Endocytosis-dependent coordination of multiple actin regulators is required for wound healing
Matsubayashi, Yutaka; Coulson-Gilmer, Camilla
2015-01-01
The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form “signaling centers” along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing. PMID:26216900
Reactive oxygen species-dependent wound responses in animals and plants.
Suzuki, Nobuhiro; Mittler, Ron
2012-12-15
Animals and plants evolved sophisticated mechanisms that regulate their responses to mechanical injury. Wound response in animals mainly promotes wound healing processes, nerve cell regeneration, and immune system responses at the vicinity of the wound site. In contrast, wound response in plants is primarily directed at sealing the wound site via deposition of various compounds and generating systemic signals that activate multiple defense mechanisms in remote tissues. Despite these differences between animals and plants, recent studies have shown that reactive oxygen species (ROS) play very common signaling and coordination roles in the wound responses of both systems. This review provides an update on recent findings related to ROS-regulated coordination of intercellular communications and signal transduction during wound response in plants and animals. In particular, differences and similarities in H2O2-dependent long-distance signaling between zebrafish and Arabidopsis thaliana are discussed. Published by Elsevier Inc.
Neubauer, Jonathan D; Lulai, Edward C; Thompson, Asunta L; Suttle, Jeffrey C; Bolton, Melvin D
2012-04-15
Little is known about the coordinate induction of genes that may be involved in agriculturally important wound-healing events. In this study, wound-healing events were determined together with wound-induced expression profiles of selected cell cycle, cell wall protein, and pectin methyl esterase genes using two diverse potato genotypes and two harvests (NDTX4271-5R and Russet Burbank tubers; 2008 and 2009 harvests). By 5 d after wounding, the closing layer and a nascent phellogen had formed. Phellogen cell divisions generated phellem layers until cessation of cell division at 28 d after wounding for both genotypes and harvests. Cell cycle genes encoding epidermal growth factor binding protein (StEBP), cyclin-dependent kinase B (StCDKB) and cyclin-dependent kinase regulatory subunit (StCKS1At) were induced by 1 d after wounding; these expressions coordinated with related phellogen formation and the induction and cessation of phellem cell formation. Genes encoding the structural cell wall proteins extensin (StExt1) and extensin-like (StExtlk) were dramatically up-regulated by 1-5 d after wounding, suggesting involvement with closing layer and later phellem cell layer formation. Wounding up-regulated pectin methyl esterase genes (StPME and StPrePME); StPME expression increased during closing layer and phellem cell formation, whereas maximum expression of StPrePME occurred at 5-14 d after wounding, implicating involvement in later modifications for closing layer and phellem cell formation. The coordinate induction and expression profile of StTLRP, a gene encoding a cell wall strengthening "tyrosine-and lysine-rich protein," suggested a role in the formation of the closing layer followed by phellem cell generation and maturation. Collectively, the genes monitored were wound-inducible and their expression profiles markedly coordinated with closing layer formation and the index for phellogen layer meristematic activity during wound periderm development; results were more influenced by harvest than genotype. Importantly, StTLRP was the only gene examined that may be involved in phellogen cell wall thickening after cessation of phellogen cell division. Published by Elsevier GmbH.
USDA-ARS?s Scientific Manuscript database
Cytokinin, auxin and gibberellin content in resting and wound-responding potato tuber are not clearly defined. Consequently, the coordination and possible networking of these classical hormones in the regulation of wound-healing processes are poorly understood. Using a well-defined tuber wound-hea...
Ma, Yanlei; Yue, Jiping; Zhang, Yao; Shi, Chenzhang; Odenwald, Matt; Liang, Wenguang G.; Wei, Qing; Goel, Ajay; Gou, Xuewen; Zhang, Jamie; Chen, Shao-Yu; Tang, Wei-Jen; Turner, Jerrold R.; Yang, Feng; Liang, Hong; Qin, Huanlong; Wu, Xiaoyang
2017-01-01
In the intestinal epithelium, the aberrant regulation of cell/cell junctions leads to intestinal barrier defects, which may promote the onset and enhance the severity of inflammatory bowel disease (IBD). However, it remains unclear how the coordinated behaviour of cytoskeletal network may contribute to cell junctional dynamics. In this report, we identified ACF7, a crosslinker of microtubules and F-actin, as an essential player in this process. Loss of ACF7 leads to aberrant microtubule organization, tight junction stabilization and impaired wound closure in vitro. With the mouse genetics approach, we show that ablation of ACF7 inhibits intestinal wound healing and greatly increases susceptibility to experimental colitis in mice. ACF7 level is also correlated with development and progression of ulcerative colitis (UC) in human patients. Together, our results reveal an important molecular mechanism whereby coordinated cytoskeletal dynamics contributes to cell adhesion regulation during intestinal wound repair and the development of IBD. PMID:28541346
Circadian rhythms accelerate wound healing in female Siberian hamsters
Cable, Erin J.; Onishi, Kenneth G.; Prendergast, Brian J.
2017-01-01
Circadian rhythms (CRs) provide temporal regulation and coordination of numerous physiological traits, including immune function. CRs in multiple aspects of immune function are absent in rodents that have been rendered circadian-arrhythmic through various methods. In Siberian hamsters, circadian arrhythmia can be induced by disruptive light treatments (DPS). Here we examined CRs in wound healing, and the effects of circadian disruption on wound healing in DPS-arrhythmic hamsters. Circadian entrained/rhythmic (RHYTH) and behaviorally-arrhythmic (ARR) female hamsters were administered a cutaneous wound either 3 h after light onset (ZT03) or 2 h after dark onset (ZT18); wound size was quantified daily using image analyses. Among RHYTH hamsters, ZT03 wounds healed faster than ZT18 wounds, whereas in ARR hamsters, circadian phase did not affect wound healing. In addition, wounds healed slower in ARR hamsters. The results document a clear CR in wound healing, and indicate that the mere presence of organismal circadian organization enhances this aspect of immune function. Faster wound healing in CR-competent hamsters may be mediated by CR-driven coordination of the temporal order of mechanisms (inflammation, leukocyte trafficking, tissue remodeling) underlying cutaneous wound healing. PMID:27998755
Matrix metalloproteinases and epidermal wound repair.
Martins, Vera L; Caley, Matthew; O'Toole, Edel A
2013-02-01
Epidermal wound healing is a complex and highly coordinated process where several different cell types and molecules, such as growth factors and extracellular matrix (ECM) components, play an important role. Among the many proteins that are essential for the restoration of tissue integrity is the metalloproteinase (MMP) family. MMPs can act on ECM and non-ECM components affecting degradation and modulation of the ECM, growth-factor activation and cell-cell and cell-matrix signalling. MMPs are secreted by different cell types such as keratinocytes, fibroblasts and inflammatory cells at different stages and locations during wound healing, thereby regulating this process in a very coordinated and controlled way. In this article, we review the role of MMPs and their inhibitors (TIMPs), as well as the disintegrin and metalloproteinase with the thrombospondin motifs (ADAMs) family, in epithelial wound repair.
Circadian actin dynamics drive rhythmic fibroblast mobilisation during wound healing
Hoyle, Nathaniel P.; Seinkmane, Estere; Putker, Marrit; Feeney, Kevin A.; Krogager, Toke P.; Chesham, Johanna E.; Bray, Liam K.; Thomas, Justyn M.; Dunn, Ken; Blaikley, John; O’Neill, John S.
2017-01-01
Fibroblasts are primary cellular protagonists of wound healing. They also exhibit circadian timekeeping which imparts a ~24-hour rhythm to their biological function. We interrogated the functional consequences of the cell-autonomous clockwork in fibroblasts using a proteome-wide screen for rhythmically expressed proteins. We observed temporal coordination of actin regulators that drives cell-intrinsic rhythms in actin dynamics. In consequence the cellular clock modulates the efficiency of actin-dependent processes such as cell migration and adhesion, which ultimately impact the efficacy of wound healing. Accordingly, skin wounds incurred during a mouse’s active phase exhibited increased fibroblast invasion in vivo and ex vivo, as well as in cultured fibroblasts and keratinocytes. Our experimental results correlate with the observation that the time of injury significantly affects healing after burns in humans, with daytime wounds healing ~60% faster than night-time wounds. We suggest that circadian regulation of the cytoskeleton influences wound healing efficacy from the cellular to the organismal scale. PMID:29118260
Ng, Mei Rosa; Besser, Achim
2012-01-01
The mechanical microenvironment is known to influence single-cell migration; however, the extent to which mechanical cues affect collective migration of adherent cells is not well understood. We measured the effects of varying substrate compliance on individual cell migratory properties in an epithelial wound-healing assay. Increasing substrate stiffness increased collective cell migration speed, persistence, and directionality as well as the coordination of cell movements. Dynamic analysis revealed that wounding initiated a wave of motion coordination from the wound edge into the sheet. This was accompanied by a front-to-back gradient of myosin-II activation and establishment of cell polarity. The propagation was faster and farther reaching on stiff substrates, indicating that substrate stiffness affects the transmission of directional cues. Manipulation of myosin-II activity and cadherin–catenin complexes revealed that this transmission is mediated by coupling of contractile forces between neighboring cells. Thus, our findings suggest that the mechanical environment integrates in a feedback with cell contractility and cell–cell adhesion to regulate collective migration. PMID:23091067
HIF-1α coordinates lymphangiogenesis during wound healing and in response to inflammation
Zampell, Jamie C.; Yan, Alan; Avraham, Tomer; Daluvoy, Sanjay; Weitman, Evan S.; Mehrara, Babak J.
2012-01-01
This study aimed to investigate the mechanisms that coordinate lymphangiogenesis. Using mouse models of lymphatic regeneration and inflammatory lymphangiogenesis, we explored the hypothesis that hypoxia inducible factor-α (HIF-1α) is a central regulator of lymphangiogenesis. We show that HIF-1α inhibition by small molecule inhibitors (YC-1 and 2-methyoxyestradiol) results in delayed lymphatic repair, decreased local vascular endothelial growth factor-C (VEGF-C) expression, reduced numbers of VEGF-C+ cells, and reductions in inflammatory lymphangiogenesis. Using transgenic HIF-1α/luciferase mice to image HIF-1α expression in real time in addition to Western blot analysis and pimonidazole staining for cellular hypoxia, we demonstrate that hypoxia stabilizes HIF-1α during initial stages of wound repair (1–2 wk); whereas inflammation secondary to gradients of lymphatic fluid stasis stabilizes HIF-1α thereafter (3–6 wk). In addition, we show that CD4+ cell-mediated inflammation is necessary for this response and regulates HIF-1α expression by macrophages, as CD4-deficient or CD4-depleted mice demonstrate 2-fold reductions in HIF-1α expression as compared to wild-types. In summary, we show that HIF-1α is a critical coordinator of lymphangiogenesis by regulating the expression of lymphangiogenic cytokines as part of an early response mechanism to hypoxia, inflammation, and lymphatic fluid stasis.—Zampell, J. C., Yan, A., Avraham, T., Daluvoy, S., Weitman, E. S., Mehrara, B. J. HIF-1α coordinates lymphangiogenesis during wound healing and in response to inflammation. PMID:22067482
Inhibition of IRF8 Negatively Regulates Macrophage Function and Impairs Cutaneous Wound Healing.
Guo, Yuanyuan; Yang, Zhiyin; Wu, Shan; Xu, Peng; Peng, Yinbo; Yao, Min
2017-02-01
The inflammatory response is essential for normal cutaneous wound healing. Macrophages, as critical inflammatory cells, coordinate inflammation and angiogenesis phases during wound healing. It has been reported that the transcription factor interferon regulatory factor 8 (IRF8), a member of the IRF family, plays a critical role in the development and function of macrophages and is associated with inflammation. However, the role of IRF8 in cutaneous wound healing and its underlying mechanism remain elusive. Through immunohistochemical (IHC) staining, we showed that IRF8 is involved in the wound repair process in mice and patients. Furthermore, we ascertain that the repression of IRF8 by small interfering RNA (siRNA) leads to delayed wound healing. To explore the mechanism by which IRF8 impacts wound healing, we observed its effect on macrophage-related mediators by IHC or real-time PCR. The results demonstrated that the inhibition of IRF8 decreases the mRNA expression of inflammatory mediators associated with M1 macrophage (il-1b, il-6, inos, and tnf-a) but no impact on M2 macrophage-related mediators (arg-1, mrc-1, and il-10) and the number of macrophages in the wounds. Furthermore, the inhibition of IRF8 induced apoptosis in the wounds. In summary, this study demonstrates that the down-regulation of IRF8 in the wound leads to impaired wound healing possibly through the regulation of macrophage function and apoptosis in skin wound.
Epidermal wound repair is regulated by the planar cell polarity signaling pathway.
Caddy, Jacinta; Wilanowski, Tomasz; Darido, Charbel; Dworkin, Sebastian; Ting, Stephen B; Zhao, Quan; Rank, Gerhard; Auden, Alana; Srivastava, Seema; Papenfuss, Tony A; Murdoch, Jennifer N; Humbert, Patrick O; Parekh, Vishwas; Boulos, Nidal; Weber, Thomas; Zuo, Jian; Cunningham, John M; Jane, Stephen M
2010-07-20
The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects, and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3(-)(/-) mice, we identified RhoGEF19, a homolog of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerization, cellular polarity, and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling and broadly implicate this pathway in epidermal repair. (c) 2010 Elsevier Inc. All rights reserved.
Epidermal wound repair is regulated by the planar cell polarity signaling pathway
Caddy, Jacinta; Wilanowski, Tomasz; Darido, Charbel; Dworkin, Sebastian; Ting, Stephen B.; Zhao, Quan; Rank, Gerhard; Auden, Alana; Srivastava, Seema; Papenfuss, Tony A.; Murdoch, Jennifer N.; Humbert, Patrick O.; Boulos, Nidal; Weber, Thomas; Zuo, Jian; Cunningham, John M.; Jane, Stephen M.
2010-01-01
SUMMARY The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3−/− mice, we identified RhoGEF19, a homologue of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerisation, cellular polarity and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling, and broadly implicate this pathway in epidermal repair. PMID:20643356
FOXO1 promotes wound healing through the up-regulation of TGF-β1 and prevention of oxidative stress
Ponugoti, Bhaskar; Xu, Fanxing; Zhang, Chenying; Tian, Chen; Pacios, Sandra
2013-01-01
Keratinocyte mobilization is a critical aspect of wound re-epithelialization, but the mechanisms that control its precise regulation remain poorly understood. We set out to test the hypothesis that forkhead box O1 (FOXO1) has a negative effect on healing because of its capacity to inhibit proliferation and promote apoptosis. Contrary to expectations, FOXO1 is required for keratinocyte transition to a wound-healing phenotype that involves increased migration and up-regulation of transforming growth factor β1 (TGF-β1) and its downstream targets, integrin-α3 and -β6 and MMP-3 and -9. Furthermore, we show that FOXO1 functions in keratinocytes to reduce oxidative stress, which is necessary to maintain cell migration and prevent cell death in a TGF-β1–independent manner. Thus, our studies identify a novel function for FOXO1 in coordinating the response of keratinocytes to wounding through up-regulation of TGF-β1 and other factors needed for keratinocyte migration and protection against oxidative stress, which together promote migration and decrease apoptosis. PMID:24145170
Reticulon 4B (Nogo-B) is necessary for macrophage infiltration and tissue repair.
Yu, Jun; Fernández-Hernando, Carlos; Suarez, Yajaira; Schleicher, Michael; Hao, Zhengrong; Wright, Paulette L; DiLorenzo, Annarita; Kyriakides, Themis R; Sessa, William C
2009-10-13
Blood vessel formation during ischemia and wound healing requires coordination of the inflammatory response with genes that regulate blood vessel assembly. Here we show that the reticulon family member 4B, aka Nogo-B, is upregulated in response to ischemia and is necessary for blood flow recovery secondary to ischemia and wound healing. Mice lacking Nogo-B exhibit reduced arteriogenesis and angiogenesis that are linked to a decrease in macrophage infiltration and inflammatory gene expression in vivo. Bone marrow-derived macrophages isolated from Nogo knock-out mice have reduced spreading and chemotaxis due to impaired Rac activation. Bone marrow reconstitution experiments show that Nogo in myeloid cells is necessary to promote macrophage homing and functional recovery after limb ischemia. Thus, endogenous Nogo coordinates macrophage-mediated inflammation with arteriogenesis, wound healing, and blood flow control.
Research on growth factors in periodontology.
Smith, Patricio C; Martínez, Constanza; Cáceres, Mónica; Martínez, Jorge
2015-02-01
Growth factors play critical roles in periodontal repair through the regulation of cell behavior. Many of the cell responses regulated by these proteins include cell adhesion, migration, proliferation and differentiation. Periodontal regeneration involves an organized response of different cells, tissues and growth factors implicated in the coordination of these events. However, periodontal tissue reconstruction is an extremely difficult task. Multiple studies have been performed to understand the specific role of growth factors in periodontal wound healing. In the present review we analyze the evidence that supports the roles of growth factors in periodontal wound healing and regeneration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The tyrosine kinase Stitcher activates Grainy head and epidermal wound healing in Drosophila.
Wang, Shenqiu; Tsarouhas, Vasilios; Xylourgidis, Nikos; Sabri, Nafiseh; Tiklová, Katarína; Nautiyal, Naumi; Gallio, Marco; Samakovlis, Christos
2009-07-01
Epidermal injury initiates a cascade of inflammation, epithelial remodelling and integument repair at wound sites. The regeneration of the extracellular barrier and damaged tissue repair rely on the precise orchestration of epithelial responses triggered by the injury. Grainy head (Grh) transcription factors induce gene expression to crosslink the extracellular barrier in wounded flies and mice. However, the activation mechanisms and functions of Grh factors in re-epithelialization remain unknown. Here we identify stitcher (stit), a new Grh target in Drosophila melanogaster. stit encodes a Ret-family receptor tyrosine kinase required for efficient epidermal wound healing. Live imaging analysis reveals that Stit promotes actin cable assembly during wound re-epithelialization. Stit activation also induces extracellular signal-regulated kinase (ERK) phosphorylation along with the Grh-dependent expression of stit and barrier repair genes at the wound sites. The transcriptional stimulation of stit on injury triggers a positive feedback loop increasing the magnitude of epithelial responses. Thus, Stit activation upon wounding coordinates cytoskeletal rearrangements and the level of Grh-mediated transcriptional wound responses.
Yang, Tianbao; Peng, Hui; Whitaker, Bruce D; Jurick, Wayne M
2013-07-01
Calcium has been shown to enhance stress tolerance, maintain firmness and reduce decay in fruits. Previously we reported that seven tomato SlSRs encode calcium/calmodulin-regulated proteins, and that their expressions are developmentally regulated during fruit development and ripening, and are also responsive to ethylene. To study their expressions in response to stresses encountered during postharvest handling, tomato fruit at the mature-green stage was subjected to chilling and wounding injuries, infected with Botrytis cinerea and treated with salicylic acid or methyl jasmonate. Gene expression studies revealed that the seven SlSRs differentially respond to different stress signals. SlSR2 was the only gene upregulated by all the treatments. SlSR4 acted as a late pathogen-induced gene; it was upregulated by salicylic acid and methyl jasmonate, but downregulated by cold treatment. SlSR3L was cold- and wound-responsive and was also induced by salicylic acid. SlSR1 and SlSR1L were repressed by cold, wounding and pathogen infection, but were upregulated by salicylic acid and methyl jasmonate. Overall, results of these expression studies indicate that individual SlSRs have distinct roles in responses to the specific stress signals, and SlSRs may act as a coordinator(s) connecting calcium-mediated signaling with other stress signal transduction pathways during fruit ripening and storage. © 2013 Scandinavian Plant Physiology Society.
Cutaneous wound healing: recruiting developmental pathways for regeneration.
Bielefeld, Kirsten A; Amini-Nik, Saeid; Alman, Benjamin A
2013-06-01
Following a skin injury, the damaged tissue is repaired through the coordinated biological actions that constitute the cutaneous healing response. In mammals, repaired skin is not identical to intact uninjured skin, however, and this disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development. Improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for wound healing complications. Here we focus on the roles of several key developmental signaling pathways (Wnt/β-catenin, TGF-β, Hedgehog, Notch) in mammalian cutaneous wound repair, and compare this to their function in skin development. We discuss the varying responses to cutaneous injury across the taxa, ranging from complete regeneration to scar tissue formation. Finally, we outline how research into the role of developmental pathways during skin repair has contributed to current wound therapies, and holds potential for the development of more effective treatments.
Skin Regeneration in Adult Axolotls: A Blueprint for Scar-Free Healing in Vertebrates
Seifert, Ashley W.; Monaghan, James R.; Voss, S. Randal; Maden, Malcolm
2012-01-01
While considerable progress has been made towards understanding the complex processes and pathways that regulate human wound healing, regenerative medicine has been unable to develop therapies that coax the natural wound environment to heal scar-free. The inability to induce perfect skin regeneration stems partly from our limited understanding of how scar-free healing occurs in a natural setting. Here we have investigated the wound repair process in adult axolotls and demonstrate that they are capable of perfectly repairing full thickness excisional wounds made on the flank. In the context of mammalian wound repair, our findings reveal a substantial reduction in hemostasis, reduced neutrophil infiltration and a relatively long delay in production of new extracellular matrix (ECM) during scar-free healing. Additionally, we test the hypothesis that metamorphosis leads to scarring and instead show that terrestrial axolotls also heal scar-free, albeit at a slower rate. Analysis of newly forming dermal ECM suggests that low levels of fibronectin and high levels of tenascin-C promote regeneration in lieu of scarring. Lastly, a genetic analysis during wound healing comparing epidermis between aquatic and terrestrial axolotls suggests that matrix metalloproteinases may regulate the fibrotic response. Our findings outline a blueprint to understand the cellular and molecular mechanisms coordinating scar-free healing that will be useful towards elucidating new regenerative therapies targeting fibrosis and wound repair. PMID:22485136
NASA Astrophysics Data System (ADS)
Gerald, Damien; Adini, Irit; Shechter, Sharon; Perruzzi, Carole; Varnau, Joseph; Hopkins, Benjamin; Kazerounian, Shiva; Kurschat, Peter; Blachon, Stephanie; Khedkar, Santosh; Bagchi, Mandrita; Sherris, David; Prendergast, George C.; Klagsbrun, Michael; Stuhlmann, Heidi; Rigby, Alan C.; Nagy, Janice A.; Benjamin, Laura E.
2013-11-01
Mechanisms governing the distinct temporal dynamics that characterize post-natal angiogenesis and lymphangiogenesis elicited by cutaneous wounds and inflammation remain unclear. RhoB, a stress-induced small GTPase, modulates cellular responses to growth factors, genotoxic stress and neoplastic transformation. Here we show, using RhoB null mice, that loss of RhoB decreases pathological angiogenesis in the ischaemic retina and reduces angiogenesis in response to cutaneous wounding, but enhances lymphangiogenesis following both dermal wounding and inflammatory challenge. We link these unique and opposing roles of RhoB in blood versus lymphatic vasculatures to the RhoB-mediated differential regulation of sprouting and proliferation in primary human blood versus lymphatic endothelial cells. We demonstrate that nuclear RhoB-GTP controls expression of distinct gene sets in each endothelial lineage by regulating VEZF1-mediated transcription. Finally, we identify a small-molecule inhibitor of VEZF1-DNA interaction that recapitulates RhoB loss in ischaemic retinopathy. Our findings establish the first intra-endothelial molecular pathway governing the phased response of angiogenesis and lymphangiogenesis following injury.
USDA-ARS?s Scientific Manuscript database
Potato (Solanum tuberosum L.) is the world’s fourth largest food crop and large financial losses are incurred each year from wound and bruise related injuries. However, little is known about the coordinate induction of genes that may be associated with or mark major wound-healing events. In this s...
Tauzin, Sebastien; Starnes, Taylor W; Becker, Francisco Barros; Lam, Pui-ying; Huttenlocher, Anna
2014-12-08
Tissue damage induces early recruitment of neutrophils through redox-regulated Src family kinase (SFK) signaling in neutrophils. Redox-SFK signaling in epithelium is also necessary for wound resolution and tissue regeneration. How neutrophil-mediated inflammation resolves remains unclear. In this paper, we studied the interactions between macrophages and neutrophils in response to tissue damage in zebrafish and found that macrophages contact neutrophils and induce resolution via neutrophil reverse migration. We found that redox-SFK signaling through p22phox and Yes-related kinase is necessary for macrophage wound attraction and the subsequent reverse migration of neutrophils. Importantly, macrophage-specific reconstitution of p22phox revealed that macrophage redox signaling is necessary for neutrophil reverse migration. Thus, redox-SFK signaling in adjacent tissues is essential for coordinated leukocyte wound attraction and repulsion through pathways that involve contact-mediated guidance. © 2014 Tauzin et al.
USDA-ARS?s Scientific Manuscript database
Wounding induces a series of coordinated physiological responses essential for protection and healing of the damaged tissue. Wound-induced formation of jasmonic acid (JA) is important in defense responses in leaves, but comparatively little is known about the induction of JA biosynthesis and its ro...
Modular control of endothelial sheet migration
Vitorino, Philip; Meyer, Tobias
2008-01-01
Growth factor-induced migration of endothelial cell monolayers enables embryonic development, wound healing, and angiogenesis. Although collective migration is widespread and therapeutically relevant, the underlying mechanism by which cell monolayers respond to growth factor, sense directional signals, induce motility, and coordinate individual cell movements is only partially understood. Here we used RNAi to identify 100 regulatory proteins that enhance or suppress endothelial sheet migration into cell-free space. We measured multiple live-cell migration parameters for all siRNA perturbations and found that each targeted protein primarily regulates one of four functional outputs: cell motility, directed migration, cell–cell coordination, or cell density. We demonstrate that cell motility regulators drive random, growth factor-independent motility in the presence or absence of open space. In contrast, directed migration regulators selectively transduce growth factor signals to direct cells along the monolayer boundary toward open space. Lastly, we found that regulators of cell–cell coordination are growth factor-independent and reorient randomly migrating cells inside the sheet when boundary cells begin to migrate. Thus, cells transition from random to collective migration through a modular control system, whereby growth factor signals convert boundary cells into pioneers, while cells inside the monolayer reorient and follow pioneers through growth factor-independent migration and cell–cell coordination. PMID:19056882
Assessment of DoD Wounded Warrior Matters -- Camp Lejeune
2012-03-30
steadfast to serve the total Wounded, Ill and Injured ( WII ) force: active duty, reserve, retired, and veteran Marines.” Wounded Warrior...to a Physical Evaluation Board . 16 During our site visit, we observed a 9-Block meeting, which was chaired by the WWBn-East Executive...Support Coordinator Medical Case Managers (Naval Hospital) Recovery Care Coordinators Medical Board Clerk The Medical Case Management Advisor
Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zhong Xin; Sun, Cong Cong; Wenzhou People's Hospital, Wenzhou, Zhejiang
Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Westernmore » blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.« less
Wounding induces expression of genes involved in tuber closing layer and wound-periderm development
USDA-ARS?s Scientific Manuscript database
Little is known about the coordinate induction of genes that may be involved in important wound-healing events. In this study, wound-healing events were determined together with wound-induced expression profiles of selected cell cycle, cell wall protein, and pectin methyl esterase genes using tuber...
Epithelial-mesenchymal transition in tissue repair and fibrosis.
Stone, Rivka C; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I; Tomic-Canic, Marjana
2016-09-01
The epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including the loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics that confer migratory capacity. EMT and its converse, MET (mesenchymal-epithelial transition), are integral stages of many physiologic processes and, as such, are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes (the resident skin epithelial cells) migrate across the wound bed to restore the epidermal barrier. Moreover, EMT plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblasts arise from cells of the epithelial lineage in response to injury but are pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the faulty repair of fibrotic wounds might identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. Graphical Abstract Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic wound healing (right).
Clinical Application of Growth Factors and Cytokines in Wound Healing
Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana
2016-01-01
Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811
2013-01-01
Background Agarwood is an expensive resinous heartwood derived from Aquilaria plants that is widely used in traditional medicines, incense and perfume. Only wounded trees can produce agarwood, and the huge demand for the agarwood products has led all Aquilaria spp. being endangered and listed in the Appendix II of the CITES (http://www.cites.org). The major components of agarwood are sesquiterpenes and phenylethyl chromones. Owing to a lack of genomic information, the molecular basis of wound-induced sesquiterpenes biosynthesis and agarwood formation remains unknown. Results To identify the primary genes that maybe related to agarwood formation, we sequenced 2 cDNA libraries generated from healthy and wounded A. sinensis (Lour.) Gilg. A total of 89,137 unigenes with an average length of 678.65 bp were obtained, and they were annotated in detail at bioinformatics levels. Of those associated with agarwood formation, 30 putatively encoded enzymes in the sesquiterpene biosynthesis pathway, and a handful of transcription factors and protein kinases were related to wound signal transduction. Three full-length cDNAs of sesquiterpene synthases (ASS1-3) were cloned and expressed in Escherichia coli, and enzyme assays revealed that they are active enzymes, with the major products being δ-guaiene. A methyl jasmonate (MJ) induction experiment revealed that the expression of ASS was significantly induced by MJ, and the production of sesquiterpenes was elevated accordingly. The expression of some transcription factors and protein kinases, especially MYB4, WRKY4, MPKK2 and MAPK2, was also induced by MJ and coordinated with ASS expression, suggesting they maybe positive regulators of ASS. Conclusions This study provides extensive transcriptome information for Aquilaria spp. and valuable clues for elucidating the mechanism of wound-induced agarwood sesquiterpenes biosynthesis and their regulation. PMID:23565705
The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung
Florez‐Sampedro, Laura; Song, Shanshan
2018-01-01
Abstract In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research. PMID:29721324
Who's minding the charge description master?
Schaum, Kathleen D
2011-11-01
Just as it takes a team to manage chronic wounds, it takes a team to maintain the CDM. The technical staff from the wound care department should be represented on this team and should share the appropriate HCPCS codes and CPT codes, product descriptions, and costs for all procedures, services, supplies, drugs, and biologics used in their department. The billing department should ensure that the appropriate revenue codes for each payer are listed for each item on the CDM. Based on costs supplied by the wound care department, the finance department should consistently assign hospital charges to each line item on the CDM. The information technology department is responsible for making the specific changes to the CDM in the computer system. Most hospitals have a CDM coordinator. The technical staff from the wound care department should work closely with the CDM coordinator and should obtain from him/her the policies and procedures for maintaining the wound care department CDM. Most CDM coordinators will also provide a CDM Change Request Form. Use that form each year when the hospital is performing its annual CDM maintenance and throughout the year to add procedures, services, supplies, drugs, or biologics to your wound care offerings and/or when the cost for these offerings change.
Li, Shuyu; Wang, Bao; Huang, Tingting; Du, Minmin; Sun, Jiaqiang; Kang, Le; Li, Chang-Bao; Li, Chuanyou
2013-01-01
In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and pathogens. PMID:24348260
Yan, Liuhua; Zhai, Qingzhe; Wei, Jianing; Li, Shuyu; Wang, Bao; Huang, Tingting; Du, Minmin; Sun, Jiaqiang; Kang, Le; Li, Chang-Bao; Li, Chuanyou
2013-01-01
In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and pathogens.
Simone, Tessa M.; Higgins, Craig E.; Czekay, Ralf-Peter; Law, Brian K.; Higgins, Stephen P.; Archambeault, Jaclyn; Kutz, Stacie M.; Higgins, Paul J.
2014-01-01
Significance: A highly interactive serine protease/plasmin/matrix metalloproteinase axis regulates stromal remodeling in the wound microenvironment. Current findings highlight the importance of stringent controls on protease expression and their topographic activities in cell proliferation, migration, and tissue homeostasis. Targeting elements in this cascading network may lead to novel therapeutic approaches for fibrotic diseases and chronic wounds. Recent Advances: Matrix-active proteases and their inhibitors orchestrate wound site tissue remodeling, cell migration, and proliferation. Indeed, the serine proteases urokinase plasminogen activator and tissue-type plasminogen activator (uPA/tPA) and their major phsyiological inhibitor, plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor clade E member 1 [SERPINE1]), are upregulated in several cell types during injury repair. Coordinate expression of proteolytic enzymes and their inhibitors in the wound bed provides a mechanism for fine control of focal proteolysis to facilitate matrix restructuring and cell motility in complex environments. Critical Issues: Cosmetic and tissue functional consequences of wound repair anomalies affect the quality of life of millions of patients in the United States alone. The development of novel therapeutics to manage individuals most affected by healing anomalies will likely derive from the identification of critical, translationally accessible, control elements in the wound site microenvironment. Future Directions: Activation of the PAI-1 gene early after wounding, its prominence in the repair transcriptome and varied functions suggest a key role in the global cutaneous injury response program. Targeting PAI-1 gene expression and/or PAI-1 function with molecular genetic constructs, neutralizing antibodies or small molecule inhibitors may provide a novel, therapeutically relevant approach, to manage the pathophysiology of wound healing disorders associated with deficient or excessive PAI-1 levels. PMID:24669362
Tsarouhas, Vasilios; Yao, Liqun; Samakovlis, Christos
2014-04-15
Metazoans have evolved efficient mechanisms for epidermal repair and survival following injury. Several cellular responses and key signaling molecules that are involved in wound healing have been identified in Drosophila, but the coordination of cytoskeletal rearrangements and the activation of gene expression during barrier repair are poorly understood. The Ret-like receptor tyrosine kinase (RTK) Stitcher (Stit, also known as Cad96Ca) regulates both re-epithelialization and transcriptional activation by Grainy head (Grh) to induce restoration of the extracellular barrier. Here, we describe the immediate downstream effectors of Stit signaling in vivo. Drk (Downstream of receptor kinase) and Src family tyrosine kinases bind to the same docking site in the Stit intracellular domain. Drk is required for the full activation of transcriptional responses but is dispensable for re-epithelialization. By contrast, Src family kinases (SFKs) control both the assembly of a contractile actin ring at the wound periphery and Grh-dependent activation of barrier-repair genes. Our analysis identifies distinct pathways mediating injury responses and reveals an RTK-dependent activation mode for Src kinases and their central functions during epidermal wound healing in vivo.
Emergence of HGF/SF-Induced Coordinated Cellular Motility
Zaritsky, Assaf; Natan, Sari; Ben-Jacob, Eshel; Tsarfaty, Ilan
2012-01-01
Collective cell migration plays a major role in embryonic morphogenesis, tissue remodeling, wound repair and cancer invasion. Despite many decades of extensive investigations, only few analytical tools have been developed to enhance the biological understanding of this important phenomenon. Here we present a novel quantitative approach to analyze long term kinetics of bright field time-lapse wound healing. Fully-automated spatiotemporal measures and visualization of cells' motility and implicit morphology were proven to be sound, repetitive and highly informative compared to single-cell tracking analysis. We study cellular collective migration induced by tyrosine kinase-growth factor signaling (Met-Hepatocyte Growth Factor/Scatter Factor (HGF/SF)). Our quantitative approach is applied to demonstrate that collective migration of the adenocarcinoma cell lines is characterized by simple morpho-kinetics. HGF/SF induces complex morpho-kinetic coordinated collective migration: cells at the front move faster and are more spread than those further away from the wound edge. As the wound heals, distant cells gradually accelerate and enhance spread and elongation –resembling the epithelial to mesenchymal transition (EMT), and then the cells become more spread and maintain higher velocity than cells located closer to the wound. Finally, upon wound closure, front cells halt, shrink and round up (resembling mesenchymal to epithelial transition (MET) phenotype) while distant cells undergo the same process gradually. Met inhibition experiments further validate that Met signaling dramatically alters the morpho-kinetic dynamics of the healing wound. Machine-learning classification was applied to demonstrate the generalization of our findings, revealing even subtle changes in motility patterns induced by Met-inhibition. It is concluded that activation of Met-signaling induces an elaborated model in which cells lead a coordinated increased motility along with gradual differentiation-based collective cell motility dynamics. Our quantitative phenotypes may guide future investigation on the molecular and cellular mechanisms of tyrosine kinase-induced coordinate cell motility and morphogenesis in metastasis. PMID:22970283
The Electrical Response to Injury: Molecular Mechanisms and Wound Healing
Reid, Brian; Zhao, Min
2014-01-01
Significance: Natural, endogenous electric fields (EFs) and currents arise spontaneously after wounding of many tissues, especially epithelia, and are necessary for normal healing. This wound electrical activity is a long-lasting and regulated response. Enhancing or inhibiting this electrical activity increases or decreases wound healing, respectively. Cells that are responsible for wound closure such as corneal epithelial cells or skin keratinocytes migrate directionally in EFs of physiological magnitude. However, the mechanisms of how the wound electrical response is initiated and regulated remain unclear. Recent Advances: Wound EFs and currents appear to arise by ion channel up-regulation and redistribution, which are perhaps triggered by an intracellular calcium wave or cell depolarization. We discuss the possibility of stimulation of wound healing via pharmacological enhancement of the wound electric signal by stimulation of ion pumping. Critical Issues: Chronic wounds are a major problem in the elderly and diabetic patient. Any strategy to stimulate wound healing in these patients is desirable. Applying electrical stimulation directly is problematic, but pharmacological enhancement of the wound signal may be a promising strategy. Future Directions: Understanding the molecular regulation of wound electric signals may reveal some fundamental mechanisms in wound healing. Manipulating fluxes of ions and electric currents at wounds might offer new approaches to achieve better wound healing and to heal chronic wounds. PMID:24761358
Albaugh, Vance L; Mukherjee, Kaushik; Barbul, Adrian
2017-11-01
Wound healing is a complex process marked by highly coordinated immune fluxes into an area of tissue injury; these are required for re-establishment of normal tissue integrity. Along with this cascade of cellular players, wound healing also requires coordinated flux through a number of biochemical pathways, leading to synthesis of collagen and recycling or removal of damaged tissues. The availability of nutrients, especially amino acids, is critical for wound healing, and enteral supplementation has been intensely studied as a potential mechanism to augment wound healing-either by increasing tensile strength, decreasing healing time, or both. From a practical standpoint, although enteral nutrient supplementation may seem like a reasonable strategy to augment healing, a number of biochemical and physiologic barriers exist that limit this strategy. In this critical review, the physiology of enteral amino acid metabolism and supplementation and challenges therein are discussed in the context of splanchnic physiology and biochemistry. Additionally, a review of studies examining various methods of amino acid supplementation and the associated effects on wound outcomes are discussed. © 2017 American Society for Nutrition.
Tension (re)builds: Biophysical mechanisms of embryonic wound repair.
Zulueta-Coarasa, Teresa; Fernandez-Gonzalez, Rodrigo
2017-04-01
Embryonic tissues display an outstanding ability to rapidly repair wounds. Epithelia, in particular, serve as protective layers that line internal organs and form the skin. Thus, maintenance of epithelial integrity is of utmost importance for animal survival, particularly at embryonic stages, when an immune system has not yet fully developed. Rapid embryonic repair of epithelial tissues is conserved across species, and involves the collective migration of the cells around the wound. The migratory cell behaviours associated with wound repair require the generation and transmission of mechanical forces, not only for the cells to move, but also to coordinate their movements. Here, we review the forces involved in embryonic wound repair. We discuss how different force-generating structures are assembled at the molecular level, and the mechanisms that maintain the balance between force-generating structures as wounds close. Finally, we describe the mechanisms that cells use to coordinate the generation of mechanical forces around the wound. Collective cell movements and their misregulation have been associated with defective tissue repair, developmental abnormalities and cancer metastasis. Thus, we propose that understanding the role of mechanical forces during embryonic wound closure will be crucial to develop therapeutic interventions that promote or prevent collective cell movements under pathological conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lee, Bomi; Wu, Cheng-Ying; Lin, Yi-Wei; Park, Sung Wook; Wei, Li-Na
2016-01-01
All-trans Retinoic acid (RA) and its derivatives are potent therapeutics for immunological functions including wound repair. However, the molecular mechanism of RA modulation in innate immunity is poorly understood, especially in macrophages. We found that topical application of RA significantly improves wound healing and that RA and IL-4 synergistically activate Arg1, a critical gene for tissue repair, in M2 polarized macrophages. This involves feed forward regulation of Raldh2, a rate-limiting enzyme for RA biosynthesis, and requires Med25 to coordinate RAR, STAT6 and chromatin remodeler, Brg1 to remodel the +1 nucleosome of Arg1 for transcription initiation. By recruiting elongation factor TFIIS, Med25 also facilitates transcriptional initiation-elongation coupling. This study uncovers synergistic activation of Arg1 by RA and IL-4 in M2 macrophages that involves feed forward regulation of RA synthesis and dual functions of Med25 in nucleosome remodeling and transcription initiation-elongation coupling that underlies robust modulatory activity of RA in innate immunity. PMID:27166374
Epithelial-Mesenchymal Transition in Tissue Repair and Fibrosis
Stone, Rivka C.; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I.; Tomic-Canic, Marjana
2016-01-01
Epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics which confer migratory capacity. EMT and its converse, MET (mesenchymal-to-epithelial transition), are integral stages of many physiologic processes, and as such are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes - the resident skin epithelial cells - migrate across the wound bed to restore the epidermal barrier. Moreover, EMT also plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblast arises from cells of epithelial lineage in response to injury but is pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the impaired repair of fibrotic wounds may identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. PMID:27461257
Topaz, Moris
2012-05-01
Regulated negative pressure-assisted wound therapy (RNPT) should be regarded as a state-of-the-art technology in wound treatment and the most important physical, nonpharmaceutical, platform technology developed and applied for wound healing in the last two decades. RNPT systems maintain the treated wound's environment as a semi-closed, semi-isolated system applying external physical stimulations to the wound, leading to biological and biochemical effects, with the potential to substantially influence wound-host interactions, and when properly applied may enhance wound healing. RNPT is a simple, safe, and affordable tool that can be utilized in a wide range of acute and chronic conditions, with reduced need for complicated surgical procedures, and antibiotic treatment. This technology has been shown to be effective and safe, saving limbs and lives on a global scale. Regulated, oxygen-enriched negative pressure-assisted wound therapy (RO-NPT) is an innovative technology, whereby supplemental oxygen is concurrently administered with RNPT for their synergistic effect on treatment and prophylaxis of anaerobic wound infection and promotion of wound healing. Understanding the basic science, modes of operation and the associated risks of these technologies through their fundamental clinical mechanisms is the main objective of this review.
Cheng, Fang; Shen, Yue; Mohanasundaram, Ponnuswamy; Lindström, Michelle; Ivaska, Johanna; Ny, Tor; Eriksson, John E.
2016-01-01
Vimentin has been shown to be involved in wound healing, but its functional contribution to this process is poorly understood. Here we describe a previously unrecognized function of vimentin in coordinating fibroblast proliferation and keratinocyte differentiation during wound healing. Loss of vimentin led to a severe deficiency in fibroblast growth, which in turn inhibited the activation of two major initiators of epithelial–mesenchymal transition (EMT), TGF-β1 signaling and the Zinc finger transcriptional repressor protein Slug, in vimentin-deficient (VIM−/−) wounds. Correspondingly, VIM−/− wounds exhibited loss of EMT-like keratinocyte activation, limited keratinization, and slow reepithelialization. Furthermore, the fibroblast deficiency abolished collagen accumulation in the VIM−/− wounds. Vimentin reconstitution in VIM−/− fibroblasts restored both their proliferation and TGF-β1 production. Similarly, restoring paracrine TGF-β–Slug–EMT signaling reactivated the transdifferentiation of keratinocytes, reviving their migratory properties, a critical feature for efficient healing. Our results demonstrate that vimentin orchestrates the healing by controlling fibroblast proliferation, TGF-β1–Slug signaling, collagen accumulation, and EMT processing, all of which in turn govern the required keratinocyte activation. PMID:27466403
Comparison and evaluation of gene therapy and epigenetic approaches for wound healing.
Cutroneo, K R; Chiu, J F
2000-01-01
During the past decade considerable evidence has mounted concerning the importance of growth factors in the wound healing process both for cell replication and for stimulating reparative cells to synthesize and secrete extracellular matrix components. During normal wound healing the growth factor concentration has to be maintained at a certain level. If the growth factor concentration is too low, normal healing fails to occur. Whereas if the growth factor concentration is too high due to either over-expression of the growth factor or too much growth factor being applied to the wound, aberrant wound healing will occur. One approach for controlling the amount of growth factor at the wound site during normal healing is through gene therapy and the titration of gene dosage. However if a narrow window exists between the beneficial therapeutic effect and toxic effects with increasing gene dosage, an agent may be necessary to give in combination with gene therapy to regulate the over-expression of growth factor. In addition to genetic approaches to regulate wound healing, epigenetic approaches also exist. Antisense oligodeoxynucleotides have been shown to regulate wound repair in certain model systems and to determine the protein(s) necessary for normal wound healing. A novel approach to regulate the activity of collagen genes, thereby affecting fibrosis, is to use a sense oligodeoxynucleotide having the same sequence of the cis element which regulates the promoter activity of a particular collagen gene. This exogenous oligodeoxynucleotide will compete with the cis element in the collagen gene for the trans-acting factor which regulates promoter activity. These epigenetic approaches afford the opportunity to regulate over-expression of growth factor and therefore preclude the potential toxic effects of gene therapy. Both genetic and epigenetic approaches for regulating the wound healing process, either normal or aberrant wound healing, have certain advantages and disadvantages which are discussed in the present article.
Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1.
Ruthenborg, Robin J; Ban, Jae-Jun; Wazir, Anum; Takeda, Norihiko; Kim, Jung-Whan
2014-09-01
Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.
Oriented cell division: new roles in guiding skin wound repair and regeneration
Yang, Shaowei; Ma, Kui; Geng, Zhijun; Sun, Xiaoyan; Fu, Xiaobing
2015-01-01
Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration. PMID:26582817
Li, Y Z; Hu, X D; Lai, X M; Li, Y F; Lei, Y
2018-01-01
Development of drug therapies and other techniques for wound care have resulted in significant improvement of the cure rate and shortening of the healing time for wounds. A modified technique of regulated oxygen-enriched negative pressure-assisted wound therapy (RO-NPT) has been reported. To evaluate the efficacy and impact of RO-NPT on wound recovery and inflammation. Infected wounds were established on 40 adult female white rabbits, which were then randomized to one of four groups: O 2 group, regulated negative pressure-assisted wound therapy (RNPT) group, regulated oxygen-enriched negative pressure-assisted wound therapy (RO-NPT) group and healthy control (HC) group. Each day, the O 2 group was treated with a constant oxygen supply (1 L/min) to the wound, while the RNPT group was treated with continuous regulated negative pressure (70 ± 5 mmHg) and the RNPT + O 2 group was treated with both. The HC group was treated with gauze dressing alone, which was changed every day. Leucocyte count, colony count and wound-healing rate were calculated. Levels of tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-8 were evaluated by ELISA. RO-RNPT significantly decreased bacterial count and TNF-α level, and increased the wound-healing rate. IL-1β, IL-8 and leucocyte count had a tendency to increase in the early phase of inflammation and a tendency to decrease in the later phase of inflammation in the RO-RNPT group. RO-NPT therapy assisted wound recovery and inflammation control compared with the RNPT and oxygen-enriched therapies. RO-NPT therapy also increased levels of IL-1β and IL-8 and attenuated expression of TNF-α in the early phase of inflammation. © 2017 British Association of Dermatologists.
Chigurupati, Srinivasulu; Mughal, Mohamed R.; Okun, Eitan; Das, Soumen; Kumar, Amit; McCaffery, Michael; Seal, Sudipta; Mattson, Mark P.
2012-01-01
Rapid and effective wound healing requires a coordinated cellular response involving fibroblasts, keratinocytes and vascular endothelial cells (VECs). Impaired wound healing can result in multiple adverse health outcomes and, although antibiotics can forestall infection, treatments that accelerate wound healing are lacking. We now report that topical application of water soluble cerium oxide nanoparticles (Nanoceria) accelerates the healing of full-thickness dermal wounds in mice by a mechanism that involves enhancement of the proliferation and migration of fibroblasts, keratinocytes and VECs. The Nanoceria penetrated into the wound tissue and reduced oxidative damage to cellular membranes and proteins, suggesting a therapeutic potential for topical treatment of wounds with antioxidant nanoparticles. PMID:23266256
Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing
Das, Subhamoy; Baker, Aaron B.
2016-01-01
Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice. PMID:27843895
Bulychev, Alexander A.; Foissner, Ilse
2017-01-01
ABSTRACT Proton flows across the plant cell membranes play a major role in electrogenesis and regulation of photosynthesis and ion balance. The profiles of external pH along the illuminated internodal cells of characean algae consist of alternating high- and low-pH zones that are spatially coordinated with the distribution of photosynthetic activity of chloroplasts underlying these zones. The results based on confocal laser scanning fluorescence microscopy, pH microsensors, and pulse-amplitude-modulated chlorophyll microfluorometry revealed that the coordination of H+ transport and photosynthesis is disrupted by the 2 different environmental cues (low light and wounding) and by a chemical, wortmannin interfering with the inositol phospholipid metabolism. On the one hand, the transition from moderate to low irradiance diminished the peaks in the profiles of photosystem II (PSII) quantum efficiency but did not remove the pH bands. On the other hand, the microwounding of the internode with a glass micropipette, impacting primarily the cell wall, resulted in a rapid local alkalinization of the external medium (by 2–2.5 pH units) near the cell surface, thus mimicking the appearance of natural pH bands. Despite their seeming similarity, the alkaline bands of intact cells were eliminated by wortmannin, whereas the wound-induced alkalinization was insensitive to this drug. Furthermore, the attenuation of natural pH bands in wortmannin-treated cells was accompanied by the enhancement in spatial heterogeneity of PSII efficiency and electron transport rates, which indicates the complexity of chloroplast–plasma membrane interactions. The results suggest that the light- and wound-induced alkaline areas on the cell surface are associated with different ion-transport systems. PMID:28805493
LRIG1 inhibits STAT3-dependent inflammation to maintain corneal homeostasis
Nakamura, Takahiro; Hamuro, Junji; Takaishi, Mikiro; Simmons, Szandor; Maruyama, Kazuichi; Zaffalon, Andrea; Bentley, Adam J.; Kawasaki, Satoshi; Nagata-Takaoka, Maho; Fullwood, Nigel J.; Itami, Satoshi; Sano, Shigetoshi; Ishii, Masaru; Barrandon, Yann; Kinoshita, Shigeru
2013-01-01
Corneal integrity and transparency are indispensable for good vision. Cornea homeostasis is entirely dependent upon corneal stem cells, which are required for complex wound-healing processes that restore corneal integrity following epithelial damage. Here, we found that leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is highly expressed in the human holoclone-type corneal epithelial stem cell population and sporadically expressed in the basal cells of ocular-surface epithelium. In murine models, LRIG1 regulated corneal epithelial cell fate during wound repair. Deletion of Lrig1 resulted in impaired stem cell recruitment following injury and promoted a cell-fate switch from transparent epithelium to keratinized skin-like epidermis, which led to corneal blindness. In addition, we determined that LRIG1 is a negative regulator of the STAT3-dependent inflammatory pathway. Inhibition of STAT3 in corneas of Lrig1–/– mice rescued pathological phenotypes and prevented corneal opacity. Additionally, transgenic mice that expressed a constitutively active form of STAT3 in the corneal epithelium had abnormal features, including corneal plaques and neovascularization similar to that found in Lrig1–/– mice. Bone marrow chimera experiments indicated that LRIG1 also coordinates the function of bone marrow–derived inflammatory cells. Together, our data indicate that LRIG1 orchestrates corneal-tissue transparency and cell fate during repair, and identify LRIG1 as a key regulator of tissue homeostasis. PMID:24316976
NASA Technical Reports Server (NTRS)
Stankovic, B.; Vian, A.; Henry-Vian, C.; Davies, E.
2000-01-01
Localized wounding of one leaf in intact tomato (Lycopersicon esculentum Mill.) plants triggers rapid systemic transcriptional responses that might be involved in defense. To better understand the mechanism(s) of intercellular signal transmission in wounded tomatoes, and to identify the array of genes systemically up-regulated by wounding, a subtractive cDNA library for wounded tomato leaves was constructed. A novel cDNA clone (designated LebZIP1) encoding a DNA-binding protein was isolated and identified. This clone appears to be encoded by a single gene, and belongs to the family of basic leucine zipper domain (bZIP) transcription factors shown to be up-regulated by cold and dark treatments. Analysis of the mRNA levels suggests that the transcript for LebZIP1 is both organ-specific and up-regulated by wounding. In wounded wild-type tomatoes, the LebZIP1 mRNA levels in distant tissue were maximally up-regulated within only 5 min following localized wounding. Exogenous abscisic acid (ABA) prevented the rapid wound-induced increase in LebZIP1 mRNA levels, while the basal levels of LebZIP1 transcripts were higher in the ABA mutants notabilis (not), sitiens (sit), and flacca (flc), and wound-induced increases were greater in the ABA-deficient mutants. Together, these results suggest that ABA acts to curtail the wound-induced synthesis of LebZIP1 mRNA.
Janda, Jaroslav; Nfonsam, Valentine; Calienes, Fernanda; Sligh, James E; Jandova, Jana
2016-05-01
Mitochondria are the major source of reactive oxygen species (ROS) in fibroblasts which are thought to be crucial regulators of wound healing with a potential to affect the expression of nuclear genes involved in this process. ROS generated by mitochondria are involved in all stages of tissue repair process but the regulation of ROS-generating system in fibroblasts still remains poorly understood. The purpose of this study was to better understand molecular mechanisms of how the regulation of ROS levels generated by mitochondria may influence the process of wound repair. Cybrid model system of mtDNA variations was used to study the functional consequences of altered ROS levels on wound healing responses in a uniform nuclear background of cultured ρ(0) fibroblasts. Mitochondrial ROS in cybrids were modulated by antioxidants that quench ROS to examine their ability to close the wound. Real-time PCR arrays were used to investigate whether ROS generated by specific mtDNA variants have the ability to alter expression of some key nuclear-encoded genes central to the wound healing response and oxidative stress. Our data suggest levels of mitochondrial ROS affect expression of some nuclear encoded genes central to wound healing response and oxidative stress and modulation of mitochondrial ROS by antioxidants positively affects in vitro process of wound closure. Thus, regulation of mitochondrial ROS-generating system in fibroblasts can be used as effective natural redox-based strategy to help treat non-healing wounds.
Mechanical Stress Induces Biotic and Abiotic Stress Responses via a Novel cis-Element
Walley, Justin W; Coughlan, Sean; Hudson, Matthew E; Covington, Michael F; Kaspi, Roy; Banu, Gopalan; Harmer, Stacey L; Dehesh, Katayoon
2007-01-01
Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min) to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR) genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE). We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation. PMID:17953483
Gap junctions and connexin hemichannels in the regulation of haemostasis and thrombosis.
Vaiyapuri, Sakthivel; Flora, Gagan D; Gibbins, Jonathan M
2015-06-01
Platelets are involved in the maintenance of haemostasis but their inappropriate activation leads to thrombosis, a principal trigger for heart attack and ischaemic stroke. Although platelets circulate in isolation, upon activation they accumulate or aggregate together to form a thrombus, where they function in a co-ordinated manner to prevent loss of blood and control wound repair. Previous report (1) indicates that the stability and functions of a thrombus are maintained through sustained, contact-dependent signalling between platelets. Given the role of gap junctions in the co-ordination of tissue responses, it was hypothesized that gap junctions may be present within a thrombus and mediate intercellular communication between platelets. Therefore studies were performed to explore the presence and functions of connexins in platelets. In this brief review, the roles of hemichannels and gap junctions in the control of thrombosis and haemostasis and the future directions for this research will be discussed.
Ruddell, Richard G; Knight, Belinda; Tirnitz-Parker, Janina E E; Akhurst, Barbara; Summerville, Lesa; Subramaniam, V Nathan; Olynyk, John K; Ramm, Grant A
2009-01-01
Lymphotoxin-beta (LTbeta) is a proinflammatory cytokine and a member of the tumor necrosis factor (TNF) superfamily known for its role in mediating lymph node development and homeostasis. Our recent studies suggest a role for LTbeta in mediating the pathogenesis of human chronic liver disease. We hypothesize that LTbeta co-ordinates the wound healing response in liver injury via direct effects on hepatic stellate cells. This study used the choline-deficient, ethionine-supplemented (CDE) dietary model of chronic liver injury, which induces inflammation, liver progenitor cell proliferation, and portal fibrosis, to assess (1) the cellular expression of LTbeta, and (2) the role of LTbeta receptor (LTbetaR) in mediating wound healing, in LTbetaR(-/-) versus wild-type mice. In addition, primary isolates of hepatic stellate cells were treated with LTbetaR-ligands LTbeta and LTbeta-related inducible ligand competing for glycoprotein D binding to herpesvirus entry mediator on T cells (LIGHT), and mediators of hepatic stellate cell function and fibrogenesis were assessed. LTbeta was localized to progenitor cells immediately adjacent to activated hepatic stellate cells in the periportal region of the liver in wild-type mice fed the CDE diet. LTbetaR(-/-) mice fed the CDE diet showed significantly reduced fibrosis and a dysregulated immune response. LTbetaR was demonstrated on isolated hepatic stellate cells, which when stimulated by LTbeta and LIGHT, activated the nuclear factor kappa B (NF-kappaB) signaling pathway. Neither LTbeta nor LIGHT had any effect on alpha-smooth muscle actin, tissue inhibitor of metalloproteinase 1, transforming growth factor beta, or procollagen alpha(1)(I) expression; however, leukocyte recruitment-associated factors intercellular adhesion molecule 1 and regulated upon activation T cells expressed and secreted (RANTES) were markedly up-regulated. RANTES caused the chemotaxis of a liver progenitor cell line expressing CCR5. This study suggests that LTbetaR on hepatic stellate cells may be involved in paracrine signaling with nearby LTbeta-expressing liver progenitor cells mediating recruitment of progenitor cells, hepatic stellate cells, and leukocytes required for wound healing and regeneration during chronic liver injury.
Feng, Yi; Sanders, Andrew J.; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G.; Jiang, Wen G.
2016-01-01
Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound-healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine-induced signalling in the chronic wound-healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds. PMID:27635428
Nguyen, Van-Linh; Truong, Cong-Tri; Nguyen, Binh Cao Quan; Vo, Thanh-Niem Van; Dao, Trong-Thuc; Nguyen, Van-Dan; Trinh, Dieu-Thuong Thi; Huynh, Hieu Kim; Bui, Chi-Bao
2017-01-01
Due to the high-cost and limitations of current wound healing treatments, the search for alternative approaches or drugs, particularly from medicinal plants, is of key importance. In this study, we report anti-inflammatory and wound healing activities of the major calophyllolide (CP) compound isolated from Calophyllum inophyllum Linn. The results showed that CP had no effect on HaCaT cell viability over a range of concentrations. CP reduced fibrosis formation and effectively promoted wound closure in mouse model without causing body weight loss. The underlying molecular mechanisms of wound repair by CP was investigated. CP markedly reduced MPO activity, and increased M2 macrophage skewing, as shown by up-regulation of M2-related gene expression, which is beneficial to the wound healing process. CP treatment prevented a prolonged inflammatory process by down-regulation of the pro-inflammatory cytokines-IL-1β, IL-6, TNF-α, but up-regulation of the anti-inflammatory cytokine, IL-10. This study is the first to indicate a plausible role for CP in accelerating the process of wound healing through anti-inflammatory activity mechanisms, namely, by regulation of inflammatory cytokines, reduction in MPO, and switching of macrophages to an M2 phenotype. These findings may enable the utilization of CP as a potent therapeutic for cutaneous wound healing.
Expression and Function of Connexin 43 in Human Gingival Wound Healing and Fibroblasts
Tarzemany, Rana; Jiang, Guoqiao; Larjava, Hannu; Häkkinen, Lari
2015-01-01
Connexins (C×s) are a family of transmembrane proteins that form hemichannels and gap junctions (GJs) on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM) turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of wound healing-associated genes via AP1, SP1, MAPK, GSK3α/β and TGF-β signaling pathways, and may promote fast and scarless wound healing in human gingiva. PMID:25584940
Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway.
Wu, Xue; Yang, Longlong; Zheng, Zhao; Li, Zhenzhen; Shi, Jihong; Li, Yan; Han, Shichao; Gao, Jianxin; Tang, Chaowu; Su, Linlin; Hu, Dahai
2016-03-01
Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto‑oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metalloproteinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing.
Exploring scarless healing of oral soft tissues.
Larjava, Hannu; Wiebe, Colin; Gallant-Behm, Corrie; Hart, David A; Heino, Jyrki; Häkkinen, Lari
2011-01-01
Our research group is comparing clinical, histological and molecular healing profiles of oral and skin wounds using human and pig models. The goal is to determine the molecular cues that lead to scarless healing in the oral mucosa and use that information to develop scar prevention therapies for skin and prevent aberrant wound healing in the oral cavity. Wound healing in human and pig palatal mucosa is almost identical, and scar formation is reduced in oral wounds compared with skin. The striking difference between these tissues is transient and rapidly resolving inflammation in oral wounds compared with long-lasting inflammation in the skin wounds. Currently, we are looking at wound transcriptomes (genes differentially regulated) and proteomes (a set of proteins) to investigate how these wound healing responses in skin and oral mucosa are regulated at the molecular level.
NASA Astrophysics Data System (ADS)
Houreld, Nicolette N.
2014-02-01
Wound healing is a highly orchestrated process and involves a wide variety of cellular components, chemokines and growth factors. Laser irradiation has influenced gene expression and release of various growth factors, cytokines and extracellular matrix proteins involved in wound healing. This study aimed to determine the expression profile of genes involved in wound healing in wounded and diabetic wounded fibroblast cells in response to irradiation at a wavelength of 660 nm. Human skin fibroblast cells (WS1) were irradiated with a diode laser (wavelength 660 nm; fluence 5 J/cm2; power output 100 mW; power density 11 mW/cm2; spot size 9.1 cm2; exposure duration 7 min 35 s). Total RNA was isolated and 1 μg reverse transcribed into cDNA which was used as a template in real-time qualitative polymerase chain reaction (qPCR). Eighty four genes involved in wound healing (extracellular matrix and cell adhesion; inflammatory cytokines and chemokines; growth factors; and signal transduction) were evaluated in wounded and diabetic wounded cell models. Forty eight hours post-irradiation, 6 genes were significantly upregulated and 8 genes were down-regulated in irradiated wounded cells, whereas 1 gene was up-regulated and 33 genes down-regulated in irradiated diabetic wounded cells. Irradiation of stressed fibroblast cells to a wavelength of 660 nm and a fluence of 5 J/cm2 modulated the expression of different genes involved in wound healing in different cell models. Modulation of these genes leads to the effects of laser irradiation seen both in vivo and in vitro, and facilitates the wound healing process.
Satoh, Akira; Bryant, Susan V; Gardiner, David M
2012-06-15
The ability of adult vertebrates to repair tissue damage is widespread and impressive; however, the ability to regenerate structurally complex organs such as the limb is limited largely to the salamanders. The fact that most of the tissues of the limb can regenerate has led investigators to question and identify the barriers to organ regeneration. From studies in the salamander, it is known that one of the earliest steps required for successful regeneration involves signaling between nerves and the wound epithelium/apical epithelial cap (AEC). In this study we confirm an earlier report that the keratinocytes of the AEC acquire their function coincident with exiting the cell cycle. We have discovered that this unique, coordinated behavior is regulated by nerve signaling and is associated with the presence of gap junctions between the basal keratinocytes of the AEC. Disruption of nerve signaling results in a loss of gap junction protein, the reentry of the cells into the cell cycle, and regenerative failure. Finally, coordinated exit from the cell cycle appears to be a conserved behavior of populations of cells that function as signaling centers during both development and regeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
Wounded Warrior Regiment Strategic Plan 2011-2012
2011-01-01
months later, the “Miracle Man”, as he had come to be known, walked out of the hospital under his own power. Sergeant German met his challenges...Coordination Program-Support Solution ( RCP -SS), Marine Corps Medical Entitlement Data System (MCMEDS), Comprehensive Health Care System (CHCS), and...PTS Post-Traumatic Stress RCC Recovery Care Coordinator RCP -SS Recovery Coordination Program-Support Solution RMED Reserve Medical Entitlements
Fidgetin-like 2: a microtubule-based regulator of wound healing
Charafeddine, Rabab A.; Makdisi, Joy; Schairer, David; O’Rourke, Brian P.; Diaz-Valencia, Juan D.; Chouake, Jason; Kutner, Allison; Krausz, Aimee; Adler, Brandon; Nacharaju, Parimala; Liang, Hongying; Mukherjee, Suranjana; Friedman, Joel M.; Friedman, Adam; Nosanchuk, Joshua D.; Sharp, David J.
2015-01-01
Wound healing is a complex process driven largely by the migration of a variety of distinct cell types from the wound margin into the wound zone. In this study, we identify the previously uncharacterized microtubule-severing enzyme, Fidgetin-like 2 (FL2), as a fundamental regulator of cell migration that can be targeted in vivo using nanoparticle-encapsulated siRNA to promote wound closure and regeneration. In vitro, depletion of FL2 from mammalian tissue culture cells results in a more than two-fold increase in the rate of cell movement, due in part to a significant increase in directional motility. Immunofluorescence analyses indicate that FL2 normally localizes to the cell edge, importantly to the leading edge of polarized cells, where it regulates the organization and dynamics of the microtubule cytoskeleton. To clinically translate these findings, we utilized a nanoparticle-based siRNA delivery platform to locally deplete FL2 in both murine full-thickness excisional and burn wounds. Topical application of FL2 siRNA nanoparticles to either wound type results in a significant enhancement in the rate and quality of wound closure both clinically and histologically relative to controls. Taken together, these results identify FL2 as a promising therapeutic target to promote the regeneration and repair of cutaneous wounds. PMID:25756798
Feng, Yi; Sanders, Andrew J; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G; Jiang, Wen G
2016-11-01
Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound‑healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine‑induced signalling in the chronic wound‑healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds.
A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis.
Bell, E; Creelman, R A; Mullet, J E
1995-09-12
Plant lipoxygenases are thought to be involved in the biosynthesis of lipid-derived signaling molecules. The potential involvement of a specific Arabidopsis thaliana lipoxygenase isozyme, LOX2, in the biosynthesis of the plant growth regulators jasmonic acid (JA) and abscisic acid was investigated. Our characterization of LOX2 indicates that the protein is targeted to chloroplasts. The physiological role of this chloroplast lipoxygenase was analyzed in transgenic plants where cosuppression reduced LOX2 accumulation. The reduction in LOX2 levels caused no obvious changes in plant growth or in the accumulation of abscisic acid. However, the wound-induced accumulation of JA observed in control plants was absent in leaves of transgenic plants that lacked LOX2. Thus, LOX2 is required for the wound-induced synthesis of the plant growth regulator JA in leaves. We also examined the expression of a wound- and JA-inducible Arabidopsis gene, vsp, in transgenic and control plants. Leaves of transgenic plants lacking LOX2 accumulated less vsp mRNA than did control leaves in response to wounding. This result suggests that wound-induced JA (or some other LOX2-requiring component of the wound response pathway) is involved in the wound-induced regulation of this gene.
Tsai, Chang-Ru; Anderson, Aimee E; Burra, Sirisha; Jo, Juyeon; Galko, Michael J
2017-07-01
Yorkie (Yki), the transcriptional co-activator of the Hippo signaling pathway, has well-characterized roles in balancing apoptosis and cell division during organ growth control. Yki is also required in diverse tissue regenerative contexts. In most cases this requirement reflects its well-characterized roles in balancing apoptosis and cell division. Whether Yki has repair functions outside of the control of cell proliferation, death, and growth is not clear. Here we show that Yki and Scalloped (Sd) are required for epidermal wound closure in the Drosophila larval epidermis. Using a GFP-tagged Yki transgene we show that Yki transiently translocates to some epidermal nuclei upon wounding. Genetic analysis strongly suggests that Yki interacts with the known wound healing pathway, Jun N-terminal kinase (JNK), but not with Platelet Derived Growth Factor/Vascular-Endothelial Growth Factor receptor (Pvr). Yki likely acts downstream of or parallel to JNK signaling and does not appear to regulate either proliferation or apoptosis in the larval epidermis during wound repair. Analysis of actin structures after wounding suggests that Yki and Sd promote wound closure through actin regulation. In sum, we found that Yki regulates an epithelial tissue repair process independently of its previously documented roles in balancing proliferation and apoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamic Reciprocity in the Wound Microenvironment
Schultz, Gregory S.; Davidson, Jeffrey M.; Kirsner, Robert S.; Bornstein, Paul; Herman, Ira M.
2011-01-01
Here, we define dynamic reciprocity (DR) as an ongoing, bidirectional interaction amongst cells and their surrounding microenvironment. In the review, we posit that DR is especially meaningful during wound healing as the DR-driven biochemical, biophysical and cellular responses to injury play pivotal roles in regulating tissue regenerative responses. Such cell-extracellular matrix interactions not only guide and regulate cellular morphology, but cellular differentiation, migration, proliferation, and survival during tissue development, including e.g. embryogenesis, angiogenesis, as well as during pathologic processes including cancer diabetes, hypertension and chronic wound healing. Herein, we examine DR within the wound microenvironment while considering specific examples across acute and chronic wound healing. This review also considers how a number of hypotheses that attempt to explain chronic wound pathophysiology, which may be understood within the DR framework. The implications of applying the principles of dynamic reciprocity to optimize wound care practice and future development of innovative wound healing therapeutics are also briefly considered. PMID:21362080
Silver oxysalts promote cutaneous wound healing independent of infection.
Thomason, Helen A; Lovett, Jodie M; Spina, Carla J; Stephenson, Christian; McBain, Andrew J; Hardman, Matthew J
2018-03-12
Chronic wounds often exist in a heightened state of inflammation whereby excessive inflammatory cells release high levels of proteases and reactive oxygen species (ROS). While low levels of ROS play a fundamental role in the regulation of normal wound healing, their levels need to be tightly regulated to prevent a hostile wound environment resulting from excessive levels of ROS. Infection amplifies the inflammatory response, augmenting levels of ROS which creates additional tissue damage that supports microbial growth. Antimicrobial dressings are used to combat infection; however, the effects of these dressing on the wound environment and healing independent of infection are rarely assessed. Cytotoxic or adverse effects on healing may exacerbate the hostile wound environment and prolong healing. Here we assessed the effect on healing independent of infection of silver oxysalts which produce higher oxidative states of silver (Ag 2+ /Ag 3+ ). Silver oxysalts had no adverse effect on fibroblast scratch wound closure whilst significantly promoting closure of keratinocyte scratch wounds (34% increase compared with control). Furthermore, dressings containing silver oxysalts accelerated healing of full-thickness incisional wounds in wild-type mice, reducing wound area, promoting reepithelialization, and dampening inflammation. We explored the mechanisms by which silver oxysalts promote healing and found that unlike other silver dressings tested, silver oxysalt dressings catalyze the breakdown of hydrogen peroxide to water and oxygen. In addition, we found that silver oxysalts directly released oxygen when exposed to water. Collectively, these data provide the first indication that silver oxysalts promote healing independent of infection and may regulate oxidative stress within a wound through catalysis of hydrogen peroxide. © 2018 by the Wound Healing Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serrano, Isabel; Diez-Marques, Maria L.; Rodriguez-Puyol, Manuel
2012-11-15
Integrin-linked kinase (ILK) is an intracellular effector of cell-matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The present work analyzes the role of ILK in wound healing in adult animals using a conditional knock-out of the ILK gene generated with the tamoxifen-inducible Cre-lox system (CRE-LOX mice). Results show that ILK deficiency leads to retarded wound closure in skin. Intracellular mechanisms involved in this process were analyzed in cultured mouse embryonic fibroblast (MEF) isolated from CRE-LOX mice and revealed that wounding promotes rapid activation of phosphatidylinositol 3-kinase (PI3K) and ILK. Knockdown of ILKmore » resulted in a retarded wound closure due to a decrease in cellular proliferation and loss of HGF protein expression during the healing process, in vitro and in vivo. Alterations in cell proliferation and wound closure in ILK-deficient MEF or mice could be rescued by exogenous administration of human HGF. These data demonstrate, for the first time, that the activation of PI3K and ILK after skin wounding are critical for HGF-dependent tissue repair and wound healing. -- Highlights: Black-Right-Pointing-Pointer ILK deletion results in decreased HGF expression and delayed scratch wound repair. Black-Right-Pointing-Pointer PI3K/ILK/AKT pathway signals through HGF to regulate wound healing. Black-Right-Pointing-Pointer An ILK-dependent increase in HGF expression is responsible for wound healing in vivo. Black-Right-Pointing-Pointer ILK-KO mice are used to confirm the requirement for ILK function in wound healing. Black-Right-Pointing-Pointer Human HGF treatment restores delayed wound closure in vitro and in vivo.« less
Bioelectric modulation of wound healing in a 3D in vitro model of tissue-engineered bone.
Sundelacruz, Sarah; Li, Chunmei; Choi, Young Jun; Levin, Michael; Kaplan, David L
2013-09-01
Long-standing interest in bioelectric regulation of bone fracture healing has primarily focused on exogenous stimulation of bone using applied electromagnetic fields. Endogenous electric signals, such as spatial gradients of resting potential among non-excitable cells in vivo, have also been shown to be important in cell proliferation, differentiation, migration, and tissue regeneration, and may therefore have as-yet unexplored therapeutic potential for regulating wound healing in bone tissue. To study this form of bioelectric regulation, there is a need for three-dimensional (3D) in vitro wound tissue models that can overcome limitations of current in vivo models. We present a 3D wound healing model in engineered bone tissue that serves as a pre-clinical experimental platform for studying electrophysiological regulation of wound healing. Using this system, we identified two electrophysiology-modulating compounds, glibenclamide and monensin, that augmented osteoblast mineralization. Of particular interest, these compounds displayed differential effects in the wound area compared to the surrounding tissue. Several hypotheses are proposed to account for these observations, including the existence of heterogeneous subpopulations of osteoblasts that respond differently to bioelectric signals, or the capacity of the wound-specific biochemical and biomechanical environment to alter cell responses to electrophysiological treatments. These data indicate that a comprehensive characterization of the cellular, biochemical, biomechanical, and bioelectrical components of in vitro wound models is needed to develop bioelectric strategies to control cell functions for improved bone regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gap geometry dictates epithelial closure efficiency
Ravasio, Andrea; Cheddadi, Ibrahim; Chen, Tianchi; Pereira, Telmo; Ong, Hui Ting; Bertocchi, Cristina; Brugues, Agusti; Jacinto, Antonio; Kabla, Alexandre J.; Toyama, Yusuke; Trepat, Xavier; Gov, Nir; Neves de Almeida, Luís; Ladoux, Benoit
2015-01-01
Closure of wounds and gaps in tissues is fundamental for the correct development and physiology of multicellular organisms and, when misregulated, may lead to inflammation and tumorigenesis. To re-establish tissue integrity, epithelial cells exhibit coordinated motion into the void by active crawling on the substrate and by constricting a supracellular actomyosin cable. Coexistence of these two mechanisms strongly depends on the environment. However, the nature of their coupling remains elusive because of the complexity of the overall process. Here we demonstrate that epithelial gap geometry in both in vitro and in vivo regulates these collective mechanisms. In addition, the mechanical coupling between actomyosin cable contraction and cell crawling acts as a large-scale regulator to control the dynamics of gap closure. Finally, our computational modelling clarifies the respective roles of the two mechanisms during this process, providing a robust and universal mechanism to explain how epithelial tissues restore their integrity. PMID:26158873
Kim, Kang-Hoon; Chung, Won-Seok; Kim, Yoomi; Kim, Ki-Suk; Lee, In-Seung; Park, Ji Young; Jeong, Hyeon-Soo; Na, Yun-Cheol; Lee, Chang-Hun; Jang, Hyeung-Jin
2015-08-01
Facilitation of the wound healing process is important because a prolonged wound site increases pain and the risk of infection. In oriental medicine, an extract of Morus alba root (MA) has usually been prescribed as traditional treatment for accelerating wound healing, and it has been proven to be safe for centuries. To study the molecular mechanism of MA-mediated skin wound healing, we performed a primary cell culture and a skin explant culture and observed significant difference between the groups with and without MA extract. In the cellular system, a real-time cell analysis and real-time quantitative PCR were performed. It was found that MA extract enhanced proliferation in a dose-dependent manner on Kera-308 cell line, and up-regulated keratin expression including wound-induced Krt6a. In skin explant culture, the mRNA level derived from cell outgrowth displayed a tendency toward more up-regulated mRNA associated keratin filaments and toward a more up-regulated mRNA level of C-X-C motif chemokine 12 (CXCL12) and a chemokine receptor 4 (CXCR4) axis signaling pathway downstream. In this process, we concluded that MA extract had a scientific possibility of wound repair by increasing intracellular and extracellular supports and by inducing a CXCL12/CXCR4 signaling pathway. Copyright © 2015 John Wiley & Sons, Ltd.
Bohn, Gregory A; Schultz, Gregory S; Liden, Brock A; Desvigne, Michael N; Lullove, Eric J; Zilberman, Igor; Regan, Mary B; Ostler, Marta; Edwards, Karen; Arvanitis, Georgia M; Hartman, Jodi F
2017-11-01
Normal wound healing is accomplished through a series of well-coordinated, progressive events with overlapping phases. Chronic wounds are described as not progressing to healing or not being responsive to management in a timely manner. A consensus panel of multidisciplinary wound care professionals was assembled to (1) educate wound care practitioners by identifying key principles of the basic science of chronic wound pathophysiology, highlighting the impact of metalloproteinases and biofilms, as well as the role of the extracellular matrix; and (2) equip practitioners with a systematic strategy for the prevention and healing of acute injuries and chronic wounds based upon scientific evidence and the panel members' expertise. An algorithm is presented that represents a shift in strategy to proactive and early aggressive wound management. With proactive management, adjunct therapies are applied preemptively to acute injuries to reduce wound duration and risk of chronicity. For existing chronic wounds, early aggressive wound management is employed to break the pathophysiology cycle and drive wounds toward healing. Reducing bioburden through debridement and bioburden management and using collagen dressings to balance protease activity prior to the use of advanced modalities may enhance their effectiveness. This early aggressive wound management strategy is recommended for patients at high risk for chronic wound development at a minimum. In their own practices, the panel members apply this systematic strategy for all patients presenting with acute injuries or chronic wounds.
A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis.
Bell, E; Creelman, R A; Mullet, J E
1995-01-01
Plant lipoxygenases are thought to be involved in the biosynthesis of lipid-derived signaling molecules. The potential involvement of a specific Arabidopsis thaliana lipoxygenase isozyme, LOX2, in the biosynthesis of the plant growth regulators jasmonic acid (JA) and abscisic acid was investigated. Our characterization of LOX2 indicates that the protein is targeted to chloroplasts. The physiological role of this chloroplast lipoxygenase was analyzed in transgenic plants where cosuppression reduced LOX2 accumulation. The reduction in LOX2 levels caused no obvious changes in plant growth or in the accumulation of abscisic acid. However, the wound-induced accumulation of JA observed in control plants was absent in leaves of transgenic plants that lacked LOX2. Thus, LOX2 is required for the wound-induced synthesis of the plant growth regulator JA in leaves. We also examined the expression of a wound- and JA-inducible Arabidopsis gene, vsp, in transgenic and control plants. Leaves of transgenic plants lacking LOX2 accumulated less vsp mRNA than did control leaves in response to wounding. This result suggests that wound-induced JA (or some other LOX2-requiring component of the wound response pathway) is involved in the wound-induced regulation of this gene. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7567995
Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing.
Piperigkou, Zoi; Götte, Martin; Theocharis, Achilleas D; Karamanos, Nikos K
2017-10-24
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Shin, Jihyun; Yang, Soo Jin
2016-01-01
Delayed wound healing is one of the major diabetic complications. During wound healing process, the early inflammatory stage is important for better prognosis. One of antioxidant nutrient, gamma-tocopherol (GT) is considered to regulate inflammatory conditions. This study investigated the effect of GT supplementation on mechanism associated with inflammation, oxidative stress, and apoptosis during early cutaneous wound healing in diabetic mice. Diabetes was induced by alloxan injection in ICR mice. All mice were divided into three groups: non-diabetic control mice (CON), diabetic control mice (DMC), and diabetic mice supplemented with GT (GT). After two weeks of GT supplementation, excisional wounds were made by biopsy punches (4 mm). Diabetic mice showed increases in fasting blood glucose (FBG) level, hyper-inflammatory response, oxidative stress, and delayed wound closure rate compared to non-diabetic mice. However, GT supplementation reduced FBG level and accelerated wound closure rate by regulation of inflammatory response-related proteins such as nuclear factor kappa B, interleukin-1β, tumor necrosis factor-α, and c-reactive protein, and oxidative stress-related markers including nuclear factor (erythroid derived 2)-like 2, NAD(P)H dehydrogenase quinone1, heme oxygenase-1, manganese superoxide dismutase, catalase and glutathione peroxidase and apoptosis-related markers such as sirtuin-1, peroxisome proliferator-activated receptor gamma coactivator 1-α, and p53 in diabetic mice. Taken together, GT would be a potential therapeutic to prevent diabetes-induced delayed wound healing by regulation of inflammatory response, apoptosis, and oxidative stress. Impact statement Gamma tocopherol has shown ameliorative effect on diabetic wound healing by regulation of inflammation, oxidative stress, and apoptosis demonstrated by nuclear factor kappa B, nuclear factor (erythroid derived 2)-like 2, and sirtuin-1. PMID:28211759
Shin, Jihyun; Yang, Soo Jin; Lim, Yunsook
2017-03-01
Delayed wound healing is one of the major diabetic complications. During wound healing process, the early inflammatory stage is important for better prognosis. One of antioxidant nutrient, gamma-tocopherol (GT) is considered to regulate inflammatory conditions. This study investigated the effect of GT supplementation on mechanism associated with inflammation, oxidative stress, and apoptosis during early cutaneous wound healing in diabetic mice. Diabetes was induced by alloxan injection in ICR mice. All mice were divided into three groups: non-diabetic control mice (CON), diabetic control mice (DMC), and diabetic mice supplemented with GT (GT). After two weeks of GT supplementation, excisional wounds were made by biopsy punches (4 mm). Diabetic mice showed increases in fasting blood glucose (FBG) level, hyper-inflammatory response, oxidative stress, and delayed wound closure rate compared to non-diabetic mice. However, GT supplementation reduced FBG level and accelerated wound closure rate by regulation of inflammatory response-related proteins such as nuclear factor kappa B, interleukin-1β, tumor necrosis factor-α, and c-reactive protein, and oxidative stress-related markers including nuclear factor (erythroid derived 2)-like 2, NAD(P)H dehydrogenase quinone1, heme oxygenase-1, manganese superoxide dismutase, catalase and glutathione peroxidase and apoptosis-related markers such as sirtuin-1, peroxisome proliferator-activated receptor gamma coactivator 1- α, and p53 in diabetic mice. Taken together, GT would be a potential therapeutic to prevent diabetes-induced delayed wound healing by regulation of inflammatory response, apoptosis, and oxidative stress. Impact statement Gamma tocopherol has shown ameliorative effect on diabetic wound healing by regulation of inflammation, oxidative stress, and apoptosis demonstrated by nuclear factor kappa B, nuclear factor (erythroid derived 2)-like 2, and sirtuin-1.
Melatonin promotes diabetic wound healing in vitro by regulating keratinocyte activity
Song, Ruipeng; Ren, Lijun; Ma, Haoli; Hu, Ruijing; Gao, Honghong; Wang, Li; Chen, Xuehui; Zhao, Zhigang; Liu, Jialin
2016-01-01
Diabetic patients are at high risk of developing delayed cutaneous wound healing. Proper keratinocyte proliferation and migration are crucial steps during re-epithelialization. Melatonin (Mel) accelerates wound repair in full-thickness incisional wounds; however, its role in diabetic wound healing is unknown. This study explored the role of Mel in diabetic wound healing in vitro by using high glucose (HG)-cultured keratinocytes. Mel reduced the HG-induced mRNA expression and release of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-8, in keratinocytes. Mel inhibited oxidative stress, as evidenced by reduced production of reactive oxygen species and malondialdehyde and increased activity of superoxide dismutase in HG-stimulated keratinocytes. Mel also inhibited HG-induced nucleotide binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome activation in keratinocytes. HG-induced reduced migration and proliferation and increased apoptosis of keratinocytes were counteracted by Mel treatment. The pro-proliferative, pro-migratory, and anti-apoptotic effects of Mel on HG-treated keratinocytes were mediated by extracellular signal-regulated kinase signaling pathway. Results collectively suggested that Mel is an alternative therapeutic strategy to ameliorate poor condition for diabetic wound healing by regulating keratinocyte activity. PMID:27904671
FOXO1, TGF-β Regulation and Wound Healing
Hameedaldeen, Alhassan; Liu, Jian; Batres, Angelika; Graves, Gabrielle S.; Graves, Dana T.
2014-01-01
Re-epithelialization is a complex process that involves migration and proliferation of keratinocytes, in addition to the production of cytokines and growth factors that affect other cells. The induction of transcription factors during these processes is crucial for successful wound healing. The transcription factor forkhead boxO-1 (FOXO1) has recently been found to be an important regulator of wound healing. In particular, FOXO1 has significant effects through regulation of transforming growth factor-beta (TGF-β) expression and protecting keratinocytes from oxidative stress. In the absence of FOXO1, there is increased oxidative damage, reduced TGF-β1 expression, reduced migration and proliferation of keratinocytes and increased keratinocytes apoptosis leading to impaired re-epithelialization of wounds. PMID:25226535
Chen, Yu-Tsung; Chang, Chang-Cheng; Shen, Jen-Hsiang; Lin, Wei-Nung; Chen, Mei-Yen
2015-11-01
Although the benefits of wound care services and multidisciplinary team care have been well elaborated on in the literature, there is a gap in the actual practice of wound care and the establishment of an efficient referral system. The conceptual framework for establishing efficient wound management services requires elucidation.A wound care center was established in a tertiary hospital in 2010, staffed by an integrated multidisciplinary team including plastic surgeons, a full-time coordinator, a physical therapist, occupational therapists, and other physician specialists. Referral patients were efficiently managed following a conceptual framework for wound care. This efficient wound management service consists of 3 steps: patient entry and onsite immediate wound debridement, wound re-evaluation, and individual wound bed preparation plan. Wound conditions were documented annually over 4 consecutive years.From January 2011 to December 2014, 1103 patients were recruited from outpatient clinics or inpatient consultations for the 3-step wound management service. Of these, 62% of patients achieved healing or improvement in wounds, 13% of patients experienced no change, and 25% of patients failed to follow-up. The outcome of wound treatment varied by wound type. Sixty-nine percent of diabetic foot ulcer patients were significantly healed or improved. In contrast, pressure ulcers were the most poorly healed wound type, with only 55% of patients achieving significantly healed or improved wounds.The 3-step wound management service in the wound care center efficiently provided onsite screening, timely debridement, and multidisciplinary team care. Patients could schedule appointments instead of waiting indefinitely for care. Further wound condition follow-up, education, and prevention were also continually provided.
Roles of P21-activated kinases and associated proteins in epithelial wound healing.
Zegers, Mirjam
2008-01-01
The primary function of epithelia is to provide a barrier between the extracellular environment and the interior of the body. Efficient epithelial repair mechanisms are therefore crucial for homeostasis. The epithelial wound-healing process involves highly regulated morphogenetic changes of epithelial cells that are driven by dynamic changes of the cytoskeleton. P21-activated kinases are serine/threonine kinases that have emerged as important regulators of the cytoskeleton. These kinases, which are activated downsteam of the Rho GTPases Rac and cd42, were initially mostly implicated in the regulation of cell migration. More recently, however, these kinases were shown to have many additional functions that are relevant to the regulation of epithelial wound healing. Here, we provide an overview of the morphogenetic changes of epithelial cells during wound healing and the many functions of p21-activated kinases in these processes.
Outbreak of group A Streptococcus infections in an outpatient wound clinic-Colorado, 2014.
Hancock-Allen, Jessica B; Janelle, Sarah J; Lujan, Kate; Bamberg, Wendy M
2016-10-01
In September 2014, wound clinic A reported a cluster of group A Streptococcus (GAS) infections to public health authorities. Although clinic providers were individually licensed, the clinic, affiliated with hospital A, was not licensed or subject to regulation. We investigated to identify cases, determine risk factors, and implement control measures. A case was defined as GAS isolation from a wound or blood specimen during March 28-November 19, 2014, from a patient treated at wound clinic A or by a wound clinic A provider within the previous 7 days. All wound clinic A staff were screened for GAS carriage. Wound care procedures were assessed for adherence to infection control principles and possible GAS transmission routes. We identified 16 patients with 19 unique infections: 9 (56%) patients required hospitalization, and 7 (44%) required surgical debridement procedures. One patient died. Six (37%) patients received negative pressure wound therapy at GAS onset. Staff self-screening found no GAS carriers. Breaches in infection control and poor wound care practices were widespread. This GAS outbreak was associated with a wound care clinic not subject to state or federal regulation. Lapses in infection control practices and inadequate oversight contributed to the outbreak. Published by Elsevier Inc.
Thorlakson, Hong Huynh; Engen, Stian Andre; Schreurs, Olav; Schenck, Karl; Blix, Inger Johanne Schytte
2017-08-01
Epithelial cells participate in wound healing by covering wounds, but also as important mediators of wound healing processes. Topical application of the phospholipid growth factor lysophosphatidic acid (LPA) accelerates dermal wound healing and we hypothesized that LPA can play a role in human oral wound healing through its effects on human oral keratinocytes (HOK). HOK were isolated from gingival biopsies and exposed to LPA. The LPA receptor profile, signal transduction pathways, gene expression and secretion of selected cytokines were analyzed. HOK expressed the receptors LPA 1 , LPA 5 and LPA 6 and LPA activated the ERK1/2, JNK and p38 intracellular pathways, substantiated by secretion of IL-6 and IL-8. The early (2h) and intermediate (6h) gene expression profiles of HOK after LPA treatment showed a wide array of regulated genes. The majority of the strongest upregulated genes were related to chemotaxis and inflammation, and became downregulated after 6h. At 6h, genes coding for factors involved in extracellular matrix remodeling and re-epithelialization became highly expressed. IL-36γ, not earlier known to be regulated by LPA, was strongly transcribed and translated but not secreted. After stimulation with LPA, HOK responded by regulating factors and genes that are essential in wound healing processes. As LPA is found in saliva and is released by activated cells after wounding, our results indicate that LPA has a favorable physiological role in oral wound healing. This may further point towards a beneficial role for application of LPA on oral surgical or chronic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Xinjuan; Chen, Jin'an; Zhang, Jie; Wang, Wei; Sun, Jinshan; Wang, Aiping
2016-03-01
To determine the role of maggot debridement therapy (MDT) on diabetic foot wound healing, we compared growth related factors in wounds before and after treatment. Furthermore, we utilized human umbilical vein endothelial cells (HUVECs) to explore responses to maggot excretions/secretions on markers of angiogenesis and proliferation. The results showed that there was neo-granulation and angiogenesis in diabetic foot wounds after MDT. Moreover, significant elevation in CD34 and CD68 levels was also observed in treated wounds. In vitro, ES increased HUVEC proliferation, improved tube formation, and increased expression of vascular endothelial growth factor receptor 2 in a dose dependent manner. These results demonstrate that MDT and maggot ES can promote diabetic foot wound healing by up-regulating endothelial cell activity. Copyright © 2016. Published by Elsevier Inc.
Kim, Sokho; Kwon, Jungkee
2017-04-01
Rapid vascular remodelling of damaged dermal tissue is required to heal burn wounds. Thymosin β4 (Tβ4) is a growth factor that has been shown to promote angiogenesis and dermal wound repair. However, the underlying mechanisms based on Tβ4 function have not yet been fully investigated. In the present study, we investigated how Tβ4 improves dermal burn wound healing via actin cytoskeletal remodelling and the action of heat-shock proteins (HSPs), which are a vital set of chaperone proteins that respond to heat shock. Our in vitro results achieved with the use of human umbilical vein endothelial cells (HUVECs) revealed a possible signal between Tβ4 and HSP70. Moreover, we confirmed that remodelling of filamentous actin (F-actin) was regulated by Tβ4-induced HSP70 in HUVECs. Based on these in vitro results, we confirmed the healing effects of Tβ4 in an adapted dermal burn wound in vivo model. Tβ4 improved wound-healing markers, such as wound closure and vascularization. Moreover, Tβ4 maintained the long-term expression of HSP70, which is associated with F-actin regulation during the wound-healing period. These results suggest that an association between Tβ4 and HSP70 is responsible for the healing of burn wounds, and that this association may regulate F-actin remodelling. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Age-Induced Loss of Wound-Healing Ability in Potato Tubers is Regulated by ABA
USDA-ARS?s Scientific Manuscript database
Wounding of potato tubers stimulates the development of a suberized wound periderm that resists desiccation and microbial invasion. Wound-healing ability declines with advancing tuber age (storage period). The mechanism of age-induced loss in healing capacity is not known; however, older tubers ha...
Elgharably, Haytham; Ganesh, Kasturi; Dickerson, Jennifer; Khanna, Savita; Abas, Motaz; Ghatak, Piya Das; Dixit, Sriteja; Bergdall, Valerie; Roy, Sashwati; Sen, Chandan K.
2015-01-01
We recently performed proteomic characterization of a modified collagen gel (MCG) dressing and reported promising effects of the gel in healing full-thickness excisional wounds. In this work, we test the translational relevance of our aforesaid findings by testing the dressing in a swine model of chronic ischemic wounds recently reported by our laboratory. Full thickness excisional wounds were established in the center of bi- pedicle ischemic skin flaps on the backs of animals. Ischemia was verified by Laser Doppler imaging and MCG was applied to the test group of wounds. Seven days post- wounding, macrophage recruitment to the wound was significantly higher in MCG- treated ischemic wounds. In vitro, MCG up-regulated expression of Mrc-1 (a reparative M2 macrophage marker) and induced the expression of anti-inflammatory cytokine IL-10 and of β-FGF. An increased expression of CCR2, a M2 macrophage marker, was noted in the macrophages from MCG treated wounds. Furthermore, analyses of wound tissues 7 days post wounding showed up-regulation of TGF-β, VEGF, vWF, and collagen type I expression in MCG-treated ischemic wounds. At 21 days post-wounding, MCG-treated ischemic wounds displayed higher abundance of proliferating endothelial cells that formed mature vascular structures and increased blood flow to the wound. Fibroblast count was markedly higher in MCG-treated ischemic wound-edge tissue. In addition, MCG-treated wound-edge tissues displayed higher abundance of mature collagen with increased collagen type I:III deposition. Taken together, MCG helped mount a more robust inflammatory response which resolved in a timely manner, followed by an enhanced proliferative phase, angiogenic outcome and post-wound tissue remodeling. Findings of the current study warrant clinical testing of MCG in a setting of ischemic chronic wounds. PMID:25224310
The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing
Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang
2015-01-01
Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5−/− mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)–Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. PMID:26056233
Patients' and clinicians' experiences of wound care in Canada: a descriptive qualitative study.
Woo, K Y; Wong, J; Rice, K; Coelho, S; Haratsidis, E; Teague, L; Rac, V E; Krahn, M
2017-07-01
This study sought to explore patients' and clinicians' perceptions and experiences with the provision of standard care by a home care nurse alone or by a multidisciplinary wound care team. The interviews were conducted using an in-depth semi structured format; following a funnel idea of starting out broad and narrowing down, ensuring that all the necessary topics were covered by the end of the interview. A purposive sample of 16 patients with different wound types were interviewed to ensure that the data would reflect the range and diversity of treatment and care experience. To reflect the diversity of experiences 12 clinicians from various clinical backgrounds were interviewed. Based on the analysis of the interviews, there are four overarching themes: wound care expertise is required across health-care sectors, psychosocial needs of patients with chronic wounds are key barriers to treatment concordance, structured training, and a well-coordinated multidisciplinary team approach. Results of this qualitative study identified different barriers and facilitators that affect the experiences of community-based wound care.
Bischoff, Marcus
2012-01-01
Cell migrations are an important feature of animal development. They are, furthermore, essential to wound healing and tumour progression. Despite recent progress, it is still mysterious how cell migration is spatially and temporally regulated during morphogenesis and how cell migration is coordinated with other cellular behaviours to shape tissues and organs. The formation of the abdominal epithelium of Drosophila during metamorphosis provides an attractive system to study morphogenesis. Here, the diploid adult histoblasts replace the polyploid larval epithelial cells (LECs). Using in vivo 4D microscopy, I show that, besides apical constriction and apoptosis, the LECs undergo extensive coordinated migrations. The migrations follow a transition from a stationary (epithelial) to a migratory mode. The migratory behaviour is stimulated by autocrine Dpp signalling. Directed apical lamellipodia-like protrusions propel the cells. Initially, planar cell polarity determines the orientation of LEC migration. While LECs are migrating they also constrict apically, and changes in activity of the small GTPase Rho1 can favour one behaviour over the other. This study shows that the LECs play a more active role in morphogenesis than previously thought, with their migrations contributing to abdominal closure. It furthermore provides insights into how the migratory behaviour of cells is regulated during morphogenesis. PMID:22230614
Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation
NASA Technical Reports Server (NTRS)
Davies, E.; Vian, A.; Vian, C.; Stankovic, B.
1997-01-01
When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.
Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing.
Hesketh, Mark; Sahin, Katherine B; West, Zoe E; Murray, Rachael Z
2017-07-17
Macrophages and inflammation play a beneficial role during wound repair with macrophages regulating a wide range of processes, such as removal of dead cells, debris and pathogens, through to extracellular matrix deposition re-vascularisation and wound re-epithelialisation. To perform this range of functions, these cells develop distinct phenotypes over the course of wound healing. They can present with a pro-inflammatory M1 phenotype, more often found in the early stages of repair, through to anti-inflammatory M2 phenotypes that are pro-repair in the latter stages of wound healing. There is a continuum of phenotypes between these ranges with some cells sharing phenotypes of both M1 and M2 macrophages. One of the less pleasant consequences of quick closure, namely the replacement with scar tissue, is also regulated by macrophages, through their promotion of fibroblast proliferation, myofibroblast differentiation and collagen deposition. Alterations in macrophage number and phenotype disrupt this process and can dictate the level of scar formation. It is also clear that dysregulated inflammation and altered macrophage phenotypes are responsible for hindering closure of chronic wounds. The review will discuss our current knowledge of macrophage phenotype on the repair process and how alterations in the phenotypes might alter wound closure and the final repair quality.
Almuedo-Castillo, María; Crespo, Xenia; Seebeck, Florian; Bartscherer, Kerstin; Salò, Emili; Adell, Teresa
2014-01-01
Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun–NH2–kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal. PMID:24922054
Epithelialization in Wound Healing: A Comprehensive Review
Pastar, Irena; Stojadinovic, Olivera; Yin, Natalie C.; Ramirez, Horacio; Nusbaum, Aron G.; Sawaya, Andrew; Patel, Shailee B.; Khalid, Laiqua; Isseroff, Rivkah R.; Tomic-Canic, Marjana
2014-01-01
Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure. PMID:25032064
Age-induced loss of wound-healing ability in potato tubers is partly regulated by ABA
USDA-ARS?s Scientific Manuscript database
Wounding of potato (Solanum tuberosum L.) tubers induces the development of a suberized closing layer and wound periderm that resists desiccation and microbial invasion. Wound-healing ability declines with tuber age (storage period). The mechanism of loss in healing capacity with age is not known; h...
MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis[W
Dombrecht, Bruno; Xue, Gang Ping; Sprague, Susan J.; Kirkegaard, John A.; Ross, John J.; Reid, James B.; Fitt, Gary P.; Sewelam, Nasser; Schenk, Peer M.; Manners, John M.; Kazan, Kemal
2007-01-01
The Arabidopsis thaliana basic helix-loop-helix Leu zipper transcription factor (TF) MYC2/JIN1 differentially regulates jasmonate (JA)-responsive pathogen defense (e.g., PDF1.2) and wound response (e.g., VSP) genes. In this study, genome-wide transcriptional profiling of wild type and mutant myc2/jin1 plants followed by functional analyses has revealed new roles for MYC2 in the modulation of diverse JA functions. We found that MYC2 negatively regulates Trp and Trp-derived secondary metabolism such as indole glucosinolate biosynthesis during JA signaling. Furthermore, MYC2 positively regulates JA-mediated resistance to insect pests, such as Helicoverpa armigera, and tolerance to oxidative stress, possibly via enhanced ascorbate redox cycling and flavonoid biosynthesis. Analyses of MYC2 cis binding elements and expression of MYC2-regulated genes in T-DNA insertion lines of a subset of MYC2–regulated TFs suggested that MYC2 might modulate JA responses via differential regulation of an intermediate spectrum of TFs with activating or repressing roles in JA signaling. MYC2 also negatively regulates its own expression, and this may be one of the mechanisms used in fine-tuning JA signaling. Overall, these results provide new insights into the function of MYC2 and the transcriptional coordination of the JA signaling pathway. PMID:17616737
Low concentrations of silver nanoparticles have a beneficial effect on wound healing in vitro
NASA Astrophysics Data System (ADS)
Ambrožová, Nikola; Zálešák, Bohumil; Ulrichová, Jitka; Čížková, Kateřina; Galandáková, Adéla
2017-03-01
Silver has been used in medical application for its antibacterial, antifungal, and anti-inflammatory effects. Silver nanoparticles (AgNPs) are currently in the spotlight. It was shown that their application can be useful in the management of wounds. Our study was conducted to determine whether AgNPs (average size 10.43 ± 4.74 nm) and ionic silver (Ag-I) could affect the wound healing in the in vitro model of normal human dermal fibroblasts (NHDF). We evaluated their effect on reactive oxygen species (ROS) generation and the expression of key transcription factors that coordinate the cellular response to oxidative stress [nuclear factor (erythroid-derived 2)-like 2 (Nrf2)] and inflammation [nuclear factor-κB (NF-κB)], expression of heme oxygenase-1 (HO-1), and interleukin-6 (IL-6) level. Isolated primary NHDF were scratched, heated (1 h; 42 °C), and cultured with AgNPs (0.25, 2.5, and 25 μg/ml) and Ag-I (0.025, 0.1, and 0.25 μg/ml) for 8 or 24 h. The ROS generation, Nrf2, NF-κB, and HO-1 protein expression and IL-6 protein level were then evaluated by standard methods. Non-cytotoxic concentrations of AgNPs (0.25 and 2.5 μg/ml) did not affect the ROS generation but activated the Nrf2/HO-1 pathway and decreased the NF-κB expression and IL-6 level in the in vitro wound healing model. AgNPs at concentrations of 0.25 and 2.5 μg/ml seem to be suitable for the intended application as a topical agent for wound healing, although the gene silencing technique, chemical inhibitors, and detailed time- and concentration-dependent experiments are needed for a comprehensive study of signaling pathway regulation. Further investigation is also necessary to exclude any possible adverse effects.
Salathia, Neeraj S; Shi, Jian; Zhang, Jay; Glynne, Richard J
2013-01-01
Skin wounds comprise a serious medical issue for which few pharmacological interventions are available. Moreover, the inflammatory, angiogenic, and proliferative facets of a typical response to a wound each have broader relevance in other pathological conditions. Here we describe a genomics-driven approach to identify secreted proteins that modulate wound healing in a mouse ear punch model. We show that adiponectin, when injected into the wound edge, accelerates wound healing. Notably, adiponectin injection causes upregulation of keratin gene transcripts within hours of treatment, and subsequently promotes collagen organization, formation of pilosebaceous units, and proliferation of cells in the basal epithelial cell layer and pilosebaceous units of healing tissue. The globular domain of adiponectin is sufficient to mediate accelerated dorsal skin wound closure, and the effects are lost in mice that are homozygous null for the adiponectin receptor 1 gene. These findings extend recent observations of a protective role of adiponectin in other tissue injury settings, suggest modulation of AdipoR1 for the clinical management of wounds, and demonstrate a new approach to the identification of regulators of a wound healing response. PMID:23096717
Kuai, Le; Zhang, Jing-Ting; Deng, Yu; Xu, Shun; Xu, Xun-Zhe; Wu, Min-Feng; Guo, Dong-Jie; Chen, Yu; Wu, Ren-Jie; Zhao, Xing-Qiang; Nian, Hua; Li, Bin; Li, Fu-Lun
2018-01-29
Sheng-ji Hua-yu(SJHY) formula is one of the most useful Traditional Chinese medicine (TCM) in the treatment of the delayed diabetic wound. However, elucidating the related molecular biological mechanism of how the SJHY Formula affects excessive inflammation in the process of re-epithelialization of diabetic wound healing is a task urgently needed to be fulfilled. The objectives of this study is to evaluate the effect of antagonisic expression of pro-/anti-inflammatory factors on transforming growth factor-β(TGF-β) superfamily (activin and follistatin) in the process of re-epithelialization of diabetic wound healing in vivo, and to characterize the involvement of the activin/follistatin protein expression regulation, phospho-Smad (pSmad2), and Nuclear factor kappa B p50 (NF-kB) p50 in the diabetic wound healing effects of SJHY formula. SJHY Formula was prepared by pharmaceutical preparation room of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine. Diabetic wound healing activity was evaluated by circular excision wound models. Wound healing activity was examined by macroscopic evaluation. Activin/follistatin expression regulation, protein expression of pSmad2 and NF-kB p50 in skin tissue of wounds were analyzed by Real Time PCR, Western blot, immunohistochemistry and hematoxylin and eosin (H&E) staining. Macroscopic evaluation analysis showed that wound healing of diabetic mice was delayed, and SJHY Formula accelerated wound healing time of diabetic mice. Real Time PCR analysis showed higher mRNA expression of activin/follistatin in diabetic delayed wound versus the wound in normal mice. Western Blot immunoassay analysis showed reduction of activin/follistatin proteins levels by SJHY Formula treatment 15 days after injury. Immunohistochemistry investigated the reduction of pSmad2 and NF-kB p50 nuclear staining in the epidermis of diabetic SJHY versus diabetic control mice on day 15 after wounding. H&E staining revealed that SJHY Formula accelerated re-epithelialization of diabetic wound healing. The present study found that diabetic delayed wound healing time is closely related to the high expression level of activin/follistatin, which leads to excessive inflammation in the process of re-epithelization. SJHY Formula accelerates re-epithelialization and healing time of diabetic wounds through decreasing the high expression of activin/follistatin.
Roy, Sashwati; Patel, Darshan; Khanna, Savita; Gordillo, Gayle M.; Biswas, Sabyasachi; Friedman, Avner; Sen, Chandan K.
2007-01-01
Chronic wounds represent a substantial public health problem. The development of tools that would enable sophisticated scrutiny of clinical wound tissue material is highly desirable. This work presents evidence enabling rapid specific identification and laser capture of blood vessels from human tissue in a manner which lends itself to successful high-density (U133A) microarray analysis. Such screening of transcriptome followed by real-time PCR and immunohistochemical verification of candidate genes and their corresponding products were performed by using 3 mm biopsies. Of the 18,400 transcripts and variants screened, a focused set of 53 up-regulated and 24 down-regulated genes were noted in wound-derived blood vessels compared with blood vessels from intact human skin. The mean abundance of periostin in wound-site blood vessels was 96-fold higher. Periostin is known to be induced in response to vascular injury and its expression is associated with smooth muscle cell differentiation in vitro and promotes cell migration. Forty-fold higher expression of heparan sulfate 6-O-endosulfatase1 (Sulf1) was noted in wound-site vessels. Sulf1 has been recently recognized to be anti-angiogenic. During embryonic vasculogenesis, CD24 expression is down-regulated in human embryonic stem cells. Wound-site vessels had lower CD24 expression. The findings of this work provide a unique opportunity to appreciate the striking contrast in the transcriptome composition in blood vessels collected from the intact skin and from the wound-edge tissue. Sets of genes with known vascular functions but never connected to wound healing were identified to be differentially expressed in wound-derived blood vessels paving the way for innovative clinically relevant hypotheses. PMID:17728400
Bio-Inspired Metal-Coordination Dynamics: A Unique Tool for Engineering Soft Matter Mechanics
NASA Astrophysics Data System (ADS)
Holten-Andersen, Niels
Growing evidence supports a critical role of metal-coordination in soft biological material properties such as self-healing, underwater adhesion and autonomous wound plugging. Using bio-inspired metal-binding polymers, initial efforts to mimic these properties with metal-coordination crosslinked polymer materials have shown promise. In addition, with polymer network mechanics strongly coupled to coordinate crosslink dynamics material properties can be easily tuned from visco-elastic fluids to solids. Given their exploitation in desirable material applications in Nature, bio-inspired metal-coordinate complex crosslinking provides an opportunity to further advance synthetic polymer materials design. Early lessons from this pursuit are presented.
Li, Min; Xu, Jingxing; Shi, Tongxin; Yu, Haiyang; Bi, Jianping; Chen, Guanzhi
2016-11-01
In non-healing wounds, mesenchymal stem cell (MSC)-based therapies have the potential to activate a series of coordinated cellular processes, including angiogenesis, inflammation, cell migration, proliferation and epidermal terminal differentiation. As pro-inflammatory reactions play indispensable roles in initiating wound repair, sustained and prolonged inflammation exhibit detrimental effects on skin wound closure. We investigated the feasibility of using an antioxidant agent epigallocatechin-3-gallate (EGCG), along with MSCs, to improve wound repair through their immunomodulatory actions. In a rat model of wound healing, a single dose of EGCG at 10 mg/kg increased the efficiency of MSC-induced skin wound closure. Twenty days after the wound induction, MSC treatment significantly enhanced the epidermal thickness, which was further increased by EGCG administration. Consistently, the highest extent of growth factors upregulation for neovascularization induction was seen in the animals treated by both MSCs and EGCG, associated with a potent anti-scarring effect throughout the healing process. Finally, expression levels of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6, in the wound area were reduced by MSCs, and this reduction was further potentiated by EGCG co-administration. EGCG, together with MSCs, can promote skin wound healing likely through their combinational effects in modulating chronic inflammation. © 2016 John Wiley & Sons Australia, Ltd.
Toll-Like Receptor Function in Acute Wounds
Chen, Lin; DiPietro, Luisa A.
2017-01-01
Significance: Inflammation is an integral part of immune response and supports optimal wound healing in adults. Inflammatory cells such as neutrophils, macrophages, dendritic cells, lymphocytes, and mast cells produce important cytokines, chemokines, and growth factors. These immune cells interact with keratinocytes, fibroblasts, and endothelial cells (ECs), as well as the extracellular matrix within a complicated network that promotes and regulates wound healing. Aberrant and persistent inflammation may result in delayed wound healing, scar formation, or chronic wounds. Targeting the molecules involved in the inflammatory response may have great potential therapeutic value. Recent Advances and Critical Issues: Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen-associated molecular patterns from microbes or danger-associated molecular patterns from damaged cells. The discovery of TLRs sheds new light on the mechanism by which the inflammatory or innate immune response is initiated in wound healing. Convincing evidence now shows that multiple types of cells, including infiltrating or resident inflammatory cells, keratinocytes, fibroblasts, and ECs, express specific types of TLRs. Experimental reduction of certain TLRs or treatment of wounds with TLR ligands has been shown to affect wound healing. A better understanding of the involvement of TLRs in the innate immune response during skin wound healing may suggest novel strategies to improve the quality of tissue repair. Future Directions: Despite the indisputable role of TLRs in regulating the immune response in acute wound healing, the functions of TLRs that are relevant to human wound healing and chronic wounds are poorly understood. PMID:29062591
G protein-coupled receptor kinase 2 positively regulates epithelial cell migration
Penela, Petronila; Ribas, Catalina; Aymerich, Ivette; Eijkelkamp, Niels; Barreiro, Olga; Heijnen, Cobi J; Kavelaars, Annemieke; Sánchez-Madrid, Francisco; Mayor, Federico
2008-01-01
Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, potentiate migration of epithelial cells towards fibronectin, whereas such process is decreased in embryonic fibroblasts from hemizygous GRK2 mice or upon knockdown of GRK2 expression. Interestingly, the GRK2 effect on fibronectin-mediated cell migration involves the paracrine/autocrine activation of a sphingosine-1-phosphate (S1P) Gi-coupled GPCR. GRK2 positively modulates the activity of the Rac/PAK/MEK/ERK pathway in response to adhesion and S1P by a mechanism involving the phosphorylation-dependent, dynamic interaction of GRK2 with GIT1, a key scaffolding protein in cell migration processes. Furthermore, decreased GRK2 levels in hemizygous mice result in delayed wound healing rate in vivo, consistent with a physiological role of GRK2 as a regulator of coordinated integrin and GPCR-directed epithelial cell migration. PMID:18369319
Elgharably, Haytham; Ganesh, Kasturi; Dickerson, Jennifer; Khanna, Savita; Abas, Motaz; Ghatak, Piya Das; Dixit, Sriteja; Bergdall, Valerie; Roy, Sashwati; Sen, Chandan K
2014-01-01
We recently performed proteomic characterization of a modified collagen gel (MCG) dressing and reported promising effects of the gel in healing full-thickness excisional wounds. In this work, we test the translational relevance of our aforesaid findings by testing the dressing in a swine model of chronic ischemic wounds recently reported by our laboratory. Full-thickness excisional wounds were established in the center of bipedicle ischemic skin flaps on the backs of animals. Ischemia was verified by laser Doppler imaging, and MCG was applied to the test group of wounds. Seven days post wounding, macrophage recruitment to the wound was significantly higher in MCG-treated ischemic wounds. In vitro, MCG up-regulated expression of Mrc-1 (a reparative M2 macrophage marker) and induced the expression of anti-inflammatory cytokine interleukin (IL)-10 and of fibroblast growth factor-basic (β-FGF). An increased expression of CCR2, an M2 macrophage marker, was noted in the macrophages from MCG treated wounds. Furthermore, analyses of wound tissues 7 days post wounding showed up-regulation of transforming growth factor-β, vascular endothelial growth factor, von Willebrand's factor, and collagen type I expression in MCG-treated ischemic wounds. At 21 days post wounding, MCG-treated ischemic wounds displayed higher abundance of proliferating endothelial cells that formed mature vascular structures and increased blood flow to the wound. Fibroblast count was markedly higher in MCG-treated ischemic wound-edge tissue. In addition, MCG-treated wound-edge tissues displayed higher abundance of mature collagen with increased collagen type I : III deposition. Taken together, MCG helped mount a more robust inflammatory response that resolved in a timely manner, followed by an enhanced proliferative phase, angiogenic outcome, and postwound tissue remodeling. Findings of the current study warrant clinical testing of MCG in a setting of ischemic chronic wounds. © 2014 by the Wound Healing Society.
Ionic components of electric current at rat corneal wounds.
Vieira, Ana Carolina; Reid, Brian; Cao, Lin; Mannis, Mark J; Schwab, Ivan R; Zhao, Min
2011-02-25
Endogenous electric fields and currents occur naturally at wounds and are a strong signal guiding cell migration into the wound to promote healing. Many cells involved in wound healing respond to small physiological electric fields in vitro. It has long been assumed that wound electric fields are produced by passive ion leakage from damaged tissue. Could these fields be actively maintained and regulated as an active wound response? What are the molecular, ionic and cellular mechanisms underlying the wound electric currents? Using rat cornea wounds as a model, we measured the dynamic timecourses of individual ion fluxes with ion-selective probes. We also examined chloride channel expression before and after wounding. After wounding, Ca(2+) efflux increased steadily whereas K(+) showed an initial large efflux which rapidly decreased. Surprisingly, Na(+) flux at wounds was inward. A most significant observation was a persistent large influx of Cl(-), which had a time course similar to the net wound electric currents we have measured previously. Fixation of the tissues abolished ion fluxes. Pharmacological agents which stimulate ion transport significantly increased flux of Cl(-), Na(+) and K(+). Injury to the cornea caused significant changes in distribution and expression of Cl(-) channel CLC2. These data suggest that the outward electric currents occurring naturally at corneal wounds are carried mainly by a large influx of chloride ions, and in part by effluxes of calcium and potassium ions. Ca(2+) and Cl(-) fluxes appear to be mainly actively regulated, while K(+) flux appears to be largely due to leakage. The dynamic changes of electric currents and specific ion fluxes after wounding suggest that electrical signaling is an active response to injury and offers potential novel approaches to modulate wound healing, for example eye-drops targeting ion transport to aid in the challenging management of non-healing corneal ulcers.
Microvascular Remodeling and Wound Healing: A Role for Pericytes
Dulmovits, Brian M.; Herman, Ira M.
2012-01-01
Physiologic wound healing is highly dependent on the coordinated functions of vascular and non-vascular cells. Resolution of tissue injury involves coagulation, inflammation, formation of granulation tissue, remodeling and scarring. Angiogenesis, the growth of microvessels the size of capillaries, is crucial for these processes, delivering blood-borne cells, nutrients and oxygen to actively remodeling areas. Central to angiogenic induction and regulation is microvascular remodeling, which is dependent upon capillary endothelial cell and pericyte interactions. Despite our growing knowledge of pericyte-endothelial cell crosstalk, it is unclear how the interplay among pericytes, inflammatory cells, glia and connective tissue elements shape microvascular injury response. Here, we consider the relationships that pericytes form with the cellular effectors of healing in normal and diabetic environments, including repair following injury and vascular complications of diabetes, such as diabetic macular edema and proliferative diabetic retinopathy. In addition, pericytes and stem cells possessing “pericyte-like” characteristics are gaining considerable attention in experimental and clinical efforts aimed at promoting healing or eradicating ocular vascular proliferative disorders. As the origin, identification and characterization of microvascular pericyte progenitor populations remains somewhat ambiguous, the molecular markers, structural and functional characteristics of pericytes will be briefly reviewed. PMID:22750474
RIP2: A novel player in the regulation of keratinocyte proliferation and cutaneous wound repair?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Stephanie; Valchanova, Ralitsa S.; Munz, Barbara, E-mail: barbara.munz@charite.de
2010-03-10
We could recently demonstrate an important role of receptor interacting protein 4 (RIP4) in the regulation of keratinocyte differentiation. Now, we analyzed a potential role of the RIP4 homolog RIP2 in keratinocytes. Specifically, we demonstrate here that rip2 expression is induced by scratch-wounding and after the induction of differentiation in these cells. Furthermore, serum growth factors and cytokines can induce rip2, with TNF-{alpha}-dependent induction being dependent on p38 MAPK. In addition, we demonstrate that scratch-induced upregulation of rip2 expression is completely blocked by the steroid dexamethasone. Since we also show that RIP2 is an important player in the regulation ofmore » keratinocyte proliferation, these data suggest that inhibition of rip2 upregulation after wounding might contribute to the reduced and delayed wound re-epithelialization phenotype seen in glucocorticoid-treated patients.« less
β-Catenin–regulated myeloid cell adhesion and migration determine wound healing
Amini-Nik, Saeid; Cambridge, Elizabeth; Yu, Winston; Guo, Anne; Whetstone, Heather; Nadesan, Puviindran; Poon, Raymond; Hinz, Boris; Alman, Benjamin A.
2014-01-01
A β-catenin/T cell factor–dependent transcriptional program is critical during cutaneous wound repair for the regulation of scar size; however, the relative contribution of β-catenin activity and function in specific cell types in the granulation tissue during the healing process is unknown. Here, cell lineage tracing revealed that cells in which β-catenin is transcriptionally active express a gene profile that is characteristic of the myeloid lineage. Mice harboring a macrophage-specific deletion of the gene encoding β-catenin exhibited insufficient skin wound healing due to macrophage-specific defects in migration, adhesion to fibroblasts, and ability to produce TGF-β1. In irradiated mice, only macrophages expressing β-catenin were able to rescue wound-healing deficiency. Evaluation of scar tissue collected from patients with hypertrophic and normal scars revealed a correlation between the number of macrophages within the wound, β-catenin levels, and cellularity. Our data indicate that β-catenin regulates myeloid cell motility and adhesion and that β-catenin–mediated macrophage motility contributes to the number of mesenchymal cells and ultimate scar size following cutaneous injury. PMID:24837430
Ozawa, Kentaro; Kondo, Toshikazu; Hori, Osamu; Kitao, Yasuko; Stern, David M.; Eisenmenger, Wolfgang; Ogawa, Satoshi; Ohshima, Tohru
2001-01-01
Expression of angiogenic factors such as VEGF under conditions of hypoxia or other kinds of cell stress contributes to neovascularization during wound healing. The inducible endoplasmic reticulum chaperone oxygen-regulated protein 150 (ORP150) is expressed in human wounds along with VEGF. Colocalization of these two molecules was observed in macrophages in the neovasculature, suggesting a role of ORP150 in the promotion of angiogenesis. Local administration of ORP150 sense adenovirus to wounds of diabetic mice, a treatment that efficiently targeted this gene product to the macrophages of wound beds, increased VEGF antigen in wounds and accelerated repair and neovascularization. In cultured human macrophages, inhibition of ORP150 expression caused retention of VEGF antigen within the endoplasmic reticulum (ER), while overexpression of ORP150 promoted the secretion of VEGF into hypoxic culture supernatants. Taken together, these data suggest an important role for ORP150 in the setting of impaired wound repair and identify a key, inducible chaperone-like molecule in the ER. This novel facet of the angiogenic response may be amenable to therapeutic manipulation. PMID:11435456
Identification and Functional Analysis of Healing Regulators in Drosophila
Álvarez-Fernández, Carmen; Tamirisa, Srividya; Prada, Federico; Chernomoretz, Ariel; Podhajcer, Osvaldo; Blanco, Enrique; Martín-Blanco, Enrique
2015-01-01
Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the overall steps in wound healing, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process. However, they do allow the less understood aspects of the healing response to be explored, e.g., which signal(s) are responsible for initiating tissue remodeling? How is sealing of the epithelia achieved? Or, what inhibitory cues cancel the healing machinery upon completion? Answering these and other questions first requires the identification and functional analysis of wound specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method that is healing-permissive and that allows live imaging and biochemical analysis of cultured imaginal discs. We performed comparative genome-wide profiling between Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. Sets of potential wound-specific genes were subsequently identified. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in healing assays. This non-saturated analysis defines a relevant set of genes whose changes in expression level are functionally significant for proper tissue repair. Amongst these we identified the TCP1 chaperonin complex as a key regulator of the actin cytoskeleton essential for the wound healing response. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound healing response. PMID:25647511
Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing
Pakyari, Mohammadreza; Farrokhi, Ali; Maharlooei, Mohsen Khosravi; Ghahary, Aziz
2013-01-01
Significance This review highlights the critical role of transforming growth factor beta (TGF-β)1–3 within different phases of wound healing, in particular, late-stage wound healing. It is also very important to identify the TGF-β1–controlling factors involved in slowing down the healing process upon wound epithelialization. Recent Advances TGF-β1, as a growth factor, is a known proponent of dermal fibrosis. Several strategies to modulate or regulate TGF's actions have been thoroughly investigated in an effort to create successful therapies. This study reviews current discourse regarding the many roles of TGF-β1 in wound healing by modulating infiltrated immune cells and the extracellular matrix. Critical Issues It is well established that TGF-β1 functions as a wound-healing promoting factor, and thereby if in excess it may lead to overhealing outcomes, such as hypertrophic scarring and keloid. Thus, the regulation of TGF-β1 in the later stages of the healing process remains as critical issue of which to better understand. Future Directions One hypothesis is that cell communication is the key to regulate later stages of wound healing. To elucidate the role of keratinocyte/fibroblast cross talk in controlling the later stages of wound healing we need to: (1) identify those keratinocyte-released factors which would function as wound-healing stop signals, (2) evaluate the functionality of these factors in controlling the outcome of the healing process, and (3) formulate topical vehicles for these antifibrogenic factors to improve or even prevent the development of hypertrophic scarring and keloids as a result of deep trauma, burn injuries, and any type of surgical incision. PMID:24527344
Erler, Silvio; Popp, Mario; Lattorff, H. Michael G.
2011-01-01
The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT). There is a lack of immune genes in social insects (e.g. honeybees) when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals). The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge. Antimicrobial peptides (AMP) (abaecin, defensin 1, hymenoptaecin) were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish) and JNK pathway (basket). Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment. Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the transcription factor relish, which is necessary for effector gene expression. PMID:21479237
Kandhare, Amit D; Ghosh, Pinaki; Bodhankar, Subhash L
2014-08-05
Chronic, unhealed diabetic foot ulcer (DFU) is one of the most severe complications of diabetes mellitus (DM). Naringin, a flavanone glycoside antioxidant, was reported to have antidiabetic and anti-apoptotic properties. In the present study DM was induced experimentally by streptozotocin (STZ, 55 mg/kg, i.p.). In surgically introduced wounds on the dorsal surface of the hind paw of rats, the healing potential of naringin was investigated. Rats were treated with naringin (20, 40 and 80 mg/kg, p.o.), insulin (10 IU/kg, s.c.) and tetrachlorodecaoxide (TCDO) (1 drop, twice a day, topically) for 16 days. The wound area was measured every second day, and on day 17 various biochemical parameters were determined in serum, wound tissue, and histopathological examination of the wound was performed. Naringin (40 and 80 mg/kg) significantly (P<0.05) improved wound area, serum glucose level, glycated Hb and serum insulin. Naringin treatment at 40 and 80 mg/kg resulted in significant (P<0.05) up-regulation of mRNA expression of growth factor (IFG-1, TGF-β and VEGF-c), Ang-1 and collagen-1 whereas mRNA expression of inflammatory mediators (TNF-α, IL-1β and IL-6) was down-regulated. Furthermore, naringin significantly (P<0.05) attenuated STZ-induced apoptosis and stimulated angiogenesis in the wound tissue. Further results suggest that angiogenesis was improved via naringin-mediated inhibition of hyperglycemia, oxidative stress, down-regulation of inflammatory mediator expression and up-regulation of growth factor expression, leading to improved wound healing of DFU. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Redox Signaling in Diabetic Wound Healing Regulates Extracellular Matrix Deposition.
Kunkemoeller, Britta; Kyriakides, Themis R
2017-10-20
Impaired wound healing is a major complication of diabetes, and can lead to development of chronic foot ulcers in a significant number of patients. Despite the danger posed by poor healing, very few specific therapies exist, leaving patients at risk of hospitalization, amputation, and further decline in overall health. Recent Advances: Redox signaling is a key regulator of wound healing, especially through its influence on the extracellular matrix (ECM). Normal redox signaling is disrupted in diabetes leading to several pathological mechanisms that alter the balance between reactive oxygen species (ROS) generation and scavenging. Importantly, pathological oxidative stress can alter ECM structure and function. There is limited understanding of the specific role of altered redox signaling in the diabetic wound, although there is evidence that ROS are involved in the underlying pathology. Preclinical studies of antioxidant-based therapies for diabetic wound healing have yielded promising results. Redox-based therapeutics constitute a novel approach for the treatment of wounds in diabetes patients that deserve further investigation. Antioxid. Redox Signal. 27, 823-838.
Spatial mapping reveals multi-step pattern of wound healing in Physarum polycephalum
NASA Astrophysics Data System (ADS)
Bäuerle, Felix K.; Kramar, Mirna; Alim, Karen
2017-11-01
Wounding is a severe impairment of function, especially for an exposed organism like the network-forming true slime mould Physarum polycephalum. The tubular network making up the organism’s body plan is entirely interconnected and shares a common cytoplasm. Oscillatory contractions of the enclosing tube walls drive the shuttle streaming of the cytoplasm. Cytoplasmic flows underlie the reorganization of the network for example by movement toward attractive stimuli or away from repellants. Here, we follow the reorganization of P. polycephalum networks after severe wounding. Spatial mapping of the contraction changes in response to wounding reveal a multi-step pattern. Phases of increased activity alternate with cessation of contractions and stalling of flows, giving rise to coordinated transport and growth at the severing site. Overall, severing surprisingly acts like an attractive stimulus enabling healing of severed tubes. The reproducible cessation of contractions arising during this wound-healing response may open up new venues to investigate the biochemical wiring underlying P. polycephalum’s complex behaviours.
Juarez, Michelle T.; Patterson, Rachel A.; Sandoval-Guillen, Efren; McGinnis, William
2011-01-01
The epidermis is the largest organ of the body for most animals, and the first line of defense against invading pathogens. A breach in the epidermal cell layer triggers a variety of localized responses that in favorable circumstances result in the repair of the wound. Many cellular and genetic responses must be limited to epidermal cells that are close to wounds, but how this is regulated is still poorly understood. The order and hierarchy of epidermal wound signaling factors are also still obscure. The Drosophila embryonic epidermis provides an excellent system to study genes that regulate wound healing processes. We have developed a variety of fluorescent reporters that provide a visible readout of wound-dependent transcriptional activation near epidermal wound sites. A large screen for mutants that alter the activity of these wound reporters has identified seven new genes required to activate or delimit wound-induced transcriptional responses to a narrow zone of cells surrounding wound sites. Among the genes required to delimit the spread of wound responses are Drosophila Flotillin-2 and Src42A, both of which are transcriptionally activated around wound sites. Flotillin-2 and constitutively active Src42A are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in epidermal cells. One gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen peroxide) are sufficient to globally activate epidermal wound response genes in Drosophila embryos. We explore the epistatic relationships among the factors that induce or delimit the spread of epidermal wound signals. Our results define new genetic functions that interact to instruct only a limited number of cells around puncture wounds to mount a transcriptional response, mediating local repair and regeneration. PMID:22242003
Liu, Y; Hu, D H
2017-11-20
Recently, negative pressure wound therapy (NPWT) is a rising technology to improve wound healing. In clinical application, it benefits fast debridement and wound close, limits infection, and promotes wound healing. It is an effective therapy for all kinds of acute or chronic wound. Currently, researches demonstrate that NPWT promotes angiogenesis, granulation tissue growth, and extracellular matrix remodeling through regulating the signaling of anti-inflammatory cytokines, mechanicalreceptor and chemoreceptor, which is related to several growth factors and inflammatory factors. Here we focus on the recent advances in the mechanism of NPWT in promoting wound healing, looking forward to providing a review of NPWT and related researches.
Demidova-Rice, Tatiana N; Hamblin, Michael R; Herman, Ira M
2012-07-01
This is the first installment of 2 articles that discuss the biology and pathophysiology of wound healing, review the role that growth factors play in this process, and describe current ways of growth factor delivery into the wound bed. Part 1 discusses the latest advances in clinicians' understanding of the control points that regulate wound healing. Importantly, biological similarities and differences between acute and chronic wounds are considered, including the signaling pathways that initiate cellular and tissue responses after injury, which may be impeded during chronic wound healing.
Demidova-Rice, Tatiana N.; Hamblin, Michael R.; Herman, Ira M.
2012-01-01
This is the first installment of 2 articles that discuss the biology and pathophysiology of wound healing, review the role that growth factors play in this process, and describe current ways of growth factor delivery into the wound bed. Part 1 discusses the latest advances in clinicians’ understanding of the control points that regulate wound healing. Importantly, biological similarities and differences between acute and chronic wounds are considered, including the signaling pathways that initiate cellular and tissue responses after injury, which may be impeded during chronic wound healing. PMID:22713781
FOXO1 regulates VEGFA expression and promotes angiogenesis in healing wounds.
Jeon, Hyeran Helen; Yu, Quan; Lu, Yongjian; Spencer, Evelyn; Lu, Chanyi; Milovanova, Tatyana; Yang, Yang; Zhang, Chenying; Stepanchenko, Olga; Vafa, Rameen P; Coelho, Paulo G; Graves, Dana T
2018-03-25
Angiogenesis is a critical aspect of wound healing. We investigated the role of keratinocytes in promoting angiogenesis in mice with lineage-specific deletion of the transcription factor FOXO1. The results indicate that keratinocyte-specific deletion of Foxo1 reduces VEGFA expression in mucosal and skin wounds and leads to reduced endothelial cell proliferation, reduced angiogenesis, and impaired re-epithelialization and granulation tissue formation. In vitro FOXO1 was needed for VEGFA transcription and expression. In a porcine dermal wound-healing model that closely resembles healing in humans, local application of a FOXO1 inhibitor reduced angiogenesis. This is the first report that FOXO1 directly regulates VEGFA expression and that FOXO1 is needed for normal angiogenesis during wound healing. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Alterations in Respiration Rate and Glycolytic Intermediates in Wounded Sugarbeet Roots
USDA-ARS?s Scientific Manuscript database
Wounding of sugarbeet roots causes an increase in respiration rate, which contributes to postharvest sucrose losses. Although respiration is estimated to cause 60 to 80% of postharvest sucrose losses, the mechanisms that regulate respiration rate in wounded sugarbeet roots are not well know. To id...
Potato tuber wounding induces responses associated with various healing processes
USDA-ARS?s Scientific Manuscript database
Wounding induces an avalanche of biological responses involved in the healing and protection of internal tuber tissues exposed by mechanical damage and seed cutting. Collectively, our studies have framed a portrait of the mechanisms and regulation of potato tuber wound-healing, but much more is req...
The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia.
Aijima, Reona; Wang, Bing; Takao, Tomoka; Mihara, Hiroshi; Kashio, Makiko; Ohsaki, Yasuyoshi; Zhang, Jing-Qi; Mizuno, Atsuko; Suzuki, Makoto; Yamashita, Yoshio; Masuko, Sadahiko; Goto, Masaaki; Tominaga, Makoto; Kido, Mizuho A
2015-01-01
The oral cavity provides an entrance to the alimentary tract to serve as a protective barrier against harmful environmental stimuli. The oral mucosa is susceptible to injury because of its location; nonetheless, it has faster wound healing than the skin and less scar formation. However, the molecular pathways regulating this wound healing are unclear. Here, we show that transient receptor potential vanilloid 3 (TRPV3), a thermosensitive Ca(2+)-permeable channel, is more highly expressed in murine oral epithelia than in the skin by quantitative RT-PCR. We found that temperatures above 33°C activated TRPV3 and promoted oral epithelial cell proliferation. The proliferation rate in the oral epithelia of TRPV3 knockout (TRPV3KO) mice was less than that of wild-type (WT) mice. We investigated the contribution of TRPV3 to wound healing using a molar tooth extraction model and found that oral wound closure was delayed in TRPV3KO mice compared with that in WT mice. TRPV3 mRNA was up-regulated in wounded tissues, suggesting that TRPV3 may contribute to oral wound repair. We identified TRPV3 as an essential receptor in heat-induced oral epithelia proliferation and wound healing. Our findings suggest that TRPV3 activation could be a potential therapeutic target for wound healing in skin and oral mucosa. © FASEB.
Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers.
Catrina, Sergiu-Bogdan; Zheng, Xiaowei
2016-01-01
Diabetic foot ulceration (DFU) is a chronic complication of diabetes that is characterized by impaired wound healing in the lower extremities. DFU remains a major clinical challenge because of poor understanding of its pathogenic mechanisms. Impaired wound healing in diabetes is characterized by decreased angiogenesis, reduced bone marrow-derived endothelial progenitor cell (EPC) recruitment, and decreased fibroblast and keratinocyte proliferation and migration. Recently, increasing evidence has suggested that increased hypoxic conditions and impaired cellular responses to hypoxia are essential pathogenic factors of delayed wound healing in DFU. Hypoxia-inducible factor-1 (HIF-1, a heterodimer of HIF-1α and HIF-1β) is a master regulator of oxygen homeostasis that mediates the adaptive cellular responses to hypoxia by regulating the expression of genes involved in angiogenesis, metabolic changes, proliferation, migration, and cell survival. However, HIF-1 signalling is inhibited in diabetes as a result of hyperglycaemia-induced HIF-1α destabilization and functional repression. Increasing HIF-1α expression and activity using various approaches promotes angiogenesis, EPC recruitment, and granulation, thereby improving wound healing in experimental diabetes. The mechanisms underlying HIF-1α regulation in diabetes and the therapeutic strategies targeting HIF-1 signalling for the treatment of diabetic wounds are discussed in this review. Further investigations of the pathways involved in HIF-1α regulation in diabetes are required to advance our understanding of the mechanisms underlying impaired wound healing in diabetes and to provide a foundation for developing novel therapeutic approaches to treat DFU. Copyright © 2016 John Wiley & Sons, Ltd.
MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding.
Lin, Jeng-Shane; Lin, Chih-Ching; Lin, Hsin-Hung; Chen, Yu-Chi; Jeng, Shih-Tong
2012-10-01
MicroRNAs (miRNAs) are small noncoding RNAs which post-transcriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. miRNAs play multiple roles in the growth, development and stress responses in plants. However, little is known of the wounding-responsive miRNAs and their regulation. Here, we investigated the expression patterns of microR828 (miR828) on wounding in sweet potato (Ipomoea batatas cv Tainung 57). The expression of miR828 was only detected in leaves, and was induced by wounding rather than by ethylene, hydrogen peroxide (H2O2), methyl jasmonate or nitric oxide (NO). Moreover, cyclic guanosine monophosphate (cGMP) was necessary for miR828 accumulation in leaves on wounding. Two miR828 target candidates, named IbMYB and IbTLD, were obtained by cDNA cloning, and their mRNA cleavage caused by miR828 was confirmed by cleavage site mapping, agro-infiltration and transgenics studies. The reduction in IbMYB and IbTLD expression coincided with the induction of miR828, demonstrating that IbMYB and IbTLD might be miR828 targets. Furthermore, transgenic sweet potato overexpressing miR828 precursor affected lignin and H2O2 contents. These results showed that cGMP could regulate wounding-responsive miR828, which repressed the expression of IbMYB and IbTLD. Subsequently, lignin and H2O2 were accumulated to participate in defense mechanisms. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran
2015-01-01
Heat shock proteins (HSPs) are inducible stress proteins expressed in cells exposed to stress. HSPs promote wound healing by recruitment of dermal fibroblasts to the site of injury and bring about protein homeostasis. Diabetic wounds are hard to heal and inadequate HSPs may be important contributors in the etiology of diabetic foot ulcers (DFU). To analyze the differential expression of HSPs and their downstream molecules in human diabetic wounds compared to control wounds. Expressional levels of HSP27, HSP47 and HSP70 and their downstream molecules like TLR4, p38-MAPK were seen in biopsies from 101 human diabetic wounds compared to 8 control subjects without diabetes using RT-PCR, western blot and immunohistochemistry. Our study suggested a significant down regulation of HSP70, HSP47 and HSP27 (p value=<0.001 for HSP70; p value=0.007 for HSP47; p value=0.007 for HSP27) in DFU along with their downstream molecules TLR4 and p38-MAPK (p value=0.006 for p38-MAPK; p value=0.02 for TLR4). HSP70 levels were significantly lower in male subjects and their levels increased significantly with the grades of wound on Wagner's scale. Infection status of the wounds was found to be significantly associated with the increased levels of HSP70 and HSP27 in infected diabetic wounds. Our study demonstrates that the down regulation of HSPs in diabetic wounds is associated with wound healing impairment in T2DM subjects. Copyright © 2015 Elsevier Inc. All rights reserved.
Ionic Components of Electric Current at Rat Corneal Wounds
Cao, Lin; Mannis, Mark J.; Schwab, Ivan R.; Zhao, Min
2011-01-01
Background Endogenous electric fields and currents occur naturally at wounds and are a strong signal guiding cell migration into the wound to promote healing. Many cells involved in wound healing respond to small physiological electric fields in vitro. It has long been assumed that wound electric fields are produced by passive ion leakage from damaged tissue. Could these fields be actively maintained and regulated as an active wound response? What are the molecular, ionic and cellular mechanisms underlying the wound electric currents? Methodology/Principal Findings Using rat cornea wounds as a model, we measured the dynamic timecourses of individual ion fluxes with ion-selective probes. We also examined chloride channel expression before and after wounding. After wounding, Ca2+ efflux increased steadily whereas K+ showed an initial large efflux which rapidly decreased. Surprisingly, Na+ flux at wounds was inward. A most significant observation was a persistent large influx of Cl−, which had a time course similar to the net wound electric currents we have measured previously. Fixation of the tissues abolished ion fluxes. Pharmacological agents which stimulate ion transport significantly increased flux of Cl−, Na+ and K+. Injury to the cornea caused significant changes in distribution and expression of Cl− channel CLC2. Conclusions/Significance These data suggest that the outward electric currents occurring naturally at corneal wounds are carried mainly by a large influx of chloride ions, and in part by effluxes of calcium and potassium ions. Ca2+ and Cl− fluxes appear to be mainly actively regulated, while K+ flux appears to be largely due to leakage. The dynamic changes of electric currents and specific ion fluxes after wounding suggest that electrical signaling is an active response to injury and offers potential novel approaches to modulate wound healing, for example eye-drops targeting ion transport to aid in the challenging management of non-healing corneal ulcers. PMID:21364900
Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8.
Auciello, Giulio; Cunningham, Debbie L; Tatar, Tulin; Heath, John K; Rappoport, Joshua Z
2013-01-15
Fibroblast growth factor receptors (FGFRs) mediate a wide spectrum of cellular responses that are crucial for development and wound healing. However, aberrant FGFR activity leads to cancer. Activated growth factor receptors undergo stimulated endocytosis, but can continue to signal along the endocytic pathway. Endocytic trafficking controls the duration and intensity of signalling, and growth factor receptor signalling can lead to modifications of trafficking pathways. We have developed live-cell imaging methods for studying FGFR dynamics to investigate mechanisms that coordinate the interplay between receptor trafficking and signal transduction. Activated FGFR enters the cell following recruitment to pre-formed clathrin-coated pits (CCPs). However, FGFR activation stimulates clathrin-mediated endocytosis; FGF treatment increases the number of CCPs, including those undergoing endocytosis, and this effect is mediated by Src and its phosphorylation target Eps8. Eps8 interacts with the clathrin-mediated endocytosis machinery and depletion of Eps8 inhibits FGFR trafficking and immediate Erk signalling. Once internalized, FGFR passes through peripheral early endosomes en route to recycling and degredative compartments, through an Src- and Eps8-dependent mechanism. Thus Eps8 functions as a key coordinator in the interplay between FGFR signalling and trafficking. This work provides the first detailed mechanistic analysis of growth factor receptor clustering at the cell surface through signal transduction and endocytic trafficking. As we have characterised the Src target Eps8 as a key regulator of FGFR signalling and trafficking, and identified the early endocytic system as the site of Eps8-mediated effects, this work provides novel mechanistic insight into the reciprocal regulation of growth factor receptor signalling and trafficking.
Cooper, Nichola H; Balachandra, Jeya P; Hardman, Matthew J
2015-12-01
The skin's mechanical integrity is maintained by an organized and robust dermal extracellular matrix (ECM). Resistance to mechanical disruption hinges primarily on homeostasis of the dermal collagen fibril architecture, which is regulated, at least in part, by members of the small leucine-rich proteoglycan (SLRP) family. Here we present data linking protein kinase C alpha (PKCα) to the regulated expression of multiple ECM components including SLRPs. Global microarray profiling reveals deficiencies in ECM gene expression in PKCα-/- skin correlating with abnormal collagen fibril morphology, disorganized dermal architecture, and reduced skin strength. Detailed analysis of the skin and wounds from wild-type and PKCα-/- mice reveals a failure to upregulate collagen and other ECM components in response to injury, resulting in delayed granulation tissue deposition in PKCα-/- wounds. Thus, our data reveal a previously unappreciated role for PKCα in the regulation of ECM structure and deposition during skin wound healing.
Chomiski, Verônica; Gragnani, Alfredo; Bonucci, Jéssica; Correa, Silvana Aparecida Alves; Noronha, Samuel Marcos Ribeiro de; Ferreira, Lydia Masako
2016-08-01
To evaluate the effect of keratinocyte growth factor (KGF) treatment on the expression of wound-healing-related genes in cultured keratinocytes from burn patients. Keratinocytes were cultured and divided into 4 groups (n=4 in each group): TKB (KGF-treated keratinocytes from burn patients), UKB (untreated keratinocytes from burn patients), TKC (KGF-treated keratinocytes from controls), and UKC (untreated keratinocytes from controls). Gene expression analysis using quantitative polymerase chain reaction (qPCR) array was performed to compare (1) TKC versus UKC, (2) UKB versus UKC, (3) TKB versus UKC, (4) TKB versus UKB, (5) TKB versus TKC, and (6) UKB versus TKC. Comparison 1 showed one down-regulated and one up-regulated gene; comparisons 2 and 3 resulted in the same five down-regulated genes; comparison 4 had no significant difference in relative gene expression; comparison 5 showed 26 down-regulated and 7 up-regulated genes; and comparison 6 showed 25 down-regulated and 11 up-regulated genes. There was no differential expression of wound-healing-related genes in cultured primary keratinocytes from burn patients treated with keratinocyte growth factor.
Does rat granulation tissue maturation involve gap junction communications?
Au, Katherine; Ehrlich, H Paul
2007-07-01
Wound healing, a coordinated process, proceeds by sequential changes in cell differentiation and terminates with the deposition of a new connective tissue matrix, a scar. Initially, there is the migratory fibroblast, followed by the proliferative fibroblast, then the synthetic fibroblast, which transforms into the myofibroblast, and finally the apoptotic fibroblast. Gap junction intercellular communications are proposed to coordinate the stringent control of fibroblast phenotypic changes. Does added oleamide, a natural fatty acid that blocks gap junction intercellular communications, alter the phenotypic progression of wound fibroblasts? Pairs of polyvinyl alcohol sponges attached to Alzet pumps, which constantly pumped either oleamide or vehicle solvent, were implanted subcutaneously into three rats. On day 8, implants were harvested and evaluated histologically and biochemically. The capsule of oleamide-treated sponge contained closely packed fibroblasts with little connective tissue between them. The birefringence intensity of that connective tissue was reduced, indicating a reduced density of collagen fiber bundles. Myofibroblasts, identified immunohistologically by alpha-smooth muscle actin-stained stress fibers, were reduced in oleamide-treated implants. Western blot analysis showing less alpha-smooth muscle actin confirmed the reduced density of myofibroblasts. It appears that oleamide retards the progression of wound repair, where less connective tissue is deposited, the collagen is less organized, and the appearance of myofibroblasts is impaired. These findings support the hypothesis that gap junction intercellular communications between wound fibroblasts in granulation tissue play a role in the progression of repair and the maturation of granulation tissue into scar.
Dracorhodin perchlorate regulates fibroblast proliferation to promote rat's wound healing.
Jiang, Xiaowen; Liu, Lin; Qiao, Lu; Zhang, Binqing; Wang, Xuewei; Han, Yuwen; Yu, Wenhui
2018-02-01
In recent years, plant-derived extracts are increasing interest from researchers worldwide due to good efficacy and lower side effects. Among the different plant extracts, Dracorhodin perchlorate (DP) is originated from Dragon's blood which has long been used as a natural medicine with various pharmacological activities. In the present study, we have explored the potential regulation of DP on fibroblast proliferation which promotes wound healing both in vitro and in vivo. DP at treatment of 12-24 h significantly induced fibroblast proliferation which is associated with increasing level of phosphorylated-extracellular signal-regulated kinase (ERK). Moreover, if ERK is halted with siRNA, DP cannot induce fibroblast proliferation. In vivo, DP ointment treatment at low- (2.5 μg/mL), medium- (5 μg/mL) and high-(10 μg/mL) doses, rat wounds healed more rapidly compared with the control group. After DP treatment for 7 days, Serpin family H member 1 (SERPINH1) staining confirmed enhanced fibroblast proliferation in the wound tissue. Finally, phosphorylated-ERK in the wound tissue remarkably increased with DP ointment treatment. Therefore, DP may be developed into a potential lead compounds for the treatment of wounds in clinical trials in the near future. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Park, Jun-Hyeong; Choi, Seong-Hun; Park, Soo-Jin; Lee, Young Joon; Park, Jong Hyun; Song, Phil Hyun; Cho, Chang-Mo; Ku, Sae-Kwang; Song, Chang-Hyun
2017-01-01
Low molecular weight fucoidan (LMF) has been reported to possess anti-inflammatory and antioxidant activities. Thus, we examined the effects of LMF extracted from Undaria pinnatifida on dermal wounds. Five round dermal wounds were created on the dorsal back of rats, and they were then treated topically with distilled water (DW), Madecasol Care™ (MC) or LMF at 200, 100 and 50 mg/mL, twice a day for a week. There were dose-dependent increases in wound contraction in the groups receiving LMF but not in the MC group, compared with the DW. Histopathological examination revealed that LMF treatment accelerated wound healing, which was supported by increases in granular tissue formation on day four post-treatment but a decrease on day seven, accompanied by an evident reduction in inflammatory cells. In the LMF-treated wounds, collagen distribution and angiogenesis were increased in the granular tissue on days four and seven post-treatment. Immunoreactive cells for transforming growth factor-β1, vascular endothelial growth factor receptor-2 or matrix metalloproteinases 9 were also increased, probably due to tissue remodeling. Furthermore, LMF treatment reduced lipid peroxidation and increased antioxidant activities. These suggested that LMF promotes dermal wound healing via complex and coordinated antioxidant, anti-inflammatory and growth factor-dependent activities. PMID:28387729
Wound induces changes in nitric oxide related biologies putatively modulating tuber healing
USDA-ARS?s Scientific Manuscript database
Wound-related losses in harvested potatoes and cut seed are a serious and costly problem (losses > $320 m/yr). Our understanding of the regulation and modulation of the processes involved in wound healing (WH) are advancing and showing promise in the development of new approaches and technologies t...
Freisinger, Chrissy; Rindy, Julie; Golenberg, Netta; Frecentese, Grace; Gibson, Angela; Eliceiri, Kevin W
2018-01-01
Tissue injury leads to early wound-associated reactive oxygen species (ROS) production that mediate tissue regeneration. To identify mechanisms that function downstream of redox signals that modulate regeneration, a vimentin reporter of mesenchymal cells was generated by driving GFP from the vimentin promoter in zebrafish. Early redox signaling mediated vimentin reporter activity at the wound margin. Moreover, both ROS and vimentin were necessary for collagen production and reorganization into projections at the leading edge of the wound. Second harmonic generation time-lapse imaging revealed that the collagen projections were associated with dynamic epithelial extensions at the wound edge during wound repair. Perturbing collagen organization by burn wound disrupted epithelial projections and subsequent wound healing. Taken together our findings suggest that ROS and vimentin integrate early wound signals to orchestrate the formation of collagen-based projections that guide regenerative growth during efficient wound repair. PMID:29336778
MicroRNA-99 Family Targets AKT/mTOR Signaling Pathway in Dermal Wound Healing
Chen, Dan; Fang, Zong Juan; Zhao, Yan; Dragas, Dragan; Dai, Yang; Marucha, Phillip T.; Zhou, Xiaofeng
2013-01-01
Recent studies suggest that microRNAs play important roles in dermal wound healing and microRNA deregulation has been linked with impaired wound repair. Here, using a mouse experimental wound healing model, we identified a panel of 63 differentially expressed microRNAs during dermal wound healing, including members of miR-99 family (miR-99a, miR-99b, miR-100). We further demonstrated that miR-99 family members regulate cell proliferation, cell migration, and AKT/mTOR signaling. Combined experimental and bioinformatics analyses revealed that miR-99 family members regulate AKT/mTOR signaling by targeting multiple genes, including known target genes (e.g., IGF1R, mTOR) and a new target (AKT1). The effects of miR-99 family members on the expression of IGF1R, mTOR and AKT1 were validated at both the mRNA and protein levels. Two adjacent miR-99 family targeting sites were identified in the 3′-UTR of the AKT1 mRNA. The direct interaction of miR-100 with these targeting sites was confirmed using luciferase reporter assays. The microRNA-100-directed recruitment of AKT1 mRNA to the RNAi-induced silencing complex (RISC) was confirmed by a ribonucleoprotein-IP assay. In summary, we identified a panel of differentially expressed microRNAs which may play important roles in wound healing. We provide evidence that miR-99 family members contribute to wound healing by regulating the AKT/mTOR signaling. PMID:23724047
MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing.
Jin, Yi; Tymen, Stéphanie D; Chen, Dan; Fang, Zong Juan; Zhao, Yan; Dragas, Dragan; Dai, Yang; Marucha, Phillip T; Zhou, Xiaofeng
2013-01-01
Recent studies suggest that microRNAs play important roles in dermal wound healing and microRNA deregulation has been linked with impaired wound repair. Here, using a mouse experimental wound healing model, we identified a panel of 63 differentially expressed microRNAs during dermal wound healing, including members of miR-99 family (miR-99a, miR-99b, miR-100). We further demonstrated that miR-99 family members regulate cell proliferation, cell migration, and AKT/mTOR signaling. Combined experimental and bioinformatics analyses revealed that miR-99 family members regulate AKT/mTOR signaling by targeting multiple genes, including known target genes (e.g., IGF1R, mTOR) and a new target (AKT1). The effects of miR-99 family members on the expression of IGF1R, mTOR and AKT1 were validated at both the mRNA and protein levels. Two adjacent miR-99 family targeting sites were identified in the 3'-UTR of the AKT1 mRNA. The direct interaction of miR-100 with these targeting sites was confirmed using luciferase reporter assays. The microRNA-100-directed recruitment of AKT1 mRNA to the RNAi-induced silencing complex (RISC) was confirmed by a ribonucleoprotein-IP assay. In summary, we identified a panel of differentially expressed microRNAs which may play important roles in wound healing. We provide evidence that miR-99 family members contribute to wound healing by regulating the AKT/mTOR signaling.
LXA{sub 4} actions direct fibroblast function and wound closure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, Bruno S.; Microbiology Branch, US Army Dental and Trauma Research Detachment, Institute of Surgical Research, JBSA Fort Sam Houston, TX; Kantarci, Alpdogan
Timely resolution of inflammation is crucial for normal wound healing. Resolution of inflammation is an active biological process regulated by specialized lipid mediators including the lipoxins and resolvins. Failure of resolution activity has a major negative impact on wound healing in chronic inflammatory diseases that is manifest as excess fibrosis and scarring. Lipoxins, including Lipoxin A{sub 4} (LXA{sub 4}), have known anti-fibrotic and anti-scarring properties. The goal of this study was to elucidate the impact of LXA{sub 4} on fibroblast function. Mouse fibroblasts (3T3 Mus musculus Swiss) were cultured for 72 h in the presence of TGF-β1, to induce fibroblast activation.more » The impact of exogenous TGF-β1 (1 ng/mL) on LXA{sub 4} receptor expression (ALX/FPR2) was determined by flow cytometry. Fibroblast proliferation was measured by bromodeoxyuridine (BrdU) labeling and migration in a “scratch” assay wound model. Expression of α-smooth muscle actin (α-SMA), and collagen types I and III were measured by Western blot. We observed that TGF-β1 up-regulates LXA{sub 4} receptor expression, enhances fibroblast proliferation, migration and scratch wound closure. α-SMA levels and Collagen type I and III deposition were also enhanced. LXA{sub 4} slowed fibroblast migration and scratch wound closure at early time points (24 h), but wound closure was equal to TGF-β1 alone at 48 and 72 h. LXA{sub 4} tended to slow fibroblast proliferation at both concentrations, but had no impact on α-SMA or collagen production by TGF-β1 stimulated fibroblasts. The generalizability of the actions of resolution molecules was examined in experiments repeated with resolvin D2 (RvD2) as the agonist. The activity of RvD2 mimicked the actions of LXA{sub 4} in all assays, through an as yet unidentified receptor. The results suggest that mediators of resolution of inflammation enhance wound healing and limit fibrosis in part by modulating fibroblast function. - Highlights: • TGF-β1 up-regulates LXA{sub 4} receptor (ALX/FPR2) expression on fibroblast. • LXA{sub 4} regulates fibroblast migration and proliferation induced by TGF-β1. • SPMs have no impact on α-SMA, collagen type-I and III expression by fibroblast. • RvD2 regulates TGF-β1-induced fibroblast proliferation and scratch wound closure.« less
CXC chemokine ligand 4 (CXCL4) down-regulates CC chemokine receptor expression on human monocytes.
Schwartzkopff, Franziska; Petersen, Frank; Grimm, Tobias Alexander; Brandt, Ernst
2012-02-01
During acute inflammation, monocytes are essential in abolishing invading micro-organisms and encouraging wound healing. Recruitment by CC chemokines is an important step in targeting monocytes to the inflamed tissue. However, cell surface expression of the corresponding chemokine receptors is subject to regulation by various endogenous stimuli which so far have not been comprehensively identified. We report that the platelet-derived CXC chemokine ligand 4 (CXCL4), a known activator of human monocytes, induces down-regulation of CC chemokine receptors (CCR) 1, -2, and -5, resulting in drastic impairment of monocyte chemotactic migration towards cognate CC chemokine ligands (CCL) for these receptors. Interestingly, CXCL4-mediated down-regulation of CCR1, CCR2 and CCR5 was strongly dependent on the chemokine's ability to stimulate autocrine/paracrine release of TNF-α. In turn, TNF-α induced the secretion CCL3 and CCL4, two chemokines selective for CCR1 and CCR5, while the secretion of CCR2-ligand CCL2 was TNF-α-independent. Culture supernatants of CXCL4-stimulated monocytes as well as chemokine-enriched preparations thereof reproduced CXCL4-induced CCR down-regulation. In conclusion, CXCL4 may act as a selective regulator of monocyte migration by stimulating the release of autocrine, receptor-desensitizing chemokine ligands. Our results stress a co-ordinating role for CXCL4 in the cross-talk between platelets and monocytes during early inflammation.
Chouhan, Dimple; Chakraborty, Bijayshree; Nandi, Samit K; Mandal, Biman B
2017-01-15
Bombyx mori silk fibroin (BMSF) as biopolymer has been extensively explored in wound healing applications. However, limited study is available on the potential of silk fibroin (SF) from non-mulberry (Antheraea assama and Philosamia ricini) silk variety. Herein, we have developed non-mulberry SF (NMSF) based electrospun mats functionalized with epidermal growth factor (EGF) and ciprofloxacin HCl as potential wound dressing. The NMSF based mats exhibited essential properties of wound dressing like biocompatibility, high water retention capacity (440%), water vapor transmission rate (∼2330gm -2 day -1 ), high elasticity (∼2.6MPa), sustained drug release and antibacterial activity. Functionalized NMSF mats enhanced the proliferation of human dermal fibroblasts and HaCaT cells in vitro as compared to non-functionalized mats (p⩽0.01) showing effective delivery of EGF. Extensive in vivo wound healing assesment demonstrated accelerated wound healing, enhanced re-epithelialization, highly vascularized granulation tissue and higher wound maturity as compared to BMSF based mats. NMSF mats treated wounds showed regulated deposition of mature elastin, collagen and reticulin fibers in the extracellular matrix of skin. Presence of skin appendages and isotropic collagen fibers in the regenerated skin also demonstrated scar-less healing and aesthetic wound repair. A facile fabrication of a ready-to-use bioactive wound dressing capable of concomitantly accelerating the healing process as well as deposition of the extracellular matrix (ECM) to circumvent further scarring complicacies has become a focal point of research. In this backdrop, our present work is based on non-mulberry silk fibroin (NMSF) electrospun antibiotic loaded semi-occlusive mats, mimicking the ECM of skin in terms of morphology, topology, microporous structure and mechanical stiffness. Regulation of ECM deposition and isotropic orientation evinced the potential of the mat as an instructive platform for skin regeneration. The unique peptide motifs of NMSF assisted the augmented recruitment of fibroblast, keratinocytes and endothelial cells leading to accelerated wound healing. Early progression of mature granulation, faster re-epithelialization and angiogenesis in the wounds in in vivo rabbit model forwarded the blended nanofibrous mats of NMSF and PVA ferrying EGF, apt for scarless healing. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Kalan, Lindsay; Loesche, Michael; Hodkinson, Brendan P.; Heilmann, Kristopher; Ruthel, Gordon
2016-01-01
ABSTRACT Chronic nonhealing wounds have been heralded as a silent epidemic, causing significant morbidity and mortality especially in elderly, diabetic, and obese populations. Polymicrobial biofilms in the wound bed are hypothesized to disrupt the highly coordinated and sequential events of cutaneous healing. Both culture-dependent and -independent studies of the chronic-wound microbiome have almost exclusively focused on bacteria, omitting what we hypothesize are important fungal contributions to impaired healing and the development of complications. Here we show for the first time that fungal communities (the mycobiome) in chronic wounds are predictive of healing time, associated with poor outcomes, and form mixed fungal-bacterial biofilms. We longitudinally profiled 100, nonhealing diabetic-foot ulcers with high-throughput sequencing of the pan-fungal internal transcribed spacer 1 (ITS1) locus, estimating that up to 80% of wounds contain fungi, whereas cultures performed in parallel captured only 5% of colonized wounds. The “mycobiome” was highly heterogeneous over time and between subjects. Fungal diversity increased with antibiotic administration and onset of a clinical complication. The proportions of the phylum Ascomycota were significantly greater (P = 0.015) at the beginning of the study in wounds that took >8 weeks to heal. Wound necrosis was distinctly associated with pathogenic fungal species, while taxa identified as allergenic filamentous fungi were associated with low levels of systemic inflammation. Directed culturing of wounds stably colonized by pathogens revealed that interkingdom biofilms formed between yeasts and coisolated bacteria. Combined, our analyses provide enhanced resolution of the mycobiome during impaired wound healing, its role in chronic disease, and impact on clinical outcomes. PMID:27601572
Wu, Jiang; Ye, Jingjing; Zhu, Jingjing; Xiao, Zecong; He, Chaochao; Shi, Hongxue; Wang, Yadong; Lin, Cai; Zhang, Hongyu; Zhao, Yingzheng; Fu, Xiaobing; Chen, Hong; Li, Xiaokun; Li, Lin; Zheng, Jie; Xiao, Jian
2016-06-13
Effective wound healing requires complicated, coordinated interactions and responses at protein, cellular, and tissue levels involving growth factor expression, cell proliferation, wound closure, granulation tissue formation, and vascularization. In this study, we develop a heparin-based coacervate consisting of poly(ethylene argininylaspartate digylceride) (PEAD) as a storage matrix, heparin as a bridge, and fibroblast growth factor-2 (FGF2) as a cargo (namely heparin-FGF2@PEAD) for wound healing. First, in vitro characterization demonstrates the loading efficiency and control release of FGF2 from the heparin-FGF2@PEAD coacervate. The following in vivo studies examine the wound healing efficiency of the heparin-FGF2@PEAD coacervate upon delivering FGF2 to full-thickness excisional skin wounds in vivo, in comparison with the other three control groups with saline, heparin@PEAD as vehicle, and free FGF2. Collective in vivo data show that controlled release of FGF2 to the wounds by the coacervate significantly accelerates the wound healing by promoting cell proliferation, stimulating the secretion of vascular endothelial growth factor (VEGF) for re-epithelization, collagen deposition, and granulation tissue formation, and enhancing the expression of platelet endothelial cell adhesion molecule (CD31) and alpha-smooth muscle actin (α-SMA) for blood vessel maturation. In parallel, no obvious wound healing effect is found for the control, vehicle, and free FGF2 groups, indicating the important role of the coavervate in the wound healing process. This work designs a suitable delivery system that can protect and release FGF2 in a sustained and controlled manner, which provides a promising therapeutic potential for topical treatment of wounds.
Hole-in-One Mutant Phenotypes Link EGFR/ERK Signaling to Epithelial Tissue Repair in Drosophila
Campos, Isabel; Santos, Ana Catarina; Jacinto, Antonio
2011-01-01
Background Epithelia act as physical barriers protecting living organisms and their organs from the surrounding environment. Simple epithelial tissues have the capacity to efficiently repair wounds through a resealing mechanism. The known molecular mechanisms underlying this process appear to be conserved in both vertebrates and invertebrates, namely the involvement of the transcription factors Grainy head (Grh) and Fos. In Drosophila, Grh and Fos lead to the activation of wound response genes required for epithelial repair. ERK is upstream of this pathway and known to be one of the first kinases to be activated upon wounding. However, it is still unclear how ERK activation contributes to a proper wound response and which molecular mechanisms regulate its activation. Methodology/Principal Findings In a previous screen, we isolated mutants with defects in wound healing. Here, we describe the role of one of these genes, hole-in-one (holn1), in the wound healing process. Holn1 is a GYF domain containing protein that we found to be required for the activation of several Grh and Fos regulated wound response genes at the wound site. We also provide evidence suggesting that Holn1 may be involved in the Ras/ERK signaling pathway, by acting downstream of ERK. Finally, we show that wound healing requires the function of EGFR and ERK signaling. Conclusions/Significance Based on these data, we conclude that holn1 is a novel gene required for a proper wound healing response. We further propose and discuss a model whereby Holn1 acts downstream of EGFR and ERK signaling in the Grh/Fos mediated wound closure pathway. PMID:22140578
Response of human macrophages to wound matrices in vitro.
Witherel, Claire E; Graney, Pamela L; Freytes, Donald O; Weingarten, Michael S; Spiller, Kara L
2016-05-01
Chronic wounds remain a major burden to the global healthcare system. Myriad wound matrices are commercially available but their mechanisms of action are poorly understood. Recent studies have shown that macrophages are highly influenced by their microenvironment, but it is not known how different biomaterials affect this interaction. Here, it was hypothesized that human macrophages respond differently to changes in biomaterial properties in vitro with respect to phenotype, including pro-inflammatory M1, anti-inflammatory M2a, known for facilitating extracellular matrix deposition and proliferation, and M2c, which has recently been associated with tissue remodeling. Using multiple donors, it was found that collagen scaffolds cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) promoted the least inflammatory phenotype in primary human macrophages compared with scaffolds cross-linked with formaldehyde or glutaraldehyde. Importantly, gene expression analysis trends were largely conserved between donors, especially TNFa (M1), CCL22 (M2a), and MRC1 (M2a). Then the response of primary and THP1 monocyte-derived macrophages to four commercially available wound matrices were compared-Integra Dermal Regeneration Template (Integra), PriMatrix Dermal Repair Scaffold (PriMatrix), AlloMend Acellular Dermal Matrix (AlloMend), and Oasis Wound Matrix (Oasis). Gene expression trends were different between primary and THP1 monocyte-derived macrophages for all six genes analyzed in this study. Finally, the behavior of primary macrophages cultured onto the wound matrices over time was analyzed. Integra and Oasis caused down-regulation of M2a markers CCL22 and TIMP3. PriMatrix caused up-regulation of TNFa (M1) and CD163 (M2c) and down-regulation of CCL22 and TIMP3 (both M2a). AlloMend caused up-regulation in CD163 (M2c). Lastly, Oasis promoted the largest increase in the combinatorial M1/M2 score, defined as the sum of M1 genes divided by the sum of M2 genes. This preliminary study suggested that biomaterials influenced the wound microenvironment to affect macrophage phenotype. © 2016 by the Wound Healing Society.
Calreticulin Enhances Porcine Wound Repair by Diverse Biological Effects
Nanney, Lillian B.; Woodrell, Christopher D.; Greives, Mathew R.; Cardwell, Nancy L.; Pollins, Alonda C.; Bancroft, Tara A.; Chesser, Adrianne; Michalak, Marek; Rahman, Mohammad; Siebert, John W.; Gold, Leslie I.
2008-01-01
Extracellular functions of the endoplasmic reticulum chaperone protein calreticulin (CRT) are emerging. Here we show novel roles for exogenous CRT in both cutaneous wound healing and diverse processes associated with repair. Compared with platelet-derived growth factor-BB-treated controls, topical application of CRT to porcine excisional wounds enhanced the rate of wound re-epithelialization. In both normal and steroid-impaired pigs, CRT increased granulation tissue formation. Immunohistochemical analyses of the wounds 5 and 10 days after injury revealed marked up-regulation of transforming growth factor-β3 (a key regulator of wound healing), a threefold increase in macrophage influx, and an increase in the cellular proliferation of basal keratinocytes of the new epidermis and of cells of the neodermis. In vitro studies confirmed that CRT induced a greater than twofold increase in the cellular proliferation of primary human keratinocytes, fibroblasts, and microvascular endothelial cells (with 100 pg/ml, 100 ng/ml, and 1.0 pg/ml, respectively). Moreover, using a scratch plate assay, CRT maximally induced the cellular migration of keratinocytes and fibroblasts (with 10 pg/ml and 1 ng/ml, respectively). In addition, CRT induced concentration-dependent migration of keratinocytes, fibroblasts macrophages, and monocytes in chamber assays. These in vitro bioactivities provide mechanistic support for the positive biological effects of CRT observed on both the epidermis and dermis of wounds in vivo, underscoring a significant role for CRT in the repair of cutaneous wounds. PMID:18753412
Insulin catalyzes the curcumin-induced wound healing: An in vitro model for gingival repair
Singh, Neetu; Ranjan, Vishal; Zaidi, Deeba; Shyam, Hari; Singh, Aparna; Lodha, Divya; Sharma, Ramesh; Verma, Umesh; Dixit, Jaya; Balapure, Anil K.
2012-01-01
Objectives: Human gingival fibroblasts (hGFs) play a major role in the maintenance and repair of gingival connective tissue. The mitogen insulin with IGFs etc. synergizes in facilitating wound repair. Although curcumin (CUR) and insulin regulate apoptosis, their impact as a combination on hGF in wound repair remains unknown. Our study consists of: 1) analysis of insulin-mediated mitogenesis on CUR-treated hGF cells, and 2) development of an in vitro model of wound healing. Materials and Methods: Apoptotic rate in CUR-treated hGF cells with and without insulin was observed by AnnexinV/PI staining, nuclear morphological analysis, FACS and DNA fragmentation studies. Using hGF confluent cultures, wounds were mechanically created in vitro and incubated with the ligands for 48 h in 0.2% fetal bovine serum DMEM. Results: CUR alone showed dose-dependent (1–50 μM) effects on hGF. Insulin (1 μg/ml) supplementation substantially enhanced cell survival through up-regulation of mitogenesis/anti-apoptotic elements. Conclusions: The in vitro model for gingival wound healing establishes that insulin significantly enhanced wound filling faster than CUR-treated hGF cells over 48 h. This reinforces the pivotal role of insulin in supporting CUR-mediated wound repair. The findings have significant bearing in metabolic dysfunctions, e.g. diabetes, atherosclerosis, etc., especially under Indian situations. PMID:23087505
RECK-Mediated β1-Integrin Regulation by TGF-β1 Is Critical for Wound Contraction in Mice.
Gutiérrez, Jaime; Droppelmann, Cristian A; Contreras, Osvaldo; Takahashi, Chiaki; Brandan, Enrique
2015-01-01
Fibroblasts are critical for wound contraction; a pivotal step in wound healing. They produce and modify the extracellular matrix (ECM) required for the proper tissue remodeling. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a key regulator of ECM homeostasis and turnover. However, its role in wound contraction is presently unknown. Here we describe that Transforming growth factor type β1 (TGF-β1), one of the main pro-fibrotic wound-healing promoting factors, decreases RECK expression in fibroblasts through the Smad and JNK dependent pathways. This TGF-β1 dependent downregulation of RECK occurs with the concomitant increase of β1-integrin, which is required for fibroblasts adhesion and wound contraction through the activation of focal adhesion kinase (FAK). Loss and gain RECK expression experiments performed in different types of fibroblasts indicate that RECK downregulation mediates TGF-β1 dependent β1-integrin expression. Also, reduced levels of RECK potentiate TGF-β1 effects over fibroblasts FAK-dependent contraction, without affecting its cognate signaling. The above results were confirmed on fibroblasts derived from the Reck+/- mice compared to wild type-derived fibroblasts. We observed that Reck+/- mice heal dermal wounds more efficiently than wild type mice. Our results reveal a critical role for RECK in skin wound contraction as a key mediator in the axis: TGF-β1-RECK-β1-integrin.
Chaudhary, Amrita; Bag, Swarnendu; Mandal, Mousumi; Krishna Karri, Sri Phani; Barui, Ananya; Rajput, Monika; Banerjee, Provas; Sheet, Debdoot; Chatterjee, Jyotirmoy
2015-05-26
In traditional medicines honey is known for healing efficacy and vividly used as "Anupan" in Ayurvedic medicines appreciating roles in dilutions. Validating efficacy of physico-chemically characterized honey in dilutions, studies on in vitro wound healing and attainment of cellular confluence epithelial cells including expressions of cardinal genes is crucial. To evaluate effects of characterized honey in varied dilutions on cellular viability, in vitro wound healing and modulation of prime epithelial gene expressions. Six Indian honey-samples from different sources were physico-chemically characterized and optimal one was explored in dilutions (v/v%) through in vitro studies on human epithelial (HaCaT) cells for viability, wound healing and expressions of genes p63, E-cadherin, β-catenin, GnT-III and GnT-V. Studied honey samples (i.e. A-F) depicted range of pH (2-4), water (12.48-23.95), electrical conductivity (2.57-14.34), carbohydrate (68.73-98.65), protein (.316-5.36) and antioxidant potential. Though sample A and F showed physico-chemical proximity, but overall bio-impact of the earlier was better, thus studied in 8-.1% (v/v) dilution range. Four dilutions (.01, .04, .1, .25 v/v%) augmented cellular viability but in vitro wound healing was fastest (p<.05) under .1%. Such efficacy was further documented for p63 up-regulation by immunocytochemistry and mRNA studies. The E-cadherin and β-catenin mRNA-expressions were also up-regulated and their proteins were predominantly cytoplasmic. E-cadherin up-regulation was corroborative with down-regulation and up-regulation of GnT-III and GnT-V respectively. Present study illustrated efficacy of particular honey dilution (.1%) with characteristic free radical scavenging activity in facilitating cell proliferation and attainment of confluence towards faster wound healing and modulation of cardinal epithelial genes (viz. p63, E-cadherin, β-catenin, Gnt-III and V). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Brown, Matthew S; Ashley, Brandon; Koh, Ahyeon
2018-01-01
Chronic non-healing wounds challenge tissue regeneration and impair infection regulation for patients afflicted with this condition. Next generation wound care technology capable of in situ physiological surveillance which can diagnose wound parameters, treat various chronic wound symptoms, and reduce infection at the wound noninvasively with the use of a closed loop therapeutic system would provide patients with an improved standard of care and an accelerated wound repair mechanism. The indicating biomarkers specific to chronic wounds include blood pressure, temperature, oxygen, pH, lactate, glucose, interleukin-6 (IL-6), and infection status. A wound monitoring device would help decrease prolonged hospitalization, multiple doctors' visits, and the expensive lab testing associated with the diagnosis and treatment of chronic wounds. A device capable of monitoring the wound status and stimulating the healing process is highly desirable. In this review, we discuss the impaired physiological states of chronic wounds and explain the current treatment methods. Specifically, we focus on improvements in materials, platforms, fabrication methods for wearable devices, and quantitative analysis of various biomarkers vital to wound healing progress.
Brown, Matthew S.; Ashley, Brandon; Koh, Ahyeon
2018-01-01
Chronic non-healing wounds challenge tissue regeneration and impair infection regulation for patients afflicted with this condition. Next generation wound care technology capable of in situ physiological surveillance which can diagnose wound parameters, treat various chronic wound symptoms, and reduce infection at the wound noninvasively with the use of a closed loop therapeutic system would provide patients with an improved standard of care and an accelerated wound repair mechanism. The indicating biomarkers specific to chronic wounds include blood pressure, temperature, oxygen, pH, lactate, glucose, interleukin-6 (IL-6), and infection status. A wound monitoring device would help decrease prolonged hospitalization, multiple doctors' visits, and the expensive lab testing associated with the diagnosis and treatment of chronic wounds. A device capable of monitoring the wound status and stimulating the healing process is highly desirable. In this review, we discuss the impaired physiological states of chronic wounds and explain the current treatment methods. Specifically, we focus on improvements in materials, platforms, fabrication methods for wearable devices, and quantitative analysis of various biomarkers vital to wound healing progress. PMID:29755977
Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J
2018-03-01
The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes wound healing, suggesting it may provide an alternative approach to prevent the losses of barrier function that are associated with mucosal inflammation in IBD patients.
Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions.
Falk, Matthias M; Bell, Cheryl L; Kells Andrews, Rachael M; Murray, Sandra A
2016-05-24
Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.
Elliott, Christopher G; Forbes, Thomas L; Leask, Andrew; Hamilton, Douglas W
2015-04-01
Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds. Copyright © 2015. Published by Elsevier B.V.
Exploring the impact of wounding and jasmonates on ascorbate metabolism
Suza, Walter P.; Avila, Carlos A.; Carruthers, Kelly; Kulkarni, Shashank; Goggin, Fiona L.; Lorence, Argelia
2010-01-01
Vitamin C (ascorbate, AsA) is the most abundant water-soluble antioxidant in plants. Ascorbate provides the first line of defense against damaging reactive oxygen species (ROS), and helps protect plant cells from many factors that induce oxidative stress, including wounding, ozone, high salinity, and pathogen attack. Plant defenses against these stresses are also dependent upon jasmonates (JAs), a class of plant hormones that promote ROS accumulation. Here, we review evidence showing that wounding and JAs influence AsA accumulation in various plant species, and we report new data from Arabidopsis and tomato testing the influence of JAs on AsA levels in wounded and unwounded plants. In both species, certain mutations that impair JA metabolism and signaling influence foliar AsA levels, suggesting that endogenous JAs may regulate steady-state AsA. However, the impact of wounding on AsA accumulation was similar in JA mutants and wild type controls, indicating that this wound response does not require JAs. Our findings also indicate that the effects of wounding and JAs on AsA accumulation differ between species; these factors both enhanced AsA accumulation in Arabidopsis, but depressed AsA levels in tomato. These results underscore the importance of obtaining data from more than one model species, and demonstrate the complexity of AsA regulation. PMID:20346686
Alignment of cellular motility forces with tissue flow as a mechanism for efficient wound healing
Basan, Markus; Elgeti, Jens; Hannezo, Edouard; Rappel, Wouter-Jan; Levine, Herbert
2013-01-01
Recent experiments have shown that spreading epithelial sheets exhibit a long-range coordination of motility forces that leads to a buildup of tension in the tissue, which may enhance cell division and the speed of wound healing. Furthermore, the edges of these epithelial sheets commonly show finger-like protrusions whereas the bulk often displays spontaneous swirls of motile cells. To explain these experimental observations, we propose a simple flocking-type mechanism, in which cells tend to align their motility forces with their velocity. Implementing this idea in a mechanical tissue simulation, the proposed model gives rise to efficient spreading and can explain the experimentally observed long-range alignment of motility forces in highly disordered patterns, as well as the buildup of tensile stress throughout the tissue. Our model also qualitatively reproduces the dependence of swirl size and swirl velocity on cell density reported in experiments and exhibits an undulation instability at the edge of the spreading tissue commonly observed in vivo. Finally, we study the dependence of colony spreading speed on important physical and biological parameters and derive simple scaling relations that show that coordination of motility forces leads to an improvement of the wound healing process for realistic tissue parameters. PMID:23345440
USDA-ARS?s Scientific Manuscript database
Tuber wound-healing processes are complex, and the associated regulation and modulation of these processes are poorly understood. Polyamines (PA) have been shown to be involved in modulating a variety of responses to biotic and abiotic plant stresses and have been suggested to be involved in tuber ...
Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats
Zhang, Jianying; Yuan, Ting; Wang, James H-C.
2016-01-01
The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients. PMID:26885754
Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats.
Zhang, Jianying; Yuan, Ting; Wang, James H-C
2016-02-23
The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients.
Early Induction of NRF2 Antioxidant Pathway by RHBDF2 Mediates Rapid Cutaneous Wound Healing
Hosur, Vishnu; Burzenski, Lisa M.; Stearns, Timothy M.; Farley, Michelle L.; Sundberg, John P.; Wiles, Michael V.; Shultz, Leonard D.
2017-01-01
Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2cub/cub) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2cub/cub and Rhbdf2+/+ mice at 0h, 15 min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15 min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. PMID:28268192
Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.
Hosur, Vishnu; Burzenski, Lisa M; Stearns, Timothy M; Farley, Michelle L; Sundberg, John P; Wiles, Michael V; Shultz, Leonard D
2017-04-01
Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2 cub/cub ) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2 cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2 cub/cub and Rhbdf2 +/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2 cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. Copyright © 2017 Elsevier Inc. All rights reserved.
Pigment epithelium-derived factor as a multifunctional regulator of wound healing
Wietecha, Mateusz S.; Król, Mateusz J.; Michalczyk, Elizabeth R.; Chen, Lin; Gettins, Peter G.
2015-01-01
During dermal wound repair, hypoxia-driven proliferation results in dense but highly permeable, disorganized microvascular networks, similar to those in solid tumors. Concurrently, activated dermal fibroblasts generate an angiopermissive, provisional extracellular matrix (ECM). Unlike cancers, wounds naturally resolve via blood vessel regression and ECM maturation, which are essential for reestablishing tissue homeostasis. Mechanisms guiding wound resolution are poorly understood; one candidate regulator is pigment epithelium-derived factor (PEDF), a secreted glycoprotein. PEDF is a potent antiangiogenic in models of pathological angiogenesis and a promising cancer and cardiovascular disease therapeutic, but little is known about its physiological function. To examine the roles of PEDF in physiological wound repair, we used a reproducible model of excisional skin wound healing in BALB/c mice. We show that PEDF is abundant in unwounded and healing skin, is produced primarily by dermal fibroblasts, binds to resident microvascular endothelial cells, and accumulates in dermal ECM and epidermis. PEDF transcript and protein levels were low during the inflammatory and proliferative phases of healing but increased in quantity and colocalization with microvasculature during wound resolution. Local antibody inhibition of endogenous PEDF delayed vessel regression and collagen maturation during the remodeling phase. Treatment of wounds with intradermal injections of exogenous, recombinant PEDF inhibited nascent angiogenesis by repressing endothelial proliferation, promoted vascular integrity and function, and increased collagen maturity. These results demonstrate that PEDF contributes to the resolution of healing wounds by causing regression of immature blood vessels and stimulating maturation of the vascular microenvironment, thus promoting a return to tissue homeostasis after injury. PMID:26163443
Hutchins, Elizabeth D; Eckalbar, Walter L; Wolter, Justin M; Mangone, Marco; Kusumi, Kenro
2016-05-05
Lizards are evolutionarily the most closely related vertebrates to humans that can lose and regrow an entire appendage. Regeneration in lizards involves differential expression of hundreds of genes that regulate wound healing, musculoskeletal development, hormonal response, and embryonic morphogenesis. While microRNAs are able to regulate large groups of genes, their role in lizard regeneration has not been investigated. MicroRNA sequencing of green anole lizard (Anolis carolinensis) regenerating tail and associated tissues revealed 350 putative novel and 196 known microRNA precursors. Eleven microRNAs were differentially expressed between the regenerating tail tip and base during maximum outgrowth (25 days post autotomy), including miR-133a, miR-133b, and miR-206, which have been reported to regulate regeneration and stem cell proliferation in other model systems. Three putative novel differentially expressed microRNAs were identified in the regenerating tail tip. Differentially expressed microRNAs were identified in the regenerating lizard tail, including known regulators of stem cell proliferation. The identification of 3 putative novel microRNAs suggests that regulatory networks, either conserved in vertebrates and previously uncharacterized or specific to lizards, are involved in regeneration. These findings suggest that differential regulation of microRNAs may play a role in coordinating the timing and expression of hundreds of genes involved in regeneration.
Soler, Marçal; Molinas, Marisa; Figueras, Mercè
2013-01-01
The present study provides new insights on the role of the potato (Solanum tuberosum) suberin feruloyl transferase FHT in native and wound tissues, leading to conclusions about hitherto unknown properties of the phellogen. In agreement with the enzymatic role of FHT, it is shown that its transcriptional activation and protein accumulation are specific to tissues that undergo suberization such as the root boundary layers of the exodermis and the endodermis, along with the tuber periderm. Remarkably, FHT expression and protein accumulation within the periderm is restricted to the phellogen derivative cells with phellem identity. FHT levels in the periderm are at their peak near harvest during periderm maturation, with the phellogen becoming meristematically inactive and declining thereafter. However, periderm FHT levels remain high for several months after harvest, suggesting that the inactive phellogen retains the capacity to synthesize ferulate esters. Tissue wounding induces FHT expression and the protein accumulates from the first stages of the healing process onwards. FHT is up-regulated by abscisic acid and down-regulated by salicylic acid, emphasizing the complex regulation of suberin synthesis and wound healing. These findings open up new prospects important for the clarification of the suberization process and yield important information with regard to the skin quality of potatoes. PMID:23918964
Aomatsu, Keiichi; Arao, Tokuzo; Abe, Kosuke; Kodama, Aya; Sugioka, Koji; Matsumoto, Kazuko; Kudo, Kanae; Kimura, Hideharu; Fujita, Yoshihiko; Hayashi, Hidetoshi; Nagai, Tomoyuki; Shimomura, Yoshikazu; Nishio, Kazuto
2012-02-16
The involvement of the epithelial mesenchymal transition (EMT) in the process of corneal wound healing remains largely unclear. The purpose of the present study was to gain insight into Slug expression and corneal wound healing. Slug expression during wound healing in the murine cornea was evaluated using fluorescence staining in vivo. Slug or Snail was stably introduced into human corneal epithelial cells (HCECs). These stable transfectants were evaluated for the induction of the EMT, cellular growth, migration activity, and expression changes in differentiation-related molecules. Slug, but not Snail, was clearly expressed in the nuclei of corneal epithelial cells in basal lesion of the corneal epithelium during wound healing in vivo. The overexpression of Slug or Snail induced an EMT-like cellular morphology and cadherin switching in HCECs, indicating that these transcription factors were able to mediate the typical EMT in HCECs. The overexpression of Slug or Snail suppressed cellular proliferation but enhanced the migration activity. Furthermore, ABCG2, TP63, and keratin 19, which are known as stemness-related molecules, were downregulated in these transfectants. It was found that Slug is upregulated during corneal wound healing in vivo. The overexpression of Slug mediated a change in the cellular phenotype affecting proliferation, migration, and expression levels of differentiation-related molecules. This is the first evidence that Slug is regulated during the process of corneal wound healing in the corneal epithelium in vivo, providing a novel insight into the EMT and Slug expression in corneal wound healing.
The use of MelMax in the healing of chronic wounds.
Lloyd Jones, Menna
Chronic wounds can have detrimental consequences for the quality of life of patients as well as presenting a huge financial burden to the NHS. An imbalance in the level of matrix metalloproteinases (MMPs) and the tissue inhibitors of MMPs (TIMPs) in chronic wounds impedes the healing process. In addition, high levels of bacteria in the wound bed are a common feature of chronic wounds and also cited as a major cause of delayed healing. The aim of this article is to look in more detail at the role of MMPs in wound healing as well as the antimicrobial properties of honey when combined with a dressing to combat wound infection. The article also introduces a new dressing, MelMax (distributed by CliniMed), which utilizes protease regulation and the antimicrobial properties of honey when addressing chronic wound infection. Short-term case studies are used to demonstrate how the dressing was successfully incorporated into the author's practice.
Rho GTPases Control Polarity, Protrusion, and Adhesion during Cell Movement
Nobes, Catherine D.; Hall, Alan
1999-01-01
Cell movement is essential during embryogenesis to establish tissue patterns and to drive morphogenetic pathways and in the adult for tissue repair and to direct cells to sites of infection. Animal cells move by crawling and the driving force is derived primarily from the coordinated assembly and disassembly of actin filaments. The small GTPases, Rho, Rac, and Cdc42, regulate the organization of actin filaments and we have analyzed their contributions to the movement of primary embryo fibroblasts in an in vitro wound healing assay. Rac is essential for the protrusion of lamellipodia and for forward movement. Cdc42 is required to maintain cell polarity, which includes the localization of lamellipodial activity to the leading edge and the reorientation of the Golgi apparatus in the direction of movement. Rho is required to maintain cell adhesion during movement, but stress fibers and focal adhesions are not required. Finally, Ras regulates focal adhesion and stress fiber turnover and this is essential for cell movement. We conclude that the signal transduction pathways controlled by the four small GTPases, Rho, Rac, Cdc42, and Ras, cooperate to promote cell movement. PMID:10087266
Palazzo, E; Kellett, M; Cataisson, C; Gormley, A; Bible, P W; Pietroni, V; Radoja, N; Hwang, J; Blumenberg, M; Yuspa, S H; Morasso, M I
2016-06-16
Epidermal homeostasis depends on the coordinated control of keratinocyte cell cycle. Differentiation and the alteration of this balance can result in neoplastic development. Here we report on a novel DLX3-dependent network that constrains epidermal hyperplasia and squamous tumorigenesis. By integrating genetic and transcriptomic approaches, we demonstrate that DLX3 operates through a p53-regulated network. DLX3 and p53 physically interact on the p21 promoter to enhance p21 expression. Elevating DLX3 in keratinocytes produces a G1-S blockade associated with p53 signature transcriptional profiles. In contrast, DLX3 loss promotes a mitogenic phenotype associated with constitutive activation of ERK. DLX3 expression is lost in human skin cancers and is extinguished during progression of experimentally induced mouse squamous cell carcinoma (SCC). Reinstatement of DLX3 function is sufficient to attenuate the migration of SCC cells, leading to decreased wound closure. Our data establish the DLX3-p53 interplay as a major regulatory axis in epidermal differentiation and suggest that DLX3 is a modulator of skin carcinogenesis.
Palazzo, Elisabetta; Kellett, Meghan; Cataisson, Christophe; Gormley, Anna; Bible, Paul W.; Pietroni, Valentina; Radoja, Nadezda; Hwang, Joonsung; Blumenberg, Miroslav; Yuspa, Stuart H.; Morasso, Maria
2015-01-01
Epidermal homeostasis depends on the coordinated control of keratinocyte cell cycle. Differentiation and the alteration of this balance can result in neoplastic development. Here we report on a novel DLX3-dependent network that constrains epidermal hyperplasia and squamous tumorigenesis. By integrating genetic and transcriptomic approaches, we demonstrate that DLX3 operates through a p53-regulated network. DLX3 and p53 physically interact on the p21 promoter to enhance p21 expression. Elevating DLX3 in keratinocytes produces a G1-S blockade associated with p53 signature transcriptional profiles. In contrast, DLX3 loss promotes a mitogenic phenotype associated with constitutive activation of ERK. DLX3 expression is lost in human skin cancers and is extinquished during progression of experimentally induced mouse squamous cell carcinoma (SCC). Reinstatement of DLX3 function is sufficient to attenuate the migration of SCC cells, leading to decreased wound closure. Our data establish the DLX3-p53 interplay as a major regulatory axis in epidermal differentiation and suggest that DLX3 is a modulator of skin carcinogenesis. PMID:26522723
GM-CSF ameliorates microvascular barrier integrity via pericyte-derived Ang-1 in wound healing.
Yan, Min; Hu, Yange; Yao, Min; Bao, Shisan; Fang, Yong
2017-11-01
Skin wound healing involves complex coordinated interactions of cells, tissues, and mediators. Maintaining microvascular barrier integrity is one of the key events for endothelial homeostasis during wound healing. Vasodilation is observed after vasoconstriction, which causes blood vessels to become porous, facilitates leukocyte infiltration and aids angiogenesis at the wound-area, postinjury. Eventually, vessel integrity has to be reestablished for vascular maturation. Numerous studies have found that granulocyte macrophage colony-stimulating factor (GM-CSF) accelerates wound healing by inducing recruitment of repair cells into the injury area and releases of cytokines. However, whether GM-CSF is involving in the maintaining of microvascular barrier integrity and the underlying mechanism remain still unclear. Aim of this study was to investigate the effects of GM-CSF on modulation of microvascular permeability in wound healing and underlying mechanisms. Wound closure and microvascular leakage was investigated using a full-thickness skin wound mouse model after GM-CSF intervention. The endothelial permeability was measured by Evans blue assay in vivo and in vitro endothelium/pericyte co-culture system using a FITC-Dextran permeability assay. To identify the source of angiopoietin-1 (Ang-1), double staining is used in vivo and ELISA and qPCR are used in vitro. To determine the specific effect of Ang-1 on GM-CSF maintaining microvascular stabilization, Ang-1 siRNA was applied to inhibit Ang-1 production in vivo and in vitro. Wound closure was significantly accelerated and microvascular leakage was ameliorated after GM-CSF treatment in mouse wound sites. GM-CSF decreased endothelial permeability through tightening endothelial junctions and increased Ang-1 protein level that was derived by perictye. Furthermore, applications of siRNAAng-1 inhibited GM-CSF mediated protection of microvascular barrier integrity both in vivo and in vitro. Our data indicate that GM-CSF ameliorates microvascular barrier integrity via pericyte-derived Ang-1 during wound healing. © 2018 by the Wound Healing Society.
Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Sinha, Pratima; Singh, Kiran
2016-01-01
Type 2 diabetes mellitus (T2DM) is characterized by persistent hyperglycemia which causes a chain of abrupt biochemical and physiological changes. Immune dys-regulation is the hallmark of T2DM that could contribute to prolonged inflammation causing transformation of wounds into non-healing chronic ulcers. Toll like receptor -9 (TLR9) is a major receptor involved in innate immune regulation. TLR9 activation induces release of pro-inflammatory molecules like S100A8 and interleukin-8 (IL-8) by myeloid cells causing migration of myeloid cells to the site of inflammation. We hypothesized that pro-inflammatory S100A8 and IL-8 proteins could cause persistent inflammation in chronic wounds like diabetic foot ulcer (DFU) and may contribute to impaired wound healing in T2DM patients. Expression of TLR9 and its downstream effector molecules S100A8, and IL-8 were analyzed in chronic diabetic wound and non-diabetic control wound tissue samples by semiquantitative reverse transcriptase - polymerase chain reaction (RT-PCR), quantitative RT-PCR, western blot and immunofluorescence. CD11b(+)CD33(+) myeloid cells were analyzed by flow cytometry. TLR9 message and protein were higher in diabetic wounds compared to control wounds (p=0.03, t=2.21 for TLR9 mRNA; p=<0.001, t=4.21 for TLR9 protein). TLR9 down-stream effector molecules S100A8 and IL-8 were also increased in diabetic wounds (p=0.003, t=3.1 for S100A8 mRNA; p=0.04, t=2.04 for IL-8). CD11b(+) CD33(+) myeloid cells were decreased in T2DM as compared to non-diabetic controls (p=0.001, t=3.6). DFU subjects had higher levels of CD11b(+) CD33(+) myeloid cells as compared to non-DFU T2DM control (p=0.003, t=2.8). Infection in the wound microenvironment could be the cause of increase in CD11b(+)CD33(+) myeloid cells in DFU (p=0.03, t=2.5). The up-regulation of myeloid cell-derived pro-inflammatory molecules S100A8 and IL-8 in combination with lower levels of CD11b(+) CD33(+) myeloid cells may cause the impairment of wound healing in T2DM subjects leading to chronic ulcers. Copyright © 2016 Elsevier Inc. All rights reserved.
Henshaw, F R; Boughton, P; Lo, L; McLennan, S V; Twigg, S M
2015-01-01
Topical application of CTGF/CCN2 to rodent diabetic and control wounds was examined. In parallel research, correlation of CTGF wound fluid levels with healing rate in human diabetic foot ulcers was undertaken. Full thickness cutaneous wounds in diabetic and nondiabetic control rats were treated topically with 1 μg rhCTGF or vehicle alone, on 2 consecutive days. Wound healing rate was observed on day 14 and wound sites were examined for breaking strength and granulation tissue. In the human study across 32 subjects, serial CTGF regulation was analyzed longitudinally in postdebridement diabetic wound fluid. CTGF treated diabetic wounds had an accelerated closure rate compared with vehicle treated diabetic wounds. Healed skin withstood more strain before breaking in CTGF treated rat wounds. Granulation tissue from CTGF treatment in diabetic wounds showed collagen IV accumulation compared with nondiabetic animals. Wound α-smooth muscle actin was increased in CTGF treated diabetic wounds compared with untreated diabetic wounds, as was macrophage infiltration. Endogenous wound fluid CTGF protein rate of increase in human diabetic foot ulcers correlated positively with foot ulcer healing rate (r = 0.406; P < 0.001). These data collectively increasingly substantiate a functional role for CTGF in human diabetic foot ulcers.
Huh, Jeong-Eun; Nam, Dong-Woo; Baek, Young-Hyun; Kang, Jung Won; Park, Dong-Suk; Choi, Do-Young; Lee, Jae-Dong
2011-01-01
Formononetin, a phytoestrogen from the root of Astragalus membranaceus, is used as a blood enhancer and to improve blood microcirculation in complementary and alternative medicine. The present study investigated the influence of formononetin on the expression of early growth response factor-1 (Egr-1) and growth factors contributing to wound healing. Formononetin significantly increased growth factors such as transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) in human umbilical vein endothelial cells (HUVECs). Formononetin also increased the expression of Egr-1 transcription factor by 3.2- and 10.5-fold, compared with recombinant VEGF(125) in HUVECs. The formononetin-mediated 12%-43% increase induced endothelial cell proliferation and recovered the migration of wounded HUVECs. In an ex vivo angiogenesis assay, formononetin produced a larger capillary sprouting area than produced using recombinant VEGF(125). Cell proliferation and migration of HUVECs were also greater in the presence of formonectin than VEGF(125). Western blot analysis of scratch-wounded confluent HUVECs showed that formononetin induced the phosphorylation of extracellular signal-regulated kinase (ERK) and slightly inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The formononetin-mediated sustained activation of Egr-1 was suppressed by the ERK inhibitor PD98059 and the p38 inhibitor SB203580. PD98059 inhibited the formononetin-induced endothelial proliferation and repair in scratch-wounded HUVECs, SB203580 increased the cell proliferation and wound healing. Formononetin accelerate wound closure rate as early as day 3 after surgery and consistently observed until day 10 after in wound animal model. These data suggest that formononetin promotes endothelial repair and wound healing in a process involving the over-expression of Egr-1 transcription factor through the regulation of the ERK1/2 and p38 MAPK pathways. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
29 CFR 31.12 - Effect on other regulations; supervision and coordination.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 1 2011-07-01 2011-07-01 false Effect on other regulations; supervision and coordination... on other regulations; supervision and coordination. (a) Effect on other regulations. All regulations... inapplicable, or prohibits discrimination on any other ground. (b) Supervision and coordination. (1) The...
29 CFR 31.12 - Effect on other regulations; supervision and coordination.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 1 2012-07-01 2012-07-01 false Effect on other regulations; supervision and coordination... on other regulations; supervision and coordination. (a) Effect on other regulations. All regulations... inapplicable, or prohibits discrimination on any other ground. (b) Supervision and coordination. (1) The...
29 CFR 31.12 - Effect on other regulations; supervision and coordination.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 1 2013-07-01 2013-07-01 false Effect on other regulations; supervision and coordination... on other regulations; supervision and coordination. (a) Effect on other regulations. All regulations... inapplicable, or prohibits discrimination on any other ground. (b) Supervision and coordination. (1) The...
29 CFR 31.12 - Effect on other regulations; supervision and coordination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 1 2010-07-01 2010-07-01 true Effect on other regulations; supervision and coordination... on other regulations; supervision and coordination. (a) Effect on other regulations. All regulations... inapplicable, or prohibits discrimination on any other ground. (b) Supervision and coordination. (1) The...
Accessing wound-care information on the Internet: the implications for patients.
Bovill, E S; Hormbrey, E; Gillespie, P H; Banwell, P E
2001-02-01
The Internet and the World Wide Web have revolutionised communication and provide a unique forum for the exchange of information. It has been proposed that the Internet has given the public more access to medical information resources and improved patient education. This study assessed the impact of the Internet on the availability of information on wound care management. The search phrases 'wound care', 'wound healing' and 'wounds' were analysed using a powerful Metacrawler search engine (www.go2net.com). Web site access was classified according to the target audience (wound-care specialists, other health professionals, patients) and the author (societies, institutions or commercial companies). The largest proportion of web sites were commercially based (32%). Of the total number, 23% specifically targeted patients, mostly by advertising. Only 20% were aimed at wound specialists. Extensive surfing was required to obtain wound-care information, and objective information sites were under-represented. Regulated, easily accessible, objective information sites on wound-healing topics are needed for improved patient education and to balance the existing commercial bias.
Travis, Taryn E; Ghassemi, Pejhman; Prindeze, Nicholas J; Moffatt, Lauren T; Carney, Bonnie C; Alkhalil, Abdulnaser; Ramella-Roman, Jessica C; Shupp, Jeffrey W
2018-01-01
Objective: Proteins of the matrix metalloproteinases family play a vital role in extracellular matrix maintenance and basic physiological processes in tissue homeostasis. The function and activities of matrix metalloproteinases in response to compression therapies have yet to be defined. Here, a swine model of hypertrophic scar was used to profile the transcription of all known 26 matrix metalloproteinases in scars treated with a precise compression dose. Methods: Full-thickness excisional wounds were created. Wounds underwent healing and scar formation. A subset of scars underwent 2 weeks of compression therapy. Biopsy specimens were preserved, and microarrays, reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry were performed to characterize the transcription and expression of various matrix metalloproteinase family members. Results: Microarray results showed that 13 of the known 26 matrix metalloproteinases were differentially transcribed in wounds relative to the preinjury skin. The predominant upregulation of these matrix metalloproteinases during early wound-healing stages declined gradually in later stages of wound healing. The use of compression therapy reduced this decline in 10 of the 13 differentially regulated matrix metalloproteinases. Further investigation of MMP7 using reverse transcription-polymerase chain reaction confirmed the effect of compression on transcript levels. Assessment of MMP7 at the protein level using Western blotting and immunohistochemistry was concordant. Conclusions: In a swine model of hypertrophic scar, the application of compression to hypertrophic scar attenuated a trend of decreasing levels of matrix metalloproteinases during the process of hypertrophic wound healing, including MMP7, whose enzyme regulation was confirmed at the protein level.
Bansal, Dhiru; Kulkarni, Jahnavi; Nadahalli, Kavana; Lakshmanan, Vairavan; Krishna, Srikar; Sasidharan, Vidyanand; Geo, Jini; Dilipkumar, Shilpa; Pasricha, Renu; Gulyani, Akash; Raghavan, Srikala; Palakodeti, Dasaradhi
2017-09-01
Identifying key cellular events that facilitate stem cell function and tissue organization is crucial for understanding the process of regeneration. Planarians are powerful model system to study regeneration and stem cell (neoblast) function. Here, using planaria, we show that the initial events of regeneration, such as epithelialization and epidermal organization are critically regulated by a novel cytoplasmic poly A-binding protein, SMED-PABPC2. Knockdown of smed-pabpc2 leads to defects in epidermal lineage specification, disorganization of epidermis and ECM, and deregulated wound healing, resulting in the selective failure of neoblast proliferation near the wound region. Polysome profiling suggests that epidermal lineage transcripts, including zfp-1 , are translationally regulated by SMED-PABPC2 . Together, our results uncover a novel role for SMED-PABPC2 in the maintenance of epidermal and ECM integrity, critical for wound healing and subsequent processes for regeneration. © 2017. Published by The Company of Biologists Ltd.
Bansal, Dhiru; Kulkarni, Jahnavi; Nadahalli, Kavana; Lakshmanan, Vairavan; Krishna, Srikar; Sasidharan, Vidyanand; Dilipkumar, Shilpa; Gulyani, Akash; Raghavan, Srikala
2017-01-01
Identifying key cellular events that facilitate stem cell function and tissue organization is crucial for understanding the process of regeneration. Planarians are powerful model system to study regeneration and stem cell (neoblast) function. Here, using planaria, we show that the initial events of regeneration, such as epithelialization and epidermal organization are critically regulated by a novel cytoplasmic poly A-binding protein, SMED-PABPC2. Knockdown of smed-pabpc2 leads to defects in epidermal lineage specification, disorganization of epidermis and ECM, and deregulated wound healing, resulting in the selective failure of neoblast proliferation near the wound region. Polysome profiling suggests that epidermal lineage transcripts, including zfp-1, are translationally regulated by SMED-PABPC2. Together, our results uncover a novel role for SMED-PABPC2 in the maintenance of epidermal and ECM integrity, critical for wound healing and subsequent processes for regeneration. PMID:28807897
Liu, Jinyan; Hu, Feng; Tang, Jintian; Tang, Shijie; Xia, Kun; Wu, Song; Yin, Chaoqi; Wang, Shaohua; He, Quanyong; Xie, Huiqing; Zhou, Jianda
2017-01-01
Vacuum sealing drainage (VSD) is an effective technique used to promote wound healing. However, recent studies have shown that it exerts positive pressure (PP) rather than negative pressure (NP) on skin. In this study, we created a homemade device that could maintain NP on the wound, and compared the therapeutic effects of VSD-induced PP to those of our home-made device which induced NP on wound healing. The NP induced by our device required less time for wound healing and decreased the wound area more efficiently than the PP induced by VSD. NP and PP both promoted the inflammatory response by upregulating neutrophil infiltration and interleukin (IL)-1β expression, and downregulating IL-10 expression. Higher levels of epidermal growth factor (EGF), transforming growth factor (TGF)-β and platelet-derived growth factor (PDGF), and lower levels of basic fibroblast growth factor (bFGF) were observed in the wound tissue treated with NP compared to the wound tissue exposed to PP. Proliferation in the wound tissue exposed to NP on day 10 was significantly higher than that in wound tissue exposed to PP. NP generated more fibroblasts, keratinized stratified epithelium, and less epithelia with stemness than PP. The levels of ccollagen I and III were both decreased in both the NP and PP groups. NP induced a statistically significant increase in the expression of fibronectin (FN) on days 3 and 10 compared to PP. Furthermore, the level of matrix metalloproteinase (MMP)-13 increased in the NP group, but decreased in the PP group on day 3. NP also induced a decrease in the levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 during the early stages of wound healing, which was significantly different from the increasing effect of PP on TIMP-1 and TIMP-2 levels at the corresponding time points. On the whole, our data indicate that our homemade device which induced NP, was more efficient than VSD-induced PP on wound healing by regulating inflammation, secretion, proliferation and the distribution of different cells in wound tissue. PMID:28290607
Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound
Tracy, Lauren E.; Minasian, Raquel A.; Caterson, E.J.
2016-01-01
Significance: Fibroblasts play a critical role in normal wound healing. Various extracellular matrix (ECM) components, including collagens, fibrin, fibronectin, proteoglycans, glycosaminoglycans, and matricellular proteins, can be considered potent protagonists of fibroblast survival, migration, and metabolism. Recent Advances: Advances in tissue culture, tissue engineering, and ex vivo models have made the examination and precise measurements of ECM components in wound healing possible. Likewise, the development of specific transgenic animal models has created the opportunity to characterize the role of various ECM molecules in healing wounds. In addition, the recent characterization of new ECM molecules, including matricellular proteins, dermatopontin, and FACIT collagens (Fibril-Associated Collagens with Interrupted Triple helices), further demonstrates our cursory knowledge of the ECM in coordinated wound healing. Critical Issues: The manipulation and augmentation of ECM components in the healing wound is emerging in patient care, as demonstrated by the use of acellular dermal matrices, tissue scaffolds, and wound dressings or topical products bearing ECM proteins such as collagen, hyaluronan (HA), or elastin. Once thought of as neutral structural proteins, these molecules are now known to directly influence many aspects of cellular wound healing. Future Directions: The role that ECM molecules, such as CCN2, osteopontin, and secreted protein, acidic and rich in cysteine, play in signaling homing of fibroblast progenitor cells to sites of injury invites future research as we continue investigating the heterotopic origin of certain populations of fibroblasts in a healing wound. Likewise, research into differently sized fragments of the same polymeric ECM molecule is warranted as we learn that fragments of molecules such as HA and tenascin-C can have opposing effects on dermal fibroblasts. PMID:26989578
Etich, Julia; Bergmeier, Vera; Pitzler, Lena; Brachvogel, Bent
2017-03-01
Wound healing is a coordinated process to restore tissue homeostasis and reestablish the protective barrier of the skin. miRNAs may modulate the expression of target genes to contribute to repair processes, but due to the complexity of the tissue it is challenging to quantify gene expression during the distinct phases of wound repair. Here, we aimed to identify a common reference gene to quantify changes in miRNA and mRNA expression during skin wound healing. Quantitative real-time PCR and bioinformatic analysis tools were used to identify suitable reference genes during skin repair and their reliability was tested by studying the expression of mRNAs and miRNAs. Morphological assessment of wounds showed that the injury model recapitulates the distinct phases of skin repair. Non-degraded RNA could be isolated from skin and wounds and used to study the expression of non-coding small nuclear RNAs during wound healing. Among those, RNU6B was most constantly expressed during skin repair. Using this reference gene we could confirm the transient upregulation of IL-1β and PTPRC/CD45 during the early phase as well as the increased expression of collagen type I at later stages of repair and validate the differential expression of miR-204, miR-205, and miR-31 in skin wounds. In contrast to Gapdh the normalization to multiple reference genes gave a similar outcome. RNU6B is an accurate alternative normalizer to quantify mRNA and miRNA expression during the distinct phases of skin wound healing when analysis of multiple reference genes is not feasible.
Wang, Xing-Jie; Zhuo, Jian; Luo, Guang-Heng; Zhu, Yi-Ping; Yu, Dian-Jun; Zhao, Rui-Zhe; Jiang, Chen-Yi; Shi, Yun-Feng; Li, Hao; Chen, Lei; Hao, Kui-Yuan; Han, Xia; Zhao, Sheng; Bei, Xiao-Yu; Jing, Yi-Feng; Xia, Shu-Jie
2017-05-01
Complications after a thulium laser resection of the prostate (TmLRP) are related to re-epithelialization of the prostatic urethra. Since prostate growth and development are induced by androgen, the aim of this study was to determine the role and explore the mechanism of androgen in wound healing of the prostatic urethra. Beagles that received TmLRPs were randomly distributed into a castration group, a testosterone undecanoate (TU) group, and a control group. The prostate wound was assessed once a week using a cystoscope. Histological analysis was then carried out to study the re-epithelialization of the prostatic urethra in each group. The inflammatory response in the wound tissue and urine was also investigated. The healing of the prostatic urethra after a TmLRP was more rapid in the castration group and slower in the TU group than that in the control group. Castration accelerated re-epithelialization by promoting basal cell proliferation in the wound surface and beneath the wound and by accelerating the differentiation of basal cells into urothelial cells. Castration reduced the duration of the inflammatory phase and induced the conversion of M1 macrophages to M2 macrophages, thus accelerating the maturation of the wound. By contrast, androgen supplementation enhanced the inflammatory response and prolonged the inflammatory phase. Moreover, the anti-inflammatory phase was delayed and weakened. Androgen deprivation promotes re-epithelialization of the wound, regulates the inflammatory response, and accelerates wound healing of the prostatic urethra after a TmLRP. Prostate 77:708-717, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Apidianakis, Yiorgos; Que, Yok-Ai; Xu, Weihong; Tegos, George P.; Zimniak, Piotr; Hamblin, Michael R.; Tompkins, Ronald G.; Xiao, Wenzhong; Rahme, Laurence G.
2012-01-01
Patients with severe burns are highly susceptible to bacterial infection. While immunosuppression facilitates infection, the contribution of soft tissues to infection beyond providing a portal for bacterial entry remains unclear. We showed previously that glutathione S-transferase S1 (gstS1), an enzyme with conjugating activity against the lipid peroxidation byproduct 4-hydroxynonenal (4HNE), is important for resistance against wound infection in Drosophila muscle. The importance of the mammalian functional counterpart of GstS1 in the context of wounds and infection has not been investigated. Here we demonstrate that the presence of a burn wound dramatically affects expression of both human (hGSTA4) and mouse (mGsta4) 4HNE scavengers. hGSTA4 is down-regulated significantly within 1 wk of thermal burn injury in the muscle and fat tissues of patients from the large-scale collaborative Inflammation and the Host Response to Injury multicentered study. Similarly, mGsta4, the murine GST with the highest catalytic efficiency for 4HNE, is down-regulated to approximately half of normal levels in mouse muscle immediately postburn. Consequently, 4HNE protein adducts are increased 4- to 5-fold in mouse muscle postburn. Using an open wound infection model, we show that deletion of mGsta4 renders mice more susceptible to infection with the prevalent wound pathogen Pseudomonas aeruginosa, while muscle hGSTA4 expression negatively correlates with burn wound infection episodes per patient. Our data suggest that hGSTA4 down-regulation and the concomitant increase in 4HNE adducts in human muscle are indicative of susceptibility to infection in individuals with severely thermal injuries.—Apidianakis, Y., Que, Y.-A., Xu, W., Tegos, G. P., Zimniak, P., Hamblin, M. R., Tompkins, R. G., Xiao, W., Rahme, L. G. Down-regulation of glutatione S-transferase α 4 (hGSTA4) in the muscle of thermally injured patients is indicative of susceptibility to bacterial infection. PMID:22038048
Smith, E Reed; Shapiro, Geoff; Sarani, Babak
2018-04-25
Mortality following shooting is related to time to provision of initial and definitive care. An understanding of the wounding pattern, opportunities for rescue, and incidence of possibly preventable death is needed to achieve the goal of zero preventable deaths following trauma. A retrospective study of autopsy reports for all victims involved in the Pulse Nightclub Shooting was performed. The site of injury, probable site of fatal injury, and presence of potentially survivable injury (defined as survival if prehospital care is provided within 10 minutes and trauma center care within 60 minutes of injury) was determined independently by each author. Wounds were considered fatal if they involved penetration of the heart, injury to any non-extremity major blood vessel, or bihemispheric, mid-brain, or brainstem injury. There were an average of 6.9 wounds per patient. Ninety percent had a gunshot to an extremity, 78% to the chest, 47% to the abdomen/pelvis, and 39% to the head. Sixteen patients (32%) had potentially survivable wounds, 9 (56%) of whom had torso injuries. Four patients had extremity injuries, 2 involved femoral vessels and 2 involved the axilla. No patients had documented tourniquets or wound packing prior to arrival to the hospital. One patient had an isolated C6 injury and 2 victims had unihemispheric gunshots to the head. A comprehensive strategy starting with civilian providers to provide care at the point of wounding along with a coordinated public safety approach to rapidly evacuate the wounded may increase survival in future events.
NASA Technical Reports Server (NTRS)
Vian, A.; Henry-Vian, C.; Davies, E.
1999-01-01
It has been shown that tomato (Lycopersicon esculentum) plants respond to flame wounding and electrical stimulation by a rapid (15 min) and systemic up-regulation of proteinase inhibitor (pin) genes. To find other genes having a similar expression pattern, we used subtractive cDNA screening between flamed and control plants to select clones up-regulated by flame wounding. We report the characterization of one of them, a chloroplast mRNA-binding protein encoded by a single gene and expressed preferentially in the leaves. Systemic gene expression in response to flaming in the youngest terminal leaf exhibited three distinct phases: a rapid and transient increase (5-15 min) in transcript accumulation, a decline to basal levels (15-45 min), and then a second, more prolonged increase (60-90 min). In contrast, after a mechanical wound the rapid, transient increase (5 min) was followed by a rapid decline to basal levels but no later, prolonged accumulation. In the petiole, the initial flame-wound-evoked transient increase (15 min) was followed by a continuous decline for 3 h. The nature of the wound signal(s) causing such rapid changes in transcript abundance is discussed in relation to electrical signaling, which has recently been implicated in plant responses to wounding.
Ishise, Hisako; Larson, Barrett; Hirata, Yutaka; Fujiwara, Toshihiro; Nishimoto, Soh; Kubo, Tateki; Matsuda, Ken; Kanazawa, Shigeyuki; Sotsuka, Yohei; Fujita, Kazutoshi; Kakibuchi, Masao; Kawai, Kenichiro
2015-01-01
Wound healing process is a complex and highly orchestrated process that ultimately results in the formation of scar tissue. Hypertrophic scar contracture is considered to be a pathologic and exaggerated wound healing response that is known to be triggered by repetitive mechanical forces. We now show that Transient Receptor Potential (TRP) C3 regulates the expression of fibronectin, a key regulatory molecule involved in the wound healing process, in response to mechanical strain via the NFkB pathway. TRPC3 is highly expressed in human hypertrophic scar tissue and mechanical stimuli are known to upregulate TRPC3 expression in human skin fibroblasts in vitro. TRPC3 overexpressing fibroblasts subjected to repetitive stretching forces showed robust expression levels of fibronectin. Furthermore, mechanical stretching of TRPC3 overexpressing fibroblasts induced the activation of nuclear factor-kappa B (NFκB), a regulator fibronectin expression, which was able to be attenuated by pharmacologic blockade of either TRPC3 or NFκB. Finally, transplantation of TRPC3 overexpressing fibroblasts into mice promoted wound contraction and increased fibronectin levels in vivo. These observations demonstrate that mechanical stretching drives fibronectin expression via the TRPC3-NFkB axis, leading to intractable wound contracture. This model explains how mechanical strain on cutaneous wounds might contribute to pathologic scarring. PMID:26108359
Ud-Din, Sara; Sebastian, Anil; Giddings, Pamela; Colthurst, James; Whiteside, Sigrid; Morris, Julie; Nuccitelli, Richard; Pullar, Christine; Baguneid, Mo; Bayat, Ardeshir
2015-01-01
Angiogenesis is critical for wound healing. Insufficient angiogenesis can result in impaired wound healing and chronic wound formation. Electrical stimulation (ES) has been shown to enhance angiogenesis. We previously showed that ES enhanced angiogenesis in acute wounds at one time point (day 14). The aim of this study was to further evaluate the role of ES in affecting angiogenesis during the acute phase of cutaneous wound healing over multiple time points. We compared the angiogenic response to wounding in 40 healthy volunteers (divided into two groups and randomised), treated with ES (post-ES) and compared them to secondary intention wound healing (control). Biopsy time points monitored were days 0, 3, 7, 10, 14. Objective non-invasive measures and H&E analysis were performed in addition to immunohistochemistry (IHC) and Western blotting (WB). Wound volume was significantly reduced on D7, 10 and 14 post-ES (p = 0.003, p = 0.002, p<0.001 respectively), surface area was reduced on days 10 (p = 0.001) and 14 (p<0.001) and wound diameter reduced on days 10 (p = 0.009) and 14 (p = 0.002). Blood flow increased significantly post-ES on D10 (p = 0.002) and 14 (p = 0.001). Angiogenic markers were up-regulated following ES application; protein analysis by IHC showed an increase (p<0.05) in VEGF-A expression by ES treatment on days 7, 10 and 14 (39%, 27% and 35% respectively) and PLGF expression on days 3 and 7 (40% on both days), compared to normal healing. Similarly, WB demonstrated an increase (p<0.05) in PLGF on days 7 and 14 (51% and 35% respectively). WB studies showed a significant increase of 30% (p>0.05) on day 14 in VEGF-A expression post-ES compared to controls. Furthermore, organisation of granulation tissue was improved on day 14 post-ES. This randomised controlled trial has shown that ES enhanced wound healing by reduced wound dimensions and increased VEGF-A and PLGF expression in acute cutaneous wounds, which further substantiates the role of ES in up-regulating angiogenesis as observed over multiple time points. This therapeutic approach may have potential application for clinical management of delayed and chronic wounds. PMID:25928356
Vaezi, Alec; Bauer, Christoph; Vasioukhin, Valeri; Fuchs, Elaine
2002-09-01
To enable stratification and barrier function, the epidermis must permit self-renewal while maintaining adhesive connections. By generating K14-GFP-actin mice to monitor actin dynamics in cultured primary keratinocytes, we uncovered a role for the actin cytoskeleton in establishing cellular organization. During epidermal sheet formation, a polarized network of nascent intercellular junctions and radial actin cables assemble in the apical plane of the monolayer. These actin fibers anchor to a central actin-myosin network, creating a tension-based plane of cytoskeleton across the apical surface of the sheet. Movement of the sheet surface relative to its base expands the zone of intercellular overlap, catalyzing new sites for nascent intercellular junctions. This polarized cytoskeleton is dependent upon alpha-catenin, Rho, and Rock, and its regulation may be important for wound healing and/or stratification, where coordinated tissue movements are involved.
The Functional Role of Reactive Stroma in Benign Prostatic Hyperplasia
Schauer, Isaiah G.; Rowley, David R.
2011-01-01
The human prostate gland is one of the only internal organs that continue to enlarge throughout adulthood. The specific mechanisms that regulate this growth, as well as the pathological changes leading to the phenotype observed in the disease benign prostatic hyperplasia (BPH), are essentially unknown. Recent studies and their associated findings have made clear that many complex alterations occur, involving persistent and chronic inflammation, circulating hormonal level deregulation, and aberrant wound repair processes. BPH has been etiologically characterized as a progressive, albeit discontinuous, hyperplasia of both the glandular epithelial and stromal cell compartments coordinately yielding an expansion of the prostate gland and clinical symptoms. Interestingly, the inflammatory and repair responses observed in BPH are also key components of general wound repair in post-natal tissues. These responses include altered expression of chemokines, cytokines, matrix remodeling factors, chronic inflammatory processes, altered immune surveillance and recognition, as well as the formation of a prototypical ‘reactive’ stroma which is similar to that observed across various fibroplasias and malignancies of a variety of tissue sites. Stromal tissue, both embryonic mesenchyme, and adult reactive stroma myofibroblasts, has been shown to exert potent and functional regulatory control over epithelial proliferation and differentiation as well as immunoresponsive modulation. Thus, the functional biology of a reactive stroma, within the context of an adult disease typified by epithelial and stromal aberrant hyperplasia, is critical to understand within the context of prostate disease and beyond. The mechanisms that regulate reactive stroma biology in BPH represent targets of opportunity for new therapeutic approaches that may extend to other tissue contexts. Accordingly, this review seeks to address the dissection of important factors, signaling pathways, genes, and other regulatory components that mediate the interplay between epithelium and stromal responses in BPH. PMID:21664759
Hair Follicle Bulge Stem Cells Appear Dispensable for the Acute Phase of Wound Re‐epithelialization
Garcin, Clare L.; Ansell, David M.; Headon, Denis J.; Paus, Ralf
2016-01-01
Abstract The cutaneous healing response has evolved to occur rapidly, in order to minimize infection and to re‐establish epithelial homeostasis. Rapid healing is achieved through complex coordination of multiple cell types, which importantly includes specific cell populations within the hair follicle (HF). Under physiological conditions, the epithelial compartments of HF and interfollicular epidermis remain discrete, with K15+ve bulge stem cells contributing progeny for HF reconstruction during the hair cycle and as a basis for hair shaft production during anagen. Only upon wounding do HF cells migrate from the follicle to contribute to the neo‐epidermis. However, the identity of the first‐responding cells, and in particular whether this process involves a direct contribution of K15+ve bulge cells to the early stage of epidermal wound repair remains unclear. Here we demonstrate that epidermal injury in murine skin does not induce bulge activation during early epidermal wound repair. Specifically, bulge cells of uninjured HFs neither proliferate nor appear to migrate out of the bulge niche upon epidermal wounding. In support of these observations, Diphtheria toxin‐mediated partial ablation of K15+ve bulge cells fails to delay wound healing. Our data suggest that bulge cells only respond to epidermal wounding during later stages of repair. We discuss that this response may have evolved as a protective safeguarding mechanism against bulge stem cell exhaust and tumorigenesis. Stem Cells 2016;34:1377–1385 PMID:26756547
Rather, Hilal Ahmad; Thakore, Ria; Singh, Ragini; Jhala, Dhwani; Singh, Sanjay; Vasita, Rajesh
2018-06-01
Skin wound healing involves a coordinated cellular response to achieve complete reepithelialisation. Elevated levels of reactive oxygen species (ROS) in the wound environment often pose a hindrance in wound healing resulting in impaired wound healing process. Cerium oxide nanoparticles (CeNPs) have the ability to protect the cells from oxidative damage by actively scavenging the ROS. Furthermore, matrices like nanofibers have also been explored for enhancing wound healing. In the current study CeNP functionalised polycaprolactone (PCL)-gelatin nanofiber (PGNPNF) mesh was fabricated by electrospinning and evaluated for its antioxidative potential. Wide angle XRD analysis of randomly oriented nanofibers revealed ∼2.6 times reduced crystallinity than pristine PCL which aided in rapid degradation of nanofibers and release of CeNP. However, bioactive composite made between nanoparticles and PCL-gelatin maintained the fibrous morphology of PGNPNF upto 14 days. The PGNPNF mesh exhibited a superoxide dismutase (SOD) mimetic activity due to the incorporated CeNPs. The PGNPNF mesh enhanced proliferation of 3T3-L1 cells by ∼48% as confirmed by alamar blue assay and SEM micrographs of cells grown on the nanofibrous mesh. Furthermore, the PGNPNF mesh scavenged ROS, which was measured by relative DCF intensity and fluorescence microscopy; and subsequently increased the viability and proliferation of cells by three folds as it alleviated the oxidative stress. Overall, the results of this study suggest the potential of CeNP functionalised PCL-gelatin nanofibrous mesh for wound healing applications.
Topical N-Acetylcysteine Accelerates Wound Healing in Vitro and in Vivo via the PKC/Stat3 Pathway
Tsai, Min-Ling; Huang, Hui-Pei; Hsu, Jeng-Dong; Lai, Yung-Rung; Hsiao, Yu-Ping; Lu, Fung-Jou; Chang, Horng-Rong
2014-01-01
N-Acetylcysteine (Nac) is an antioxidant administered in both oral and injectable forms. In this study, we used Nac topically to treat burn wounds in vitro and in vivo to investigate mechanisms of action. In vitro, we monitored glutathione levels, cell proliferation, migration, scratch-wound healing activities and the epithelialization-related proteins, matrixmetalloproteinase-1 (MMP-1) and proteins involved in regulating the expression of MMP-1 in CCD-966SK cells treated with Nac. Various Nac concentrations (0.1, 0.5, and 1.0 mM) increased glutathione levels, cell viability, scratch-wound healing activities and migration abilities of CCD-966SK cells in a dose-dependent manner. The MMP-1 expression of CCD-966SK cells treated with 1.0 mM Nac for 24 h was significantly increased. Levels of phosphatidylinositol 3-kinase (PI3K), protein kinase C (PKC), janus kinase 1 (Jak1), signal transducer and activator of transcription 3 (Stat3), c-Fos and Jun, but not extracellular signal-regulated protein kinases 1 and 2 (Erk1/2), were also significantly increased in a dose-dependent manner compared to the controls. In addition, Nac induced collagenous expression of MMP-1 via the PKC/Stat3 signaling pathway. In vivo, a burn wound healing rat model was applied to assess the stimulation activity and histopathological effects of Nac, with 3.0% Nac-treated wounds being found to show better characteristics on re-epithelialization. Our results demonstrated that Nac can potentially promote wound healing activity, and may be a promising drug to accelerate burn wound healing. PMID:24798751
Li, Qiang; Xia, Sizhan; Yin, Yating; Guo, Yanping; Chen, Feifei; Jin, Peisheng
2018-05-11
Advanced glycation end products/advanced glycation end products receptor (AGEs/AGER) interaction triggers reactive oxygen species (ROS) generation and activates downstream signal pathways and induces apoptosis in endothelial progenitor cells. A number of studies have revealed the involvement of microRNAs (miRNAs) in regulating intracellular ROS production and apoptosis. However, few studies explore the role of miRNAs in regulating the effect of adipose tissue-derived stem cells (ADSCs) in repairing diabetic wound and the associated cellular mechanisms remain unclear. In this study, ADSCs were exposed to AGEs, then siRNA for AGER was transfected into ADSCs. We found that AGEs/AGER axis induced ROS generation and apoptosis in ADSCs. AGEs treatment downregulated miR-5591-5p in ADSCs, which directly targeted AGER. miR-5591-5p suppressed AGEs/AGER axis-mediated ROS generation and apoptosis in ADSCs in vitro. In addition, miR-5591-5p promoted cell survival and enhanced the ability of ADSCs for repairing cutaneous wound in vivo. Furthermore, we confirmed that c-jun kinase (JNK) signal was involved in the inhibitory effect of miR-5591-5p on AGEs/AGER axis-induced ROS generation and apoptosis in ADSCs. Thus, these results indicated that miR-5591-5p targeting AGEs/AGER/JNK signaling axis possibly regulates the effect of ADSCs in repairing diabetic wound.
Grada, Ayman; Otero-Vinas, Marta; Prieto-Castrillo, Francisco; Obagi, Zaidal; Falanga, Vincent
2017-02-01
Collective cell migration is a hallmark of wound repair, cancer invasion and metastasis, immune responses, angiogenesis, and embryonic morphogenesis. Wound healing is a complex cellular and biochemical process necessary to restore structurally damaged tissue. It involves dynamic interactions and crosstalk between various cell types, interaction with extracellular matrix molecules, and regulated production of soluble mediators and cytokines. In cutaneous wound healing, skin cells migrate from the wound edges into the wound to restore skin integrity. Analysis of cell migration in vitro is a useful assay to quantify alterations in cell migratory capacity in response to experimental manipulations. Although several methods exist to study cell migration (such as Boyden chamber assay, barrier assays, and microfluidics-based assays), in this short report we will explain the wound healing assay, also known as the "in vitro scratch assay" as a simple, versatile, and cost-effective method to study collective cell migration and wound healing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Jiang, Xu-pin; Zhang, Dong-xia; Teng, Miao; Zhang, Qiong; Zhang, Jia-ping; Huang, Yue-sheng
2013-01-01
Tetraspanin CD9 has been implicated in various cellular and physiological processes, including cell migration. In our previous study, we found that wound repair is delayed in CD9-null mice, suggesting that CD9 is critical for cutaneous wound healing. However, many cell types, including immune cells, endothelial cells, keratinocytes and fibroblasts undergo marked changes in gene expression and phenotype, leading to cell proliferation, migration and differentiation during wound repair, whether CD9 regulates kerationcytes migration directly remains unclear. In this study, we showed that the expression of CD9 was downregulated in migrating keratinocytes during wound repair in vivo and in vitro. Recombinant adenovirus vector for CD9 silencing or overexpressing was constructed and used to infect HaCaT cells. Using cell scratch wound assay and cell migration assay, we have also demonstrated that downregulation of CD9 promoted keratinocyte migration in vitro, whereas CD9 overexpression inhibited cell migration. Moreover, CD9 inversely regulated the activity and expression of MMP-9 in keratinocytes, which was involved in CD9-regulated keratinocyte migration. Importantly, CD9 silencing-activated JNK signaling was accompanied by the upregulation of MMP-9 activity and expression. Coincidentally, we found that SP600125, a JNK pathway inhibitor, decreased the activity and expression of MMP-9 of CD9-silenced HaCaT cells. Thus, our results suggest that CD9 is downregulated in migrating keratinocytes in vivo and in vitro, and a low level of CD9 promotes keratinocyte migration in vitro, in which the regulation of MMP-9 through the JNK pathway plays an important role. PMID:24147081
Boo, Stellar; Dagnino, Lina
2013-06-01
Abnormal wound repair results from disorders in granulation tissue remodeling, and can lead to hypertrophic scarring and fibrosis. Excessive scarring can compromise tissue function and decrease tissue resistance to additional injuries. The development of potential therapies to minimize scarring is, thus, necessary to address an important clinical problem. It has been clearly established that multiple cytokines and growth factors participate in the regulation of cutaneous wound healing. More recently, it has become apparent that these factors do not necessarily activate isolated signaling pathways. Rather, in some cases, there is cross-modulation of several cellular pathways involved in this process. Two of the key pathways that modulate each other during wound healing are activated by transforming growth factor-β and by extracellular matrix proteins acting through integrins. The pathogenesis of excessive scarring upon wound healing is not fully understood, as a result of the complexity of this process. However, the fact that many pathways combine to produce fibrosis provides multiple potential therapeutic targets. Some of them have been identified, such as focal adhesion kinase and integrin-linked kinase. Currently, a major challenge is to develop pharmacological inhibitors of these proteins with therapeutic value to promote efficient wound repair. The ability to better understand how different pathways crosstalk during wound repair and to identify and pharmacologically modulate key factors that contribute to the regulation of multiple wound-healing pathways could potentially provide effective therapeutic targets to decrease or prevent excessive scar formation and/or development of fibrosis.
MicroRNA-132 enhances transition from inflammation to proliferation during wound healing
Li, Dongqing; Wang, Aoxue; Liu, Xi; Meisgen, Florian; Grünler, Jacob; Botusan, Ileana R.; Narayanan, Sampath; Erikci, Erdem; Li, Xi; Blomqvist, Lennart; Du, Lei; Pivarcsi, Andor; Sonkoly, Enikö; Chowdhury, Kamal; Catrina, Sergiu-Bogdan; Ståhle, Mona; Landén, Ning Xu
2015-01-01
Wound healing is a complex process that is characterized by an initial inflammatory phase followed by a proliferative phase. This transition is a critical regulatory point; however, the factors that mediate this process are not fully understood. Here, we evaluated microRNAs (miRs) in skin wound healing and characterized the dynamic change of the miRNome in human skin wounds. miR-132 was highly upregulated during the inflammatory phase of wound repair, predominantly expressed in epidermal keratinocytes, and peaked in the subsequent proliferative phase. TGF-β1 and TGF-β2 induced miR-132 expression in keratinocytes, and transcriptome analysis of these cells revealed that miR-132 regulates a large number of immune response– and cell cycle–related genes. In keratinocytes, miR-132 decreased the production of chemokines and the capability to attract leukocytes by suppressing the NF-κB pathway. Conversely, miR-132 increased activity of the STAT3 and ERK pathways, thereby promoting keratinocyte growth. Silencing of the miR-132 target heparin-binding EGF-like growth factor (HB-EGF) phenocopied miR-132 overexpression in keratinocytes. Using mouse and human ex vivo wound models, we found that miR-132 blockade delayed healing, which was accompanied by severe inflammation and deficient keratinocyte proliferation. Together, our results indicate that miR-132 is a critical regulator of skin wound healing that facilitates the transition from the inflammatory to the proliferative phase. PMID:26121747
Hao, Hao-Jie; Han, Qing-Wang; Chen, Li; Dong, Liang; Liu, Jie-Jie; Li, Xiang; Zhang, Ya-Jing; Ma, Ying-Zhi; Han, Wei-Dong; Fu, Xiao-Bing
2014-01-01
The four-herb Chinese medicine ANBP is a pulverized mixture of four herbs including Agrimonia Eupatoria (A), Nelumbo Nucifera Gaertn (N), Boswellia Carteri (B) and Pollen Typhae Angustifoliae (P). The combination of the four herbs was first described in Chinese canonical medicine about 2000 years ago for treatment of various trauma disorders, such as hemostasis, antiinflammatory, analgesia, and wound healing, etc. However, the precise mechanisms of ANBP are still unclear. In our study, using rabbit ear hypertrophic scar models of full-thickness skin defect, we showed that local ANBP treatment not only significantly enhanced wound healing by relieving inflammation, increasing formation of granulation tissue and accelerating re-epithelialization, but also reduced scar formation by decreasing collagen production, protuberant height and volume of scars, and increasing collagen maturity. We demonstrated that these effects of ANBP are associated with transforming growth factor (TGF)-β1-mediated signalling pathways through Smad-dependent pathways. ANBP treatment significantly increased expression of TGF-β1 and Smad2/3 mRNA at the early stage of wound healing, and led to markedly decrease expression of TGF-β1 and Smad2/3 compared with the control group after 14 days post-wounding. Taken together, our results defined a bidirectional regulation role of ANBP for TGF-β1/Smad pathway in promoting wound healing and alleviating scar formation, which may be an effective therapy for human wounds at the earliest stage. PMID:25489732
Osseointegration--communication of cells.
Terheyden, Hendrik; Lang, Niklaus P; Bierbaum, Susanne; Stadlinger, Bernd
2012-10-01
The article provides the scientific documentation for the 3D animated film - "Osseointegration - Communication of cells". The aim of this article and of the film is to visualise the molecular and cellular events during the healing of an osseous wound after installation of a dental implant with special emphasis on the process of osseointegration. In this review article for didactic reasons the concept of the four phases of a healing soft tissue wound was transferred to a bone wound after insertion of a dental implant: haemostasis, inflammatory phase, proliferative phase and remodelling phase. Wound healing throughout these phases is the result of a coordinated action of different cell types which communicate with each other by their interaction using signalling molecules like cytokines, extracellular matrix proteins and small molecules. A regular sequence of cell types controlled by adequate concentrations of signalling molecules results in undisturbed healing. Disturbed healing is associated with a continuation of the early inflammatory phase and the development of a toxic wound environment. The latter is characterized by high counts of polymorphnuclear cells, high concentrations of toxic radicals and proteolytic enzymes and low concentrations of growth factors and extracellular matrix molecules. Clinically the development of a toxic wound environment should be avoided, e.g. by antibacterial measures. Experiencing implant osseointegration as a biological process may provide the clinician new targets to improve the therapy with dental implants. © 2011 John Wiley & Sons A/S.
Gaupels, Frank; Sarioglu, Hakan; Beckmann, Manfred; Hause, Bettina; Spannagl, Manuel; Draper, John; Lindermayr, Christian; Durner, Jörg
2012-01-01
In cucurbits, phloem latex exudes from cut sieve tubes of the extrafascicular phloem (EFP), serving in defense against herbivores. We analyzed inducible defense mechanisms in the EFP of pumpkin (Cucurbita maxima) after leaf damage. As an early systemic response, wounding elicited transient accumulation of jasmonates and a decrease in exudation probably due to partial sieve tube occlusion by callose. The energy status of the EFP was enhanced as indicated by increased levels of ATP, phosphate, and intermediates of the citric acid cycle. Gas chromatography coupled to mass spectrometry also revealed that sucrose transport, gluconeogenesis/glycolysis, and amino acid metabolism were up-regulated after wounding. Combining ProteoMiner technology for the enrichment of low-abundance proteins with stable isotope-coded protein labeling, we identified 51 wound-regulated phloem proteins. Two Sucrose-Nonfermenting1-related protein kinases and a 32-kD 14-3-3 protein are candidate central regulators of stress metabolism in the EFP. Other proteins, such as the Silverleaf Whitefly-Induced Protein1, Mitogen Activated Protein Kinase6, and Heat Shock Protein81, have known defensive functions. Isotope-coded protein labeling and western-blot analyses indicated that Cyclophilin18 is a reliable marker for stress responses of the EFP. As a hint toward the induction of redox signaling, we have observed delayed oxidation-triggered polymerization of the major Phloem Protein1 (PP1) and PP2, which correlated with a decline in carbonylation of PP2. In sum, wounding triggered transient sieve tube occlusion, enhanced energy metabolism, and accumulation of defense-related proteins in the pumpkin EFP. The systemic wound response was mediated by jasmonate and redox signaling. PMID:23085839
Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K; Cario, Elke
2009-08-14
Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1alpha-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair.
Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K.; Cario, Elke
2009-01-01
Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1α-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair. PMID:19528242
Sanchez-Soriano, Natalia; Travis, Mark; Dajas-Bailador, Federico; Gonçalves-Pimentel, Catarina; Whitmarsh, Alan J; Prokop, Andreas
2009-07-15
Spectraplakins are large actin-microtubule linker molecules implicated in various processes, including gastrulation, wound healing, skin blistering and neuronal degeneration. Expression data for the mammalian spectraplakin ACF7 and genetic analyses of the Drosophila spectraplakin Short stop (Shot) suggest an important role during neurogenesis. Using three parallel neuronal culture systems we demonstrate that, like Shot, ACF7 is essential for axon extension and describe, for the first time, their subcellular functions during axonal growth. Firstly, both ACF7 and Shot regulate the organisation of neuronal microtubules, a role dependent on both the F-actin- and microtubule-binding domains. This role in microtubule organisation is probably the key mechanism underlying the roles of Shot and ACF7 in growth cone advance. Secondly, we found a novel role for ACF7 and Shot in regulating the actin cytoskeleton through their ability to control the formation of filopodia. This function in F-actin regulation requires EF-hand motifs and interaction with the translational regulator Krasavietz/eIF5C, indicating that the underlying mechanisms are completely different from those used to control microtubules. Our data provide the basis for the first mechanistic explanation for the role of Shot and ACF7 in the developing nervous system and demonstrate their ability to coordinate the organisation of both actin and microtubule networks during axonal growth.
Sanchez-Soriano, Natalia; Travis, Mark; Dajas-Bailador, Federico; Gonçalves-Pimentel, Catarina; Whitmarsh, Alan J.; Prokop, Andreas
2009-01-01
Summary Spectraplakins are large actin-microtubule linker molecules implicated in various processes, including gastrulation, wound healing, skin blistering and neuronal degeneration. Expression data for the mammalian spectraplakin ACF7 and genetic analyses of the Drosophila spectraplakin Short stop (Shot) suggest an important role during neurogenesis. Using three parallel neuronal culture systems we demonstrate that, like Shot, ACF7 is essential for axon extension and describe, for the first time, their subcellular functions during axonal growth. Firstly, both ACF7 and Shot regulate the organisation of neuronal microtubules, a role dependent on both the F-actin- and microtubule-binding domains. This role in microtubule organisation is probably the key mechanism underlying the roles of Shot and ACF7 in growth cone advance. Secondly, we found a novel role for ACF7 and Shot in regulating the actin cytoskeleton through their ability to control the formation of filopodia. This function in F-actin regulation requires EF-hand motifs and interaction with the translational regulator Krasavietz/eIF5C, indicating that the underlying mechanisms are completely different from those used to control microtubules. Our data provide the basis for the first mechanistic explanation for the role of Shot and ACF7 in the developing nervous system and demonstrate their ability to coordinate the organisation of both actin and microtubule networks during axonal growth. PMID:19571116
Reid, Brian; Graue-Hernandez, Enrique O; Mannis, Mark J; Zhao, Min
2011-03-01
To measure electric current in human corneal wounds and test the feasibility of pharmacologically enhancing the current to promote corneal wound healing. Using a noninvasive vibrating probe, corneal electric current was measured before and after wounding of the epithelium of donated postmortem human corneas. The effects of drug aminophylline and chloride-free solution on wound current were also tested. Unwounded cornea had small outward currents (0.07 μA/cm²). Wounding increased the current more than 5 fold (0.41 μA/cm²). Monitoring the wound current over time showed that it seemed to be actively regulated and maintained above normal unwounded levels for at least 6 hours. The time course was similar to that previously measured in rat cornea. Drug treatment or chloride-free solution more than doubled the size of wound currents. Electric current at human corneal wounds can be significantly increased with aminophylline or chloride-free solution. Because corneal wound current directly correlates with wound healing rate, our results suggest a role for chloride-free and/or aminophylline eyedrops to enhance healing of damaged cornea in patients with reduced wound healing such as the elderly or diabetic patient. This novel approach offers bioelectric stimulation without electrodes and can be readily tested in patients.
Signals Involved in Tuber Wound-Healing
USDA-ARS?s Scientific Manuscript database
The induction and regulation of wound-healing (WH) processes in potato tubers and other vegetables are of great nutritional and economic importance. The rapid accumulation of waxes to restrict water vapor loss and formation of suberin barriers to block infection are crucial components of WH. Recen...
Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms.
Castaño, Oscar; Pérez-Amodio, Soledad; Navarro-Requena, Claudia; Mateos-Timoneda, Miguel Ángel; Engel, Elisabeth
2018-04-05
Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing. Copyright © 2018 Elsevier B.V. All rights reserved.
Common threads in cardiac fibrosis, infarct scar formation, and wound healing.
Czubryt, Michael P
2012-11-01
Wound healing, cardiac fibrosis, and infarct scar development, while possessing distinct features, share a number of key functional similarities, including extracellular matrix synthesis and remodeling by fibroblasts and myofibroblasts. Understanding the underlying mechanisms that are common to these processes may suggest novel therapeutic approaches for pathologic situations such as fibrosis, or defective wound healing such as hypertrophic scarring or keloid formation. This manuscript will briefly review the major steps of wound healing, and will contrast this process with how cardiac infarct scar formation or interstitial fibrosis occurs. The feasibility of targeting common pro-fibrotic growth factor signaling pathways will be discussed. Finally, the potential exploitation of novel regulators of wound healing and fibrosis (ski and scleraxis), will be examined.
O'Brien, Melissa L; Lawton, Joanna E; Conn, Chris R; Ganley, Helen E
2011-04-01
This article describes the barriers, changes and achievements related to implementing one element of a wound care programme being best practice care. With the absence of a coordinated approach to wound care, clinical practice within our Area Health Service (AHS) was diverse, inconsistent and sometimes outdated. This was costly and harmful, leading to overuse of unhelpful care, underuse of effective care and errors in execution. The major aim was to improve the outcomes and quality of life for patients with wound care problems within our community. A collaborative across ten sites/services developed, implemented and evaluated policies and guidelines based on evidence-based bundles of care. Key barriers were local resistance and lack of experience in implementing structural and cultural changes. This was addressed by appointing a wound care programme manager, commissioning of a strategic oversight committee and local wound care committees. The techniques of spread and adoption were used, with early adopters making changes observable and allowing local adaption of guidelines, where appropriate. Deployment and improvement results varied across the sites, ranging from activity but no changes in practice to modest improvement in practice. Evaluating implementation of the leg ulcer guideline as an exemplar, it was demonstrated that there was a statistically significant improvement in overall compliance from 26% to 84%. However, only 7·7% of patients received all interventions to which they were entitled. Compliance with the eight individual interventions of the bundle ranged from 26% to 84%. Generic performance was evaluated against the wound assessment, treatment and evaluation plan with an average compliance of 70%. Early results identified that 20% of wounds were healed within the target of 10 days. As more standardised process are implemented, clinical outcomes should continue to improve and costs decrease. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.
The expression of proinflammatory genes in epidermal keratinocytes is regulated by hydration status.
Xu, Wei; Jia, Shengxian; Xie, Ping; Zhong, Aimei; Galiano, Robert D; Mustoe, Thomas A; Hong, Seok J
2014-04-01
Mucosal wounds heal more rapidly, exhibit less inflammation, and are associated with minimal scarring when compared with equivalent cutaneous wounds. We previously demonstrated that cutaneous epithelium exhibits an exaggerated response to injury compared with mucosal epithelium. We hypothesized that treatment of injured skin with a semiocclusive dressing preserves the hydration of the skin and results in a wound healing phenotype that more closely resembles that of mucosa. Here we explored whether changes in hydration status alter epidermal gene expression patterns in rabbit partial-thickness incisional wounds. Using microarray studies on injured epidermis, we showed that global gene expression patterns in highly occluded versus non-occluded wounds are distinct. Many genes including IL-1β, IL-8, TNF-α (tumor necrosis factor-α), and COX-2 (cyclooxygenase 2) are upregulated in non-occluded wounds compared with highly occluded wounds. In addition, decreased levels of hydration resulted in an increased expression of proinflammatory genes in human ex vivo skin culture (HESC) and stratified keratinocytes. Hierarchical analysis of genes using RNA interference showed that both TNF-α and IL-1β regulate the expression of IL-8 through independent pathways in response to reduced hydration. Furthermore, both gene knockdown and pharmacological inhibition studies showed that COX-2 mediates the TNF-α/IL-8 pathway by increasing the production of prostaglandin E2 (PGE2). IL-8 in turn controls the production of matrix metalloproteinase-9 in keratinocytes. Our data show that hydration status directly affects the expression of inflammatory signaling in the epidermis. The identification of genes involved in the epithelial hydration pathway provides an opportunity to develop strategies to reduce scarring and optimize wound healing.
Anttonen, Tommi; Belevich, Ilya; Laos, Maarja; Herranen, Anni; Jokitalo, Eija; Brakebusch, Cord; Pirvola, Ulla
2017-01-01
Wound healing in the inner ear sensory epithelia is performed by the apical domains of supporting cells (SCs). Junctional F-actin belts of SCs are thin during development but become exceptionally thick during maturation. The functional significance of the thick belts is not fully understood. We have studied the role of F-actin belts during wound healing in the developing and adult cochlea of mice in vivo . We show that the thick belts serve as intracellular scaffolds that preserve the positions of surviving cells in the cochlear sensory epithelium. Junctions associated with the thick F-actin belts did not readily disassemble during wound healing. To compensate for this, basolateral membranes of SCs participated in the closure of surface breach. Because not only neighboring but also distant SCs contributed to wound healing by basolateral protrusions, this event appears to be triggered by contact-independent diffusible signals. In the search for regulators of wound healing, we inactivated RhoA in SCs, which, however, did not limit wound healing. RhoA inactivation in developing outer hair cells (OHCs) caused myosin II delocalization from the perijunctional domain and apical cell-surface enlargement. These abnormalities led to the extrusion of OHCs from the epithelium. These results demonstrate the importance of stability of the apical domain, both in wound repair by SCs and in development of OHCs, and that only this latter function is regulated by RhoA . Because the correct cytoarchitecture of the cochlear sensory epithelium is required for normal hearing, the stability of cell apices should be maintained in regenerative and protective interventions.
Kadmiel, Mahita; Janoshazi, Agnes; Xu, Xiaojiang; Cidlowski, John A
2016-11-01
Glucocorticoids play diverse roles in almost all physiological systems of the body, including both anti-inflammatory and immunosuppressive roles. Synthetic glucocorticoids are one of the most widely prescribed drugs and are used in the treatment of conditions such as autoimmune diseases, allergies, ocular disorders and certain types of cancers. In the interest of investigating glucocorticoid actions in the cornea of the eye, we established that multiple cell types in mouse corneas express functional glucocorticoid receptor (GR) with corneal epithelial cells having robust expression. To define glucocorticoid actions in a cell type-specific manner, we employed immortalized human corneal epithelial (HCE) cell line to define the glucocorticoid transcriptome and elucidated its functions in corneal epithelial cells. Over 4000 genes were significantly regulated within 6 h of dexamethasone treatment, and genes associated with cell movement, cytoskeletal remodeling and permeability were highly regulated. Real-time in vitro wound healing assays revealed that glucocorticoids delay wound healing by attenuating cell migration. These functional alterations were associated with cytoskeletal remodeling at the wounded edge of a scratch-wounded monolayer. However, glucocorticoid treatment improved the organization of tight-junction proteins and enhanced the epithelial barrier function. Our results demonstrate that glucocorticoids profoundly alter corneal epithelial gene expression and many of these changes likely impact both wound healing and epithelial cell barrier function. Published by Elsevier Ltd.
Liu, Jinyan; Hu, Feng; Tang, Jintian; Tang, Shijie; Xia, Kun; Wu, Song; Yin, Chaoqi; Wang, Shaohua; He, Quanyong; Xie, Huiqing; Zhou, Jianda
2017-04-01
Vacuum sealing drainage (VSD) is an effective technique used to promote wound healing. However, recent studies have shown that it exerts positive pressure (PP) rather than negative pressure (NP) on skin. In this study, we created a homemade device that could maintain NP on the wound, and compared the therapeutic effects of VSD-induced PP to those of our homemade device which induced NP on wound healing. The NP induced by our device required less time for wound healing and decreased the wound area more efficiently than the PP induced by VSD. NP and PP both promoted the inflammatory response by upregulating neutrophil infiltration and interleukin (IL)‑1β expression, and downregulating IL‑10 expression. Higher levels of epidermal growth factor (EGF), transforming growth factor (TGF)‑β and platelet-derived growth factor (PDGF), and lower levels of basic fibroblast growth factor (bFGF) were observed in the wound tissue treated with NP compared to the wound tissue exposed to PP. Proliferation in the wound tissue exposed to NP on day 10 was significantly higher than that in wound tissue exposed to PP. NP generated more fibroblasts, keratinized stratified epithelium, and less epithelia with stemness than PP. The levels of ccollagen Ⅰ and Ⅲ were both decreased in both the NP and PP groups. NP induced a statistically significant increase in the expression of fibronectin (FN) on days 3 and 10 compared to PP. Furthermore, the level of matrix metalloproteinase (MMP)‑13 increased in the NP group, but decreased in the PP group on day 3. NP also induced a decrease in the levels of tissue inhibitor of metalloproteinase (TIMP)‑1 and TIMP‑2 during the early stages of wound healing, which was significantly different from the increasing effect of PP on TIMP‑1 and TIMP‑2 levels at the corresponding time points. On the whole, our data indicate that our homemade device which induced NP, was more efficient than VSD‑induced PP on wound healing by regulating inflammation, secretion, proliferation and the distribution of different cells in wound tissue.
Zidan, Serag M; Eleowa, Samy A
2014-06-01
The use of glycerol preserved skin allograft (GPA) became a main stay in burn treatment. However, harvesting of cadaveric skin is not yet legalized in many countries including Egypt. To estimate the feasibility of using skin harvested from body contouring procedures as a source of GPA and its clinical efficacy. Skin harvested from body contouring procedures done in Al-Azhar university hospitals was preserved by glycerolization and used in management of burn and complicated wounds. In the period between February 2012 and February 2013 skin was harvested from 24 abdomenoplasty cases, 6 bilateral breast reduction cases, and 1 case of thigh lift done in Al-Azhar university hospitals. This yielded about 22,000 cm(2) of skin preserved by glycerolization. This GPA was used in 15 excised burn wounds, in 9 cases of chronic burn wounds, and in 6 complicated wounds. Partial graft loss occurred in 3 cases and total graft loss occurred in 1 case. The glycerolized full-thickness skin harvested from body contouring procedures is clinically effective in burn and wound management. In the presence of regional coordination, it can serve as an abundant source for skin banking in where cadaveric skin use is not legalized. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
Exosome production and its regulation of EGFR during wound healing in renal tubular cells.
Zhou, Xiangjun; Zhang, Wei; Yao, Qisheng; Zhang, Hao; Dong, Guie; Zhang, Ming; Liu, Yutao; Chen, Jian-Kang; Dong, Zheng
2017-06-01
Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing. Copyright © 2017 the American Physiological Society.
Lumican as a multivalent effector in wound healing.
Karamanou, Konstantina; Perrot, Gwenn; Maquart, Francois-Xavier; Brézillon, Stéphane
2018-03-01
Wound healing, a complex physiological process, is responsible for tissue repair after exposure to destructive stimuli, without resulting in complete functional regeneration. Injuries can be stromal or epithelial, and most cases of wound repair have been studied in the skin and cornea. Lumican, a small leucine-rich proteoglycan, is expressed in the extracellular matrices of several tissues, such as the cornea, cartilage, and skin. This molecule has been shown to regulate collagen fibrillogenesis, keratinocyte phenotypes, and corneal transparency modulation. Lumican is also involved in the extravasation of inflammatory cells and angiogenesis, which are both critical in stromal wound healing. Lumican is the only member of the small leucine-rich proteoglycan family expressed by the epithelia during wound healing. This review summarizes the importance of lumican in wound healing and potential methods of lumican drug delivery to target wound repair are discussed. The involvement of lumican in corneal wound healing is described based on in vitro and in vivo models, with critical emphasis on its underlying mechanisms of action. Similarly, the expression and role of lumican in the healing of other tissues are presented, with emphasis on skin wound healing. Overall, lumican promotes normal wound repair and broadens new therapeutic perspectives for impaired wound healing. Copyright © 2018. Published by Elsevier B.V.
Chen, Chun-Yuan; Rao, Shan-Shan; Ren, Lu; Hu, Xiong-Ke; Tan, Yi-Juan; Hu, Yin; Luo, Juan; Liu, Yi-Wei; Yin, Hao; Huang, Jie; Cao, Jia; Wang, Zhen-Xing; Liu, Zheng-Zhao; Liu, Hao-Ming; Tang, Si-Yuan; Xu, Ran; Xie, Hui
2018-01-01
Chronic non-healing wounds represent one of the most common complications of diabetes and need advanced treatment strategies. Exosomes are key mediators of cell paracrine action and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of exosomes from human urine-derived stem cells (USC-Exos) on diabetic wound healing and the underlying mechanism. Methods: USCs were characterized by flow cytometry and multipotent differentiation potential analyses. USC-Exos were isolated from the conditioned media of USCs and identified by transmission electron microscopy and flow cytometry. A series of functional assays in vitro were performed to assess the effects of USC-Exos on the activities of wound healing-related cells. Protein profiles in USC-Exos and USCs were examined to screen the candidate molecules that mediate USC-Exos function. The effects of USC-Exos on wound healing in streptozotocin-induced diabetic mice were tested by measuring wound closure rates, histological and immunofluorescence analyses. Meanwhile, the role of the candidate protein in USC-Exos-induced regulation of angiogenic activities of endothelial cells and diabetic wound healing was assessed. Results: USCs were positive for CD29, CD44, CD73 and CD90, but negative for CD34 and CD45. USCs were able to differentiate into osteoblasts, adipocytes and chondrocytes. USC-Exos exhibited a cup- or sphere-shaped morphology with a mean diameter of 51.57 ± 2.93 nm and positive for CD63 and TSG101. USC-Exos could augment the functional properties of wound healing-related cells including the angiogenic activities of endothelial cells. USC-Exos were enriched in the proteins that are involved in regulation of wound healing-related biological processes. Particularly, a pro-angiogenic protein called deleted in malignant brain tumors 1 (DMBT1) was highly expressed in USC-Exos. Further functional assays showed that DMBT1 protein was required for USC-Exos-induced promotion of angiogenic responses of cultured endothelial cells, as well as angiogenesis and wound healing in diabetic mice. Conclusion: Our findings suggest that USC-Exos may represent a promising strategy for diabetic soft tissue wound healing by promoting angiogenesis via transferring DMBT1 protein.
Hair Follicle Bulge Stem Cells Appear Dispensable for the Acute Phase of Wound Re-epithelialization.
Garcin, Clare L; Ansell, David M; Headon, Denis J; Paus, Ralf; Hardman, Matthew J
2016-05-01
The cutaneous healing response has evolved to occur rapidly, in order to minimize infection and to re-establish epithelial homeostasis. Rapid healing is achieved through complex coordination of multiple cell types, which importantly includes specific cell populations within the hair follicle (HF). Under physiological conditions, the epithelial compartments of HF and interfollicular epidermis remain discrete, with K15(+ve) bulge stem cells contributing progeny for HF reconstruction during the hair cycle and as a basis for hair shaft production during anagen. Only upon wounding do HF cells migrate from the follicle to contribute to the neo-epidermis. However, the identity of the first-responding cells, and in particular whether this process involves a direct contribution of K15(+ve) bulge cells to the early stage of epidermal wound repair remains unclear. Here we demonstrate that epidermal injury in murine skin does not induce bulge activation during early epidermal wound repair. Specifically, bulge cells of uninjured HFs neither proliferate nor appear to migrate out of the bulge niche upon epidermal wounding. In support of these observations, Diphtheria toxin-mediated partial ablation of K15(+ve) bulge cells fails to delay wound healing. Our data suggest that bulge cells only respond to epidermal wounding during later stages of repair. We discuss that this response may have evolved as a protective safeguarding mechanism against bulge stem cell exhaust and tumorigenesis. Stem Cells 2016;34:1377-1385. © 2016 The Authors. Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Alzoghaibi, Mohammed A; Al-Oraini, Abdullah I; Al-Sagheir, Ali I; Zubaidi, Ahmad M
2014-05-01
Cytokines play a major role in coordinated wound healing events. We hypothesized that rapid intestinal healing is due to an early upregulation of the pro-inflammatory cytokine interleukin-1β (IL-1β), followed by increases in the expression of the anti-inflammatory cytokine IL-10. We characterized the time course of IL-1β and IL-10 release at four wounds (skin, muscle, small bowel, and colonic anastomosis) after surgery on 38 juvenile male Sprague-Dawley rats. The tissue samples of each site were harvested at 0 (control), 1, 3, 5, 7, and 14 days postoperatively (n=6-8 per group) and analyzed by enzyme-linked immunosorbent assay kits for IL-1β and IL-10. IL-1β expression peaked at days 5 and 7 in small bowel and colonic wounds when compared to skin or muscle. Similarly, IL-10 showed high expression in these time points in small bowel and colonic wounds. However, IL-10 showed the same expression in all time points in muscle and skin tissues except at day 1. The high expression in IL-1β and IL-10 levels in small bowel and colon might explain the accelerated healing process in these wounds in comparison to skin and muscle tissues. Additional studies are required to determine whether IL-1β and IL-10 expression is the major factor defining site-specific differences in healing rates in different tissues. Understanding cytokine action in the wound healing process could lead to novel and effective therapeutic strategies.
Godin, Lindsay M.; Vergen, Jorge; Prakash, Y. S.; Pagano, Richard E.
2011-01-01
Alveolar epithelial type I cell (ATI) wounding is prevalent in ventilator-injured lungs and likely contributes to pathogenesis of “barotrauma” and “biotrauma.” In experimental models most wounded alveolar cells repair plasma membrane (PM) defects and survive insults. Considering the force balance between edge energy at the PM wound margins and adhesive interactions of the lipid bilayer with the underlying cytoskeleton (CSK), we tested the hypothesis that subcortical actin depolymerization is a key facilitator of PM repair. Using real-time fluorescence imaging of primary rat ATI transfected with a live cell actin-green fluorescent protein construct (Lifeact-GFP) and loaded with N-rhodamine phosphatidylethanolamine (PE), we examined the spatial and temporal coordination between cytoskeletal remodeling and PM repair following micropuncture. Membrane integrity was inferred from the fluorescence intensity profiles of the cytosolic label calcein AM. Wounding led to rapid depolymerization of the actin CSK near the wound site, concurrent with accumulation of endomembrane-derived N-rhodamine PE. Both responses were sustained until PM integrity was reestablished, which typically occurs between ∼10 and 40 s after micropuncture. Only thereafter did the actin CSK near the wound begin to repolymerize, while the rate of endomembrane lipid accumulation decreased. Between 60 and 90 s after successful PM repair, after translocation of the actin nucleation factor cortactin, a dense actin fiber network formed. In cells that did not survive micropuncture injury, actin remodeling did not occur. These novel results highlight the importance of actin remodeling in ATI cell repair and suggest molecular targets for modulating the repair process. PMID:21216977
Impaired wound healing in mice deficient in a matricellular protein SPARC (osteonectin, BM-40)
Basu, Amitabha; Kligman, Lorraine H; Samulewicz, Stefan J; Howe, Chin C
2001-01-01
Background SPARC is a matricellular protein involved in cell-matrix interactions. From expression patterns at the wound site and in vitro studies, SPARC has been implicated in the control of wound healing. Here we examined the function of SPARC in cutaneous wound healing using SPARC-null mice and dermal fibroblasts derived from them. Results In large (25 mm) wounds, SPARC-null mice showed a significant delay in healing as compared to wild-type mice (31 days versus 24 days). Granulation tissue formation and extracellular matrix protein production were delayed in small 6 mm SPARC-null wounds initially but were resolved by day 6. In in vitro wound-healing assays, while wild-type primary dermal fibroblasts showed essentially complete wound closure at 11 hours, wound closure of SPARC-null cells was incomplete even at 31 hours. Addition of purified SPARC restored the normal time course of wound closure. Treatment of SPARC-null cells with mitomycin C to analyze cell migration without cell proliferation showed that wound repair remained incomplete after 31 hours. Cell proliferation as measured by 3H-thymidine incorporation and collagen gel contraction by SPARC-null cells were not compromised. Conclusions A significant delay in healing large excisional wounds and setback in granulation tissue formation and extracellular matrix protein production in small wounds establish that SPARC is required for granulation tissue formation during normal repair of skin wounds in mice. A defect in wound closure in vitro indicates that SPARC regulates cell migration. We conclude that SPARC plays a role in wound repair by promoting fibroblast migration and thus granulation tissue formation. PMID:11532190
Regulation of Cell Migration in Breast Cancer
2011-04-01
the wound healing, assay by scarring and Oris plate migration assay, transwell migration assay and live - cell imaging studies. Cell migration capacity...evaluated by the use of techniques that include the wound healing assay by scarring and Oris plate migration assay, transwell migration assay and live - cell imaging studies
Wang, Yangping; Bai, Yang; Li, Yashu; Liang, Guangping; Jiang, Yufeng; Liu, Zhongyang; Liu, Meixi; Hao, Jianlei; Zhang, Xiaorong; Hu, Xiaohong; Chen, Jian; Wang, Rupeng; Yin, Zhinan; Wu, Jun; Luo, Gaoxing; He, Weifeng
2017-01-01
Altered homeostasis and dysfunction of dendritic epidermal T cells (DETCs) contribute to abnormal diabetic wound healing. IL-15 plays important roles in survival and activation of T lymphocytes. Recently, reduction of epidermal IL-15 has been reported as an important mechanism for abnormal DETC homeostasis in streptozotocin -induced diabetic animals. However, the role of IL-15 in impaired diabetic wound healing remains unknown. Here, we found that, through rescuing the insufficient activation of DETCs, IL-15 increased IGF-1 production by DETCs and thereby promoted diabetic skin wound repair. Regulation of IGF-1 in DETCs by IL-15 was partly dependent on the mTOR pathway. In addition, expression of IL-15 and IGF-1 were positively correlated in wounded epidermis. Together, our data indicated that IL-15 enhanced IGF-1 production by DETCs to promoting diabetic wound repair, suggesting IL-15 as a potential therapeutic agent for managing diabetic wound healing.
McDade, Joel R.; Michele, Daniel E.
2014-01-01
Mutations in the dysferlin gene resulting in dysferlin-deficiency lead to limb-girdle muscular dystrophy 2B and Myoshi myopathy in humans. Dysferlin has been proposed as a critical regulator of vesicle-mediated membrane resealing in muscle fibers, and localizes to muscle fiber wounds following sarcolemma damage. Studies in fibroblasts and urchin eggs suggest that trafficking and fusion of intracellular vesicles with the plasma membrane during resealing requires the intracellular cytoskeleton. However, the contribution of dysferlin-containing vesicles to resealing in muscle and the role of the cytoskeleton in regulating dysferlin-containing vesicle biology is unclear. Here, we use live-cell imaging to examine the behavior of dysferlin-containing vesicles following cellular wounding in muscle cells and examine the role of microtubules and kinesin in dysferlin-containing vesicle behavior following wounding. Our data indicate that dysferlin-containing vesicles move along microtubules via the kinesin motor KIF5B in muscle cells. Membrane wounding induces dysferlin-containing vesicle–vesicle fusion and the formation of extremely large cytoplasmic vesicles, and this response depends on both microtubules and functional KIF5B. In non-muscle cell types, lysosomes are critical mediators of membrane resealing, and our data indicate that dysferlin-containing vesicles are capable of fusing with lysosomes following wounding which may contribute to formation of large wound sealing vesicles in muscle cells. Overall, our data provide mechanistic evidence that microtubule-based transport of dysferlin-containing vesicles may be critical for resealing, and highlight a critical role for dysferlin-containing vesicle–vesicle and vesicle–organelle fusion in response to wounding in muscle cells. PMID:24203699
Boo, Stellar; Dagnino, Lina
2013-01-01
Significance Abnormal wound repair results from disorders in granulation tissue remodeling, and can lead to hypertrophic scarring and fibrosis. Excessive scarring can compromise tissue function and decrease tissue resistance to additional injuries. The development of potential therapies to minimize scarring is, thus, necessary to address an important clinical problem. Recent Advances It has been clearly established that multiple cytokines and growth factors participate in the regulation of cutaneous wound healing. More recently, it has become apparent that these factors do not necessarily activate isolated signaling pathways. Rather, in some cases, there is cross-modulation of several cellular pathways involved in this process. Two of the key pathways that modulate each other during wound healing are activated by transforming growth factor-β and by extracellular matrix proteins acting through integrins. Critical Issues The pathogenesis of excessive scarring upon wound healing is not fully understood, as a result of the complexity of this process. However, the fact that many pathways combine to produce fibrosis provides multiple potential therapeutic targets. Some of them have been identified, such as focal adhesion kinase and integrin-linked kinase. Currently, a major challenge is to develop pharmacological inhibitors of these proteins with therapeutic value to promote efficient wound repair. Future Directions The ability to better understand how different pathways crosstalk during wound repair and to identify and pharmacologically modulate key factors that contribute to the regulation of multiple wound-healing pathways could potentially provide effective therapeutic targets to decrease or prevent excessive scar formation and/or development of fibrosis. PMID:24527345
Restraint stress alters neutrophil and macrophage phenotypes during wound healing
Tymen, Stéphanie D.; Rojas, Isolde G.; Zhou, Xiaofeng; Fang, Zong Juan; Zhao, Yan; Marucha, Phillip T.
2013-01-01
Previous studies reported that stress delays wound healing, impairs bacterial clearance, and elevates the risk for opportunistic infection. Neutrophils and macrophages are responsible for the removal of bacteria present at the wound site. The appropriate recruitment and functions of these cells are necessary for efficient bacterial clearance. In our current study we found that restraint stress induced an excessive recruitment of neutrophils extending the inflammatory phase of healing, and the gene expression of neutrophil attracting chemokines MIP-2 and KC. However, restraint stress did not affect macrophage infiltration. Stress decreased the phagocytic abilities of phagocytic cells ex vivo, yet it did not affect superoxide production. The cell surface expression of adhesion molecules CD11b and TLR4 were decreased in peripheral blood monocytes in stressed mice. The phenotype of macrophages present at the wound site was also altered. Gene expression of markers of pro-inflammatory classically activated macrophages, CXCL10 and CCL5, were down-regulated; as were markers associated with wound healing macrophages, CCL22, IGF-1, RELMα; and the regulatory macrophage marker, chemokine CCL1. Restraint stress also induced up-regulation of IL10 gene expression. In summary, our study has shown that restraint stress suppresses the phenotype shift of the macrophage population, as compared to the changes observed during normal wound healing, while the number of macrophages remains constant. We also observed a general suppression of chemokine gene expression. Modulation of the macrophage phenotype could provide a new therapeutic approach in the treatment of wounds under stress conditions in the clinical setting. PMID:22884902
Hydrogen sulfide improves diabetic wound healing in ob/ob mice via attenuating inflammation.
Zhao, Huichen; Lu, Shengxia; Chai, Jiachao; Zhang, Yuchao; Ma, Xiaoli; Chen, Jicui; Guan, Qingbo; Wan, Meiyan; Liu, Yuantao
2017-09-01
The proposed mechanisms of impaired wound healing in diabetes involve sustained inflammation, excess oxidative stress and compromised agiogenesis. Hydrogen sulfide (H 2 S) has been reported to have multiple biological activities. We aim to investigate the role of H 2 S in impaired wound healing in ob/ob mice and explore the possible mechanisms involved. Full-thickness skin dorsal wounds were created on ob/ob mice and C57BL/6 mice. Cystathionine-γ-lyase (CSE) expression and H 2 S production were determined in granulation tissues of the wounds. Effects of NaHS on wound healing were evaluated. Inflammation and angiogenesis in granulation tissues of the wounds were examined. CSE expression, and H 2 S content were significantly reduced in granulation tissues of wounds in ob/ob mice compared with control mice. NaHS treatment significantly improved wound healing in ob/ob mice, which was associated with reduced neutrophil and macrophage infiltration, decreased production of tumor necrosis factor (TNF)-α, interleukin (IL)-6. NaHS treatment decreased metalloproteinase (MMP)-9, whereas increased collagen deposition and vascular-like structures in granulation tissues of wounds in ob/ob mice. CSE down-regulation may play a role in the pathogenesis of diabetic impaired wound healing. Exogenous H 2 S could be a potential agent to improve diabetic impaired wound healing by attenuating inflammation and increasing angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Feng, Guang; Hao, Daifeng; Chai, Jiake
2014-11-01
High blood sugar levels result in defective wound healing processes in diabetic patients. Endothelial progenitor cells (EPCs) play an important role in vasculogenesis, and thereby contribute to reconstitution of the microcirculation and healing. This study aimed to determine the possible mechanism by which the numbers of circulating EPCs are regulated in response to tissue wounding. In the streptozotocin-induced diabetic mouse model, we found that phagocytes activated by local inflammatory cytokines in the wound interfere with the mobilization and recruitment of EPCs to the lesion area. Specifically, the activated macrophages inactivate CXCL12, the major chemokine for EPC recruitment, via matrix metalloproteinases (MMPs), and thereby prevent local chemotaxis and subsequent homing of EPCs to the wound. The wound healing process is delayed by local administration of inflammatory cytokines, and its rate is increased by MMP inhibitors. This study indicates that local inhibition of MMPs is beneficial for regeneration of damaged vessels, and may explain poor wound healing in diabetic patients, thus demonstrating its potential utility as a local treatment therapy to promote diabetic wound healing. © 2014 FEBS.
PHD-2 Suppression in Mesenchymal Stromal Cells Enhances Wound Healing.
Ko, Sae Hee; Nauta, Allison C; Morrison, Shane D; Hu, Michael S; Zimmermann, Andrew S; Chung, Michael T; Glotzbach, Jason P; Wong, Victor W; Walmsley, Graham G; Peter Lorenz, H; Chan, Denise A; Gurtner, Geoffrey C; Giaccia, Amato J; Longaker, Michael T
2018-01-01
Cell therapy with mesenchymal stromal cells is a promising strategy for tissue repair. Restoration of blood flow to ischemic tissues is a key step in wound repair, and mesenchymal stromal cells have been shown to be proangiogenic. Angiogenesis is critically regulated by the hypoxia-inducible factor (HIF) superfamily, consisting of transcription factors targeted for degradation by prolyl hydroxylase domain (PHD)-2. The aim of this study was to enhance the proangiogenic capability of mesenchymal stromal cells and to use these modified cells to promote wound healing. Mesenchymal stromal cells harvested from mouse bone marrow were transduced with short hairpin RNA (shRNA) against PHD-2; control cells were transduced with scrambled shRNA (shScramble) construct. Gene expression quantification, human umbilical vein endothelial cell tube formation assays, and wound healing assays were used to assess the effect of PHD knockdown mesenchymal stromal cells on wound healing dynamics. PHD-2 knockdown mesenchymal stromal cells overexpressed HIF-1α and multiple angiogenic factors compared to control (p < 0.05). Human umbilical vein endothelial cells treated with conditioned medium from PHD-2 knockdown mesenchymal stromal cells exhibited increased formation of capillary-like structures and enhanced migration compared with human umbilical vein endothelial cells treated with conditioned medium from shScramble-transduced mesenchymal stromal cells (p < 0.05). Wounds treated with PHD-2 knockdown mesenchymal stromal cells healed at a significantly accelerated rate compared with wounds treated with shScramble mesenchymal stromal cells (p < 0.05). Histologic studies revealed increased blood vessel density and increased cellularity in the wounds treated with PHD-2 knockdown mesenchymal stromal cells (p < 0.05). Silencing PHD-2 in mesenchymal stromal cells augments their proangiogenic potential in wound healing therapy. This effect appears to be mediated by overexpression of HIF family transcription factors and up-regulation of multiple downstream angiogenic factors.
HoxD3 accelerates wound healing in diabetic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Scott L.; Myers, Connie A.; Charboneau, Aubri
Poorly healing diabetic wounds are characterized by diminished collagen production and impaired angiogenesis. HoxD3, a homeobox transcription factor that promotes angiogenesis and collagen synthesis, is up-regulated during normal wound repair whereas its expression is diminished in poorly healing wounds of the genetically diabetic (db/db) mouse. To determine whether restoring expression of HoxD3 would accelerate diabetic wound healing, we devised a novel method of gene transfer, which incorporates HoxD3 plasmid DNA into a methylcellulose film that is placed on wounds created on db/db mice. The HoxD3 transgene was expressed in endothelial cells, fibroblasts, and keratinocytes of the wounds for up tomore » 10 days. More importantly, a single application of HoxD3 to db/db mice resulted in a statistically significant acceleration of wound closure compared to control-treated wounds. Furthermore, we also observed that the HoxD3-mediated improvement in diabetic wound repair was accompanied by increases in mRNA expression of the HoxD3 target genes, Col1A1 and beta 3-integrin leading to enhanced angiogenesis and collagen deposition in the wounds. Although HoxD3-treated wounds also show improved re-epithelialization as compared to control db/db wounds, this effect was not due to direct stimulation of keratinocyte migration by HoxD3. Finally, we show that despite the dramatic increase in collagen synthesis and deposition in HoxD3-treated wounds, these wounds showed normal remodeling and we found no evidence of abnormal wound healing. These results indicate that HoxD3 may provide a means to directly improve collagen deposition, angiogenesis and closure in poorly healing diabetic wounds.« less
Macrophages are required to coordinate mouse digit tip regeneration.
Simkin, Jennifer; Sammarco, Mimi C; Marrero, Luis; Dawson, Lindsay A; Yan, Mingquan; Tucker, Catherine; Cammack, Alex; Muneoka, Ken
2017-11-01
In mammals, macrophages are known to play a major role in tissue regeneration. They contribute to inflammation, histolysis, re-epithelialization, revascularization and cell proliferation. Macrophages have been shown to be essential for regeneration in salamanders and fish, but their role has not been elucidated in mammalian epimorphic regeneration. Here, using the regenerating mouse digit tip as a mammalian model, we demonstrate that macrophages are essential for the regeneration process. Using cell-depletion strategies, we show that regeneration is completely inhibited; bone histolysis does not occur, wound re-epithelialization is inhibited and the blastema does not form. Although rescue of epidermal wound closure in the absence of macrophages promotes blastema accumulation, it does not rescue cell differentiation, indicating that macrophages play a key role in the redifferentiation of the blastema. We provide additional evidence that although bone degradation is a component, it is not essential to the overall regenerative process. These findings show that macrophages play an essential role in coordinating the epimorphic regenerative response in mammals. © 2017. Published by The Company of Biologists Ltd.
Wound Healing Angiogenesis: Innovations and Challenges in Acute and Chronic Wound Healing
Demidova-Rice, Tatiana N.; Durham, Jennifer T.; Herman, Ira M.
2012-01-01
Background Formation of new blood vessels, by either angiogenesis or vasculogenesis, is critical for normal wound healing. Major processes in neovascularization include (i) growth-promoting or survival factors, (ii) proteolytic enzymes, (iii) activators of multiple differentiated and progenitor cell types, and (iv) permissible microenvironments. A central aim of wound healing research is to “convert” chronic, disease-impaired wounds into those that will heal. The problem Reduced ability to re-establish a blood supply to the injury site can ultimately lead to wound chronicity. Basic/Clinical Science Advances (1) Human fetal endothelial progenitor cells can stimulate wound revascularization and repair following injury, as demonstrated in a novel mouse model of diabetic ischemic healing. (2) Advances in bioengineering reveal exciting alternatives by which wound repair may be facilitated via the creation of vascularized microfluidic networks within organ constructs created ex vivo for wound implantation. (3) A “personalized” approach to regenerative medicine may be enabled by the identification of protein components present within individual wound beds, both chronic and acute. Clinical Care Relevance Despite the development of numerous therapies, impaired angiogenesis and wound chronicity remain significant healthcare problems. As such, innovations in enhancing wound revascularization would lead to significant advances in wound healing therapeutics and patient care. Conclusion Insights into endothelial progenitor cell biology together with developments in the field of tissue engineering and molecular diagnostics should not only further advance our understanding of the molecular mechanisms regulating wound repair but also offer innovative solutions to promote the healing of chronic and acute wounds in vivo. PMID:24527273
Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment
Xiao, Yun; Ahadian, Samad
2017-01-01
Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell–matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them. PMID:27405960
Hyperbaric Oxygen, Vasculogenic Stem Cells, and Wound Healing
Fosen, Katina M.
2014-01-01
Abstract Significance: Oxidative stress is recognized as playing a role in stem cell mobilization from peripheral sites and also cell function. Recent Advances: This review focuses on the impact of hyperoxia on vasculogenic stem cells and elements of wound healing. Critical Issues: Components of the wound-healing process in which oxidative stress has a positive impact on the various cells involved in wound healing are highlighted. A slightly different view of wound-healing physiology is adopted by departing from the often used notion of sequential stages: hemostatic, inflammatory, proliferative, and remodeling and instead organizes the cascade of wound healing as overlapping events or waves pertaining to reactive oxygen species, lactate, and nitric oxide. This was done because hyperoxia has effects of a number of cell signaling events that converge to influence cell recruitment/chemotaxis and gene regulation/protein synthesis responses which mediate wound healing. Future Directions: Our alternative perspective of the stages of wound healing eases recognition of the multiple sites where oxidative stress has an impact on wound healing. This aids the focus on mechanistic events and the interplay among various cell types and biochemical processes. It also highlights the areas where additional research is needed. Antioxid. Redox Signal. 21, 1634–1647. PMID:24730726
Pautot, V; Holzer, F M; Chaufaux, J; Walling, L L
2001-02-01
Tomato plants constitutively express a neutral leucine aminopeptidase (LAP-N) and an acidic LAP (LAP-A) during floral development and in leaves in response to insect infestation, wounding, and Pseudomonas syringae pv. tomato infection. To assess the physiological roles of LAP-A, a LapA-antisense construct (35S:asLapA1) was introduced into tomato. The 35S:asLapA1 plants had greatly reduced or showed undetectable levels of LAP-A and LAP-N proteins in healthy and wounded leaves and during floral development. Despite the loss of these aminopeptidases, no global changes in protein profiles were noted. The 35S:asLapA1 plants also exhibited no significant alteration in floral development and did not impact the growth and development of Manduca sexta and P. syringae pv. tomato growth rates during compatible or incompatible infections. To investigate the mechanism underlying the strong induction of LapA upon P. syringae pv. tomato infection, LapA expression was monitored after infection with coronatine-producing and -deficient P. syringae pv. tomato strains. LapA RNA and activity were detected only with the coronatine-producing P. syringae pv. tomato strain. Coronatine treatment of excised shoots caused increases in RNAs for jasmonic acid (JA)-regulated wound-response genes (LapA and pin2) but did not influence expression of a JA-regulated pathogenesis-related protein gene (PR-1). These results indicated that coronatine mimicked the wound response but was insufficient to activate JA-regulated PR genes.
microRNA-200b as a Switch for Inducible Adult Angiogenesis.
Sinha, Mithun; Ghatak, Subhadip; Roy, Sashwati; Sen, Chandan K
2015-05-10
Angiogenesis is the process by which new blood vessels develop from a pre-existing vascular system. It is required for physiological processes such as developmental biology and wound healing. Angiogenesis also plays a crucial role in pathological conditions such as tumor progression. The underlying importance of angiogenesis necessitates a highly regulated process. Recent works have demonstrated that the process of angiogenesis is regulated by small noncoding RNA molecules called microRNAs (miRs). These miRs, collectively referred to as angiomiRs, have been reported to have a profound effect on the process of angiogenesis by acting as either pro-angiogenic or anti-angiogenic regulators. In this review, we will discuss the role of miR-200b as a regulator of angiogenesis. Once the process of angiogenesis is complete, anti-angiogenic miR-200b has been reported to provide necessary braking. Downregulation of miR-200b has been reported across various tumor types, as deregulated angiogenesis is necessary for tumor development. Transient downregulation of miR-200b in wounds drives wound angiogenesis. New insights and understanding of the molecular mechanism of regulation of angiogenesis by miR-200b has opened new avenues of possible therapeutic interventions to treat angiogenesis-related patho-physiological conditions. Antioxid. Redox Signal. 22, 1257-1272.
Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran
2016-10-01
The inflammatory phase of wound healing cascade is an important determinant of the fate of the wound. Acute inflammation is necessary to initiate proper wound healing, while chronic inflammation abrogates wound healing. Different endosomal members of toll-like receptor (TLR) family initiate inflammatory signalling via a range of different inflammatory mediators such as interferons, internal tissue damaged-associated molecular patterns (DAMPs) and hyperactive effector T cells. Sustained signalling of TLR9 and TLR7 contributes to chronic inflammation by activating the plasmacytoid dendritic cells. Diabetic wounds are also characterised by sustained inflammatory phase. The objective of this study was to analyse the differential expression of endosomal TLRs in human diabetic wounds compared with control wounds. We analysed the differential expression of TLR7 and TLR9 both at transcriptional and translational levels in wounds of 84 patients with type 2 diabetes mellitus (T2DM) and 6 control subjects without diabetes using quantitative real-time polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. TLR7 and TLR9 were significantly up-regulated in wounds of the patients with T2DM compared with the controls and were dependent on the infection status of the diabetic wounds, and wounds with microbial infection exhibited lower expression levels of endosomal TLRs. Altered endosomal TLR expression in T2DM subjects might be associated with wound healing impairment. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Dwivedi, Deepak; Dwivedi, Mona; Malviya, Sourabh; Singh, Vinod
2017-01-01
To investigate wound healing, antimicrobial and antioxidant activity of leaf extract of Pongamia Pinnata . Methanolic extracts of P. pinnata leaf were studied for wound healing efficiency, and was assessed by the rate of wound contraction, tensile strength, breaking strength, hydroxyproline and hexosamine content, along with its effect on pro-inflammatory and anti-inflammatory cytokines was assessed using excision and incision model of wound repair in Wistar rats. Antimicrobial activity against ten microorganisms was also assessed. In vivo antioxidant activity was performed to understand the mechanism of wound healing potency. The results indicated that P. pinnata extract has potent wound healing capacity as evident from the wound contraction and increased tensile strength. Hydroxyproline and hexosamine expression were also well correlated with the healing pattern observed. extract exhibited significant antimicrobial activity, Staphylococcus aureus, Staphylococcus pyogenes, Staphylococcus epidermidis, Escherichia coli, Micrococcus luteus, Enterobacter aerogenes, Salmonella typhi, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger also indicate that P. pinnata posses potent antioxidant activity by inhibition lipid peroxidation, reduce glutathione, superoxide dismutase level and increases catalase activity. During early wound healing phase TNF-α and IL-6 level were found to be up-regulated by P. pinnata treatment. Increased wound contraction and tensile strength, augmented hydroxyproline and hexosamine content, antioxidative activity and moderate antimicrobial activity support the early wound healing exhibited by P. pinnata . Induction in cytokine production may be one of the mechanisms in accelerating the wound healing. Results suggest that P. pinnata may be useful in tropical management of wound healing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Priniski, T. Dodson, M. Duco, S. Raftopoulos, R. Ellis, and A. Brooks
In support of the National Compact Stellerator Experiment (NCSX), stellerator assembly activities continued this past year at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The construction program saw the completion of the first two Half Field-Period Assemblies (HPA), each consisting of three modular coils. The full machine includes six such sub-assemblies. A single HPA consists of three of the NCSX modular coils wound and assembled at PPPL. These geometrically-complex threedimensional coils were wound using computer-aided metrology and CAD models to tolerances within +/- 0.5mm. The assembly of these coils required similar accuracymore » on a larger scale with the added complexity of more individual parts and fewer degrees of freedom for correction. Several new potential positioning issues developed for which measurement and control techniques were developed. To accomplish this, CAD coordinate-based computer metrology equipment and software similar to the solutions employed for winding the modular coils was used. Given the size of the assemblies, the primary tools were both interferometeraided and Absolute Distance Measurement (ADM)-only based laser trackers. In addition, portable Coordinate Measurement Machine (CMM) arms and some novel indirect measurement techniques were employed. This paper will detail both the use of CAD coordinate-based metrology technology and the techniques developed and employed for dimensional control of NSCX subassemblies. The results achieved and possible improvements to techniques will be discussed.« less
18 CFR 1302.12 - Effect on other regulations; supervision and coordination.
Code of Federal Regulations, 2013 CFR
2013-04-01
... regulations; supervision and coordination. 1302.12 Section 1302.12 Conservation of Power and Water Resources... OF THE CIVIL RIGHTS ACT OF 1964 § 1302.12 Effect on other regulations; supervision and coordination...) Supervision and coordination. TVA may from time to time assign to officials of other departments or agencies...
Chong, Han Chung; Chan, Jeremy Soon Kiat; Goh, Chi Qin; Gounko, Natalia V; Luo, Baiwen; Wang, Xiaoling; Foo, Selin; Wong, Marcus Thien Chong; Choong, Cleo; Kersten, Sander; Tan, Nguan Soon
2014-01-01
Impaired wound healing is a major source of morbidity in diabetic patients. Poor outcome has, in part, been related to increased inflammation, poor angiogenesis, and deficiencies in extracellular matrix components. Despite the enormous impact of these chronic wounds, effective therapies are lacking. Here, we showed that the topical application of recombinant matricellular protein angiopoietin-like 4 (ANGPTL4) accelerated wound reepithelialization in diabetic mice, in part, by improving angiogenesis. ANGPTL4 expression is markedly elevated upon normal wound injury. In contrast, ANGPTL4 expression remains low throughout the healing period in diabetic wounds. Exogenous ANGPTL4 modulated several regulatory networks involved in cell migration, angiogenesis, and inflammation, as evidenced by an altered gene expression signature. ANGPTL4 influenced the expression profile of endothelial-specific CD31 in diabetic wounds, returning its profile to that observed in wild-type wounds. We showed ANGPTL4-induced nitric oxide production through an integrin/JAK/STAT3-mediated upregulation of inducible nitric oxide synthase (iNOS) expression in wound epithelia, thus revealing a hitherto unknown mechanism by which ANGPTL4 regulated angiogenesis via keratinocyte-to-endothelial-cell communication. These data show that the replacement of ANGPTL4 may be an effective adjunctive or new therapeutic avenue for treating poor healing wounds. The present finding also confirms that therapeutic angiogenesis remains an attractive treatment modality for diabetic wound healing. PMID:24903577
The TallyHo polygenic mouse model of diabetes: implications in wound healing.
Buck, Donald W; Jin, Da P; Geringer, Matthew; Hong, Seok Jong; Galiano, Robert D; Mustoe, Thomas A
2011-11-01
Impairments in wound healing represent a significant source of morbidity and mortality in patients with diabetes. To help uncover the derangements associated with diabetic wound healing, murine animal models have been extensively used. In this article, the authors present results, and the accompanying wound healing implications, from experiments across three validated wound healing models using a newer polygenic strain of diabetes. The authors investigated the wound healing impairments of the TallyHo/JnJ diabetic mouse strain, using three validated wound healing models: an incisional model, a splinted excisional model, and a cutaneous ischemia-reperfusion injury model. Appropriate control strain mice were used for comparison. Wounds were analyzed using gross, histologic, and molecular techniques. TallyHo mice displayed deficits across all three wound healing models. There was a reduced resistance/response to oxidative stress and a global decrease in the initial inflammatory response to healing. In addition, there was a global decrease in the stimulus for angiogenesis and collagen formation, ultimately leading to reduced reepithelialization, granulation tissue formation, wound contraction, and wound tensile strength. Gross and histologic findings were corroborated with molecular data, which revealed a significant down-regulation of important cytokines, including vascular endothelial growth factor, neutrophilic attractant protein-2, monocyte chemoattractant protien-1, heme oxygenase-1, interleukin-1β, and interleukin-6, when normalized to the control strain (p<0.05). The TallyHo polygenic mouse model of diabetes demonstrates predictable and clinically relevant wound healing impairments that offer important implications into the derangements of diabetic wound healing observed clinically. Therapeutics targeting these specific derangements could provide improvements in the care of diabetic wounds.
77 FR 62440 - Safety Zone; Wounded Warriors Benefit, Lake Erie, Huron, OH
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-15
...-AA00 Safety Zone; Wounded Warriors Benefit, Lake Erie, Huron, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the waters of Lake Erie, East Huron, Ohio. This regulation is intended to restrict vessels from portions of Lake Erie...
Effect of toll-like receptor activation on thymosin beta-4 production by chicken macrophages
USDA-ARS?s Scientific Manuscript database
Thymosin beta 4 (Tb4) is an actin binding intracellular peptide that promotes wound healing, tissue remodeling, and angiogenesis. The regulation of Tb4 secretion to the extracellular environment is not understood. The macrophage is a rich source of Tb4 which also participates in wound healing proce...
Solan, Joell L.; Lampe, Paul D.
2016-01-01
Gap junctions are highly ordered plasma membrane domains that are constantly assembled, remodeled and turned over due to the short half-life of connexins, the integral membrane proteins that form gap junctions. Connexin 43 (Cx43), by far the most widely expressed connexin, is phosphorylated at multiple serine residues in the cytoplasmic, C-terminal region allowing for exquisite cellular control over gap junctional communication. This is evident during epidermal wounding where spatiotemporal changes in connexin expression occur as cells are instructed whether to die, proliferate or migrate to promote repair. Early gap junctional communication is required for initiation of keratinocyte migration, but accelerated Cx43 turnover is also critical for proper wound healing at later stages. These events are controlled via a "kinase program" where sequential phosphorylation of Cx43 leads to reductions in Cx43’s half-life and significant depletion of gap junctions from the plasma membrane within several hours. The complex regulation of gap junction assembly and turnover affords several steps where intervention might speed wound healing. PMID:26706150
Solan, Joell L; Lampe, Paul D
2016-02-01
Gap junctions are highly ordered plasma membrane domains that are constantly assembled, remodeled and turned over due to the short half-life of connexins, the integral membrane proteins that form gap junctions. Connexin 43 (Cx43), by far the most widely expressed connexin, is phosphorylated at multiple serine residues in the cytoplasmic, C-terminal region allowing for exquisite cellular control over gap junctional communication. This is evident during epidermal wounding where spatiotemporal changes in connexin expression occur as cells are instructed whether to die, proliferate or migrate to promote repair. Early gap junctional communication is required for initiation of keratinocyte migration, but accelerated Cx43 turnover is also critical for proper wound healing at later stages. These events are controlled via a "kinase program" where sequential phosphorylation of Cx43 leads to reductions in Cx43's half-life and significant depletion of gap junctions from the plasma membrane within several hours. The complex regulation of gap junction assembly and turnover affords several steps where intervention might speed wound healing. Copyright © 2015 Elsevier Ltd. All rights reserved.
48 CFR 1604.7001 - Coordination of benefits clause.
Code of Federal Regulations, 2011 CFR
2011-10-01
... FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Coordination of Benefits 1604.7001 Coordination of benefits clause. OPM expects all FEHBP plans to coordinate benefits... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Coordination of benefits...
48 CFR 1604.7001 - Coordination of benefits clause.
Code of Federal Regulations, 2012 CFR
2012-10-01
... FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Coordination of Benefits 1604.7001 Coordination of benefits clause. OPM expects all FEHBP plans to coordinate benefits... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Coordination of benefits...
Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua
2017-01-13
The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Downregulation of miRNAs during Delayed Wound Healing in Diabetes: Role of Dicer
Bhattacharya, Sushant; Aggarwal, Rangoli; Singh, Vijay Pal; Ramachandran, Srinivasan; Datta, Malabika
2015-01-01
Delayed wound healing is a major complication associated with diabetes and is a result of a complex interplay among diverse deregulated cellular parameters. Although several genes and pathways have been identified to be mediating impaired wound closure, the role of microRNAs (miRNAs) in these events is not very well understood. Here, we identify an altered miRNA signature in the prolonged inflammatory phase in a wound during diabetes, with increased infiltration of inflammatory cells in the basal layer of the epidermis. Nineteen miRNAs were downregulated in diabetic rat wounds (as compared with normal rat wound, d 7 postwounding) together with inhibited levels of the central miRNA biosynthesis enzyme, Dicer, suggesting that in wounds of diabetic rats, the decreased levels of Dicer are presumably responsible for miRNA downregulation. Compared with unwounded skin, Dicer levels were significantly upregulated 12 d postwounding in normal rats, and this result was notably absent in diabetic rats that showed impaired wound closure. In a wound-healing specific quantitative reverse transcriptase–polymerase chain reaction (RT-PCR) array, 10 genes were significantly altered in the diabetic rat wound and included growth factors and collagens. Network analyses demonstrated significant interactions and correlations between the miRNA predicted targets (regulators) and the 10 wound-healing specific genes, suggesting altered miRNAs might fine-tune the levels of these genes that determine wound closure. Dicer inhibition prevented HaCaT cell migration and affected wound closure. Altered levels of Dicer and miRNAs are critical during delayed wound closure and offer promising targets to address the issue of impaired wound healing. PMID:26602065
Croze, Roxanne H.; Thi, William J.; Clegg, Dennis O.
2016-01-01
Purpose Nonexudative (dry) age-related macular degeneration (AMD), a leading cause of blindness in the elderly, is associated with the loss of retinal pigmented epithelium (RPE) cells and the development of geographic atrophy, which are areas devoid of RPE cells and photoreceptors. One possible treatment option would be to stimulate RPE attachment and proliferation to replace dying/dysfunctional RPE and bring about wound repair. Clinical trials are underway testing injections of RPE cells derived from pluripotent stem cells to determine their safety and efficacy in treating AMD. However, the factors regulating RPE responses to AMD-associated lesions are not well understood. Here, we use cell culture to investigate the role of RhoA coiled coil kinases (ROCKs) in human embryonic stem cell–derived RPE (hESC-RPE) attachment, proliferation, and wound closure. Methods H9 hESC were spontaneously differentiated into RPE cells. hESC-RPE cells were treated with a pan ROCK1/2 or a ROCK2 only inhibitor; attachment, and proliferation and cell size within an in vitro scratch assay were examined. Results Pharmacological inhibition of ROCKs promoted hESC-RPE attachment and proliferation, and increased the rate of closure of in vitro wounds. ROCK inhibition decreased phosphorylation of cofilin and myosin light chain, suggesting that regulation of the cytoskeleton underlies the mechanism of action of ROCK inhibition. Conclusions ROCK inhibition promotes attachment, proliferation, and wound closure in H9 hESC-RPE cells. ROCK isoforms may have different roles in wound healing. Translational Relevance Modulation of the ROCK-cytoskeletal axis has potential in stimulating wound repair in transplanted RPE cells and attachment in cellular therapies. PMID:27917311
Reactive Oxygen Species and NOX Enzymes Are Emerging as Key Players in Cutaneous Wound Repair
Modarressi, Ali; Pittet-Cuénod, Brigitte
2017-01-01
Our understanding of the role of oxygen in cell physiology has evolved from its long-recognized importance as an essential factor in oxidative metabolism to its recognition as an important player in cell signaling. With regard to the latter, oxygen is needed for the generation of reactive oxygen species (ROS), which regulate a number of different cellular functions including differentiation, proliferation, apoptosis, migration, and contraction. Data specifically concerning the role of ROS-dependent signaling in cutaneous wound repair are very limited, especially regarding wound contraction. In this review we provide an overview of the current literature on the role of molecular and reactive oxygen in the physiology of wound repair as well as in the pathophysiology and therapy of chronic wounds, especially under ischemic and hyperglycemic conditions. PMID:29036938
Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities
Bukowiecki, Anne; Hos, Deniz; Cursiefen, Claus; Eming, Sabine A.
2017-01-01
The cornea and the skin are both organs that provide the outer barrier of the body. Both tissues have developed intrinsic mechanisms that protect the organism from a wide range of external threats, but at the same time also enable rapid restoration of tissue integrity and organ-specific function. The easy accessibility makes the skin an attractive model system to study tissue damage and repair. Findings from skin research have contributed to unravelling novel fundamental principles in regenerative biology and the repair of other epithelial-mesenchymal tissues, such as the cornea. Following barrier disruption, the influx of inflammatory cells, myofibroblast differentiation, extracellular matrix synthesis and scar formation present parallel repair mechanisms in cornea and skin wound healing. Yet, capillary sprouting, while pivotal in proper skin wound healing, is a process that is rather associated with pathological repair of the cornea. Understanding the parallels and differences of the cellular and molecular networks that coordinate the wound healing response in skin and cornea are likely of mutual importance for both organs with regard to the development of regenerative therapies and understanding of the disease pathologies that affect epithelial-mesenchymal interactions. Here, we review the principal events in corneal wound healing and the mechanisms to restore corneal transparency and barrier function. We also refer to skin repair mechanisms and their potential implications for regenerative processes in the cornea. PMID:28604651
Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities.
Bukowiecki, Anne; Hos, Deniz; Cursiefen, Claus; Eming, Sabine A
2017-06-12
The cornea and the skin are both organs that provide the outer barrier of the body. Both tissues have developed intrinsic mechanisms that protect the organism from a wide range of external threats, but at the same time also enable rapid restoration of tissue integrity and organ-specific function. The easy accessibility makes the skin an attractive model system to study tissue damage and repair. Findings from skin research have contributed to unravelling novel fundamental principles in regenerative biology and the repair of other epithelial-mesenchymal tissues, such as the cornea. Following barrier disruption, the influx of inflammatory cells, myofibroblast differentiation, extracellular matrix synthesis and scar formation present parallel repair mechanisms in cornea and skin wound healing. Yet, capillary sprouting, while pivotal in proper skin wound healing, is a process that is rather associated with pathological repair of the cornea. Understanding the parallels and differences of the cellular and molecular networks that coordinate the wound healing response in skin and cornea are likely of mutual importance for both organs with regard to the development of regenerative therapies and understanding of the disease pathologies that affect epithelial-mesenchymal interactions. Here, we review the principal events in corneal wound healing and the mechanisms to restore corneal transparency and barrier function. We also refer to skin repair mechanisms and their potential implications for regenerative processes in the cornea.
RUSSO, JOHN M.; FLORIAN, PETER; SHEN, LE; GRAHAM, W. VALLEN; TRETIAKOVA, MARIA S.; GITTER, ALFRED H.; MRSNY, RANDALL J.; TURNER, JERROLD R.
2005-01-01
Background & Aims Small epithelial wounds heal by purse-string contraction of an actomyosin ring that is regulated by myosin light chain (MLC) kinase (MLCK) and rho kinase (ROCK). These studies aimed to define the roles of these kinases in purse-string wound closure. Methods Oligocellular and single-cell wounds were created in intestinal epithelial monolayers. Fluorescence imaging and electrophysiologic data were collected during wound closure. Human biopsies were studied immunohistochemically. Results Live-cell imaging of enhanced green fluorescent protein-β-actin defined rapid actin ring assembly within 2 minutes after wounding. This progressed to a circumferential ring within 8 minutes that subsequently contracted and closed the wound. We therefore divided this process into 2 phases: ring assembly and wound contraction. Activated rho and ROCK localized to the wound edge during ring assembly. Consistent with a primary role in the assembly phase, ROCK inhibition prevented actin ring assembly and wound closure. ROCK inhibition after ring assembly was complete had no effect. Recruitment and activation of MLCK occurred after ring assembly was complete and coincided with ring contraction. MLCK inhibition slowed and then stopped contraction but did not prevent ring assembly. MLCK inhibition also delayed barrier function recovery. Studies of human colonic biopsy specimens suggest that purse-string wound closure also occurs in vivo, because MLC phosphorylation was enhanced surrounding oligocellular wounds. Conclusions These results suggest complementary roles for these kinases in purse-string closure of experimental and in vivo oligocellular epithelial wounds; rho and ROCK are critical for actin ring assembly, while the activity of MLCK drives contraction. PMID:15825080
Chen, Xiao-Dong; Ruan, Shu-Bin; Lin, Ze-Peng; Zhou, Ziheng; Zhang, Feng-Gang; Yang, Rong-Hua; Xie, Ju-Lin
2018-02-08
Skin wound healing involves Notch/Jagged1 signaling. However, little is known how Jag1 expression level in epidermal stem cells (ESCs) contributes to wound healing and scar formation. We applied multiple cellular and molecular techniques to examine how Jag1 expression in ESCs modulates ESCs differentiation to myofibroblasts (MFB) in vitro, interpret how Jag1 expression in ESCs is involved in wound healing and scar formation in mice, and evaluate the effects of porcine acellular dermal matrix (ADM) treatment on wound healing and scar formation. We found that Jag1, Notch1 and Hes1 expression was up-regulated in the wound tissue during the period of wound healing. Furthermore, Jag1 expression level in the ESCs was positively associated with the level of differentiation to MFB. ESC-specific knockout of Jag1 delayed wound healing and promoted scar formation in vivo. In addition, we reported that porcine ADM treatment after skin incision could accelerate wound closure and reduce scar formation in vivo. This effect was associated with decreased expression of MFB markers, including α-SMA Col-1 and Col-III in wound tissues. Finally, we confirmed that porcine ADM treatment could increase Jag1, Notch1 and Hesl expression in wound tissues. Taken together, our results suggested that ESC-specific Jag1 expression levels are critical for wound healing and scar formation, and porcine ADM treatment would be beneficial in promoting wound healing and preventing scar formation by enhancing Notch/Jagged1 signaling pathway in ESCs.
Moghadamtousi, Soheil Zorofchian; Rouhollahi, Elham; Hajrezaie, Maryam; Karimian, Hamed; Abdulla, Mahmood Ameen; Kadir, Habsah Abdul
2015-06-01
Annona muricata, a member of the Annonaceae family, is commonly known as soursop and graviola. The leaves of this tropical fruit tree are widely used in folk medicine against skin diseases and abscesses, however there is no scientific evidence justifying the use of A. muricata leaves. The aim of the present study is to evaluate the wound healing potential of ethyl acetate extract of A. muricata leaves (EEAM) towards excisional wound models in rats. Sprague Dawley rats (24) were randomly divided into four groups, viz. (A) vehicle control, (B) low dose of EEAM (5% w/w), (C) high dose of EEAM (10% w/w) and (D) positive control with excisional wound created on the neck area. Wounds were topically dressed twice a day for 15 days. On the 15th day, animals were sacrificed and then processed for immunohistochemical and histological evaluations, including Hematoxylin & Eosin and Masson Trichrome stainings. The activity of antioxidants, namely catalase, glutathione peroxidase and superoxide dismutase, and malondialdehyde (MDA) was measured in wound tissue homogenate. Macroscopic and microscopic analysis of wounds demonstrated a significant wound healing activity shown by EEAM at two doses. Treatment of wounds with ointment containing EEAM caused significant surge in antioxidants activities and decrease in the MDA level of wound tissues compared with vehicle control. The immunohistochemical evaluation revealed conspicuous up-regulation of Hsp70 in treated wounds with EEAM, suggesting the anti-inflammatory effect of EEAM. EEAM exhibited a promising wound healing potential towards excisional wound models in rats. Copyright © 2015. Published by Elsevier Ltd.
Duplantier, Allen J.; van Hoek, Monique L.
2013-01-01
Diabetic patients often have ulcers on their lower-limbs that are infected by multiple biofilm-forming genera of bacteria, and the elimination of the biofilm has proven highly successful in resolving such wounds in patients. To that end, antimicrobial peptides have shown potential as a new anti-biofilm approach. The single human cathelicidin peptide LL-37 has been shown to have antimicrobial and anti-biofilm activity against multiple Gram-positive and Gram-negative human pathogens, and have wound-healing effects on the host. The combination of the anti-biofilm effect and wound-healing properties of LL-37 may make it highly effective in resolving polymicrobially infected wounds when topically applied. Such a peptide or its derivatives could be a platform from which to develop new therapeutic strategies to treat biofilm-mediated infections of wounds. This review summarizes known mechanisms that regulate the endogenous levels of LL-37 and discusses the anti-biofilm, antibacterial, and immunological effects of deficient vs. excessive concentrations of LL-37 within the wound environment. Here, we review recent advances in understanding the therapeutic potential of this peptide and other clinically advanced peptides as a potential topical treatment for polymicrobial infected wounds. PMID:23840194
MicroCT angiography detects vascular formation and regression in skin wound healing
Urao, Norifumi; Okonkwo, Uzoagu A.; Fang, Milie M.; Zhuang, Zhen W.; Koh, Timothy J.; DiPietro, Luisa A.
2016-01-01
Properly regulated angiogenesis and arteriogenesis are essential for effective wound healing. Tissue injury induces robust new vessel formation and subsequent vessel maturation, which involves vessel regression and remodeling. Although formation of functional vasculature is essential for healing, alterations in vascular structure over the time course of skin wound healing are not well understood. Here, using high-resolution ex vivo X-ray micro-computed tomography (microCT), we describe the vascular network during healing of skin excisional wounds with highly detailed three-dimensional (3D) reconstructed images and associated quantitative analysis. We found that relative vessel volume, surface area and branching number are significantly decreased in wounds from day 7 to day 14 and 21. Segmentation and skeletonization analysis of selected branches from high-resolution images as small as 2.5 μm voxel size show that branching orders are decreased in the wound vessels during healing. In histological analysis, we found that the contrast agent fills mainly arterioles, but not small capillaries nor large veins. In summary, high-resolution microCT revealed dynamic alterations of vessel structures during wound healing. This technique may be useful as a key tool in the study of the formation and regression of wound vessels. PMID:27009591
Chen, Chun-Yuan; Rao, Shan-Shan; Ren, Lu; Hu, Xiong-Ke; Tan, Yi-Juan; Hu, Yin; Luo, Juan; Liu, Yi-Wei; Yin, Hao; Huang, Jie; Cao, Jia; Wang, Zhen-Xing; Liu, Zheng-Zhao; Liu, Hao-Ming; Tang, Si-Yuan; Xu, Ran; Xie, Hui
2018-01-01
Chronic non-healing wounds represent one of the most common complications of diabetes and need advanced treatment strategies. Exosomes are key mediators of cell paracrine action and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of exosomes from human urine-derived stem cells (USC-Exos) on diabetic wound healing and the underlying mechanism. Methods: USCs were characterized by flow cytometry and multipotent differentiation potential analyses. USC-Exos were isolated from the conditioned media of USCs and identified by transmission electron microscopy and flow cytometry. A series of functional assays in vitro were performed to assess the effects of USC-Exos on the activities of wound healing-related cells. Protein profiles in USC-Exos and USCs were examined to screen the candidate molecules that mediate USC-Exos function. The effects of USC-Exos on wound healing in streptozotocin-induced diabetic mice were tested by measuring wound closure rates, histological and immunofluorescence analyses. Meanwhile, the role of the candidate protein in USC-Exos-induced regulation of angiogenic activities of endothelial cells and diabetic wound healing was assessed. Results: USCs were positive for CD29, CD44, CD73 and CD90, but negative for CD34 and CD45. USCs were able to differentiate into osteoblasts, adipocytes and chondrocytes. USC-Exos exhibited a cup- or sphere-shaped morphology with a mean diameter of 51.57 ± 2.93 nm and positive for CD63 and TSG101. USC-Exos could augment the functional properties of wound healing-related cells including the angiogenic activities of endothelial cells. USC-Exos were enriched in the proteins that are involved in regulation of wound healing-related biological processes. Particularly, a pro-angiogenic protein called deleted in malignant brain tumors 1 (DMBT1) was highly expressed in USC-Exos. Further functional assays showed that DMBT1 protein was required for USC-Exos-induced promotion of angiogenic responses of cultured endothelial cells, as well as angiogenesis and wound healing in diabetic mice. Conclusion: Our findings suggest that USC-Exos may represent a promising strategy for diabetic soft tissue wound healing by promoting angiogenesis via transferring DMBT1 protein. PMID:29556344
Guo, Rui; Chai, Linlin; Chen, Liang; Chen, Wenguang; Ge, Liangpeng; Li, Xiaoge; Li, Hongli; Li, Shirong; Cao, Chuan
2015-06-01
Epidermal stem cells could contribute to skin repair through the migration of cells from the neighboring uninjured epidermis, infundibulum, hair follicle, or sebaceous gland. However, little is known about the factors responsible for the complex biological processes in wound healing. Herein, we will show that the attracting chemokine, SDF-1/CXCR4, is a major regulator involved in the migration of epidermal stem cells during wound repair. We found that the SDF-1 levels were markedly increased at the wound margins following injury and CXCR4 expressed in epidermal stem cells and proliferating epithelial cells. Blocking the SDF-1/CXCR4 axis resulted in a significant reduction in epidermal stem cell migration toward SDF-1 in vitro and delayed wound healing in vivo, while an SDF-1 treatment enhanced epidermal stem cell migration and proliferation and accelerated wound healing. These results provide direct evidence that SDF-1 promotes epidermal stem cell migration, accelerates skin regeneration, and makes the development of new regenerative therapeutic strategies for wound healing possible.
Muresan, Ximena Maria; Sticozzi, Claudia; Belmonte, Giuseppe; Savelli, Vinno; Evelson, Pablo; Valacchi, Giuseppe
2018-06-01
Scavenger receptor B1 (SR-B1) is a trans-membrane protein, involved in tissue reverse cholesterol transport. Several studies have demonstrated that SR-B1 is also implicated in other physiological processes, such as bacteria and apoptotic cells recognition and regulation of intracellular tocopherol and carotenoids levels. Among the tissues where it is localized, SR-B1 has been shown to be significantly expressed in human epidermis. Our group has demonstrated that SR-B1 levels are down-regulated in human cultured keratinocytes by environmental stressors, such as cigarette smoke, via cellular redox imbalance. Our present study aimed to investigate whether such down-regulation was confirmed in a 3D skin model and under other environmental challengers such as particulate matter and ozone. We also investigated the association between oxidation-induced SR-B1 modulation and impaired wound closure. The data obtained showed that not only cigarette, but also the other environmental stressors reduced SR-B1 expression in epidermal cutaneous tissues and that this effect might be involved in impaired wound healing. Published by Elsevier B.V.
PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing.
Chereddy, Kiran Kumar; Her, Charles-Henry; Comune, Michela; Moia, Claudia; Lopes, Alessandra; Porporato, Paolo E; Vanacker, Julie; Lam, Martin C; Steinstraesser, Lars; Sonveaux, Pierre; Zhu, Huijun; Ferreira, Lino S; Vandermeulen, Gaëlle; Préat, Véronique
2014-11-28
Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Poly (lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. LL37 is an endogenous human host defense peptide that modulates wound healing and angiogenesis and fights infection. Hence, we hypothesized that the administration of LL37 encapsulated in PLGA nanoparticles (PLGA-LL37 NP) promotes wound closure due to the sustained release of both LL37 and lactate. In full thickness excisional wounds, the treatment with PLGA-LL37 NP significantly accelerated wound healing compared to PLGA or LL37 administration alone. PLGA-LL37 NP-treated wounds displayed advanced granulation tissue formation by significant higher collagen deposition, re-epithelialized and neovascularized composition. PLGA-LL37 NP improved angiogenesis, significantly up-regulated IL-6 and VEGFa expression, and modulated the inflammatory wound response. In vitro, PLGA-LL37 NP induced enhanced cell migration but had no effect on the metabolism and proliferation of keratinocytes. It displayed antimicrobial activity on Escherichia coli. In conclusion, we developed a biodegradable drug delivery system that accelerated healing processes due to the combined effects of lactate and LL37 released from the nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.
Simulation of lung alveolar epithelial wound healing in vitro.
Kim, Sean H J; Matthay, Michael A; Mostov, Keith; Hunt, C Anthony
2010-08-06
The mechanisms that enable and regulate alveolar type II (AT II) epithelial cell wound healing in vitro and in vivo remain largely unknown and need further elucidation. We used an in silico AT II cell-mimetic analogue to explore and better understand plausible wound healing mechanisms for two conditions: cyst repair in three-dimensional cultures and monolayer wound healing. Starting with the analogue that validated for key features of AT II cystogenesis in vitro, we devised an additional cell rearrangement action enabling cyst repair. Monolayer repair was enabled by providing 'cells' a control mechanism to switch automatically to a repair mode in the presence of a distress signal. In cyst wound simulations, the revised analogue closed wounds by adhering to essentially the same axioms available for alveolar-like cystogenesis. In silico cell proliferation was not needed. The analogue recovered within a few simulation cycles but required a longer recovery time for larger or multiple wounds. In simulated monolayer wound repair, diffusive factor-mediated 'cell' migration led to repair patterns comparable to those of in vitro cultures exposed to different growth factors. Simulations predicted directional cell locomotion to be critical for successful in vitro wound repair. We anticipate that with further use and refinement, the methods used will develop as a rigorous, extensible means of unravelling mechanisms of lung alveolar repair and regeneration.
Chung, Yih-Lin; Pui, Newman N M
2015-01-01
We hypothesized the histone deacetylase inhibitor phenylbutyrate (PB) has beneficial effects on radiation-induced injury by modulating the expression of DNA repair and wound healing genes. Hamsters received a radiosurgical dose of radiation (40 Gy) to the cheek and were treated with varying PB dosing regimens. Gross alteration of the irradiated cheeks, eating function, histological changes, and gene expression during the course of wound healing were compared between treatment groups. Pathological analysis showed decreased radiation-induced mucositis, facilitated epithelial cell growth, and preventing ulcerative wound formation, after short-term PB treatment, but not after vehicle or sustained PB. The radiation-induced wound healing gene expression profile exhibited a sequential transition from the inflammatory and DNA repair phases to the tissue remodeling phase in the vehicle group. Sustained PB treatment resulted in a prolonged wound healing gene expression profile and delayed the wound healing process. Short-term PB shortened the duration of inflammatory cytokine expression, triggered repeated pulsed expression of cell cycle and DNA repair-regulating genes, and promoted earlier oscillatory expression of tissue remodeling genes. Distinct gene expression patterns between sustained and short-term treatment suggest dynamic profiling of wound healing gene expression can be an important part of a biological therapeutic strategy to mitigate radiation-related tissue injury. © 2015 by the Wound Healing Society.
Stefanovic, Branko
2013-01-01
Type I collagen is the most abundant protein in human body. The protein turns over slowly and its replacement synthesis is low. However, in wound healing or in pathological fibrosis the cells can increase production of type I collagen several hundred fold. This increase is predominantly due to posttranscriptional regulation, including increased half-life of collagen messenger RNAs (mRNAs) and their increased translatability. Type I collagen is composed of two α1 and one α2 polypeptides that fold into a triple helix. This stoichiometry is strictly regulated to prevent detrimental synthesis of α1 homotrimers. Collagen polypeptides are co-translationally modified and the rate of modifications is in dynamic equilibrium with the rate of folding, suggesting coordinated translation of collagen α1(I) and α2(I) polypeptides. Collagen α1(I) mRNA has in the 3' untranslated region (UTR) a C-rich sequence that binds protein αCP, this binding stabilizes the mRNA in collagen producing cells. In the 5' UTR both collagen mRNAs have a conserved stem-loop (5' SL) structure. The 5' SL is critical for high collagen expression, knock in mice with disruption of the 5' SL are resistant to liver fibrosis. the 5' SL binds protein LARP6 with strict sequence specificity and high affinity. LARP6 recruits RNA helicase A to facilitate translation initiation and associates collagen mRNAs with vimentin and nonmuscle myosin filaments. Binding to vimentin stabilizes collagen mRNAs, while nonmuscle myosin regulates coordinated translation of α1(I) and α2(I) mRNAs. When nonmuscle myosin filaments are disrupted the cells secrete only α1 homotrimers. Thus, the mechanism governing high collagen expression involves two RNA binding proteins and development of cytoskeletal filaments. Copyright © 2013 John Wiley & Sons, Ltd.
Hayes, Matthew A.; Feechan, Angela; Dry, Ian B.
2010-01-01
Biotrophic fungal and oomycete pathogens alter carbohydrate metabolism in infected host tissues. Symptoms such as elevated soluble carbohydrate concentrations and increased invertase activity suggest that a pathogen-induced carbohydrate sink is established. To identify pathogen-induced regulators of carbohydrate sink strength, quantitative real-time polymerase chain reaction was used to measure transcript levels of invertase and hexose transporter genes in biotrophic pathogen-infected grapevine (Vitis vinifera) leaves. The hexose transporter VvHT5 was highly induced in coordination with the cell wall invertase gene VvcwINV by powdery and downy mildew infection. However, similar responses were also observed in response to wounding, suggesting that this is a generalized response to stress. Analysis of the VvHT5 promoter region indicated the presence of multiple abscisic acid (ABA) response elements, suggesting a role for ABA in the transition from source to sink under stress conditions. ABA treatment of grape leaves was found to reproduce the same gene-specific transcriptional changes as observed under biotic and abiotic stress conditions. Furthermore, the key regulatory ABA biosynthetic gene, VvNCED1, was activated under these same stress conditions. VvHT5 promoter::β-glucuronidase-directed expression in transgenic Arabidopsis (Arabidopsis thaliana) was activated by infection with powdery mildew and by ABA treatment, and the expression was closely associated with vascular tissue adjacent to infected regions. Unlike VvHT1 and VvHT3, which appear to be predominantly involved in hexose transport in developing leaves and berries, VvHT5 appears to have a specific role in enhancing sink strength under stress conditions, and this is controlled through ABA. Our data suggest a central role for ABA in the regulation of VvcwINV and VvHT5 expression during the transition from source to sink in response to infection by biotrophic pathogens. PMID:20348211
Sato, Kentaro; Umesono, Yoshihiko; Mochii, Makoto
2018-01-15
Rapid wound healing and subsequent formation of the apical epithelial cap (AEC) are believed to be required for successful appendage regeneration in amphibians. Despite the significant role of AEC in limb regeneration, its role in tail regeneration and the mechanisms that regulate the wound healing and AEC formation are not well understood. We previously identified Xenopus laevis es1, which is preferentially expressed in wounded regions, including the AEC after tail regeneration. In this study we established and characterized transgenic Xenopus laevis lines harboring the enhanced green fluorescent protein (EGFP) gene under control of an es1 gene regulatory sequence (es1:egfp). The EGFP reporter expression was clearly seen in several regions of the embryo and then declined to an undetectable level in larvae, recapitulating the endogenous es1 expression. After amputation of the tadpole tail, EGFP expression was re-activated at the edge of the stump epidermis and then increased in the wound epidermis (WE) covering the amputation surface. As the stump started to regenerate, the EGFP expression became restricted to the most distal epidermal region, including the AEC. EGFP was preferentially expressed in the basal or deep cells but not in the superficial cells of the WE and AEC. We performed a small-scale pharmacological screening for chemicals that affected the expression of EGFP in the stump epidermis after tail amputation. The EGFP expression was attenuated by treatment with an inhibitor for ERK, TGF-β or reactive oxygen species (ROS) signaling. These treatments also impaired wound closure of the amputation surface, suggesting that the three signaling activities are required for es1 expression in the WE and successful wound healing after tail amputation. These findings showed that es1:egfp Xenopus laevis should be a useful tool to analyze molecular mechanisms regulating wound healing and appendage regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately.
Shi, Yan; Shu, Bin; Yang, Ronghua; Xu, Yingbin; Xing, Bangrong; Liu, Jian; Chen, Lei; Qi, Shaohai; Liu, Xusheng; Wang, Peng; Tang, Jinming; Xie, Julin
2015-06-16
Wnt and Notch signaling pathways are critically involved in relative cell fate decisions within the development of cutaneous tissues. Moreover, several studies identified the above two pathways as having a significant role during wound healing. However, their biological effects during cutaneous tissues repair are unclear. We employed a self-controlled model (Sprague-Dawley rats with full-thickness skin wounds) to observe the action and effect of Wnt/β-catenin and Notch signalings in vivo. The quality of wound repair relevant to the gain/loss-of-function Wnt/β-catenin and Notch activation was estimated by hematoxylin-and-eosin and Masson staining. Immunofluorescence analysis and Western blot analysis were used to elucidate the underlying mechanism of the regulation of Wnt and Notch signaling pathways in wound healing. Meanwhile, epidermal stem cells (ESCs) were cultured in keratinocyte serum-free medium with Jaggedl or in DAPT (N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl) to investigate whether the interruption of Notch signaling contributes to the expression of Wnt/β-catenin signaling. The results showed that in vivo the gain-of-function Wnt/β-catenin and Notch activation extended the ability to promote wound closure. We further determined that activation or inhibition of Wnt signaling and Notch signaling can affect the proliferation of ESCs, the differentiation and migration of keratinocytes, and follicle regeneration by targeting c-Myc and Hes1, which ultimately lead to enhanced or delayed wound healing. Furthermore, Western blot analysis suggested that the two pathways might interact in vivo and in vitro. These results suggest that Wnt and Notch signalings play important roles in cutaneous repair by targeting c-Myc and Hes1 separately. What's more, interaction between the above two pathways might act as a vital role in regulation of wound healing.
Bajaj, Gaurav; Guha, Gunjan; Wang, Zhixing; Jang, Hyo-Sang; Leid, Mark; Indra, Arup Kumar; Ganguli-Indra, Gitali
2012-01-01
Background COUP-TF interacting protein 2 [(Ctip2), also known as Bcl11b] is an important regulator of skin homeostasis, and is overexpressed in head and neck cancer. Ctip2ep−/− mice, selectively ablated for Ctip2 in epidermal keratinocytes, exhibited impaired terminal differentiation and delayed epidermal permeability barrier (EPB) establishment during development, similar to what was observed in Ctip2 null (Ctip2−/−) mice. Considering that as an important role of Ctip2, and the fact that molecular networks which underlie cancer progression partially overlap with those responsible for tissue remodeling, we sought to determine the role of Ctip2 during cutaneous wound healing. Methodology/Principal Findings Full thickness excisional wound healing experiments were performed on Ctip2L2/L2 and Ctip2ep−/− animals per time point and used for harvesting samples for histology, immunohistochemistry (IHC) and immunoblotting. Results demonstrated inherent defects in proliferation and migration of Ctip2 lacking keratinocytes during re-epithelialization. Mutant mice exhibited reduced epidermal proliferation, delayed keratinocyte activation, altered cell-cell adhesion and impaired ECM development. Post wounding, Ctip2ep−/− mice wounds displayed lack of E-Cadherin suppression in the migratory tongue, insufficient expression of alpha smooth muscle actin (alpha SMA) in the dermis, and robust induction of K8. Importantly, dysregulated expression of several hair follicle (HF) stem cell markers such as K15, NFATc1, CD133, CD34 and Lrig1 was observed in mutant skin during wound repair. Conclusions/Significance Results confirm a cell autonomous role of keratinocytic Ctip2 to modulate cell migration, proliferation and/or differentiation, and to maintain HF stem cells during cutaneous wounding. Furthermore, Ctip2 in a non-cell autonomous manner regulated granulation tissue formation and tissue contraction during wound closure. PMID:22383956
Kawarada, Osami; Zen, Kan; Hozawa, Koji; Ayabe, Shinobu; Huang, Hsuan-Li; Choi, Donghoon; Kim, Su Hong; Kim, Jiyoun; Kato, Taku; Tsubakimoto, Yoshinori; Nakama, Tasuya; Ichihashi, Shigeo; Fujimura, Naoki; Higashimori, Akihiro; Fujihara, Masahiko; Sato, Tomoyasu; Yan, Bryan Ping-Yen; Pang, Skyi Yin-Chun; Wongwanit, Chumpol; Leong, Yew Pung; Chua, Benjamin; George, Robbie K; Yokoi, Yoshiaki; Motomura, Hisashi; Obara, Hideaki
2018-04-13
The burden of peripheral artery disease (PAD) and diabetes in Asia is projected to increase. Asia also has the highest incidence and prevalence of end-stage renal disease (ESRD) in the world. Therefore, most Asian patients with PAD might have diabetic PAD or ESRD-related PAD. Given these pandemic conditions, critical limb ischemia (CLI) with diabetes or ESRD, the most advanced and challenging subset of PAD, is an emerging public health issue in Asian countries. Given that diabetic and ESRD-related CLI have complex pathophysiology that involve arterial insufficiency, bacterial infection, neuropathy, and foot deformity, a coordinated approach that involves endovascular therapy and wound care is vital. Recently, there is increasing interaction among cardiologists, vascular surgeons, radiologists, orthopedic surgeons, and plastic surgeons beyond specialty and country boundaries in Asia. This article is intended to share practical Asian multidisciplinary consensus statement on the collaboration between endovascular therapy and wound care for CLI.
48 CFR 1604.7001 - Coordination of benefits clause.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Coordination of benefits clause. 1604.7001 Section 1604.7001 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Coordination of...
48 CFR 1604.7001 - Coordination of benefits clause.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Coordination of benefits clause. 1604.7001 Section 1604.7001 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Coordination of...
48 CFR 1604.7001 - Coordination of benefits clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Coordination of benefits clause. 1604.7001 Section 1604.7001 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Coordination of...
The Influence of Anger Expression on Wound Healing
Gouin, Jean-Philippe; Kiecolt-Glaser, Janice K.; Malarkey, William B.; Glaser, Ronald
2008-01-01
Certain patterns of anger expression have been associated with maladaptive alterations in cortisol secretion, immune functioning, and surgical recovery. We hypothesized that outward and inward anger expression and lack of anger control would be associated with delayed wound healing. A sample of 98 community-dwelling participants received standardized blister wounds on their non-dominant forearm. After blistering, the wounds were monitored daily for eight days to assess speed of repair. Logistic regression was used to distinguish fast and slow healers based on their anger expression pattern. Individuals exhibiting lower levels of anger control were more likely to be categorized as slow healers. The anger control variable predicted wound repair over and above differences in hostility, negative affectivity, social support, and health behaviors. Furthermore, participants with lower levels of anger control exhibited higher cortisol reactivity during the blistering procedure. This enhanced cortisol secretion was in turn related to longer time to heal. These findings suggest that the ability to regulate the expression of one’s anger has a clinically relevant impact on wound healing. PMID:18078737
Pharmacological modulation of wound healing in experimental burns.
Jurjus, Abdo; Atiyeh, Bishara S; Abdallah, Inaya M; Jurjus, Rosalyne A; Hayek, Shady N; Jaoude, Marlene Abou; Gerges, Alice; Tohme, Rania A
2007-11-01
Factors involved in wound healing and their interdependence are not yet fully understood; nevertheless, new prospects for therapy to favor speedy and optimal healing are emerging. Reports about wound healing modulation by local application of simple and natural agents abound even in the recent literature, however, most are anecdotal and lack solid scientific evidence. We describe the effect of silver sulfadiazine and moist exposed burn ointment (MEBO), a recently described burn ointment of herbal origin, on mast cells and several wound healing cytokines (bFGF, IL-1, TGF-beta, and NGF) in the rabbit experimental burn model. The results demonstrate that various inflammatory cells, growth factors and cytokines present in the wound bed may be modulated by application of local agents with drastic effects on their expression dynamics with characteristic temporal and spatial regulation and changes in the expression pattern. Such data are likely to be important for the development of novel strategies for wound healing since they shed some light on the potential formulations of temporally and combinatory optimized therapeutic regimens.
Bitto, Alessandra; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Mannino, Federica; Vaccaro, Mario; Arcoraci, Vincenzo; Aliquò, Federica; Minutoli, Letteria; Colonna, Michele R; Galeano, Maria Rosaria; Brines, Michael; De Ponte, Chiara; Collino, Massimo; Squadrito, Francesco; Altavilla, Domenica
2018-02-01
Diabetes is characterized by poor wound healing which currently lacks an efficacious treatment. The innate repair receptor (IRR) is a master regulator of tissue protection and repair which is expressed as a response injury or metabolic stress, including in diabetes. Activation of the IRR might provide benefit for diabetic wound healing. A specific IRR agonist cibinetide was administered in an incisional wound healing model performed mice with genetic diabetes (db + /db + ) and compared to the normal wild-type. Animals were treated daily with cibinetide (30μg/kg/s.c.) or vehicle and euthanized 3, 7, and 14days after the injury to quantitate vascular endothelial growth factor (VEGF), malondialdehyde (MAL), phospho-Akt (pAkt), phospho e-NOS (p-eNOS), and nitrite/nitrate content within the wound. Additional evaluations included quantification of skin histological change, angiogenesis, scar strength, and time to complete wound closure. Throughout the wound healing process diabetic animals treated with vehicle exhibited increased wound MAL with reduced VEGF, pAkt, peNOS and nitrite/nitrate, all associated with poor re-epitheliziation, angiogenesis, and wound breaking strength. Cibenitide administration significantly improved these abnormalities. The results suggest that cibinetide-mediated IRR activation may represent an interesting strategy to treat diabetes-associated wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.
Arul, V; Masilamoni, J G; Jesudason, E P; Jaji, P J; Inayathullah, M; Dicky John, D G; Vignesh, S; Jayakumar, R
2012-05-01
Impaired wound healing in diabetes is a well-documented phenomenon. Emerging data favor the involvement of free radicals in the pathogenesis of diabetic wound healing. We investigated the beneficial role of the sustained release of reactive oxygen species (ROS) in diabetic dermal wound healing. In order to achieve the sustained delivery of ROS in the wound bed, we have incorporated glucose oxidase in the collagen matrix (GOIC), which is applied to the healing diabetic wound. Our in vitro proteolysis studies on incorporated GOIC show increased stability against the proteases in the collagen matrix. In this study, GOIC film and collagen film (CF) are used as dressing material on the wound of streptozotocin-induced diabetic rats. A significant increase in ROS (p < 0.05) was observed in the fibroblast of GOIC group during the inflammation period compared to the CF and control groups. This elevated level up regulated the antioxidant status in the granulation tissue and improved cellular proliferation in the GOIC group. Interestingly, our biochemical parameters nitric oxide, hydroxyproline, uronic acid, protein, and DNA content in the healing wound showed that there is an increase in proliferation of cells in GOIC when compared to the control and CF groups. In addition, evidence from wound contraction and histology reveals faster healing in the GOIC group. Our observations document that GOIC matrices could be effectively used for diabetic wound healing therapy.
Chemokine Involvement in Fetal and Adult Wound Healing
Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.
2015-01-01
Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680
Survey of Wound-Healing Centers and Wound Care Units in China.
Jiang, Yufeng; Xia, Lei; Jia, Lijing; Fu, Xiaobing
2016-09-01
The purpose of this study is to report the Chinese experience of establishing hospital-based wound care centers over 15 years. A total of 69 wound-healing centers (WHCs) and wound care units (WCUs) were involved. Questionnaires were diverged to the principal directors of these sites; data extracted for this study included origin, year of establishment, medical staff, degree of hospitals, wound etiology, wound-healing rate, hospital stay, and outcomes data. The period of data extraction was defined as before and after 1 year of the establishment of WHCs and WCUs. The earliest WHC was established in 1999, and from 2010 the speeds of establishing WHCs and WCUs rapidly increased. The majority of WHCs were divisions of burn departments, and all WHCs came from departments of outpatient dressing rooms. Full-time multidisciplinary employees of WHCs differed greatly to WCUs. Types of wound and outcomes vary with those of centers reported from Western countries and the United States. Improvement in wound healing caused by the establishment of WHCs and WCUs in China occurred without doubt. Some advices include the following: rearrange and reorganize the distribution of WHCs and WCUs; enact and generalize Chinese guidelines for chronic wounds; utilize medical resources reasonably; improve multidisciplinary medical staff team; draw up and change some medical and public policies and regulations. © The Author(s) 2015.
Wound healing potential of adipose tissue stem cell extract.
Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho
2017-03-25
Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) ALASKA OCCUPANCY AND USE Alaska Native Allotments For Certain Veterans Personal... wounded in action and later died as a direct consequence of that wound, as determined and certified by the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) ALASKA OCCUPANCY AND USE Alaska Native Allotments For Certain Veterans Personal... wounded in action and later died as a direct consequence of that wound, as determined and certified by the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) ALASKA OCCUPANCY AND USE Alaska Native Allotments For Certain Veterans Personal... wounded in action and later died as a direct consequence of that wound, as determined and certified by the...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) ALASKA OCCUPANCY AND USE Alaska Native Allotments For Certain Veterans Personal... wounded in action and later died as a direct consequence of that wound, as determined and certified by the...
Outcomes of neuroischemic wounds treated by a multidisciplinary amputation prevention service.
Vartanian, Shant M; Robinson, Kristin D; Ofili, Kene; Eichler, Charles M; Hiramoto, Jade S; Reyzelman, Alex M; Conte, Michael S
2015-04-01
Multidisciplinary amputation prevention teams decrease the frequency of major amputations by increasing the use of revascularization procedures and minor amputations. The outcomes of wound healing, wound recurrence, and ambulatory status are assumed to be improved but are not routinely reported. This study investigates the midterm outcomes of neuroischemic wounds treated by our multidisciplinary team. A retrospective review of patients with neuroischemic wounds treated at a single institution amputation prevention clinic from March 2012 to July 2013. Patient demographics, wound characteristics, procedural details, and clinical and functional outcomes were reviewed. Clinical end points under study included time to wound healing, reulceration rate, and ambulatory status. Over 16 months, there were 202 new patients and 1,355 clinic visits. Ninety-one limbs from 89 patients were treated for complex neuroischemic wounds. In 67% (61 of 91) of limbs, wounds were present for >6 weeks before referral. A history of previous revascularization was present in 39% (31 of 91), and 28% (22 of 91) had a previous minor amputation. Forty-one percent of wounds (38 of 91) were limited to the toes or the forefoot whereas 24% (22 of 91) involved the hindfoot or ankle. A total of 151 podiatric and 86 vascular interventions were performed, with an equal distribution of endovascular and open revascularizations. Complete healing was observed for 59% of wounds (54 of 91) over the observation period (median follow up, 207 days; range 56-561 days), and the average time to full healing was 12 weeks. Hindfoot wounds were predictive of failure to heal (odds ratio, 0.21; P < 0.01; 95% confidence interval, 0.06-0.68). Nineteen percent of patients (17 of 91) developed a new wound in the ipsilateral leg during follow-up. Three major amputations were performed (2 below-knee amputation and 1 above-knee amputation) for a major/minor amputation ratio of 0.06. Ambulatory status was preserved or improved in 74% (67 of 91) of patients. The 30-day readmission rate was 11%, which was lower than that observed (21%) in a contemporaneous but all-inclusive population of lower extremity revascularization procedures performed at our institution. Multidisciplinary limb salvage teams effectively heal wounds and maintain ambulatory status in patients with limb-threatening neuroischemic wounds. Patient specific factors, such as hindfoot or ankle wounds, can adversely influence the outcome. Even with aggressive care, healing can be prolonged and a substantial proportion of patients can be expected to have a recurrence, making subsequent surveillance mandatory. Our data also suggest that a coordinated amputation prevention program may help to minimize hospital readmissions in this high-risk population. Copyright © 2015 Elsevier Inc. All rights reserved.
Desforges, Bénédicte; Curmi, Patrick A.; Bounedjah, Ouissame; Nakib, Samir; Hamon, Loic; De Bandt, Jean-Pascal; Pastré, David
2013-01-01
In the organism, quiescent epithelial cells have the potential to resume cycling as a result of various stimuli, including wound healing or oxidative stress. Because quiescent cells have a low polyamine level, resuming their growth requires an increase of their intracellular polyamine levels via de novo polyamine synthesis or their uptake from plasma. Another alternative, explored here, is an intercellular exchange with polyamine-rich cycling cells via gap junctions. We show that polyamines promote gap junction communication between proliferating cells by promoting dynamical microtubule plus ends at the cell periphery and thus allow polyamine exchange between cells. In this way, cycling cells favor regrowth in adjacent cells deprived of polyamines. In addition, intercellular interactions mediated by polyamines can coordinate the translational response to oxidative stress through the formation of stress granules. Some putative in vivo consequences of polyamine-mediated intercellular interactions are also discussed regarding cancer invasiveness and tissue regeneration. PMID:23515223
Urata, Yuko; Yamashita, Wataru; Inoue, Takeshi; Agata, Kiyokazu
2018-06-14
Adult newts can regenerate large parts of their brain from adult neural stem cells (NSCs), but how adult NSCs reorganize brain structures during regeneration remains unclear. In development, elaborate brain structures are produced under broadly coordinated regulations of embryonic NSCs in the neural tube, whereas brain regeneration entails exquisite control of the reestablishment of certain brain parts, suggesting a yet-unknown mechanism directs NSCs upon partial brain excision. Here we report that upon one-quarter excision of the adult newt ( Pleurodeles waltl ) mesencephalon, active participation of local NSCs around specific brain subregions' boundaries leads to some imperfect and some perfect brain regeneration along an individual's rostrocaudal axis. Regeneration phenotypes depend on how the wound closing occurs using local NSCs, and perfect regeneration replicates development-like processes but takes more than one year. Our findings indicate that newt brain regeneration is supported by modularity of boundary-domain NSCs with self-organizing ability in neighboring fields. © 2018. Published by The Company of Biologists Ltd.
Lim, Natalie Sheng Jie; Sham, Adeline; Chee, Stella Min Ling; Chan, Casey; Raghunath, Michael
2016-09-01
Granulation tissue formation requires a robust angiogenic response. As granulation tissue develops, collagen fibers are deposited and compacted. Forces generated in the wake of this process drive wound contraction to reduce the wound area. In diabetics, both angiogenesis and wound contraction are diminished leading to impaired wound healing. To emulate this pathology and to address it pharmacologically, we developed a wound healing model in the diabetic Zucker fatty rat and tested a topical proangiogenic strategy combining antifungal agent ciclopirox olamine (CPX) and lysophospholipid sphingosine-1-phosphate (S1P) to promote diabetic wound closure. In vitro, we demonstrated that CPX + S1P up-regulates a crucial driver of angiogenesis, hypoxia-inducible factor-1, in endothelial cells. Injection of CPX + S1P into subcutaneously implanted sponges in experimental rats showed, in an additive manner, a fivefold increased endothelial infiltration and lectin-perfused vessel length. We developed a splinted diabetic rodent model to achieve low wound contraction rates that are characteristic for the healing mode of diabetic ulcers in humans. We discovered specific dorsal sites that allowed for incremental full-thickness excisional wound depths from 1 mm (superficial) to 3 mm (deep). This enabled us to bring down wound contraction from 51% in superficial wounds to 8% in deep wounds. While the effects of topical gel treatment of CPX + S1P were masked by the rodent-characteristic dominant contraction in superficial wounds, they became clearly evident in deep diabetic wounds. Here, a fivefold increase of functional large vessels resulted in accelerated granulation tissue formulation, accompanied by a 40% increase of compacted thick collagen fibers. This was associated with substantially reduced matrix metalloproteinase-3 and -13 expression. These findings translated into a fivefold increase in granulation-driven contraction, promoting diabetic wound closure. With CPX and S1P analogues already in clinical use, their combination presents itself as an attractive proangiogenic treatment to be repurposed for diabetic wound healing. © 2016 by the Wound Healing Society.
microRNA–200b as a Switch for Inducible Adult Angiogenesis
Sinha, Mithun; Ghatak, Subhadip; Roy, Sashwati
2015-01-01
Abstract Significance: Angiogenesis is the process by which new blood vessels develop from a pre-existing vascular system. It is required for physiological processes such as developmental biology and wound healing. Angiogenesis also plays a crucial role in pathological conditions such as tumor progression. The underlying importance of angiogenesis necessitates a highly regulated process. Recent Advances: Recent works have demonstrated that the process of angiogenesis is regulated by small noncoding RNA molecules called microRNAs (miRs). These miRs, collectively referred to as angiomiRs, have been reported to have a profound effect on the process of angiogenesis by acting as either pro-angiogenic or anti-angiogenic regulators. Critical Issues: In this review, we will discuss the role of miR-200b as a regulator of angiogenesis. Once the process of angiogenesis is complete, anti-angiogenic miR-200b has been reported to provide necessary braking. Downregulation of miR-200b has been reported across various tumor types, as deregulated angiogenesis is necessary for tumor development. Transient downregulation of miR-200b in wounds drives wound angiogenesis. Future Directions: New insights and understanding of the molecular mechanism of regulation of angiogenesis by miR-200b has opened new avenues of possible therapeutic interventions to treat angiogenesis-related patho-physiological conditions. Antioxid. Redox Signal. 22, 1257–1272. PMID:25761972
Stephens, P; Genever, P G; Wood, E J; Raxworthy, M J
1997-01-01
Actin cables have been reported to act in vivo as contractile 'purse strings' capable of closing embryonic wounds through generation of circumferential tension. Furthermore, their involvement in wounds within in vitro model systems suggests that actin cable contraction may be an important mechanism involved in the process of wound closure. The aim of this study therefore, was to investigate the appearance of actin cables in a contracting fibroblast populated collagen lattice, an in vitro model of events associated with wound contraction. Utilising this in vitro model, the time-course of actin cable production was investigated and the involvement of integrin receptors analysed using immunofluorescent labelling techniques. Over a period of hours distinct cellular cable-like structures developed at the edges of collagen lattices coinciding with the onset of contraction. Cellular organisation within the cable was evident as was polymerisation of actin microfilaments into elongated stress fibres forming a continuous cell-cell 'actin cable' around the circumference of the lattice. Immunolocalisation demonstrated that integrin receptor subunits beta 1 and alpha 2 but not alpha 5 were involved in apparent intimate cell-cell contact between juxtaposed fibroblasts within this actin cable. This study demonstrates the involvement of integrin receptors in actin cable formation within collagen lattice systems undergoing reorganisation. Such integrin involvement may enable participating cells to respond to the tensional status of their surrounding environment and via cell-cell communication, to permit a co-ordinated contraction of the cable. It is concluded that integrin receptor involvement in active actin cable contraction may be involved in the process of wound contraction.
Gowda, Santosh; Weinstein, David A; Blalock, Timothy D; Gandhi, Kavita; Mast, Bruce A; Chin, Gloria; Schultz, Gregory S
2015-10-01
A bipedicle ischaemic rat skin flap model was used to study the effects of daily topical applications of platelet-derived growth factor (PDGF) on the healing of ischaemic wounds. Levels of tumour necrosis factor-alpha (TNFA), interleukin 1-beta (IL1B) and both the latent and active forms of matrix metalloproteinase 2 (MMP2) and 9 (MMP9) were measured. Full-thickness wounds were made on a total of 72 adult male Sprague-Dawley rats. Each group of 18 rats with normal and ischaemic wounds received either vehicle or 0·01% recombinant PDGF-BB. Additional applications were made on the wounds on a daily basis. Wound areas were measured at 0, 1, 3, 5, 7 9 and 13 days after wounding. Ischaemia caused a delay in wound healing as well as an increase in TNFA, IL1B and both the pro and active forms of MMP2 and MMP9. PDGF accelerated the rate of wound healing in both normal and ischaemic wounds and negated the effect of ischaemia. PDGF reduced the TNFA concentration in both normal and ischaemic wounds, and the rate of wound healing closely resembled the pattern of TNFA protein expression. PDGF also reduced both the magnitude and duration of the increases in IL1B and both the pro and active forms of MMP2 and MMP9 induced by ischaemia. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair.
Chiquet, Matthias; Katsaros, Christos; Kletsas, Dimitris
2015-06-01
Fibroblasts are cells of mesenchymal origin. They are responsible for the production of most extracellular matrix in connective tissues and are essential for wound healing and repair. In recent years, it has become clear that fibroblasts from different tissues have various distinct traits. Moreover, wounds in the oral cavity heal under very special environmental conditions compared with skin wounds. Here, we reviewed the current literature on the various interconnected functions of gingival and mucoperiosteal fibroblasts during the repair of oral wounds. The MEDLINE database was searched with the following terms: (gingival OR mucoperiosteal) AND fibroblast AND (wound healing OR repair). The data gathered were used to compare oral fibroblasts with fibroblasts from other tissues in terms of their regulation and function during wound healing. Specifically, we sought answers to the following questions: (i) what is the role of oral fibroblasts in the inflammatory response in acute wounds; (ii) how do growth factors control the function of oral fibroblasts during wound healing; (iii) how do oral fibroblasts produce, remodel and interact with extracellular matrix in healing wounds; (iv) how do oral fibroblasts respond to mechanical stress; and (v) how does aging affect the fetal-like responses and functions of oral fibroblasts? The current state of research indicates that oral fibroblasts possess unique characteristics and tightly controlled specific functions in wound healing and repair. This information is essential for developing new strategies to control the intraoral wound-healing processes of the individual patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Up-Regulated Expression of AOS-LOXa and Increased Eicosanoid Synthesis in Response to Coral Wounding
Lõhelaid, Helike; Teder, Tarvi; Tõldsepp, Kadri; Ekins, Merrick; Samel, Nigulas
2014-01-01
In octocorals, a catalase–like allene oxide synthase (AOS) and an 8R-lipoxygenase (LOX) gene are fused together encoding for a single AOS-LOX fusion protein. Although the AOS-LOX pathway is central to the arachidonate metabolism in corals, its biological function in coral homeostasis is unclear. Using an acute incision wound model in the soft coral Capnella imbricata, we here test whether LOX pathway, similar to its role in plants, can contribute to the coral damage response and regeneration. Analysis of metabolites formed from exogenous arachidonate before and after fixed time intervals following wounding indicated a significant increase in AOS-LOX activity in response to mechanical injury. Two AOS-LOX isoforms, AOS-LOXa and AOS-LOXb, were cloned and expressed in bacterial expression system as active fusion proteins. Transcription levels of corresponding genes were measured in normal and stressed coral by qPCR. After wounding, AOS-LOXa was markedly up-regulated in both, the tissue adjacent to the incision and distal parts of a coral colony (with the maximum reached at 1 h and 6 h post wounding, respectively), while AOS-LOXb was stable. According to mRNA expression analysis, combined with detection of eicosanoid product formation for the first time, the AOS-LOX was identified as an early stress response gene which is induced by mechanical injury in coral. PMID:24551239
Kou, Xiaoxing; Xu, Xingtian; Chen, Chider; Sanmillan, Maria Laura; Cai, Tao; Zhou, Yanheng; Giraudo, Claudio; Le, Anh; Shi, Songtao
2018-03-14
Mesenchymal stem cells (MSCs) are capable of secreting exosomes, extracellular vesicles, and cytokines to regulate cell and tissue homeostasis. However, it is unknown whether MSCs use a specific exocytotic fusion mechanism to secrete exosomes and cytokines. We show that Fas binds with Fas-associated phosphatase-1 (Fap-1) and caveolin-1 (Cav-1) to activate a common soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-mediated membrane fusion mechanism to release small extracellular vesicles (sEVs) in MSCs. Moreover, we reveal that MSCs produce and secrete interleukin-1 receptor antagonist (IL-1RA) associated with sEVs to maintain rapid wound healing in the gingiva via the Fas/Fap-1/Cav-1 cascade. Tumor necrosis factor-α (TNF-α) serves as an activator to up-regulate Fas and Fap-1 expression via the nuclear factor κB pathway to promote IL-1RA release. This study identifies a previously unknown Fas/Fap-1/Cav-1 axis that regulates SNARE-mediated sEV and IL-1RA secretion in stem cells, which contributes to accelerated wound healing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Wound healing potential of adipose tissue stem cell extract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, You Kyung; Ban, Jae-Jun; Lee, Mijung
Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed wasmore » examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. - Highlights: • Topical application of ATSC-Ex results in faster wound closure than normal wound in vivo. • ATSC-Ex enhances dermal fibroblast proliferation, migration and extracellular matrix production. • This study suggests that ATSC-Ex is an effective source to augment wound healing.« less
Schwartz, Anne J; Wilson, David A; Keegan, Kevin G; Ganjam, Venkataseshu K; Sun, Yao; Weber, Karl T; Zhang, Jiakun
2002-11-01
To determine significant molecular and cellular factors responsible for differences in second-intention healing in thoracic and metacarpal wounds of horses. 6 adult mixed-breed horses. A full-thickness skin wound on the metacarpus and another such wound on the pectoral region were created, photographed, and measured, and tissue was harvested from these sites weekly for 4 weeks. Gene expression of type-I collagen, transforming growth factor (TGF)-beta1, matrix metalloproteinase (MMP)-1, and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by quantitative in situ hybridization. Myofibroblasts were detected by immunohistochemical labeling with alpha-smooth muscle actin (alpha-SMA). Collagen accumulation was detected by use of picrosirius red staining. Tissue morphology was examined by use of H&E staining. Unlike thoracic wounds, forelimb wounds enlarged during the first 2 weeks. Myofibroblasts, detected by week 1, remained abundant with superior organization in thoracic wounds. Type-I collagen mRNA accumulated progressively in both wounds. More type-I collagen and TGF-beta1 mRNA were seen in forelimb wounds. Volume of MMP-1 mRNA decreased from day 0 in both wounds. By week 3, TIMP-1 mRNA concentration was greater in thoracic wounds. Greater collagen synthesis in metacarpal than thoracic wounds was documented by increased concentrations of myofibroblasts, type-I collagen mRNA,TGF-beta1 mRNA, and decreased collagen degradation (ie, MMP-1). Imbalanced collagen synthesis and degradation likely correlate with development of exuberant granulation tissue, delaying healing in wounds of the distal portions of the limbs. Factors that inhibit collagen synthesis or stimulate collagenase may provide treatment options for horses with exuberant granulation tissue.
Negrini, Joao; Mozos, Elena; Escamilla, Alejandro; Pérez, José; Lucena, Rosario; Guerra, Rafael; Ginel, Pedro J
2017-06-06
Compared with mammals, wound healing in reptiles is characterized by reduced wound contraction and longer healing times. The aim of this study is to describe the clinical and histopathological effects of topical insulin on second-intention healing of experimentally induced wounds in skin without dermal bony plates of Trachemys scripta elegans exposed to daily variations in ambient temperature and in an aquatic environment. Forty-four healthy adult females were assigned to two groups: Group 1 (n = 24) was used to assess clinical features such as wound contraction; Group 2 (n = 20) was used for histological evaluation and morphometric analysis. Topical porcine insulin (5 IU/ml diluted in glycerol) was applied daily 1 week. For each control time (2, 7, 14, 21 and 28 days post-wounding), re-epithelisation and wound remodelling were evaluated histologically and the number of main inflammatory cells (heterophils, macrophages, lymphocytes and fibroblasts) was scored. Mean wound contraction was higher in the insulin-treated group at each time point and differences were significant at day 28 (P < 0.0001). Histologically, these clinical findings were associated with better re-epithelisation, inflammatory response, collagen synthesis and remodelling of the wounds. Morphometrically, insulin-treated wounds had significantly higher mean counts of heterophils (day 7), macrophages (days 2, 7 and 14) and fibroblasts (days 14 and 21), whereas lymphocyte counts were significantly lower at day 21. These results demonstrate that topical insulin modifies the inflammatory response of turtle skin up-regulating inflammatory cells at early stages and promoting wound healing. Topical insulin is a potentially useful therapy in skin wounds of Trachemys scripta and should be evaluated in non-experimental wounds of turtles and other reptiles.
Sirtuin-6 deficiency exacerbates diabetes induced impairment of wound healing
Thandavarayan, Rajarajan A; Garikipati, Venkata Naga Srikanth; Joladarashi, Darukeshwara; Babu, Sahana Suresh; Jeyabal, Prince; Verma, Suresh K; Mackie, Alexander R; Khan, Mohsin; Arumugam, Somasundaram; Watanabe, Kenichi; Kishore, Raj; Krishnamurthy, Prasanna
2015-01-01
Delayed wound healing is one of the major complications in diabetes and is characterized by chronic proinflammatory response, and abnormalities in angiogenesis and collagen deposition. Sirtuin family proteins regulate numerous pathophysiological processes, including those involved in promotion of longevity, DNA repair, glycolysis and inflammation. However the role of sirtuin 6 (SIRT6), a NAD+-dependent nuclear deacetylase, in wound healing specifically under diabetic condition remains unclear. To analyze the role of SIRT6 in cutaneous wound healing, paired 6 mm stented wound were created in diabetic db/db mice and injected siRNA against SIRT6 in the wound margins (transfection agent alone and non-sensed siRNA served as controls). Wound time to closure was assessed by digital planimetry, and wounds were harvested for histology, immunohistochemistry and Western blotting. SIRT6-siRNA treated diabetic wound showed impaired healing, which was associated with reduced capillary density (CD31 staining vessels) when compared to control treatment. Interestingly, SIRT6 deficiency decreased vascular endothelial growth factor (VEGF) expression and proliferation markers in the wounds. Furthermore, SIRT6 ablation in diabetic wound promotes nuclear factor kB (NF-kB) activation resulting in increased expression of proinflammatory markers (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, tumor necrosis factor-α and interleukin-1β) and increased oxidative stress. Collectively, our findings demonstrate that loss of SIRT6 in cutaneous wound aggravates proinflammatory response by increasing NF-kB activation, oxidative stress and decrease in angiogenesis in the diabetic mice. Based on these findings, we speculate that activation of SIRT6 signaling might be a potential therapeutic approach for promoting wound healing in diabetics. PMID:26010430
Lough, Denver; Dai, Hui; Yang, Mei; Reichensperger, Joel; Cox, Lisa; Harrison, Carrie; Neumeister, Michael W
2013-11-01
Discovery of leucine-rich repeat-containing G-protein-coupled receptors 5 and 6 (LGR5 and LGR6) as markers of adult epithelial stem cells of the skin and intestine permits researchers to draw on the intrinsic cellular fundamentals of wound healing and proliferation dynamics of epithelial surfaces. In this study, the authors use the intestine-derived human alpha defensin 5 to stimulate epithelial proliferation, bacterial reduction, and hair production in burn wound beds to provide the field with initial insight on augmenting wound healing in tissues devoid of adnexal stem cells. Murine third-degree burn wound beds were treated with (1) intestine-derived human alpha defensin 5, (2) skin-derived human beta defensin 1, and (3) sulfadiazine to determine their roles in wound healing, bacterial reduction, and hair growth. The human alpha defensin 5 peptide significantly enhanced wound healing and reduced basal bacterial load compared with human beta defensin 1 and sulfadiazine. Human alpha defensin 5 was the only therapy to induce LGR stem cell migration into the wound bed. In addition, gene heat mapping showed significant mRNA up-regulation of key wound healing and Wnt pathway transcripts such as Wnt1 and Wisp1. Ex vivo studies showed enhanced cell migration in human alpha defensin 5-treated wounds compared with controls. Application of human alpha defensin 5 increases LGR stem cell migration into wound beds, leading to enhanced healing, bacterial reduction, and hair production through the augmentation of key Wnt and wound healing transcripts. These findings can be used to derive gut protein-based therapeutics in wound healing.
Roy, Purabi; Amdekar, Sarika; Kumar, Avnish; Singh, Rambir; Sharma, Poonam; Singh, Vinod
2012-03-06
Pyrostegia venusta (Ker Gawl) Miers. (Bignoniaceae), has been traditionally used as a remedy for treating white patches and infections on the skin (leukoderma, vitiligo). To investigate wound healing and antimicrobial activity of flower extract of Pyrostegia venusta, including in vivo antioxidant activity. Methanolic extracts of Pyrostegia venusta flowers were studied for wound healing efficiency along with its effect on pro-inflammatory and anti-inflammatory cytokines was assessed using excision and incision model of wound repair in Wistar rats. Healing was assessed by the rate of wound contraction, tensile strength, breaking strength, hydroxyproline and hexosamine content. Antimicrobial activity of the flower extract against twelve microorganisms was also assessed. In vivo antioxidant activity was performed to understand the mechanism of wound healing potency. The results indicated that Pyrostegia venusta extract has potent wound healing capacity as evident from the wound contraction and increased tensile strength. Hydroxyproline and hexosamine expression were also correlative with the healing pattern observed. Pyrostegia venusta extract exhibited moderate antimicrobial activity against the organisms: Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus pyogenes, Staphylococcus aureus, Escherichia coli, Micrococcus luteus, Enterobacter aerogenes, Salmonella typhi, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger and Candida tropicana. During early wound healing phase TNF-α and IL-6 level were found to be up regulated by Pyrostegia venusta treatment. Increased wound contraction and tensile strength, augmented hydroxyproline and hexosamine content along with antioxidative activity and moderate antimicrobial activity support the early wound healing exhibited by Pyrostegia venusta flower extract. Induction in cytokine production may be one of the mechanisms involved in accelerating the wound healing by Pyrostegia venusta extract. Results suggest that Pyrostegia venusta may be useful in the tropical management of wound healing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Lee, J S; Kim, J M; Hong, E K; Kim, S-O; Yoo, Y-J; Cha, J-H
2009-02-01
A growing amount of attention has been placed on periodontal regeneration and wound healing for periodontal therapy. This study was conducted in an effort to determine the effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro. Human periodontal ligament cells were acquired from explant tissue of human healthy periodontal ligament. After the wounding of periodontal ligament cells, the change in expression of heparin-binding epidermal growth factor-like growth factor and epidermal growth factor receptors 1-4 mRNA was assessed. The effects of heparin-binding epidermal growth factor-like growth factor on periodontal ligament cell proliferation and repopulation were assessed in vitro via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and by photographing the injuries, respectively. Extracellular signal-regulated kinase (Erk)1/2, p38 and Akt phosphorylation was characterized via western blotting. Scratch wounding resulted in a significant up-regulation of heparin-binding epidermal growth factor-like growth factor mRNA expression, whereas wounding had no effect on the expression levels of epidermal growth factor receptors 1-4. Interestingly, no expression of epidermal growth factor receptors 2 and 4 was detectable prior to or after wounding. Heparin-binding epidermal growth factor-like growth factor treatment promoted the proliferation and repopulation of periodontal ligament cells. The scratch wounding also stimulated the phosphorylation of Erk1/2 and p38, but not of Akt, in periodontal ligament cells, and heparin-binding epidermal growth factor-like growth factor treatment applied after wounding amplified and extended the activations of Erk1/2 and p38, but not of Akt. Furthermore, Erk1/2 inhibition blocked the process of cell repopulation induced by heparin-binding epidermal growth factor-like growth factor, whereas the inhibition of p38 delayed the process. These results indicate that heparin-binding epidermal growth factor-like growth factor may constitute a critical factor in the wound healing of human periodontal ligament cells by a mechanism that requires the activation of Erk1/2 via specific interaction with epidermal growth factor receptor 1.
Oh, Ji Young; Choi, Gee Euhn; Lee, Hyun Jik; Jung, Young Hyun; Ko, So Hee; Chae, Chang Woo; Kim, Jun Sung; Kim, Seo Yihl; Lim, Jae Ryong; Lee, Chang-Kyu; Han, Ho Jae
2018-01-01
Glucose plays an important role in stem cell fate determination and behaviors. However, it is still not known how glucose contributes to the precise molecular mechanisms responsible for stem cell migration. Thus, we investigate the effect of glucose on the regulation of the human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC) migration, and analyze the mechanism accompanied by this effect. Western blot analysis, wound healing migration assays, immunoprecipitation, and chromatin immunoprecipitation assay were performed to investigate the effect of high glucose on hUCB-MSC migration. Additionally, hUCB-MSC transplantation was performed in the mouse excisional wound splinting model. High concentration glucose (25 mM) elicits hUCB-MSC migration compared to normal glucose and high glucose-pretreated hUCB-MSC transplantation into the wound sites in mice also accelerates skin wound repair. We therefore elucidated the detailed mechanisms how high glucose induces hUCB-MSC migration. We showed that high glucose regulates E-cadherin repression through increased Snail and EZH2 expressions. And, we found high glucose-induced reactive oxygen species (ROS) promotes two signaling; JNK which regulates γ-secretase leading to the cleavage of Notch proteins and PI3K/Akt signaling which enhances GSK-3β phosphorylation. High glucose-mediated JNK/Notch pathway regulates the expression of EZH2, and PI3K/Akt/GSK-3β pathway stimulates Snail stabilization, respectively. High glucose enhances the formation of EZH2/Snail/HDAC1 complex in the nucleus, which in turn causes E-cadherin repression. This study reveals that high glucose-induced ROS stimulates the migration of hUCB-MSC through E-cadherin repression via Snail and EZH2 signaling pathways. © 2018 The Author(s). Published by S. Karger AG, Basel.
Guerrero-Juarez, Christian F; Astrowski, Aliaksandr A; Murad, Rabi; Dang, Christina T; Shatrova, Vera O; Astrowskaja, Aksana; Lim, Chae Ho; Ramos, Raul; Wang, Xiaojie; Liu, Yuchen; Lee, Hye-Lim; Pham, Kim T; Hsi, Tsai-Ching; Oh, Ji Won; Crocker, Daniel; Mortazavi, Ali; Ito, Mayumi; Plikus, Maksim V
2018-06-01
Large excisional wounds in mice prominently regenerate new hair follicles (HFs) and fat, yet humans are deficient for this regenerative behavior. Currently, wound-induced regeneration remains a clinically desirable, but only partially understood phenomenon. We show that large excisional wounds in rats across seven strains fail to regenerate new HFs. We compared wound transcriptomes between mice and rats at the time of scab detachment, which coincides with the onset of HF regeneration in mice. In both species, wound dermis and epidermis share core dermal and epidermal transcriptional programs, respectively, yet prominent interspecies differences exist. Compared with mice, rat epidermis expresses distinct transcriptional and epigenetic factors, markers of epidermal repair, hyperplasia, and inflammation, and lower levels of WNT signaling effectors and regulators. When recombined on the surface of excisional wounds with vibrissa dermal papillae, partial-thickness skin grafts containing distal pelage HF segments, but not interfollicular epidermis, readily regenerated new vibrissa-like HFs. Together, our findings establish rats as a nonregenerating rodent model for excisional wound healing and suggest that low epidermal competence and associated transcriptional profile may contribute to its regenerative deficiency. Future comparison between rat and mouse may lend further insight into the mechanism of wounding-induced regeneration and causes for its deficit. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Simulation of lung alveolar epithelial wound healing in vitro
Kim, Sean H. J.; Matthay, Michael A.; Mostov, Keith; Hunt, C. Anthony
2010-01-01
The mechanisms that enable and regulate alveolar type II (AT II) epithelial cell wound healing in vitro and in vivo remain largely unknown and need further elucidation. We used an in silico AT II cell-mimetic analogue to explore and better understand plausible wound healing mechanisms for two conditions: cyst repair in three-dimensional cultures and monolayer wound healing. Starting with the analogue that validated for key features of AT II cystogenesis in vitro, we devised an additional cell rearrangement action enabling cyst repair. Monolayer repair was enabled by providing ‘cells’ a control mechanism to switch automatically to a repair mode in the presence of a distress signal. In cyst wound simulations, the revised analogue closed wounds by adhering to essentially the same axioms available for alveolar-like cystogenesis. In silico cell proliferation was not needed. The analogue recovered within a few simulation cycles but required a longer recovery time for larger or multiple wounds. In simulated monolayer wound repair, diffusive factor-mediated ‘cell’ migration led to repair patterns comparable to those of in vitro cultures exposed to different growth factors. Simulations predicted directional cell locomotion to be critical for successful in vitro wound repair. We anticipate that with further use and refinement, the methods used will develop as a rigorous, extensible means of unravelling mechanisms of lung alveolar repair and regeneration. PMID:20236957
Collagen VII plays a dual role in wound healing
Nyström, Alexander; Velati, Daniela; Mittapalli, Venugopal R.; Fritsch, Anja; Kern, Johannes S.; Bruckner-Tuderman, Leena
2013-01-01
Although a host of intracellular signals is known to contribute to wound healing, the role of the cell microenvironment in tissue repair remains elusive. Here we employed 2 different mouse models of genetic skin fragility to assess the role of the basement membrane protein collagen VII (COL7A1) in wound healing. COL7A1 secures the attachment of the epidermis to the dermis, and its mutations cause a human skin fragility disorder coined recessive dystrophic epidermolysis bullosa (RDEB) that is associated with a constant wound burden. We show that COL7A1 is instrumental for skin wound closure by 2 interconnected mechanisms. First, COL7A1 was required for re-epithelialization through organization of laminin-332 at the dermal-epidermal junction. Its loss perturbs laminin-332 organization during wound healing, which in turn abrogates strictly polarized expression of integrin α6β4 in basal keratinocytes and negatively impacts the laminin-332/integrin α6β4 signaling axis guiding keratinocyte migration. Second, COL7A1 supported dermal fibroblast migration and regulates their cytokine production in the granulation tissue. These findings, which were validated in human wounds, identify COL7A1 as a critical player in physiological wound healing in humans and mice and may facilitate development of therapeutic strategies not only for RDEB, but also for other chronic wounds. PMID:23867500
Suppressors of systemin signaling identify genes in the tomato wound response pathway.
Howe, G A; Ryan, C A
1999-01-01
In tomato plants, systemic induction of defense genes in response to herbivory or mechanical wounding is regulated by an 18-amino-acid peptide signal called systemin. Transgenic plants that overexpress prosystemin, the systemin precursor, from a 35S::prosystemin (35S::prosys) transgene exhibit constitutive expression of wound-inducible defense proteins including proteinase inhibitors and polyphenol oxidase. To study further the role of (pro)systemin in the wound response pathway, we isolated and characterized mutations that suppress 35S::prosys-mediated phenotypes. Ten recessive, extragenic suppressors were identified. Two of these define new alleles of def-1, a previously identified mutation that blocks both wound- and systemin-induced gene expression and renders plants susceptible to herbivory. The remaining mutants defined four loci designated Spr-1, Spr-2, Spr-3, and Spr-4 (for Suppressed in 35S::prosystemin-mediated responses). spr-3 and spr-4 mutants were not significantly affected in their response to either systemin or mechanical wounding. In contrast, spr-1 and spr-2 plants lacked systemic wound responses and were insensitive to systemin. These results confirm the function of (pro)systemin in the transduction of systemic wound signals and further establish that wounding, systemin, and 35S::prosys induce defensive gene expression through a common signaling pathway defined by at least three genes (Def-1, Spr-1, and Spr-2). PMID:10545469
Vascular remodeling and mineralocorticoids.
Weber, K T; Sun, Y; Campbell, S E; Slight, S H; Ganjam, V K
1995-01-01
Circulating mineralocorticoid hormones are so named because of their important homeostatic properties that regulate salt and water balance via their action on epithelial cells. A broader range of functions in nonclassic target cellular sites has been proposed for these steroids and includes their contribution to wound healing following injury. A chronic, inappropriate (relative to intravascular volume and dietary sodium intake) elevation of these circulating hormones evokes a wound healing response in the absence of tissue injury--a wound healing response gone awry. The adverse remodeling of vascularized tissues seen in association with chronic mineralocorticoid excess is the focus of this review.
Caley, Matthew; Wall, Ivan B; Peake, Matthew; Kipling, David; Giles, Peter; Thomas, David W; Stephens, Phil
2018-03-27
Background : Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives : To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results : Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions : These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening.
MicroCT angiography detects vascular formation and regression in skin wound healing.
Urao, Norifumi; Okonkwo, Uzoagu A; Fang, Milie M; Zhuang, Zhen W; Koh, Timothy J; DiPietro, Luisa A
2016-07-01
Properly regulated angiogenesis and arteriogenesis are essential for effective wound healing. Tissue injury induces robust new vessel formation and subsequent vessel maturation, which involves vessel regression and remodeling. Although formation of functional vasculature is essential for healing, alterations in vascular structure over the time course of skin wound healing are not well understood. Here, using high-resolution ex vivo X-ray micro-computed tomography (microCT), we describe the vascular network during healing of skin excisional wounds with highly detailed three-dimensional (3D) reconstructed images and associated quantitative analysis. We found that relative vessel volume, surface area and branching number are significantly decreased in wounds from day 7 to days 14 and 21. Segmentation and skeletonization analysis of selected branches from high-resolution images as small as 2.5μm voxel size show that branching orders are decreased in the wound vessels during healing. In histological analysis, we found that the contrast agent fills mainly arterioles, but not small capillaries nor large veins. In summary, high-resolution microCT revealed dynamic alterations of vessel structures during wound healing. This technique may be useful as a key tool in the study of the formation and regression of wound vessels. Copyright © 2016 Elsevier Inc. All rights reserved.
Delayed cutaneous wound healing in aged rats compared to younger ones.
Soybir, Onur C; Gürdal, Sibel Ö; Oran, Ebru Ş; Tülübaş, Feti; Yüksel, Meral; Akyıldız, Ayşenur İ; Bilir, Ayhan; Soybir, Gürsel R
2012-10-01
Delayed wound healing in elderly males is a complex process in which the factors responsible are not fully understood. This study investigated the hormonal, oxidative and angiogenic factors affecting wound healing in aged rats. Two groups consisting of eight healthy male Wistar Albino rats [young (30 ± 7 days) and aged (360 ± 30 days)], and a cutaneous incision wound healing model were used. Scar tissue samples from wounds on the 7th, 14th and 21st days of healing were evaluated for hydroxyproline and vascular endothelial growth factor content. Macrophage, lymphocyte, fibroblast and polymorphonuclear cell infiltration; collagen formation and vascularization were assessed by light and electron microscopy. The free oxygen radical content of the wounds was measured by a chemiluminescence method. Blood sample analysis showed that the hydroxyproline and total testosterone levels were significantly higher, and the oxygen radical content was significantly lower in young rats. Histopathological, immunohistochemical and ultrastructural evaluations revealed higher amounts of fibroblasts and collagen fibers, and more vascularization in young rats. These results are indicative of the delayed wound healing in aged rats. A combination of multiple factors including hormonal regulation, free oxygen radicals and impaired angiogenesis appears to be the cause of delayed cutaneous healing. © 2011 The Authors. International Wound Journal © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.
Intermediate Filaments and the Regulation of Cell Motility during Regeneration and Wound Healing.
Cheng, Fang; Eriksson, John E
2017-09-01
SUMMARYIntermediate filaments (IFs) comprise a diverse group of flexible cytoskeletal structures, the assembly, dynamics, and functions of which are regulated by posttranslational modifications. Characteristically, the expression of IF proteins is specific for tissues, differentiation stages, cell types, and functional contexts. Recent research has rapidly expanded the knowledge of IF protein functions. From being regarded as primarily structural proteins, it is now well established that IFs act as powerful modulators of cell motility and migration, playing crucial roles in wound healing and tissue regeneration, as well as inflammatory and immune responses. Although many of these IF-associated functions are essential for tissue repair, the involvement of IF proteins has been established in many additional facets of tissue healing and regeneration. Here, we review the recent progress in understanding the multiple functions of cytoplasmic IFs that relate to cell motility in the context of wound healing, taking examples from studies on keratin, vimentin, and nestin. Wound healing and regeneration include orchestration of a broad range of cellular processes, including regulation of cell attachment and migration, proliferation, differentiation, immune responses, angiogenesis, and remodeling of the extracellular matrix. In this respect, IF proteins now emerge as multifactorial and tissue-specific integrators of tissue regeneration, thereby acting as essential guardian biopolymers at the interface between health and disease, the failing of which contributes to a diverse range of pathologies. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Williams, Helen; Campbell, Laura; Crompton, Rachel A; Singh, Gurdeep; McHugh, Brian J; Davidson, Donald J; McBain, Andrew J; Cruickshank, Sheena M; Hardman, Matthew J
2018-04-30
Chronic wounds cause significant patient morbidity and mortality. A key factor in their etiology is microbial infection, yet skin host-microbiota interactions during wound repair remain poorly understood. Microbiome profiles of non-infected human chronic wounds are associated with subsequent healing outcome. Furthermore, poor clinical healing outcome was associated with increased local expression of the pattern recognition receptor NOD2. To investigate NOD2 function in the context of cutaneous healing, we treated mice with the NOD2 ligand muramyl dipeptide (MDP) and analyzed wound repair parameters and expression of anti-microbial peptides. MDP treatment of littermate controls significantly delayed wound repair associated with reduced re-epithelialization, heightened inflammation and upregulation of murine β-Defensins (mBD) 1, 3 and particularly 14. We postulated that although BD14 might impact on local skin microbial communities it may further impact other healing parameters. Indeed, exogenously administered mBD14 directly delayed mouse primary keratinocyte scratch wound closure in vitro. To further explore the role of mBD14 in wound repair, we employed Defb14 -/- mice, and showed they had a global delay in healing in vivo, associated with alterations in wound microbiota. Taken together these studies suggest a key role for NOD2-mediated regulation of local skin microbiota which in turn impacts on chronic wound etiology. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Si, Tong; Wang, Xiao; Wu, Lin; Zhao, Chunzhao; Zhang, Lini; Huang, Mei; Cai, Jian; Zhou, Qin; Dai, Tingbo; Zhu, Jian-Kang; Jiang, Dong
2017-01-01
Mechanical wounding is a common stress caused by herbivores or manual and natural manipulations, whereas its roles in acclimation response to a wide spectrum of abiotic stresses remain unclear. The present work showed that local mechanical wounding enhanced freezing tolerance in untreated systemic leaves of wheat plants (Triticum aestivum L.), and meanwhile the signal molecules hydrogen peroxide (H2O2) and nitric oxide (NO) were accumulated systemically. Pharmacological study showed that wounding-induced NO synthesis was substantially arrested by pretreatment with scavengers of reactive oxygen species and an inhibitor of NADPH oxidase (respiratory burst oxidase homolog, RBOH). On the contrary, wounding-induced H2O2 accumulation was not sensitive to NO synthetic inhibitors or scavenger, indicating that H2O2 acts upstream of NO in wounding signal transduction pathways. Cytochemical and vascular tissues localizations approved that RBOH-dependent H2O2 acts as long-distance signal in wounding response. Transcriptome analysis revealed that 279 genes were up-regulated in plants treated with wounding and freezing, but not in plants treated with freezing alone. Importantly, freezing- and wounding-induced genes were significantly enriched in the categories of “photosynthesis” and “signaling.” These results strongly supported that primary mechanical wounding can induce freezing tolerance in wheat through the systemic accumulation of NO and H2O2, and further modifications in photosystem and antioxidant system. PMID:28769973
Dong, Jian-Li; Dong, Hai-Cao; Yang, Liang; Qiu, Zhe-Wen; Liu, Jia; Li, Hong; Zhong, Li-Xia; Song, Xue; Zhang, Peng; Li, Pei-Nan; Zheng, Lian-Jie
2018-03-01
Maggot extract (ME) accelerates rat skin wound healing, however its effect on cell maintenance in wound tissues remains unclear. B‑cell lymphoma (Bcl) 2‑associated athanogene (BAG)3 inhibits apoptosis and promotes autophagy by associating with Bcl‑2 or Beclin 1. Bcl‑2, the downstream effector of signal transducer and activator of transcription 3 signaling, is enhanced in ME‑treated wound tissues, which may reinforce the Bcl‑2 anti‑apoptotic activity and/or cooperate with Beclin 1 to regulate autophagy during wound healing. The present study investigated expression levels of BAG3, Bcl‑2, Beclin 1 and light chain (LC)3 levels in rat skin wound tissues in the presence and absence of ME treatment. The results revealed frequent TUNEL‑negative cell death in the wound tissues in the early three days following injury, irrespective to ME treatment. TUNEL‑positive cells appeared in the wound tissues following 4 days of injury and 150 µg/ml ME efficiently reduced apoptotic rate and enhanced BAG3 and Bcl‑2 expression. Elevated Beclin 1 and LC3 levels and an increased LC3 II ratio were revealed in the ME‑treated tissues during the wound healing. The results of the present study demonstrate the anti‑apoptotic effects of BAG3 and Bcl‑2 in ME‑promoted wound healing. Beclin 1/LC3 mediated autophagy may be favorable in maintaining cell survival in the damaged tissues and ME‑upregulated BAG3 may enhance its activity.
Contribution of Invariant Natural Killer T Cells to Skin Wound Healing.
Tanno, Hiromasa; Kawakami, Kazuyoshi; Ritsu, Masae; Kanno, Emi; Suzuki, Aiko; Kamimatsuno, Rina; Takagi, Naoyuki; Miyasaka, Tomomitsu; Ishii, Keiko; Imai, Yoshimichi; Maruyama, Ryoko; Tachi, Masahiro
2015-12-01
In the present study, we determined the contribution of invariant natural killer T (iNKT) cells to the skin wound healing process. In iNKT cell-deficient (Jα18KO) mice lacking iNKT cells, wound closure was significantly delayed compared with wild-type mice. Collagen deposition, expression of α-smooth muscle actin and CD31, and wound breaking strength were significantly attenuated in Jα18KO mice. The adoptive transfer of liver mononuclear cells from wild-type but not from Jα18KO or interferon (IFN)-γ gene-disrupted (IFN-γKO) mice resulted in the reversal of this impaired wound healing in Jα18KO mice. IFN-γ expression was induced in the wounded tissues, which was significantly decreased at 6, 12, and 24 hours, but increased on day 3 after wounding in Jα18KO mice. The main source of the late-phase IFN-γ production in Jα18KO mice were neutrophils rather than NK cells and T cells. Administration of α-galactosylceramide, an activator of iNKT cells, resulted in the acceleration of wound healing on day 3 in wild-type mice. This effect was not observed in IFN-γKO mice. These results indicate that iNKT cells play important roles in wound healing. The iNKT cell-induced IFN-γ production may regulate the wound healing process in the early phase. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Signal transduction in the wound response of tomato plants.
Bowles, D
1998-01-01
The wound response of tomato plants has been extensively studied, and provides a useful model to understand signal transduction events leading from injury to marker gene expression. The principal markers that have been used in these studies are genes encoding proteinase inhibitor (pin) proteins. Activation of pin genes occurs in the wounded leaf and in distant unwounded leaves of the plant. This paper reviews current understanding of signalling pathways in the wounded leaf, and in the systemically responding unwounded leaves. First, the nature of known elicitors and their potential roles in planta are discussed, in particular, oligogalacturonides, jasmonates and the peptide signal, systemin. Inhibitors of wound-induced proteinase inhibitor (pin) expression are also reviewed, with particular reference to phenolics, sulphydryl reagents and fusicoccin. In each section, results obtained from the bioassay are considered within the wider context of data from mutants and from transgenic plants with altered levels of putative signalling components. Following this introduction, current models for pin gene regulation are described and discussed, together with a summary for the involvement of phosphorylation-dephosphorylation in wound signalling. Finally, a new model for wound-induced pin gene expression is presented, arising from recent data from the author's laboratory. PMID:9800210
Choi, Yun-Hee; Yang, Dong Joo; Kulkarni, Atul; Moh, Sang Hyun; Kim, Ki Woo
2015-01-01
Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies. PMID:26703626
Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions.
Yang, Dong Joo; Moh, Sang Hyun; Son, Dong Hwee; You, Seunghoon; Kinyua, Ann W; Ko, Chang Mann; Song, Miyoung; Yeo, Jinhee; Choi, Yun-Hee; Kim, Ki Woo
2016-07-08
Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound) on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK), c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (Erk), underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.
Steenvoorde, Pascal; Jacobi, Cathrien E; Van Doorn, Louk; Oskam, Jacques
2007-01-01
INTRODUCTION It has been known for centuries that maggots are potent debriding agents capable of removing necrotic tissue and slough. In January 2004, the US Food and Drug Administration decided to regulate maggot debridement therapy (MDT). As it is still not clear which wounds are likely or unlikely to benefit from MDT, we performed a prospective study to gain more insight in patient and wound characteristics influencing outcome. PATIENTS AND METHODS In the period between August 2002 and December 2005, patients with infected wounds with signs of gangrenous or necrotic tissue who seemed suited for MDT were enrolled in the present study. In total, 101 patients with 117 ulcers were treated. Most wounds were worst-case scenarios, in which maggot therapy was a treatment of last resort. RESULTS In total, 72 patients (71%) were classified as ASA III or IV. In total, 78 of 116 wounds (67%) had a successful outcome. These wounds healed completely (n = 60), healed almost completely (n = 12) or were clean at least (n = 6) at last follow-up. These results seem to be in line with those in the literature. All wounds with a traumatic origin (n = 24) healed completely. All wounds with septic arthritis (n = 13), however, failed to heal and led in half of these cases to a major amputation. According to a multivariate analysis, chronic limb ischaemia (odds ratio [OR], 7.5), the depth of the wound (OR, 14.0), and older age (≥ 60 years; OR, 7.3) negatively influenced outcome. Outcome was not influenced by gender, obesity, diabetes mellitus, smoking, ASAclassification, location of the wound, wound size or wound duration. CONCLUSIONS Some patient characteristics (i.e. gender, obesity, smoking behaviour, presence of diabetes mellitus and ASA-classification at presentation) and some wound characteristics (i.e. location of the wound, wound duration and size) do not seem to contra-indicate eligibility for MDT. However, older patients and patients with chronic limb ischaemia or deep wounds are less likely to benefit from MDT. Septic arthritis does not seem to be a good indication for MDT. PMID:18201474
Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua
2017-01-01
The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. PMID:27872190
Cohort study of atypical pressure ulcers development.
Jaul, Efraim
2014-12-01
Atypical pressure ulcers (APU) are distinguished from common pressure ulcers (PU) with both unusual location and different aetiology. The occurrence and attempts to characterise APU remain unrecognised. The purpose of this cohort study was to analyse the occurrence of atypical location and the circumstances of the causation, and draw attention to the prevention and treatment by a multidisciplinary team. The cohort study spanned three and a half years totalling 174 patients. The unit incorporates two weekly combined staff meetings. One concentrates on wound assessment with treatment decisions made by the physician and nurse, and the other, a multidisciplinary team reviewing all patients and coordinating treatment. The main finding of this study identified APU occurrence rate of 21% within acquired PU over a three and a half year period. Severe spasticity constituted the largest group in this study and the most difficult to cure wounds, located in medial aspects of knees, elbows and palms. Medical devices caused the second largest occurrence of atypical wounds, located in the nape of the neck, penis and nostrils. Bony deformities were the third recognisable atypical wound group located in shoulder blades and upper spine. These three categories are definable and time observable. APU are important to be recognisable, and can be healed as well as being prevented. The prominent role of the multidisciplinary team is primary in identification, prevention and treatment. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
[Algorithm of nursing procedure in debridement protocol].
Fumić, Nera; Marinović, Marin; Brajan, Dolores
2014-10-01
Debridement is an essential act in the treatment of various wounds, which removes devitalized and colonized necrotic tissue, also poorly healing tissue and all foreign bodies from the wound, in order to enhance the formation of healthy granulation tissue and accelerate the process of wound healing. Nowadays, debridement is the basic procedure in the management of acute and chronic wounds, where the question remains which way to do it, how extensively, how often and who should perform it. Many parameters affect the decision on what method to use on debridement. It is important to consider the patient's age, environment, choice, presence of pain, quality of life, skills and resources for wound and patient care providers, and also a variety of regulations and guidelines. Irrespective of the level and setting where the care is provided (hospital patients, ambulatory or stationary, home care), care for patients suffering from some form of acute or chronic wound and requiring different interventions and a large number of frequent bandaging and wound care is most frequently provided by nurses/technicians. With timely and systematic interventions in these patients, the current and potential problems in health functioning could be minimized or eliminated in accordance with the resources. Along with daily wound toilette and bandaging, it is important to timely recognize changes in the wound status and the need of tissue debridement. Nurse/technician interventions are focused on preparation of the patient (physical, psychological, education), preparation of materials, personnel and space, assisting or performing procedures of wound care, and documenting the procedures performed. The assumption that having an experienced and competent person for wound care and a variety of methods and approaches in wound treatment is in the patient's best interest poses the need of defining common terms and developing comprehensive guidelines that will lead to universal algorithms in the field.
Bosanquet, David C; Ye, Lin; Harding, Keith G; Jiang, Wen G
2013-08-01
Multiple factors have been shown to delay dermal wound healing. These resultant wounds pose a significant problem in terms of morbidity and healthcare spend. Recently, an increasing volume of research has focused on the molecular perturbations underlying non-healing wounds. This study investigates the effect of a novel cancer promoter, Ehm2, in wound healing. Ehm2 belongs to the FERM family of proteins, known to be involved in membrane-cytoskeletal interactions, and has been shown to promote cancer metastasis in melanoma, prostate cancer and breast cancer. Ehm2 mRNA levels were analysed using qRT-PCR, standardised to GAPDH, from either acute or chronic wounds, and normal skin. IHC analysis was also undertaken from wound edge biopsies. An anti-Ehm2 transgene was created and transfected into the HaCaT cell line. The effect of Ehm2 knockdown on migration, adhesion, growth, cell cycle progression and apoptosis was analysed using standard laboratory methods. Western Blot analysis was used to investigate potential downstream protein interactions. Ehm2 is expressed nearly three times higher in acute wound tissues, compared to chronic wound tissues. Increased Ehm2 expression is found in wounds undergoing healing, especially at the leading wound edge. In vitro, Ehm2 knockdown reduces cellular adhesion, migration and motility, without affecting growth, cell cycle and apoptosis. Finally, Ehm2 knockdown results in reduced NWasp protein expression. These results suggest Ehm2 may be an important player in the wound healing process, and show that Ehm2 knockdown downregulates the expression of NWasp, through which it may have its effect on cellular migration. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Ai, Xiao-Yu; Liu, Hui-Juan; Lu, Cheng; Liang, Cai-Li; Sun, Yan; Chen, Shuang; Sun, Bo; Li, Yang; Liu, Yan-Rong; Zhang, Qiang; Liu, Xue-Qiang; Xiao, Ting; Jing, Xue-Shuang; Sun, Tao; Zhou, Hong-Gang; Yang, Cheng
2017-01-01
Phenytoin, an antiepileptic drug, has been widely used for wound healing. Inspired by previous studies, phenytoin silver (PnAg), a sparingly soluble silver nanocompound, was synthesized which exhibited good therapeutic efficacy in tissue repair with low toxicity (LD50 >5 g/kg). In vivo studies showed that PnAg could accelerate dermal wound healing and strong inflammation control in Sprague-Dawley rats (SD rat) and Bama minipigs. Due to its low solubility, PnAg led to low toxicity and blood enrichment in animals. Furthermore, PnAg could upregulate the promoter activity of Jak, Stat3, and Stat3 downstream proteins. Therefore, PnAg may serve as an effective therapeutic compound for wound healing through regulating the gp130/Jak/Stat3 signaling pathway.
22 CFR 209.12 - Effect on other regulations; supervision and coordination.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Effect on other regulations; supervision and... OF THE CIVIL RIGHTS ACT OF 1964 § 209.12 Effect on other regulations; supervision and coordination... other ground. (b) Supervision and coordination. The Administrator may from time to time assign to...
22 CFR 209.12 - Effect on other regulations; supervision and coordination.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Effect on other regulations; supervision and... OF THE CIVIL RIGHTS ACT OF 1964 § 209.12 Effect on other regulations; supervision and coordination... other ground. (b) Supervision and coordination. The Administrator may from time to time assign to...
5 CFR 179.213 - Coordinating salary offset with other agencies.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Coordinating salary offset with other... REGULATIONS CLAIMS COLLECTION STANDARDS Salary Offset § 179.213 Coordinating salary offset with other agencies... intent of this regulation. (2) The designated salary offset coordinator will be responsible for: (i...
MicroRNA-149 contributes to scarless wound healing by attenuating inflammatory response.
Lang, Hongxin; Zhao, Feng; Zhang, Tao; Liu, Xiaoyu; Wang, Zhe; Wang, Rui; Shi, Ping; Pang, Xining
2017-08-01
A fibrotic or pathological scar is an undesired consequence of skin wound healing and may trigger a series of problems. An attenuated inflammatory response is a significant characteristic of fetal skin wound healing, which can contribute to the scarless healing of fetal skin. According to deep sequencing data, microRNA‑149 (miR‑149) expression was increased in mid-gestational compared with that in late‑gestational fetal skin keratinocytes. It was demonstrated that overexpression of miR‑149 in HaCaT cells can downregulate the expression of pro‑inflammatory cytokines interleukin (IL)‑1α, IL‑1β, and IL‑6 at basal levels and in inflammatory conditions. Furthermore, miR‑149 was revealed to indirectly accelerate transforming growth factor‑β3 and collagen type III expression in fibroblasts, which are essential cells in extracellular matrix remodeling. In a rat skin wound model, miR‑149 improved the quality of the arrangement of collagen bundles and reduced inflammatory cell infiltration during skin wound healing. These results indicate that miR‑149 may be a potential regulator in improving the quality of skin wound healing.
bFGF Regulates PI3-Kinase-Rac1-JNK Pathway and Promotes Fibroblast Migration in Wound Healing
Kanazawa, Shigeyuki; Fujiwara, Toshihiro; Matsuzaki, Shinsuke; Shingaki, Kenta; Taniguchi, Manabu; Miyata, Shingo; Tohyama, Masaya; Sakai, Yasuo; Yano, Kenji; Hosokawa, Ko; Kubo, Tateki
2010-01-01
Fibroblast proliferation and migration play important roles in wound healing. bFGF is known to promote both fibroblast proliferation and migration during the process of wound healing. However, the signal transduction of bFGF-induced fibroblast migration is still unclear, because bFGF can affect both proliferation and migration. Herein, we investigated the effect of bFGF on fibroblast migration regardless of its effect on fibroblast proliferation. We noticed involvement of the small GTPases of the Rho family, PI3-kinase, and JNK. bFGF activated RhoA, Rac1, PI3-kinase, and JNK in cultured fibroblasts. Inhibition of RhoA did not block bFGF-induced fibroblast migration, whereas inhibition of Rac1, PI3-kinase, or JNK blocked the fibroblast migration significantly. PI3-kinase-inhibited cells down-regulated the activities of Rac1 and JNK, and Rac1-inhibited cells down-regulated JNK activity, suggesting that PI3-kinase is upstream of Rac1 and that JNK is downstream of Rac1. Thus, we concluded that PI3-kinase, Rac1, and JNK were essential for bFGF-induced fibroblast migration, which is a novel pathway of bFGF-induced cell migration. PMID:20808927
Wound Healing in Mac-1 Deficient Mice
2017-05-01
36. Rosenkranz AR, Coxon A, Maurer M, Gurish MF, Austen KF, Friend DS, Galli SJ, Mayadas TN. Impaired mast cell development and innate immunity in Mac...genetically deficient mice. 3 INTRODUCTION Wound healing is a complex yet well-regulated process in which multiple resident cells ...recruited inflammatory cells , and stem cells interact to create an environment that supports the healing process. An optimal inflammatory response is a
Huang, Tonglie; Zhang, Kuo; Sun, Lijuan; Xue, Xiaochang; Zhang, Cun; Shu, Zhen; Mu, Nan; Gu, Jintao; Zhang, Wangqian; Wang, Yukun; Zhang, Yingqi; Zhang, Wei
2015-01-01
Chemical burns take up a high proportion of burns admissions and can penetrate deep into tissues. Various reagents have been applied in the treatment of skin chemical burns; however, no optimal reagent for skin chemical burns currently exists. The present study investigated the effect of topical body protective compound (BPC)-157 treatment on skin wound healing, using an alkali burn rat model. Topical treatment with BPC-157 was shown to accelerate wound closure following an alkali burn. Histological examination of skin sections with hematoxylin–eosin and Masson staining showed better granulation tissue formation, reepithelialization, dermal remodeling, and a higher extent of collagen deposition when compared to the model control group on the 18th day postwounding. BPC-157 could promote vascular endothelial growth factor expression in wounded skin tissues. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell cycle analysis demonstrated that BPC-157 enhanced the proliferation of human umbilical vein endothelial cells (HUVECs). Transwell assay and wound healing assay showed that BPC-157 significantly promoted migration of HUVECs. We also observed that BPC-157 upregulated the expression of VEGF-a and accelerated vascular tube formation in vitro. Moreover, further studies suggested that BPC-157 regulated the phosphorylation level of extracellular signal-regulated kinases 1 and 2 (ERK1/2) as well as its downstream targets, including c-Fos, c-Jun, and Egr-1, which are key molecules involved in cell growth, migration, and angiogenesis. Altogether, our results indicated that BPC-157 treatment may accelerate wound healing in a model of alkali burn-induced skin injury. The therapeutic mechanism may be associated with accelerated granulation tissue formation, reepithelialization, dermal remodeling, and collagen deposition through ERK1/2 signaling pathway. PMID:25995620
Huang, Tonglie; Zhang, Kuo; Sun, Lijuan; Xue, Xiaochang; Zhang, Cun; Shu, Zhen; Mu, Nan; Gu, Jintao; Zhang, Wangqian; Wang, Yukun; Zhang, Yingqi; Zhang, Wei
2015-01-01
Chemical burns take up a high proportion of burns admissions and can penetrate deep into tissues. Various reagents have been applied in the treatment of skin chemical burns; however, no optimal reagent for skin chemical burns currently exists. The present study investigated the effect of topical body protective compound (BPC)-157 treatment on skin wound healing, using an alkali burn rat model. Topical treatment with BPC-157 was shown to accelerate wound closure following an alkali burn. Histological examination of skin sections with hematoxylin-eosin and Masson staining showed better granulation tissue formation, reepithelialization, dermal remodeling, and a higher extent of collagen deposition when compared to the model control group on the 18th day postwounding. BPC-157 could promote vascular endothelial growth factor expression in wounded skin tissues. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell cycle analysis demonstrated that BPC-157 enhanced the proliferation of human umbilical vein endothelial cells (HUVECs). Transwell assay and wound healing assay showed that BPC-157 significantly promoted migration of HUVECs. We also observed that BPC-157 upregulated the expression of VEGF-a and accelerated vascular tube formation in vitro. Moreover, further studies suggested that BPC-157 regulated the phosphorylation level of extracellular signal-regulated kinases 1 and 2 (ERK1/2) as well as its downstream targets, including c-Fos, c-Jun, and Egr-1, which are key molecules involved in cell growth, migration, and angiogenesis. Altogether, our results indicated that BPC-157 treatment may accelerate wound healing in a model of alkali burn-induced skin injury. The therapeutic mechanism may be associated with accelerated granulation tissue formation, reepithelialization, dermal remodeling, and collagen deposition through ERK1/2 signaling pathway.
Yang, Dong; Xu, Jun-Hua; Shi, Ren-Jie
2017-04-30
Wound healing is the main problem in the therapy of anal fistula (AF). Daphne genkwa root has been traditionally used as an agent to soak sutures in operation of AF patients, but its function in wound healing remains largely unclear. The aim of the present study was to illuminate mechanisms of D. genkwa root treatment on AF. In the present study, 60 AF patients after surgery were randomly divided into two groups, external applied with or without the D. genkwa extractive. Wound healing times were compared and granulation tissues were collected. In vitro , we constructed damaged human skin fibroblasts (HSFs) with the treatment of TNF-α (10 μg/ml). Cell Count Kit-8 (CCK-8) and flow cytometry analysis were used to determine the effects of D. genkwa root extractive on cell viability, cell cycle and apoptosis of damaged HSFs. Furthermore, protein levels of TGF-β, COL1A1, COL3A1, Timp-1 , matrix metalloproteinase (MMP)-3 ( MMP-3 ) and MEK/ERK signalling pathways were investigated both in vivo and in vitro Results showed that D. genkwa root extractive greatly shortens the wound healing time in AF patients. In granulation tissues and HSFs, treatment with the extractive significantly elevated the expressions of COL1A1, COL3A1, Timp-1, c-fos and Cyclin D1 , while reduced the expression of MMP-3 Further detection presented that MEK/ERK signalling was activated after the stimulation of extractive in HSFs. Our study demonstrated that extractive from D. genkwa root could effectively improve wound healing in patients with AF via the up-regulation of fibroblast proliferation and expressions of COL1A1 and COL3A1 . © 2017 The Author(s).
Scioli, Maria Giovanna; Lo Giudice, Pietro; Bielli, Alessandra; Tarallo, Valeria; De Rosa, Alfonso; De Falco, Sandro; Orlandi, Augusto
2015-01-01
Background Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery. Methods and Results We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction. Conclusion PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and pharmacological targeting of endothelial dysfunction may represent a promising tool for the treatment of delayed wound healing or chronic ulcers. PMID:26473356
Gawronska-Kozak, Barbara; Grabowska, Anna; Kur-Piotrowska, Anna; Kopcewicz, Marta
2016-01-01
Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT) was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process. PMID:26938103
Silver nanoparticles enhance wound healing in zebrafish (Danio rerio).
Seo, Seung Beom; Dananjaya, S H S; Nikapitiya, Chamilani; Park, Bae Keun; Gooneratne, Ravi; Kim, Tae-Yoon; Lee, Jehee; Kim, Cheol-Hee; De Zoysa, Mahanama
2017-09-01
Silver nanoparticles (AgNPs) were successfully synthesized by a chemical reduction method, physico-chemically characterized and their effect on wound-healing activity in zebrafish was investigated. The prepared AgNPs were circular-shaped, water soluble with average diameter and zeta potential of 72.66 nm and -0.45 mv, respectively. Following the creation of a laser skin wound on zebrafish, the effect of AgNPs on wound-healing activity was tested by two methods, direct skin application (2 μg/wound) and immersion in a solution of AgNPs and water (50 μg/L). The zebrafish were followed for 20 days post-wounding (dpw) by visual observation of wound size, calculating wound healing percentage (WHP), and histological examination. Visually, both direct skin application and immersion AgNPs treatments displayed clear and faster wound closure at 5, 10 and 20 dpw compared to the controls, which was confirmed by 5 dpw histology data. At 5 dpw, WHP was highest in the AgNPs immersion group (36.6%) > AgNPs direct application group (23.7%) > controls (18.2%), showing that WHP was most effective in fish immersed in AgNPs solution. In general, exposure to AgNPs induced gene expression of selected wound-healing-related genes, namely, transforming growth factor (TGF-β), matrix metalloproteinase (MMP) -9 and -13, pro-inflammatory cytokines (IL-1β and TNF-α) and antioxidant enzymes (superoxide dismutase and catalase), which observed differentiation at 12 and 24 h against the control; but the results were not consistently significant, and many either reached basal levels or were down regulated at 5 dpw in the wounded muscle. These results suggest that AgNPs are effective in acceleration of wound healing and altered the expression of some wound-healing-related genes. However, the detailed mechanism of enhanced wound healing remains to be investigated in fish. Copyright © 2017 Elsevier Ltd. All rights reserved.
MicroRNA Let-7b inhibits keratinocyte migration in cutaneous wound healing by targeting IGF2BP2.
Wu, Yan; Zhong, Julia Li; Hou, Ning; Sun, Yaolan; Ma, Benting; Nisar, Muhammad Farrukh; Teng, Yan; Tan, Zhaoli; Chen, Keping; Wang, Youliang; Yang, Xiao
2017-02-01
Wound healing is a complex process which involves proliferation and migration of keratinocyte for closure of epidermal injuries. A member of microRNA family, let-7b, has been expressed in mammalian skin, but its exact role in keratinocyte migration is still not in knowledge. Here, we showed that let-7b regulates keratinocyte migration by targeting the insulin-like growth factor IGF2BP2. Overexpression of let-7b led to reduced HaCaT cell migration, while knockdown of let-7b resulted in enhanced migration. Furthermore, let-7b was decreased during wound healing in wild-type mice, which led us to construct the transgenic mice with overexpression of let-7b in skin. The re-epithelialization of epidermis of let-7b transgenic mice was reduced during wound healing. Using bioinformatics prediction software and a reporter gene assay, we found that IGF2BP2 was a target of let-7b, which contributes to keratinocyte migration. Introduction of an expression vector of IGF2BP2 also rescued let-7b-induced migration deficiency, which confirms that IGF2BP2 is an important target for let-7b regulation. Our findings suggest that let-7b significantly delayed the re-epithelialization possibly due to reduction of keratinocyte migration and restraints IGF2BP2 during skin wound healing. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Stephanie; Munz, Barbara, E-mail: barbara.munz@charite.de
2010-01-01
Receptor interacting protein 4 (RIP4) is an important regulator of epidermal morphogenesis during embryonic development. We could previously show that expression of the rip4 gene is strongly downregulated in cutaneous wound repair, which might be initiated by a broad variety of growth factors and cytokines. Here, we demonstrate that in keratinocytes, rip4 expression is controlled by a multitude of different signal transduction pathways, such as the p38 mitogen-activated protein kinase (MAPK) and the nuclear factor kappa B (NF-{kappa}B) cascade, in a unique and specific manner. Furthermore, we show that the steroid dexamethasone abolishes the physiological rip4 downregulation after injury andmore » might thus contribute to the phenotype of reduced and delayed wound reepithelialization seen in glucocorticoid-treated patients. As a whole, our data indicate that rip4 expression is regulated in a complex manner, which might have therapeutic implications.« less
Hafner, Christian; Meyer, Stefanie; Langmann, Thomas; Schmitz, Gerd; Bataille, Frauke; Hagen, Ilja; Becker, Bernd; Roesch, Alexander; Rogler, Gerhard; Landthaler, Michael; Vogt, Thomas
2005-01-01
AIM: Eph receptor tyrosine kinases and their membrane bound receptor-like ligands, the ephrins, represent a bi-directional cell-cell contact signaling system that directs epithelial movements in development. The meaning of this system in the adult human gut is unknown. We investigated the Eph/ephrin mRNA expression in the intestinal epithelium of healthy controls and patients with inflammatory bowel disease (IBD). METHODS: mRNA expression profiles of all Eph/ephrin family members in normal small intestine and colon were established by real-time RT-PCR. In addition, differential expression in IBD was investigated by cDNA array technology, and validated by both real-time RT-PCR and immunohistochemistry. Potential effects of enhanced EphB/ephrin-B signaling were analyzed in an in vitro IEC-6 cell scratch wound model. RESULTS: Human adult intestinal mucosa exhibits a complex pattern of Eph receptors and ephrins. Beside the known prominent co-expression of EphA2 and ephrinA1, we found abundantly co-expressed EphB2 and ephrin-B1/2. Interestingly, cDNA array data, validated by real-time PCR and immunohistochemistry, showed upregulation of ephrin-B2 in both perilesional and lesional intestinal epithelial cells of IBD patients, suggesting a role in epithelial homeostasis. Stimulation of ephrin-B signaling in ephrin-B1/2 expressing rat IEC-6-cells with recombinant EphB1-Fc resulted in a significant dose-dependent acceleration of wound closure. Furthermore, fluorescence microscopy showed that EphB1-Fc induced coordinated migration of wound edge cells is associated with enhanced formation of lamellipodial protrusions into the wound, increased actin stress fiber assembly and production of laminin at the wound edge. CONCLUSION: EphB/ephrin-B signaling might represent a novel protective mechanism that promotes intestinal epithelial wound healing, with potential impact on epithelial restitution in IBD. PMID:15996027
Endothelin and hepatic wound healing
Khimji, Al-karim; Rockey, Don C.
2014-01-01
Liver wound healing is a coordinated response to injury caused by infections (hepatitis) or toxins (alcohol) or other processes where activation of hepatic stellate cells are a central component. During stellate cell activation, a major phenotypic transformation occurs which leads to increased production of increased extracellular matrix proteins and smooth muscle α-actin the results is organ dysfunction due to gross architectural disruption and impaired blood flow. Endothelin-1 (ET-1) is produced in increased amounts and the cellular source of ET-1 shifts from endothelial cells to stellate cells during liver injury thus setting a feedback loop which accentuates further activation, stellate cell proliferation, and production of extracellular matrix proteins. Therapy directed at intervening the ET-1 signaling pathway has significant therapeutic potential in patients with liver disease. PMID:21421048
Diao, Huajia; Li, Xin; Chen, Jiangning; Luo, Yi; Chen, Xi; Dong, Lei; Wang, Chunming; Zhang, Chenyu; Zhang, Junfeng
2008-02-01
Bletilla striata, a traditional Chinese medicine, has been used for the treatment of alimentary canal mucosal damage, ulcers, bleeding, bruises and burns. B. striata polysaccharide (BSP) isolated from B. striata was found to enhance vascular endothelial cell (EC) proliferation and vascular endothelial growth factor (VEGF) expression. However, the wound healing mechanism of BSP is not well understood. In this study, the results show that treatment with BSP induces coordinate changes in inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1beta) mRNA levels and enhances the expression of these cytokines, but has no effect on interferon gamma (IFN-gamma) level. In this study, we partially elucidate the wound healing mechanism of BSP.
Zhu, Qi; Mangukiya, Hitesh Bhagavanbhai; Mashausi, Dhahiri Saidi; Guo, Hao; Negi, Hema; Merugu, Siva Bharath; Wu, Zhenghua; Li, Dawei
2017-09-01
Anterior gradient 2 (AGR2), a member of protein disulfide isomerase (PDI) family, is both located in cytoplasm and secreted into extracellular matrix. The orthologs of AGR2 have been linked to limb regeneration in newt and wound healing in zebrafish. In mammals, AGR2 influences multiple cell signaling pathways in tumor formation and in normal cell functions related to new tissue formation like angiogenesis. However, the function of AGR2 in mammalian wound healing remains unknown. This study aimed to investigate AGR2 expression and its function during skin wound healing and the possible application of external AGR2 in cutaneous wound to accelerate the healing process. Our results showed that AGR2 expression was induced in the migrating epidermal tongue and hyperplastic epidermis after skin excision. Topical application of recombinant AGR2 significantly accelerated wound-healing process by increasing the migration of keratinocytes (Kera.) and the recruitment of fibroblasts (Fibro.) near the wounded area. External AGR2 also promoted the migration of Kera. and Fibro. in vitro in a dose-dependent manner. The adhesion domain of AGR2 was required for the formation of focal adhesions in migrating Fibro., leading to the directional migration along AGR2 gradient. These results indicate that recombinant AGR2 accelerates skin wound healing through regulation of Kera. and Fibro. migration, thus demonstrating its potential utility as an alternative strategy of the therapeutics to accelerate the healing of acute or chronic skin wounds. © 2017 Federation of European Biochemical Societies.
Wound healing potentials of Thevetia peruviana: Antioxidants and inflammatory markers criteria.
Rahman, Nazneen; Rahman, Haseebur; Haris, Mir; Mahmood, Riaz
2017-10-01
Thevetia peruviana is a medicinal plant used in the treatment of external wounds, infected area, ring worms, tumours etc. in traditional system of medicine. The aim of the study was to evaluate the wound healing potentials of T. peruviana leaves hexane (LH) and fruit rind (FW) water extracts and to prove the folkloric claims. The antimicrobial, antioxidant and anti-inflammatory potentials could be important strategies in defining potent wound healing drug. Based on these approaches the current study was designed using incision, excision and dead space wound models with the biochemical, antioxidant enzymes and inflammatory marker analysis. The fruit rind water extract showed highest WBS of 1133 ± 111.4 g. The extracts in excision model retrieved the excised wound i.e. complete healing of wound at day 14. The hydroxyproline content of FW and LH treated dry granuloma tissue was increased to 65.73 ± 3.2 mg/g and 53.66 ± 0.38 mg/g, accompanied by elevations of hexosamine and hexauronic acid with upregulation of GSH, catalase, SOD, peroxidase and the down regulation of the inflammatory marker (NO) and oxidative stress marker (LPO) in wet granulation tissue was documented. Conclusively, both the extracts showed enhanced WBS, rate of wound contraction, skin collagen tissue development, and early epithelisation. Therapeutic wound healing effect was further proven by reduced free radicals and inflammatory makers associated with enhanced antioxidants and connective tissue with histological evidence of more collagen formation. The present research could establish T. peruviana as potential source of effective wound healing drugs.
Role of cathepsin S In periodontal wound healing-an in vitro study on human PDL cells.
Memmert, Svenja; Nokhbehsaim, Marjan; Damanaki, Anna; Nogueira, Andressa V B; Papadopoulou, Alexandra K; Piperi, Christina; Basdra, Efthimia K; Rath-Deschner, Birgit; Götz, Werner; Cirelli, Joni A; Jäger, Andreas; Deschner, James
2018-04-05
Cathepsin S is a cysteine protease, which is expressed in human periodontal ligament (PDL) cells under inflammatory and infectious conditions. This in vitro study was established to investigate the effect of cathepsin S on PDL cell wound closure. An in vitro wound healing assay was used to monitor wound closure in wounded PDL cell monolayers for 72 h in the presence and absence of cathepsin S. In addition, the effects of cathepsin S on specific markers for apoptosis and proliferation were studied at transcriptional level. Changes in the proliferation rate due to cathepsin S stimulation were analyzed by an XTT assay, and the actions of cathepsin S on cell migration were investigated via live cell tracking. Additionally, PDL cell monolayers were treated with a toll-like receptor 2 agonist in the presence and absence of a cathepsin inhibitor to examine if periodontal bacteria can alter wound closure via cathepsins. Cathepsin S enhanced significantly the in vitro wound healing rate by inducing proliferation and by increasing the speed of cell migration, but had no effect on apoptosis. Moreover, the toll-like receptor 2 agonist enhanced significantly the wound closure and this stimulatory effect was dependent on cathepsins. Our findings provide original evidence that cathepsin S stimulates PDL cell proliferation and migration and, thereby, wound closure, suggesting that this cysteine protease might play a critical role in periodontal remodeling and healing. In addition, cathepsins might be exploited by periodontal bacteria to regulate critical PDL cell functions.
Eo, Hyeyoon; Lee, Hea-Ji; Lim, Yunsook
2016-09-23
Among the diabetic complications, diabetic foot ulcer due to delayed wound healing is one of the most significant clinical problems. Early inflammatory stage is important for better prognosis during wound healing. Thus, regulation of inflammatory response during early stage of wound healing is main target for complete cutaneous recovery. This study investigated the role of genistein supplementation in inflammation and oxidative stress, which are related to NLRP3 inflammasome, NFκB and Nrf2 activation, during cutaneous wound healing in alloxan-induced diabetic mice. Mice with diabetes with fasting blood glucose (FBG) levels > 250 mg/dl were fed diets with AIN-93G rodent diet containing 0%, 0.025% (LG) or 0.1% (HG) genistein. After 2 weeks of genistein supplementation, excisional wounds were made by biopsy punches (4 mm). Genistein supplementation improved fasting glucose levels and wound closure rate. Moreover, genistein supplementation restored NLRP3 inflammasome (NLRP3, ASC and caspase-1) at the basal level and ameliorated both inflammation (TNFα, iNOS, COX2 and NFκB) and antioxidant defense system (Nrf2, HO-1, GPx, and catalase) during early stage of wound healing in diabetic mice. Taken together, genistein supplementation would be a potential therapeutic nutrient in prevention and treatment of delayed wound healing by modulation of inflammation and oxidative stress during inflammatory stage. Copyright © 2016. Published by Elsevier Inc.
The Innate Immune System in Acute and Chronic Wounds
MacLeod, Amanda S.; Mansbridge, Jonathan N.
2016-01-01
Significance: This review article provides an overview of the critical roles of the innate immune system to wound healing. It explores aspects of dysregulation of individual innate immune elements known to compromise wound repair and promote nonhealing wounds. Understanding the key mechanisms whereby wound healing fails will provide seed concepts for the development of new therapeutic approaches. Recent Advances: Our understanding of the complex interactions of the innate immune system in wound healing has significantly improved, particularly in our understanding of the role of antimicrobials and peptides and the nature of the switch from inflammatory to reparative processes. This takes place against an emerging understanding of the relationship between human cells and commensal bacteria in the skin. Critical Issues: It is well established and accepted that early local inflammatory mediators in the wound bed function as an immunological vehicle to facilitate immune cell infiltration and microbial clearance upon injury to the skin barrier. Both impaired and excessive innate immune responses can promote nonhealing wounds. It appears that the switch from the inflammatory to the proliferative phase is tightly regulated and mediated, at least in part, by a change in macrophages. Defining the factors that initiate the switch in such macrophage phenotypes and functions is the subject of multiple investigations. Future Directions: The review highlights processes that may be useful targets for further investigation, particularly the switch from M1 to M2 macrophages that appears to be critical as dysregulation of this switch occurs during defective wound healing. PMID:26862464
Making sense of hypertrophic scar: a role for nerves.
Scott, Jeffrey R; Muangman, Pornprom; Gibran, Nicole S
2007-01-01
Healed partial thickness wounds including burns and donor sites cause hypertrophic scar formation and patient discomfort. For many patients with hypertrophic scars, pruritus is the most distressing symptom, which leads to wound excoriation and chronic wound formation. In spite of the clinical significance of abnormal innervation in scars, the nervous system has been largely ignored in the pathophysiology of hypertrophic scars. Evidence that neuropeptides contribute to inflammatory responses to injury include inflammatory cell chemotaxis, cytokine and growth factor production. The neuropeptide substance P, which is released from nerve endings after injury, induces inflammation and mediates angiogenesis, keratinocyte proliferation, and fibrogenesis. Substance P activity is tightly regulated by neutral endopeptidase (NEP), a membrane bound metallopeptidase that degrades substance P at the cell membrane. Altered substance P levels may contribute to impaired cutaneous healing responses associated with diabetes mellitus or hypertrophic scar formation. Topical application of exogenous substance P or an NEP inhibitor enhances wound closure kinetics in diabetic murine wounds suggesting that diabetic wounds have insufficient substance P levels to promote a neuroinflammatory response necessary for normal wound repair. Conversely, increased nerve numbers and neuropeptide levels with reduced NEP levels in human and porcine hypertrophic scar samples suggest that excessive neuropeptide activity induces exuberant inflammation in hypertrophic scars. Given these observations about the role of neuropeptides in cutaneous repair, neuronal modulation of repair processes at two extremes of abnormal wound healing, chronic non-healing ulcers in type II diabetes mellitus and hypertrophic scars in deep partial thickness wounds, may provide therapeutic targets.
DuBuc, Timothy Q; Traylor-Knowles, Nikki; Martindale, Mark Q
2014-03-26
Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities.
2014-01-01
Background Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Results Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. Conclusions This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities. PMID:24670243
Applications of plasma sources for nitric oxide medicine
NASA Astrophysics Data System (ADS)
Vasilets, Victor; Shekhter, Anatoly; Pekshev, Alexander
2013-09-01
Nitric oxide (NO) has important roles in the function of many tissues and organs. Wound healing processes are always accompanying by the increase of nitric oxide concentration in wound tissue. These facts suggest a possible therapeutic use of various NO donors for the acceleration of the wound healing and treatment of other diseases. Our previous studies indicated that gaseous NO flow produced by air-plasma generators acts beneficially on the wound healing. This beneficial effect could be caused by the mechanism involving peroxynitrite as an intermediate. As a result of mobilization of various antioxidant reactions more endogenous NO molecules become available as signaling molecules. to regulate the metabolic processes in wound tissue. In this paper different air plasma sources generated therapeutic concentrations of NO are discussed. The concentration of NO and other therapeutically important gas products are estimated by thermodynamic simulation. Synergy effects of NO with other plasma components are discussed as a factor enhancing therapeutic results. Some new medical application of plasma devices are presented. Advanced Plasma Therapies Inc.
Ballistics reviews: mechanisms of bullet wound trauma.
Maiden, Nicholas
2009-01-01
The location of an entrance wound (bullet placement) and the projectile path are the most important factors in causing significant injury or death following a shooting. The head followed by the torso are the most vulnerable areas, with incapacitation resulting from central nervous system (brain or cord) disruption, or massive organ destruction with hemorrhage. Tissue and organ trauma result from the permanent wound cavity caused by direct destruction by the bullet, and also from radial stretching of surrounding tissues causing a temporary wound cavity. The extent of tissue damage is influenced by the type of bullet, its velocity and mass, as well as the physical characteristics of the tissues. The latter includes resistance to strain, physical dimensions of an organ, and the presence or absence of surrounding anatomical constraints. Bullet shape and construction will also affect tissue damage and bullets which display greater yaw will be associated with increased temporary cavitation. Military bullet designs do not include bullets that will expand or flatten as these cause greater wound trauma and are regulated by convention.
The tension biology of wound healing.
Harn, Hans I-Chen; Ogawa, Rei; Hsu, Chao-Kai; Hughes, Michael W; Tang, Ming-Jer; Chuong, Cheng-Ming
2017-11-04
Following skin wounding, the healing outcome can be: regeneration, repair with normal scar tissue, repair with hypertrophic scar tissue or the formation of keloids. The role of chemical factors in wound healing has been extensively explored, and while there is evidence suggesting the role of mechanical forces, its influence is much less well defined. Here, we provide a brief review on the recent progress of the role of mechanical force in skin wound healing by comparing laboratory mice, African spiny mice, fetal wound healing and adult scar keloid formation. A comparison across different species may provide insight into key regulators. Interestingly, some findings suggest tension can induce an immune response, and this provides a new link between mechanical and chemical forces. Clinically, manipulating skin tension has been demonstrated to be effective for scar prevention and treatment, but not for tissue regeneration. Utilising this knowledge, specialists may modulate regulatory factors and develop therapeutic strategies to reduce scar formation and promote regeneration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lin, Chih-Ching; Jih, Pei-Ju; Lin, Hsin-Hung; Lin, Jeng-Shane; Chang, Ling-Lan; Shen, Yu-Hsing; Jeng, Shih-Tong
2011-10-01
Wounding caused by rain, wind, and pathogen may lead plants to onset defense response. Previous studies indicated that mechanical wounding stimulates plants to generate nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). In this study, the functions of NO and H(2)O(2) after wounding in sweet potato (Ipomoea batatas cv. Tainung 57) was further analyzed. Mechanical wounding damaged cells and resulted in necrosis, but the presence of NO donors or NO scavenger might reduce or enhance the cell death caused by wounding, respectively. The amount of H(2)O(2) induced by wounding was also decreased or increased when plants were incubated with NO donors or NO scavenger, individually. These results indicate that NO may regulate H(2)O(2) generation to affect cell death. NO-induced proteins isolated from two-dimensional electrophoresis were identified to be Copper/Zinc superoxide dismutases (CuZnSODs). The activities of CuZnSODs and ascorbate peroxidase (APX) could be enhanced by NO. In addition, the expression of CuZnSOD and APX was induced by wounding via NO, and their expression was further stimulated by NO through the generation of cGMP. The influx of calcium ions and the activity of NADPH oxidase were also involved in the NO signal transduction pathway inducing APX expression. Collectively, the generation of H(2)O(2) in wounded plants might trigger cell death. Meanwhile, the production of NO induced by wounding stimulated signal transducers including cGMP, calcium ions, and H(2)O(2) to activate CuZnSOD and APX, which further decreased H(2)O(2) level and reduced the cell death caused by wounding.
Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N
2015-12-01
Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.
Approaches Mediating Oxytocin Regulation of the Immune System.
Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng
2016-01-01
The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.
The effect of post traumatic stress disorders on rehabilitation among combat-wounded veterans.
Siddharthan, Kris
2012-01-01
In June 2008 the Congressionally Directed Medical Research Program provided a grant to the Research Foundation at the James A Haley Veterans Hospital in Tampa, Florida to provide care for wounded veterans from Operation Enduring Freedom (Afghanistan) and Operation Iraqi Freedom (OEF/OIF). The telerehabilitation for OEF/OIF returnees with mild or moderate combat related Traumatic Brain Injury (TBI) has as its objectives 1) care coordination for wounded veterans using distance technology via the internet and 2) monitoring of physical and mental health outcomes using a variety of instruments. A total of 75 veterans were enrolled in the study. Our initial findings indicate that 1) Functional capabilities measured by locomotion and mobility appear to have stabilized among our cohort of veterans while deficiencies in cognition (memory, problem solving), psychosocial adjustment (anger, emotional status) and problems in integrating into society pose challenges 2) Those with comorbid PTSD appear to linger in employability and ultimate integration into society as compared to those without the diagnosis 3) Individualized treatment pathways are needed for rehabilitation and ultimate integration into society.
Utilizing Fibronectin Integrin-Binding Specificity to Control Cellular Responses
Bachman, Haylee; Nicosia, John; Dysart, Marilyn; Barker, Thomas H.
2015-01-01
Significance: Cells communicate with the extracellular matrix (ECM) protein fibronectin (Fn) through integrin receptors on the cell surface. Controlling integrin–Fn interactions offers a promising approach to directing cell behavior, such as adhesion, migration, and differentiation, as well as coordinated tissue behaviors such as morphogenesis and wound healing. Recent Advances: Several different groups have developed recombinant fragments of Fn that can control epithelial to mesenchymal transition, sequester growth factors, and promote bone and wound healing. It is thought that these physiological responses are, in part, due to specific integrin engagement. Furthermore, it has been postulated that the integrin-binding domain of Fn is a mechanically sensitive switch that drives binding of one integrin heterodimer over another. Critical Issues: Although computational simulations have predicted the mechano-switch hypothesis and recent evidence supports the existence of varying strain states of Fn in vivo, experimental evidence of the Fn integrin switch is still lacking. Future Directions: Evidence of the integrin mechano-switch will enable the development of new Fn-based peptides in tissue engineering and wound healing, as well as deepen our understanding of ECM pathologies, such as fibrosis. PMID:26244106
Gupta, Asheesh; Keshri, Gaurav K; Yadav, Anju; Gola, Shefali; Chauhan, Satish; Salhan, Ashok K; Bala Singh, Shashi
2015-06-01
Low-level laser therapy (LLLT) using superpulsed near-infrared light can penetrate deeper in the injured tissue and could allow non-pharmacological treatment for chronic wound healing. This study investigated the effects of superpulsed laser (Ga-As 904 nm, 200 ns pulse width; 100 Hz; 0.7 mW mean output power; 0.4 mW/cm(2) average irradiance; 0.2 J/cm(2) total fluence) on the healing of burn wounds in rats, and further explored the probable associated mechanisms of action. Irradiated group exhibited enhanced DNA, total protein, hydroxyproline and hexosamine contents compared to the control and silver sulfadiazine (reference care) treated groups. LLLT exhibited decreased TNF-α level and NF-kB, and up-regulated protein levels of VEGF, FGFR-1, HSP-60, HSP-90, HIF-1α and matrix metalloproteinases-2 and 9 compared to the controls. In conclusion, LLLT using superpulsed 904 nm laser reduced the inflammatory response and was able to enhance cellular proliferation, collagen deposition and wound contraction in the repair process of burn wounds. Photomicrographs showing no, absence inflammation and faster wound contraction in LLLT superpulsed (904 nm) laser treated burn wounds as compared to the non-irradiated control and silver sulfadiazine (SSD) ointment (reference care) treated wounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dinda, Manikarna; Mazumdar, Swagata; Das, Saurabh; Ganguly, Durba; Dasgupta, Uma B; Dutta, Ananya; Jana, Kuladip; Karmakar, Parimal
2016-10-01
The active fraction and/or compounds of Calendula officinalis responsible for wound healing are not known yet. In this work we studied the molecular target of C. officinalis hydroethanol extract (CEE) and its active fraction (water fraction of hydroethanol extract, WCEE) on primary human dermal fibroblasts (HDF). In vivo, CEE or WCEE were topically applied on excisional wounds of BALB/c mice and the rate of wound contraction and immunohistological studies were carried out. We found that CEE and only its WCEE significantly stimulated the proliferation as well as the migration of HDF cells. Also they up-regulate the expression of connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA) in vitro. In vivo, CEE or WCEE treated mice groups showed faster wound healing and increased expression of CTGF and α-SMA compared to placebo control group. The increased expression of both the proteins during granulation phase of wound repair demonstrated the potential role of C. officinalis in wound healing. In addition, HPLC-ESI MS analysis of the active water fraction revealed the presence of two major compounds, rutin and quercetin-3-O-glucoside. Thus, our results showed that C. officinalis potentiated wound healing by stimulating the expression of CTGF and α-SMA and further we identified active compounds. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Cutaneous Nod2 Expression Regulates the Skin Microbiome and Wound Healing in a Murine Model.
Williams, Helen; Crompton, Rachel A; Thomason, Helen A; Campbell, Laura; Singh, Gurdeep; McBain, Andrew J; Cruickshank, Sheena M; Hardman, Matthew J
2017-11-01
The skin microbiome exists in dynamic equilibrium with the host, but when the skin is compromised, bacteria can colonize the wound and impair wound healing. Thus, the interplay between normal skin microbial interactions versus pathogenic microbial interactions in wound repair is important. Bacteria are recognized by innate host pattern recognition receptors, and we previously showed an important role for the pattern recognition receptor NOD2 in skin wound repair. NOD2 is implicated in changes in the composition of the intestinal microbiota in Crohn's disease, but its role on skin microbiota is unknown. Nod2-deficient (Nod2 -/- ) mice had an inherently altered skin microbiome compared with wild-type controls. Furthermore, we found that Nod2 -/- skin microbiome dominated and caused impaired healing, shown in cross-fostering experiments of wild-type pups with Nod2 -/- pups, which then acquired altered cutaneous bacteria and delayed healing. High-throughput sequencing and quantitative real-time PCR showed a significant compositional shift, specifically in the genus Pseudomonas in Nod2 -/- mice. To confirm whether Pseudomonas species directly impair wound healing, wild-type mice were infected with Pseudomonas aeruginosa biofilms and, akin to Nod2 -/- mice, were found to exhibit a significant delay in wound repair. Collectively, these studies show the importance of the microbial communities in skin wound healing outcome. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Functions of Vγ4 T Cells and Dendritic Epidermal T Cells on Skin Wound Healing
Li, Yashu; Wu, Jun; Luo, Gaoxing; He, Weifeng
2018-01-01
Wound healing is a complex and dynamic process that progresses through the distinct phases of hemostasis, inflammation, proliferation, and remodeling. Both inflammation and re-epithelialization, in which skin γδ T cells are heavily involved, are required for efficient skin wound healing. Dendritic epidermal T cells (DETCs), which reside in murine epidermis, are activated to secrete epidermal cell growth factors, such as IGF-1 and KGF-1/2, to promote re-epithelialization after skin injury. Epidermal IL-15 is not only required for DETC homeostasis in the intact epidermis but it also facilitates the activation and IGF-1 production of DETC after skin injury. Further, the epidermal expression of IL-15 and IGF-1 constitutes a feedback regulatory loop to promote wound repair. Dermis-resident Vγ4 T cells infiltrate into the epidermis at the wound edges through the CCR6-CCL20 pathway after skin injury and provide a major source of IL-17A, which enhances the production of IL-1β and IL-23 in the epidermis to form a positive feedback loop for the initiation and amplification of local inflammation at the early stages of wound healing. IL-1β and IL-23 suppress the production of IGF-1 by DETCs and, therefore, impede wound healing. A functional loop may exist among Vγ4 T cells, epidermal cells, and DETCs to regulate wound repair.
Topical application of quercetin improves wound healing in pressure ulcer lesions.
Yin, Guimei; Wang, Zhijing; Wang, Zhaoxia; Wang, Xirui
2018-05-07
The ischemia-reperfusion (I/R) induced skin lesion has been identified as primary cause of pressure ulcers. To date, attempts to prevent pressure ulcers have not produced a significant improvement. Quercetin, one of the most widely distributed flavonoids in fruits and vegetables, exhibits its antioxidant and anti-inflammatory properties against many diseases, including ischemic heart disease, atherosclerosis, and renal injury. In vitro wound scratch assay was first used to assess the function of quercetin in wounding cell model. Next, animal pressure ulcers model was established with two cycles of I/R. The impact of quercetin in the wound recovery, immune cell infiltration and pro-inflammatory cytokines production was investigated in this model. Mechanistic regulation of quercetin at the wound site was also studied. Quercetin accelerated wound closure in cell scratch assay. Dose response study suggested 1 μM quercetin for in vivo study. In I/R injury model, quercetin treatment significantly accelerated wound closure, reduced immune cell infiltration and pro-inflammatory cytokines production. Signaling study showed quercetin treatment inhibited MAPK but not NFĸB activation. Quercetin treatment improved the wound healing process in I/R lesions by suppressing MAPK pathway. Our results supported that quercetin could be a potential therapeutic agent for pressure ulcers. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Wall, Ivan B.; Peake, Matthew; Kipling, David; Giles, Peter; Thomas, David W.
2018-01-01
Background: Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives: To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results: Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions: These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening. PMID:29584680
Park, Jun Yeon; Lee, Yun Kyung; Lee, Dong-Soo; Yoo, Jeong-Eun; Shin, Myoung-Sook; Yamabe, Noriko; Kim, Su-Nam; Lee, Seulah; Kim, Ki Hyun; Lee, Hae-Jeung; Roh, Seok Sun; Kang, Ki Sung
2017-05-05
Resin known as Resina Pini is listed in the Korean and Japanese pharmacopoeias and has been used for treating skin wounds and inflammation. Resin is composed of more than 50% abietic acid and 10% neutral substances. In the present study, the wound-healing effects of abietic acid and the possible underlying mechanism of action were investigated in various in vitro and in vivo models. The effects of abietic acid on tube formation and migration were measured in human umbilical vein vascular endothelial cells (HUVECs). Protein expression of mitogen-activated protein kinase (MAPK) activation was evaluated via Western blotting analysis. The wound-healing effects of abietic acid were assessed using a mouse model of cutaneous wounds. The results showed that abietic acid enhanced cell migration and tube formation in HUVECs. Abietic acid induced significant angiogenic potential, which is associated with upregulation of extracellular signal-regulated kinase (ERK) and p38 expression. Additionally, 0.8μM abietic acid-treated groups showed accelerated wound closure compared to the controls in a mouse model of cutaneous wounds. The current data indicate that abietic acid treatment elevated cell migration and tube formation in HUVECs by the activation of ERK and p38 MAPKs. We suggest that abietic acid can be developed as a wound-healing agent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Turner, Christopher T; McInnes, Steven J P; Melville, Elizabeth; Cowin, Allison J; Voelcker, Nicolas H
2017-01-01
Flightless I (Flii) is elevated in human chronic wounds and is a negative regulator of wound repair. Decreasing its activity improves healing responses. Flii neutralizing antibodies (FnAbs) decrease Flii activity in vivo and hold significant promise as healing agents. However, to avoid the need for repeated application in a clinical setting and to protect the therapeutic antibody from the hostile environment of the wound, suitable delivery vehicles are required. In this study, the use of porous silicon nanoparticles (pSi NPs) is demonstrated for the controlled release of FnAb to diabetic wounds. We achieve FnAb loading regimens exceeding 250 µg antibody per mg of vehicle. FnAb-loaded pSi NPs increase keratinocyte proliferation and enhance migration in scratch wound assays. Release studies confirm the functionality of the FnAb in terms of Flii binding. Using a streptozotocin-induced model of diabetic wound healing, a significant improvement in healing is observed for mice treated with FnAb-loaded pSi NPs compared to controls, including FnAb alone. FnAb-loaded pSi NPs treated with proteases show intact and functional antibody for up to 7 d post-treatment, suggesting protection of the antibodies from proteolytic degradation in wound fluid. pSi NPs may therefore enable new therapeutic approaches for the treatment of diabetic ulcers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yanashima, Kensuke; Chieosilapatham, Panjit; Yoshimoto, Eri; Okumura, Ko; Ogawa, Hideoki; Niyonsaba, François
2017-08-01
Host defense (antimicrobial) peptides not only display antimicrobial activities against numerous pathogens but also exert a broader spectrum of immune-modulating functions. Innate defense regulators (IDRs) are a class of host defense peptides synthetically developed from natural or endogenous cationic host defense peptides. Of the IDRs developed to date, IDR-1018 is more efficient not only in killing bacteria but also in regulating the various functions of macrophages and neutrophils and accelerating the wound healing process. Because mast cells intimately participate in wound healing and a number of host defense peptides involved in wound healing are also known to activate mast cells, this study aimed to investigate the effects of IDR-1018 on mast cell activation. Here, we showed that IDR-1018 induced the degranulation of LAD2 human mast cells and caused their production of leukotrienes, prostaglandins and various cytokines and chemokines, including granulocyte-macrophage colony-stimulating factor, interleukin-8, monocyte chemoattractant protein-1 and -3, macrophage-inflammatory protein-1α and -1β, and tumor necrosis factor-α. Furthermore, IDR-1018 increased intracellular calcium mobilization and induced mast cell chemotaxis. The mast cell activation was markedly suppressed by pertussis toxin, U-73122, U0126, SB203580, JNK inhibitor II, and NF-κB activation inhibitor II, suggesting the involvement of G-protein, phospholipase C, ERK, p38, JNK and NF-κB pathways, respectively, in IDR-1018-induced mast cell activation. Notably, we confirmed that IDR-1018 caused the phosphorylation of MAPKs and IκB. Altogether, the current study suggests a novel immunomodulatory role of IDR-1018 through its ability to recruit and activate human mast cells at the sites of inflammation and wounds. We report that IDR-1018 stimulates various functions of human mast cells. IDR-1018-induced mast cell activation is mediated through G protein, PLC, MAPK and NF-κB pathways. IDR-1018 will be a useful therapeutic agent for wound healing.
Modulation of Rhamm (CD168) for selective adipose tissue development
Turley, Eva A; Bissell, Mina J
2014-05-06
Herein is described the methods and compositions for modulation of Rhamm, also known as CD 186, and its effects on wound repair, muscle differentiation, bone density and adipogeneisis through its ability to regulate mesenchymal stem cell differentiation. Compositions and methods are provided for blocking Rhamm function for selectively increasing subcutaneous, but not, visceral fat. Compositions and methods for modulating Rhamm in wound repair are also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirfel, Jutta; Pantelis, Dimitrios; Kabba, Mustapha
Four and one half LIM domain protein FHL2 participates in many cellular processes involved in tissue repair such as regulation of gene expression, cytoarchitecture, cell adhesion, migration and signal transduction. The repair process after wounding is initiated by the release of peptides and bioactive lipids. These molecules induce synthesis and deposition of a provisional extracellular matrix. We showed previously that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of FHL2 in response to activation of the RhoA GTPase. Our present study shows that FHL2 is an important signal transducer influencing the outcome of intestinal anastomotic healing. Early woundmore » healing is accompanied by reconstitution and remodelling of the extracellular matrix and collagen is primarily responsible for wound strength. Our results show that impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen III metabolism. Impaired collagen III synthesis reduced the mechanical stability of the anastomoses and led to lower bursting pressure in Fhl2-deficient mice after surgery. Our data confirm that FHL2 is an important factor regulating collagen expression in the early phase of wound healing, and thereby is critically involved in the physiologic process of anastomosis healing after bowel surgery and thus may represent a new therapeutic target.« less
Arnold, Kimberly M; Opdenaker, Lynn M; Flynn, Daniel; Sims-Mourtada, Jennifer
2015-01-01
The relationship between wound healing and cancer has long been recognized. The mechanisms that regulate wound healing have been shown to promote transformation and growth of malignant cells. In addition, chronic inflammation has been associated with malignant transformation in many tissues. Recently, pathways involved in inflammation and wound healing have been reported to enhance cancer stem cell (CSC) populations. These cells, which are highly resistant to current treatments, are capable of repopulating the tumor after treatment, causing local and systemic recurrences. In this review, we highlight proinflammatory cytokines and developmental pathways involved in tissue repair, whose deregulation in the tumor microenvironment may promote growth and survival of CSCs. We propose that the addition of anti-inflammatory agents to current treatment regimens may slow the growth of CSCs and improve therapeutic outcomes. PMID:25674014
Androgens regulate scarless repair of the endometrial "wound" in a mouse model of menstruation.
Cousins, Fiona L; Kirkwood, Phoebe M; Murray, Alison A; Collins, Frances; Gibson, Douglas A; Saunders, Philippa T K
2016-08-01
The human endometrium undergoes regular cycles of synchronous tissue shedding (wounding) and repair that occur during menstruation before estrogen-dependent regeneration. Endometrial repair is normally both rapid and scarless. Androgens regulate cutaneous wound healing, but their role in endometrial repair is unknown. We used a murine model of simulated menses; mice were treated with a single dose of the nonaromatizable androgen dihydrotestosterone (DHT; 200 µg/mouse) to coincide with initiation of tissue breakdown. DHT altered the duration of vaginal bleeding and delayed restoration of the luminal epithelium. Analysis of uterine mRNAs 24 h after administration of DHT identified significant changes in metalloproteinases (Mmp3 and -9; P < 0.01), a snail family member (Snai3; P < 0.001), and osteopontin (Spp1; P < 0.001). Chromatin immunoprecipitation analysis identified putative androgen receptor (AR) binding sites in the proximal promoters of Mmp9, Snai3, and Spp1. Striking spatial and temporal changes in immunoexpression of matrix metalloproteinase (MMP) 3/9 and caspase 3 were detected after DHT treatment. These data represent a paradigm shift in our understanding of the role of androgens in endometrial repair and suggest that androgens may have direct impacts on endometrial tissue integrity. These studies provide evidence that the AR is a potential target for drug therapy to treat conditions associated with aberrant endometrial repair processes.-Cousins, F. L., Kirkwood, P. M., Murray, A. A., Collins, F., Gibson, D. A., Saunders, P. T. K. Androgens regulate scarless repair of the endometrial "wound" in a mouse model of menstruation. © The Author(s).
Guo, R; Merkel, A R; Sterling, J A; Davidson, J M; Guelcher, S A
2015-12-01
The growing need for therapies to treat large cutaneous defects has driven recent interest in the design of scaffolds that stimulate regenerative wound healing. While many studies have investigated local delivery of biologics as a restorative approach, an increasing body of evidence highlights the contribution of the mechanical properties of implanted scaffolds to wound healing. In the present study, we designed poly(ester urethane) scaffolds using a templated-Fused Deposition Modeling (t-FDM) process to test the hypothesis that scaffolds with substrate modulus comparable to that of collagen fibers enhance a regenerative versus a fibrotic response. We fabricated t-FDM scaffolds with substrate moduli varying from 5 to 266 MPa to investigate the effects of substrate modulus on healing in a rat subcutaneous implant model. Angiogenesis, cellular infiltration, collagen deposition, and directional variance of collagen fibers were maximized for wounds treated with scaffolds having a substrate modulus (Ks = 24 MPa) comparable to that of collagen fibers. The enhanced regenerative response in these scaffolds was correlated with down-regulation of Wnt/β-catenin signaling in fibroblasts, as well as increased polarization of macrophages toward the restorative M2 phenotype. These observations highlight the substrate modulus of the scaffold as a key parameter regulating the regenerative versus scarring phenotype in wound healing. Our findings further point to the potential use of scaffolds with substrate moduli tuned to that of the native matrix as a therapeutic approach to improve cutaneous healing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wu, Jianqiang; Hettenhausen, Christian; Meldau, Stefan; Baldwin, Ian T.
2007-01-01
Mitogen-activated protein kinase (MAPK) signaling plays a central role in transducing extracellular stimuli into intracellular responses, but its role in mediating plant responses to herbivore attack remains largely unexplored. When Manduca sexta larvae attack their host plant, Nicotiana attenuata, the plant's wound response is reconfigured at transcriptional, phytohormonal, and defensive levels due to the introduction of oral secretions (OS) into wounds during feeding. We show that OS dramatically amplify wound-induced MAPK activity and that fatty acid–amino acid conjugates in M. sexta OS are the elicitors. Virus-induced gene silencing of salicylic acid–induced protein kinase (SIPK) and wound-induced protein kinase revealed their importance in mediating wound and OS-elicited hormonal responses and transcriptional regulation of defense-related genes. We found that after applying OS to wounds created in one portion of a leaf, SIPK is activated in both wounded and specific unwounded regions of the leaf but not in phylotactically connected adjacent leaves. We propose that M. sexta attack elicits a mobile signal that travels to nonwounded regions of the attacked leaf where it activates MAPK signaling and, thus, downstream responses; subsequently, a different signal is transported by the vascular system to systemic leaves to initiate defense responses without activating MAPKs in systemic leaves. PMID:17400894
Mast Cells Regulate Wound Healing in Diabetes
Tellechea, Ana; Leal, Ermelindo C.; Kafanas, Antonios; Auster, Michael E.; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M.; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C.
2016-01-01
Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P < 0.05). Conversely, postwounding MC degranulation increases in nondiabetic mice, but not in diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P < 0.05). Nevertheless, nondiabetic and diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. PMID:27207516
Lee, Ji-Hyun; Lee, Chan-Wool; Park, Si-Hyoung; Choe, Kwang-Min
2017-06-01
Cell-cell fusion is widely observed during development and disease, and imposes a dramatic change on participating cells. Cell fusion should be tightly controlled, but the underlying mechanism is poorly understood. Here, we found that the JAK/STAT pathway suppressed cell fusion during wound healing in the Drosophila larval epidermis, restricting cell fusion to the vicinity of the wound. In the absence of JAK/STAT signaling, a large syncytium containing a 3-fold higher number of nuclei than observed in wild-type tissue formed in wounded epidermis. The JAK/STAT ligand-encoding genes upd2 and upd3 were transcriptionally induced by wounding, and were required for suppressing excess cell fusion. JNK (also known as Basket in flies) was activated in the wound vicinity and activity peaked at ∼8 h after injury, whereas JAK/STAT signaling was activated in an adjoining concentric ring and activity peaked at a later stage. Cell fusion occurred primarily in the wound vicinity, where JAK/STAT activation was suppressed by fusion-inducing JNK signaling. JAK/STAT signaling was both necessary and sufficient for the induction of βPS integrin (also known as Myospheroid) expression, suggesting that the suppression of cell fusion was mediated at least in part by integrin protein. © 2017. Published by The Company of Biologists Ltd.
Tabandeh, Mohammad Reza; Oryan, Ahmad; Mohammadalipour, Adel
2014-04-01
Polysaccharides are the main macromolecules of Aloe vera gel but no data about their effect on extracellular matrix (ECM) elements are available. Here, mannose rich Aloe vera polysaccharides (AVP) with molecular weight between 50 and 250 kDa were isolated and characterized. Open cutaneous wounds on the back of 45 rats (control and treated) were daily treated with 25mg (n=15) and 50 mg (n=15) AVP for 30 days. The levels of MMP-3 and TIMP-2 gene expression were analyzed using real time PCR. The levels of n-acetyl glucosamine (NAGA), n-acetyl galactosamine (NAGLA) and collagen contents were also measured using standard biochemical methods. Faster wound closure was observed at day 15 post wounding in AVP treated animals in comparison with untreated group. At day 10 post wounding, AVP inhibited MMP-3 gene expression, while afterwards MMP-3 gene expression was upregulated. AVP enhanced TIMP-2 gene expression, collagen, NAGLA and NAGA synthesis in relation to untreated wounds. Our results suggest that AVP has positive effects on the regulation of ECM factor synthesis, which open up new perspectives for the wound repair activity of Aloe vera polysaccharide at molecular level. Copyright © 2014 Elsevier B.V. All rights reserved.
Mast cells contribute to scar formation during fetal wound healing.
Wulff, Brian C; Parent, Allison E; Meleski, Melissa A; DiPietro, Luisa A; Schrementi, Megan E; Wilgus, Traci A
2012-02-01
Scar formation is a potentially detrimental process of tissue restoration in adults, affecting organ form and function. During fetal development, cutaneous wounds heal without inflammation or scarring at early stages of development; however, they begin to heal with significant inflammation and scarring as the skin becomes more mature. One possible cell type that could regulate the change from scarless to fibrotic healing is the mast cell. We show here that dermal mast cells in scarless wounds generated at embryonic day 15 (E15) are fewer in number, less mature, and do not degranulate in response to wounding as effectively as mast cells of fibrotic wounds made at embryonic day 18 (E18). Differences were also observed between cultured mast cells from E15 and E18 skin, with regard to degranulation and preformed cytokine levels. Injection of mast cell lysates into E15 wounds disrupted scarless healing, suggesting that mast cells interfere with scarless repair. Finally, wounds produced at E18, which normally heal with a scar, healed with significantly smaller scars in mast cell-deficient Kit(W/W-v) mice compared with Kit(+/+) littermates. Together, these data suggest that mast cells enhance scar formation, and that these cells may mediate the transition from scarless to fibrotic healing during fetal development.
Zhao, Bin; Liu, Jia-Qi; Zheng, Zhao; Zhang, Jun; Wang, Shu-Yue; Han, Shi-Chao; Zhou, Qin; Guan, Hao; Li, Chao; Su, Lin-Lin; Hu, Da-Hai
2016-07-01
Wound healing is a highly orchestrated physiological process consisting in a complex interaction of cellular and biochemical events. Human amniotic epithelial stem cells (HAESCs) have been shown to be an attractive resource for wound healing because they are primitive stem cells. However, the exact effects of amnion-derived stem cells on the migration or proliferation of keratinocytes and their potential mechanism are not fully understood. We have found that HAESCs accelerate the migration of keratinocytes and induce a remarkable increase in the activity of phospho-ERK, phospho-JNK, and phospho-AKT, the blockade of which by their specific inhibitors significantly inhibits migration induced by HAESC-conditioned medium (CM). Furthermore, the co-culture of keratinocytes with HAESCs up-regulates the expression levels of cell proliferation proteins Cyclin D1, Cyclin D3 and Mdm2. In vivo animal experiments have shown that HAESC-CM improves wound healing, whereas blockade with ERK, JNK and AKT inhibitors significantly impairs wound healing. Taken together, these results reveal, for the first time, that HAESCs promote wound healing by facilitating the migration and proliferation of keratinocytes via ERK, JNK and AKT signaling pathways and might be a potential therapy in skin wound healing.
Mammalian cell models to advance our understanding of wound healing: a review.
Vidmar, Jerneja; Chingwaru, Constance; Chingwaru, Walter
2017-04-01
Rapid and efficient healing of damaged tissue is critical for the restoration of tissue function and avoidance of tissue defects. Many in vitro cell models have been described for wound healing studies; however, the mechanisms that underlie the process, especially in chronic or complicated wounds, are not fully understood. The identification of cell culture systems that closely simulate the physiology of damaged tissue in vivo is necessary. We describe the cell culture models that have enhanced our understanding, this far, of the wound healing process or have been used in drug discovery. Cell cultures derived from the epithelium, including corneal, renal, intestinal (IEC-8 cells and IEC-6), skin epithelial cells (keratinocytes, fibroblasts, and multipotent mesenchymal stem cells), and the endothelium (human umbilical vein endothelial cells, primary mouse endothelial cells, endodermal stem cells, human mesenchymal stem cells, and corneal endothelial cells) have played a pivotal role toward our understanding of the mechanisms of wound healing. More studies are necessary to develop co-culture cell models which closely simulate the environment of a wound in vivo. Cell culture models are invaluable tools to promote our understanding of the mechanisms that regulate the wound healing process and provide a platform for drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.
50 CFR 402.44 - Advance coordination for FIFRA actions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions... Act § 402.44 Advance coordination for FIFRA actions. (a) Advance coordination. EPA may request the...
50 CFR 402.44 - Advance coordination for FIFRA actions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions... Act § 402.44 Advance coordination for FIFRA actions. (a) Advance coordination. EPA may request the...
50 CFR 402.44 - Advance coordination for FIFRA actions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions... Act § 402.44 Advance coordination for FIFRA actions. (a) Advance coordination. EPA may request the...
50 CFR 402.44 - Advance coordination for FIFRA actions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions... Act § 402.44 Advance coordination for FIFRA actions. (a) Advance coordination. EPA may request the...
50 CFR 402.44 - Advance coordination for FIFRA actions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions... Act § 402.44 Advance coordination for FIFRA actions. (a) Advance coordination. EPA may request the...
Epidermal aquaporin-3 is increased in the cutaneous burn wound
Sebastian, R.; Chau, E.; Fillmore, P.; Matthews, J.; Price, L.A.; Sidhaye, V.; Milner, S.M.
2018-01-01
Introduction Aquaporins (AQP) are a family of transmembrane proteins that transport water and small solutes such as glycerol across cell membranes. It is a mediator of transcellular water flow and plays an important role in maintaining intra/extracellular fluid homeostasis by facilitating water transport in response to changing osmotic gradients. In the skin, AQPs permit rapid, regulated, and selective water permeability and have been demonstrated to play a role in skin hydration, cell proliferation, migration, immunity, and wound healing. However, the expression of AQP-3 in the cutaneous burn wound has never been elucidated. We sought to assess the expression of AQP-3 in patients with burn wounds. Methods A fresh full thickness biopsy sample was taken from the center of the burn wound, the burn wound edge, and the graft donor site in 7 patients (n = 21), approximately 3–7 days post injury. Fixed, paraffin embedded sections were stained using AQP-3 specific antibody and examined by immunofluorescence. Fresh samples were processed to quantify AQP-3 protein expression with Western blot analysis. Results The central portion of the burn wound revealed destruction of the epidermis and dermis with no AQP-3 present. Along the burn wound edge where the epidermal architecture was disrupted, there was robust AQP-3 staining. Western blot analysis demonstrated deeper staining along the burn wound edge compared to unburned skin (control). Quantification of the protein shows a significant amount of AQP-3 expression along the burn wound edge (3.6 ± 0.34) compared to unburned skin (2.1 ± 0.28, N = 7, *p < 0.05). There is no AQP-3 expression in the burn wound center. Conclusion AQP-3 expression is increased in the burn wound following injury. While its role in wound healing has been defined, we report for the first time the effect of cutaneous burns on AQP-3 expression. Our data provides the first step in determining its functional role in burn wounds. We hypothesize that development of AQP3 targeted therapies may improve burn wound healing. PMID:25603981
Exploring Terrorist Targeting Preferences
2007-01-01
of dramatic size, scale, and impact . Indeed, al Qaeda may well conclude that any attack capa- ble of awing its own members will also inspire...likely). Coordinated attack can be considered a sig- nature trait of al Qaeda operations: in Kenya ; Tanzania; New York; Washington, D.C.; Istanbul...1998, simultaneous bombings of the U.S. embassies in Kenya and Tanzania killed over 200 people—twelve of them U.S. citi- zens—and wounded more than
1985-09-01
Gallon External Fuel Tank. a. This is a filament-wound fuel tank with nomex honeycomb core, inner layers of Kevlar and glass , outer layers of...MD 20910 Dr. A. Carro FAA Technical Center Mr. Jack Lippert ACT-340 AFWAL/FIEA Atlantic City Airport, NJ 08405 Air Force Wright Aeronautical Lab
Mast cells are dispensable for normal and activin-promoted wound healing and skin carcinogenesis.
Antsiferova, Maria; Martin, Caroline; Huber, Marcel; Feyerabend, Thorsten B; Förster, Anja; Hartmann, Karin; Rodewald, Hans-Reimer; Hohl, Daniel; Werner, Sabine
2013-12-15
The growth and differentiation factor activin A is a key regulator of tissue repair, inflammation, fibrosis, and tumorigenesis. However, the cellular targets, which mediate the different activin functions, are still largely unknown. In this study, we show that activin increases the number of mature mast cells in mouse skin in vivo. To determine the relevance of this finding for wound healing and skin carcinogenesis, we mated activin transgenic mice with CreMaster mice, which are characterized by Cre recombinase-mediated mast cell eradication. Using single- and double-mutant mice, we show that loss of mast cells neither affected the stimulatory effect of overexpressed activin on granulation tissue formation and reepithelialization of skin wounds nor its protumorigenic activity in a model of chemically induced skin carcinogenesis. Furthermore, mast cell deficiency did not alter wounding-induced inflammation and new tissue formation or chemically induced angiogenesis and tumorigenesis in mice with normal activin levels. These findings reveal that mast cells are not major targets of activin during wound healing and skin cancer development and also argue against nonredundant functions of mast cells in wound healing and skin carcinogenesis in general.
Getzin, Tobias; Krishnasamy, Kashyap; Gamrekelashvili, Jaba; Kapanadze, Tamar; Limbourg, Anne; Häger, Christine; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Limbourg, Florian P
2018-02-01
Regeneration of arterial endothelium after injury is critical for the maintenance of normal blood flow, cell trafficking, and vascular function. Using mouse models of carotid injury, we show that the transition from a static to a dynamic phase of endothelial regeneration is marked by a strong increase in endothelial proliferation, which is accompanied by induction of the chemokine CX 3 CL1 in endothelial cells near the wound edge, leading to progressive recruitment of Ly6C lo monocytes expressing high levels of the cognate CX 3 CR1 chemokine receptor. In Cx3cr1 -deficient mice recruitment of Ly6C lo monocytes, endothelial proliferation and regeneration of the endothelial monolayer after carotid injury are impaired, which is rescued by acute transfer of normal Ly6C lo monocytes. Furthermore, human non-classical monocytes induce proliferation of endothelial cells in co-culture experiments in a VEGFA-dependent manner, and monocyte transfer following carotid injury promotes endothelial wound closure in a hybrid mouse model in vivo Thus, CX 3 CR1 coordinates recruitment of specific monocyte subsets to sites of endothelial regeneration, which promote endothelial proliferation and arterial regeneration. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Ebaid, Hossam; Ahmed, Osama M; Mahmoud, Ayman M; Ahmed, Rasha R
2013-07-25
Impaired diabetic wound healing occurs as a consequence of excessive reactive oxygen species (ROS) and inflammatory cytokine production. We previously found that whey protein (WP) was able to normally regulate the ROS and inflammatory cytokines during the inflammatory phase (first day) in streptozotocin (STZ)-diabetic wound healing. This study was designed to assess the effect of WP on metabolic status, the inflammation and anti-inflammation response, oxidative stress and the antioxidant defense system during different phases of the wound healing process in diabetic rats. WP at a dosage of 100 mg/kg of body weight, dissolved in 1% CMC, was orally administered daily to wounded normal (non-diabetic) and STZ-induced diabetic rats for 8 days starting from the 1st day after wounding. The data revealed that WP enhanced wound closure and was associated with an increase in serum insulin levels in diabetic rats and an alleviation of hyperglycemic and hyperlipidemic states in diabetic animals. The increase in insulin levels as a result of WP administration is associated with a marked multiplication of β-cells in the core of islets of Langerhans. WP induced a reduction in serum TNF-α, IL-1β and IL-6 levels and an increase in IL-10 levels, especially on the 4th day after wounding and treatment. WP also suppressed hepatic lipid peroxidation and stimulated the antioxidant defense system by increasing the level of glutathione and the activity of glutathione-S-transferase, glutathione peroxidase and superoxide dismutase (SOD) in wounded diabetic rats. WP was observed to enhance wound closure by improving the diabetic condition, limiting prolonged inflammation, suppressing oxidative stress and elevating the antioxidant defense system in diabetic rats.
Effect of Topical Estrogen in the Mangement of Traumatic Facial Wounds
Ghazizadeh Hashemi, Seyed Amirhosein; Barati, Behrooz; Mohammadi, Hosein; Saeidi, Masumeh; Bahreini, Abbas; Kiani, Mohammad Ali
2016-01-01
Introduction: Acute skin wound healing is a complicated process comprising various phases. Recent animal studies have shown that steroid sex hormones such as estrogen maybe helpful in the regulation of several pathophysiologic stages that are involved in wound healing. In this study we examined the effects of topical estrogen in the treatment of traumatic facial wounds. Materials and Methods: Patients referred to Luqman Hospital, Tehran with traumatic wounds were enrolled in this case-control study into two groups of equal size. From the second week of the study, topical estrogen (0.625 mg conjugated topical estrogen ointment) was administered in the case group, while the control group received a Eucerin dressing only. The two groups were then compared in terms of wound healing rate on Day 7,14, and 30. Results: Thirty patients with mean age of 16.02+36.23 years were compared in the control and estrogen-treated groups. After treatment, no scars or keloids were observed in either group. The wound area in the estrogen group was lower than that in the control group on Day 14 and 30, but the difference was not significant (P>0.05). Healing rates in the control group on Day 14 (7.1+42.3 vs.50.3+4.9 mm2) and Day 30 (1.9+93.5 vs. + 97.3+0.6 mm2) (were lower than those in the estrogen group, but the differences were not significant (P>0.05). Findings show that the required time for wound healing in the estrogen-treated group was lower than that in the control group, but the difference was not significant (P>0.05). Conclusion: Based on this study, topical estrogen has no effect on the rate of wound healing or the rate of wound area. PMID:26878003
Effect of Topical Estrogen in the Mangement of Traumatic Facial Wounds.
Ghazizadeh Hashemi, Seyed Amirhosein; Barati, Behrooz; Mohammadi, Hosein; Saeidi, Masumeh; Bahreini, Abbas; Kiani, Mohammad Ali
2016-01-01
Acute skin wound healing is a complicated process comprising various phases. Recent animal studies have shown that steroid sex hormones such as estrogen maybe helpful in the regulation of several pathophysiologic stages that are involved in wound healing. In this study we examined the effects of topical estrogen in the treatment of traumatic facial wounds. Patients referred to Luqman Hospital, Tehran with traumatic wounds were enrolled in this case-control study into two groups of equal size. From the second week of the study, topical estrogen (0.625 mg conjugated topical estrogen ointment) was administered in the case group, while the control group received a Eucerin dressing only. The two groups were then compared in terms of wound healing rate on Day 7,14, and 30. Thirty patients with mean age of 16.02+36.23 years were compared in the control and estrogen-treated groups. After treatment, no scars or keloids were observed in either group. The wound area in the estrogen group was lower than that in the control group on Day 14 and 30, but the difference was not significant (P>0.05). Healing rates in the control group on Day 14 (7.1+42.3 vs.50.3+4.9 mm2) and Day 30 (1.9+93.5 vs. + 97.3+0.6 mm2) (were lower than those in the estrogen group, but the differences were not significant (P>0.05). Findings show that the required time for wound healing in the estrogen-treated group was lower than that in the control group, but the difference was not significant (P>0.05). Based on this study, topical estrogen has no effect on the rate of wound healing or the rate of wound area.
2013-01-01
Background Impaired diabetic wound healing occurs as a consequence of excessive reactive oxygen species (ROS) and inflammatory cytokine production. We previously found that whey protein (WP) was able to normally regulate the ROS and inflammatory cytokines during the inflammatory phase (first day) in streptozotocin (STZ)-diabetic wound healing. This study was designed to assess the effect of WP on metabolic status, the inflammation and anti-inflammation response, oxidative stress and the antioxidant defense system during different phases of the wound healing process in diabetic rats. WP at a dosage of 100 mg/kg of body weight, dissolved in 1% CMC, was orally administered daily to wounded normal (non-diabetic) and STZ-induced diabetic rats for 8 days starting from the 1st day after wounding. Results The data revealed that WP enhanced wound closure and was associated with an increase in serum insulin levels in diabetic rats and an alleviation of hyperglycemic and hyperlipidemic states in diabetic animals. The increase in insulin levels as a result of WP administration is associated with a marked multiplication of β-cells in the core of islets of Langerhans. WP induced a reduction in serum TNF-α, IL-1β and IL-6 levels and an increase in IL-10 levels, especially on the 4th day after wounding and treatment. WP also suppressed hepatic lipid peroxidation and stimulated the antioxidant defense system by increasing the level of glutathione and the activity of glutathione-S-transferase, glutathione peroxidase and superoxide dismutase (SOD) in wounded diabetic rats. Conclusions WP was observed to enhance wound closure by improving the diabetic condition, limiting prolonged inflammation, suppressing oxidative stress and elevating the antioxidant defense system in diabetic rats. PMID:23883360
Bos, P K; van Osch, G J; Frenz, D A; Verhaar, J A; Verwoerd-Verhoef, H L
2001-05-01
The ability of cartilage to regenerate following injury is limited, potentially leading to osteoarthritis. Integrative cartilage repair, necessary for durable restoration of cartilage lesions, can be regarded as a wound healing process. Little is known about the effects of growth factors regulating acute cartilage wound healing in vivo. In this study the temporal expression patterns of growth factors and proteoglycan content in cartilage wound edges in vivo were studied. Cartilage wounds were created in rabbit ear cartilage using a 6 mm biopsy punch. Specimens were subsequently harvested 1, 3, 7, 14 and 28 days after surgery. Paraffin sections were thionin stained to visualize proteoglycan loss and replacement. Immunohistochemical staining of TGFbeta1, TGFbeta3, IGF-1, IGF-II and FGF-2 was used to define growth factor expression at the cartilage wound sites. Almost no effect of cartilage wounding was observed one day after surgery. A decrease of proteoglycan content, with a maximal loss at day 7, and a subsequent restoration was observed at the wound edges. Growth factor expression increased simultaneously. Maximal immunostaining for IGF1, IGFII, FGF2 and TGF-beta3 was observed at day 7, followed by a gradual decrease. Increased expression of TGFbeta1 lasted from day 3 until day 14. We have demonstrated the ability of chondrocytes to increase growth factor expression and to restore the rapid decrease in proteoglycan content in the initial phase following acute wounding. A temporal increase in intracellular growth factor expression suggests an autocrine and/or paracrine metabolic stimulation, which can be regarded a sign of chondrocytes repair capacity. Copyright 2001 OsteoArthritis Research Society International.
Metabolomic analysis of primary metabolites in citrus leaf during defense responses.
Asai, Tomonori; Matsukawa, Tetsuya; Kajiyama, Shin'ichiro
2017-03-01
Mechanical damage is one of the unavoidable environmental stresses to plant growth and development. Plants induce a variety of reactions which defend against natural enemies and/or heal the wounded sites. Jasmonic acid (JA) and salicylic acid (SA), defense-related plant hormones, are well known to be involved in induction of defense reactions and play important roles as signal molecules. However, defense related metabolites are so numerous and diverse that roles of individual compounds are still to be elucidated. In this report, we carried out a comprehensive analysis of metabolic changes during wound response in citrus plants which are one of the most commercially important fruit tree families. Changes in amino acid, sugar, and organic acid profiles in leaves were surveyed after wounding, JA and SA treatments using gas chromatography-mass spectrometry (GC/MS) in seven citrus species, Citrus sinensis, Citrus limon, Citrus paradisi, Citrus unshiu, Citrus kinokuni, Citrus grandis, and Citrus hassaku. GC/MS data were applied to multivariate analyses including hierarchical cluster analysis (HCA), primary component analysis (PCA), and orthogonal partial least squares-discriminant analysis (OPLS-DA) to extract stress-related compounds. HCA showed the amino acid cluster including phenylalanine and tryptophan, suggesting that amino acids in this cluster are concertedly regulated during responses against treatments. OPLS-DA exhibited that tryptophan was accumulated after wounding and JA treatments in all species tested, while serine was down regulated. Our results suggest that tryptophan and serine are common biomarker candidates in citrus plants for wound stress. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Enzyme-Responsive Delivery of Multiple Proteins with Spatiotemporal Control.
Zhu, Suwei; Nih, Lina; Carmichael, S Thomas; Lu, Yunfeng; Segura, Tatiana
2015-06-24
Orchestrated biological materials such as enzymes and growth factors regulate the growth of tissues and organs. A chirality-controlled, single-protein technology is devised to tailor the spatiotemporally defined delivery of therapeutic proteins in response to natural enzymes present at wound sites. Sustained delivery of one protein and sequential delivery of two proteins are demonstrated for stroke and skin wound healing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Keshri, Gaurav K.; Gupta, Asheesh; Yadav, Anju; Sharma, Sanjeev K.; Singh, Shashi Bala
2016-01-01
Chronic non-healing cutaneous wounds are often vulnerable in one or more repair phases that prevent normal healing and pose challenges to the use of conventional wound care modalities. In immunosuppressed subject, the sequential stages of healing get hampered, which may be the consequences of dysregulated or stagnant wound inflammation. Photobiomodulation (PBM) or low-level laser (light) therapy (LLLT) emerges as a promising drug-free, non-invasive biophysical approach for promoting wound healing, reduction of inflammation, pain and restoration of functions. The present study was therefore undertaken to evaluate the photobiomodulatory effects of 810 nm diode laser (40 mW/cm2; 22.6 J/cm2) with pulsed (10 and 100 Hz, 50% duty cycle) and continuous wave on full-thickness excision-type dermal wound healing in hydrocortisone-induced immunosuppressed rats. Results clearly delineated that 810 nm PBM at 10 Hz was more effective over continuous and 100 Hz frequency in accelerating wound healing by attenuating the pro-inflammatory markers (NF-kB, TNF-α), augmenting wound contraction (α-SM actin), enhancing cellular proliferation, ECM deposition, neovascularization (HIF-1α, VEGF), re-epithelialization along with up-regulated protein expression of FGFR-1, Fibronectin, HSP-90 and TGF-β2 as compared to the non-irradiated controls. Additionally, 810 nm laser irradiation significantly increased CCO activity and cellular ATP contents. Overall, the findings from this study might broaden the current biological mechanism that could be responsible for photobiomodulatory effect mediated through pulsed NIR 810 nm laser (10 Hz) for promoting dermal wound healing in immunosuppressed subjects. PMID:27861614
Tiganescu, Ana; Hupe, Melanie; Uchida, Yoshikazu; Mauro, Theadora; Elias, Peter M; Holleran, Walter M
2018-01-01
Glucocorticoid (GC) excess drives multiple cutaneous adverse effects, including skin thinning and poor wound healing. The ubiquitously expressed enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activates mouse corticosterone from 11-dehydrocorticosterone (and human cortisol from cortisone). We previously demonstrated elevated 11β-HSD1 activity during mouse wound healing, but the interplay between cutaneous 11β-HSD1 and systemic GC excess is unexplored. Here, we examined effects of 11β-HSD1 inhibition by carbenoxolone (CBX) in mice treated with corticosterone (CORT) or vehicle for 6 weeks. Mice were treated bidaily with topical CBX or vehicle (VEH) 7 days before wounding and during wound healing. CORT mice displayed skin thinning and impaired wound healing but also increased epidermal integrity. 11β-HSD1 activity was elevated in unwounded CORT skin and was inhibited by CBX. CORT mice treated with CBX displayed 51%, 59%, and 100% normalization of wound healing, epidermal thickness, and epidermal integrity, respectively. Gene expression studies revealed normalization of interleukin 6, keratinocyte growth factor, collagen 1, collagen 3, matrix metalloproteinase 9, and tissue inhibitor of matrix metalloproteinase 4 by CBX during wound healing. Importantly, proinflammatory cytokine expression and resolution of inflammation were unaffected by 11β-HSD1 inhibition. CBX did not regulate skin function or wound healing in the absence of CORT. Our findings demonstrate that 11β-HSD1 inhibition can limit the cutaneous effects of GC excess, which may improve the safety profile of systemic steroids and the prognosis of chronic wounds. Copyright © 2018 Endocrine Society.
ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds
Osaka, Nao; Takahashi, Takumi; Murakami, Shiori; Matsuzawa, Atsushi; Noguchi, Takuya; Fujiwara, Takeshi; Aburatani, Hiroyuki; Moriyama, Keiji; Takeda, Kohsuke; Ichijo, Hidenori
2007-01-01
Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein 3-kinase family that activates both c-Jun NH2-terminal kinase and p38 pathways in response to inflammatory cytokines and physicochemical stress. We report that ASK1 deficiency in mice results in dramatic retardation of wounding-induced hair regrowth in skin. Oligonucleotide microarray analysis revealed that expression of several chemotactic and activating factors for macrophages, as well as several macrophage-specific marker genes, was reduced in the skin wound area of ASK1-deficient mice. Intracutaneous transplantation of cytokine-activated bone marrow-derived macrophages strongly induced hair growth in both wild-type and ASK1-deficient mice. These findings indicate that ASK1 is required for wounding-induced infiltration and activation of macrophages, which play central roles in inflammation-dependent hair regrowth in skin. PMID:17389227
Rolin, Gwenae L; Binda, Delphine; Tissot, Marion; Viennet, Céline; Saas, Philippe; Muret, Patrice; Humbert, Philippe
2014-11-07
Skin wound healing is finely regulated by both matrix synthesis and degradation which are governed by dermal fibroblast activity. Actually, fibroblasts synthesize numerous extracellular matrix proteins (i.e., collagens), remodeling enzymes and their inhibitors. Moreover, they differentiate into myofibroblasts and are able to develop endogenous forces at the wound site. Such forces are crucial during skin wound healing and have been widely investigated. However, few studies have focused on the effect of exogenous mechanical tension on the dermal fibroblast phenotype, which is the objective of the present paper. To this end, an exogenous, defined, cyclic and uniaxial mechanical strain was applied to fibroblasts cultured as scratch-wounded monolayers. Results showed that fibroblasts' response was characterized by both an increase in procollagen type-I and TIMP-1 synthesis, and a decrease in MMP-1 synthesis. The monitoring of scratch-wounded monolayers did not show any decrease in kinetics of the filling up when mechanical tension was applied. Additional results obtained with proliferating fibroblasts and confluent monolayer indicated that mechanical tension-induced response of fibroblasts depends on their culture conditions. In conclusion, mechanical tension leads to the differentiation of dermal fibroblasts and may increase their wound-healing capacities. So, the exogenous uniaxial and cyclic mechanical tension reported in the present study may be considered in order to improve skin wound healing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modulation of Wound Healing and Scar Formation by MG53 Protein-mediated Cell Membrane Repair*
Li, Haichang; Duann, Pu; Lin, Pei-Hui; Zhao, Li; Fan, Zhaobo; Tan, Tao; Zhou, Xinyu; Sun, Mingzhai; Fu, Minghuan; Orange, Matthew; Sermersheim, Matthew; Ma, Hanley; He, Duofen; Steinberg, Steven M.; Higgins, Robert; Zhu, Hua; John, Elizabeth; Zeng, Chunyu; Guan, Jianjun; Ma, Jianjie
2015-01-01
Cell membrane repair is an important aspect of physiology, and disruption of this process can result in pathophysiology in a number of different tissues, including wound healing, chronic ulcer and scarring. We have previously identified a novel tripartite motif family protein, MG53, as an essential component of the cell membrane repair machinery. Here we report the functional role of MG53 in the modulation of wound healing and scarring. Although MG53 is absent from keratinocytes and fibroblasts, remarkable defects in skin architecture and collagen overproduction are observed in mg53−/− mice, and these animals display delayed wound healing and abnormal scarring. Recombinant human MG53 (rhMG53) protein, encapsulated in a hydrogel formulation, facilitates wound healing and prevents scarring in rodent models of dermal injuries. An in vitro study shows that rhMG53 protects against acute injury to keratinocytes and facilitates the migration of fibroblasts in response to scratch wounding. During fibrotic remodeling, rhMG53 interferes with TGF-β-dependent activation of myofibroblast differentiation. The resulting down-regulation of α smooth muscle actin and extracellular matrix proteins contributes to reduced scarring. Overall, these studies establish a trifunctional role for MG53 as a facilitator of rapid injury repair, a mediator of cell migration, and a modulator of myofibroblast differentiation during wound healing. Targeting the functional interaction between MG53 and TGF-β signaling may present a potentially effective means for promoting scarless wound healing. PMID:26306047
In vivo wound-healing efficacy and antioxidant activity of Achyranthes aspera in experimental burns.
Barua, Chandana Choudhury; Talukdar, Archana; Begum, Shameem Ara; Pathak, Debesh Chandra; Sarma, Dilip Kumar; Borah, Rumi Saikia; Gupta, Asheesh
2012-07-01
The floral richness of the North-East Indian region cannot be neglected in context to its medicinal importance. Achyranthes aspera Linn. (Amaranthaceae; Prickly Chaff flower) is an indigenous plant species of this region. Although the local traditional healers have ethnomedical knowledge on the use of this plant, there is no scientific study on wound-healing activity of this plant. The healing efficacy of methanol leaf extract of A. aspera (MEAA) in granulation tissue of burn wound and its antioxidant activity are investigated. Methanol extract of leaves of A. aspera was used for compounding 5% (w/w) ointment, which was applied topically twice daily in experimental burn wound in rats. Healing potential was assessed by rate of wound contraction, antioxidant and biochemical assay which was supported by gelatin zymography and histopathology. In the present study, 5% ointment of A. aspera showed significant (p < 0.05) wound healing, which was evident by wound contraction, elevation of various antioxidant enzymes viz. SOD, catalase, vitamin C and prohealing and biochemical parameters like hydroxyproline and protein content than the control animals. Up-regulated expression of matrix metalloproteinases (MMP-2 and 9) was also observed by gelatin zymography. Histopathological examination of the granulation tissues in the A. aspera-treated animals showed collagen deposition, fibroblast proliferation and formation of epidermis. The methanol leaf extract of A. aspera showed excellent wound-healing activities which has great potential for development of plant-based product.
Satoh, Akira; makanae, Aki; Hirata, Ayako; Satou, Yutaka
2011-07-15
Urodele amphibians can regenerate amputated limbs. It has been considered that differentiated dermal tissues generate multipotent and undifferentiated cells called blastema cells during limb regeneration. In early phases of limb regeneration, blastema cells are induced by nerves and the apical epithelial cap (AEC). We had previously investigated the role of neurotrophic factors in blastema or blastema-like formation consisting of Prrx-1 positive cells. A new system suitable for investigating early phases of limb regeneration, called the accessory limb model (ALM), was recently developed. In this study, we performed a comparative transcriptome analysis between a blastema and wound using ALM. Matrix metalloproteinase (MMP) and fibroblast growth factor (FGF) signaling components were observed to be predominantly expressed in ALM blastema cells. Furthermore, we found that MMP activity induced a blastema marker gene, Prrx-1, in vitro, and FGF signaling pathways worked in coordination to maintain Prrx-1 expression and ALM blastema formation. Furthermore, we demonstrated that these two activities were sufficient to induce an ALM blastema in the absence of a nerve in vivo. Copyright © 2011 Elsevier Inc. All rights reserved.
Protein-mediated loops in supercoiled DNA create large topological domains
Yan, Yan; Ding, Yue; Leng, Fenfei; Dunlap, David; Finzi, Laura
2018-01-01
Abstract Supercoiling can alter the form and base pairing of the double helix and directly impact protein binding. More indirectly, changes in protein binding and the stress of supercoiling also influence the thermodynamic stability of regulatory, protein-mediated loops and shift the equilibria of fundamental DNA/chromatin transactions. For example, supercoiling affects the hierarchical organization and function of chromatin in topologically associating domains (TADs) in both eukaryotes and bacteria. On the other hand, a protein-mediated loop in DNA can constrain supercoiling within a plectonemic structure. To characterize the extent of constrained supercoiling, 400 bp, lac repressor-secured loops were formed in extensively over- or under-wound DNA under gentle tension in a magnetic tweezer. The protein-mediated loops constrained variable amounts of supercoiling that often exceeded the maximum writhe expected for a 400 bp plectoneme. Loops with such high levels of supercoiling appear to be entangled with flanking domains. Thus, loop-mediating proteins operating on supercoiled substrates can establish topological domains that may coordinate gene regulation and other DNA transactions across spans in the genome that are larger than the separation between the binding sites. PMID:29538766
Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation.
Roy, Sashwati; Driggs, Jason; Elgharably, Haytham; Biswas, Sabyasachi; Findley, Muna; Khanna, Savita; Gnyawali, Urmila; Bergdall, Valerie K; Sen, Chandan K
2011-11-01
The economic, social, and public health burden of chronic ulcers and other compromised wounds is enormous and rapidly increasing with the aging population. The growth factors derived from platelets play an important role in tissue remodeling including neovascularization. Platelet-rich plasma (PRP) has been utilized and studied for the last four decades. Platelet gel and fibrin sealant, derived from PRP mixed with thrombin and calcium chloride, have been exogenously applied to tissues to promote wound healing, bone growth, hemostasis, and tissue sealing. In this study, we first characterized recovery and viability of as well as growth factor release from platelets in a novel preparation of platelet gel and fibrin matrix, namely platelet-rich fibrin matrix (PRFM). Next, the effect of PRFM application in a delayed model of ischemic wound angiogenesis was investigated. The study, for the first time, shows the kinetics of the viability of platelet-embedded fibrin matrix. A slow and steady release of growth factors from PRFM was observed. The vascular endothelial growth factor released from PRFM was primarily responsible for endothelial mitogenic response via extracellular signal-regulated protein kinase activation pathway. Finally, this preparation of PRFM effectively induced endothelial cell proliferation and improved wound angiogenesis in chronic wounds, providing evidence of probable mechanisms of action of PRFM in healing of chronic ulcers. 2011 by the Wound Healing Society.
Yen, Yu-Hsiu; Pu, Chi-Ming; Liu, Chen-Wei; Chen, Ya-Chun; Chen, Yu-Chen; Liang, Chan-Jung; Hsieh, Jung-Hsien; Huang, Hui-Fu; Chen, Yuh-Lien
2018-04-16
Curcumin, a constituent of the turmeric plant, has antitumor, anti-inflammatory, and antioxidative effects, but its effects on wound healing are unclear. We created back wounds in 72 mice and treated them with or without topical curcumin (0.2 mg/mL) in Pluronic F127 gel (20%) daily for 3, 5, 7, 9, and 12 days. Healing in wounds was evaluated from gross appearance, microscopically by haematoxylin and eosin staining, by immunohistochemistry for tumour necrosis factor alpha and alpha smooth muscle actin, and by polymerase chain reaction amplification of mRNA expression levels. Treatment caused fast wound closure with well-formed granulation tissue dominated by collagen deposition and regenerating epithelium. Curcumin increased the levels of tumour necrosis factor alpha mRNA and protein in the early phase of healing, which then decreased significantly. However, these levels remained high in controls. Levels of collagen were significantly higher in curcumin-treated wounds. Immunohistochemical staining for alpha smooth muscle actin was increased in curcumin-treated mice on days 7 and 12. Curcumin treatment significantly suppressed matrix metallopeptidase-9 and stimulated alpha smooth muscle levels in tumour necrosis factor alpha-treated fibroblasts via nuclear factor kappa B signalling. Thus, topical curcumin accelerated wound healing in mice by regulating the levels of various cytokines. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Zhang, Xiao-Na; Ma, Ze-Jun; Wang, Ying; Sun, Bei; Guo, Xin; Pan, Cong-Qing; Chen, Li-Ming
2017-01-01
Abnormal angiogenesis plays an important role in impaired wound healing and development of chronic wounds in diabetes mellitus. Angelica dahurica radix is a common traditional Chinese medicine with wide spectrum medicinal effects. In this study, we analyzed the potential roles of Angelica dahurica ethanolic extract (ADEE) in correcting impaired angiogenesis and delayed wound healing in diabetes by using streptozotocin-induced diabetic rats. ADEE treatment accelerated diabetic wound healing through inducing angiogenesis and granulation tissue formation. The angiogenic property of ADEE was subsequently verified ex vivo using aortic ring assays. Furthermore, we investigated the in vitro angiogenic activity of ADEE and its underlying mechanisms using human umbilical vein endothelial cells. ADEE treatment induced HUVECs proliferation, migration, and tube formation, which are typical phenomena of angiogenesis, in dose-dependent manners. These effects were associated with activation of angiogenic signal modulators, including extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, endothelial nitric oxide synthase (eNOS) as well as increased NO production, and independent of affecting VEGF expression. ADEE-induced angiogenic events were inhibited by the MEK inhibitor PD98059, the PI3K inhibitor Wortmannin, and the eNOS inhibitor L-NAME. Our findings highlight an angiogenic role of ADEE and its ability to protect against impaired wound healing, which may be developed as a promising therapy for impaired angiogenesis and delayed wound healing in diabetes.
Innate sensing of microbial products promotes wound-induced skin cancer.
Hoste, Esther; Arwert, Esther N; Lal, Rohit; South, Andrew P; Salas-Alanis, Julio C; Murrell, Dedee F; Donati, Giacomo; Watt, Fiona M
2015-01-09
The association between tissue damage, chronic inflammation and cancer is well known. However, the underlying mechanisms are unclear. Here we characterize a mouse model in which constitutive epidermal extracellular-signal-regulated kinase-MAP-kinase signalling results in epidermal inflammation, and skin wounding induces tumours. We show that tumour incidence correlates with wound size and inflammatory infiltrate. Ablation of tumour necrosis factor receptor (TNFR)-1/-2, Myeloid Differentiation primary response gene 88 or Toll-like receptor (TLR)-5, the bacterial flagellin receptor, but not other innate immune sensors, in radiosensitive leukocytes protects against tumour formation. Antibiotic treatment inhibits, whereas injection of flagellin induces, tumours in a TLR-5-dependent manner. TLR-5 is also involved in chemical-induced skin carcinogenesis in wild-type mice. Leukocytic TLR-5 signalling mediates upregulation of the alarmin HMGB1 (High Mobility Group Box 1) in wound-induced papillomas. HMGB1 is elevated in tumours of patients with Recessive Dystrophic Epidermolysis Bullosa, a disease characterized by chronic skin damage. We conclude that in our experimental model the combination of bacteria, chronic inflammation and wounding cooperate to trigger skin cancer.
Hsiao, Chia-Yen; Tsai, Tung-Hu; Chak, Kin-Fu
2012-01-01
Lithospermi Radix (LR) is an effective traditional Chinese herb in various types of wound healing; however, its mechanism of action remains unknown. A biochemical and proteomic platform was generated to explore the biological phenomena associated with LR and its active component shikonin. We found that both LR ethanol extracts and shikonin are able to promote cell proliferation by up to 25%. The results of proteomic analysis revealed that twenty-two differentially expressed proteins could be identified when fibroblast cells were treated with LR or shikonin. The functions of those proteins are associated with antioxidant activity, antiapoptosis activity, the regulation of cell mobility, the secretion of collagen, the removal of abnormal proteins, and the promotion of cell proliferation, indicating that the efficacy of LR in wound healing may be derived from a synergistic effect on a number of factors induced by the herbal medicine. Furthermore, an animal model confirmed that LR is able to accelerate wound healing on the flank back of the SD rats. Together these findings help to pinpoint the molecular basis of wound healing process induced by LR. PMID:23024692
High-power femtosecond-terahertz pulse induces a wound response in mouse skin
Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik
2013-01-01
Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo. PMID:23907528
Innate sensing of microbial products promotes wound-induced skin cancer
Hoste, Esther; Arwert, Esther N.; Lal, Rohit; South, Andrew P.; Salas-Alanis, Julio C.; Murrell, Dedee F.; Donati, Giacomo; Watt, Fiona M.
2015-01-01
The association between tissue damage, chronic inflammation and cancer is well known. However, the underlying mechanisms are unclear. Here we characterize a mouse model in which constitutive epidermal extracellular-signal-regulated kinase-MAP-kinase signalling results in epidermal inflammation, and skin wounding induces tumours. We show that tumour incidence correlates with wound size and inflammatory infiltrate. Ablation of tumour necrosis factor receptor (TNFR)-1/-2, Myeloid Differentiation primary response gene 88 or Toll-like receptor (TLR)-5, the bacterial flagellin receptor, but not other innate immune sensors, in radiosensitive leukocytes protects against tumour formation. Antibiotic treatment inhibits, whereas injection of flagellin induces, tumours in a TLR-5-dependent manner. TLR-5 is also involved in chemical-induced skin carcinogenesis in wild-type mice. Leukocytic TLR-5 signalling mediates upregulation of the alarmin HMGB1 (High Mobility Group Box 1) in wound-induced papillomas. HMGB1 is elevated in tumours of patients with Recessive Dystrophic Epidermolysis Bullosa, a disease characterized by chronic skin damage. We conclude that in our experimental model the combination of bacteria, chronic inflammation and wounding cooperate to trigger skin cancer. PMID:25575023
Weiß, Katharina T; Fante, Matthias; Köhl, Gudrun; Schreml, Julia; Haubner, Frank; Kreutz, Marina; Haverkampf, Sonja; Berneburg, Mark; Schreml, Stephan
2017-02-01
Dysregulation of pH is a feature of both tumor growth and tissue repair. In tumors, microenvironmental changes, like in lactate metabolism, lead to altered intra- and extracellular pH (pH i , pH e ) and vice versa. In wounds, barrier disruption results in extensive variations in pH e on the wound surface. It is known that altered extracellular proton concentrations have a major impact on cell turnover and migration as well as on the metabolic activity of cells involved in tumor spread and wound closure. The proton-sensing G protein-coupled receptors (GPCRs) GPR4, GPR65 (TDAG8), GPR68 (OGR1) and GPR132 (G2A) are activated via a decrease in pH e and transduce this signal to molecular intracellular pathways. Based on the current knowledge, we speculate on the role of proton-sensing GPCRs in wound healing and on their potential as mechanistic linkers of tumor growth and tissue repair. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Giraud, Emilie; Martin, Oihane; Dillon, Rod J.; Műller, Ingrid
2018-01-01
Leishmania parasites are transmitted to vertebrate hosts by female phlebotomine sand flies as they bloodfeed by lacerating the upper capillaries of the dermis with their barbed mouthparts. In the sand fly midgut secreted proteophosphoglycans from Leishmania form a biological plug known as the promastigote secretory gel (PSG), which blocks the gut and facilitates the regurgitation of infective parasites. The interaction between the wound created by the sand fly bite and PSG is not known. Here we nanoinjected a sand fly egested dose of PSG into BALB/c mouse skin that lead to the differential expression of 7,907 transcripts. These transcripts were transiently up-regulated during the first 6 hours post-wound and enriched for pathways involved in inflammation, cell proliferation, fibrosis, epithelial cell differentiation and wound remodelling. We found that PSG significantly accelerated wound healing in vitro and in mice; which was associated with an early up-regulation of transcripts involved in inflammation (IL-1β, IL-6, IL-10, TNFα) and inflammatory cell recruitment (CCL2, CCL3, CCL4, CXCL2), followed 6 days later by enhanced expression of transcripts associated with epithelial cell proliferation, fibroplasia and fibrosis (FGFR2, EGF, EGFR, IGF1). Dermal expression of IGF1 was enhanced following an infected sand fly bite and was acutely responsive to the deposition of PSG but not the inoculation of parasites or sand fly saliva. Antibody blockade of IGF1 ablated the gel’s ability to promote wound closure in mouse ears and significantly reduced the virulence of Leishmania mexicana infection delivered by an individual sand fly bite. Dermal macrophages recruited to air-pouches on the backs of mice revealed that IGF1 was pivotal to the PSG’s ability to promote macrophage alternative activation and Leishmania infection. Our data demonstrate that through the regurgitation of PSG Leishmania exploit the wound healing response of the host to the vector bite by promoting the action of IGF1 to drive the alternative activation of macrophages. PMID:29352310
Kim, Kyoung Woo; Park, Soo Hyun; Lee, Soo Jin; Kim, Jae Chan
2016-01-01
To maintain corneal transparency, corneal endothelial cells (CECs) exert a pump function against aqueous inflow. However, human CECs are arrested in the G1-phase and non-proliferative in vivo. Thus, treatment of corneal endothelial decompensation is limited to corneal transplantation, and grafts are vulnerable to immune rejection. Here, we show that ribonuclease (RNase) 5 is more highly expressed in normal human CECs compared to decompensated tissues. Furthermore, RNase 5 up-regulated survival of CECs and accelerated corneal endothelial wound healing in an in vitro wound of human CECs and an in vivo cryo-damaged rabbit model. RNase 5 treatment rapidly induced accumulation of cytoplasmic RNase 5 into the nucleus, and activated PI3-kinase/Akt pathway in human CECs. Moreover, inhibition of nuclear translocation of RNase 5 using neomycin reversed RNase 5-induced Akt activation. As a potential strategy for proliferation enhancement, RNase 5 increased the population of 5-bromo-2′-deoxyuridine (BrdU)-incorporated proliferating CECs with concomitant PI3-kinase/Akt activation, especially in CECs deprived of contact-inhibition. Specifically, RNase 5 suppressed p27 and up-regulated cyclin D1, D3, and E by activating PI3-kinase/Akt in CECs to initiate cell cycle progression. Together, our data indicate that RNase 5 facilitates corneal endothelial wound healing, and identify RNase 5 as a novel target for therapeutic exploitation. PMID:27526633
Kim, Ha Won; Chan, Qilin; Afton, Scott E; Caruso, Joseph A; Lai, Barry; Weintraub, Neal L; Qin, Zhenyu
2012-02-01
The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.
Angiogenic and wound healing potency of fermented virgin coconut oil: in vitro and in vivo studies.
Ibrahim, Ahmad H; Li, Haibo; Al-Rawi, Sawsan S; Majid, Aman Shah Abdul; Al-Habib, Omar Am; Xia, Xiaobo; Majid, Amin Ms Abdul; Ji, Dan
2017-01-01
The process of wound healing involves activation of keratinocytes, fibroblasts, endothelial cells, etc. Angiogenesis is crucial during the process of wound healing. Virgin coconut oil is widely utilized in South Asia for various purposes including food, medicinal and industrial applications. This study aimed to evaluate the potency of fermented virgin coconut oil (FVCO) in angiogenesis and wound healing via both in vitro and in vivo assays. Human umbilical vein endothelial (HUVEC), fibroblast (CCD-18) and retinal ganglion (RGC-5) cells were cultured in medium containing different concentrations of FVCO. The proliferation, migration and morphological changes of cells were determined. The angiogenic effect of FVCO was evaluated by rat aortic assay. The therapeutic effect of FVCO on wound healing was further assessed in a wound excision model in Sprague Dawley rats. The expression of phospho-VEGFR2 (vascular endothelial growth factor receptor 2) in HUVECs was detected by Western blot. FVCO (6 and 12 µg/mL) significantly improved the proliferation of HUVEC, CCD-18 and RGC-5 cells ( P < 0.05 or 0.01). FVCO (25 µg/mL) markedly increased the migration ability of CCD-18 and RGC-5 cells ( P < 0.05). FVCO did not affect cell morphology as indicated by fluorescein diacetate (FDA), rhodamine 123 and Hoechst staining. FVCO (25, 50 and 100 µg/mL) significantly stimulated the ex vivo blood vessel formation as compared with negative control ( P < 0.05). Rats in FVCO group had significantly smaller wound size, higher wound healing percentage, and shorter wound closure time when compared with control group since day 8 ( P < 0.05), suggesting that oral FVCO administration notably promoted the wound healing process. FVCO treatment (6 and 12 µg/mL) significantly enhanced the phospho-VEGFR2 expression in HUVECs ( P = 0.006 and 0.000, respectively). Our study confirms a high angiogenic and wound healing potency of FVCO that might be mediated by the regulation of VEGF signing pathway.
Uccioli, Luigi; Izzo, Valentina; Meloni, Marco; Vainieri, Erika; Ruotolo, Valeria; Giurato, Laura
2015-04-01
Medical knowledge about wound management has improved as recent studies have investigated the healing process and its biochemical background. Despite this, foot ulcers remain an important clinical problem, often resulting in costly, prolonged treatment. A non-healing ulcer is also a strong risk factor for major amputation. Many factors can interfere with wound healing, including the patient's general health status (i.e., nutritional condition indicated by albumin levels) or drugs such as steroids that can interfere with normal healing. Diabetic complications (i.e., renal insufficiency) may delay healing and account for higher amputation rates observed in diabetic patients under dialysis treatment. Wound environment (e.g., presence of neuropathy, ischaemia, and infection) may significantly influence healing by interfering with the physiological healing cascade and adding local release of factors that may worsen the wound. The timely and well-orchestrated release of factors regulating the healing process, observed in acute wounds, is impaired in non-healing wounds that are blocked in a chronic inflammatory phase without progressing to healing. This chronic phase is characterised by elevated protease activity (EPA) of metalloproteinases (MMPs) and serine proteases (e.g., human neutrophil elastase) that interfere with collagen synthesis, as well as growth factor release and action. EPA (mainly MMP 9, MMP-8 and elastase) and inflammatory factors present in the wound bed (such as IL-1, IL-6, and TNFa) account for the catabolic state of non-healing ulcers. The availability of wound dressings that modulate EPA has added new therapeutic options for treating non-healing ulcers. The literature confirms advantages obtained by reducing protease activity in the wound bed, with better outcomes achieved by using these dressings compared with traditional ones. New technologies also allow a physician to know the status of the wound bed environment, particularly EPA, in a clinical setting. These may be helpful in guiding a clinician's options in treating very difficult-to-heal ulcers.
2014-01-01
Background While it is known that advanced age alters the recruitment of neutrophils during wound healing, thereby delaying the wound healing process, little is known about prolonged wound healing in advanced ages. Thus, we investigated the correlation of neutrophil recruitment with healing events, and the impact of whey protein (WP) on neutrophil activation. Methods The animals were allocated into wounded young group, wounded older group and wounded older rats with daily treatment of WP at a dose of 100 mg/kg of body weight. Results Our results pointed to a marked deficiency in the number of neutrophils in the wounds of older rats, which was accompanied with impairment of the healing process. In the group of older rats, phagocytic activity, as tested by fluorescence microscopy, declined throughout the first 24 hours after wounding. Both the neutrophil number and the phagocytic activity recovered in older rats which received WP supplementation. Interestingly, WP was found to significantly up-regulate the MIP-1α and CINC-1 mRNA expression in old rats. On the other hand, the wound size in older rats was significantly higher than that in younger ones. Blood angiogenesis was also significantly delayed in the older group as opposed to the young rats. WP, however, was found to return these indices to normal levels in the older rats. Proliferation and epidermal migration of the keratinocytes and the collagen deposition were also returned to the normal rates. Conclusions This data confirms the critical role of neutrophil recruitment in the early inflammatory phase of wound healing in older rats. In addition, WP protein was used to improve neutrophil function in older rats, healing events returned to a more normal profile. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2100966986117779. PMID:24593823
Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair
Johnson, Kelly E.; Wilgus, Traci A.
2014-01-01
Significance: Angiogenesis, the growth of new blood vessels from existing vessels, is an important aspect of the repair process. Restoration of blood flow to damaged tissues provides oxygen and nutrients required to support the growth and function of reparative cells. Vascular endothelial growth factor (VEGF) is one of the most potent proangiogenic growth factors in the skin, and the amount of VEGF present in a wound can significantly impact healing. Recent Advances: The activity of VEGF was once considered to be specific for endothelial cells lining the inside of blood vessels, partly because VEGF receptor (VEGFR) expression was believed to be restricted to endothelial cells. It is now known, however, that VEGFRs can be expressed by a variety of other cell types involved in wound repair. For example, keratinocytes and macrophages, which both carry out important functions during wound healing, express VEGFRs and are capable of responding directly to VEGF. Critical Issues: The mechanisms by which VEGF promotes angiogenesis are well established. Recent studies, however, indicate that VEGF can directly affect the activity of several nonendothelial cell types present in the skin. The implications of these extra-angiogenic effects of VEGF on wound repair are not yet known, but they suggest that this growth factor may play a more complex role during wound healing than previously believed. Future Directions: Despite the large number of studies focusing on VEGF and wound healing, it is clear that the current knowledge of how VEGF contributes to the repair of skin wounds is incomplete. Further research is needed to obtain a more comprehensive understanding of VEGF activities during the wound healing process. PMID:25302139
2012-01-01
Background Various factors shape the response of plants to herbivorous insects, including wounding patterns, specific chemical effectors and feeding habits of the attacking herbivore. Here we performed a comparative proteomic analysis of the plant's response to wounding and herbivory, using as a model potato plants (Solanum tuberosum L.) subjected to mechanical wounding, defoliation by the Colorado potato beetle Leptinotarsa decemlineata Say, or phloem sap feeding by the potato aphid Macrosiphum euphorbiae Thomas. Results Out of ~500 leaf proteins monitored by two-dimensional gel electrophoresis (2-DE), 31 were up- or downregulated by at least one stress treatment compared to healthy control plants. Of these proteins, 29 were regulated by beetle chewing, 8 by wounding and 8 by aphid feeding. Some proteins were up- or downregulated by two different treatments, while others showed diverging expression patterns in response to different treatments. A number of modulated proteins identified by mass spectrometry were typical defense proteins, including wound-inducible protease inhibitors and pathogenesis-related proteins. Proteins involved in photosynthesis were also modulated, notably by potato beetle feeding inducing a strong decrease of some photosystem I proteins. Quantitative RT PCR assays were performed with nucleotide primers for photosynthesis-related proteins to assess the impact of wounding and herbivory at the gene level. Whereas different, sometimes divergent, responses were observed at the proteome level in response to wounding and potato beetle feeding, downregulating effects were systematically observed for both treatments at the transcriptional level. Conclusions These observations illustrate the differential impacts of wounding and insect herbivory on defense- and photosynthesis-related components of the potato leaf proteome, likely associated with the perception of distinct physical and chemical cues in planta. PMID:23268880
Niu, Gengming; Ye, Taiyang; Qin, Liuliang; Bourbon, Pierre M; Chang, Cheng; Zhao, Shengqiang; Li, Yan; Zhou, Lei; Cui, Pengfei; Rabinovitz, Issac; Mercurio, Arthur M; Zhao, Dezheng; Zeng, Huiyan
2015-01-01
Tissue repair/wound healing, in which angiogenesis plays an important role, is a critical step in many diseases including chronic wound, myocardial infarction, stroke, cancer, and inflammation. Recently, we were the first to report that orphan nuclear receptor TR3/Nur77 is a critical mediator of angiogenesis and its associated microvessel permeability. Tumor growth and angiogenesis induced by VEGF-A, histamine, and serotonin are almost completely inhibited in Nur77 knockout mice. However, it is not known whether TR3/Nur77 plays any roles in wound healing. In these studies, skin wound-healing assay was performed in 3 types of genetically modified mice having various Nur77 activities. We found that ectopic induction of Nur77 in endothelial cells of mice is sufficient to improve skin wound healing. Although skin wound healing in Nur77 knockout mice is comparable to the wild-type control mice, the process is significantly delayed in the EC-Nur77-DN mice, in which a dominant negative Nur77 mutant is inducibly and specifically expressed in mouse endothelial cells. By a loss-of-function assay, we elucidate a novel feed-forward signaling pathway, integrin β4 → PI3K → Akt → FAK, by which TR3 mediates HUVEC migration. Furthermore, TR3/Nur77 regulates the expression of integrin β4 by targeting its promoter activity. In conclusion, expression of TR3/Nur77 improves wound healing by targeting integrin β4. TR3/Nur77 is a potential candidate for proangiogenic therapy. The results further suggest that TR3/Nur77 is required for pathologic angiogenesis but not for developmental/physiologic angiogenesis and that Nur77 and its family members play a redundant role in normal skin wound healing. © FASEB.
Myosin II Activity Softens Cells in Suspension.
Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska
2015-04-21
The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Ehashi, Tomo; Takemura, Taro; Hanagata, Nobutaka; Minowa, Takashi; Kobayashi, Hisatoshi; Ishihara, Kazuhiko; Yamaoka, Tetsuji
2014-01-01
To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL)-1β and IL-10 are important cytokines in tissue responses to biomaterials because IL-1β promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1β was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic regulations. PMID:24454803
Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N
2008-12-01
Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.
Noda, Yasuhiro; Watanabe, Kazuya; Sanagawa, Akimasa; Sobajima, Yu; Fujii, Satoshi
2011-10-31
Pressure ulcers can form with excess pressure and shearing stress on skin tissue. Because pressure ulcer is often accompanies by exudates, selection of appropriate topical emulsion ointment is difficult. Blended ointments consisting of emulsion base and water-soluble base are clinically used for adjustment of wound moist environment. Because regulating the amount of wound exudates can enhance treatment efficacy, two new blended ointments were developed. LY-SL blended ointment consisted of lysozyme hydrochloride water-in-oil (w/o) emulsion (LY-cream) and sulfadiazine macrogol (polyethylene glycol) ointment (SL-pasta). TR-SL blended ointment consisted of tretinoin tocoferil oil-in-water (o/w) emulsion (TR-cream) and SL-pasta (TR-SL). LY-SL and TR-SL were applied to Franz diffusion cell with cellulose membranes for the evaluation of water absorption characteristics at 32 °C. Water absorption rate constants (mg/cm(2)/min(0.5)) were 12.5, 16.3 and 34.6 for LY-cream, TR-cream and SL-pasta, respectively. Water absorption rate constants for LY-SL and TR-SL (SL-pasta 70%) exhibited intermediate values of 21.2 and 27.2, as compared to each ointment alone, respectively. Because amount of water absorbed was linearly related to square root of time, it was suggested that water-absorbable macrogol was surrounded by oily ingredients forming matrix structure. This diffusion-limited structure may regulate water absorption capacity. This is the first report of physicochemical properties of macrogol ointment and emulsion ointment blend developed for regulation of water absorption. The blended ointment can properly regulate amount of exudates in wounds and may be useful for treatment of pressure ulcers. Copyright © 2011 Elsevier B.V. All rights reserved.
Essential role of Smad3 in the inhibition of inflammation-induced PPARβ/δ expression
Tan, Nguan Soon; Michalik, Liliane; Di-Poï, Nicolas; Ng, Chuan Young; Mermod, Nicolas; Roberts, Anita B; Desvergne, Béatrice; Wahli, Walter
2004-01-01
Wound healing proceeds by the concerted action of a variety of signals that have been well identified. However, the mechanisms integrating them and coordinating their effects are poorly known. Herein, we reveal how PPARβ/δ (PPAR: peroxisome proliferator-activated receptor) follows a balanced pattern of expression controlled by a crosstalk between inflammatory cytokines and TGF-β1. Whereas conditions that mimic the initial inflammatory events stimulate PPARβ/δ expression, TGF-β1/Smad3 suppresses this inflammation-induced PPARβ/δ transcription, as seen in the late re-epithelialization/remodeling events. This TGF-β1/Smad3 action involves an inhibitory effect on AP-1 activity and DNA binding that results in an inhibition of the AP-1-driven induction of the PPARβ/δ promoter. As expected from these observations, wound biopsies from Smad3-null mice showed sustained PPARβ expression as compared to those of their wild-type littermates. Together, these findings suggest a mechanism for setting the necessary balance between inflammatory signals, which trigger PPARβ/δ expression, and TGF-β1/Smad3 that governs the timely decrease of this expression as wound healing proceeds to completion. PMID:15470497
Novel Function for Vascular Endothelial Growth Factor Receptor-1 on Epidermal Keratinocytes
Wilgus, Traci A.; Matthies, Annette M.; Radek, Katherine A.; Dovi, Julia V.; Burns, Aime L.; Shankar, Ravi; DiPietro, Luisa A.
2005-01-01
Vascular endothelial growth factor (VEGF-A), a potent stimulus for angiogenesis, is up-regulated in the skin after wounding. Although studies have shown that VEGF is important for wound repair, it is unclear whether this is based solely on its ability to promote angiogenesis or if VEGF can also promote healing by acting directly on non-endothelial cell types. By immunohistochemistry and reverse transcriptase-polymerase chain reaction, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was detected in murine keratinocytes during wound repair and in normal human epidermal keratinocytes (NHEKs). The presence of VEGF receptors on NHEKs was verified by binding studies with 125I-VEGF. In vitro, VEGF stimulated the proliferation of NHEKs, an effect that could be blocked by treatment with neutralizing VEGFR-1 antibodies. A role for VEGFR-1 in keratinocytes was also shown in vivo because treatment of excisional wounds with neutralizing VEGFR-1 antibodies delayed re-epithelialization. Treatment with anti-VEGFR-1 antibodies also reduced the number of proliferating keratinocytes at the leading edge of the wound, suggesting that VEGF sends a proliferative signal to these cells. Together, these data describe a novel role for VEGFR-1 in keratinocytes and suggest that VEGF may play several roles in cutaneous wound repair. PMID:16251410
Stamm, Anne; Strauß, Sarah; Vogt, Peter; Scheper, Thomas; Pepelanova, Iliyana
2018-04-07
AmbLOXe is a lipoxygenase, which is up-regulated during limb-redevelopment in the Mexican axolotl, Ambystoma mexicanum, an animal with remarkable regeneration capacity. Previous studies have shown that mammalian cells transformed with the gene of this epidermal lipoxygenase display faster migration and wound closure rate during in vitro wound healing experiments. In this study, the gene of AmbLOXe was codon-optimized for expression in Escherichia coli and was produced in the insoluble fraction as protein aggregates. These inclusion bodies or nanopills were shown to be reservoirs containing functional protein during in vitro wound healing assays. For this purpose, functional inclusion bodies were used to coat cell culture surfaces prior cell seeding or were added directly to the medium after cells reached confluence. In both scenarios, AmbLOXe inclusion bodies led to faster migration rate and wound closure, in comparison to controls containing either no AmbLOXe or GFP inclusion bodies. Our results demonstrate that AmbLOXe inclusion bodies are functional and may serve as stable reservoirs of this enzyme. Nevertheless, further studies with soluble enzyme are also necessary in order to start elucidating the exact molecular substrates of AmbLOXe and the biochemical pathways involved in the wound healing effect.
Kurtz, Andreas; Aigner, Achim; Cabal-Manzano, Rafael H; Butler, Robert E; Hood, Dozier R; Sessions, Roy B; Czubayko, Frank; Wellstein, Anton
2004-01-01
The initiation of premalignant lesions is associated with subtle cellular and gene expression changes. Here we describe a severe combined immunodeficiency mouse xenograft model with human adult skin and compare chemical carcinogenesis and wound healing. We focus on a secreted binding protein for fibroblast growth factors (FGF-BP) that enhances the activity of locally stored FGFs and is expressed at high levels in human epithelial cancers. Carcinogen treatment of murine skin induced papilloma within 6 weeks, whereas the human skin grafts displayed no obvious macroscopic alterations. Microscopic studies of the human skin, however, showed p53-positive keratinocytes in the epidermis, increased angiogenesis in the dermis of the treated skin, enhanced proliferation of keratinocytes in the basal layer, and an increase of FGF-BP protein and mRNA expression. In contrast, after surgical wounding of human skin grafts or of mouse skin, FGF-BP expression was upregulated within a few hours and returned to control levels after 2 days with wound closure. Enhanced motility of cultured keratinocytes and dermal fibroblasts by FGF-BP supports a role in wound healing. We conclude that adult human skin xenografts can be used to identify early molecular events during malignant transformation as well as transient changes during wound healing.
Wound treatment and selective help in a termite-hunting ant.
Frank, Erik T; Wehrhahn, Marten; Linsenmair, K Eduard
2018-02-14
Open wounds are a major health risk in animals, with species prone to injuries likely developing means to reduce these risks. We therefore analysed the behavioural response towards open wounds on the social and individual level in the termite group-hunting ant Megaponera analis During termite raids, some ants get injured by termite soldiers (biting off extremities), after the fight injured ants get carried back to the nest by nest-mates. We observed treatment of the injury by nest-mates inside the nest through intense allogrooming at the wound. Lack of treatment increased mortality from 10% to 80% within 24 h, most likely due to infections. Wound clotting occurred extraordinarily fast in untreated injured individuals, within 10 min. Furthermore, heavily injured ants (loss of five extremities) were not rescued or treated; this was regulated not by the helper but by the unresponsiveness of the injured ant. Interestingly, lightly injured ants behaved 'more injured' near nest-mates. We show organized social wound treatment in insects through a multifaceted help system focused on injured individuals. This was not only limited to selective rescuing of lightly injured individuals by carrying them back (thus reducing predation risk), but, moreover, included a differentiated treatment inside the nest. © 2018 The Author(s).
Chen, Li; Hou, Qian; Zhou, Zhong-Zhi; Li, Mei-Rong; Zhong, Ling-Zhi; Deng, Xiang-Dong; Zhu, Zi-Ying; Cheng, Zhong-Yi; Zhu, Jun; Xiang, Cong-Lian; He, Wen-Jun; Fu, Xiao-Bing
2017-09-01
Traditional Chinese medicine has great potential to improve wound healing. ANBP, the mixture of 4 Chinese herbs- Agrimoniapilosa, Nelumbonucifera, Boswelliacarteri, and Pollen typhae-is effective in trauma treatment while its mechanism is still elusive. In this study, quantitative proteomics and bioinformatics analyses were performed to decipher the possible roles of ANBP in accelerated wound healing of mouse skin. Among all 3171 identified proteins, 90, 71, 80, and 140 proteins were found to be differently expressed in 6 hours, 3 days, 7 days, and 14 days ANBP-treated tissues compared with corresponding control tissues, respectively. The result showed that different biological processes and pathways were activated at different healing stages. At the early healing stage, ANBP treatment mainly affected several biological processes, including immune and defense response, vascular system restoration, hemostasis and coagulation regulation, lipid metabolism and signal transduction, while muscle tissue, hair, epidermis, extracellular matrix and tissue remodeling related activities were the major events in ANBP promoted later wound healing. This is the first quantitative proteome study of ANBP-treated wound tissues, which provide a new perspective for the mechanism of ANBP accelerated wound healing and is of guiding significance for clinical application of ANBP in trauma disorders cure.
Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro
Massee, Michelle; Chinn, Kathryn; Lei, Jennifer; Lim, Jeremy J.; Young, Conan S.
2015-01-01
Abstract Human‐derived placental tissues have been shown in randomized clinical trials to be effective for healing chronic wounds, and have also demonstrated the ability to recruit stem cells to the wound site in vitro and in vivo. In this study, PURION® Processed dehydrated human amnion/chorion membrane allografts (dHACM, EpiFix®, MiMedx Group, Marietta, GA) were evaluated for their ability to alter stem cell activity in vitro. Human bone marrow mesenchymal stem cells (BM‐MSCs), adipose derived stem cells (ADSCs), and hematopoietic stem cells (HSCs) were treated with soluble extracts of dHACM tissue, and were evaluated for cellular proliferation, migration, and cytokine secretion. Stem cells were analyzed for cell number by DNA assay after 24 h, closure of an acellular zone using microscopy over 3 days, and soluble cytokine production in the medium of treated stem cells was analyzed after 3 days using a multiplex ELISA array. Treatment with soluble extracts of dHACM tissue stimulated BM‐MSCs, ADSCs, and HSCs to proliferate with a significant increase in cell number after 24 h. dHACM treatment accelerated closure of an acellular zone by ADSCs and BM‐MSCs after 3 days, compared to basal medium. BM‐MSCs, ADSCs, and HSCs also modulated endogenous production of a number of various soluble signals, including regulators of inflammation, mitogenesis, and wound healing. dHACM treatment promoted increased proliferation and migration of ADSCs, BM‐MSCs, and HSCs, along with modulation of secreted proteins from those cells. Therefore, dHACM may impact wound healing by amplifying host stem cell populations and modulating their responses in treated wound tissues. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1495–1503, 2016. PMID:26175122
A key general stress response motif is regulated non-uniformly by CAMTA transcription factors.
Benn, Geoffrey; Wang, Chang-Quan; Hicks, Derrick R; Stein, Jeffrey; Guthrie, Cade; Dehesh, Katayoon
2014-10-01
Plants cope with environmental challenges by rapidly triggering and synchronizing mechanisms governing stress-specific and general stress response (GSR) networks. The GSR acts rapidly and transiently in response to various stresses, but the underpinning mechanisms have remained elusive. To define GSR regulatory components we have exploited the Rapid Stress Response Element (RSRE), a previously established functional GSR motif, using Arabidopsis plants expressing a 4xRSRE::Luciferase (RSRE::LUC) reporter. Initially, we searched public microarray datasets and found an enrichment of RSRE in promoter sequences of stress genes. Next, we treated RSRE::LUC plants with wounding and a range of rapidly stress-inducible hormones and detected a robust LUC activity solely in response to wounding. Application of two Ca(2+) burst inducers, flagellin22 (flg22) and oligogalacturonic acid, activated RSRE strongly and systemically, while the Ca(2+) chelator ethylene glycol tetraacetic acid (EGTA) significantly reduced wound induction of RSRE::LUC. In line with the signaling function of Ca(2+) in transduction events leading to activation of RSRE, we examined the role of CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATORs (CAMTAs) in RSRE induction. Transient expression assays displayed CAMTA3 induction of RSRE and not that of the mutated element mRSRE. Treatment of selected camta mutant lines integrated into RSRE::LUC parent plant, with wounding, flg22, and freezing, established a differential function of these CAMTAs in potentiating the activity of RSRE. Wound response studies using camta double mutants revealed a cooperative function of CAMTAs2 and 4 with CAMTA 3 in the RSRE regulation. These studies provide insights into governing components of transduction events and reveal transcriptional modules that tune the expression of a key GSR motif. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Iwanabe, Yujiro; Masaki, Chihiro; Tamura, Akiko; Tsuka, Shintaro; Mukaibo, Taro; Kondo, Yusuke; Hosokawa, Ryuji
2016-10-01
Low-intensity pulsed ultrasound (LIPUS) is widely used in medical fields because it shortens the time required for biologic wound healing in fracture treatment. Also, in dental fields, LIPUS should be effectively employed for implant treatment. However, most of the relevant reports have been published on its effects on bone formation around implants, and the effects of LIPUS on soft tissue healing remain unclear. In the present study, we examined the effects of LIPUS on soft tissue healing using gingival epithelial cells. Gingival epithelial cells were cultured on a dish, followed by LIPUS exposure at a frequency of 3MHz for 15min. The cells were counted with a hemocytometer, and a scratch assay was conducted by measuring the closing area of the scratch wound using a microscope. Following LIPUS exposure, total RNA was collected for microarray analysis. In addition, real-time PCR was performed to examine the mRNA expression level of integrin α6β4. Furthermore, total protein was collected to examine the protein expression level of integrin α6β4 by western blotting. The cell count and scratch assay demonstrated that LIPUS exposure promoted cell proliferation and scratch-wound closure. Microarray analysis demonstrated the increased expression levels of adhesion-related genes, including integrin. Real-time PCR analysis demonstrated that LIPUS exposure significantly up-regulated the mRNA expression level of integrin α6β4. Western blotting showed intense staining of integrin α6β4. LIPUS exposure promotes wound closure in the scratch assay and up-regulates the expression level of integrin α6β4 as compared with the control. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
48 CFR 1652.204-71 - Coordination of Benefits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Coordination of Benefits. 1652.204-71 Section 1652.204-71 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION CLAUSES AND FORMS CONTRACT CLAUSES Texts of FEHBP...
48 CFR 1652.204-71 - Coordination of Benefits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Coordination of Benefits. 1652.204-71 Section 1652.204-71 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES HEALTH BENEFITS ACQUISITION REGULATION CLAUSES AND FORMS CONTRACT CLAUSES Texts of FEHBP...
Wound healing effects of deoxyshikonin isolated from Jawoongo: In vitro and in vivo studies.
Park, Jun Yeon; Kwak, Jin Ho; Kang, Ki Sung; Jung, Eun Bee; Lee, Dong-Soo; Lee, Sanghyun; Jung, Yujung; Kim, Ki Hyun; Hwang, Gwi Seo; Lee, Hye Lim; Yamabe, Noriko; Kim, Su-Nam
2017-03-06
Jawoongo is a traditional drug ointment (with a traditional botanic formula) used for the treatment of burns and wounds in Korea. One of the components of Jawoongo is Lithospermi Radix (LR, the dried root of Lithospermum erythrorhizon Siebold & Zucc., also known as Zicao or Gromwell), which contains deoxyshikonin and its derivatives. The aim of the present study was to investigate the effects of deoxyshikonin on wound healing. The effects of LR extract and deoxyshikonin on tube formation and migration were measured in human umbilical vein vascular endothelial cells (HUVEC) and HaCaT cells, respectively. We evaluated protein expression of mitogen-activated protein kinase (MAPK) activation by Western blotting. The wound healing effects of deoxyshikonin was assessed in a mouse model of cutaneous wounds. The results showed that deoxyshikonin enhanced tube formation in HUVEC and migration in HaCaT cells. From the western blot analysis, we found that deoxyshikonin stimulated the phosphorylation of p38 and extracellular signal-regulated kinase (ERK) in HaCaT cells. Moreover, 20µm deoxyshikonin-treated groups showed accelerated wound closure compared with the controls in a mouse model of cutaneous wounds. In conclusion, the current data indicate that deoxyshikonin treatment elevated tube formation in HUVECs, and that deoxyshikonin-induced proliferation and migration in HaCaT cells were mediated by the activation of ERK and p38 MAPKs, respectively. Collectively, these data suggest that deoxyshikonin in Jawoongo must be an active compound for may be wound healing. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Sun, Yao-Hui; Reid, Brian; Fontaine, Justin H.; Miller, Lisa A.; Hyde, Dallas M.; Mogilner, Alex
2011-01-01
Damage to the respiratory epithelium is one of the most critical steps to many life-threatening diseases, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. The mechanisms underlying repair of the damaged epithelium have not yet been fully elucidated. Here we provide experimental evidence suggesting a novel mechanism for wound repair: endogenous electric currents. It is known that the airway epithelium maintains a voltage difference referred to as the transepithelial potential. Using a noninvasive vibrating probe, we demonstrate that wounds in the epithelium of trachea from rhesus monkeys generate significant outward electric currents. A small slit wound produced an outward current (1.59 μA/cm2), which could be enhanced (nearly doubled) by the ion transport stimulator aminophylline. In addition, inhibiting cystic fibrosis transmembrane conductance regulator (CFTR) with CFTR(Inh)-172 significantly reduced wound currents (0.17 μA/cm2), implicating an important role of ion transporters in wound induced electric potentials. Time-lapse video microscopy showed that applied electric fields (EFs) induced robust directional migration of primary tracheobronchial epithelial cells from rhesus monkeys, towards the cathode, with a threshold of <23 mV/mm. Reversal of the field polarity induced cell migration towards the new cathode. We further demonstrate that application of an EF promoted wound healing in a monolayer wound healing assay. Our results suggest that endogenous electric currents at sites of tracheal epithelial injury may direct cell migration, which could benefit restitution of damaged airway mucosa. Manipulation of ion transport may lead to novel therapeutic approaches to repair damaged respiratory epithelium. PMID:21719726
Modulation of wound healing and scar formation by MG53 protein-mediated cell membrane repair.
Li, Haichang; Duann, Pu; Lin, Pei-Hui; Zhao, Li; Fan, Zhaobo; Tan, Tao; Zhou, Xinyu; Sun, Mingzhai; Fu, Minghuan; Orange, Matthew; Sermersheim, Matthew; Ma, Hanley; He, Duofen; Steinberg, Steven M; Higgins, Robert; Zhu, Hua; John, Elizabeth; Zeng, Chunyu; Guan, Jianjun; Ma, Jianjie
2015-10-02
Cell membrane repair is an important aspect of physiology, and disruption of this process can result in pathophysiology in a number of different tissues, including wound healing, chronic ulcer and scarring. We have previously identified a novel tripartite motif family protein, MG53, as an essential component of the cell membrane repair machinery. Here we report the functional role of MG53 in the modulation of wound healing and scarring. Although MG53 is absent from keratinocytes and fibroblasts, remarkable defects in skin architecture and collagen overproduction are observed in mg53(-/-) mice, and these animals display delayed wound healing and abnormal scarring. Recombinant human MG53 (rhMG53) protein, encapsulated in a hydrogel formulation, facilitates wound healing and prevents scarring in rodent models of dermal injuries. An in vitro study shows that rhMG53 protects against acute injury to keratinocytes and facilitates the migration of fibroblasts in response to scratch wounding. During fibrotic remodeling, rhMG53 interferes with TGF-β-dependent activation of myofibroblast differentiation. The resulting down-regulation of α smooth muscle actin and extracellular matrix proteins contributes to reduced scarring. Overall, these studies establish a trifunctional role for MG53 as a facilitator of rapid injury repair, a mediator of cell migration, and a modulator of myofibroblast differentiation during wound healing. Targeting the functional interaction between MG53 and TGF-β signaling may present a potentially effective means for promoting scarless wound healing. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
34 CFR 412.5 - What regulations apply?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF EDUCATION NATIONAL NETWORK FOR CURRICULUM COORDINATION IN VOCATIONAL AND TECHNICAL EDUCATION... Curriculum Coordination in Vocational and Technical Education: (a) The regulations in this part 412. (b) The...
Effect of Absolute From Hibiscus syriacus L. Flower on Wound Healing in Keratinocytes.
Yoon, Seok Won; Lee, Kang Pa; Kim, Do-Yoon; Hwang, Dae Il; Won, Kyung-Jong; Lee, Dae Won; Lee, Hwan Myung
2017-01-01
Proliferation and migration of keratinocytes are essential for the repair of cutaneous wounds. Hibiscus syriacus L. has been used in Asian medicine; however, research on keratinocytes is inadequate. To establish the dermatological properties of absolute from Hibiscus syriacus L. flower (HSF) and to provide fundamental research for alternative medicine. We identified the composition of HSF absolute using gas chromatography-mass spectrometry analysis. We also examined the effect of HSF absolute in HaCaT cells using the XTT assay, Boyden chamber assay, sprout-out growth assay, and western blotting. We conducted an in-vivo wound healing assay in rat tail-skin. Ten major active compounds were identified from HSF absolute. As determined by the XTT assay, Boyden chamber assay, and sprout-out growth assay results, HSF absolute exhibited similar effects as that of epidermal growth factor on the proliferation and migration patterns of keratinocytes (HaCaT cells), which were significantly increased after HSF absolute treatment. The expression levels of the phosphorylated signaling proteins relevant to proliferation, including extracellular signal-regulated kinase 1/2 (Erk 1/2) and Akt, were also determined by western blot analysis. These results of our in-vitro and ex-vivo studies indicate that HSF absolute induced cell growth and migration of HaCaT cells by phosphorylating both Erk 1/2 and Akt. Moreover, we confirmed the wound-healing effect of HSF on injury of the rat tail-skin. Therefore, our results suggest that HSF absolute is promising for use in cosmetics and alternative medicine. Hisbiscus syriacus L. flower absolute increases HaCaT cell migration and proliferation. Hisbiscus syriacus L. flower absolute regulates phosphorylation of ERK 1/2 and Akt in HaCaT cell.Treatment with Hisbiscus syriacus L. flower induced sprout outgrowth.The wound in the tail-skin of rat was reduced by Hisbiscus syriacus L. flower absolute Abbreviations used: HSF: Hibiscus syriacus L. flower, Erk 1/2: extracellular signal-regulated kinase 1/2, EGF: epidermal growth factor, GC/MS: gas chromatography-mass spectrometry, DMEM: dulbecco's modified eagle medium, FBS: fetal bovine serum, BSA: bovine serum albumin, p-Akt: phosphorylation of Akt, p-Erk 1/2: phosphorylation of Erk 1/2.
Lumican Peptides: Rational Design Targeting ALK5/TGFBRI
NASA Astrophysics Data System (ADS)
Gesteira, Tarsis Ferreira; Coulson-Thomas, Vivien J.; Yuan, Yong; Zhang, Jianhua; Nader, Helena B.; Kao, Winston W.-Y.
2017-02-01
Lumican, a small leucine rich proteoglycan (SLRP), is a component of extracellular matrix which also functions as a matrikine regulating multiple cell activities. In the cornea, lumican maintains corneal transparency by regulating collagen fibrillogenesis, promoting corneal epithelial wound healing, regulating gene expression and maintaining corneal homeostasis. We have recently shown that a peptide designed from the 13 C-terminal amino acids of lumican (LumC13) binds to ALK5/TGFBR1 (type1 receptor of TGFβ) to promote wound healing. Herein we evaluate the mechanism by which this synthetic C-terminal amphiphilic peptide (LumC13), binds to ALK5. These studies clearly reveal that LumC13-ALK5 form a stable complex. In order to determine the minimal amino acids required for the formation of a stable lumican/ALK5 complex derivatives of LumC13 were designed and their binding to ALK5 investigated in silico. These LumC13 derivatives were tested both in vitro and in vivo to evaluate their ability to promote corneal epithelial cell migration and corneal wound healing, respectively. These validations add to the therapeutic value of LumC13 (Lumikine) and aid its clinical relevance of promoting the healing of corneal epithelium debridement. Moreover, our data validates the efficacy of our computational approach to design active peptides based on interactions of receptor and chemokine/ligand.
Fraccalvieri, Marco; Salomone, Marco; Di Santo, Claudia; Ruka, Erind; Morozzo, Umberto; Bruschi, Stefano
2017-12-01
Chronic wounds are commonly associated with high morbidity rates due to the patient's need of frequent dressing changes and repeated visits to the outpatient wound clinic. Furthermore, chronic wounds are often characterised by severe pain, which can cause significant disability to the patient. New technologies aim to develop an optimal device to reduce discomfort of the patient and to heal wounds. The device Rexon-age ® is introduced for the first time in wound healing, and preliminary data on clinical and histological results are shown. From April 2014 to April 2015, 11 patients - 7 females and 4 males - were enrolled in the present study. The study was conducted at the Plastic and Reconstructive Institute of the Università degli Studi di Torino, Città della Salute e della Scienza of Torino, Italy. For histological characterisation, pre- and post-treatment biopsies on the wound bed were performed. Data regarding age, gender, weight, height, comorbidity, drug therapy and topical pre-treatment and dressings of the wound were collected as well. Moreover, local factors regarding the wound data were as follows: aetiology, time of the wound formation until first Rexon-age treatment, wound dimensions, wound bed, moisture, margins and anatomical region of the wound. A visual analogue scale (VAS) was used to monitor the pain before and after each treatment. Rexon-age treatment resulted in improvement in granulation tissue and wound contraction. Moreover, a significant reduction of pain was observed with the reduction of painkillers drug usage. Among these Rexon-age-treated patients, three patients displayed 60-80% reduction in pain intensity, and two patients showed complete pain relief. In outpatient follow-up appointments, we registered long-term durability of pain relief. As assessed by histological analyses, post-treatment biopsies of all nine patients revealed a decreased amount of inflammatory cells and lower expression levels of metalloproteinases (e.g. MMP9). We observed increased capillary thrombosis as well as up-regulation of vascular endothelial growth factor (VEGF) expression. The current study presents the first evidence that Rexon-age-based therapy can significantly ameliorate and accelerate the healing process of chronic wounds. Although this study analysed only a small number of patients, we could consistently observe positive effects on both the clinical aspect of the lesions, which underwent size reduction and wound reactivation, and the quality of life of our patients due to long-term pain relief. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
[New therapeutic strategies for the treatment of difficult wounds].
Onesti, M G; Bitonti, Adriana; Fino, P; Ciotti, M; Scuderi, N
2008-05-01
The medical-surgical treatment of the difficult wounds represents a socio-sanitary problem in continuous growth, currently involving in our Country around 2,000,000 people. The "difficult wound" is a loss of cutaneous substances, usually due to multifactorial pathogenesis, that do not spontaneously lead to a complete recovery. Numerous studies in the literature have evidenced that the use of the advanced wound dressings allows to reach the best clinical and economic results in the process of recovery of the difficult wounds. The advanced would dressing assures a longer period of permanence on the injury and shorten the time of treatment and, as a consequence, it is required a smaller number of applications in comparison with the traditional medications. The Wound Bed Preparation (WBP) can be defined as the global and coordinate management of the cutaneous injury, enabling to chip off the local barriers to the recovery, or promoting the effectiveness of the innovative therapeutic instruments. The term advanced wound dressing indicates the dressing material having biocompatibility characteristics. The purpose of the advanced wound dressings is the one to create the ideal environment for the cicatrization process and isolate the wound from traumas and external infections. The "Difficult Wounds" Unit of the Department of Plastic and Reconstructive Surgery of the Policlinico Umberto I in Rome, from January to December 2006, treated 570 patients (308 men and 262 women), whose age was between 2 days and 85 years, affected by ulcers of various nature. Among our cases, 200 patients were selected and randomly separated in two different groups: group A consisting of 100 patients entirely treated with traditional medications; group B composed by 100 patients treated with advanced dressings. Every patient has locally been treated with periodic and specific medications, according to the type of difficult wound, and subsequently they proceeded to find out how to treat the systemic factors causing ulcer. The patients underwent 3 times a week to medications in those cases presenting infection signs and 2 times a week in those cases where no infection signs were shown, for period varying from 1 month up to one year for the chronic forms. The results showed a higher percentage of recovery reached by using the advanced dressings. Group A showed the followings results: the 53% of patients recovered from wounds; the remaining 47% patients did'nt not recover but in 17% cases medications showed to be of some help in the preparation of the vascular bed for the execution of a definitive operation (application of grafts or local edges), while the remaining 30% has shown a scarce improvement of the injury and they are still under treatment. Group B showed the 65% of patients recovered from wounds; as for the remaining 35% not recovered patients, medications represented an auxiliary aid to the preparation of the vascular bed for the execution of a definitive operation (application of grafts or local edges) for the 15% of patients, while the remaining 20%, even if not completely recovered, showed a notable improvement of the injury (reduction of the dimensions and disappearance of the infection and improvement of the patient quality of life). In synthesis, it emerges that the advanced dressings, if correctly used, offer advantages in terms of clinical effectiveness (rapid recovery from the injury), patient quality of the life and cheapness. It has also to be considered that the difficult wound is often the epiphenomenon of a systemic illness. The difficult wound requires, therefore, a multidisciplinary treatment.
Julovi, Sohel M.; Xue, Meilang; Dervish, Suat; Sambrook, Philip N.; March, Lyn; Jackson, Christopher John
2011-01-01
Activated protein C (APC) is a natural anticoagulant that exerts anti-inflammatory and cytoprotective properties mediated through the protease activated receptor (PAR)-1. APC can also proteolytically cleave PAR-2, although subsequent function is unknown. On the basis of recent evidence that APC promotes wound healing, the aim of this study was to determine whether APC acts through PARs to heal murine excisional wounds or to regulate human cultured keratinocyte function and to determine the signaling mechanisms. Topical administration of APC accelerated wound healing in wild-type mice and, unexpectedly, in PAR-1 knockout mice. PAR-2 knockout mice healed significantly slower than wild-type mice, and healing was not altered by adding APC, indicating that APC acts through PAR-2 to heal wounds. In cultured human primary keratinocytes, APC enhanced PAR-2, stimulated proliferation, activated phosphatidylinositol 3-kinase/Src/Akt, and inhibited phosphorylated (P)-p38. Inhibiting PAR-1 or PAR-2, by small-interfering RNA or blocking antibody, reversed APC-induced keratinocyte proliferation and Akt activation. Blocking PAR-2, but not PAR-1, reversed the inhibition of P-p38 by APC. Furthermore, inhibition of P-p38 accelerated wound healing in wild-type mice. In summary, although APC acts through both PAR-1 and PAR-2 to activate Akt and to increase keratinocyte proliferation, APC-induced murine wound healing depends on PAR-2 activity and inhibition of P-p38. PMID:21907694
Mast Cells Regulate Wound Healing in Diabetes.
Tellechea, Ana; Leal, Ermelindo C; Kafanas, Antonios; Auster, Michael E; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C; Veves, Aristidis
2016-07-01
Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P < 0.05). Conversely, postwounding MC degranulation increases in nondiabetic mice, but not in diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P < 0.05). Nevertheless, nondiabetic and diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Tolg, Cornelia; Hamilton, Sara R.; Zalinska, Ewa; McCulloch, Lori; Amin, Ripal; Akentieva, Natalia; Winnik, Francoise; Savani, Rashmin; Bagli, Darius J.; Luyt, Len G.; Cowman, Mary K.; McCarthy, Jim B.; Turley, Eva A.
2013-01-01
Hyaluronan is activated by fragmentation and controls inflammation and fibroplasia during wound repair and diseases (eg, cancer). Hyaluronan-binding peptides were identified that modify fibrogenesis during skin wound repair. Peptides were selected from 7- to 15mer phage display libraries by panning with hyaluronan-Sepharose beads and assayed for their ability to block fibroblast migration in response to hyaluronan oligosaccharides (10 kDa). A 15mer peptide (P15-1), with homology to receptor for hyaluronan mediated motility (RHAMM) hyaluronan binding sequences, was the most effective inhibitor. P15-1 bound to 10-kDa hyaluronan with an affinity of Kd = 10−7 and appeared to specifically mimic RHAMM since it significantly reduced binding of hyaluronan oligosaccharides to recombinant RHAMM but not to recombinant CD44 or TLR2,4, and altered wound repair in wild-type but not RHAMM−/− mice. One topical application of P15-1 to full-thickness excisional rat wounds significantly reduced wound macrophage number, fibroblast number, and blood vessel density compared to scrambled, negative control peptides. Wound collagen 1, transforming growth factor β-1, and α-smooth muscle actin were reduced, whereas tenascin C was increased, suggesting that P15-1 promoted a form of scarless healing. Signaling/microarray analyses showed that P15-1 blocks RHAMM-regulated focal adhesion kinase pathways in fibroblasts. These results identify a new class of reagents that attenuate proinflammatory, fibrotic repair by blocking hyaluronan oligosaccharide signaling. PMID:22889846
The Presence of Oxygen in Wound Healing.
Kimmel, Howard M; Grant, Anthony; Ditata, James
2016-08-01
Oxygen must be tightly governed in all phases of wound healing to produce viable granulation tissue. This idea of tight regulation has yet to be disputed; however, the role of oxygen at the cellular and molecular levels still is not fully understood as it pertains to its place in healing wounds. In an attempt to better understand the dynamics of oxygen on living tissue and its potential role as a therapy in wound healing, a substantial literature review of the role of oxygen in wound healing was performed and the following key points were extrapolated: 1) During energy metabolism, oxygen is needed for mitochondrial cytochrome oxidase as it produces high-energy phosphates that are needed for many cellular functions, 2) oxygen is also involved in the hydroxylation of proline and lysine into procollagen, which leads to collagen maturation, 3) in angiogenesis, hypoxia is required to start the process of wound healing, but it has been shown that if oxygen is administered it can accelerate and sustain vessel growth, 4) the antimicrobial action of oxygen occurs when nicotinamide adenine dinucleotide phosphate (NADPH)-linked oxygenase acts as a catalyst for the production of reactive oxygen species (ROS), a superoxide ion which kills bacteria, and 5) the level of evidence is moderate for the use of hyperbaric oxygen therapy (HBOT) for diabetic foot ulcers, crush injuries, and soft-tissue infections. The authors hypothesized that HBOT would be beneficial to arterial insufficiency wounds and other ailments, but at this time further study is needed before HBOT would be indicated.
Dong, Qiqiang; Gu, Guojun; Wang, Lijun; Fu, Keda; Xie, Shuqiang; Zhang, Songjian; Zhang, Huafeng; Wu, Zhaosen
2017-12-01
To investigate the application of modified adjustable skin stretching and secure wound-closure system in repairing of skin and soft tissue defect. Between March 2016 and April 2017, 21 cases of skin and soft tissue defects were repaired with the modified adjustable skin stretching and secure wound-closure system (the size of regulating pressure and the times of adjustment were determined according to the color, temperature, capillary response, and swelling degree of the skin edge). There were 11 males and 10 females, with an average age of 49.2 years (range, 21-67 years). Among them, 1 case was the residual wound after amputation of leg; 18 cases were the wounds after traumatic injury operation, including 4 cases in the lower leg, 3 cases in the knee joint, 7 cases in the upper limb, and 4 cases in the foot; and 2 cases were diabetic feet. The skin defect area ranged from 4.0 cm×2.5 cm to 21.0 cm×10.0 cm. Skin defect wounds closed directly in one stage in 4 cases; 12 cases were closed after continuously stretching for 5-14 days (mean, 10 days); 5 cases were reduced to less than one-half area, and the wound healed after the second skin grafting or flap repairing. All the 21 patients were followed up 3-12 months (mean, 5.2 months). The wound was linear healing with small scar, and no invasive margin, poor blood flow, necrosis, and poor sensory function happened. The modified adjustable skin stretching and secure wound-closure system can reduce the skin and soft tissue defects or close the wound directly, and even replace the skin graft and skin flap repairing. It was a good method for the treatment of skin and soft tissue defect.
Sangani, Rajnikumar; Pandya, Chirayu D; Bhattacharyya, Maryka H; Periyasamy-Thandavan, Sudharsan; Chutkan, Norman; Markand, Shanu; Hill, William D; Hamrick, Mark; Isales, Carlos; Fulzele, Sadanand
2014-03-01
Bone marrow stromal cell (BMSC) adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38) and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions. Published by Elsevier B.V.
Dexpanthenol modulates gene expression in skin wound healing in vivo.
Heise, R; Skazik, C; Marquardt, Y; Czaja, K; Sebastian, K; Kurschat, P; Gan, L; Denecke, B; Ekanayake-Bohlig, S; Wilhelm, K-P; Merk, H F; Baron, J M
2012-01-01
Topical application of dexpanthenol is widely used in clinical practice for the improvement of wound healing. Previous in vitro experiments identified a stimulatory effect of pantothenate on migration, proliferation and gene regulation in cultured human dermal fibroblasts. To correlate these in vitro findings with the more complex in vivo situation of wound healing, a clinical trial was performed in which the dexpanthenol-induced gene expression profile in punch biopsies of previously injured and dexpanthenol-treated skin in comparison to placebo-treated skin was analyzed at the molecular level by Affymetrix® GeneChip analysis. Upregulation of IL-6, IL-1β, CYP1B1, CXCL1, CCL18 and KAP 4-2 gene expression and downregulation of psorasin mRNA and protein expression were identified in samples treated topically with dexpanthenol. This in vivo study might provide new insight into the molecular mechanisms responsible for the effect of dexpanthenol in wound healing and shows strong correlations to previous in vitro data using cultured dermal fibroblasts. Copyright © 2012 S. Karger AG, Basel.
Injury-induced immune responses in Hydra.
Wenger, Yvan; Buzgariu, Wanda; Reiter, Silke; Galliot, Brigitte
2014-08-01
The impact of injury-induced immune responses on animal regenerative processes is highly variable, positive or negative depending on the context. This likely reflects the complexity of the innate immune system that behaves as a sentinel in the transition from injury to regeneration. Early-branching invertebrates with high regenerative potential as Hydra provide a unique framework to dissect how injury-induced immune responses impact regeneration. A series of early cellular events likely require an efficient immune response after amputation, as antimicrobial defence, epithelial cell stretching for wound closure, migration of interstitial progenitors toward the wound, cell death, phagocytosis of cell debris, or reconstruction of the extracellular matrix. The analysis of the injury-induced transcriptomic modulations of 2636 genes annotated as immune genes in Hydra identified 43 genes showing an immediate/early pulse regulation in all regenerative contexts examined. These regulations point to an enhanced cytoprotection via ROS signaling (Nrf, C/EBP, p62/SQSMT1-l2), TNFR and TLR signaling (TNFR16-like, TRAF2l, TRAF5l, jun, fos-related, SIK2, ATF1/CREB, LRRC28, LRRC40, LRRK2), proteasomal activity (p62/SQSMT1-l1, Ced6/Gulf, NEDD8-conjugating enzyme Ubc12), stress proteins (CRYAB1, CRYAB2, HSP16.2, DnaJB9, HSP90a1), all potentially regulating NF-κB activity. Other genes encoding immune-annotated proteins such as NPYR4, GTPases, Swap70, the antiproliferative BTG1, enzymes involved in lipid metabolism (5-lipoxygenase, ACSF4), secreted clotting factors, secreted peptidases are also pulse regulated upon bisection. By contrast, metalloproteinases and antimicrobial peptide genes largely follow a context-dependent regulation, whereas the protease inhibitor α2macroglobulin gene exhibits a sustained up-regulation. Hence a complex immune response to injury is linked to wound healing and regeneration in Hydra. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Scimone, M. Lucila; Lapan, Sylvain W.; Reddien, Peter W.
2014-01-01
Planarian regeneration requires positional information to specify the identity of tissues to be replaced as well as pluripotent neoblasts capable of differentiating into new cell types. We found that wounding elicits rapid expression of a gene encoding a Forkhead-family transcription factor, FoxD. Wound-induced FoxD expression is specific to the ventral midline, is regulated by Hedgehog signaling, and is neoblast-independent. FoxD is subsequently expressed within a medial subpopulation of neoblasts at wounds involving head regeneration. Ultimately, FoxD is co-expressed with multiple anterior markers at the anterior pole. Inhibition of FoxD with RNA interference (RNAi) results in the failure to specify neoblasts expressing anterior markers (notum and prep) and in anterior pole formation defects. FoxD(RNAi) animals fail to regenerate a new midline and to properly pattern the anterior blastema, consistent with a role for the anterior pole in organizing pattern of the regenerating head. Our results suggest that wound signaling activates a forkhead transcription factor at the midline and, if the head is absent, FoxD promotes specification of neoblasts at the prior midline for anterior pole regeneration. PMID:24415944
Intestinal epithelial wound healing assay in an epithelial-mesenchymal co-culture system.
Seltana, Amira; Basora, Nuria; Beaulieu, Jean-François
2010-01-01
Rapid and efficient healing of epithelial damage is critical to the functional integrity of the small intestine. Epithelial repair is a complex process that has largely been studied in cultured epithelium but to a much lesser extent in mucosa. We describe a novel method for the study of wound healing using a co-culture system that combined an intestinal epithelial Caco-2/15 cell monolayer cultured on top of human intestinal myofibroblasts, which together formed a basement membrane-like structure that contained many of the major components found at the epithelial-mesenchymal interface in the human intestine. To investigate the mechanism of restitution, small lesions were generated in epithelial cell monolayers on plastic or in co-cultures without disturbing the underlying mesenchymal layer. Monitoring of wound healing showed that repair was more efficient in Caco-2/15-myofibroblast co-cultures than in Caco-2/15 monolayers and involved the deposition of basement membrane components. Functional experiments showed that the addition of type I collagen or human fibronectin to the culture medium significantly accelerated wound closure on epithelial cell co-cultures. This system may provide a new tool to investigate the mechanisms that regulate wound healing in the intestinal epithelium.
Espunya, M Carme; De Michele, Roberto; Gómez-Cadenas, Aurelio; Martínez, M Carmen
2012-05-01
S-Nitrosoglutathione (GSNO) is a bioactive, stable, and mobile reservoir of nitric oxide (NO), and an important player in defence responses to herbivory and pathogen attack in plants. It has been demonstrated previously that GSNO reductase (GSNOR) is the main enzyme responsible for the in vivo control of intracellular levels of GSNO. In this study, the role of S-nitrosothiols, in particular of GSNO, in systemic defence responses in Arabidopsis thaliana was investigated further. It was shown that GSNO levels increased rapidly and uniformly in injured Arabidopsis leaves, whereas in systemic leaves GSNO was first detected in vascular tissues and later spread over the parenchyma, suggesting that GSNO is involved in the transmission of the wound mobile signal through the vascular tissue. Moreover, GSNO accumulation was required to activate the jasmonic acid (JA)-dependent wound responses, whereas the alternative JA-independent wound-signalling pathway did not involve GSNO. Furthermore, extending previous work on the role of GSNOR in pathogenesis, it was shown that GSNO acts synergistically with salicylic acid in systemic acquired resistance activation. In conclusion, GSNOR appears to be a key regulator of systemic defence responses, in both wounding and pathogenesis.
Hou, Jingang; Kim, Sunchang
2018-05-05
Cellular senescence suppresses cancer by inducing irreversible cell growth arrest. Nevertheless, senescent cells is proposed as causal link with aging and aging-related pathologies. The physiological beneficial functions of senescent cells are still of paucity. Here we show that senescent human dermal fibroblast accelerates keratinocytes scratch wound healing and stimulates differentiation of fibroblast. Using oxidative stress (100 μM H 2 O 2 exposure for 1 h) induction, we successfully triggered fibroblast senescence and developed senescence associated secretory phenotype (SASP). The induction of SASP was regulated by p38MAPK/MSK2/NF-κB pathway. Interestingly, inhibition of p38MAPK activation only partially suppressed SASP. However, SASP was significantly inhibited by SB747651A, a specific MSK inhibitor. Additionally, we demonstrate that SASP stimulates migration of keratinocytes and myofibroblast transition of fibroblast, through fold-increased secretion of growth factors, platelet-derived growth factor AA (PDGF-AA) and AB (PDGF-AB), transforming growth factor beta 1 (TGF-β1) and beta 2 (TGF-β2), vascular endothelial growth factor A (VEGF-A) and D (VEGF-D), vascular endothelial growth factor receptor 2 (VEGFR2) and 3 (VEGFR3). Importantly, we also confirmed ginsenoside Rb1 promoted SASP-mediated healing process via p38MAPK/MSK2/NF-κB pathway. The results pointed to senescent fibroblast as a potential mechanism of wound healing control in human skin. Further, it provided a candidate targeted for wound therapy. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Qian-Shi; Kurpad, Deepa S.; Mahoney, My G.; Steinbeck, Marla J.
2017-01-01
Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO) or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), after full thickness ear punch in mice prolongs keratinocyte activation within the wound epidermis and promotes regeneration of auricular cartilage. Histological analysis showed the ASK1 KO ears displayed enhanced protein markers associated with blastema formation, hole closure and regeneration of auricular cartilage. At seven days after punch, the wound epidermis morphology was markedly different in the KO, showing a thickened stratum corneum with rounded cell morphology and a reduction of both the granular cell layer and decreased expression of filament aggregating protein. In addition, cytokeratin 6 was expressed in the stratum spinosum and granulosum. Topical application of inhibitors of ASK1 (NQDI-1), the upstream ASK1 activator, calcium activated mitogen kinase 2 (KN93), or the downstream target, c-Jun N-terminal kinase (SP600125) also resulted in enhanced regeneration; whereas inhibition of the other downstream target, the p38 α/β isoforms, (SB203580) had no effect. The results of this investigation indicate ASK1 inhibition prolongs keratinocyte and blastemal cell activation leading to ear regeneration. PMID:29045420
Zhang, Qian-Shi; Kurpad, Deepa S; Mahoney, My G; Steinbeck, Marla J; Freeman, Theresa A
2017-01-01
Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO) or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), after full thickness ear punch in mice prolongs keratinocyte activation within the wound epidermis and promotes regeneration of auricular cartilage. Histological analysis showed the ASK1 KO ears displayed enhanced protein markers associated with blastema formation, hole closure and regeneration of auricular cartilage. At seven days after punch, the wound epidermis morphology was markedly different in the KO, showing a thickened stratum corneum with rounded cell morphology and a reduction of both the granular cell layer and decreased expression of filament aggregating protein. In addition, cytokeratin 6 was expressed in the stratum spinosum and granulosum. Topical application of inhibitors of ASK1 (NQDI-1), the upstream ASK1 activator, calcium activated mitogen kinase 2 (KN93), or the downstream target, c-Jun N-terminal kinase (SP600125) also resulted in enhanced regeneration; whereas inhibition of the other downstream target, the p38 α/β isoforms, (SB203580) had no effect. The results of this investigation indicate ASK1 inhibition prolongs keratinocyte and blastemal cell activation leading to ear regeneration.
Plichta, Jennifer K.; Holmes, Casey J.; Gamelli, Richard L.; Radek, Katherine A.
2016-01-01
Burn injury increases the risk of morbidity and mortality by promoting severe hemodynamic shock and risk for local or systemic infection. Graft failure due to poor wound healing or infection remains a significant problem for burn subjects. The mechanisms by which local burn injury compromises the epithelial antimicrobial barrier function in the burn margin, containing the elements necessary for healing of the burn site, and in distal unburned skin, which serves as potential donor tissue, are largely unknown. The objective of this study was to establish defects in epidermal barrier function in human donor skin and burn margin, in order to identify potential mechanisms that may lead to graft failure and/or impaired burn wound healing. In the present study, we established that epidermal lipids and respective lipid synthesis enzymes were significantly reduced in both donor skin and burn margin. We further identified diverse changes in the gene expression and protein production of several candidate skin antimicrobial peptides (AMPs) in both donor skin and burn margin. These results also parallel changes in cutaneous AMP activity against common burn wound pathogens, aberrant production of epidermal proteases known to regulate barrier permeability and AMP activity, and greater production of pro-inflammatory cytokines known to be induced by AMPs. These findings suggest that impaired epidermal lipid and AMP regulation could contribute to graft failure and infectious complications in subjects with burn or other traumatic injury. PMID:27183442
Heat Shock Protein B1-Deficient Mice Display Impaired Wound Healing
McNamee, Kay; Przybycien, Paulina M.; Lu, Xin; Williams, Richard O.; Bou-Gharios, George; Saklatvala, Jeremy; Dean, Jonathan L. E.
2013-01-01
There is large literature describing in vitro experiments on heat shock protein (hsp)B1 but understanding of its function in vivo is limited to studies in mice overexpressing human hspB1 protein. Experiments in cells have shown that hspB1 has chaperone activity, a cytoprotective role, regulates inflammatory gene expression, and drives cell proliferation. To investigate the function of the protein in vivo we generated hspB1-deficient mice. HspB1-deficient fibroblasts display increased expression of the pro-inflammatory cytokine, interleukin-6, compared to wild-type cells, but reduced proliferation. HspB1-deficient fibroblasts exhibit reduced entry into S phase and increased expression of cyclin-dependent kinase inhibitors p27kip1 and p21waf1. The expression of hspB1 protein and mRNA is also controlled by the cell cycle. To investigate the physiological function of hspB1 in regulating inflammation and cell proliferation we used an excisional cutaneous wound healing model. There was a significant impairment in the rate of healing of wounds in hspB1-deficient mice, characterised by reduced re-epithelialisation and collagen deposition but also increased inflammation. HspB1 deficiency augments neutrophil infiltration in wounds, driven by increased chemokine (C-X-C motif) ligand 1 expression. This appears to be a general mechanism as similar results were obtained in the air-pouch and peritonitis models of acute inflammation. PMID:24143227
Marzotto, Marta; Bonafini, Clara; Olioso, Debora; Baruzzi, Anna; Bettinetti, Laura; Di Leva, Francesca; Galbiati, Elisabetta; Bellavite, Paolo
2016-01-01
Arnica montana (Arnica m.) is used for its purported anti-inflammatory and tissue healing actions after trauma, bruises, or tissue injuries, but its cellular and molecular mechanisms are largely unknown. This work tested Arnica m. effects on gene expression using an in vitro model of macrophages polarized towards a "wound-healing" phenotype. The monocyte-macrophage human THP-1 cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24h to Arnica m. centesimal (c) dilutions 2c, 3c, 5c, 9c, 15c or Control. Total RNA was isolated and cDNA libraries were sequenced with a NextSeq500 sequencer. Genes with significantly positive (up-regulated) or negative (down-regulated) fold changes were defined as differentially expressed genes (DEGs). A total of 20 DEGs were identified in Arnica m. 2c treated cells. Of these, 7 genes were up-regulated and 13 were down-regulated. The most significantly up-regulated function concerned 4 genes with a conserved site of epidermal growth factor-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin sulphate proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p<0.01). Protein assay confirmed a statistically significant increase of fibronectin production (p<0.05). The down-regulated transcripts derived from mitochondrial genes coding for some components of electron transport chain. The same groups of genes were also regulated by increasing dilutions of Arnica m. (3c, 5c, 9c, 15c), although with a lower effect size. We further tested the healing potential of Arnica m. 2c in a scratch model of wound closure based on the motility of bone marrow-derived macrophages and found evidence of an accelerating effect on cell migration in this system. The results of this work, taken together, provide new insights into the action of Arnica m. in tissue healing and repair, and identify extracellular matrix regulation by macrophages as a therapeutic target.
Marzotto, Marta; Bonafini, Clara; Olioso, Debora; Baruzzi, Anna; Bettinetti, Laura; Di Leva, Francesca; Galbiati, Elisabetta; Bellavite, Paolo
2016-01-01
Arnica montana (Arnica m.) is used for its purported anti-inflammatory and tissue healing actions after trauma, bruises, or tissue injuries, but its cellular and molecular mechanisms are largely unknown. This work tested Arnica m. effects on gene expression using an in vitro model of macrophages polarized towards a “wound-healing” phenotype. The monocyte-macrophage human THP-1 cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24h to Arnica m. centesimal (c) dilutions 2c, 3c, 5c, 9c, 15c or Control. Total RNA was isolated and cDNA libraries were sequenced with a NextSeq500 sequencer. Genes with significantly positive (up-regulated) or negative (down-regulated) fold changes were defined as differentially expressed genes (DEGs). A total of 20 DEGs were identified in Arnica m. 2c treated cells. Of these, 7 genes were up-regulated and 13 were down-regulated. The most significantly up-regulated function concerned 4 genes with a conserved site of epidermal growth factor-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin sulphate proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p<0.01). Protein assay confirmed a statistically significant increase of fibronectin production (p<0.05). The down-regulated transcripts derived from mitochondrial genes coding for some components of electron transport chain. The same groups of genes were also regulated by increasing dilutions of Arnica m. (3c, 5c, 9c, 15c), although with a lower effect size. We further tested the healing potential of Arnica m. 2c in a scratch model of wound closure based on the motility of bone marrow-derived macrophages and found evidence of an accelerating effect on cell migration in this system. The results of this work, taken together, provide new insights into the action of Arnica m. in tissue healing and repair, and identify extracellular matrix regulation by macrophages as a therapeutic target. PMID:27832158
[The effects of Cardiodoron on cardio-respiratory coordination--a literature review].
Cysarz, D; Heckmann, C; Kümmell, H C
2002-10-01
In healthy subjects self-regulation of the organism establishes the order of rhythmical functions. This self-regulation is altered in patients suffering from idiopathic orthostatic syndrome resulting from disturbances of functional aspects only. Thus the cardio-respiratory coordination, which may serve as the representative of the order of rhythmical functions, is modified. In the case of idiopathic orthostatic syndrome the anthroposophic medicine offers the medicament Cardiodoron(r). Does it stimulate self-regulation in order to normalise the cardio-respiratory coordination? This claim is analysed by a systematic review of the literature. Only those publications were considered where the cardio-respiratory coordination was analysed in studies with patients or healthy subjects. The methods of the studies with patients and healthy subjects vary strongly. Nevertheless, a normalisation of the cardio-respiratory coordination could be found in studies with patients suffering from idiopathic orthostatic syndrome as well as in studies with healthy subjects. The studies show that the use of the medicament results in a normalisation of the cardiorespiratory coordination. By stimulating the self-regulation the medicament leads to an improvement of the order of rhythmical functions in the human organism. Copyright 2002 S. Karger GmbH, Freiburg
He, Xianghui; Dai, Jinhua; Fan, Youfen; Zhang, Chun; Zhao, Xihong
2017-01-01
ABSTRACT Cutaneous wound healing is a complex physiological process that requires the efforts of various cell types and signaling pathways and often results in thickened collagen-enriched healed tissue called a scar. Therefore, the identification of the mechanism of cutaneous wound healing is necessary and has great value in providing better treatment. Here, we demonstrated that MMP-1 inhibition could promote cell proliferation in dermal fibroblasts via the MTT assay. Meanwhile, we investigated cell migration by flow cytometry and tested type I collagenase activity. We found that MMP-1 inhibition promoted cell proliferation and inhibited cell migration and type I collagenase activity. In conclusion, our study demonstrated that MMP-1 might be a potential therapeutic target in cutaneous wound healing. PMID:28277161
Lough, Denver M; Wetter, Nathan; Madsen, Christopher; Reichensperger, Joel; Cosenza, Nicole; Cox, Lisa; Harrison, Carrie; Neumeister, Michael W
2016-02-01
Recent literature has shown that full-thickness wounds, devoid of the stem cell niche, can subsequently be reconstructed with functional skin elements following migration of the LGR6 epithelial stem cell into the wound bed. In this study, the authors use a variety of LGR6 epithelial stem cell-seeded scaffolds to determine therapeutic utility and regenerative potential in the immediate reconstruction of full-thickness wounds. Isolated LGR6 epithelial stem cells were seeded onto a spectrum of acellular matrices and monitored in both in vitro and in vivo settings to determine their relative capacity to regenerate tissues and heal wounds. Wound beds containing LGR6 stem cell-seeded scaffolds showed significantly augmented rates of healing, epithelialization, and hair growth compared with controls. Gene and proteomic expression studies indicate that LGR6 stem cell-seeded constructs up-regulate WNT, epidermal growth factor, and angiogenesis pathways. Finally, the addition of stromal vascular fraction to LGR6 stem cell-seeded constructs induces polarized tissue formation, nascent hair growth, and angiogenesis within wounds. LGR6 stem cells are able to undergo proliferation, differentiation, and migration following seeding onto a variety of collagen-based scaffolding. In addition, deployment of these constructs induces epithelialization, hair growth, and angiogenesis within wound beds. The addition of stromal vascular fraction to LGR6 stem cell-containing scaffolds initiated an early form of tissue polarization, providing for the first time a clinically applicable stem cell-based construct that is capable of the repair of full-thickness wounds and hair regeneration. Therapeutic, V.
Long-lasting effects of dexamethasone on immune cells and wound healing in the zebrafish.
Sharif, Faiza; Steenbergen, Peter J; Metz, Juriaan R; Champagne, Danielle L
2015-01-01
This study assessed the lasting impact of dexamethasone (DEX) exposure during early development on tissue repair capacity at later life stages (5, 14, and 24 days post fertilization [dpf]) in zebrafish larvae. Using the caudal fin amputation model, we show that prior exposure to DEX significantly delays but does not prevent wound healing at all life stages studied. DEX-induced impairments on wound healing were fully restored to normal levels with longer post amputation recovery time. Further analyses revealed that DEX mainly exerted its detrimental effects in the early phase (0-5 hours) of wound-healing process. Specifically, we observed the following events: (1) massive amount of cell death both by necrosis and apoptosis; (2) significant reduction in the number as well as misplacement of macrophages at the wound site; (3) aberrant migration and misplacement of neutrophils and macrophages at the wound site. These events were accompanied by significant (likely compensatory) changes in the expression of genes involved in tissue patterning, including up-regulation of FKBP5 6 hours post DEX exposure and that of Wnt3a and RARγ at 24 hours post amputation. Taken together, this study provides evidence that DEX exposure during early sensitive periods of development appears to cause permanent alterations in the cellular/molecular immune processes that are involved in the early phase of wound healing in zebrafish. These findings are consistent with previous studies showing that antenatal course of DEX is associated with immediate and lasting alterations of the immune system in rodent models and humans. Therefore, the current findings support the use of the larval zebrafish model to study the impact of stress and stress hormone exposure in immature organisms on health risks in later life. © 2015 by the Wound Healing Society.
Zhu, Xiaolong; Sun, Yue; Mu, Xin; Guo, Pan; Gao, Fei; Zhang, Jing; Zhu, Yunjuan; Zhang, Xianzhi; Chen, Lingling; Ning, Zhiwei; Bai, Yunfeng; Ren, Jiling; Man, Maoqiang; Liu, Peimei; Hu, Lizhi
2017-02-26
This study aimed to investigate the role of phospholipase Cε (PLCε) in the skin wound healing process. PLCε, an effect factor of Ras/Rap small G protein, plays a crucial role in skin inflammation by regulating inflammatory cytokines. Inflammatory responses are closely associated with wound healing. Full-thickness skin wounds were made in the PLCε knockout (KO) and wild-type (WT) mice, and the healing process was analyzed. The macroscopic wound closure rate declined in the PLCε KO mice on days 3, 4, and 5 after wounding, following the decreased expression of interleukin (IL)-6, chemokine (C-X-C motif) ligand (Cxcl)-1, Cxcl-2, and chemokine (C-C motif) ligand (Ccl) 20. The proliferation rate of epidermal keratinocytes was not affected by PLCε, but silencing of PLCε resulted in the delayed migration of keratinocytes. Moreover, the scars were found to be much smaller in the PLCε KO mice than in the WT mice. The mRNA expression of Ccl20, collagen (Col) 6a1, and Col17a1 decreased in the PLCε KO mice. These results were in agreement with a previous hypothesis that PLCε might delay the early stage of cutaneous wound healing by inhibiting the migration of keratinocytes, and decrease the expression of Col6a1, Col17a1, and Ccl20 by inhibiting the inflammatory response to reduce scar formation. This study shed light on a novel role of PLCε in wound healing and provided new therapeutic approaches to target PLCε for diminishing scar formation after injury. Copyright © 2017 Elsevier Inc. All rights reserved.
2011-01-01
Background Diabetic foot ulcers are serious complications for diabetic patients, yet the precise mechanism that underlines the treatment of these diabetic complications remains unclear. We hypothesized that dietary antioxidant supplementation with vitamin C, combined either with vitamin E or with vitamin E and NAC, improves delayed wound healing through modulation of blood glucose levels, oxidative stress, and inflammatory response. Methods Diabetes was induced by administration of alloxan monohydrate. Mice were divided into 4 groups; CON (non-diabetic control mice fed AIN 93 G purified rodent diet), DM (diabetic mice fed AIN 93 G purified rodent diet), VCE (diabetic mice fed 0.5% vitamin C and 0.5% vitamin E supplemented diet), and Comb (diabetic mice fed 0.5% vitamin C, 0.5% vitamin E, and 2.5% NAC supplemented diet). After 10 days of dietary antioxidant supplementation, cutaneous full-thickness excisional wounds were performed, and the rate of wound closure was examined. TBARS as lipid peroxidation products and vitamin E levels were measured in the liver. Expression levels of oxidative stress and inflammatory response related proteins were measured in the cutaneous wound site. Results Dietary antioxidant supplementation improved blood glucose levels and wound closure rate and increased liver vitamin E, but not liver TBARS levels in the diabetic mice as compared to those of the CON. In addition, dietary antioxidant supplementation modulated the expression levels of pIκBα, HO-1, CuZnSOD, iNOS and COX-2 proteins in the diabetic mice. Conclusions These findings demonstrated that delayed wound healing is associated with an inflammatory response induced by hyperglycaemia, and suggests that dietary antioxidant supplementation may have beneficial effects on wound healing through selective modulation of blood glucose levels, oxidative stress, and inflammatory response. PMID:22088091
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.
During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived solublemore » factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.« less
Promotion of acute-phase skin wound healing by Pseudomonas aeruginosa C4 -HSL.
Kanno, Emi; Kawakami, Kazuyoshi; Miyairi, Shinichi; Tanno, Hiromasa; Suzuki, Aiko; Kamimatsuno, Rina; Takagi, Naoyuki; Miyasaka, Tomomitsu; Ishii, Keiko; Gotoh, Naomasa; Maruyama, Ryoko; Tachi, Masahiro
2016-12-01
A Pseudomonas aeruginosa quorum-sensing system, which produces N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C 12 -HSL) and N-butanoyl-l-homoserine lactone (C 4 -HSL), regulates the virulence factors. In our previous study, 3-oxo-C 12 -HSL, encoded by lasI gene, was shown to promote wound healing. However, the effect of C 4 -HSL, encoded by rhlI gene, remains to be elucidated. We addressed the effect of C 4 -HSL on wounds in P. aeruginosa infection. Wounds were created on the backs of Sprague-Dawley SD rats, and P. aeruginosa PAO1 (PAO1) or its rhlI deletion mutant (ΔrhlI) or lasI deletion mutant (ΔlasI) was inoculated onto the wound. Rats were injected intraperitoneally with anti-C 4 -HSL antiserum or treated with C 4 -HSL at the wound surface. PAO1 inoculation led to significant acceleration of wound healing, which was associated with neutrophil infiltration and TNF-α synthesis. These responses were reversed, except for TNF-α production, when ΔrhlI was inoculated instead of PAO1 or when rats were co-treated with PAO1 and anti-C 4 -HSL antiserum. In contrast, the healing process and neutrophil infiltration, but not TNF-α synthesis, were accelerated when C 4 -HSL was administered in the absence of PAO1. This acceleration was not affected by anti-TNF-α antibody. These results suggest that C 4 -HSL may be involved in the acceleration of acute wound healing in P. aeruginosa infection by modifying the neutrophilic inflammation. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Mesenchymal stem cells: The roles and functions in cutaneous wound healing and tumor growth.
Motegi, Sei-Ichiro; Ishikawa, Osamu
2017-05-01
Mesenchymal stem cells (MSCs) are bone marrow-derived non-hematopoietic progenitor cells. MSCs are able to differentiate into various types of cells, including chondrocytes, adipocytes, osteocytes, myocytes, endothelial cells, and keratinocytes. There is increasing evidence that MSCs might be located external to the vasculature, and that perivascular cells in the skin, generally called as "pericytes", might include MSCs. It has been suggested that MSCs localized around blood vessels might migrate into wounds and contribute to the restoration of injured tissues. Many studies have demonstrated that intravenous or intradermal administration of MSCs enhanced cutaneous wound healing, such as acute incisional and excisional wounds, diabetic ulcers, radiation ulcers, and burns in animals and humans. Several mechanisms of the acceleration of wound healing by MSCs have been identified, including the enhancement of angiogenesis by secretion of pro-angiogenic factors and the differentiation into endothelial cells and/or pericytes, M2 macrophages polarization, the recruitment of endogenous stem/progenitor cells, extracellular matrix production and remodeling, and immunosuppressive effects. Since the microenvironments of wounds and/or injured tissues are similar to those of tumors, MSCs also play similar roles in malignant tumors, such as the enhancement of angiogenesis, M2 macrophages polarization, and immunosuppressive effects. In addition, the mechanisms of homing of MSCs might have a commonality in the pathogenesis of wound healing and tumors. Thus, the regulating factors of MSCs, including MFG-E8, could be a therapeutic target and lead to the establishment of new therapeutic approaches for both intractable wound healing and tumors. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantino Rosa Santos, Susana; Instituto de Biopatologia Quimica, Faculdade de Medicina de Lisboa/Unidade de Biopatologia Vascular, Instituto de Medicina Molecular, Lisbon; Instituto Gulbenkian de Ciencia
2007-05-01
Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this processmore » required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF + KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention.« less
Enhancement of cutaneous wound healing by Dsg2 augmentation of uPAR secretion.
Cooper, Felicia; Overmiller, Andrew M; Loder, Anthony; Brennan-Crispi, Donna M; McGuinn, Kathleen P; Marous, Molly R; Freeman, Theresa A; Riobo-Del Galdo, Natalia A; Siracusa, Linda D; Wahl, James K; Mahoney, Mỹ G
2018-05-09
In addition to playing a role in adhesion, desmoglein 2 (Dsg2) is an important regulator of growth and survival signaling pathways, cell proliferation, migration and invasion, and oncogenesis. While low-level Dsg2 expression is observed in basal keratinocytes and is downregulated in non-healing venous ulcers, overexpression has been observed in both melanomas and non-melanoma malignancies. Here, we show that transgenic mice overexpressing Dsg2 in basal keratinocytes primed the activation of mitogenic pathways, but did not induce dramatic epidermal changes or susceptibility to chemical-induced tumor development. Interestingly, acceleration of full-thickness wound closure and increased wound-adjacent keratinocyte proliferation was observed in these mice. As epidermal cytokines and their receptors play critical roles in wound healing, Dsg2-induced secretome alterations were assessed with an antibody profiler array and revealed increased release and proteolytic processing of the urokinase-type plasminogen activator receptor (uPAR). Dsg2 induced uPAR expression in the skin of transgenic compared to wild-type mice. Wound healing further enhanced uPAR in both epidermis and dermis with concomitant increase in the pro-healing laminin-332, a major component of the basement membrane zone, in transgenic mice. This study demonstrates that Dsg2 induces epidermal activation of various signaling cascades and accelerates cutaneous wound healing, in part, through uPAR-related signaling cascades. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Zhang, Lei; Xu, Pengcheng; Wang, Xueer; Zhang, Min; Yan, Yuan; Chen, Yinghua; Zhang, Lu; Zhang, Lin
2017-06-01
Adipose-derived stem cells (ADSCs) are multipotent stromal cells that can differentiate into a variety of cell types, including skin cells, and they can provide an abundant source of cells for skin tissue engineering and skin wound healing. The purpose of this study is to explore the therapeutic effects of activin B in combination with ADSCs and the possible signaling mechanism. In this study, we found that activin B was able to promote ADSC migration by inducing actin stress fiber formation in vitro. In vivo, activin B in combination with ADSCs was capable of enhancing α-SMA expression and wound closure. This combined treatment also promoted fibroblast and keratinocyte proliferation and accelerated re-epithelialization and collagen deposition. Moreover, activin B in combination with ADSCs boosted angiogenesis in the wound area. Further study of the mechanism revealed that activation of JNK and ERK signaling, but not p38 signaling, were required for activin B-induced ADSC actin stress fiber formation and cell migration. These results showed that activin B was able to activate JNK and ERK signaling pathways to induce actin stress fiber formation and ADSC migration to promote wound healing. These results suggest that combined treatment with activin B and ADSCs is a promising therapeutic strategy for the management of serious skin wounds. Copyright © 2017. Published by Elsevier Ltd.
Angiogenic and wound healing potency of fermented virgin coconut oil: in vitro and in vivo studies
Ibrahim, Ahmad H; Li, Haibo; Al-Rawi, Sawsan S; Majid, Aman Shah Abdul; Al-Habib, Omar AM; Xia, Xiaobo; Majid, Amin MS Abdul; Ji, Dan
2017-01-01
Objective: The process of wound healing involves activation of keratinocytes, fibroblasts, endothelial cells, etc. Angiogenesis is crucial during the process of wound healing. Virgin coconut oil is widely utilized in South Asia for various purposes including food, medicinal and industrial applications. This study aimed to evaluate the potency of fermented virgin coconut oil (FVCO) in angiogenesis and wound healing via both in vitro and in vivo assays. Methods: Human umbilical vein endothelial (HUVEC), fibroblast (CCD-18) and retinal ganglion (RGC-5) cells were cultured in medium containing different concentrations of FVCO. The proliferation, migration and morphological changes of cells were determined. The angiogenic effect of FVCO was evaluated by rat aortic assay. The therapeutic effect of FVCO on wound healing was further assessed in a wound excision model in Sprague Dawley rats. The expression of phospho-VEGFR2 (vascular endothelial growth factor receptor 2) in HUVECs was detected by Western blot. Results: FVCO (6 and 12 µg/mL) significantly improved the proliferation of HUVEC, CCD-18 and RGC-5 cells (P < 0.05 or 0.01). FVCO (25 µg/mL) markedly increased the migration ability of CCD-18 and RGC-5 cells (P < 0.05). FVCO did not affect cell morphology as indicated by fluorescein diacetate (FDA), rhodamine 123 and Hoechst staining. FVCO (25, 50 and 100 µg/mL) significantly stimulated the ex vivo blood vessel formation as compared with negative control (P < 0.05). Rats in FVCO group had significantly smaller wound size, higher wound healing percentage, and shorter wound closure time when compared with control group since day 8 (P < 0.05), suggesting that oral FVCO administration notably promoted the wound healing process. FVCO treatment (6 and 12 µg/mL) significantly enhanced the phospho-VEGFR2 expression in HUVECs (P = 0.006 and 0.000, respectively). Conclusion: Our study confirms a high angiogenic and wound healing potency of FVCO that might be mediated by the regulation of VEGF signing pathway. PMID:29218091
Ud-Din, Sara; Bayat, Ardeshir
2017-04-01
Tissue repair models are essential to explore the pathogenesis of wound healing and scar formation, identify new drug targets/biomarkers and to test new therapeutics. However, no animal model is an exact replicate of the clinical situation in man as in addition to differences in the healing of animal skin; the response to novel therapeutics can be variable when compared to human skin. The aim of this review is to evaluate currently available non-animal wound repair models in human skin, including: in silico, in vitro, ex vivo, and in vivo. The appropriate use of these models is extremely relevant to wound-healing research as it enables improved understanding of the basic mechanisms present in the wound healing cascade and aid in discovering better means to regulate them for enhanced healing or prevention of abnormal scarring. The advantage of in silico models is that they can be used as a first in virtue screening tool to predict the effect of a drug/stimulus on cells/tissues and help plan experimental research/clinical trial studies but remain theoretical until validated. In vitro models allow direct quantitative examination of an effect on specific cell types alone without incorporating other tissue-matrix components, which limits their utility. Ex vivo models enable immediate and short-term evaluation of a particular effect on cells and its surrounding tissue components compared with in vivo models that provide direct analysis of a stimulus in the living human subject before/during/after exposure to a stimulus. Despite clear advantages, there remains a lack of standardisation in design, evaluation and follow-up, for acute/chronic wounds and scars in all models. In conclusion, ideal models of wound healing research are desirable and should mimic not only the structure but also the cellular and molecular interactions, of wound types in human skin. Future models may also include organ/skin-on-a-chip with potential application in wound healing research. © 2017 by the Wound Healing Society.
USDA-ARS?s Scientific Manuscript database
A regulatory sequence from a serine proteinase inhibitor gene (BvSTIpro) shown to be up-regulated in resistant interactions with a root pest of sugar beet, the sugar beet root maggot, was fused to the ß-glucuronidase (GUS) reporter gene to characterize its expression patterns in transgenic Nicotiana...
CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh.
Guo, Yanli; Huang, Yi; Gao, Jie; Pu, Yuanyuan; Wang, Nan; Shen, Wenyun; Wen, Jing; Yi, Bin; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong; Zou, Jitao; Shen, Jinxiong
2018-01-01
Accumulation of storage compounds during seed development plays an important role in the life cycle of oilseed plants; these compounds provide carbon and energy resources to support the establishment of seedlings. In this study, we show that BnCIPK9 has a broad expression pattern in Brassica napus L. tissues and that wounding stress strongly induces its expression. The overexpression of BnCIPK9 during seed development reduced oil synthesis in transgenic B. napus compared to that observed in wild-type (WT) plants. Functional analysis revealed that seed oil content (OC) of complementation lines was similar to that of WT plants, whereas OC in Arabidopsis thaliana (L.) Heynh. Atcipk9 knockout mutants ( cipk9 ) was higher than that of WT plants. Seedling of cipk9 mutants failed to establish roots on a sugar-free medium, but root establishment could be rescued by supplementation of sucrose or glucose. The phenotype of complementation transgenic lines was similar to that of WT plants when grown on sugar-free medium. Mutants, cipk9 , cbl2 , and cbl3 presented similar phenotypes, suggesting that CIPK9, CBL2, and CBL3 might work together and play similar roles in root establishment under sugar-free condition. This study showed that BnCIPK9 and AtCIPK9 encode a protein kinase that is involved in sugar-related response and plays important roles in the regulation of energy reserves. Our results suggest that AtCIPK9 negatively regulates lipid accumulation and has a significant effect on early seedling establishment in A. thaliana . The functional characterization of CIPK9 provides insights into the regulation of OC, and might be used for improving OC in B. napus . We believe that our study makes a significant contribution to the literature because it provides information on how CIPKs coordinate stress regulation and energy signaling.
Stress inducible proteinase inhibitor diversity in Capsicum annuum
2012-01-01
Background Wound-inducible Pin-II Proteinase inhibitors (PIs) are one of the important plant serine PIs which have been studied extensively for their structural and functional diversity and relevance in plant defense against insect pests. To explore the functional specialization of an array of Capsicum annuum (L.) proteinase inhibitor (CanPIs) genes, we studied their expression, processing and tissue-specific distribution under steady-state and induced conditions. Inductions were performed by subjecting C. annuum leaves to various treatments, namely aphid infestation or mechanical wounding followed by treatment with either oral secretion (OS) of Helicoverpa armigera or water. Results The elicitation treatments regulated the accumulation of CanPIs corresponding to 4-, 3-, and 2-inhibitory repeat domains (IRDs). Fourty seven different CanPI genes composed of 28 unique IRDs were identified in total along with those reported earlier. The CanPI gene pool either from uninduced or induced leaves was dominated by 3-IRD PIs and trypsin inhibitory domains. Also a major contribution by 4-IRD CanPI genes possessing trypsin and chymotrypsin inhibitor domains was specifically revealed in wounded leaves treated with OS. Wounding displayed the highest number of unique CanPIs while wounding with OS treatment resulted in the high accumulation of specifically CanPI-4, -7 and −10. Characterization of the PI protein activity through two dimensional gel electrophoresis revealed tissue and induction specific patterns. Consistent with transcript abundance, wound plus OS or water treated C. annuum leaves exhibited significantly higher PI activity and isoform diversity contributed by 3- and 4-IRD CanPIs. CanPI accumulation and activity was weakly elicited by aphid infestation yet resulted in the higher expression of CanPI-26, -41 and −43. Conclusions Plants can differentially perceive various kinds of insect attacks and respond appropriately through activating plant defenses including regulation of PIs at transcriptional and post-translational levels. Based on the differentially elicited CanPI accumulation patterns, it is intriguing to speculate that generating sequence diversity in the form of multi-IRD PIs is a part of elaborative plant defense strategy to obtain a diverse pool of functional units to confine insect attack. PMID:23153298
Role of Corneal Stromal Cells on Epithelial Cell Function during Wound Healing
Kowtharapu, Bhavani S.; Murín, Radovan; Jünemann, Anselm G. M.; Stachs, Oliver
2018-01-01
Following injury, corneal stromal keratocytes transform into repair-phenotype of activated stromal fibroblasts (SFs) and participate in wound repair. Simultaneously, ongoing bi-directional communications between corneal stromal-epithelial cells also play a vital role in mediating the process of wound healing. Factors produced by stromal cells are known to induce proliferation, differentiation, and motility of corneal epithelial cells, which are also subsequently the main processes that occur during wound healing. In this context, the present study aims to investigate the effect of SFs conditioned medium (SFCM) on corneal epithelial cell function along with substance P (SP). Antibody microarrays were employed to profile differentially expressed cell surface markers and cytokines in the presence of SFCM and SP. Antibody microarray data revealed enhanced expression of the ITGB1 in corneal epithelial cells following stimulation with SP whereas SFCM induced abundant expression of IL-8, ITGB1, PD1L1, PECA1, IL-15, BDNF, ICAM1, CD8A, CD44 and NTF4. All these proteins have either direct or indirect roles in epithelial cell growth, movement and adhesion related signaling cascades during tissue regeneration. We also observed activation of MAPK signaling pathway along with increased expression of focal adhesion kinase (FAK), paxillin, vimentin, β-catenin and vasodilator-stimulated phosphoprotein (VASP) phosphorylation. Additionally, epithelial-to-mesenchymal transition (EMT) regulating transcription factors Slug and ZEB1 expression were enhanced in the presence of SFCM. SP enriched the expression of integrin subunits α4, α5, αV, β1 and β3 whereas SFCM increased α4, α5, αV, β1 and β5 integrin subunits. We also observed increased expression of Serpin E1 following SP and SFCM treatment. Wound healing scratch assay revealed enhanced migration of epithelial cells following the addition of SFCM. Taken together, we conclude that SFCM-mediated sustained activation of ZEB1, Slug in combination with upregulated migration-associated integrins and ERK (Extracellular signal-regulated kinase)-FAK-paxillin axis, may lead to induce type 2 EMT-like changes during corneal epithelial wound healing. PMID:29401709
Yao, Zhihui; Li, Haisheng; He, Weifeng; Yang, Sisi; Zhang, Xiaorong; Zhan, Rixing; Xu, Rui; Tan, Jianglin; Zhou, Junyi; Wu, Jun; Luo, Gaoxing
2017-03-15
P311 is a newly discovered functional gene, and it has been proved to play a key role in blood pressure homeostasis, glioblastoma invasion, renal fibrosis, hypertrophic scar formation, and others. In this study, for the first time, we found that P311 could enhance reepithelialization during wound healing via promoting epidermal stem cell (EpSC) migration through Rho GTPases. P311 expression was highly increased in neo-epidermal cells during human and mouse skin wound healing, and P311was co-localized with 5-bromo-2'-deoxyuridine positive label-retaining cells in a mouse superficial second-degree burn wound model. Furthermore, transfection of human EpSCs with adenovirus encoding P311 significantly accelerated the cell migration in vitro. Moreover, highly expressed P311 could enhance the activities of the Rho GTPases (RhoA, Rac1, and Cdc42) in cultured human EpSCs. P311-knockout mouse EpSCs showed dramatically decreased cell migration and activities of Rho GTPases (RhoA, Rac1, and Cdc42). Besides, both the RhoA-specific inhibitor and the Rac1 inhibitor, not the Cdc42 inhibitor, could significantly suppress P311-induced human EpSC migration. In vivo, the reepithelialization was markedly impaired during wound healing after P311 was knocked out. Together, our results suggested that P311 could accelerate skin wound reepithelialization by promoting the migration of EpSCs through RhoA and Rac1 activation. P311 could serve as a novel target for regulation of EpSC migration during cutaneous wound healing.
PED/PEA-15 Controls Fibroblast Motility and Wound Closure by ERK1/2-Dependent Mechanisms
Buonomo, Roberta; Giacco, Ferdinando; Vasaturo, Angela; Caserta, Sergio; Guido, Stefano; Pagliara, Valentina; Garbi, Corrado; Mansueto, Gelsomina; Cassese, Angela; Perruolo, Giuseppe; Oriente, Francesco; Miele, Claudia; Beguinot, Francesco; Formisano, Pietro
2012-01-01
Cell migration is dependent on the control of signaling events that play significant roles in creating contractile force and in contributing to wound closure. We evaluated wound closure in fibroblasts from mice overexpressing (TgPED) or lacking ped/pea-15 (KO), a gene overexpressed in patients with type 2 diabetes. Cultured skin fibroblasts isolated from TgPED mice showed a significant reduction in the ability to recolonize wounded area during scratch assay, compared to control fibroblasts. This difference was observed both in the absence and in the presence of mytomicin C, an inhibitor of mitosis. In time-lapse experiments, TgPED fibroblasts displayed about twofold lower velocity and diffusion coefficient, as compared to controls. These changes were accompanied by reduced spreading and decreased formation of stress fibers and focal adhesion plaques. At the molecular level, TgPED fibroblasts displayed decreased RhoA activation and increased abundance of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2). Inhibition of ERK1/2 activity by PD98059 restored RhoA activation, cytoskeleton organization and cell motility, and almost completely rescued wound closure of TgPED fibroblasts. Interestingly, skin fibroblasts isolated from KO mice displayed an increased wound closure ability. In vivo, healing of dorsal wounds was delayed in TgPED and accelerated in KO mice. Thus, PED/PEA-15 may affect fibroblast motility by a mechanism, at least in part, mediated by ERK1/2. J. Cell. Physiol. 227: 2106–2116, 2012. © 2011 Wiley Periodicals, Inc. PMID:21780113
Tolg, Cornelia; Hamilton, Sara R; Zalinska, Ewa; McCulloch, Lori; Amin, Ripal; Akentieva, Natalia; Winnik, Francoise; Savani, Rashmin; Bagli, Darius J; Luyt, Len G; Cowman, Mary K; McCarthy, Jim B; Turley, Eva A
2012-10-01
Hyaluronan is activated by fragmentation and controls inflammation and fibroplasia during wound repair and diseases (eg, cancer). Hyaluronan-binding peptides were identified that modify fibrogenesis during skin wound repair. Peptides were selected from 7- to 15mer phage display libraries by panning with hyaluronan-Sepharose beads and assayed for their ability to block fibroblast migration in response to hyaluronan oligosaccharides (10 kDa). A 15mer peptide (P15-1), with homology to receptor for hyaluronan mediated motility (RHAMM) hyaluronan binding sequences, was the most effective inhibitor. P15-1 bound to 10-kDa hyaluronan with an affinity of K(d) = 10(-7) and appeared to specifically mimic RHAMM since it significantly reduced binding of hyaluronan oligosaccharides to recombinant RHAMM but not to recombinant CD44 or TLR2,4, and altered wound repair in wild-type but not RHAMM(-/-) mice. One topical application of P15-1 to full-thickness excisional rat wounds significantly reduced wound macrophage number, fibroblast number, and blood vessel density compared to scrambled, negative control peptides. Wound collagen 1, transforming growth factor β-1, and α-smooth muscle actin were reduced, whereas tenascin C was increased, suggesting that P15-1 promoted a form of scarless healing. Signaling/microarray analyses showed that P15-1 blocks RHAMM-regulated focal adhesion kinase pathways in fibroblasts. These results identify a new class of reagents that attenuate proinflammatory, fibrotic repair by blocking hyaluronan oligosaccharide signaling. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
de Oliveira, Rita F.; Wann, John P.
2011-01-01
In two experiments, we used an automatic car simulator to examine the steering control, speed regulation and response to hazards of young adults with developmental coordination disorder (DCD) and limited driving experience. In Experiment 1 participants either used the accelerator pedal to regulate their speed, or used the brake pedal when they…
Wahedi, Hussain Mustatab; Jeong, Minsun; Chae, Jae Kyoung; Do, Seon Gil; Yoon, Hyeokjun; Kim, Sun Yeou
2017-05-15
Cutaneous wound healing is a complex process involving various regulatory factors at the molecular level. Aloe vera is widely used for cell rejuvenation, wound healing, and skin moisturizing. This study aimed to investigate the effects of aloesin from Aloe vera on cutaneous wound healing and mechanisms involved therein. This study consisted of both in vitro and in vivo experiments involving skin cell lines and mouse model to demonstrate the wound healing effects of aloesin by taking into account several parameters ranging from cultured cell migration to wound healing in mice. The activities of Smad signaling molecules (Smad2 and Smad3), MAPKs (ERK and JNK), and migration-related proteins (Cdc42, Rac1, and α-Pak) were assessed after aloesin treatment in cultured cells (1, 5 and 10µM) and mouse skin (0.1% and 0.5%). We also monitored macrophage recruitment, secretion of cytokines and growth factors, tissue development, and angiogenesis after aloesin treatment using IHC analysis and ELISAs. Aloesin increased cell migration via phosphorylation of Cdc42 and Rac1. Aloesin positively regulated the release of cytokines and growth factors (IL-1β, IL-6, TGF-β1 and TNF-α) from macrophages (RAW264.7) and enhanced angiogenesis in endothelial cells (HUVECs). Aloesin treatment accelerated wound closure rates in hairless mice by inducing angiogenesis, collagen deposition and granulation tissue formation. More importantly, aloesin treatment resulted in the activation of Smad and MAPK signaling proteins that are key players in cell migration, angiogenesis and tissue development. Aloesin ameliorates each phase of the wound healing process including inflammation, proliferation and remodeling through MAPK/Rho and Smad signaling pathways. These findings indicate that aloesin has the therapeutic potential for treating cutaneous wounds. Copyright © 2017 Elsevier GmbH. All rights reserved.
Differential Apoptosis in Mucosal and Dermal Wound Healing
Johnson, Ariel; Francis, Marybeth; DiPietro, Luisa Ann
2014-01-01
Objectives: Dermal and mucosal healing are mechanistically similar. However, scarring and closure rates are dramatically improved in mucosal healing, possibly due to differences in apoptosis. Apoptosis, nature's preprogrammed form of cell death, occurs via two major pathways, extrinsic and intrinsic, which intersect at caspase3 (Casp3) cleavage and activation. The purpose of this experiment was to identify the predominant pathways of apoptosis in mucosal and dermal wound healing. Approach: Wounds (1 mm biopsy punch) were made in the dorsal skin (n=3) or tongue (n=3) of female Balb/C mice aged 6 weeks. Wounds were harvested at 6 h, 24 h, day 3 (D3), D5, D7, and D10. RNA was isolated and analyzed using real time reverse transcriptase–polymerase chain reaction. Expression levels for genes in the intrinsic and extrinsic apoptotic pathways were compared in dermal and mucosal wounds. Results: Compared to mucosal healing, dermal wounds exhibited significantly higher expression of Casp3 (at D5; p<0.05), Casp7 (at D5; p<0.05), Trp53 (at 24 h and D5; p<0.05), Tnfrsf1b (at 24 h; p<0.05), FasR (at 24 h, D5, and D7; p<0.05), and Casp8 (at 24 h; p<0.05) and significantly lower gene expression of Tradd (at 24 h; p<0.05). Innovation: Our observations indicate differential execution of apoptosis in oral wound healing compared to skin. Conclusion: Expression patterns of key regulators of apoptosis in wound healing indicate that apoptosis occurs predominantly through the intrinsic pathway in the healing mucosa, but predominantly through the extrinsic pathway in the healing skin. The identification of differences in the apoptotic pathways in skin and mucosal wounds may allow the development of therapeutics to improve skin healing. PMID:25493209
Genetics Home Reference: osteoglophonic dysplasia
... as cell division, regulation of cell growth and maturation, formation of blood vessels, wound healing, and embryonic development. In particular, they play a major role in skeletal development. The FGFR1 protein spans the cell membrane, ...
Unfolded protein response regulation in keloid cells.
Butler, Paris D; Wang, Zhen; Ly, Daphne P; Longaker, Michael T; Koong, Albert C; Yang, George P
2011-05-01
Keloids are a common form of pathologic wound healing characterized by excessive production of extracellular matrix. The unfolded protein response (UPR) is a cellular response to hypoxia, a component of the wound microenvironment, capable of protecting cells from the effects of over-accumulation of misfolded proteins. Since keloids have hypersecretion of extracellular matrix, we hypothesized that keloid fibroblasts (KFs) may have enhanced activation of the UPR compared with normal fibroblasts (NFs). KFs and NFs were placed in a hypoxia chamber for 0, 24, and 48h. We also used tunicamycin to specifically up-regulate the UPR. UPR activation was assayed by PCR for xbp-1 splicing and by immunoblotting with specific antibodies for the three UPR transducers. Nuclear localization of XBP-1 protein in KFs was confirmed by immunofluorescence. There is increased activation of XBP-1 protein in KFs compared with NFs following exposure to hypoxia. Pancreatic ER kinase (PERK) and ATF-6, two other pathways activated by the UPR, show comparable activation between KFs and NFs. We confirmed that there is enhanced activation of XBP-1 by demonstrating increased nuclear localization of XBP-1 using immunofluorescence. In contrast to our initial hypothesis that keloids would have broad activation of the UPR, we demonstrate here that there is a specific up-regulation of one facet of the UPR response. This may represent a specific molecular defect in KFs compared with NFs, and also suggests modulation of the UPR can be used in wound healing therapy. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinitt, C.A.M.; Wood, J.; Lee, S.S.
2010-08-01
Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF)more » in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.« less
Identification of sirtuin 1 as a promising therapeutic target for hypertrophic scars
Bai, Xiao‐Zhi; Liu, Jia‐Qi; Yang, Long‐Long; Fan, Lei; He, Ting; Su, Lin‐Lin; Shi, Ji‐Hong; Tang, Chao‐Wu
2016-01-01
Background and Purpose Sirtuin1 (SIRT1), the founding member of mammalian class III histone deacetylases, is reported to be a drug target involved in fibrotic diseases. However, whether it is an effective drug target in hypertrophic scar treatment is still not known. Experimental Approach In the present study, we observed that SIRT1 localized to both the epidermis and the dermis of skin tissues by immunohistochemistry. After knock‐down of SIRT1 by shRNA or up‐regulating SIRT1 by resveratrol, the expression of α‐SMA, Col1 and Col3 in fibroblasts were detected by western blots. A mouse excision wound healing model was used to observe the changes in collagen fibre associated with the different expression levels of SIRT1. Key Results SIRT1 expression was inhibited in hypertrophic scar tissue. The down‐regulation of SIRT1 resulted in an increased expression of α‐SMA, Col1 and Col3 in hypertrophic scar‐derived fibroblasts. In contrast, the up‐regulation of SIRT1 not only inhibited the expression of α‐SMA, Col1 and Col3 in hypertrophic scar‐derived fibroblasts but also blocked the activation of TGFβ1‐induced normal skin‐derived fibroblasts. In the mouse model of wound healing, the deletion of SIRT1 resulted in denser collagen fibres and a more disordered structure, whereas resveratrol treatment led to a more organized and thinner collagen fibre, which was similar to that observed during normal wound healing. Conclusions and Implications The results revealed that SIRT1 negatively regulates TGFβ1‐induced fibroblast activation and inhibits excessive scar formation and is, therefore, a promising drug target for hypertrophic scar formation. PMID:26891034
Macrophages - sensors and effectors coordinating skin damage and repair.
Willenborg, Sebastian; Eming, Sabine A
2014-03-01
Restoration of skin integrity and homeostasis following injury is a vital process. Wound healing disorders, including chronic skin ulcers and pathological scarring, are of major clinical impact. The current therapeutic approaches are often not sufficient. The development of novel efficient therapies requires a thorough understanding of the underlying molecular mechanisms. A cardinal feature of non-healing skin ulcers and excessive scarring is a prolonged inflammatory response at the wound site, which aborts the healing response. Modulation of the local immune response may be an effective therapeutic strategy to correct impaired healing conditions. Yet, the specific mechanisms of inflammation, particularly the role of the diverse leukocyte lineages attracted to the site of tissue damage, have not been resolved. Recent findings in diverse experimental model systems and clinical studies have refined the understanding of monocyte/macrophage biology and the role of cells of the monocytic lineage in tissue regeneration. Thus, monocytes/macrophages are emerging as novel and interesting therapeutic targets to interfere in wound healing pathologies. In this article we will review the role of monocytes/macrophages in skin repair in the light of the recent literature and findings from our own group. This article will provide a rationale for monocyte/macrophage-based therapies to facilitate the healing response. © 2014 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.
Simulation of heart infarction by laser microbeams and induction of arrhythmias by optical tweezers
NASA Astrophysics Data System (ADS)
Perner, Birgit; Monajembashi, Shamci; Rapp, Alexander; Wollweber, Leo; Greulich, Karl Otto
2004-10-01
Laser microbeam and optical tweezers were used for micromanipulation of a heart tissue model consisting of embryonic chicken cardiomyocytes and bibroblasts. Using the laser microbeam a would was created, i.e. a sort of artificial heart infarction was generated. The first steps of wound repair were observed by live cell imaging. A complete filling of teh would primarily by migrating fibroblasts but not by cardiomyocytes was detected 18 hours after wounding. In another set of experiments erythrocyte mediated force application (EMFA) by optical tweezers was applied for optomechanical manipulatoin of cardiomyocytes and fibroblasts. Here we demonstrate induction of dramatic distrubances of calcium waves in a group of synchronously beating cardiomyocytes by an optomechanical input that results in cellular deformation. Surprisingly, it was found that putatively non-excitable fibroblasts respond to this mechanical stress with calcium oscillations. The results reported here indicate that the induction of artificial heart infarction can provide insights into healing processes after mycardial injury. EMFA is capable to examine effects of myocardial overload and to provide important information about processes triggered by mechanical stress on the level of single or very few cells. As a perspective, the preseneted techniques may be used to study the influence of drugs on wound healing and coordination of beating in the heart.
Stressor states and the cation crossroads.
Weber, Karl T; Bhattacharya, Syamal K; Newman, Kevin P; Soberman, Judith E; Ramanathan, Kodangudi B; McGee, Jesse E; Malik, Kafait U; Hickerson, William L
2010-12-01
Neurohormonal activation involving the hypothalamic-pituitary-adrenal axis and adrenergic nervous and renin-angiotensin-aldosterone systems is integral to stressor state-mediated homeostatic responses. The levels of effector hormones, depending upon the degree of stress, orchestrate the concordant appearance of hypokalemia, ionized hypocalcemia and hypomagnesemia, hypozincemia, and hyposelenemia. Seemingly contradictory to homeostatic responses wherein the constancy of extracellular fluid would be preserved, upregulation of cognate-binding proteins promotes coordinated translocation of cations to injured tissues, where they participate in wound healing. Associated catecholamine-mediated intracellular cation shifts regulate the equilibrium between pro-oxidants and antioxidant defenses, a critical determinant of cell survival. These acute and chronic stressor-induced iterations in extracellular and intracellular cations are collectively referred to as the cation crossroads. Intracellular cation shifts, particularly excessive accumulation of Ca2+, converge on mitochondria to induce oxidative stress and raise the opening potential of their inner membrane permeability transition pores (mPTPs). The ensuing loss of cationic homeostasis and adenosine triphosphate (ATP) production, together with osmotic swelling, leads to organellar degeneration and cellular necrosis. The overall impact of iterations in extracellular and intracellular cations and their influence on cardiac redox state, cardiomyocyte survival, and myocardial structure and function are addressed herein.