduction, temporal projection, and situated control rule execution. Experience with this architecture has motivated the recent integration of learning. The learning methods are described along with their impact on architecture performance.