Science.gov

Sample records for coordination sphere ligands

  1. The secondary coordination sphere and axial ligand effects on oxygen reduction reaction by iron porphyrins: a DFT computational study.

    PubMed

    Ohta, Takehiro; Nagaraju, Perumandla; Liu, Jin-Gang; Ogura, Takashi; Naruta, Yoshinori

    2016-09-01

    Oxygen reduction reaction (ORR) catalyzed by a bio-inspired iron porphyrin bearing a hanging carboxylic acid group over the porphyrin ring, and a tethered axial imidazole ligand was studied by DFT calculations. BP86 free energy calculations of the redox potentials and pK a's of reaction components involved in the proton coupled electron transfer (PCET) reactions of the ferric-hydroxo and -superoxo complexes were performed based on Born-Haber thermodynamic cycle in conjunction with a continuum solvation model. The comparison was made with iron porphyrins that lack either in the hanging acid group or axial ligand, suggesting that H-bond interaction between the carboxylic acid and iron-bound hydroxo, aquo, superoxo, and peroxo ligands (de)stabilizes the Fe-O bonding, resulting in the increase in the reduction potential of the ferric complexes. The axial ligand interaction with the imidazole raises the affinity of the iron-bound superoxo and peroxo ligands for proton. In addition, a low-spin end-on ferric-hydroperoxo intermediate, a key precursor for O-O cleavage, can be stabilized in the presence of axial ligation. Thus, selective and efficient ORR of iron porphyrin can be achieved with the aid of the secondary coordination sphere and axial ligand interactions.

  2. The outer-coordination sphere: incorporating amino acids and peptides as ligands for homogeneous catalysts to mimic enzyme function

    SciTech Connect

    Shaw, Wendy J.

    2012-10-09

    Great progress has been achieved in the field of homogeneous transition metal-based catalysis, however, as a general rule these solution based catalysts are still easily outperformed, both in terms of rates and selectivity, by their analogous enzyme counterparts, including structural mimics of the active site. This observation suggests that the features of the enzyme beyond the active site, i.e. the outer-coordination sphere, are important for their exceptional function. Directly mimicking the outer-coordination sphere requires the incorporation of amino acids and peptides as ligands for homogeneous catalysts. This effort has been attempted for many homogeneous catalysts which span the manifold of catalytic reactions and often require careful thought regarding solvent type, pH and characterization to avoid unwanted side reactions or catalyst decomposition. This article reviews the current capability of synthesizing and characterizing this often difficult category of metal-based catalysts. This work was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  3. Ligand-sensitive but not ligand-diagnostic: evaluating Cr valence-to-core X-ray emission spectroscopy as a probe of inner-sphere coordination.

    PubMed

    MacMillan, Samantha N; Walroth, Richard C; Perry, Demetra M; Morsing, Thorbjørn J; Lancaster, Kyle M

    2015-01-05

    This paper explores the strengths and limitations of valence-to-core X-ray emission spectroscopy (V2C XES) as a probe of coordination environments. A library was assembled from spectra obtained for 12 diverse Cr complexes and used to calibrate density functional theory (DFT) calculations of V2C XES band energies. A functional dependence study was undertaken to benchmark predictive accuracy. All 7 functionals tested reproduce experimental V2C XES energies with an accuracy of 0.5 eV. Experimentally calibrated, DFT calculated V2C XES spectra of 90 Cr compounds were used to produce a quantitative spectrochemical series showing the V2C XES band energy ranges for ligands comprising 18 distinct classes. Substantial overlaps are detected in these ranges, which complicates the use of V2C XES to identify ligands in the coordination spheres of unknown Cr compounds. The ligand-dependent origins of V2C intensity are explored for a homologous series of [Cr(III)(NH3)5X](2+) (X = F, Cl, Br, and I) to rationalize the variable intensity contributions of these ligand classes.

  4. Zinc coordination spheres in protein structures.

    PubMed

    Laitaoja, Mikko; Valjakka, Jarkko; Jänis, Janne

    2013-10-07

    Zinc metalloproteins are one of the most abundant and structurally diverse proteins in nature. In these proteins, the Zn(II) ion possesses a multifunctional role as it stabilizes the fold of small zinc fingers, catalyzes essential reactions in enzymes of all six classes, or assists in the formation of biological oligomers. Previously, a number of database surveys have been conducted on zinc proteins to gain broader insights into their rich coordination chemistry. However, many of these surveys suffer from severe flaws and misinterpretations or are otherwise limited. To provide a more comprehensive, up-to-date picture on zinc coordination environments in proteins, zinc containing protein structures deposited in the Protein Data Bank (PDB) were analyzed in detail. A statistical analysis in terms of zinc coordinating amino acids, metal-to-ligand bond lengths, coordination number, and structural classification was performed, revealing coordination spheres from classical tetrahedral cysteine/histidine binding sites to more complex binuclear sites with carboxylated lysine residues. According to the results, coordination spheres of hundreds of crystal structures in the PDB could be misinterpreted due to symmetry-related molecules or missing electron densities for ligands. The analysis also revealed increasing average metal-to-ligand bond length as a function of crystallographic resolution, which should be taken into account when interrogating metal ion binding sites. Moreover, one-third of the zinc ions present in crystal structures are artifacts, merely aiding crystal formation and packing with no biological significance. Our analysis provides solid evidence that a minimal stable zinc coordination sphere is made up by four ligands and adopts a tetrahedral coordination geometry.

  5. Cobalt(II) chloride complexes with 1,1'-dimethyl-4,4'-bipyrazole featuring first- and second-sphere coordination of the ligand.

    PubMed

    Domasevitch, Konstantin V

    2014-03-01

    In catena-poly[[dichloridocobalt(II)]-μ-(1,1'-dimethyl-4,4'-bipyrazole-κ(2)N(2):N(2'))], [CoCl2(C8H10N4)]n, (1), two independent bipyrazole ligands (Me2bpz) are situated across centres of inversion and in tetraaquabis(1,1'-dimethyl-4,4'-bipyrazole-κN(2))cobalt(II) dichloride-1,1'-dimethyl-4,4'-bipyrazole-water (1/2/2), [Co(C8H10N4)2(H2O)4]Cl2·2C8H10N4·2H2O, (2), the Co(2+) cation lies on an inversion centre and two noncoordinated Me2bpz molecules are also situated across centres of inversion. The compounds are the first complexes involving N,N'-disubstituted 4,4'-bipyrazole tectons. They reveal a relatively poor coordination ability of the ligand, resulting in a Co-pyrazole coordination ratio of only 1:2. Compound (1) adopts a zigzag chain structure with bitopic Me2bpz links between tetrahedral Co(II) ions. Interchain interactions occur by means of very weak C-H...Cl hydrogen bonding. Complex (2) comprises discrete octahedral trans-[Co(Me2bpz)2(H2O)4](2+) cations formed by monodentate Me2bpz ligands. Two equivalents of additional noncoordinated Me2bpz tectons are important as `second-sphere ligands' connecting the cations by means of relatively strong O-H...N hydrogen bonding with generation of doubly interpenetrated pcu (α-Po) frameworks. Noncoordinated chloride anions and solvent water molecules afford hydrogen-bonded [(Cl(-))2(H2O)2] rhombs, which establish topological links between the above frameworks, producing a rare eight-coordinated uninodal net of {4(24).5.6(3)} (ilc) topology.

  6. Lanthanide tris(β-diketonates) as useful probes for chirality determination of biological amino alcohols in vibrational circular dichroism: ligand to ligand chirality transfer in lanthanide coordination sphere.

    PubMed

    Miyake, Hiroyuki; Terada, Keiko; Tsukube, Hiroshi

    2014-06-01

    A series of lanthanide tris(β-diketonates) functioned as useful chirality probes in the vibrational circular dichroism (VCD) characterization of biological amino alcohols. Various chiral amino alcohols induced intense VCD signals upon ternary complexation with racemic lanthanide tris(β-diketonates). The VCD signals observed around 1500 cm(-1) (β-diketonate IR absorption region) correlated well with the stereochemistry and enantiomeric purity of the targeted amino alcohol, while the corresponding monoalcohol, monoamine, and diol substrates induced very weak VCD signals. The high-coordination number and dynamic property of the lanthanide complex offer an effective chirality VCD probing of biological substrates.

  7. Inner- and outer-sphere metal coordination in blue copper proteins.

    PubMed

    Warren, Jeffrey J; Lancaster, Kyle M; Richards, John H; Gray, Harry B

    2012-10-01

    Blue copper proteins (BCPs) comprise classic cases of Nature's profound control over the electronic structures and chemical reactivity of transition metal ions. Early studies of BCPs focused on their inner coordination spheres, that is, residues that directly coordinate Cu. Equally important are the electronic and geometric perturbations to these ligands provided by the outer coordination sphere. In this tribute to Hans Freeman, we review investigations that have advanced the understanding of how inner-sphere and outer-sphere coordination affects biological Cu properties.

  8. Imidazol-2-ylidene-N'-phenylureate ligands in alkali and alkaline earth metal coordination spheres--heterocubane core to polymeric structural motif formation.

    PubMed

    Naktode, Kishor; Bhattacharjee, Jayeeta; Nayek, Hari Pada; Panda, Tarun K

    2015-04-28

    The synthesis and isolation of two potassium, one lithium and two calcium complexes of imidazol-2-ylidene-N'-phenylureate ligands [Im(R)NCON(H)Ph] [(R = tBu (1a); Mes (1b) and Dipp (1c); Mes = mesityl, Dipp = 2,6-diisopropylphenyl] are described. Potassium complexes, [{κ(2)-(Im(Mes)NCONPh)K}4] (2b) and [{κ(3)-(Im(Dipp)NCONPh)K}2{KN(SiMe3)2}2]n (2c), were prepared in good yields by the reactions of 1b and 1c, respectively, with potassium bis(trimethyl)silyl amide at ambient temperature in toluene. Lithium complex [{(2,6-tBu2-4-Me-C6H2O)Li(Im(tBu)NCON(H)Ph)}2{Im(tBu)NCON(H)Ph}] (3a) was isolated by a one-pot reaction between 1a and LiCH2SiMe3, followed by the addition of 2,6-tBu2-4-Me-C6H2OH in toluene. Calcium complex [{κ(2)-(Im(tBu)NCONPh)Ca{N(SiMe3)2}-{KN(SiMe3)2}]n (4a) was isolated by the one-pot reaction of 1a with [KN(SiMe3)2] and calcium diiodide in THF at ambient temperature. The solid-state structures of ligand 1a and complexes 2b, 2c, 3a and 4a were confirmed by single-crystal X-ray diffraction analysis. It was observed that potassium was coordinated to the oxygen atom of urea group and to the nitrogen atom of the imidazolin-2-imine group, in the solid-state structure of 2b. In complex 4a, the calcium ion was ligated to the monoanionic imidazol-2-ylidene-N'-phenylureate ligand in a bi-dentate (κ(2)) fashion through the oxygen and nitrogen atoms of the isocyanate building block leaving the imidazolin-2-imine fragment uncoordinated. In the solid state of the potassium complex 2c, tri-dentate (κ(3)) coordination from the imidazol-2-ylidene-N'-phenylureate ligand was observed through the oxygen and nitrogen atoms of the isocyanate building block and of the imidazolin-2-imine fragment. In contrast, in the dimeric lithium complex 3a, the neutral imidazol-2-ylidene-N'-phenylureate ligand was bound to the lithium centre in a mono-dentate fashion (κ(1)) through an oxygen atom of the isocyanate moiety. It is to be noted that in each complex thus observed, the

  9. Addition Reactions of Me3 SiCN with Aldehydes Catalyzed by Aluminum Complexes Containing in their Coordination Sphere O, S, and N Ligands.

    PubMed

    Yang, Zhi; Yi, Yafei; Zhong, Mingdong; De, Sriman; Mondal, Totan; Koley, Debasis; Ma, Xiaoli; Zhang, Dongxiang; Roesky, Herbert W

    2016-05-10

    The reaction of one equivalent of LAlH2 (1; L=HC(CMeNAr)2 , Ar=2,6-iPr2 C6 H3 , β-diketiminate ligand) with two equivalents of 2-mercapto-4,6-dimethylpyrimidine hydrate resulted in LAl[(μ-S)(m-C4 N2 H)(CH2 )2 ]2 (2) in good yield. Similarly, when N-2-pyridylsalicylideneamine, N-(2,6-diisopropylphenyl)salicylaldimine, and ethyl 3-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxylate were used as starting materials, the corresponding products LAl[(μ-O)(o-C6 H4 )CN(C5 NH4 )]2 (3), LAlH[(μ-O)(o-C4 H4 )CN(2,6-iPr2 C6 H3 )] (4), and LAl[(μ-NH)(o-C8 SH8 )(COOC2 H5 )]2 (5) were isolated. Compounds 2-5 were characterized by (1) H and (13) C NMR spectroscopy as well as by single-crystal X-ray structural analysis. Surprisingly, compounds 2-5 exhibit good catalytic activity in addition reactions of aldehydes with trimethylsilyl cyanide (TMSCN).

  10. Photochemical or thermal chelate exchange in the ruthenium coordination sphere of complexes of the Ru(phen)(2)L family (L = diimine or dinitrile ligands).

    PubMed

    Baranoff, Etienne; Collin, Jean-Paul; Furusho, Junko; Furusho, Yoshio; Laemmel, Anne-Chantal; Sauvage, Jean-Pierre

    2002-03-11

    Complexes of the type Ru(phen)(2)L(2+), where L is a substituted bipyridine family member, have been prepared, and their photochemical substitution reactions have been investigated. In the presence of a bis-benzonitrile derivative, acting as a bidentate chelate, photoexpulsion of L is performed under the action of visible light, with quantitative formation of new complexes of the type Ru(phen)(2)L'(2+) (L' = bis-nitrile ligand). Several complexes have been characterized by X-ray crystallography. In particular, the bis-benzonitrile complexes could be crystallized, and the structure of these compounds, containing a 13-, 14-, or 15-membered metal incorporating ring, was obtained. By heating Ru(phen)(2)L'(2+) with a bipy derivative in refluxing ethylene glycol, quantitative formation of the starting complex [Ru(phen)(2)L(2+)] was carried out. The present series of compounds presents properties that could be profitably used in the design and construction of multicomponent systems acting as photochemically driven molecular machines.

  11. The dynamics of zinc sites in proteins: electronic basis for coordination sphere expansion at structural sites.

    PubMed

    Daniel, A Gerard; Farrell, Nicholas P

    2014-12-01

    The functional role assumed by zinc in proteins is closely tied to the variable dynamics around its coordination sphere arising by virtue of its flexibility in bonding. Modern experimental and computational methods allow the detection and study of previously unknown features of bonding between zinc and its ligands in protein environment. These discoveries are occurring just in time as novel biological functions of zinc, which involve rather unconventional coordination trends, are emerging. In this sense coordination sphere expansion of structural zinc sites, as observed in our previous experiments, is a novel phenomenon. Here we explore the electronic and structural requirements by simulating this phenomenon in structural zinc sites using DFT computations. For this purpose, we have chosen MPW1PW91 and a mixed basis set combination as the DFT method through benchmarking, because it accurately reproduces structural parameters of experimentally characterized zinc compounds. Using appropriate models, we show that the greater ionic character of zinc coordination would allow for coordination sphere expansion if the steric and electrostatic repulsions of the ligands are attenuated properly. Importantly, through the study of electronic and structural aspects of the models used, we arrive at a comprehensive bonding model, explaining the factors that influence coordination of zinc in proteins. The proposed model along with the existing knowledge would enhance our ability to predict zinc binding sites in proteins, which is today of growing importance given the predicted enormity of the zinc proteome.

  12. Synthesis, characterization and electrochemical study of synthesis of a new Schiff base (H₂cddi(t)butsalen) ligand and their two asymmetric Schiff base complexes of Ni(II) and Cu(II) with NN'OS coordination spheres.

    PubMed

    Menati, Saeid; Azadbakht, Azadeh; Taeb, Abbas; Kakanejadifard, Ali; Khavasi, Hamid Reza

    2012-11-01

    A novel Schiff base (H(2)cddi(t)butsalen) ligand was prepared via condensation of Methyl-2-{N-(2'-aminoethane)}-amino-1-cyclopentenedithiocarboxylate(Hcden) and 3,5-di-tert-butyl-2-hydroxybenzaldehyde. The ligand and Ni(II) and Cu(II) complexes were characterized based on elemental analysis, IR, (1)H NMR, (13)C NMR, UV-Vis spectrometry and cyclic voltammetry. The structure of copper{methyl-2-{N-[2-(3,5-di-tert-butyl-2-hydroxyphenyl)methylidynenitrilo]ethyl}amino-1-cyclopentedithiocarboxylate has been determined by X-ray crystallography. The X-ray results confirm that the geometry of the complex is slightly distorted square-planar structure. The copper(II) ion coordinates to two nitrogen atoms from the imine moiety of the ligand, a sulfur atom the methyl dithiocarboxylate moiety and phenolic oxygen atom.

  13. Orbital-like motion of hydride ligands around low-coordinate metal centers.

    PubMed

    Ortuño, Manuel A; Vidossich, Pietro; Conejero, Salvador; Lledós, Agustí

    2014-12-15

    Hydrogen atoms in the coordination sphere of a transition metal are highly mobile ligands. Here, a new type of dynamic process involving hydrides has been characterized by computational means. This dynamic event consists of an orbital-like motion of hydride ligands around low-coordinate metal centers containing N-heterocyclic carbenes. The hydride movement around the carbene-metal-carbene axis is the lowest energy mode connecting energy equivalent isomers. This understanding provides crucial information for the interpretation of NMR spectra.

  14. Pyridinediimine Iron Complexes with Pendant Redox-Inactive Metals Located in the Secondary Coordination Sphere.

    PubMed

    Delgado, Mayra; Ziegler, Joshua M; Seda, Takele; Zakharov, Lev N; Gilbertson, John D

    2016-01-19

    A series of pyridinediimine (PDI) iron complexes that contain a pendant 15-crown-5 located in the secondary coordination sphere were synthesized and characterized. The complex Fe((15c5)PDI)(CO)2 (2) was shown in both the solid state and solution to encapsulate redox-inactive metal ions. Modest shifts in the reduction potential of the metal-ligand scaffold were observed upon encapsulation of either Na(+) or Li(+).

  15. Magnetic circular dichroism studies of the active site heme coordination sphere of exogenous ligand-free ferric cytochrome c peroxidase from yeast: effects of sample history and pH.

    PubMed

    Pond, A E; Sono, M; Elenkova, E A; McRee, D E; Goodin, D B; English, A M; Dawson, J H

    1999-09-30

    Electronic absorption and magnetic circular dichroism (MCD) spectroscopic data at 4 degrees C are reported for exogenous ligand-free ferric forms of cytochrome c peroxidase (CCP) in comparison with two other histidine-ligated heme proteins, horseradish peroxidase (HRP) and myoglobin (Mb). In particular, we have examined the ferric states of yeast wild-type CCP (YCCP), CCP (MKT) which is the form of the enzyme that is expressed in and purified from E. coli, and contains Met-Lys-Thr (MKT) at the N-terminus, CCP (MKT) in the presence of 60% glycerol, lyophilized YCCP, and alkaline CCP (MKT). The present study demonstrates that, while having similar electronic absorption spectra, the MCD spectra of ligand-free ferric YCCP and CCP (MKT) are somewhat varied from one another. Detailed spectral analyses reveal that the ferric form of YCCP, characterized by a long wavelength charge transfer (CT) band at 645 nm, exists in a predominantly penta-coordinate state with spectral features similar to those of native ferric HRP rather than ferric Mb (His/water hexa-coordinate). The electronic absorption spectrum of ferric CCP (MKT) is similar to those of the penta-coordinate states of ferric YCCP and ferric HRP including a CT band at 645 nm. However, its MCD spectrum shows a small trough at 583 nm that is absent in the analogous spectra of YCCP and HRP. Instead, this trough is similar to that seen for ferric myoglobin at about 585 nm, and is attributed (following spectral simulations) to a minor contribution (< or = 5%) in the spectrum of CCP (MKT) from a hexa-coordinate low-spin species in the form of a hydroxide-ligated heme. The MCD data indicate that the lyophilized sample of ferric YCCP (lambda CT = 637 nm) contains considerably increased amounts of hexa-coordinate low-spin species including both His/hydroxide and bis-His species. The crystal structure of a spectroscopically similar sample of CCP (MKT) (lambda CT = 637 nm) solved at 2.0 A resolution is consistent with His

  16. Nitrite reduction by a pyridinediimine complex with a proton-responsive secondary coordination sphere.

    PubMed

    Kwon, Yubin M; Delgado, Mayra; Zakharov, Lev N; Seda, Takele; Gilbertson, John D

    2016-09-21

    The proton-responsive pyridinediimine ligand, (DEA)PDI (where (DEA)PDI = [(2,6-(i)PrC6H3)(N[double bond, length as m-dash]CMe)(N(Et)2C2H4)(N[double bond, length as m-dash]CMe)C5H3N]) was utilized for the reduction of NO2(-) to NO. Nitrite reduction is facilitated by the protonated secondary coordination sphere coupled with the ligand-based redox-active sites of [Fe(H(DEA)PDI)(CO)2](+) and results in the formation of the {Fe(NO)2}(9) DNIC, [Fe((DEA)PDI)(NO)2](+).

  17. Ligand-Driven Coordination Sphere-Induced Engineering of Hybride Materials Constructed from PbCl2 and Bis-Pyridyl Organic Linkers for Single-Component Light-Emitting Phosphors.

    PubMed

    Mahmoudi, Ghodrat; Gurbanov, Atash V; Rodríguez-Hermida, Sabina; Carballo, Rosa; Amini, Mojtaba; Bacchi, Alessia; Mitoraj, Mariusz P; Sagan, Filip; Kukułka, Mercedes; Safin, Damir A

    2017-08-21

    We report design and structural characterization of six new coordination polymers fabricated from PbCl2 and a series of closely related bis-pyridyl ligands L(I) and HL(II)-HL(VI), namely, [Pb2(L(I))Cl4]n, [Pb(HL(II))Cl2]n·nMeOH, [Pb(HL(III))Cl2]n·0.5 nMeOH, [Pb2(L(IV))Cl3]n, [Pb(HL(V))Cl2]n, and [Pb3(L(VI))2Cl4]n·nMeOH. The topology of the obtained networks is dictated by the geometry of the organic ligand. The structure of [Pb2(L(I))Cl4]n is constructed from the [PbCl2]n two-dimensional (2D) sheets, linked through organic linkers into a three-dimensional framework, which exhibits a unique binodal 4,7-connected three-periodic topology named by us as sda1. Topological analysis of the 2D metal-organic sheet in [Pb(HL(II))Cl2]n·nMeOH discloses a binodal 3,4-connected layer topology, regardless of the presence of tetrel bonds. A one-dimensional (1D) coordination polymer [Pb(HL(III))Cl2]n·0.5 nMeOH is considered as a uninodal 2-connected chain. The overall structure of [Pb2(L(IV))Cl3]n is constructed from dimeric tetranuclear [Pb4(μ(3)-L(IV)-κ(6)N:N':N″:μ(3)-O)2(μ(4)-Cl)(μ(2)-Cl)2](3+) cationic blocks linked in a zigzag manner through bridging μ(2)-Cl(-) ligands, yielding a 1D polymeric chain. Topological analysis of this chain reveals a unique pentanodal 3,4,4,5,6-connected chain topology named by us as sda2. The structure of [Pb(HL(V))Cl2]n exhibits a 1D zigzaglike polymeric chain. Two chains are further linked into a 1D gridlike ribbon through the dimeric [Pb2(μ(2)-Cl)2Cl2] blocks as bridging nodes. With the bulkiest ligand HL(VI), a 2D layered coordination polymer [Pb3(L(VI))2Cl4]n·nMeOH is formed, which network, considering all tetrel bonds, reveals a unique heptanodal 3,3,3,3,4,5,5-connected layer topology named by us as sda3. Compounds [Pb2(L(I))Cl4]n, [Pb2(L(IV))Cl3]n, and [Pb(HL(V))Cl2]n were found to be emissive in the solid state at ambient temperature. While blue emission of [Pb2(L(I))Cl4]n is due to the ligand-centered transitions, bluish

  18. The Role of the Secondary Coordination Sphere in Metal-Mediated Dioxygen Activation

    PubMed Central

    Shook, Ryan L.

    2012-01-01

    Alfred Werner proposed nearly 100 years ago that the secondary coordination sphere has a role in determining physical properties of transition metal complexes. We now know that the secondary coordination sphere impacts nearly all aspects of transition metal chemistry, including the reactivity and selectivity in metal-mediated processes. These features are highlighted in the binding and activation of dioxygen by transition metal complexes. There are clear connections between the control of the secondary coordination sphere and the ability of metal complexes to 1) reversibly bind dioxygen or 2) bind and activate dioxygen to form highly reactive M–oxo complexes. In this forum article, several biological and synthetic examples are presented and discussed in terms of structure-function relationships. Particular emphasis is given to systems with defined non-covalent interactions, such as intramolecular hydrogen bonds involving dioxygen-derived ligands. To further illustrate these effects, the homolytic cleavage of C–H bonds by M–oxo complexes with basic oxo ligands is described. PMID:20380466

  19. Ligand directed self-assembly vs. metal ion coordination algorithm-when does the ligand or the metal take control?

    PubMed

    Shuvaev, Konstantin V; Abedin, Tareque S M; McClary, Corey A; Dawe, Louise N; Collins, Julie L; Thompson, Laurence K

    2009-04-28

    Polyfunctional hydrazone ligands with multidentate terminal donor groups offer metal ions many donor choices, and the coordination outcome depends mainly on the identity of the metal ion. Co(ii) and Ni(ii) prefer to adopt largely undistorted, six-coordinate geometries, while Cu(ii) can easily adapt to a variety of coordination situations (e.g. CN 4-6), and will optimize its coordination number and stereochemistry based on all the available donors. Ni(ii) and Co(ii) form simple [2 x 2] [M(4)-(micro(2)-O)(4)] square grids with such ditopic hydrazone ligands, and ignore other coordination options, while Cu(ii) tries to bind to all the available donors, and forms extended and 2D structures based on linked Cu(ii) triads rather than grids. Ni(ii) is also reluctant to compromise its desire to maximize its crystal field stabilization energy (CFSE) by binding to 'weak' ligands, and with a tetratopic pyrazole bis-hydrazone ligand it ignores the oxygen donors in favour of nitrogen, forming a novel trinuclear, triangular cluster. Also, reaction of a linear Ni(ii)(3) complex of a tetratopic pyridazine bis-hydrazone ligand with NiN(6) coordination spheres with Cu(ii), leads exclusively to a square Cu(12) grid based complex, and complete displacement of nickel. Structural and magnetic properties are highlighted, and metal-ligand interactions are discussed in detail.

  20. Investigating silver coordination to mixed chalcogen ligands.

    PubMed

    Knight, Fergus R; Randall, Rebecca A M; Wakefield, Lucy; Slawin, Alexandra M Z; Woollins, J Derek

    2012-11-08

    Six silver(I) coordination complexes have been prepared and structurally characterised. Mixed chalcogen-donor acenaphthene ligands L1-L3 [Acenap(EPh)(E'Ph)] (Acenap = acenaphthene-5,6-diyl; E/E' = S, Se, Te) were independently treated with silver(I) salts (AgBF₄/AgOTf). In order to keep the number of variables to a minimum, all reactions were carried out using a 1:1 ratio of Ag/L and run in dichloromethane. The nature of the donor atoms, the coordinating ability of the respective counter-anion and the type of solvent used in recrystallisation, all affect the structural architecture of the final silver(I) complex, generating monomeric, silver(I) complexes {[AgBF₄(L)₂] (1 L = L1; 2 L = L2; 3 L = L3), [AgOTf(L)₃] (4 L = L1; 5 L = L3), [AgBF₄(L)₃] (2a L = L1; 3a L = L3)} and a 1D polymeric chain {[AgOTf(L3)](n) 6}. The organic acenaphthene ligands L1-L3 adopt a number of ligation modes (bis-monodentate μ₂-η²-bridging, quasi-chelating combining monodentate and η⁶-E(phenyl)-Ag(I) and classical monodentate coordination) with the central silver atom at the centre of a tetrahedral or trigonal planar coordination geometry in each case. The importance of weak interactions in the formation of metal-organic structures is also highlighted by the number of short non-covalent contacts present within each complex.

  1. Incorporating Peptides in the Outer Coordination Sphere of Bio-inspired Electrocatalysts for Hydrogen Production

    SciTech Connect

    Jain, Avijita; Lense, Sheri; Linehan, John C.; Raugei, Simone; Cho, Herman M.; DuBois, Daniel L.; Shaw, Wendy J.

    2011-04-01

    Four new cyclic 1,5-diaza-3,7-diphosphacyclooctane ligands have been prepared and used to synthesize [Ni(PPh2NR2)2]2+ complexes in which R is a mono- or dipeptide. These complexes represent a first step in developing an outer coordination sphere for this class of complexes that can mimic the outer coordination sphere of the active sites of hydrogenase enzymes. Importantly, these complexes retain the electrocatalytic activity of the parent [Ni(PPh2NPh2)2]2+ complex in acetonitrile solution with turnover frequencies (TOF) for hydrogen production ranging from 14 to 25 s-1 in the presence of p-cyanoanilinium trifluoromethanesulphonic acid and 135-1000 s-1 in the presence of triflic acid salt of protonated dimethylformamide, with moderately low overpotentials, ~0.3 V. The addition of small amounts of water result in rate increases of 5-7 times. Unlike the parent complex, these complexes demonstrate dynamic structural transformations in solution whereby the dipeptide tail interacts with the nickel center. These results establish a building block from which larger peptide scaffolding can be added to allow the [Ni(PR2NR’2)2]2+ molecular catalytic core to begin to mimic the multifunctional outer coordination sphere of enzymes. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. Deciphering metal ion preference and primary coordination sphere robustness of a designed zinc finger with high-resolution mass spectrometry.

    PubMed

    Laitaoja, Mikko; Isoniemi, Sari; Valjakka, Jarkko; Mándity, István M; Jänis, Janne

    2017-02-01

    Small zinc finger (ZnF) motifs are promising molecular scaffolds for protein design owing to their structural robustness and versatility. Moreover, their characterization provides important insights into protein folding in general. ZnF motifs usually possess an exceptional specificity and high affinity towards Zn(II) ion to drive folding. While the Zn(II) ion is canonically coordinated by two cysteine and two histidine residues, many other coordination spheres also exist in small ZnFs, all having four amino acid ligands. Here we used high-resolution mass spectrometry to study metal ion binding specificity and primary coordination sphere robustness of a designed zinc finger, named MM1. Based on the results, MM1 possesses high specificity for zinc with sub-micromolar binding affinity. Surprisingly, MM1 retains metal ion binding affinity even in the presence of selective alanine mutations of the primary zinc coordinating amino acid residues. © 2016 The Protein Society.

  3. Custom Coordination Environments for Lanthanoids: Tripodal Ligands Achieve Near-Perfect Octahedral Coordination for Two Dysprosium-Based Molecular Nanomagnets.

    PubMed

    Lim, Kwang Soo; Baldoví, José J; Jiang, ShangDa; Koo, Bong Ho; Kang, Dong Won; Lee, Woo Ram; Koh, Eui Kwan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Slota, Michael; Bogani, Lapo; Hong, Chang Seop

    2017-05-01

    Controlling the coordination sphere of lanthanoid complexes is a challenging critical step toward controlling their relaxation properties. Here we present the synthesis of hexacoordinated dysprosium single-molecule magnets, where tripodal ligands achieve a near-perfect octahedral coordination. We perform a complete experimental and theoretical investigation of their magnetic properties, including a full single-crystal magnetic anisotropy analysis. The combination of electrostatic and crystal-field computational tools (SIMPRE and CONDON codes) allows us to explain the static behavior of these systems in detail.

  4. The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain.

    PubMed

    D'Abrosca, Gianluca; Russo, Luigi; Palmieri, Maddalena; Baglivo, Ilaria; Netti, Fortuna; de Paola, Ivan; Zaccaro, Laura; Farina, Biancamaria; Iacovino, Rosa; Pedone, Paolo Vincenzo; Isernia, Carla; Fattorusso, Roberto; Malgieri, Gaetano

    2016-08-01

    The possibility of choices of protein ligands and coordination geometries leads to diverse Zn(II) binding sites in zinc-proteins, allowing a range of important biological roles. The prokaryotic Cys2His2 zinc finger domain (originally found in the Ros protein from Agrobacterium tumefaciens) tetrahedrally coordinates zinc through two cysteine and two histidine residues and it does not adopt a correct fold in the absence of the metal ion. Ros is the first structurally characterized member of a family of bacterial proteins that presents several amino acid changes in the positions occupied in Ros by the zinc coordinating residues. In particular, the second position is very often occupied by an aspartic acid although the coordination of structural zinc by an aspartate in eukaryotic zinc fingers is very unusual. Here, by appropriately mutating the protein Ros, we characterize the aspartate role within the coordination sphere of this family of proteins demonstrating how the presence of this residue only slightly perturbs the functional structure of the prokaryotic zinc finger domain while it greatly influences its thermodynamic properties.

  5. Highly Axial Magnetic Anisotropy in a N3 O5 Dysprosium(III) Coordination Environment Generated by a Merocyanine Ligand.

    PubMed

    Selvanathan, Pramila; Huang, Gang; Guizouarn, Thierry; Roisnel, Thierry; Fernandez-Garcia, Guglielmo; Totti, Federico; Le Guennic, Boris; Calvez, Guillaume; Bernot, Kévin; Norel, Lucie; Rigaut, Stéphane

    2016-10-17

    A spiropyran-based switchable ligand isomerizes upon reaction with lanthanide(III) precursors to generate complexes with an unusual N3 O5 coordination sphere. The air-stable dysprosium(III) complex shows a hysteresis loop at 2 K and a very strong axial magnetic anisotropy generated by the merocyanine phenolate donor.

  6. Plutonium(IV) complexation by diglycolamide ligands--coordination chemistry insight into TODGA-based actinide separations.

    PubMed

    Reilly, Sean D; Gaunt, Andrew J; Scott, Brian L; Modolo, Giuseppe; Iqbal, Mudassir; Verboom, Willem; Sarsfield, Mark J

    2012-10-09

    Complexation of Pu(IV) with TMDGA, TEDGA, and TODGA diglycolamide ligands was followed by vis-NIR spectroscopy. A crystal structure determination reveals that TMDGA forms a 1 : 3 homoleptic Pu(IV) complex with the nitrate anions forced into the outer coordination sphere.

  7. Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere

    SciTech Connect

    Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.; O'Hagan, Molly J.; Ginovska-Pangovska, Bojana; Linehan, John C.; Shaw, Wendy J.

    2012-10-05

    The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introduce enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.

  8. Theoretical study of the Pb(II)-catechol system in dilute aqueous solution: Complex structure and metal coordination sphere determination

    NASA Astrophysics Data System (ADS)

    Lapouge, Christine; Cornard, Jean-Paul

    2010-04-01

    We investigated the unknown interaction of Pb(II) with catechol ligand in diluted aqueous solution by electronic spectroscopies combined with quantum chemical calculations. The aim of this work is the determination of the complete structure of the complex formed and particularly the metal coordination sphere. Three successive steps have been necessary to reach this goal: (i) the comparison of the experimental electronic absorption spectrum with theoretical spectra calculated from various hypothetical structures, (ii) complexation reaction pathways calculations in vacuum and with taking into account the solvent effects and finally (iii) the fluorescence emission wavelength calculations. All these investigations led to identify a monodentate complex with the monodeprotonated ligand, in which the Pb atom presents a coordination number of five. The formula of the complex is [Pb(Hcat)(HO)4]mono+.

  9. Impact of the equatorial coordination sphere on the rate of reduction, lipophilicity and cytotoxic activity of platinum(IV) complexes.

    PubMed

    Höfer, Doris; Varbanov, Hristo P; Hejl, Michaela; Jakupec, Michael A; Roller, Alexander; Galanski, Markus; Keppler, Bernhard K

    2017-09-01

    The impact of the equatorial coordination sphere on the reduction behavior (i.e. rate of reduction) of platinum(IV) complexes with axial carboxylato ligands was studied. Moreover, the influence of equatorial ligands on the stability, lipophilicity and cytotoxicity of platinum(IV) compounds was evaluated. For this purpose, a series of platinum(IV) complexes featuring axial carboxylato ligands (succinic acid monoesters) was synthesized; anionic carboxylato (OAc(-), oxalate) and halido (Cl(-), Br(-), I(-)) ligands served as leaving groups and am(m)ine carrier ligands were provided by monodentately (isopropylamine, ammine+cyclohexaneamine) or bidentately (ethane-1,2-diamine) coordinating am(m)ines. All platinum(IV) products were fully characterized based on elemental analysis, high resolution mass spectrometry and multinuclear ((1)H, (13)C, (15)N, (195)Pt) NMR spectroscopy as well as by X-ray diffraction in some cases. The rate of reduction in the presence of ascorbic acid was determined by NMR spectroscopy and the lipophilicity of the complexes was investigated by analytical reversed phase HPLC measurements. Cytotoxic properties were studied by means of a colorimetric microculture assay in three human cancer cell lines derived from cisplatin sensitive ovarian teratocarcinoma (CH1/PA-1) as well as cisplatin insensitive colon carcinoma (SW480) and non-small cell lung cancer (A549). Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Second sphere control of spin state: Differential tuning of axial ligand bonds in ferric porphyrin complexes by hydrogen bonding.

    PubMed

    Mittra, Kaustuv; Sengupta, Kushal; Singha, Asmita; Bandyopadhyay, Sabyasachi; Chatterjee, Sudipta; Rana, Atanu; Samanta, Subhra; Dey, Abhishek

    2016-02-01

    An iron porphyrin with a pre-organized hydrogen bonding (H-Bonding) distal architecture is utilized to avoid the inherent loss of entropy associated with H-Bonding from solvent (water) and mimic the behavior of metallo-enzyme active sites attributed to H-Bonding interactions of active site with the 2nd sphere residues. Resonance Raman (rR) data on these iron porphyrin complexes indicate that H-Bonding to an axial ligand like hydroxide can result in both stronger or weaker Fe(III)-OH bond relative to iron porphyrin complexes. The 6-coordinate (6C) complexes bearing water derived axial ligands, trans to imidazole or thiolate axial ligand with H-Bonding stabilize a low spin (LS) ground state (GS) when a complex without H-Bonding stabilizes a high spin (HS) ground state. DFT calculations reproduce the trend in the experimental data and provide a mechanism of how H-Bonding can indeed lead to stronger metal ligand bonds when the axial ligand donates an H-Bond and lead to weaker metal ligand bonds when the axial ligand accepts an H-Bond. The experimental and computational results explain how a weak Fe(III)-OH bond (due to H-Bonding) can lead to the stabilization of low spin ground state in synthetic mimics and in enzymes containing iron porphyrin active sites. H-Bonding to a water ligand bound to a reduced ferrous active site can only strengthen the Fe(II)-OH2 bond and thus exclusion of water and hydrophilic residues from distal sites of O2 binding/activating heme proteins is necessary to avoid inhibition of O2 binding by water. These results help demonstrate the predominant role played by H-Bonding and subtle changes in its orientation in determining the geometric and electronic structure of iron porphyrin based active sites in nature. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Second sphere ligand modifications enable a recyclable catalyst for oxidant-free alcohol oxidation to carboxylates.

    PubMed

    Dahl, Eric W; Louis-Goff, Thomas; Szymczak, Nathaniel K

    2017-02-14

    Modification of the classic terpyridine pincer ligand with pendent NHR (R = mesityl) groups provides enhanced activity and stability in Ru-catalyzed dehydrogenation catalysis. These second sphere modifications furnish highly active catalysts for the oxidant-free dehydrogenative oxidation of primary alcohols to carboxylates and facilitate catalyst recycling.

  12. Integrated calibration sphere and calibration step fixture for improved coordinate measurement machine calibration

    DOEpatents

    Clifford, Harry J [Los Alamos, NM

    2011-03-22

    A method and apparatus for mounting a calibration sphere to a calibration fixture for Coordinate Measurement Machine (CMM) calibration and qualification is described, decreasing the time required for such qualification, thus allowing the CMM to be used more productively. A number of embodiments are disclosed that allow for new and retrofit manufacture to perform as integrated calibration sphere and calibration fixture devices. This invention renders unnecessary the removal of a calibration sphere prior to CMM measurement of calibration features on calibration fixtures, thereby greatly reducing the time spent qualifying a CMM.

  13. Coordination chemistry and antisolvent strategy to rare-earth solid solution colloidal spheres.

    PubMed

    Li, Cheng Chao; Zeng, Hua Chun

    2012-11-21

    We have devised in this work a general synthetic strategy for preparation of single- and multicomponent rare-earth coordination polymer colloidal spheres (RE-CPCSs). This strategy is based on an integration of coordination chemistry and antisolvent effect for synchronized precipitation. Highly monodisperse RE-CPCSs with homogeneous mixing of RE elements, which are not readily attainable by any existing methods, have been successfully prepared for the first time. In addition, the type and molar ratio of these colloidal spheres can be adjusted easily in accordance to the variety and dosage of precursor salts. The molar ratio of RE elements in as-prepared colloidal spheres shows a linear relationship to that of starting reactants. Furthermore, the RE-based core/shell colloidal spheres can be facilely prepared by introducing other metal salts (beyond lanthanide elements) owing to their different coordination chemistry and precipitation behavior. By adjusting concentrations of the ionic activators, luminescent properties can be tuned accordingly. Moreover, the RE-CPCSs can be transformed to monodisperse lanthanide oxide spheres via simple heat treatment. We believe that the present synthetic strategy provides a viable route to prepare other lanthanide-containing colloidal spheres that have enormous potential for future applications as optoelectronic devices, catalysts, gas sensors, and solar cells.

  14. Lanthanide coordination polymers with tetrafluoroterephthalate as a bridging ligand: thermal and optical properties.

    PubMed

    Seidel, Christiane; Lorbeer, Chantal; Cybińska, Joanna; Mudring, Anja-Verena; Ruschewitz, Uwe

    2012-04-16

    By slow diffusion of triethylamine into a solution of 2,3,5,6-tetrafluoroterephthalic acid (H2tfBDC) and the respective lanthanide salt in EtOH/DMF single crystals of seven nonporous coordination polymers, (∞)(2)[Ln(tfBDC)(NO(3))(DMF)(2)]·DMF (Ln(3+) = Ce, Pr, Nd, Sm, Dy, Er, Yb; C2/c, Z = 8) have been obtained. In the crystal structures, two-dimensional square grids are found, which are composed of binuclear lanthanide nodes connected by tfBDC(2-) as a linking ligand. The coordination sphere of each lanthanide cation is completed by a nitrate anion and two DMF molecules (CN = 9). This crystal structure is unprecedented in the crystal chemistry of coordination polymers based on nonfluorinated terephthalate (BDC(2-)) as a bridging ligand; as for tfBDC(2-), a nonplanar conformation of the ligand is energetically more favorable, whereas for BDC(2-), a planar conformation is preferred. Differential thermal analysis/thermogravimetric analysis (DTA/TGA) investigations reveal that the noncoordinating DMF molecule is released first at temperatures of 100-200 °C. Subsequent endothermal weight losses correspond to the release of the coordinating DMF molecules. Between 350 and 400 °C, a strong exothermal weight loss is found, which is probably due to a decomposition of the tfBDC(2-) ligand. The residues could not be identified. The emission spectra of the (∞)(2)[Ln(tfBDC)(NO(3))(DMF)(2)]·DMF compounds reveal intense emission in the visible region of light for Pr, Sm, and Dy with colors from orange, orange-red, to warm white.

  15. Coordination chemistry of N-heterocyclic nitrenium-based ligands.

    PubMed

    Tulchinsky, Yuri; Kozuch, Sebastian; Saha, Prasenjit; Mauda, Assaf; Nisnevich, Gennady; Botoshansky, Mark; Shimon, Linda J W; Gandelman, Mark

    2015-05-04

    Comprehensive studies on the coordination properties of tridentate nitrenium-based ligands are presented. N-heterocyclic nitrenium ions demonstrate general and versatile binding abilities to various transition metals, as exemplified by the synthesis and characterization of Rh(I) , Rh(III) , Mo(0) , Ru(0) , Ru(II) , Pd(II) , Pt(II) , Pt(IV) , and Ag(I) complexes based on these unusual ligands. Formation of nitrenium-metal bonds is unambiguously confirmed both in solution by selective (15) N-labeling experiments and in the solid state by X-ray crystallography. The generality of N-heterocyclic nitrenium as a ligand is also validated by a systematic DFT study of its affinity towards all second-row transition and post-transition metals (Y-Cd) in terms of the corresponding bond-dissociation energies.

  16. Farnesyltransferase—New Insights into the Zinc-Coordination Sphere Paradigm: Evidence for a Carboxylate-Shift Mechanism

    PubMed Central

    Sousa, Sérgio F.; Fernandes, Pedro A.; Ramos, Maria João

    2005-01-01

    Despite the enormous interest that has been devoted to the study of farnesyltransferase, many questions concerning its catalytic mechanism remain unanswered. In particular, several doubts exist on the structure of the active-site zinc coordination sphere, more precisely on the nature of the fourth ligand, which is displaced during the catalytic reaction by a peptide thiolate. From available crystallographic structures, and mainly from x-ray absorption fine structure data, two possible alternatives emerge: a tightly zinc-bound water molecule or an almost symmetrical bidentate aspartate residue (Asp-297β). In this study, high-level theoretical calculations, with different-sized active site models, were used to elucidate this aspect. Our results demonstrate that both coordination alternatives lie in a notably close energetic proximity, even though the bidentate hypothesis has a somewhat lower energy. The Gibbs reaction and activation energies for the mono-bidentate conversion, as well as the structure for the corresponding transition state, were also determined. Globally, these results indicate that at room temperature the mono-bidentate conversion is reversible and very fast, and that probably both states exist in equilibrium, which suggests that a carboxylate-shift mechanism may have a key role in the farnesylation process by assisting the coordination/displacement of ligands to the zinc ion, thereby controlling the enzyme activity. Based on this equilibrium hypothesis, an explanation for the existing contradictions between the crystallographic and x-ray absorption fine structure results is proposed. PMID:15501930

  17. Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.

    PubMed

    Chaplin, Amanda K; Wilson, Michael T; Hough, Michael A; Svistunenko, Dimitri A; Hemsworth, Glyn R; Walton, Paul H; Vijgenboom, Erik; Worrall, Jonathan A R

    2016-06-10

    Copper-dependent lytic polysaccharide monooxygenases (LPMOs) are enzymes that oxidatively deconstruct polysaccharides. The active site copper in LPMOs is coordinated by a histidine-brace. This utilizes the amino group and side chain of the N-terminal His residue with the side chain of a second His residue to create a T-shaped arrangement of nitrogen ligands. We report a structural, kinetic, and thermodynamic appraisal of copper binding to the histidine-brace in an auxiliary activity family 10 (AA10) LPMO from Streptomyces lividans (SliLPMO10E). Unexpectedly, we discovered the existence of two apo-SliLPMO10E species in solution that can each bind copper at a single site with distinct kinetic and thermodynamic (exothermic and endothermic) properties. The experimental EPR spectrum of copper-bound SliLPMO10E requires the simulation of two different line shapes, implying two different copper-bound species, indicative of three and two nitrogen ligands coordinating the copper. Amino group coordination was probed through the creation of an N-terminal extension variant (SliLPMO10E-Ext). The kinetics and thermodynamics of copper binding to SliLPMO10E-Ext are in accord with copper binding to one of the apo-forms in the wild-type protein, suggesting that amino group coordination is absent in the two-nitrogen coordinate form of SliLPMO10E. Copper binding to SliLPMO10B was also investigated, and again it revealed the presence of two apo-forms with kinetics and stoichiometry of copper binding identical to that of SliLPMO10E. Our findings highlight that heterogeneity exists in the active site copper coordination sphere of LPMOs that may have implications for the mechanism of loading copper in the cell.

  18. Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases*

    PubMed Central

    Chaplin, Amanda K.; Wilson, Michael T.; Hough, Michael A.; Svistunenko, Dimitri A.; Hemsworth, Glyn R.; Walton, Paul H.; Vijgenboom, Erik; Worrall, Jonathan A. R.

    2016-01-01

    Copper-dependent lytic polysaccharide monooxygenases (LPMOs) are enzymes that oxidatively deconstruct polysaccharides. The active site copper in LPMOs is coordinated by a histidine-brace. This utilizes the amino group and side chain of the N-terminal His residue with the side chain of a second His residue to create a T-shaped arrangement of nitrogen ligands. We report a structural, kinetic, and thermodynamic appraisal of copper binding to the histidine-brace in an auxiliary activity family 10 (AA10) LPMO from Streptomyces lividans (SliLPMO10E). Unexpectedly, we discovered the existence of two apo-SliLPMO10E species in solution that can each bind copper at a single site with distinct kinetic and thermodynamic (exothermic and endothermic) properties. The experimental EPR spectrum of copper-bound SliLPMO10E requires the simulation of two different line shapes, implying two different copper-bound species, indicative of three and two nitrogen ligands coordinating the copper. Amino group coordination was probed through the creation of an N-terminal extension variant (SliLPMO10E-Ext). The kinetics and thermodynamics of copper binding to SliLPMO10E-Ext are in accord with copper binding to one of the apo-forms in the wild-type protein, suggesting that amino group coordination is absent in the two-nitrogen coordinate form of SliLPMO10E. Copper binding to SliLPMO10B was also investigated, and again it revealed the presence of two apo-forms with kinetics and stoichiometry of copper binding identical to that of SliLPMO10E. Our findings highlight that heterogeneity exists in the active site copper coordination sphere of LPMOs that may have implications for the mechanism of loading copper in the cell. PMID:27129229

  19. Hybrid probing technique for coordinate measurement with optically trapped micro sphere

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuki; Michihata, Masaki; Mizutani, Yasuhiro; Takaya, Yasuhiro

    2016-11-01

    Engineered surfaces have been fabricated to provide enhanced properties such as low friction, anti-adhesive behavior, or low reflection of light. At micro-scales, surface force highly affects the functionality of mechanical parts. In order to reduce surface force such as friction, micro mechanical parts that have engineered surfaces are demanded. In order to investigate the functionality of the textured micro parts, it is necessary to evaluate both the three-dimensional shape and the surface topography along with its geometry. Then we propose novel hybrid probing technique using an optically trapped micro sphere. Tightly focused laser beam makes it possible for a dielectric micro sphere to sustain near the focal point in the air. The dynamic behavior of the micro sphere changes as the result of the interaction of the surface. Therefore, the surface is detected by monitoring the micro sphere. This enables the three-dimensional shape measurement of the substrate. On the other hand, Surface topography is imaged with the lensing effect of the trapped micro sphere. Therefore, this trapped sphere is used as both a probe for coordinate metrology and a micro-lens in optical microscopy in this study. This present investigation deals with the development and fundamental validation of the hybrid probing system with the optically trapped micro sphere. The measurement result with high performance was demonstrated using the tilted diffraction grating.

  20. Controlling the redox properties of a pyrroloquinolinequinone (PQQ) derivative in a ruthenium(II) coordination sphere.

    PubMed

    Mitome, Hiroumi; Ishizuka, Tomoya; Shiota, Yoshihito; Yoshizawa, Kazunari; Kojima, Takahiko

    2015-02-21

    Ruthenium(ii) complexes of PQQTME, a trimethyl ester derivative of redox-active PQQ (pyrroloquinolinequinone), were prepared using a tridentate ligand, 2,2':6',2''-terpyridine (terpy) as an auxiliary ligand. The characterization of the complexes was performed by spectroscopic methods, X-ray crystallography, and electrochemical measurements. In one complex, the pyridine site of PQQTME binds to the [Ru(II)(terpy)] unit as a tridentate ligand, and a silver(i) ion is coordinated by the quinone moiety in a bidentate fashion. In contrast, another complex includes the [Ru(II)(terpy)] unit at the bidentate quinone moiety of the PQQTME ligand. The difference in the coordination modes of the complexes exhibits a characteristic difference in the stability of metal coordination and also in the reversibility of the reduction processes of the PQQTME ligand. It should be noted that an additional metal-ion-binding to the PQQTME ligand largely raises the 1e(-)-reduction potential of the ligand. In addition, we succeeded in the characterization of the 1e(-)-reduced species of the complexes, where the unpaired electron was delocalized in the π-conjugated system of the PQQTME˙(-) ligand, using UV-Vis absorption and ESR spectroscopies.

  1. Second-sphere coordination-induced morphology transformation from phosphorescent nanowires to microcubes.

    PubMed

    Xue, Fengfeng; Ma, Yunsheng; Zhou, Zhiguo; Qin, Lijie; Lu, Yang; Yang, Hong; Yang, Shiping

    2015-02-21

    Nanowires of a pyridyl-functionalized iridium complex are transformed into microcubes as a result of hydrogen-bond-assisted second-sphere coordination between pyridyl groups and monovalent anions of 1,3,5-benzenetricarboxylic acid (H2BTC(-)). This is accompanied by a blue-shift of the phosphorescence from 662 to 638 nm.

  2. Coordination versatility of p-hydroquinone-functionalized dibenzobarrelene-based PC(sp(3))P pincer ligands.

    PubMed

    De-Botton, Sophie; Romm, Ronit; Bensoussan, Guillaume; Hitrik, Maria; Musa, Sanaa; Gelman, Dmitri

    2016-10-12

    The manuscript describes the synthesis and coordination chemistry of a novel diphosphine pincer ligand based on a p-hydroquinone-functionalized dibenzobarrelene scaffold. The p-hydroquinone fragment of the ligand is oxidatively and coordinatively non-innocent and may render new reactivity to the metal center due to implied reversible redox behavior, tautomeric interconversion and metal-hydroxyl/alkoxide coordination switch of the pendant hydroxyl side-arm. Palladium, platinum and iridium complexes were prepared and characterized. Investigation of their coordination chemistry revealed that while tautomeric equilibrium exists in free ligands and in the chelate non-metalated complexes, it is essentially blocked in the corresponding C(sp(3))-pincer compounds due to stabilizing hemilabile coordination of the hydroxyl group. However, its presence in close proximity to the metal center is essential for catalyzing acceptorless dehydrogenation of alcohols by the iridium complexes via the outer-sphere hydrogen transfer mechanism. Remarkably, we found a similar activity for the analogous palladium complexes, which is not characteristic of this metal. This unprecedented reactivity of palladium stresses the fact that besides the choice of an active metal, transformation-oriented design of the ligand is crucial for catalysis.

  3. The quantization of the radii of coordination spheres cubic crystals and cluster systems

    NASA Astrophysics Data System (ADS)

    Melnikov, G.; Emelyanov, S.; Ignatenko, N.; Ignatenko, G.

    2016-02-01

    The article deals with the creation of an algorithm for calculating the radii of coordination spheres and coordination numbers cubic crystal structure and cluster systems in liquids. Solution has important theoretical value since it allows us to calculate the amount of coordination in the interparticle interaction potentials, to predict the processes of growth of the crystal structures and processes of self-organization of particles in the cluster system. One option accounting geometrical and quantum factors is the use of the Fibonacci series to construct a consistent number of focal areas for cubic crystals and cluster formation in the liquid.

  4. Second sphere coordination of hybrid metal-organic materials: solid state reactivity.

    PubMed

    Guo, Fang; Martí-Rujas, Javier

    2016-09-21

    When compared to other hybrid metal organic materials such as metal-organic frameworks, hydrogen bonded materials self-assembled by metals and organic molecules using second sphere interactions have been poorly investigated. Consequently, their solid-sate properties are also scarce. In this perspective, earlier research mainly on host-guest chemistry and its evolution towards more extended structures by applying crystal engineering principles using second sphere coordination is described. Crystal-to-crystal guest exchange reactions, permanently porous hybrid metal organic materials, mechanochemical reactivity, thermally induced phase transformations as well as some examples of functional technological applications using second sphere adducts such as gas adsorption, separation and non-linear optical phenomena are also reported. Although some tutorial reviews on second sphere adducts have been conducted mainly in the solution state focusing on metal based anion receptors, to the best of our knowledge, an overview on relevant works that focus on the solid-state properties has not been carried out. The aim of this article is to highlight from some of the early fundamental work to the latest reports on hybrid metal-organic materials self-assembled via second sphere interactions with a focus on solid-state chemistry.

  5. How wet should be the reaction coordinate for ligand unbinding?

    NASA Astrophysics Data System (ADS)

    Tiwary, Pratyush; Berne, B. J.

    2016-08-01

    We use a recently proposed method called Spectral Gap Optimization of Order Parameters (SGOOP) [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)], to determine an optimal 1-dimensional reaction coordinate (RC) for the unbinding of a bucky-ball from a pocket in explicit water. This RC is estimated as a linear combination of the multiple available order parameters that collectively can be used to distinguish the various stable states relevant for unbinding. We pay special attention to determining and quantifying the degree to which water molecules should be included in the RC. Using SGOOP with under-sampled biased simulations, we predict that water plays a distinct role in the reaction coordinate for unbinding in the case when the ligand is sterically constrained to move along an axis of symmetry. This prediction is validated through extensive calculations of the unbinding times through metadynamics and by comparison through detailed balance with unbiased molecular dynamics estimate of the binding time. However when the steric constraint is removed, we find that the role of water in the reaction coordinate diminishes. Here instead SGOOP identifies a good one-dimensional RC involving various motional degrees of freedom.

  6. How wet should be the reaction coordinate for ligand unbinding?

    PubMed Central

    Tiwary, Pratyush; Berne, B. J.

    2016-01-01

    We use a recently proposed method called Spectral Gap Optimization of Order Parameters (SGOOP) [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)], to determine an optimal 1-dimensional reaction coordinate (RC) for the unbinding of a bucky-ball from a pocket in explicit water. This RC is estimated as a linear combination of the multiple available order parameters that collectively can be used to distinguish the various stable states relevant for unbinding. We pay special attention to determining and quantifying the degree to which water molecules should be included in the RC. Using SGOOP with under-sampled biased simulations, we predict that water plays a distinct role in the reaction coordinate for unbinding in the case when the ligand is sterically constrained to move along an axis of symmetry. This prediction is validated through extensive calculations of the unbinding times through metadynamics and by comparison through detailed balance with unbiased molecular dynamics estimate of the binding time. However when the steric constraint is removed, we find that the role of water in the reaction coordinate diminishes. Here instead SGOOP identifies a good one-dimensional RC involving various motional degrees of freedom. PMID:27497545

  7. SPHERES

    NASA Image and Video Library

    2014-09-09

    ISS040-E-139549 (9 Sept. 2014) --- In the International Space Station’s Kibo laboratory, NASA astronaut Reid Wiseman, Expedition 40 crew member, works with the bowling ball-sized satellites known as SPHERES (Synchronized Position Hold Engage Reorient Experimental Satellites) to study how liquids behave inside containers in microgravity. The experiment, named SPHERES-Slosh, maneuvers the tiny satellites similar to an actual spacecraft with an externally mounted tank and observes the interaction between the sloshing fluid and the tank/vehicle dynamics.

  8. A tris(2-quinolylmethyl)amine scaffold that promotes hydrogen bonding within the secondary coordination sphere.

    PubMed

    Moore, Cameron M; Szymczak, Nathaniel K

    2012-07-14

    A new quinolyl-based ligand presents three amide functionalities to act as hydrogen-bond accepting groups to a metal-bound substrate at a well-defined distance. As a confirmation of the design strategy, CH(3)CN coordinated to copper(II) participates in CH-O interactions in the solid state and in solution.

  9. SPHERES

    NASA Image and Video Library

    2013-08-08

    Astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with the bowling-ball-sized free-flying satellite known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES in the International Space Stations Japanese Experiment Module (JEM) Kibo laboratory. Also sent as Twitter message.

  10. SPHERES

    NASA Image and Video Library

    2009-07-11

    ISS020-E-019064 (11 July 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, perform a check of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Beacon / Beacon Tester in the Destiny laboratory of the International Space Station.

  11. SPHERES

    NASA Image and Video Library

    2009-07-13

    ISS020-E-018319 (11 July 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, perform a check of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Beacon / Beacon Tester in the Destiny laboratory of the International Space Station.

  12. SPHERES

    NASA Image and Video Library

    2009-07-11

    ISS020-E-019069 (11 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, is pictured near three Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) floating freely in the Harmony node of the International Space Station.

  13. SPHERES

    NASA Image and Video Library

    2009-07-13

    ISS020-E-018324 (11 July 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, perform a check of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Beacon / Beacon Tester in the Destiny laboratory of the International Space Station.

  14. SPHERES

    NASA Image and Video Library

    2009-06-26

    ISS020-E-014670 (26 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, is pictured near two Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) floating freely in the Harmony node of the International Space Station.

  15. SPHERES

    NASA Image and Video Library

    2009-07-13

    ISS020-E-018325 (11 July 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, perform a check of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Beacon / Beacon Tester in the Destiny laboratory of the International Space Station.

  16. SPHERES

    NASA Image and Video Library

    2009-07-11

    ISS020-E-019059 (11 July 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, writes notes while performing a check of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Beacon / Beacon Tester in the Destiny laboratory of the International Space Station.

  17. Shaping the cavity of the macrocyclic ligand in metallocalix[4]arenes: the role of the ligand sphere.

    PubMed

    Radius, U

    2001-12-17

    The coordination form of calix[4]arene ligands and therefore the cavity of the macrocyclic ligand can be controlled by other ligands in transition metal calix[4]arene complexes, if strong directing coligands such as oxo groups are used. This paper describes the synthesis and characterization of the d(0) transition metal complexes [Cax(OMe)(2)O(2)TiCl(2)] 1 (monoclinic, space group P2(1)/c, lattice constants a = 21.639(4), b = 20.152(3), c = 12.750(3) A, beta = 95.68(3), V = 5532.6(19) A(3)) and [Cax(OMe)(2)O(2)MoO(2)] 2 (monoclinic, space group P2/c, lattice constants a = 12.433(3), b = 16.348(3), c = 24.774(5) A, beta = 99.15(3), V = 4971.6(17) A(3)). Whereas in 1 the calix[4]arene ligand adopts an elliptically distorted cone conformation, the macrocyclic ligand binds in a paco-like conformation to the metal center of 2, in the solid state and in solution. This was predicted by density functional theory calculations on models of different isomers of 1 and 2: cis,cone-1',2', trans,cone-1',2', and cis,paco-1',2'. According to these calculations, the energetic difference of 72.9 kJ/mol between both cis-dioxomolybdenum compounds is quite pronounced in favor of the cis,paco isomer, and 28.0 kJ/mol for the titanium compounds in favor of the cis,cone isomer.

  18. Water versus acetonitrile coordination to uranyl. Effect of chloride ligands.

    PubMed

    Bühl, Michael; Sieffert, Nicolas; Chaumont, Alain; Wipff, Georges

    2012-02-06

    Optimizations at the BLYP and B3LYP levels are reported for the mixed uranyl chloro/water/acetonitrile complexes [UO(2)Cl(n)(H(2)O)(x)(MeCN)(5-n-x)](2-n) (n = 1-3) and [UO(2)Cl(n)(H(2)O)(x)(MeCN)(4-n-x)](2-n) (n = 2-4), in both the gas phase and a polarizable continuum modeling acetonitrile. Car-Parrinello molecular dynamics (CPMD) simulations have been performed for [UO(2)Cl(2)(H(2)O)(MeCN)(2)] in the gas phase and in a periodic box of liquid acetonitrile. According to population analyses and dipole moments evaluated from maximally localized Wannier function centers, uranium is less Lewis acidic in the neutral UO(2)Cl(2) than in the UO(2)(2+) moiety. In the gas phase the latter binds acetonitrile ligands more strongly than water, whereas in acetonitrile solution, the trend is reversed due to cooperative polarization effects. In the polarizable continuum the chloro complexes have a slight energetic preference for water over acetonitrile ligands, but several mixed complexes are so close in free energy ΔG that they should exist in equilibrium, in accord with previous interpretations of EXAFS data in solution. The binding strengths of the fifth neutral ligands decrease with increasing chloride content, to the extent that the trichlorides should be formulated as four-coordinate [UO(2)Cl(3)L](-) (L = H(2)O, MeCN). Limitations to their accuracy notwithstanding, density functional calculations can offer insights into the speciation of a complex uranyl system in solution, a key feature in the context of nuclear waste partitioning by complexant molecules.

  19. 2-Acylpyrroles as mono-anionic O,N-chelating ligands in silicon coordination chemistry.

    PubMed

    Kämpfe, Alexander; Brendler, Erica; Kroke, Edwin; Wagler, Jörg

    2014-07-21

    Kryptopyrrole (2,4-dimethyl-3-ethylpyrrole) was acylated with, for example, benzoyl chloride to afford 2-benzoyl-3,5-dimethyl-4-ethylpyrrole (L(1)H). With SiCl4 this ligand reacts under liberation of HCl and formation of the complex L(1)2SiCl2. In related reactions with HSiCl3 or H2SiCl2, the same chlorosilicon complex is formed under liberation of HCl and H2 or liberation of H2, respectively. The chlorine atoms of L(1)2SiCl2 can be replaced by fluoride and triflate using ZnF2 and Me3Si-OTf, respectively. The use of a supporting base (triethylamine) is required for the complexation of phenyltrichlorosilane and diphenyldichlorosilane. The complexes L(1)2SiCl2, L(1)2SiF2, L(1)2Si(OTf)2, L(1)2SiPhCl, and L(1)2SiPh2 exhibit various configurations of the octahedral silicon coordination spheres (i.e. cis or trans configuration of the monodentate substituents, different orientations of the bidentate chelating ligands relative to each other). Furthermore, cationic silicon complexes L(1)3Si(+) and L(1) SiPh(+) were synthesized by chloride abstraction with GaCl3. In contrast, reaction of L(1)2SiCl2 with a third equivalent of L(1)H in the presence of excess triethylamine produced a charge-neutral hexacoordinate Si complex with a new tetradentate chelating ligand which formed by Si-templated C-C coupling of two ligands L(1).

  20. SPHERES

    NASA Image and Video Library

    2013-08-08

    ISS036-E-029545 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.

  1. SPHERES

    NASA Image and Video Library

    2013-08-08

    ISS036-E-029521 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.

  2. SPHERES

    NASA Image and Video Library

    2013-08-08

    ISS036-E-029539 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.

  3. SPHERES

    NASA Image and Video Library

    2013-08-08

    ISS036-E-029522 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.

  4. Synthesis and transition metal coordination chemistry of a novel hexadentate bispidine ligand.

    PubMed

    Comba, Peter; Rudolf, Henning; Wadepohl, Hubert

    2015-02-14

    Reported is the new bispidine-derived hexadentate ligand (L = 3-(2-methylpyridyl)-7-(bis-2-methylpyridyl)-3,7-diazabicyclo[3.3.1]nonane) with two tertiary amine and four pyridine donor groups. This ligand can form heterodinuclear and mononuclear complexes and, in the mononuclear compounds discussed here, the ligand may coordinate as a pentadentate ligand, with one of the bispyridinemethane-based pyridine groups un- or semi-coordinated, or as a hexadentate ligand, leading to a pentagonal pyramidal coordination geometry or, with an additional monodentate ligand, to a heptacoordinate pentagonal bipyramidal structure. The solution and solid state data presented here indicate that, with the relatively small Cu(II) and high-spin Fe(II) ions the fourth pyridine group is only semi-coordinated for steric reasons and, with the larger high-spin Mn(II) ion genuine heptacoordination is observed but with a relatively large distortion in the pentagonal equatorial plane.

  5. The coordination chemistry of silyl-substituted allyl ligands.

    PubMed

    Solomon, Sophia A; Layfield, Richard A

    2010-03-14

    Metal allyl complexes in which the ligands carry bulky silyl substituents frequently show stability that cannot be achieved with unsubstituted analogues. As a result, it has been possible to characterize a large family of structurally diverse metal silyl-allyls from the s-, p-, d- and f-blocks of the Periodic Table, and to study the coordination chemistry of compounds that often have no counterparts without bulky substituents. The fact that the majority of compounds discussed in this Perspective have been published since 2000 reflects the newness of the area, and the article summarizes the main developments in the structural chemistry of metal silyl-allyls and also selected synthetic and catalytic applications. Although organometallic chemistry is often regarded as transcending traditional boundaries between 'organic' and 'inorganic' chemistry, an understanding persists that those working in the field can be labelled 'inorganic organometallic' chemists or 'organic organometallic' chemists. It is hoped that chemists from a broad range of backgrounds will be able to use this review as an entry point to an exciting new direction in metal allyl chemistry.

  6. Four homochiral coordination polymers contain N-acetyl-L-tyrosine and different N-donor ligand: Influence of metal cations, ancillary ligands and coordination modes

    SciTech Connect

    Li, Meng-Li; Song, Hui-Hua

    2013-10-15

    Using the chiral ligand N-acetyl-L-tyrosine (Hacty) and maintaining identical reaction conditions, Zn(II), Co(II), and Cd(II) salts provided four novel homochiral coordination polymers ([Zn(acty)(bipy){sub 2}(H{sub 2}O){sub 2}]·NO{sub 3}·2H{sub 2}O){sub n}1, ([Co(acty)(bipy){sub 2}(H{sub 2}O){sub 2}]·NO{sub 3}·2H{sub 2}O){sub n}2, ([Cd(acty){sub 2}(bipy)H{sub 2}O]·H{sub 2}O){sub n}3, and ([Cd(acty)(bpe){sub 2}(Ac)]·6H{sub 2}O){sub n}4 (bipy=4,4′-bipyridine; bpe=1,2-di(4-pyridyl)ethane) in the presence of ancillary ligands. Compounds 1 and 2 are isostructural 1D chain structures. The neighboring chains are further linked into a 3D supramolecular structure via π⋯π stacking and hydrogen bond interactions. Compound 3 shows a 2D network and 4 generates 1D infinite chains along the c-axis. Compounds 3 and 4 are further connected into 3D supramolecular network by hydrogen bond interactions. More importantly, coordination in acyl oxygen atoms and ancillary ligands (bpe) as monodentate decorating ligands in 4 are rarely reported. Ancillary ligands and metal cations significantly influence the structure of the complexes. The photoluminescence properties of 1, 3, and 4 were studied at room temperature. Circular dichroism (CD) of the complexes have been investigated. - Graphical abstract: Four new homochiral coordination polymers were prepared and structurally characterized, which investigate the influence of the ancillary ligands and metal ions on the design and synthesis of coordination polymers. Display Omitted - Highlights: • It is rarely reported that the chiral coordination polymers prepared with N-acetyl-L-tyrosine ligands. • The alkalescent acetyl oxygen atom is difficult to participate in coordination but it is happened in the N-acetyl-L-tyrosine ligands. • The ancillary ligands (4,4′-bipy and bpe) are present in an unusual coordination modes, monodentate decorating ligands in 1, 2 and 4. • Structure comparative analyses results indicate that the

  7. Structural properties of the inner coordination sphere of indium chloride complexes in organic and aqueous solutions.

    PubMed

    Narita, Hirokazu; Tanaka, Mikiya; Shiwaku, Hideaki; Okamoto, Yoshihiro; Suzuki, Shinichi; Ikeda-Ohno, Atsushi; Yaita, Tsuyoshi

    2014-01-28

    The nature of the inner coordination sphere of In(3+) present in both the organic and aqueous solutions during the solvent extraction of In(3+) from an aqueous HCl solution with tri-n-octyl amine (TOA) was investigated by In K-edge XAFS. This information was then used to clarify the details of the extraction properties of indium chloride anion complexes with TOA. In aqueous HCl solution (0.1-10 M), In(3+) exists as octahedral anion complexes, [InCln(H2O)6-n](3-n) (n ≥ 4); the [InCl6](3-) complex is dominant at 10 M HCl. The extraction of In(3+) from HCl solution with TOA was performed using two kinds of diluents: nitrobenzene (NB) or n-dodecane (DD), which contained 20 vol% of 2-ethylhexanol as an additive. The stoichiometric composition of the extracted complexes, which is estimated from the distribution ratios of In(3+), is affected by the diluents and the HCl concentration of the aqueous phase; the apparent values of TOA/In(3+) in the extracted complex are 3 for DD-1 M HCl (diluent-aqueous phase) and DD-5 M HCl, 2 for NB-1 M HCl and NB-5 M HCl, and 1 for NB-10 M HCl. The EXAFS analysis of these extracted complexes shows that the In(3+) has ∼4 Cl(-) at ∼2.336 Å and no H2O in the inner coordination sphere; additionally, the shape of the XANES suggests that their coordination geometry is tetrahedral. Therefore, the same tetrahedral [InCl4](-) complex is formed during the extraction in spite of the variation in the stoichiometric composition (TOA/In(3+) = 1-3) of the extracted complexes.

  8. Encapsulation of hydride by molecular main group metal clusters: manipulating the source and coordination sphere of the interstitial ion.

    PubMed

    Boss, Sally R; Coles, Martyn P; Eyre-Brook, Vicki; García, Felipe; Haigh, Robert; Hitchcock, Peter B; McPartlin, Mary; Morey, James V; Naka, Hiroshi; Raithby, Paul R; Sparkes, Hazel A; Tate, Christopher W; Wheatley, Andrew E H

    2006-12-21

    The sequential treatment of Lewis acids with N,N'-bidentate ligands and thereafter with ButLi has afforded a series of hydride-encapsulating alkali metal polyhedra. While the use of Me3Al in conjunction with Ph(2-C5H4N)NH gives Ph(2-C5H4N)NAlMe2 and this reacts with MeLi in thf to yield the simple 'ate complex Ph(2-C5H4N)NAlMe3Li.thf, the employment of an organolithium substrate capable of beta-hydride elimination redirects the reaction significantly. Whereas the use of ButLi has previously yielded a main group interstitial hydride in which H- exhibits micro6-coordination, it is shown here that variability in the coordination sphere of the encapsulated hydride may be induced by manipulation of the organic ligand. Reaction of (c-C6H11)(2-C5H4N)NH with Me3Al/ButLi yields [{(c-C6H11)(2-C5H4N)N}6HLi8]+[(But2AlMe2)2Li]-, which is best viewed as incorporating only linear di-coordination of the hydride ion. The guanidine 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine (hppH) in conjunction with Me2Zn/ButLi yields the micro8-hydride [(hpp)6HLi8]+[But3Zn]-.0.5PhMe. Formation of the micro8-hydride [(hpp)6HLi8]+[ButBEt3]- is revealed by employment of the system Et3B/ButLi. A new and potentially versatile route to interstitial hydrides of this class is revealed by synthesis of the mixed borohydride-lithium hydride species [(hpp)6HLi8]+[Et3BH]- and [(hpp)6HLi8]+[(Et3B)2H]- through the direct combination of hppLi with Et3BHLi.

  9. Structural transitions in ion coordination driven by changes in competition for ligand binding.

    PubMed

    Varma, Sameer; Rempe, Susan B

    2008-11-19

    Transferring Na(+) and K(+) ions from their preferred coordination states in water to states having different coordination numbers incurs a free energy cost. In several examples in nature, however, these ions readily partition from aqueous-phase coordination states into spatial regions having much higher coordination numbers. Here we utilize statistical theory of solutions, quantum chemical simulations, classical mechanics simulations, and structural informatics to understand this aspect of ion partitioning. Our studies lead to the identification of a specific role of the solvation environment in driving transitions in ion coordination structures. Although ion solvation in liquid media is an exergonic reaction overall, we find it is also associated with considerable free energy penalties for extracting ligands from their solvation environments to form coordinated ion complexes. Reducing these penalties increases the stabilities of higher-order coordinations and brings down the energetic cost to partition ions from water into overcoordinated binding sites in biomolecules. These penalties can be lowered via a reduction in direct favorable interactions of the coordinating ligands with all atoms other than the ions themselves. A significant reduction in these penalties can, in fact, also drive up ion coordination preferences. Similarly, an increase in these penalties can lower ion coordination preferences, akin to a Hofmeister effect. Since such structural transitions are effected by the properties of the solvation phase, we anticipate that they will also occur for other ions. The influence of other factors, including ligand density, ligand chemistry, and temperature, on the stabilities of ion coordination structures are also explored.

  10. Lanthanide structures, coordination, and extraction investigations of a 1,3-bis(diethyl amide)-substituted caliz[4]arene ligand

    SciTech Connect

    Beer, P.D.; Ogden, M.I.; Drew, M.G.B.

    1996-04-10

    The synthesis and structure determinations of lanthanum, samarium, ytterbium, and lutetium complexes of 5,11,17,23-tetra-tert-butyl-25,27-bis((diethylcarbamoyl)methoxy)-26,28-dihydroxycalix[4]arene (L) are described. The four structures display similar characteristics with the trivalent lanthanide cation being encapsulated in an eight-coordinate oxygen environment, consisting of six oxygens from the calixarene, a water molecule, and unidentate picrate for lanthanum [La(L-2H)(picrate)(H{sub 2}O)]; and bidentate chelating picrate for the other lanthanides [Ln(L-2H)(picrate)]Ln = Sm, Yb, Lu. Under optimised experimental conditions solvent extraction investigations showed the calix[4]arene ligand L exhibited generally very high percentage extractabilities of lanthanide cations into dichloromethane, presumably on account of the ligand`s unique lower rim oxygen containing coordination sphere and its lipophilic exterior.

  11. Enzyme Design From the Bottom Up: An Active Nickel Electrocatalyst with a Structured Peptide Outer Coordination Sphere

    SciTech Connect

    Reback, Matthew L.; Buchko, Garry W.; Kier, Brandon L.; Ginovska-Pangovska, Bojana; Xiong, Yijia; Lense, Sheri; Hou, Jianbo; Roberts, John A.; Sorensen, Christina M.; Raugei, Simone; Squier, Thomas C.; Shaw, Wendy J.

    2014-02-03

    Functional, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts via an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well characterized hydrogen production catalyst, Ni(PPh2NPh)2. The incorporated peptide maintains its B-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (~100,000 s-1) is fully retained. The combination of an active molecular catalyst with a structured peptide outer coordination sphere provides a scaffold that permits the incorporation of features of an enzyme-like outer-coordination sphere necessary to create molecular electrocatalysts with en-hanced functionality.

  12. Ligand Dependence of Binding to Three-Coordinate Fe(II) Complexes

    PubMed Central

    Chiang, Karen P.; Barrett, Pamela M.; Ding, Feizhi; Smith, Jeremy M.; Kingsley, Savariraj; Brennessel, William W.; Clark, Meghan M.; Lachicotte, Rene J.; Holland, Patrick L.

    2009-01-01

    A series of three- and four-coordinate iron(II) complexes with nitrogen, chlorine, oxygen, and sulfur ligands is presented. The electronic variation is explored by measuring the association constant of the neutral ligands, and the reduction potential of the iron(II) complexes. Varying the neutral ligand gives large changes in Keq, which decrease in the order CNtBu > pyridine > 2-picoline > DMF > MeCN > THF > PPh3. These differences can be attributed to a mixture of steric effects and electronic effects (both σ and π). The binding constants and the reduction potentials are surprisingly insensitive to changes in an anionic spectator ligand. This suggests that three-coordinate iron(II) complexes may have similar binding trends as proposed three-coordinate iron(II) intermediates in the FeMoco of nitrogenase, even though the anionic spectator ligands in the synthetic complexes differ from the sulfides in the FeMoco. PMID:19438179

  13. Drawing Mononuclear Octahedral Coordination Compounds Containing Tridentate Chelating Ligands

    ERIC Educational Resources Information Center

    Mohamadou, Aminou; Ple, Karen; Haudrechy, Arnaud

    2011-01-01

    Complexes with tridentate ligands of the type [M(A-B-C)2], where A [not equal to] B [not equal to] C and with an imposed bonding sequence A-B-C, require special attention to draw all possible stereoisomers. Depending on the nature of the central donor atom B of the tridentate ligand, an easy drawing method is presented that shows seven chiral…

  14. Drawing Mononuclear Octahedral Coordination Compounds Containing Tridentate Chelating Ligands

    ERIC Educational Resources Information Center

    Mohamadou, Aminou; Ple, Karen; Haudrechy, Arnaud

    2011-01-01

    Complexes with tridentate ligands of the type [M(A-B-C)2], where A [not equal to] B [not equal to] C and with an imposed bonding sequence A-B-C, require special attention to draw all possible stereoisomers. Depending on the nature of the central donor atom B of the tridentate ligand, an easy drawing method is presented that shows seven chiral…

  15. DFT analysis of the electronic structure of Fe(IV) species active in nitrene transfer catalysis: influence of the coordination sphere.

    PubMed

    Patra, Ranjan; Maldivi, Pascale

    2016-11-01

    Nitrene transfer reactions to various hydrocarbon molecules can be efficiently catalyzed by Fe complexes through a mechanism reminiscent of the oxygen transfer function of oxygenase enzymes. Such enzymes exhibit a high-valent iron oxo Fe(IV) = O as the active species, and it has also been proposed that an analogous species, i.e., Fe(IV) = NR (NR being the nitrene group) is responsible for the nitrene transfer activity. We describe here the influence of the Fe(IV) coordination sphere on some key parameters for nitrene transfer efficacy, such as the spin state of the Fe(IV) cation, the electronic affinity, and the bond dissociation energy of the NHR moiety. We explore here the electronic properties of Fe(IV) = NTs (NTs = tolylsulfonylimido group) mononuclear complexes with ligands involving phenolate and nitrogen donor groups, as catalytic properties with such ligands have been found to be quite promising. Six tetradentate ligands were studied, which derive from three different scaffolds: 2-methylenepyridine-N,N-bis(2-methylene-4,6-dichlorophenol) and 2-methylenepyridine-N,N-bis(2-methylene-4,6-dimethylphenol), N,N-dimethyl-N',N'-bis(2-methylene-4,6-dichlorophenol) ethylenediamine, and N,N-dimethyl-N',N'- bis(2-methylene-4,6-dimethylphenol) ethylenediamine, N,N'-bis(2-methylene-4,6-dichlorophenol)-N,N'-dimethyl-1,2-diaminoethane and N,N'-bis(2-methylene-4,6-dimethylphenol)-N,N'-dimethyl-1,2-diaminoethane. Thanks to thorough DFT computations, we present some rationalization of the electronic properties of the resulting Fe(IV) = NTs complexes in relation to their coordination sphere and compare them to other Fe(IV) nitrene active species. We show in particular the important role of the anionic character and strong π-donation of the phenolate groups.

  16. Coordinated HArd Sphere Model (CHASM): A Simplified Model for Silicate and Oxide Liquids at Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2013-12-01

    Recent first-principles theoretical calculations (Stixrude 2009) and experimental shock-wave investigations (Mosenfelder 2009) indicate that melting perovskite requires significantly less energy than previously thought, supporting the idea of a deep-mantle magma ocean early in Earth's history. The modern-day solid Earth is thus likely the result of crystallization from an early predominantly molten state, a process that is primarily controlled by the poorly understood behavior of silicate melts at extreme pressures and temperatures. Probing liquid thermodynamics at mantle conditions is difficult for both theory and experiment, and further challenges are posed by the large relevant compositional space including at least MgO, SiO2, and FeO. First-principles molecular dynamics has been used with great success to determine the high P-T properties of a small set of fixed composition silicate-oxide liquids including MgO (Karki 2006), SiO2 (Karki 2007), Mg2SiO4 (de Koker 2008), MgSiO3 (Stixrude 2005), and Fe2SiO4 (Ramo 2012). While extremely powerful, this approach has limitations including high computational cost, lower bounds on temperature due to relaxation constraints, as well as restrictions to length scales and time scales that are many orders of magnitude smaller than those relevant to the Earth or experimental methods. As a compliment to accurate first-principles calculations, we have developed the Coordinated HArd Sphere Model (CHASM). We extend the standard hard sphere mixture model, recently applied to silicate liquids by Jing (2011), by accounting for the range of oxygen coordination states available to liquid cations. Utilizing approximate analytic expressions for the hard sphere model, the method can predict complex liquid structure and thermodynamics while remaining computationally efficient. Requiring only minutes on standard desktop computers rather than months on supercomputers, the CHASM approach is well-suited to providing an approximate thermodynamic

  17. Structural transitions in ion coordination driven by changes in competition for ligand binding

    PubMed Central

    Varma, Sameer; Rempe, Susan B.

    2009-01-01

    Transferring Na+ and K+ ions from their preferred coordination states in water to states having different coordination numbers incurs a free energy cost. In several examples in nature, however, these ions readily partition from aqueous-phase coordination states into spatial regions having much higher coordination numbers. Here we utilize statistical theory of solutions, quantum chemical simulations, classical mechanics simulations and structural informatics to understand this aspect of ion partitioning. Our studies lead to the identification of a specific role of the solvation environment in driving transitions in ion coordination structures. Although ion solvation in liquid media is an exergonic reaction overall, we find it is also associated with considerable free energy penalties for extracting ligands from their solvation environments to form coordinated ion complexes. Reducing these penalties increases the stabilities of higher-order coordinations and brings down the energetic cost to partition ions from water into over-coordinated binding sites in biomolecules. These penalties can be lowered via a reduction in direct favorable interactions of the coordinating ligands with all atoms other than the ions themselves. A significant reduction in these penalties can, in fact, also drive up ion coordination preferences. Similarly, an increase in these penalties can lower ion coordination preferences, akin to a Hofmeister effect. Since such structural transitions are effected by the properties of the solvation phase, we anticipate that they will also occur for other ions. The influence of other factors, including ligand density, ligand chemistry and temperature, on the stabilities of ion coordination structures are also explored. PMID:18954053

  18. Supramolecular coordination and antimicrobial activities of constructed mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Abou-Dobara, M. I.; Seyam, H. A.

    2013-03-01

    A novel series of copper(II) and palladium(II) with 4-derivatives benzaldehyde pyrazolone (Ln) were synthesized. The mixed ligand complexes were prepared by using 1,10-phenanthroline (Phen) as second ligand. The structure of these complexes was identified and confirm by elemental analysis, molar conductivity, UV-Vis, IR and 1H NMR spectroscopy and magnetic moment measurements as well as thermal analysis. The ligand behaves as a neutral bidentate ligand through ON donor sites. ESR spectra show the simultaneous presence of a planar trans and a nearly planar cis isomers in the 1:2 ratio for all N,O complexes [Cu(Ln)2]Cl2ṡ2H2O. Schiff bases (Ln) were tested against bacterial species; namely two Gram positive bacteria (Staphylococcus aureus and Bacillus cereus) and two Gram negative bacteria (Escherichia coli and Klebsiella pneumoniae) and fungal species (Aspergillus niger, Fusarium oxysporium, Penicillium italicum and Alternaria alternata). The tested compounds have antibacterial activity against S. aureus, B. cereus and K. pneumoniae.

  19. H/D exchange at sp(3) carbons in the coordination sphere of platinum(II).

    PubMed

    Benedetti, Michele; Barone, Carmen R; Girelli, Chiara R; Fanizzi, Francesco P; Natile, Giovanni; Maresca, Luciana

    2014-03-07

    The [PtCl(η(1)-CH2CH2OR)(Me2phen)], Me2phen = 2,9-dimethyl-1,10-phenanthroline, complex is indefinitely stable in the solid state; however, when dissolved in protic deuterated solvents at basic pH, it undergoes H-D exchange at the Me2phen Me's. An analogous H-D exchange process takes place in the related [PtCl2(Me2phen)] complex which is sterically strained and very easily can detach one nitrogen of Me2phen yielding a T-shaped species. In contrast, the H-D exchange is considerably slower in the [Pt(OR)2(Me2phen)] complex characterized by smaller size and lower trans-labilizing effect of the oxygen donor ligands. It is suggested that the formation of a T-shaped intermediate could foster the C-H activation via oxidative addition to the metal centre. In accord with this hypothesis, the H/D exchange was found to be considerably slower in analogous complexes with 6,6'-dimethyl-2,2'-bipyridyl (Me2bpy), where the greater flexibility of Me2bpy, as compared to Me2phen, reduces the strain in the four coordinate substrate and hence the propensity to dissociate one end of the bidentate ligand.

  20. Lanthanide Structures, Coordination, and Extraction Investigations of a 1,3-Bis(diethyl amide)-Substituted Calix[4]arene Ligand.

    PubMed

    Beer, Paul D.; Drew, Michael G. B.; Kan, Mark; Leeson, Philip B.; Ogden, Mark I.; Williams, Gareth

    1996-04-10

    The synthesis and structure determinations of lanthanum, samarium, ytterbium, and lutetium complexes of 5,11,17,23-tetra-tert-butyl-25,27-bis((diethylcarbamoyl)methoxy)-26,28-dihydroxycalix[4]arene (L) are described. The four structures display similar characteristics with the trivalent lanthanide cation being encapsulated in an eight-coordinate oxygen environment, consisting of six oxygens from the calixarene, a water molecule, and unidentate picrate for lanthanum [La(L-2H)(picrate)(H(2)O)]; and bidentate chelating picrate for the other lanthanides [Ln(L-2H)(picrate)]Ln = Sm, Yb, Lu. Under optimised experimental conditions solvent extraction investigations showed the calix[4]arene ligand L exhibited generally very high percentage extractabilities of lanthanide cations into dichloromethane, presumably on account of the ligand's unique lower rim oxygen containing coordination sphere and its lipophilic exterior.

  1. Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin

    PubMed Central

    Liu, Zhichang; Frasconi, Marco; Lei, Juying; Brown, Zachary J.; Zhu, Zhixue; Cao, Dennis; Iehl, Julien; Liu, Guoliang; Fahrenbach, Albert C.; Botros, Youssry Y.; Farha, Omar K.; Hupp, Joseph T.; Mirkin, Chad A.; Fraser Stoddart, J.

    2013-01-01

    Gold recovery using environmentally benign chemistry is imperative from an environmental perspective. Here we report the spontaneous assembly of a one-dimensional supramolecular complex with an extended {[K(OH2)6][AuBr4](α-cyclodextrin)2}n chain superstructure formed during the rapid co-precipitation of α-cyclodextrin and KAuBr4 in water. This phase change is selective for this gold salt, even in the presence of other square-planar palladium and platinum complexes. From single-crystal X-ray analyses of six inclusion complexes between α-, β- and γ-cyclodextrins with KAuBr4 and KAuCl4, we hypothesize that a perfect match in molecular recognition between α-cyclodextrin and [AuBr4]− leads to a near-axial orientation of the ion with respect to the α-cyclodextrin channel, which facilitates a highly specific second-sphere coordination involving [AuBr4]− and [K(OH2)6]+ and drives the co-precipitation of the 1:2 adduct. This discovery heralds a green host–guest procedure for gold recovery from gold-bearing raw materials making use of α-cyclodextrin—an inexpensive and environmentally benign carbohydrate. PMID:23673640

  2. Coordination Chemistry of Europium(III) Ion Towards Acylpyrazolone Ligands.

    PubMed

    Atanassova, Maria; Kurteva, Vanya; Billard, Isabelle

    2015-01-01

    Two Eu(III) complexes were synthesized using 4-acylpyrazolone ligands: 3-methyl-4-(4-methylbenzoyl)-1-phenyl-pyrazol-5-one (HPMMBP) and 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one (HPPMBP). The composition of the obtained solid complexes was determined as Eu(PMMBP)3·C2H5OH and Eu(PPMBP)3·3H2O based on elemental analysis and was further studied by IR, NMR and TG-TSC data. The lanthanoid complexation in solid state and in solution during liquid-liquid extraction (molecular diluent and ionic liquid) is discussed.

  3. Metal ion oxidation state assignment based on coordinating ligand hyperfine interaction.

    PubMed

    Oyala, Paul H; Stich, Troy A; Britt, R David

    2015-04-01

    In exchange-coupled mixed-valence spin systems, the magnitude and sign of the effective ligand hyperfine interaction (HFI) can be useful in determining the formal oxidation state of the coordinating metal ion, as well as provide information about the coordination geometry. This is due to the fact that the observed ligand HFI is a function of the projection factor (Clebsch-Gordon coefficient) that maps the site spin value S i of the local paramagnetic center onto the total spin of the exchange-coupled system, S T. Recently, this relationship has been successfully exploited in identifying the oxidation state of the Mn ion coordinated by the sole nitrogenous ligand to the oxygen-evolving complex in certain states of photosystem II. The origin and evolution of these efforts is described.

  4. Chiral benzamidinate ligands in rare-earth-metal coordination chemistry.

    PubMed

    Benndorf, Paul; Kratsch, Jochen; Hartenstein, Larissa; Preuss, Corinna M; Roesky, Peter W

    2012-11-05

    The treatment of the recently reported potassium salt (S)-N,N'-bis-(1-phenylethyl)benzamidinate ((S)-KPEBA) and its racemic isomer (rac-KPEBA) with anhydrous lanthanide trichlorides (Ln = Sm, Er, Yb, Lu) afforded mostly chiral complexes. The tris(amidinate) complex [{(S)-PEBA}(3)Sm], bis(amidinate) complexes [{Ln(PEBA)(2)(μ-Cl)}(2)] (Ln = Sm, Er, Yb, Lu), and mono(amidinate) compounds [Ln(PEBA)(Cl)(2)(thf)(n)] (Ln = Sm, Yb, Lu) were isolated and structurally characterized. As a result of steric effects, the homoleptic 3:1 complexes of the smaller lanthanide atoms Yb and Lu were not accessible. Furthermore, chiral bis(amidinate)-amido complexes [{(S)-PEBA}(2)Ln{N(SiMe(3))(2)}] (Ln = Y, Lu) were synthesized by an amine-elimination reaction and salt metathesis. All of these chiral bis- and tris(amidinate) complexes had additional axial chirality and they all crystallized as diastereomerically pure compounds. By using rac-PEBA as a ligand, an achiral meso arrangement of the ligands was observed. The catalytic activities and enantioselectivities of [{(S)-PEBA}(2)Ln{N(SiMe(3))(2)}] (Ln = Y, Lu) were investigated in hydroamination/cyclization reactions. A clear dependence of the rate of reaction and enantioselectivity on the ionic radius was observed, which showed higher reaction rates but poorer enantioselectivities for the yttrium compound.

  5. Anions coordinating anions: analysis of the interaction between anionic Keplerate nanocapsules and their anionic ligands.

    PubMed

    Melgar, Dolores; Bandeira, Nuno A G; Bonet Avalos, Josep; Bo, Carles

    2017-02-15

    Keplerates are a family of anionic metal oxide spherical capsules containing up to 132 metal atoms and some hundreds of oxygen atoms. These capsules holding a high negative charge of -12 coordinate both mono-anionic and di-anionic ligands thus increasing their charge up to -42, even up to -72, which is compensated by the corresponding counter-cations in the X-ray structures. We present an analysis of the relative importance of several energy terms of the coordinate bond between the capsule and ligands like carbonate, sulphate, sulphite, phosphinate, selenate, and a variety of carboxylates, of which the overriding component is contributed by solvation/de-solvation effects.

  6. Iron coordination chemistry with new ligands containing triazole and pyridine moieties. Comparison of the coordination ability of the N-donors.

    PubMed

    Ségaud, Nathalie; Rebilly, Jean-Noël; Sénéchal-David, Katell; Guillot, Régis; Billon, Laurianne; Baltaze, Jean-Pierre; Farjon, Jonathan; Reinaud, Olivia; Banse, Frédéric

    2013-01-18

    We report the synthesis, characterization, and solution chemistry of a series of new Fe(II) complexes based on the tetradentate ligand N-methyl-N,N'-bis(2-pyridyl-methyl)-1,2-diaminoethane or the pentadentate ones N,N',N'-tris(2-pyridyl-methyl)-1,2-diaminoethane and N,N',N'-tris(2-pyridyl-methyl)-1,3-diaminopropane, modified by propynyl or methoxyphenyltriazolyl groups on the amino functions. Six of these complexes are characterized by X-ray crystallography. In particular, two of them exhibit an hexadentate coordination environment around Fe(II) with two amino, three pyridyl, and one triazolyl groups. UV-visible and cyclic voltammetry experiments of acetonitrile solutions of the complexes allow to deduce accurately the structure of all Fe(II) species in equilibrium. The stability of the complexes could be ranked as follows: [L(5)Fe(II)-py](2+) > [L(5)Fe(II)-Cl](+) > [L(5)Fe(II)-triazolyl](2+) > [L(5)Fe(II)-(NCMe)](2+), where L(5) designates a pentadentate coordination sphere composed of the two amines of ethanediamine and three pyridines. For complexes based on propanediamine, the hierarchy determined is [L(5)Fe(II)-Cl](+) > [L(5)Fe(II)(OTf)](+) > [L(5)Fe(II)-(NCMe)](2+), and no ligand exchange could be evidenced for [L(5)Fe(II)-triazolyl](2+). Reactivity of the [L(5)Fe(II)-triazolyl](2+) complexes with hydrogen peroxide and PhIO is similar to the one of the parent complexes that lack this peculiar group, that is, generation of Fe(III)(OOH) and Fe(IV)(O), respectively. Accordingly, the ability of these complexes at catalyzing the oxidation of small organic molecules by these oxidants follows the tendencies of their previously reported counterparts. Noteworthy is the remarkable cyclooctene epoxidation activity by these complexes in the presence of PhIO.

  7. Tellurium-containing polymer micelles: competitive-ligand-regulated coordination responsive systems.

    PubMed

    Cao, Wei; Gu, Yuwei; Meineck, Myriam; Li, Tianyu; Xu, Huaping

    2014-04-02

    Nanomaterials capable of achieving tunable cargo release kinetics are of significance in a fundamental sense and various biological or medical applications. We report a competitive coordination system based on a novel tellurium-containing polymer and its ligand-regulated release manners. Tellurium was introduced to water-soluble polymers for the first time as drug delivery vehicles. The coordination chemistry between platinum and tellurium was designed to enable the load of platinum-based drugs. Through the competitive coordination of biomolecules, the drugs could be released in a controlled manner. Furthermore, the release kinetics could be modulated by the competitive ligands involved due to their different coordination ability. This tellurium-containing polymer may enrich the family of delivery systems and provide a new platform for future biomedical nanotechnologies.

  8. Secondary interactions or ligand scrambling? Subtle steric effects govern the iridium(I) coordination chemistry of phosphoramidite ligands.

    PubMed

    Osswald, Tina; Rüegger, Heinz; Mezzetti, Antonio

    2010-01-25

    The like and unlike isomers of phosphoramidite (P*) ligands are found to react differently with iridium(I), which is a key to explaining the apparently inconsistent results obtained by us and other research groups in a variety of catalytic reactions. Thus, the unlike diastereoisomer (aR,S,S)-[IrCl(cod)(1 a)] (2 a; cod=1,5-cyclooctadiene, 1 a=(aR,S,S)-(1,1'-binaphthalene)-2,2'-diyl bis(1-phenylethyl)phosphoramidite) forms, upon chloride abstraction, the monosubstituted complex (aR,S,S)-[Ir(cod)(1,2-eta-1 a,kappaP)](+) (3 a), which contains a chelating P* ligand that features an eta(2) interaction between a dangling phenyl group and iridium. Under analogous conditions, the like analogue (aR,R,R)-1 a' gives the disubstituted species (aR,R,R)-[Ir(cod)(1 a',kappaP)(2)](+) (4 a') with monodentate P* ligands. The structure of 3 a was assessed by a combination of X-ray and NMR spectroscopic studies, which indicate that it is the configuration of the binaphthol moiety (and not that of the dangling benzyl N groups) that determines the configuration of the complex. The effect of the relative configuration of the P* ligand on its iridium(I) coordination chemistry is discussed in the context of our preliminary catalytic results and of apparently random results obtained by other groups in the iridium(I)-catalyzed asymmetric allylic alkylation of allylic acetates and in rhodium(I)-catalyzed asymmetric cycloaddition reactions. Further studies with the unlike ligand (aS,R,R)-(1,1'-binaphthalene)-2,2'-diyl bis{[1-(1-naphthalene-1-yl)ethyl]phosphoramidite} (1 b) showed a yet different coordination mode, that is, the eta(4)-arene-metal interaction in (aS,R,R)-[Ir(cod)(1,2,3,4-eta-1 b,kappaP)](+) (3 b).

  9. Pressure-driven orbital reorientations and coordination-sphere reconstructions in [CuF2(H2O)2(pyz)

    SciTech Connect

    Prescimone, A.; Morien, C.; Allan, D.; Schlueter, J.; Tozer, S.; Manson, J. L.; Parsons, S.; Brechin, E. K.; Hill, S.

    2012-07-23

    Successive reorientations of the Jahn-Teller axes associated with the Cu{sup II} ions accompany a series of pronounced structural transitions in the title compound, as is shown by X-ray crystallography and high-frequency EPR measurements. The second transition forces a dimerization involving two thirds of the Cu{sup II} sites due to ejection of one of the water molecules from the coordination sphere

  10. Trapped in the coordination sphere: Nitrate ion transfer driven by the cerium(III/IV) redox couple

    SciTech Connect

    Ellis, Ross J.; Bera, Mrinal K.; Reinhart, Benjamin; Antonio, Mark R.

    2016-11-07

    Redox-driven ion transfer between phases underpins many biological and technological processes, including industrial separation of ions. Here we investigate the electrochemical transfer of nitrate anions between oil and water phases, driven by the reduction and oxidation of cerium coordination complexes in oil phases. We find that the coordination environment around the cerium cation has a pronounced impact on the overall redox potential, particularly with regard to the number of coordinated nitrate anions. Our results suggest a new fundamental mechanism for tuning ion transfer between phases; by 'trapping' the migrating ion inside the coordination sphere of a redox-active complex. Here, this presents a new route for controlling anion transfer in electrochemically-driven separation applications.

  11. Trapped in the coordination sphere: Nitrate ion transfer driven by the cerium(III/IV) redox couple

    DOE PAGES

    Ellis, Ross J.; Bera, Mrinal K.; Reinhart, Benjamin; ...

    2016-11-07

    Redox-driven ion transfer between phases underpins many biological and technological processes, including industrial separation of ions. Here we investigate the electrochemical transfer of nitrate anions between oil and water phases, driven by the reduction and oxidation of cerium coordination complexes in oil phases. We find that the coordination environment around the cerium cation has a pronounced impact on the overall redox potential, particularly with regard to the number of coordinated nitrate anions. Our results suggest a new fundamental mechanism for tuning ion transfer between phases; by 'trapping' the migrating ion inside the coordination sphere of a redox-active complex. Here, thismore » presents a new route for controlling anion transfer in electrochemically-driven separation applications.« less

  12. Coordination Sphere Tuning of the Electron Transfer Dissociation Behavior of Cu(II)-Peptide Complexes

    NASA Astrophysics Data System (ADS)

    Dong, Jia; Vachet, Richard W.

    2012-02-01

    In contrast to previous electron capture dissociation (ECD) studies, we find that electron transfer dissociation (ETD) of Cu(II)-peptide complexes can generate c- and z-type product ions when the peptide has a sufficient number of strongly coordinating residues. Double-resonance experiments, ion-molecule reactions, and collision-induced dissociation (CID) prove that the c and z product ions are formed via typical radical pathways without the associated reduction of Cu(II), despite the high second ionization energy of Cu. A positive correlation between the number of Cu(II) binding groups in the peptide sequence and the extent of c and z ion formation was also observed. This trend is rationalized by considering that the recombination energy of Cu(II) can be lowered by strong binding ligands to an extent that enables electron transfer to non-Cu sites (e.g., protonation sites) to compete with Cu(II) reduction, thereby generating c/z ions in a manner similar to that observed for protonated (i.e., nonmetalated) peptides.

  13. Intramolecular, oxidatively induced substitution on a coordinated terpyridyl ligand

    SciTech Connect

    Huynh, M.H.V.; Lee, D.G.; White, P.S.; Meyer, T.J.

    1999-11-10

    In recent experiments, the authors demonstrated that in the Os-hydrazido complexes, trans-[Os{sup VI}(L{sub 3})(Cl){sub 2}(NN(CH{sub 2}){sub 4}O)]{sup 2+} (L{sub 3} = 2,2{prime}:6{prime},2{double{underscore}prime}-terpyridine or tris(1-pyrazolyl)-methane and N(CH{sub 2}){sub 4}O{sup {minus}} = morpholide), there are four interconvertible oxidation states with Os(VI), Os(V), Os(IV), and Os(III) accessible within the solvent limit in CH{sub 3}CN. Examples of Os(VI), Os(V), and Os(IV) have been characterized by X-ray crystallography. The authors report here a remarkable reaction between trans-[Os{sup VI}(tpy)(Cl){sub 2}(NN(CH{sub 2}){sub 4}O)]{sup 2+} (2), has been characterized crystallographically. An extraordinary electrophilic substituent effect of Os(VI) on the tpy ligand and the ability of Os(VI) to undergo reversible intramolecular Os(VI {yields} IV) electron transfer appear to play essential roles in these reactions.

  14. Experimental Study of the Rate of Bond Formation Betwwen Individual Receptor-Coated Spheres and Ligand-Bearing Surfaces

    NASA Astrophysics Data System (ADS)

    Pierres, Anne; Benoliel, Anne-Marie; Bongrand, Pierre

    1996-06-01

    The efficiency of cell adhesion is highly dependent on the rate of association between adhesion molecules when membranes are at bonding distances. Whereas kinetic parameters of interactions involving at least one soluble molecular species have been extensively studied, the definition and experimental determination of corresponding parameters when both receptors and ligands are bound to surfaces are much more difficult to achieve. In the present work, we explore the feasibility of measuring the rate of association between antibody-coated spheres and antigen-derivatized surfaces in presence of an hydrodynamic shear force lower than the strength of a single bond. An image analysis procedure allows continuous recording of particle position with about 0.05 μm accuracy and a time resolution of 5 milliseconds. We present an original procedure allowing direct determination of the wall shear rate by processing the images of moving spheres. Further, simultaneous determination of the Brownian fluctuations perpendicular to the bulk fluid motion and the mean translational velocity of particles allows in principle a numerical determination of the sphere-to-substrate distance within a range of about 10 to 1000 nm. It is concluded that: i) particle motion is in rough agreement with current hydrodynamic theories based on creeping flow approximation. ii) In our experimental system adhesion seems to be diffusion-limited, therefore, only a lower boundary for the kinetic constant of molecular association can be obtained. iii) Further improvement of our method will require the production of molecularly smooth receptor-coated surfaces.

  15. Synthesis and Base Hydrolysis of a Cobalt(III) Complex Coordinated by a Thioether Ligand

    ERIC Educational Resources Information Center

    Roecker, Lee

    2008-01-01

    A two-week laboratory experiment for students in advanced inorganic chemistry is described. Students prepare and characterize a cobalt(III) complex coordinated by a thioether ligand during the first week of the experiment and then study the kinetics of Co-S bond cleavage in basic solution during the second week. The synthetic portion of the…

  16. Synthesis and Base Hydrolysis of a Cobalt(III) Complex Coordinated by a Thioether Ligand

    ERIC Educational Resources Information Center

    Roecker, Lee

    2008-01-01

    A two-week laboratory experiment for students in advanced inorganic chemistry is described. Students prepare and characterize a cobalt(III) complex coordinated by a thioether ligand during the first week of the experiment and then study the kinetics of Co-S bond cleavage in basic solution during the second week. The synthetic portion of the…

  17. B═B and B≡E (E = N and o) multiple bonds in the coordination sphere of late transition metals.

    PubMed

    Brand, Johannes; Braunschweig, Holger; Sen, Sakya S

    2014-01-21

    Because of their unusual structural and bonding motifs, multiply bonded boron compounds are fundamentally important to chemists, leading to enormous research interest. To access these compounds, researchers have introduced sterically demanding ligands that provide kinetic as well as electronic stability. A conceptually different approach to the synthesis of such compounds involves the use of an electron-rich, coordinatively unsaturated transition metal fragment. To isolate the plethora of borane, boryl, and borylene complexes, chemists have also used the coordination sphere of transition metals to stabilize reactive motifs in these molecules. In this Account, we summarize our results showing that increasingly synthetically challenging targets such as iminoboryl (B≡N), oxoboryl (B≡O), and diborene (B═B) fragments can be stabilized in the coordination sphere of late transition metals. This journey began with the isolation of two new iminoboryl ligands trans-[(Cy3P)2(Br)M(B≡N(SiMe3))] (M = Pd, Pt) attached to palladium and platinum fragments. The synthesis involved oxidative addition of the B-Br bond in (Me3Si)2N═BBr2 to [M(PCy3)2] (M = Pt, Pd) and the subsequent elimination of Me3SiBr at room temperature. Variation of the metal, the metal-bound coligands, and the substituent at the nitrogen atom afforded a series of analogous iminoboryl complexes. Following the same synthetic strategy, we also synthesized the first oxoboryl complex trans-[(Cy3P)2BrPt(BO)]. The labile bromide ligand adjacent to platinum makes the complex a viable candidate for further substitution reactions, which led to a number of new oxoboryl complexes. In addition to allowing us to isolate these fundamental compounds, the synthetic strategy is very convenient and minimizes byproducts. We also discuss the reaction chemistry of these types of compounds. In addition to facilitating the isolation of compounds with B≡E (E = N, O) triple bonds, the platinum fragment can also stabilize a

  18. Unexpected Ni(II) and Cu(II) polynuclear assemblies--a balance between ligand and metal ion coordination preferences.

    PubMed

    Shuvaev, Kontantin V; Tandon, Santokh S; Dawe, Louise N; Thompson, Laurence K

    2010-07-14

    Polytopic ligand design involves matching the coordination pocket composition with the metal ion coordination 'algorithm', but despite targeting [4 x 4] grids as the final outcome, metal ion preferences and ligand control can lead to widely varying complexes in the self-assembly process with Ni(II) and Cu(II).

  19. Conjugated metallorganic macrocycles: opportunities for coordination-driven planarization of bidentate, pyridine-based ligands.

    PubMed

    Hamm, Danielle C; Braun, Lindsey A; Burazin, Alex N; Gauthier, Amanda M; Ness, Kendra O; Biebel, Casey E; Sauer, Jon S; Tanke, Robin; Noll, Bruce C; Bosch, Eric; Bowling, Nathan P

    2013-01-28

    Two conjugated systems that can be constrained to planarity via metal coordination have been generated and their metal complexes studied. The potential for these architectures to be incorporated into metal-sensing arylene ethynylene/vinylene oligomers and polymers was probed by verifying that these ligands (1) bind strongly to Ag(I) and Pd(II) cations, and (2) that this event leads to complexes that are planar. Single crystal structures confirm that introduction of Ag(I) or Pd(II) cations enforces planarity in the newly formed macrocycles. Likewise, (1)H-NMR titration studies reveal stoichiometric binding of Pd(II) and strong binding of Ag(I) (K(a (Ligand 1)) = 1.3 × 10(2) M(-1); K(a (Ligand 2)) = 5.4 × 10(2) M(-1)) for each conjugated ligand.

  20. Bidentate coordinating behaviour of chalcone based ligands towards oxocations: VO(IV) and Mo(V)

    NASA Astrophysics Data System (ADS)

    Thaker, B. T.; Barvalia, R. S.

    2013-08-01

    We synthesized and studied the coordinating behaviour of chalcone based ligands derived from DHA and n-alkoxy benzaldehyde and their complexes of VO(IV) and MoO(V). The chalcone ligands are characterized by elemental analyses, UV-visible, IR, 1H NMR, and mass spectra. The resulting oxocation complexes are also characterized by elemental analyses, IR, 1H NMR, electronic, electron spin resonance spectra, magnetic susceptibility measurement and molar conductance studies. The IR and 1H NMR spectral data suggest that the chalcone ligands behave as a monobasic bidentate with O:O donor sequence towards metal ion. The molar conductivity data show them to be non-electrolytes. From the electronic, magnetic and ESR spectral data suggest that all the chalcone ligand complexes of VO(IV) and MoO(V) have distorted octahedral geometry.

  1. Anticancer Activity and Modes of Action of (arene) ruthenium(II) Complexes Coordinated to C-, N-, and O-ligands.

    PubMed

    Biersack, Bernhard

    2016-01-01

    An overview of anticancer active (arene)ruthenium(II) complexes coordinated to period 2 element-based ligand systems, i.e., carbon-, nitrogen-, and oxygen-coordinated ligands, is provided in this mini-review. A bridge is forged from the large group of anticancer active ruthenium compounds with monodentate and chelating nitrogen ligands via complexes of O,O-chelating ligands to organometallic ruthenium derivatives coordinated to carbon. (Arene)ruthenium(II) complexes with reduced side-effects and enhanced efficacy against cancer are highlighted. Pertinent literature is covered up to 2014.

  2. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    SciTech Connect

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n} (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.

  3. Cytotoxicity of cyclometalated platinum complexes based on tridentate NCN and CNN-coordinating ligands: remarkable coordination dependence.

    PubMed

    Vezzu, Dileep A K; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan

    2014-05-01

    A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the N^C^N-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the C^N^N-coordinated platinum complex based on 6-phenyl-2,2'-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by N^C^N- and C^N^N-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the N^C^N-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed that the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis were studied by western blot analysis and the activation of PARP via caspase 7 was observed.

  4. Coordinated Hard Sphere Mixture (CHaSM): A simplified model for oxide and silicate melts at mantle pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Wolf, Aaron S.; Asimow, Paul D.; Stevenson, David J.

    2015-08-01

    We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme temperatures and pressures, including deep mantle conditions like those in the early Earth magma ocean. The Coordinated Hard Sphere Mixture (CHaSM) is based on an extension of the hard sphere mixture model, accounting for the range of coordination states available to each cation in the liquid. By utilizing approximate analytic expressions for the hard sphere model, this method is capable of predicting complex liquid structure and thermodynamics while remaining computationally efficient, requiring only minutes of calculation time on standard desktop computers. This modeling framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide range of pressures and temperatures. We find that the typical coordination number of the Mg cation evolves continuously upward from 5.25 at 0 GPa to 8.5 at 250 GPa. The results produced by CHaSM are evaluated by comparison with predictions from published first-principles molecular dynamics calculations, indicating that CHaSM is accurately capturing the dominant physics controlling the behavior of oxide melts at high pressure. Finally, we present a simple quantitative model to explain the universality of the increasing Grüneisen parameter trend for liquids, which directly reflects their progressive evolution toward more compact solid-like structures upon compression. This general behavior is opposite that of solid materials, and produces steep adiabatic thermal profiles for silicate melts, thus playing a crucial role in magma ocean evolution.

  5. From Widely Accepted Concepts in Coordination Chemistry to Inverted Ligand Fields.

    PubMed

    Hoffmann, Roald; Alvarez, Santiago; Mealli, Carlo; Falceto, Andrés; Cahill, Thomas J; Zeng, Tao; Manca, Gabriele

    2016-07-27

    We begin with a brief historical review of the development of our understanding of the normal ordering of nd orbitals of a transition metal interacting with ligands, the most common cases being three below two in an octahedral environment, two below three in tetrahedral coordination, and four below one in a square-planar environment. From the molecular orbital construction of these ligand field splittings evolves a strategy for inverting the normal order: the obvious way to achieve this is to raise the ligand levels above the metal d's; that is, make the ligands better Lewis bases. However, things are not so simple, for such metal/ligand level placement may lead to redox processes. For 18-electron octahedral complexes one can create the inverted situation, but it manifests itself in the makeup of valence orbitals (are they mainly on metal or ligands?) rather than energy. One can also see the effect, in small ways, in tetrahedral Zn(II) complexes. We construct several examples of inverted ligand field systems with a hypothetical but not unrealistic AlCH3 ligand and sketch the consequences of inversion on reactivity. Special attention is paid to the square-planar case, exemplified by [Cu(CF3)4](-), in which Snyder had the foresight to see a case of an inverted field, with the empty valence orbital being primarily ligand centered, the dx2-y2 orbital heavily occupied, in what would normally be called a Cu(III) complex. For [Cu(CF3)4](-) we provide theoretical evidence from electron distributions, geometry of the ligands, thermochemistry of molecule formation, and the energetics of abstraction of a CF3 ligand by a base, all consistent with oxidation of the ligands in this molecule. In [Cu(CF3)4](-), and perhaps more complexes on the right side of the transition series than one has imagined, some ligands are σ-noninnocent. Exploration of inverted ligand fields helps us see the continuous, borderless transition from transition metal to main group bonding. We also give

  6. A Tetrapositive Metal Ion in the Gas Phase: Thorium(IV) Coordinated by Neutral Tridentate Ligands

    SciTech Connect

    Gong, Yu; Hu, Han-Shi; Tian, Guoxin; Rao, Linfeng; Li, Jun; Gibson, John K.

    2013-07-01

    ESI of 1:1 mixtures of Th(ClO₄)₄ and ligand TMOGA in acetonitrile resulted in the observation of the TMOGA supported tetracation, Th(L)₃⁴⁺, in the gas phase. Three TMOGA ligands are necessary to stabilize the tetrapositive thorium ion; no Th(L)₂⁴⁺ or Th(L)₄⁴⁺ was observed. Theoretical calculations reveal that the Th(L)₃⁴⁺ complex possesses C₃ symmetry with the thorium center coordinated by nine oxygen atoms from three ligands, which forms a twisted TPP geometry. Actinide compounds with such a geometry feature a nine-coordinate chiral actinide center. The Th-L binding energy and bond orders of Th(L)n⁴⁺ decrease as the coordination number increases, consistent with the trend of concurrently increasing Th-O distances. The Th-O bonding is mainly electrostatic in nature, but the covalent interactions are not negligible. CID of the Th(L)₃⁴⁺ complex mainly resulted in charge reduction to form Th(L)₂(L-86)³⁺oss of neutral TMOGA was not observed. The protic ligand methanol stabilized only tri- and dications of ligated thorium. The intensity of the Th(L)₃⁴⁺ peak was reduced as the percentage of water increased in the Th(ClO₄)₄/TMOGA solution.

  7. Field-Induced Co(II) Single-Ion Magnets with mer-Directing Ligands but Ambiguous Coordination Geometry.

    PubMed

    Peng, Yan; Mereacre, Valeriu; Anson, Christopher E; Zhang, Yiquan; Bodenstein, Tilmann; Fink, Karin; Powell, Annie K

    2017-06-05

    Three air-stable Co(II) mononuclear complexes with different aromatic substituents have been prepared and structurally characterized by single-crystal X-ray diffraction. The mononuclear complexes [Co(H2L1)2]·2THF (1), [Co(HL2)2] (2), and [Co(H2L3)2]·CH2Cl2 (3) (where H3L1, H2L2, and H3L3 represent 3-hydroxy-naphthalene-2-carboxylic acid (6-hydroxymethyl-pyridin-2-ylmethylene) hydrazide, nicotinic acid (6-hydroxymethyl-pyridin-2-ylmethylene) hydrazide, and 2-hydroxy-benzoic acid (6-hydroxymethyl-pyridin-2-ylmethylene) hydrazide, respectively) feature a distorted mer octahedral coordination geometry. Detailed magnetic studies of 1-3 have been conducted using direct and alternating current magnetic susceptibility data. Field-induced slow magnetic relaxation was observed for these three complexes. There are few examples of such behavior in (distorted) octahedral coordination geometry (OC) Co(II) mononuclear complexes with uniaxial anisotropy. Analysis of the six-coordinate Co(II) mononuclear single-ion magnets (SIMs) in the literature using the SHAPE program revealed that they all show what is best described as distorted trigonal prismatic (TRP) coordination geometry, and in general, these show negative D zero-field splitting (ZFS) values. On the other hand, all the Co(II) mononuclear complexes displaying what is best approximated as distorted octahedral (OC) coordination geometry show positive D values. In the new Co(II) mononuclear complexes we describe here, there is an ambiguity, since the rigid tridentate ligands confer what is best described for an octahedral complex as a mer coordination geometry, but the actual shape of the first coordination sphere is between octahedral and trigonal prismatic. The negative D values observed experimentally and supported by high-level electronic structure calculations are thus in line with a trigonal prismatic geometry. However, a consideration of the rhombicity as indicated by the E value of the ZFS in conjunction with the

  8. 2-[(8-Hydroxyquinolinyl)methylene]hydrazinecarboxamide: expanding the coordination sphere of 8-hydroxyquinoline for coordination of rare-earth metal(III) ions.

    PubMed

    Albrecht, Markus; Osetska, Olga; Fröhlich, Roland

    2005-12-07

    The semicarbazone of 8-hydroxyquinoline-2-carbaldehyde can be easily synthesized and is an effective tetradentate ligand for the coordination of rare-earth(III) ions. Investigations with yttrium(III) and lanthanum(III) in solution and in the solid state show, that the small yttrium ion can form 2 : 2 (1 : 1 stoichiometry) and 2 : 1 ligand to metal complexes (X-ray structures: [LY(NO3)(DMF)2]2Cl2 x 2DMF and [LL'Y] x 3MeOH x Et2O). With the larger lanthanum(III) ion only a well defined 1 : 1 complex (X-ray structure: [LLa(NO3)(MeOH)2]2(NO3)2) can be observed but probably 2 : 1 complexes are also formed. The X-ray structure analyses of [(L-H)MCl3] x MeOH (M = Er, Ho) and Na[(micro-NO3){LEu(NO3)2}2] x 2DMF show different coordination modes of the ligand. It can coordinate in its deprotonated but also in the protonated form.

  9. Effective Photo- and Triboluminescent Europium(III) Coordination Polymers with Rigid Triangular Spacer Ligands.

    PubMed

    Hasegawa, Yasuchika; Tateno, Shiori; Yamamoto, Masanori; Nakanishi, Takayuki; Kitagawa, Yuichi; Seki, Tomohiro; Ito, Hajime; Fushimi, Koji

    2017-02-21

    Luminescent Eu(III) coordination polymers with rigid triangular spacer ligands are reported. The Eu(III) coordination polymer, [Eu3 (hfa)9 (tppb)2 ]n (hfa: hexafluoroacetylacetonate, tppb: tris(4-diphenylphosphorylphenyl)benzene), shows high thermo-stability (decomposition temperature=354 °C) and photoluminescence quantum yield (Φ4f-4f =82 %, photosensitized energy transfer efficiency=78 %). The triboluminescence efficiency of Eu(III) coordination polymer with triangular spacers under laser pulse irradiation (Nd:YAG, λ=1064 nm, pulse width=5 ns, pulse energy=0.1 mJ) is calculated to be 49 %. Characteristic triangular structure, high emission quantum yield, effective photosensitized energy transfer, and remarkable triboluminescence properties of Eu(III) coordination polymers are demonstrated for the first time.

  10. Beyond the Active Site: The Impact of the Outer Coordination Sphere on Electrocatalysts for Hydrogen Production and Oxidation

    SciTech Connect

    Ginovska-Pangovska, Bojana; Dutta, Arnab; Reback, Matthew L.; Linehan, John C.; Shaw, Wendy J.

    2014-08-19

    Hydrogenase enzymes provide inspiration for investigations of molecular catalysts utilizing structural and functional mimics of the active site. However, the resulting active site mimics cannot match the combination of high rates and low overpotentials of the enzyme, suggesting that the rest of the protein scaffold, i.e., the outer coordination sphere, is necessary for the efficiency of hydrogenase. Therefore, inclusion of outer coordination sphere elements onto molecular catalysts may enable us to achieve and ultimately surpass the overall enzymatic efficiency. In an effort to identify and include the missing enzymatic features, there has been recent effort to understand the effect of outer coordination sphere elements on molecular catalysts for hydrogen oxidation and production. Our focus has been to utilize amino acid or peptide based scaffolds on an active functional mimic for hydrogen oxidation and production, [Ni(PR2NR’2)2]2+. This bottom-up approach, i.e, building an outer coordination sphere around a functional molecular catalyst, has allowed us to evaluate individual contributions to catalysis, including enhancing proton movement, concentrating substrate and introducing structural features to control reactivity. Collectively, these studies have resulted in catalysts that can operate faster, can operate at lower overpotentials, have enhanced water solubility, and/or can provide more stability to oxygen or extreme conditions such as strongly acidic or basic conditions than their unmodified parent complexes. Common mechanisms have yet to be defined to predictably control these processes but our growing knowledge in this area is essential for the eventual mimicry of enzymes for developing efficient molecular catalysts for practical use. This account reviews previously published work supported by the US DOE Basic Energy Sciences (BES), Physical Bioscience program, the Office of Science Early Career Research Program through the USDOE, BES, the Center for

  11. Secondary coordination sphere interactions facilitate the insertion step in an iridium(III) CO2 reduction catalyst.

    PubMed

    Schmeier, Timothy J; Dobereiner, Graham E; Crabtree, Robert H; Hazari, Nilay

    2011-06-22

    There is considerable interest in both catalysts for CO(2) conversion and understanding how CO(2) reacts with transition metal complexes. Here we develop a simple model for predicting the thermodynamic favorability of CO(2) insertion into Ir(III) hydrides. In general this reaction is unfavorable; however, we demonstrate that with a hydrogen bond donor in the secondary coordination sphere it is possible to isolate a formate product from this reaction. Furthermore, our CO(2) inserted product is one of the most active water-soluble catalysts reported to date for CO(2) hydrogenation.

  12. Zinc coordination polymers containing substituted isophthalate ligands and fragments from in situ hydrolysis of 4-pyridylisonicotinamide

    NASA Astrophysics Data System (ADS)

    O'Donovan, Megan E.; LaDuca, Robert L.

    2015-03-01

    Hydrothermal treatment of zinc nitrate, a 5-substituted isophthalic acid, and 4-pyridylisonicotinamide (4-pina) resulted in crystalline coordination polymers that incorporated different fragments formed by in situ hydrolysis of the 4-pina precursor. These materials were characterized by single crystal X-ray diffraction. In the case of {[4-ampyrH]2[Zn(hip)2]·H2O}n (1, 4-ampyrH = 4-aminopyridinium, hip = 5-hydroxyisophthalate), anionic [Zn(hip)2]n2n- (4,4) grid layers co-crystallize with protonated 4-ampyr cations. Using 5-nitroisophthalic acid (H2nip), [Zn7(isonic)4(OH)6(nip)2]n (2, isonic = isonicotinate) was formed. This material manifests [Zn7(OH)6]n cationic inorganic chain motifs linked by isonic and nip ligands into a non-interpenetrated 3-D coordination polymer network with pcu topology. Luminescent behavior is attributed to intra-ligand molecular orbital transitions.

  13. Coordination Architectures of energetic Cd (II) coordination polymers constructed by the bifunctional substituted-tetrazole-carboxylate ligands

    NASA Astrophysics Data System (ADS)

    Shen, Lei; Bai, Yu; Min, Yu-Ting; Jia, Tian-Tian; Wu, Qi; Wang, Jing; Geng, Fei; Cheng, Hong-Jian; Zhu, Dun-Ru; Yang, Jie; Yang, Gao-Wen

    2016-12-01

    Three different tetrazole-carboxylate ligands, monotetrazole-carboxylate H2tza (H2tza=1,5-tetrazole-diacetic acid), Hpztza (Hpztza=5-(2-pyrazinyl)tetrazole-2(1-methyl)acetic acid), ditetrazole-carboxylate H2tzpha (H2tzpha=1,3-di(tetrazole-5-yl)benzene-N2,N2‧-diacetic acid) have been chosen to react with CdCl2·6H2O, resulting in the formation of three new compounds [Cd2(tza)2] (1), [Cd(pztza)2] (2) and [Cd(tzpha)(CH3OH)2] (3). The coordinate sites of the three ligands are major influenced by the different substituted group of tetrazole ring. These compounds have been characterized by elemental analysis, IR and single crystal X-ray diffraction. Compound 1 displays a complex 3D structure; compound 2 shows a 3D network and compound 3 features a 2D layer network. Furthermore, the luminescence properties investigated at room temperature in the solid state showed excellent ligand-centered luminescence. The obvious enhancement in luminescence makes these compounds potential materials for optical use. The differential scanning calorimetry (DSC) and thermogravimetric-differential thermogravimetric (TG-DTG) analyses were applied to evaluate the thermal decomposition behavior of such compounds, showing that compounds 2 and 3 can be used as potential energetic materials. The relevant thermodynamic parameters ΔH, ΔS and ΔG were calculated as well.

  14. Synthesis and coordination chemistry of tridentate (PNN) amine enamido phosphine ligands with ruthenium.

    PubMed

    Wambach, T C; Lenczyk, C; Patrick, B O; Fryzuk, M D

    2016-04-07

    Tridentate amine-imine-phosphine ligands, R2PC5H7NC2H4NEt2 [(R)PNN(H)], where R = Pr(i) or Bu(t) are synthesized using a straightforward protocol of condensation, deprotonation, and addition of a chlorodialkylphosphine. Multinuclear NMR spectroscopy shows the ligands exist exclusively in the enamine tautomeric form in solution. Treating these ligands with RuHCl(PPr(i)3)2(CO) forms the desired coordination compounds, RuHCl[(R)PNN(H)](CO), where the imine tautomeric form of the ligands coordinates to ruthenium. Deuterium labelling experiments show Ru-H/N-D scrambling occurs during ligand coordination. Treating the RuHCl[(R)PNN(H)](CO) precursors with potassium tert-butoxide allows for the synthesis of two new ruthenium enamido-phosphine complexes, RuH[(R)PNN](CO), which were fully characterized. The structure of one of the derivatives was confirmed by X-ray crystallography (R = Pr(i)). The reactivity of the enamido-phosphine complexes with H2 and benzyl alcohol is also reported. For the enamido phosphine complex where R = Pr(i), the reaction with H2 is reversible and forms (RuH(CO)[(Pri)PNN(H)])2(μ-H)2, a hydride-bridged dimer that results from cooperative activation of H2. The reactivity of both amine-enamido-phosphine ruthenium compounds with benzyl alcohol establishes that the complexes are catalyst precursors for acceptorless dehydrogenation (AD), although the turnover frequencies measured using both catalyst precursors are modest.

  15. New Cu(II) coordination polymer by chiral tridentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Messai, Amel; Bilge, Duygu; Bilge, Metin; Parlak, Cemal

    2017-06-01

    The present research reports the synthesis, X-ray, magnetic and electronic properties for novel coordination polymer based upon copper (II) with chiral tridentate Schiff base ligand synthesized at condensation of acetylacetone and L-leucine amino acid. The investigation was also conducted by quantum mechanical calculations. The large energy gap indicates a high kinetic stability. Magnetic measurement gives predominant antiferromagnetic interactions within the chain. Results reveals further insight into copper(II) chiral tridentate Schiff base complexes.

  16. Monitoring the coordination of amine ligands on silver nanoparticles using NMR and SERS.

    PubMed

    Cure, Jérémy; Coppel, Yannick; Dammak, Thameur; Fazzini, Pier Francesco; Mlayah, Adnen; Chaudret, Bruno; Fau, Pierre

    2015-02-03

    Low size dispersity silver nanoparticles (ca. 6 nm) have been synthesized by the hydrogenolysis of silver amidinate in the presence of hexadecylamine. Combining NMR techniques with SERS and DFT modeling, it is possible to observe an original stabilization mechanism. Amidine moiety is strongly coordinated to the Ag(0) nanoparticles surface whereas HDA ligand is necessary to prevent agglomeration, although it is only weakly interacting with the surface.

  17. Metal coordination geometry of ternary complex between cobalt-bovine carbonic anhydrase and multidentate ligands.

    PubMed

    Hirose, J; Kidani, Y

    1980-03-26

    Interaction of cobalt(II) bovine carbonic anhydrase with 3- and 4-pyridinecarboxylates, 2-pyridinecarboxylate, and 2,6-pyridinedicarboxylate has been investigated by the spectrophotometric method. The apparent formation constant of the ternary complex (ligand : cobalt ion : apoenzyme = 1 : 1 : 1) was determined from spectral data. The spectroscopic data of the ternary complex indicate that the 3- or 4-pyridinecarboxylate adduct has a five-coordination geometry through three donor atoms of the protein part of the enzyme, the carboxyl group of 3- or 4-pyridinecarboxylate, and a water molecule. 3- or 4-Pyridinecarboxylate behaves as a monodentate ligand. The spectrum of the ternary complex of 2-pyridinecarboxylate was very different from that of 3- or 4-pyridinecarboxylate. The spectra data indicate that 2-pyridinecarboxylate adduct has a five-coordination geometry and that it behaves as a bidentate ligand. The ternary complex of 2,6-pyridinedicarboxylate was so unstable that the spectrum of the ternary complex was determined by the indirect method. The spectrum of 2,6-pyridinedicarboxylate adduct shows lower molar absorption than that of 2-pyridinecarboxylate adduct. This result indicates that 2,6-pyridine dicarboxylate behaves possibly as a tridentate ligand.

  18. Uranium(VI) coordination polymers with pyromellitate ligand: Unique 1D channel structures and diverse fluorescence

    SciTech Connect

    Zhang, Yingjie; Bhadbhade, Mohan; Karatchevtseva, Inna; Price, Jason R.; Liu, Hao; Zhang, Zhaoming; Kong, Linggen; Čejka, Jiří; Lu, Kim; Lumpkin, Gregory R.

    2015-03-15

    Three new coordination polymers of uranium(VI) with pyromellitic acid (H{sub 4}btca) have been synthesized and structurally characterized. (ED)[(UO{sub 2})(btca)]·(DMSO)·3H{sub 2}O (1) (ED=ethylenediammonium; DMSO=dimethylsulfoxide) has a lamellar structure with intercalation of ED and DMSO. (NH{sub 4}){sub 2}[(UO{sub 2}){sub 6}O{sub 2}(OH){sub 6}(btca)]·~6H{sub 2}O (2) has a 3D framework built from 7-fold coordinated uranyl trinuclear units and btca ligands with 1D diamond-shaped channels (~8.5 Å×~8.6 Å). [(UO{sub 2}){sub 2}(H{sub 2}O)(btca)]·4H{sub 2}O (3) has a 3D network constructed by two types of 7-fold coordinated uranium polyhedron. The unique μ{sub 5}-coordination mode of btca in 3 enables the formation of 1D olive-shaped large channels (~4.5 Å×~19 Å). Vibrational modes, thermal stabilities and fluorescence properties have been investigated. - Graphical abstract: Table of content: three new uranium(VI) coordination polymers with pyromellitic acid (H{sub 4}btca) have been synthesized via room temperature and hydrothermal synthesis methods, and structurally characterized. Two to three dimensional (3D) frameworks are revealed. All 3D frameworks have unique 1D large channels. Their vibrational modes, thermal stabilities and photoluminescence properties have been investigated. - Highlights: • Three new coordination polymers of U(VI) with pyromellitic acid (H{sub 4}btca). • Structures from a 2D layer to 3D frameworks with unique 1D channels. • Unusual µ{sub 5}-(η{sub 1}:η{sub 2}:η{sub 1}:η{sub 2:}η{sub 1}) coordination mode of btca ligand. • Vibrational modes, thermal stabilities and luminescent properties reported.

  19. Coordinated Hard Sphere Mixture (CHaSM): A fast approximate model for oxide and silicate melts at extreme conditions

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2015-12-01

    Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, <~30 GPa), yielding predictions rooted in statistical representations of melt structure

  20. Hydrothermal reactions: From the synthesis of ligand to new lanthanide 3D-coordination polymers

    SciTech Connect

    Silva, Fausthon Fred da; Fernandes de Oliveira, Carlos Alberto; Lago Falcão, Eduardo Henrique; Gatto, Claudia Cristina; Bezerra da Costa, Nivan; Oliveira Freire, Ricardo; Chojnacki, Jarosław; Alves Júnior, Severino

    2013-11-15

    The organic ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) was synthesized under hydrothermal conditions starting from the iminodiacetic acid and catalyzed by oxalic acid. The X-ray powder diffraction data indicates that the compound crystallizes in the P2{sub 1}/c monoclinic system as reported in the literature. The ligand was also characterized by elemental analysis, magnetic nuclear resonance, infrared spectroscopy and thermogravimetric analysis. Two new coordination networks based on lanthanide ions were obtained with this ligand using hydrothermal reaction. In addition to single-crystal X-ray diffraction, the compounds were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and elemental analysis. Single-crystal XRD showed that the compounds are isostructural, crystallizing in P2{sub 1}/n monoclinic system with chemical formula [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+}(1) and Eu{sup 3+}(2)).The luminescence properties of both compounds were studied. In the compound (1), a broad emission band was observed at 479 nm, redshifted by 70 nm in comparison of the free ligand. In (2), the typical f–f transition was observed with a maximum peak at 618 nm, related with the red emission of the europium ions. Computational methods were performed to simulate the crystal structure of (2). The theoretical calculations of the intensity parameters are in good agreement with the experimental values. - Graphical abstract: Scheme of obtaining the ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) and two new isostructural 3D-coordination polymers [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+} and Eu{sup 3+}) by hydrothermal synthesis. Display Omitted - Highlights: • The ligand 2,5-piperazinedione-1,4-diacetic acid was synthetized using the hydrothermic method and characterized. • Two new 3D-coordination polymers with this ligand containing Gd{sup 3+} and Eu{sup 3+} ions

  1. Synthesis and coordination chemistry of two N2-donor chelating di(indazolyl)methane ligands: structural characterization and comparison of their metal chelation aptitudes.

    PubMed

    Pettinari, Claudio; Marinelli, Alessandro; Marchetti, Fabio; Ngoune, Jean; Galindo, Agustín; Álvarez, Eleuterio; Gómez, Margarita

    2010-11-15

    The N(2)-donor bidentate ligands di(1H-indazol-1-yl)methane (L(1)) and di(2H-indazol-2-yl)methane (L(2)) (L in general) have been synthesized, and their coordination behavior toward Zn(II), Cd(II), and Hg(II) salts has been studied. Reaction of L(1) and L(2) with ZnX(2) (X = Cl, Br, or I) yields [ZnX(2)L] species (1-6), that, in the solid state, show a tetrahedral structure with dihapto ligand coordination via the pyrazolyl arms. The reaction of L(1) and L(2) with Zn(NO(3))(2)·6H(2)O is strongly dependent on the reaction conditions and on the ligand employed. Reaction of L(1) with equimolar quantities of Zn(NO(3))(2)·6H(2)O yields the neutral six-coordinate species [Zn(NO(3))(2)(L(1))], 7. On the other hand the use of L(1) excess gives the 2:1 adduct [Zn(NO(3))(2)(L(1))(2)], 8 where both nitrates act as a unidentate coordinating ligand. Analogous stoichiometry is found in the compound obtained from the reaction of L(2) with Zn(NO(3))(2)·6H(2)O which gives the ionic [Zn(NO(3))(L(2))(2)](NO(3)), 10. Complete displacement of both nitrates from the zinc coordination sphere is observed when the reaction between L(1) excess and the zinc salt was carried out in hydrothermal conditions. The metal ion type is also determining structure and stoichiometry: the reaction of L(2) with CdCl(2) gave the 2:1 adduct [CdCl(2)(L(2))(2)] 11 where both chlorides complete the coordination sphere of the six-coordinate cadmium center; on the other hand from the reaction of L(1) with CdBr(2) the polynuclear [CdBr(2)(L(1))](n) 12 is obtained, the Br(-) anion acting as bridging ligands in a six-coordinate cadmium coordination environment. The reaction of L(1) and L(2) with HgX(2) (X = Cl, I, SCN) is also dependent on the reaction conditions and the nature of X, two different types of adducts being formed [HgX(L)] (14: L = L(1), 16, 17: L = L(1) or L(2), X = I, 19: L = L(2), X = SCN) and [HgX(L)(2)] (15: L = L(2), X = Cl, 18: L = L(1), X = SCN). The X-ray diffraction analyses of compounds 1

  2. Supramolecular solar cells: surface modification of nanocrytalline TiO(2) with coordinating ligands to immobilize sensitizers and dyads via metal-ligand coordination for enhanced photocurrent generation.

    PubMed

    Subbaiyan, Navaneetha K; Wijesinghe, Channa A; D'Souza, Francis

    2009-10-21

    An elegant method of self-assembly for modification of a TiO(2) surface using coordinating ligands followed by immobilization of variety of sensitizers and a dyad is reported. This highly versatile method, in addition to testing the photoelectrochemical behavior of different zinc tetrapyrroles, allowed the use of fairly complex structures involving more than one donor entity. Utilization of the zinc porphyrin-ferrocene dyad markedly improved the current-voltage performance of the photoelectrochemical cell through an electron transfer-hole migration mechanism. Incident photon-to-current efficiency values up to 37% were obtained for the electrode modified with the dyad, signifying the importance of photocells built on the basis of biomimetic principles for efficient harvesting of solar energy.

  3. Optimizing conditions for utilization of an H 2 oxidation catalyst with outer coordination sphere functionalities

    SciTech Connect

    Dutta, Arnab; Ginovska, Bojana; Raugei, Simone; Roberts, John A. S.; Shaw, Wendy J.

    2016-01-01

    Hydrogenase enzymes use abundant metals such as nickel and iron to efficiently interconvert H2 and protons. In this work, we demonstrate that a Ni-based catalyst can exceed the rates of enzymes with only slightly higher overpotentials using [Ni(PCy2Narginine2)2]7, containing an amino acid-based outer coordination sphere. Under conditions of high pressure, elevated temperature, and aqueous acidic solutions, conditions similar to those found in fuel cells, this electrocatalyst exhibits the fastest H2 oxidation reported to date for any homogeneous catalyst (TOF 1.1×106 s-1) operating at a moderate overpotential (240 mV). Control experiments demonstrate that both the appended outer coordination sphere and water are important to achieve this impressive catalytic performance. This work was funded by the Office of Science Early Career Research Program through the US Department of Energy, Office of Science, Office of Basic Energy Sciences (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (JASR) located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy.

  4. Effect of Ligand Structural Isomerism in Formation of Calcium Coordination Networks

    SciTech Connect

    Plonka A. M.; Parise J.; Banerjee, D.

    2012-03-28

    Using different structural isomers (2,5-; 2,4-; 2;6-; 3,4-; 3,5-) of pyridinedicarboxylic acid, nine calcium-based coordination networks were synthesized under hydro-/solvothermal conditions and/or were produced via solvent recrystallization of previously synthesized compounds. The coordination networks reported were characterized using single crystal X-ray diffraction and thermal methods. They show diverse structural topologies, depending on the ligand geometry and coordinated solvent molecules, with inorganic connectivity motifs ranging from isolated octahedra to infinite chains, layer and a three-dimensional dense framework. The as-synthesized and desolvated networks further show structural transformation to hydrated phases through dissolution/reformation pathways. The process is likely driven by the high hydration energy of the calcium metal center.

  5. Coordination polymers assembled from semirigid fluorene-based ligand: A couple of enantiomers

    SciTech Connect

    Li, Liang; Wang, Zihao; Chen, Qiang; Zhou, Xinhui; Yang, Tao; Zhao, Qiang; Huang, Wei

    2015-11-15

    A couple of Mg(II)-based coordination polymer enantiomers [MgL(DMF)(H{sub 2}O){sub 3}]{sub n} (R-MgL and S-MgL), and a Zn(II)-based coordination polymer [ZnL(DMF)]{sub n} (ZnL) have been synthesized by the solvothermal reactions between the achiral ligand 4,4′-(9,9-dimethyl-9H-fluorene-2,7-diyl)dibenzoic acid (H{sub 2}L) and the corresponding metal salts. The MgL was obtained as the racemic conglomerate from the one pot reaction. The single crystal X-ray structural analyses reveal that MgL crystallize in the chiral space group P2{sub 1} and possesses the right- or left-handed homochiral 1D Mg–O–C helical chain. The ZnL crystallize in the non-centrosymmetrical space group Aba2 and possesses the 2D network comprised of 1D Zn–O–C meso-helical chains and ligands. The MgL and ZnL complexes exhibit strong coordination-perturbed ligand-centered blue emissions when excited at 320 nm. Their second-order nonlinear optical effects and thermal properties have also been studied. - Highlights: • A couple of Mg(II)-based enantiomers were obtained as the racemic conglomerate. • The ligand is 4,4′-(9,9-dimethyl-9H-fluorene-2,7-diyl)dibenzoic acid. • MgL features the right- or left-handed homochiral 1D Mg–O–C helical chain. • ZnL features the 1D Zn–O–C meso-helical chain. • Both MgL and ZnL display the intense solid-state blue emissions.

  6. Distinct supramolecular inclusion solids built by second sphere coordination of cobalt chloride anion with N,N,N',N'-tetra-p-methylbenzyl-ethylenediamine

    NASA Astrophysics Data System (ADS)

    Guo, Fang; Xia, Fang; Guan, Hong-yu; Wang, Bao-xin; Tong, Jian; Guo, Wen-sheng

    2011-01-01

    We have presented herein the utilization of second sphere coordination approach to construct supramolecular inclusion solids with varieties of guest molecules. Two distinct types of host frameworks were constructed by cobalt chloride anion ([CoCl 4] 2- or [Co 2Cl 6] 2-) and diprotonated N-bidentate ligand L1 (N,N,N',N'-tetra-p-methylbenzyl-ethylenediamine) or chloride anion-directed L1. The pillared double - layered host framework constructed by cobalt chloride anion ([CoCl 4] 2- or [Co 2Cl 6] 2-) and chloride anion-directed L1 can encapsulate o-hydroxybenzaldehyde and p-hydroxybenzaldehyde molecules, leading to the formation of supramolecular inclusion solids: {[C 7H 6O 2] 1.5·[CH 4O] 0.5} ⊂ {[ L1] 2·4H +·2Cl -·[CoCl 4] 2-} ( 1) and {[C 7H 6O 2] 0.5·[CH 4O] 0.25} ⊂ {[ L1]·2H +·Cl -·[Co 2Cl 6] 0.52-} ( 2); whereas the channel-cave host framework constructed by [CoCl 4] 2- and L1 can include acetic acid molecules, leading to the formation of supramolecular inclusion solid [C 2H 4O 2] 2 ⊂ {[ L1]·2H +·[CoCl 4] 2-} ( 3).

  7. Two different one-dimensional Cd(II) halide coordination polymers constructed through bridging carboxylate ligands.

    PubMed

    Hou, Xue-Li; Wang, Hui-Ting

    2015-11-01

    Two cadmium halide complexes, catena-poly[[chloridocadmium(II)]-di-μ-chlorido-[chloridocadmium(II)]-bis[μ2-4-(dimethylamino)pyridin-1-ium-1-acetate]-κ(3)O:O,O';κ(3)O,O':O], [CdCl2(C9H12N2O2)]n, (I), and catena-poly[1-cyanomethyl-1,4-diazoniabicyclo[2.2.2]octane [[dichloridocadmium(II)]-μ-oxalato-κ(4)O(1),O(2):O(1'),O(2')] monohydrate], {(C8H15N3)[CdCl2(C2O4)]·H2O}n, (II), were synthesized in aqueous solution. In (I), the Cd(II) cation is octahedrally coordinated by three O atoms from two carboxylate groups and by one terminal and two bridging chloride ligands. Neighbouring Cd(II) cations are linked together by chloride anions and bridging O atoms to form a one-dimensional zigzag chain. Hydrogen-bond interactions are involved in the formation of the two-dimensional network. In (II), each Cd(II) cation is octahedrally coordinated by four O atoms from two oxalic acid ligands and two terminal Cl(-) ligands. Neighbouring Cd(II) cations are linked together by oxalate groups to form a one-dimensional anionic chain, and the water molecules and organic cations are connected to this one-dimensional zigzag chain through hydrogen-bond interactions.

  8. Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal-Ligand Coordination.

    PubMed

    Rao, Ying-Li; Chortos, Alex; Pfattner, Raphael; Lissel, Franziska; Chiu, Yu-Cheng; Feig, Vivian; Xu, Jie; Kurosawa, Tadanori; Gu, Xiaodan; Wang, Chao; He, Mingqian; Chung, Jong Won; Bao, Zhenan

    2016-05-11

    A self-healing dielectric elastomer is achieved by the incorporation of metal-ligand coordination as cross-linking sites in nonpolar polydimethylsiloxane (PDMS) polymers. The ligand is 2,2'-bipyridine-5,5'-dicarboxylic amide, while the metal salts investigated here are Fe(2+) and Zn(2+) with various counteranions. The kinetically labile coordination between Zn(2+) and bipyridine endows the polymer fast self-healing ability at ambient condition. When integrated into organic field-effect transistors (OFETs) as gate dielectrics, transistors with FeCl2 and ZnCl2 salts cross-linked PDMS exhibited increased dielectric constants compared to PDMS and demonstrated hysteresis-free transfer characteristics, owing to the low ion conductivity in PDMS and the strong columbic interaction between metal cations and the small Cl(-) anions which can prevent mobile anions drifting under gate bias. Fully stretchable transistors with FeCl2-PDMS dielectrics were fabricated and exhibited ideal transfer characteristics. The gate leakage current remained low even after 1000 cycles at 100% strain. The mechanical robustness and stable electrical performance proved its suitability for applications in stretchable electronics. On the other hand, transistors with gate dielectrics containing large-sized anions (BF4(-), ClO4(-), CF3SO3(-)) displayed prominent hysteresis due to mobile anions drifting under gate bias voltage. This work provides insights on future design of self-healing stretchable dielectric materials based on metal-ligand cross-linked polymers.

  9. Synthesis and Coordination Chemistry of Hexadentate Picolinic Acid Based Bispidine Ligands.

    PubMed

    Comba, Peter; Grimm, Laura; Orvig, Chris; Rück, Katharina; Wadepohl, Hubert

    2016-12-19

    The synthesis and Cu(II), Ni(II), Zn(II), Co(II), and Ga(III) coordination chemistry of the two isomeric hexadentate N5O ligands 6-[[9-hydroxy-1,5-bis(methoxycarbonyl)-7-methyl-6,8-bis(pyridin-2-yl)-3,7-diazabicyclo[3.3.1]nonan-3-yl]methyl]picolinic acid (Hbispa(1a)) and 6-[[9-hydroxy-1,5-bis(methoxycarbonyl)-7-methyl-2,4-bis(pyridin-2-yl)-3,7-diazabicyclo[3.3.1]nonan-3-yl]methyl]picolinic acid (Hbispa(1b)), picolinic acid-appended bispidines, are described. The two ligands are highly preorganized for octahedral coordination geometries and are particularly well suited for tetragonal symmetries, i.e., for Jahn-Teller labile ground states. This is confirmed by all data presented: solid-state structures, solution spectroscopy, electrochemistry, and Cu(II) complex stabilities. Differences in the preorganization of the two isomers for the Jahn-Teller labile Cu(II) centers are thoroughly analyzed on the basis of the crystal structures and an angular-overlap-model-based ligand-field analysis.

  10. Using Functionalized Silyl Ligands To Suppress Solvent Coordination to Silyl Lanthanide(II) Complexes

    PubMed Central

    2017-01-01

    The reaction of the potassium 1,3-trisilanediide Me2Si[Si(Me3Si)2K]2 with SmI2 and YbI2 was found to give the respective disilylated complexes Me2Si[Si(Me3Si)2]2Sm·2THF and Me2Si[Si(Me3Si)2]2Yb·2THF. Desolvation of coordinated solvent molecules in these complexes made their handling difficult. However, using a number of functionalized silanide ligands, complexes with a diminished number or even no coordinated solvent molecules were obtained ((R3Si)2Ln(THF)x (x = 0–3)). The structures of all new lanthanide compounds were determined by X-ray single-crystal structure analysis. NMR spectroscopic analysis of some Yb–silyl complexes pointed at highly ionic interactions between the silyl ligands and the lanthanides. This bonding picture was supported by DFT calculations at the B3PW91/Basis1 level of theory. Detailed theoretical analysis of a disilylated Eu(II) complex suggests that its singly occupied molecular orbitals (SOMOs) are very close in energy to the ligand silicon lone pairs (HOMO), and SQUID magnetometry measurements of the complex showed a deviation from the expected behavior for a free Eu(II) ion, which might be due to a ligand–metal interaction. PMID:28398724

  11. Hydrothermal reactions: From the synthesis of ligand to new lanthanide 3D-coordination polymers

    NASA Astrophysics Data System (ADS)

    da Silva, Fausthon Fred; de Oliveira, Carlos Alberto Fernandes; Falcão, Eduardo Henrique Lago; Gatto, Claudia Cristina; da Costa, Nivan Bezerra; Freire, Ricardo Oliveira; Chojnacki, Jarosław; Alves Júnior, Severino

    2013-11-01

    The organic ligand 2,5-piperazinedione-1,4-diacetic acid (H2PDA) was synthesized under hydrothermal conditions starting from the iminodiacetic acid and catalyzed by oxalic acid. The X-ray powder diffraction data indicates that the compound crystallizes in the P21/c monoclinic system as reported in the literature. The ligand was also characterized by elemental analysis, magnetic nuclear resonance, infrared spectroscopy and thermogravimetric analysis. Two new coordination networks based on lanthanide ions were obtained with this ligand using hydrothermal reaction. In addition to single-crystal X-ray diffraction, the compounds were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and elemental analysis. Single-crystal XRD showed that the compounds are isostructural, crystallizing in P21/n monoclinic system with chemical formula [Ln(PDA)1.5(H2O)](H2O)3 (Ln=Gd3+(1) and Eu3+(2)).The luminescence properties of both compounds were studied. In the compound (1), a broad emission band was observed at 479 nm, redshifted by 70 nm in comparison of the free ligand. In (2), the typical f-f transition was observed with a maximum peak at 618 nm, related with the red emission of the europium ions. Computational methods were performed to simulate the crystal structure of (2). The theoretical calculations of the intensity parameters are in good agreement with the experimental values.

  12. The second-shell metal ligands of human arginase affect coordination of the nucleophile and substrate.

    PubMed

    Stone, Everett M; Chantranupong, Lynne; Georgiou, George

    2010-12-14

    The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution.

  13. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance

    PubMed Central

    Shao, Yuyan; Liu, Tianbiao; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark; Xiao, Jie; Lv, Dongping; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun

    2013-01-01

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a study in understanding coordination chemistry of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new electrolyte is developed based on Mg(BH4)2, diglyme and LiBH4. The preliminary electrochemical test results show that the new electrolyte demonstrates a close to 100% coulombic efficiency, no dendrite formation, and stable cycling performance for Mg plating/stripping and Mg insertion/de-insertion in a model cathode material Mo6S8 Chevrel phase. PMID:24185310

  14. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance

    DOE PAGES

    Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; ...

    2013-11-04

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimized LiBH4 additive.more » The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.« less

  15. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance

    SciTech Connect

    Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark H.; Xiao, Jie; Lu, Dongping; Wang, Chong M.; Zhang, Jiguang; Liu, Jun

    2013-11-04

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimized LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.

  16. Design and coordination behavior of the first selective recognition ligand of 147Pm(III).

    PubMed

    Liu, Weisheng; Li, Xiaofeng; Wen, Yonghong; Tan, Minyu

    2004-02-21

    A new amide tripodal ligand, 6-[2-(2-diethylamino-2-oxoethoxy)ethyl]-N,N,12-triethyl-11-oxo-3,9-dioxa-6,12-diazatetradecanamide (4) has been designed and synthesized for the recognition of rare earth ions. Three representative complexes of trivalent lighter (La), middle (Gd), and heavier (Er) rare earth ions with 4 were synthesized and characterized by X-ray crystallography. In the complex, the heptadentate forms a cup-like coordination cavity encapsulating the central ion. Different supramolecular complex dimers are constructed by pi-pi interaction and van der Waals forces in accordance with the lanthanide contraction. The differences of the cavity and dimer structures were investigated further by assessing the separation efficiency of in multitrace solvent extraction of rare earth ions from picrate acid solution and the ligand has the best separation factor for 147Pm(III).

  17. Asymmetric catalysis mediated by the ligand sphere of octahedral chiral-at-metal complexes.

    PubMed

    Gong, Lei; Chen, Liang-An; Meggers, Eric

    2014-10-06

    Due to the relationship between structure and function in chemistry, access to novel chemical structures ultimately drives the discovery of novel chemical function. In this light, the formidable utility of the octahedral geometry of six-coordinate metal complexes is founded in its stereochemical complexity combined with the ability to access chemical space that might be unavailable for purely organic compounds. In this Minireview we wish to draw attention to inert octahedral chiral-at-metal complexes as an emerging class of metal-templated asymmetric "organocatalysts" which exploit the globular, rigid nature and stereochemical options of octahedral compounds and promise to provide new opportunities in the field of catalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Coordination chemistry and reactivity of zinc complexes supported by a phosphido pincer ligand.

    PubMed

    D'Auria, Ilaria; Lamberti, Marina; Mazzeo, Mina; Milione, Stefano; Roviello, Giuseppina; Pellecchia, Claudio

    2012-02-20

    The preparation and characterization of new Zn(II) complexes of the type [(PPP)ZnR] in which R = Et (1) or N(SiMe(3))(2) (2) and PPP is a tridentate monoanionic phosphido ligand (PPP-H = bis(2-diphenylphosphinophenyl)phosphine) are reported. Reaction of ZnEt(2) and Zn[N(SiMe(3))(2)](2) with one equivalent of proligand PPP-H produced the corresponding tetrahedral zinc ethyl (1) and zinc amido (2) complexes in high yield. Homoleptic (PPP)(2) Zn complex 3 was obtained by reaction of the precursors with two equivalents of the proligand. Structural characterization of 1-3 was achieved by multinuclear NMR spectroscopy ((1)H, (13)C, and (31)P) and X-ray crystallography (3). Variable-temperature (1)H and (31)P NMR studies highlighted marked flexibility of the phosphido pincer ligand in coordination at the metal center. A DFT calculation on the compounds provided theoretical support for this behavior. The activities of 1 and 2 toward the ring-opening polymerization of ε-caprolactone and of L- and rac-lactide were investigated, also in combination with an alcohol as external chain-transfer agent. Polyesters with controlled molecular parameters (M(n), end groups) and low polydispersities were obtained. A DFT study on ring-opening polymerization promoted by these complexes highlighted the importance of the coordinative flexibility of the ancillary ligand to promote monomer coordination at the reactive zinc center. Preliminary investigations showed the ability of these complexes to promote copolymerization of L-lactide and ε-caprolactone to achieve random copolymers whose microstructure reproduces the composition of the monomer feed.

  19. Rearrangement of a Krebs-type polyoxometalate upon coordination of N,O-bis(bidentate) ligands.

    PubMed

    Artetxe, Beñat; Reinoso, Santiago; San Felices, Leire; Lezama, Luis; Pache, Aroa; Vicent, Cristian; Gutiérrez-Zorrilla, Juan M

    2015-01-20

    Selective coordination of 2,3-pyzdc to the Krebs-type [{Ni(H2O)3}2(WO2)2(SbW9O33)2](10-) anion promotes a skeletal rearrangement that results in the [(2,3-pyzdc)2{NaNi2(H2O)4Sb2W20O70}2](22-) (Ni4) hybrid dimer showing a novel dinickel containing a 20-tungsto-2-antimonate(III) framework stabilized by N,O-bis(bidentate) bridging ligands. The solution stability and magnetism of Ni4 is discussed.

  20. New Iridium Complex Coordinated with Tetrathiafulvalene Substituted Triazole-pyridine Ligand: Synthesis, Photophysical and Electrochemical Properties.

    PubMed

    Niu, Zhi-Gang; Xie, Hui; He, Li-Rong; Li, Kai-Xiu; Xia, Qing; Wu, Dong-Min; Li, Gao-Nan

    2016-01-01

    A new iridium(III) complex based on the triazole-pyridine ligand with tetrathiafulvalene unit, [Ir(ppy)2(L)]PF6 (1), has been synthesized and structurally characterized. The absorption spectra, luminescent spectra and electrochemical behaviors of L and 1 have been investigated. Complex 1 is found to be emissive at room temperature with maxima at 481 and 510 nm. The broad and structured emission bands are suggested a mixing of 3LC (3π-π*) and 3CT (3MLCT) excited states. The influence of iridium ion coordination on the redox properties of the TTF has also been investigated by cyclic voltammetry.

  1. Electrostatically driven second-sphere ligand switch between high and low reorganization energy forms of native cytochrome c.

    PubMed

    Alvarez-Paggi, Damián; Castro, María A; Tórtora, Verónica; Castro, Laura; Radi, Rafael; Murgida, Daniel H

    2013-03-20

    We have employed a combination of protein film voltammetry, time-resolved vibrational spectroelectrochemistry and molecular dynamics simulations to evaluate the electron-transfer reorganization free energy (λ) of cytochrome c (Cyt) in electrostatic complexes that mimic some basic features of protein-protein and protein-lipid interactions. The results reveal the existence of two native-like conformations of Cyt that present significantly different λ values. Conversion from the high to the low λ forms is triggered by electrostatic interactions, and involves the rupture of a weak H-bond between first- (M80) and second-sphere (Y67) ligands of the heme iron, as a distinctive feature of the conformational switch. The two flexible Ω loops operate as transducers of the electrostatic signal. This fine-tuning effect is abolished in the Y67F Cyt mutant, which presents a λ value similar to the WT protein in electrostatic complexes. We propose that interactions of Cyt with the natural redox partner proteins activate a similar mechanism to minimize the reorganization energy of interprotein electron transfer.

  2. Synthesis, crystal structure and luminescence properties of lanthanide coordination polymers with a new semirigid bridging thenylsalicylamide ligand

    NASA Astrophysics Data System (ADS)

    Song, Xue-Qin; Wang, Li; Zhao, Meng-Meng; Wang, Xiao-Run; Peng, Yun-Qiao; Cheng, Guo-Quan

    2013-09-01

    Two new lanthanide coordination polymers based on a semirigid bridging thenylsalicylamide ligand {[Ln2L3(NO3)6]·(C4H8O2)2}∞ were obtained and characterized by elemental analysis, X-ray diffraction, IR and TGA measurements. The two compounds are isostructure and possess one dimensional trapezoid ladder-like chain built up from the connection of isolated LnO3(NO3)3 polyhedra (distorted monocapped antisquare prism) through the ligand. The photoluminescence analysis suggest that there is an efficient ligand-to-Ln(III) energy transfer in Tb(III) complex and the ligand is an efficient "antenna" for Tb(III). From a more general perspective, the results demonstrated herein provide the possibility of controlling the formation of the desired lanthanide coordination structure to enrich the crystal engineering strategy and enlarge the arsenal for developing excellent luminescent lanthanide coordination polymers.

  3. Syntheses and structures of two new coordination polymers generated from a 4-aminotriazole-bridged organic ligand and Co(II) salts.

    PubMed

    Wang, Xue Ru; Ma, Jian Ping; Dong, Yu Bin

    2017-03-01

    Organic ligands and counter-anions influence the coordination spheres of metal cations and hence the construction of coordination polymers (CPs). The specific bent geometries of five-membered heterocyclic triazole bridging organic ligands are capable of generating CPs with novel patterns not easily obtained using rigid linear ligands. A multidentate 4-aminotriazole-bridged organic ligand, namely 4-amino-3,5-bis(4,3'-bipyridyl-5'-yl)-4H-1,2,4-triazole (L) has been prepared and used to synthesize two Co(II) coordination polymers, namely poly[[[μ2-4-amino-3,5-bis(4,3'-bipyridyl-5'-yl)-4H-1,2,4-triazole-κ(2)N:N']bis(methanol-κO)cobalt(II)] bis(perchlorate)], {[Co(C22H16N8)2(CH3OH)2](ClO4)2}n, (I), and poly[[μ3-4-amino-3,5-bis(4,3'-bipyridyl-5'-yl)-4H-1,2,4-triazole-κ(3)N:N':N'']dichloridocobalt(II)], [CoCl2(C22H16N8)]n, (II), using CoX2 salts [X = ClO4 for (I) and Cl for (II)] under solvothermal conditions. Single-crystal X-ray structure analysis revealed that they both feature two-dimensional networks. Cobalt is located on an inversion centre in (I) and in a general position in (II). In (I), L functions as a bidentate cis-conformation ligand linking Co(II) ions, while it functions as a tridentate trans-conformation linker binding Co(II) ions in (II). In addition, O-H...N and N-H...O hydrogen bonds and C-H...π interactions exist in (I), while N-H...Cl and π-π interactions exist in (II), and these weak interactions play an important role in aligning the two-dimensional nets of (I) and (II) in the solid state. As the compounds were synthesized under the same conditions, the significant structural variations between (I) and (II) are believed to be determined by the different sizes and coordination abilities of the counter-anions. IR spectroscopy and diffuse reflectance UV-Vis spectra were also used to investigate the title compounds.

  4. Uranium(VI) coordination polymers with pyromellitate ligand: Unique 1D channel structures and diverse fluorescence

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Bhadbhade, Mohan; Karatchevtseva, Inna; Price, Jason R.; Liu, Hao; Zhang, Zhaoming; Kong, Linggen; Čejka, Jiří; Lu, Kim; Lumpkin, Gregory R.

    2015-03-01

    Three new coordination polymers of uranium(VI) with pyromellitic acid (H4btca) have been synthesized and structurally characterized. (ED)[(UO2)(btca)]·(DMSO)·3H2O (1) (ED=ethylenediammonium; DMSO=dimethylsulfoxide) has a lamellar structure with intercalation of ED and DMSO. (NH4)2[(UO2)6O2(OH)6(btca)]·~6H2O (2) has a 3D framework built from 7-fold coordinated uranyl trinuclear units and btca ligands with 1D diamond-shaped channels (~8.5 Å×~8.6 Å). [(UO2)2(H2O)(btca)]·4H2O (3) has a 3D network constructed by two types of 7-fold coordinated uranium polyhedron. The unique μ5-coordination mode of btca in 3 enables the formation of 1D olive-shaped large channels (~4.5 Å×~19 Å). Vibrational modes, thermal stabilities and fluorescence properties have been investigated.

  5. A bis(amido) ligand set that supports two-coordinate chromium in the +1, +2, and +3 oxidation states†

    PubMed Central

    Cai, Irene C.; Lipschutz, Michael I.

    2014-01-01

    The amido ligand –N(SiiPr3)DIPP (DIPP = 2,6-diisopropylphenyl) has been used to prepare two-coordinate complexes of CrI, CrII, and CrIII. The two-coordinate CrII complex has also been used to prepare a three-coordinate CrIII iodide complex, which can be used to access a stable CrIII methyl species. PMID:25222516

  6. A bis(amido) ligand set that supports two-coordinate chromium in the +1, +2, and +3 oxidation states.

    PubMed

    Cai, Irene C; Lipschutz, Michael I; Tilley, T Don

    2014-11-07

    The amido ligand -N(Si(i)Pr3)DIPP (DIPP = 2,6-diisopropylphenyl) has been used to prepare two-coordinate complexes of Cr(I), Cr(II), and Cr(III). The two-coordinate Cr(II) complex has also been used to prepare a three-coordinate Cr(III) iodide complex, which can be used to access a stable Cr(III) methyl species.

  7. Synthesis, spectroscopic studies, thermal analyses, biological activity of tridentate coordinated transition metal complexes of bi(pyridyl-2-ylmethyl)amine]ligand

    NASA Astrophysics Data System (ADS)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.

    2016-01-01

    A new tridentate acyclic pincer ligand, [bi(pyridin-2-methyl)amine] (bpma, HL), was synthesized and reacted to form complexes with copper(II), nickel(II), iron(II), cobalt(II) and zinc(II) ions. Both the ligand and its complexes were characterized using elemental analysis, molar conductance, infrared, 1H-NMR-spectroscopy, mass and thermal analyses. According to the spectroscopic data, all of the complexes share the same coordination environment around the metal atoms, consisting two nitrogen-pyridine entities, one nitrogen-methylamine entity, one/two water molecules and/or one/two chloride or bromide ions. Complexes also showed molar conductivity according to the presence of two halide anions outer the coordination sphere except Co(II) and Zn(II) complexes are non electrolytes. Analysis indicates that the metal ions have trigonal bipyramidal structure. Cu(II), Ni(II), Fe(II), Co(II), and Zn(II) metal complexes were screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus (G+) and Escherichia coli, and Pseudomonas aeruginosa (G-) bacteria. They showed remarkable antimicrobial activity.

  8. Structure, ligands and substrate coordination of the oxygen-evolving complex of photosystem II in the S2 state: a combined EPR and DFT study.

    PubMed

    Lohmiller, Thomas; Krewald, Vera; Navarro, Montserrat Pérez; Retegan, Marius; Rapatskiy, Leonid; Nowaczyk, Marc M; Boussac, Alain; Neese, Frank; Lubitz, Wolfgang; Pantazis, Dimitrios A; Cox, Nicholas

    2014-06-28

    The S2 state of the oxygen-evolving complex of photosystem II, which consists of a Mn4O5Ca cofactor, is EPR-active, typically displaying a multiline signal, which arises from a ground spin state of total spin ST = 1/2. The precise appearance of the signal varies amongst different photosynthetic species, preparation and solvent conditions/compositions. Over the past five years, using the model species Thermosynechococcus elongatus, we have examined modifications that induce changes in the multiline signal, i.e. Ca(2+)/Sr(2+)-substitution and the binding of ammonia, to ascertain how structural perturbations of the cluster are reflected in its magnetic/electronic properties. This refined analysis, which now includes high-field (W-band) data, demonstrates that the electronic structure of the S2 state is essentially invariant to these modifications. This assessment is based on spectroscopies that examine the metal centres themselves (EPR, (55)Mn-ENDOR) and their first coordination sphere ligands ((14)N/(15)N- and (17)O-ESEEM, -HYSCORE and -EDNMR). In addition, extended quantum mechanical models from broken-symmetry DFT now reproduce all EPR, (55)Mn and (14)N experimental magnetic observables, with the inclusion of second coordination sphere ligands being crucial for accurately describing the interaction of NH3 with the Mn tetramer. These results support a mechanism of multiline heterogeneity reported for species differences and the effect of methanol [Biochim. Biophys. Acta, Bioenerg., 2011, 1807, 829], involving small changes in the magnetic connectivity of the solvent accessible outer MnA4 to the cuboidal unit Mn3O3Ca, resulting in predictable changes of the measured effective (55)Mn hyperfine tensors. Sr(2+) and NH3 replacement both affect the observed (17)O-EDNMR signal envelope supporting the assignment of O5 as the exchangeable μ-oxo bridge and it acting as the first site of substrate inclusion.

  9. Porous coordination polymers with ubiquitous and biocompatible metals and a neutral bridging ligand

    PubMed Central

    Noro, Shin-ichiro; Mizutani, Junya; Hijikata, Yuh; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu; Sugimoto, Kunihisa; Inubushi, Yasutaka; Kubo, Kazuya; Nakamura, Takayoshi

    2015-01-01

    The design of inexpensive and less toxic porous coordination polymers (PCPs) that show selective adsorption or high adsorption capacity is a critical issue in research on applicable porous materials. Although use of Group II magnesium(II) and calcium(II) ions as building blocks could provide cheaper materials and lead to enhanced biocompatibility, examples of magnesium(II) and calcium(II) PCPs are extremely limited compared with commonly used transition metal ones, because neutral bridging ligands have not been available for magnesium(II) and calcium(II) ions. Here we report a rationally designed neutral and charge-polarized bridging ligand as a new partner for magnesium(II) and calcium(II) ions. The three-dimensional magnesium(II) and calcium(II) PCPs synthesized using such a neutral ligand are stable and show selective adsorption and separation of carbon dioxide over methane at ambient temperature. This synthetic approach allows the structural diversification of Group II magnesium(II) and calcium(II) PCPs. PMID:25592677

  10. Porous coordination polymers with ubiquitous and biocompatible metals and a neutral bridging ligand

    NASA Astrophysics Data System (ADS)

    Noro, Shin-Ichiro; Mizutani, Junya; Hijikata, Yuh; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu; Sugimoto, Kunihisa; Inubushi, Yasutaka; Kubo, Kazuya; Nakamura, Takayoshi

    2015-01-01

    The design of inexpensive and less toxic porous coordination polymers (PCPs) that show selective adsorption or high adsorption capacity is a critical issue in research on applicable porous materials. Although use of Group II magnesium(II) and calcium(II) ions as building blocks could provide cheaper materials and lead to enhanced biocompatibility, examples of magnesium(II) and calcium(II) PCPs are extremely limited compared with commonly used transition metal ones, because neutral bridging ligands have not been available for magnesium(II) and calcium(II) ions. Here we report a rationally designed neutral and charge-polarized bridging ligand as a new partner for magnesium(II) and calcium(II) ions. The three-dimensional magnesium(II) and calcium(II) PCPs synthesized using such a neutral ligand are stable and show selective adsorption and separation of carbon dioxide over methane at ambient temperature. This synthetic approach allows the structural diversification of Group II magnesium(II) and calcium(II) PCPs.

  11. Substituent dependent layer topologies in copper isophthalate coordination polymers containing long-spanning dipyridylamide ligands

    NASA Astrophysics Data System (ADS)

    Randolph, Renee K.; LaDuca, Robert L.

    2017-05-01

    Hydrothermal reaction of copper nitrate, a 5-position substituted isophthalic acid, and the long-spanning dipyridylamide ligand 1,6-hexanediaminebis(nicotinamide) (hbn) resulted in two new coordination polymers whose layer topologies and interpenetration mechanisms depend critically on the nature of the substituent. The new phases were structurally characterized by single crystal X-ray diffraction. {[Cu(meoip)(hbn)]·H2O}n (1, meoip = 5-methoxyisophthalate) exhibits [Cu(meoip)]n chain motifs with embedded {Cu2(OCO)2} dinuclear units, pillared by pairs of hbn ligands into a decorated (4,4) grid topology. {[Cu3(sip)2(hbn)3(H2O)4]·11.5H2O}n (2, sip = 5-sulfoisophthalate) displays neutral [Cu3(sip)2(H2O)4] fragments connected by hbn ligands into 3,4-connected layer motifs with a {4.62}2{426282} topology, derived from the standard (4,4) grid with regular removal of some pillars. The layer motifs in 2 engage in 2D + 2D → 3D parallel interpenetration, with entrained co-crystallized water molecule tapes. Thermal decomposition behavior of the new phases is also discussed.

  12. Luminescent complexes of iridium(III) containing N/\\C/\\N-coordinating terdentate ligands.

    PubMed

    Wilkinson, Andrew J; Puschmann, Horst; Howard, Judith A K; Foster, Clive E; Williams, J A Gareth

    2006-10-16

    A family of bis-terdentate iridium(III) complexes is reported which contain a cyclometalated, N/\\C[wedge]N-coordinating 1,3-di(2-pyridyl)benzene derivative. This coordination mode is favored by blocking competitive cyclometalation at the C4 and C6 positions of the ligand. Thus, 1,3-di(2-pyridyl)-4,6-dimethylbenzene (dpyxH) reacts with IrCl3 x 3H2O to generate a dichlorobridged dimer [Ir(dpyx-N,C,N)Cl(mu-Cl)]2, 1. This dimer is cleaved by DMSO to give [Ir(dpyx)(DMSO)Cl2], the X-ray crystal structure of which is reported here, confirming the N/\\C/\\N coordination mode of dpyx. The dimer 1 can also be cleaved by a variety of other ligands to generate novel classes of mononuclear complexes. These include charge-neutral bis-terdentate complexes of the form [Ir(N/\\C/\\N)(C/\\N/\\C)] and [Ir(N/\\C/\\N)(C/\\N/\\O)], by reaction of 1 with C/\\N/\\C-coordinating ligands (e.g., 2,6-diphenylpyridine and derivatives) and C/\\N/\\O-coordinating ligands (based on 6-phenylpicolinate), respectively. Treatment of 1 with terpyridines leads to dicationic complexes of the type [Ir(N/\\C/\\N)(N/\\N/\\N)]2+, while 2-phenylpyridine gives [Ir(dpyx-N/\\C/\\N)(ppy-C,N)Cl]. All of the charge-neutral complexes are luminescent in fluid solution at room temperature. Assignment of the emission to charge-transfer excited states with significant MLCT character is supported by DFT calculations. In the [Ir(N/\\C/\\N)(C/\\N/\\C)] class, fluorination of the C/\\N/\\C ligand at the phenyl 2' and 4' positions leads to a blue-shift in the emission and to an increase in the quantum yield (lambda(max) = 547 nm, phi = 0.41 in degassed CH(3)CN at 295 K) compared to the nonfluorinated parent complex (lambda(max) = 585 nm, phi = 0.21), as well as to a stabilization of the compound with respect to photodissociation through cleavage of mutually trans Ir-C bonds. [Ir(dpyx-N/\\C/\\N)(ppy-C,N)Cl] is an exceptionally bright emitter: phi = 0.76, lambda(max) = 508 nm, in CH(3)CN at 295 K. In contrast, the [Ir

  13. A manganese oxido complex bearing facially coordinating trispyridyl ligands--is coordination geometry crucial for water oxidation catalysis?

    PubMed

    Berends, Hans-Martin; Manke, Anne-Marie; Näther, Christian; Tuczek, Felix; Kurz, Philipp

    2012-05-28

    In this work the synthesis of the novel manganese complex [Mn(2)(III,III)(tpdm)(2)(μ-O)(μ-OAc)(2)](2+) (1) is reported, containing two manganese centres ligated to the unusual, facially coordinating, all-pyridine ligand tpdm (tris(2-pyridyl)methane). The geometric and electronic properties of complex 1 were characterised by X-ray crystallography, vibrational (IR and Raman) and optical spectroscopy (UV/Vis and MCD). Cyclic voltammograms of 1 showed a quasi-reversible oxidation event at 950 mV and an irreversible reduction wave at -250 mV vs. Ag/Ag(+). The redox behaviour of the compound was investigated in detail by UV/Vis- and X-band EPR-spectroelectrochemistry. Both electrochemical (+1200 mV) and chemical (tBuOOH) oxidations transform 1 into the singly oxidized di-μ-oxido species [Mn(2)(III,IV)(tpdm)(2)(μ-O)(2)(μ-OAc)](2+). Further electrochemical oxidation at the same potential results in the removal of a second electron to obtain a Mn(2)(IV,IV)-species. The ability of compound 1 to evolve O(2) was studied using different reaction agents. While reactions with both hydrogen peroxide and peroxomonosulfate yield O(2), homogeneous water-oxidation using Ce(IV) was not observed. Nevertheless, the oxidation reactions of 1 are very interesting model processes for oxidation state (S-state) transitions of the natural manganese water-oxidation catalyst in photosynthesis. However, despite its favourable coordination geometry and multielectron redox chemistry, complex 1 fails to be a catalytically active model for natural water-oxidation.

  14. X-ray Emission Spectroscopy to Study Ligand Valence Orbitals in Mn Coordination Complexes

    SciTech Connect

    Smolentsev, Grigory; Soldatov, Alexander V; Messinger, Johannes; Merz, Kathrin; Weyhermuller, Thomas; Bergmann, Uwe; Pushkar, Yulia; Yano, Junko; Yachandra, Vittal K.; Glatzel, Pieter

    2009-03-02

    We discuss a spectroscopic method to determine the character of chemical bonding and for the identification of metal ligands in coordination and bioinorganic chemistry. It is based on the analysis of satellite lines in X-ray emission spectra that arise from transitions between valence orbitals and the metal ion 1s level (valence-to-core XES). The spectra, in connection with calculations based on density functional theory (DFT), provide information that is complementary to other spectroscopic techniques, in particular X-ray absorption (XANES and EXAFS). The spectral shape is sensitive to protonation of ligands and allows ligands, which differ only slightly in atomic number (e.g., C, N, O...), to be distinguished. A theoretical discussion of the main spectral features is presented in terms of molecular orbitals for a series of Mn model systems: [Mn(H2O)6]2+, [Mn(H2O)5OH]+, [Mn(H2O)5NH2]+, and [Mn(H2O)5NH3]2+. An application of the method, with comparison between theory and experiment, is presented for the solvated Mn2+ ion in water and three Mn coordination complexes, namely [LMn(acac)N3]BPh4, [LMn(B2O3Ph2)(ClO4)], and [LMn(acac)N]BPh4, where L represents 1,4,7-trimethyl-1,4,7-triazacyclononane, acac stands for the 2,4-pentanedionate anion, and B2O3Ph2 represents the 1,3-diphenyl-1,3-dibora-2-oxapropane-1,3-diolato dianion.

  15. Five coordinate M(II)-diphenolate [M = Zn(II), Ni(II), and Cu(II)] Schiff base complexes exhibiting metal- and ligand-based redox chemistry.

    PubMed

    Franks, Mark; Gadzhieva, Anastasia; Ghandhi, Laura; Murrell, David; Blake, Alexander J; Davies, E Stephen; Lewis, William; Moro, Fabrizio; McMaster, Jonathan; Schröder, Martin

    2013-01-18

    Five-coordinate Zn(II), Ni(II), and Cu(II) complexes containing pentadentate N(3)O(2) Schiff base ligands [1A](2-) and [1B](2-) have been synthesized and characterized. X-ray crystallographic studies reveal five coordinate structures in which each metal ion is bound by two imine N-donors, two phenolate O-donors, and a single amine N-donor. Electron paramagnetic resonance (EPR) spectroscopic studies suggest that the N(3)O(2) coordination spheres of [Cu(1A)] and [Cu(1B)] are retained in CH(2)Cl(2) solution and solid-state superconducting quantum interference device (SQUID) magnetometric studies confirm that [Ni(1A)] and [Ni(1B)] adopt high spin (S = 1) configurations. Each complex exhibits two reversible oxidation processes between +0.05 and +0.64 V vs [Fc](+)/[Fc]. The products of one- and two-electron oxidations have been studied by UV/vis spectroelectrochemistry and by EPR spectroscopy which confirm that each oxidation process for the Zn(II) and Cu(II) complexes is ligand-based with sequential formation of mono- and bis-phenoxyl radical species. In contrast, the one-electron oxidation of the Ni(II) complexes generates Ni(III) products. This assignment is supported by spectroelectrochemical and EPR spectroscopic studies, density functional theory (DFT) calculations, and the single crystal X-ray structure of [Ni(1A)][BF(4)] which contains Ni in a five-coordinate distorted trigonal bipyramidal geometry.

  16. Let's move to spheres! Why a spherical coordinate system is rewarding when analyzing particle increment statistics

    NASA Astrophysics Data System (ADS)

    Most, Sebastian; Nowak, Wolfgang; Bijeljic, Branko

    2016-04-01

    For understanding non-Fickian transport in porous media, thorough understanding of pore-scale processes is required. When using particle methods as research instruments, we need a detailed understanding of the dependence and memory between subsequent increments in particle motion. We are especially interested in the dependence and memory of the spatial increments (size and direction) at consecutive time steps. Understanding the increment statistics is crucial for the upscaling that always becomes essential for transport simulations at larger scales. Upscaling means averaging over a (representative elementary) volume to save limited computational resources. However, this averaging means a loss of detail and therefore dispersion models should compensate for this loss. Formulating an appropriate dispersion model requires a detailed understanding of the dependencies and memory effects in the transport process. Particle-based simulations for transport in porous media are usually conducted and analyzed in a Cartesian coordinate system. We will show that, for understanding the process physically and representing the process statistically, it is more appropriate to switch to a spherical coordinate system that moves with each particle. Increment statistics in a Cartesian coordinate system usually reveal that a large displacement in longitudinal direction triggers a large displacement in transverse direction as fast flow channels are not perfectly aligned with the Cartesian axis along the main flow direction. We can overcome this inherent link, typical for the Cartesian description by using the absolute displacements together with the direction of the particle movement, where the direction is determined by the angles azimuth and elevation. This can be understood as a Lagrangian spherical process description. The root of the dependence of the transport process is in the complex pore geometry. For some time past, high-resolution micro-CT scans of pore space geometry became the

  17. Utilization of mixed ligands to construct two new coordination polymers: Syntheses, structures and properties

    SciTech Connect

    Wang, Yansong; Zhou, Zhimin

    2015-08-15

    The use of triazine and aromatic carboxylic acid as mixed chelating ligands in preparing two coordination polymers is described. Two new transition-metal coordination polymers, namely, [Co{sub 2}(bpdc){sub 4}(phdat){sub 2}] (1) and [Zn(bpdc)]{sub n} (2) (H{sub 2}bpdc=2,4-biphenyldicarboxylic acid, phdat=2,4-diamine-6-phenyl-1,3,5-triazine), have been hydrothermally synthesized and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. Compound 1 is a 0D structure and extends to a 3D network by two different N–H···O and N–H···N hydrogen bonds. Compound 2 exhibits a 2D network with 4{sup 4}.6{sup 2} topological net, which contains two kinds of single helical chains. The interactions within each Co(II)–Co(II) pair of compound 1 are antiferromagnetic (g=2.19, J=−22 K, zj′=−0.00351 K). Furthermore, the photoluminescence property of 2 was also investigated in the solid state at room temperature. - Graphical abstract: Two polymeric metal compounds based on mixed-ligands were synthesized and characterized. The use of different metal ions results in distinct structures. The magnetic and fluorescent properties were also studied. - Highlights: • The first bpdc{sup 2−}/phdat-based 0D discrete coordination complex. • A new 2D architecture with two kinds of helical chains. • The structure-dependent magnetism and photoluminescence properties.

  18. One- and three-dimensional silver(I)-5-sulfosalicylate coordination polymers having ligand-supported and unsupported argentophilic interactions

    SciTech Connect

    Arıcı, Mürsel; Yeşilel, Okan Zafer; Yeşilöz, Yeşim; Şahin, Onur

    2014-12-15

    Four new coordination polymers, namely, (Hemim·[Ag(Hssa)(H{sub 2}O)]){sub n} (1), ([Ag(ina){sub 2} Ag(Hssa)]·CH{sub 3}OH·H{sub 2}O){sub n} (2), ([Ag{sub 2}(Hssa)(dmp){sub 1.5}]·2H{sub 2}O){sub n} (3) and [Ag{sub 2}(Hssa)(daoc)]{sub n} (4) (Hssa: 5-Sulfosalicylate, emim: 2-ethyl-4-methylimidazole, ina: isonicotinamide, dmp: 2,5-dimethylpyrazine and daoc: 1,8-diaminooctane) were synthesized and characterized by IR spectroscopy, elemental analysis, single crystal X-ray diffraction, powder X-ray diffraction (PXRD) and thermal analysis techniques. Complexes 1 and 2 are one-dimensional (1D) coordination polymers while complexes 3 and 4 are three-dimensional (3D) coordination polymers. Complex 3 consists of three dimensional (3D) 3,3,6-c net with 3,3,6T37 topology. Complex 4 exhibits a 2-fold interpenetrating 3D framework with tfc topology. Complexes 1–4 contain ligand-supported (1–3) and unsupported (4) argentophilic Ag⋯Ag interactions. Photoluminescence spectra of the complexes demonstrate that photoluminescent properties may be attributed to intraligand transition of coordinated Hssa ligand. - Graphical abstract: In this study, four new Ag(I)-coordination polymers with 5-sulfosalicylate and some N-donor ligands were synthesized and characterized. Complexes 1 and 2 are one-dimensional (1D) coordination polymers while complexes 3 and 4 are three-dimensional (3D) coordination polymers. Complex 3 consists of three dimensional (3D) 3,3,6-c net with 3,3,6T37 topology. Complex 4 exhibits a 2-fold interpenetrating 3D framework with tfc topology. The complexes 1–4 contain ligand-supported (1–3) and unsupported (4) argentophilic Ag⋯Ag interactions. Photoluminescence spectra of the complexes demonstrated that photoluminescent properties may be attributed to intraligand transition of coordinated Hssa ligand. - Highlights: • Four novel Ag(I)-coordination polymers with 5-sulfosalicylate and N-donor ligands. • Complexes 1–4 contain ligand-supported (1–3) and

  19. Dipyridylamide ligand dependent dimensionality in luminescent zinc 2,4-pyridinedicarboxylate coordination complexes

    NASA Astrophysics Data System (ADS)

    Wudkewych, Megan J.; LaDuca, Robert L.

    2016-09-01

    Zinc nitrate, 2,4-pyridinedicarboxylic acid (2,4-pdcH2), and a hydrogen-bonding capable dipyridylamide ligand were combined in aqueous solution and subjected to hydrothermal reaction conditions. Three new crystalline coordination complexes were generated; their dimensionality depends crucially on the dipyridylamide length and geometric disposition of the pyridyl nitrogen donors. The three new phases were structurally characterized via single-crystal X-ray diffraction. {[H23-pina][Zn(2,4-pdc)2(H2O)2]·H2O} (1, 3-pina = 3-pyridylisonicotinamide) is a salt with protonated dipyridylamide cations and coordination complex anions. {[Zn2(2,4-pdc)2(H2O)4(3-pna)]·3H2O}n (2, 3-pna = 3-pyridylnicotinamide) shows a system of two-fold interpenetrated ruffled (6,3) coordination polymer layers. {[Zn(2,4-pdc)(H2O)2(3-pmna)]n (3, 3-pmna = 3-pyridylmethylnicotinamide) manifests a simple 1D chain topology. Luminescence was observed for two of the zinc complexes; this behavior is attributed to π-π* or π-n molecular orbital transitions. Thermal decomposition properties of the new phases are also probed.

  20. Unexpected Trimerization of Pyrazine in the Coordination Sphere of Low-Valent Titanocene Fragments.

    PubMed

    Jung, Thomas; Beckhaus, Rüdiger; Klüner, Thorsten; Höfener, Sebastian; Klopper, Wim

    2009-08-11

    The titanium mediated trimerization of pyrazine leads to the formation of a tris-chelate complex employing a 4a,4b,8a,8b,12a,12b-hexahydrodiyprazino[2,3-f:2',3'-h]quinoxaline ligand (HATH6, 3). The driving force in the formation of the (Cp*2Ti)3(HATH6) complex 2 is attributed to the formation of six Ti-N bonds. We show that density functional theory (DFT) fails to predict quantitatively correct results. Therefore, post-Hartree-Fock methods, such as second-order Møller-Plesset perturbation theory (MP2), in combination with coupled-cluster (CC) methods must be used. Both MP2 and CCSD(T) levels of theory provide endothermic trimerization energies, showing that the plain pyrazine trimer is not stable with respect to decomposition into its monomers. Complete basis set (CBS) results for the MP2 level of theory were computed using explicitly correlated wave functions. With these, we estimate the CCSD(T) CBS limit of the hypothetical trimerization energy to be +0.78 eV. Thus, the trimerization is facilitated by the formation of six Ti-N bonds with a calculated formation energy of -1.32 eV per bond.

  1. Coordination polymers of Ag(I) based on iminocarbene ligands involving metal-carbon and metal-heteroatom interactions

    NASA Astrophysics Data System (ADS)

    Netalkar, Sandeep P.; Netalkar, Priya P.; Revankar, Vidyanand K.

    2016-03-01

    The reaction of Ag2O with three novel imino-NHC ligands derived from 2-chloroacetophenone with pendant N-donor functional group incorporated by reaction with methoxyamine and 1-methyl/ethyl/n-butyl-substituted imidazoles afforded one-dimensional coordination polymers with [(-NHCarbene)Ag(NHCarbene-)PF6]n formulation involving both carbon-metal and heteroatom-metal interactions, the carbon and heteroatom involved in coordination to silver being from different molecule of the ligand. The complexes as well as the ligands were characterized by spectroscopic methods as well as the solid state structures determined in case of 2a, 3a and complex 5. The iminocarbene ligands serve as non-chelating building block for supramolecular silver assemblies.

  2. Second-sphere coordination in anion binding: Synthesis, characterization and X-ray structures of bis(diethylenetriamine)cobalt(III) complexes containing benzoates

    NASA Astrophysics Data System (ADS)

    Bala, Ritu; Kaur, Amrinder; Kashyap, Monika; Janzen, Daron E.

    2014-04-01

    New complexes of composition s-fac-[Co(dien)2]Cl2(Bz)·H2O (1), s-fac-[Co(dien)2]Cl(p-CBz)2·4.5H2O (2) and mer-[Co(dien)2](p-NBz)3·3H2O (3) were obtained by reacting aqueous solutions of bis(diethylenetriamine)cobalt(III) chloride and sodium salts of benzoates ((Bz = benzoate, CBz = p-chlorobenzoate, NBz = p-nitrobenzoate)) in 1:3 molar ratio. These complexes were characterized by TG analysis and spectroscopic studies (IR, NMR and UV-vis). IR and NMR studies were used for the isomeric identification of [Co(dien)2]3+ in new complexes. This cation, contains ligand diethylenetriamine (dien) bearing H-bond donors, capable of forming hydrogen bonds and its binding properties with benzoates have been studied using standard UV-vis spectroscopic titrations in aqueous medium (log k for Bz = 2.11, p-CBz = 3.64 and p-NBz = 3.66). Single crystal X-ray study of complex 2 and 3 reveals that both the structures are dominantly stabilized by second-sphere coordination through H-bonding interactions of type-NH (dien)⋯O (benzoates) and H (water)⋯O (benzoates) in addition to the electrostatic forces of attractions. Further, the NH (dien)⋯Cl- (counter ion) and NH (dien)⋯O (water) types of interactions are also playing a dominant role to stabilize the crystal lattice in complex 2 and 3 respectively.

  3. Three new Ag(I) coordination architectures based on mixed ligands: Syntheses, structures and photoluminescent properties

    SciTech Connect

    Li, Yamin; Xiao, Changyu; Li, Shu; Chen, Qi; Li, Beibei; Liao, Qian; Niu, Jingyang

    2013-04-15

    Three new silver (I) coordination complexes, [Ag{sub 2}(1,2-bdc)(phdat)]{sub n} (1), [Ag{sub 2}(NO{sub 2}-bdc)(phdat)]{sub n} (2), [Ag{sub 4}(nta){sub 3}(phdat)NO{sub 3}]{sub n} (3) (1,2-bdc=phthalic acid dianion, NO{sub 2}-bdc=5-nitro-1,3-benzenedicarboxylic acid dianion, nta=nicotinic acid anion, phdat=2,4-diamine-6-phenyl-1,3,5-triazine) have been hydrothermally synthesized by the reactions of silver nitrate and phdat with the homologous ligands 1,2-H{sub 2}bdc, NO{sub 2}-H{sub 2}bdc, and Hnta, respectively, and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses thermogravimetric analyses (TGA). The compound 1 exhibits a chiral 3D network with cbs/CrB self-dual topological net, which contains two kinds of single helical chains. For compound 2, the 3D network is comprised of two kinds of similar 2D sheets with the topological symbol of sql-type packed in AABBAA mode by Ag–N/O weakly contacts. And compound 3 has 2D double layer architecture, consisting of the 2D plane with hcb-type topological symbol connected by Ag–O weakly coordinations. The photoluminescent properties associated with the crystal structures of three compounds have also been measured. - Graphical abstract: Three new silver(I) coordination complexes 1–3 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses (TGA) and photoluminescent spectra. Highlights: ► The compound 1 exhibits a novel chiral 3D network with two kinds of single helical chains. ► 3D or 2D new Ag coordination complexes. ► The photoluminescent properties have been measured.

  4. Structural insights into the coordination and extraction of Pb(II) by disulfonamide ligands derived from o-phenylenediamine.

    PubMed

    Alvarado, Robert J; Rosenberg, Jay M; Andreu, Aileen; Bryan, Jeffrey C; Chen, Wei-Zhong; Ren, Tong; Kavallieratos, Konstantinos

    2005-10-31

    The o-phenylenediamine-derived disulfonamide ligands 1 and 2 complex and efficiently extract Pb(II) from water into 1,2-dichloroethane via ion-exchange, in combination with 2,2'-bipyridine (97.5% and 95.0%, respectively, for 1:1 ligand-to-Pb ratios). The corresponding Pb(II)-sulfonamido binary complexes of ligands 1 and 2 (3 and 4, respectively), and ternary complexes with 2,2'-bipyridine (5 and 6, respectively), were isolated and characterized. (1)H NMR spectra of the organic phases after extraction show the formation of ternary Pb-sulfonamido-bipy complexes. X-ray characterization of 3, 4, and the ternary complex 5 consistently demonstrates four primary coordination sites and a stereochemically active lone pair on Pb. The X-ray structure of 3 shows a pseudo trigonal bipyramidal configuration on Pb, with the lone pair occupying one of the equatorial sites, and the formation of an unusual "hemidirected" coordination polymer via axial S=O-Pb coordination. The same axial S=O-Pb coordination pattern with two DMSO molecules is observed in the structure of 4.[2(CH(3))(2)SO)], thus rationalizing the high solubility of the binary complexes in strongly coordinating solvents. In contrast, the X-ray structure of the ternary complex 5 reveals a distorted four-coordinate configuration with only weak S=O-Pb coordination leading to dimer formation, thus explaining its higher solubility in weakly coordinating solvents. FT-IR spectroscopy confirms the X-ray data, since the ligand nu(S)(=)(O) stretching frequencies shift to lower values in the binary Pb(II)-sulfonamido complexes and are again altered upon formation of the ternary Pb(II)-sulfonamido-bipy complexes, as would be expected for 2,2'-bipy complexation and hindered S=O-Pb coordination.

  5. Diversity of coordination modes in the polymers based on 3,3',4,4'-biphenylcarboxylate ligand

    SciTech Connect

    Du Xiaodi; Xiao Hongping; Zhou Xinhui; Wu Tao; You Xiaozeng

    2010-06-15

    Four new compounds [Ni{sub 2}(4,4'-bpy)(3,4-bptc)(H{sub 2}O){sub 4}]{sub n} (1), [Ni(4,4'-bpy)(3,4-H{sub 2}bptc)(H{sub 2}O){sub 3}]{sub n} (2), [Mn{sub 2}(2,2'-bpy){sub 4}(3,4-H{sub 2}bptc){sub 2}] (3) and {l_brace}[Mn(1,10-phen){sub 2}(3,4-H{sub 2}bptc)].4H{sub 2}O{r_brace}{sub n} (4) (3,4-H{sub 4}bptc=3,3',4,4'-biphenyltetracarboxylic acid, 4,4'-bpy=4,4'-bipyridine, 2,2'-bpy=2,2'-bipyridine, 1, 10-phen=1, 10-phenanthroline), have been prepared and structurally characterized. In all compounds, the derivative ligands of 3,4-H{sub 4}bptc (3,4-bptc{sup 4-} and 3,4-H{sub 2}bptc{sup 2-}) exhibit different coordination modes and lead to the formation of various architectures. Compounds 1 and 2 display the three-dimensional (3D) framework: 1 shows a 3,4-connected topological network with (8{sup 3})(8{sup 5}.10) topology symbol based on the coordination bonds while in 2, the hydrogen-bonding interactions are observed to connect the 1D linear chain generating a final 3D framework. 3 exhibits the 2D layer constructed from the hydrogen-bonding interactions between the dinuclear manganese units. Complex 4 shows the double layers motif through connecting the 1D zigzag chains with hydrogen-bonded rings. The thermal stability of 1-4 and magnetic property of 1 were also reported. - Graphical abstract: Four coordination compounds exhibiting four coordination modes of the 3,3',4,4'-biphenylcarboxylate ligand, with three of new in this system, are obtained showing diversified architectures.

  6. Converting between the oxides of nitrogen using metal-ligand coordination complexes.

    PubMed

    Timmons, Andrew J; Symes, Mark D

    2015-10-07

    The oxides of nitrogen (chiefly NO, NO3(-), NO2(-) and N2O) are key components of the natural nitrogen cycle and are intermediates in a range of processes of enormous biological, environmental and industrial importance. Nature has evolved numerous enzymes which handle the conversion of these oxides to/from other small nitrogen-containing species and there also exist a number of heterogeneous catalysts that can mediate similar reactions. In the chemical space between these two extremes exist metal-ligand coordination complexes that are easier to interrogate than heterogeneous systems and simpler in structure than enzymes. In this Tutorial Review, we will examine catalysts for the inter-conversions of the various nitrogen oxides that are based on such complexes, looking in particular at more recent examples that take inspiration from the natural systems.

  7. A luminescent coordination polymer based on a π-conjugated ligand: Syntheses, structure and luminescent property

    NASA Astrophysics Data System (ADS)

    Li, Dan-Yang; Xie, Hua; Yao, Xiao-Qiang; Ma, Heng-Chang; Lei, Zi-Qiang; Liu, Jia-Cheng

    2017-04-01

    A new cadmium coordination polymer [Cd(DPFE)(adip)0.5(NO3)]n (1) has been synthesized hydrothermally from the self-assembly of the Cd2+ ion with a new π-conjugated rigid ligand DPFE and the adipic acid, where DPFE = 2,7-di(pyridin-4-yl)-9H-fluorene and H2adip = adipic acid. The structure of 1 was full characterized by elemental analysis, FT-IR spectroscopy and single crystal X-ray diffraction. Structural analysis reveals compound 1 is a dinuclear Cd(II) based two-dimensional (4,4) layer and two kinds of strong intramolecular π-π stacking interactions exist between pyridyl rings and benzene rings. In addition, the thermogravimetric analysis and solid-state luminescent properties have also been investigated.

  8. Halogen bond preferences of thiocyanate ligand coordinated to Ru(II) via sulphur atom

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Tuikka, Matti; Hirva, Pipsa; Haukka, Matti

    2017-09-01

    Halogen bonding between [Ru(bpy)(CO)2(S-SCN)2] (bpy = 2,2'-bipyridine), I2 was studied by co-crystallising the metal compound and diiodine from dichloromethane. The only observed crystalline product was found to be [Ru(bpy)(CO)2(S-SCN)2]ṡI2 with only one NCSṡṡṡI2 halogen bond between I2 and the metal coordinated S atom of one of the thiocyanate ligand. The dangling nitrogen atoms were not involved in halogen bonding. However, computational analysis suggests that there are no major energetic differences between the NCSṡṡṡI2 and SCNṡṡṡI2 bonding modes. The reason for the observed NCSṡṡṡI2 mode lies most probably in the more favourable packing effects rather than energetic preferences between NCSṡṡṡI2 and SCNṡṡṡI2 contacts.

  9. Systematic design and research on a series of cadmium coordination polymers assembled due to tetracarboxylate ligands

    SciTech Connect

    Lü, Lei; Mu, Bao; Li, Chang-Xia; Huang, Ru-Dan

    2016-02-15

    A series of metal-organic frameworks (MOFs) have been prepared by tetracarboxylate ligands and Cd(II) ions under the hydrothermal or solvothermal conditions with the formulas of {[Cd_2(L_1)(H_2O)_4]·H_2O}{sub n} (1), {[(CH_3)_2NH_2]_2[Cd(L_1)]}{sub n} (2), [Cd(L{sub 2}){sub 0.5}(H{sub 2}O)]{sub n} (3), {[(CH_3)_2NH_2]_2 [Cd(L_2)]·2DMF}{sub n} (4), [Cd(L{sub 3}){sub 0.5}(H{sub 2}O)]{sub n} (5), {[Cd(L_3)_0_._5(H_2O)]·CH_3OH}{sub n} (6), {[(CH_3)_2NH_2]_2[Cd_3(L_4)_2]}{sub n} (7) (H{sub 4}L{sub 1}=[1,1′:4′,1″-terphenyl]-2,2″,5,5″-tetracarboxylic acid; H{sub 4}L{sub 2}=[1,1′:4′,1″-terphenyl]-2′,4,4″,5′-tetracarboxylic acid; H{sub 4}L{sub 3}=[1,1′:3′,1″-terphenyl]-2′,3,3″,5′-tetracarboxylic acid; H{sub 4}L{sub 4}=[1,1′:4′,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid), which are characterized by single-crystal X-ray diffraction, elemental analyses, IR, TGA and PXRD. Complex 1 exhibits a three-dimensional (3D) supramolecular framework based on two-dimensional (2D) coordination networks. Complexes 2 and 4 possess 3D framework based on the 1D right-handed helix channels. Complexes 3 and 7 are a 3D architecture containing two different channels. Isostructural complexes 5 and 6 display 3D framework. The different synthetic methods and coordination modes of the tetracarboxylates ligands have effect on formation of various MOFs. Moreover, the luminescent properties and N{sub 2} adsorption behaviors have been reported. - Graphical abstract: A series of cadmium(II) high-dimensional coordination polymers constructed from four different kinds of tetracarboxylate ligands have been successfully prepared under hydrothermal or solvothermal conditions. The effect of solvents, the coordination modes of the tetracarboxylates and positions of carboxylate groups on the architectures of complexes 1–7 have been investigated in detail. The luminescent properties of the part of complexes, N{sub 2} adsorption behaviors of complexes 2, 4–7 have

  10. Cobalt Complexes Containing Pendant Amines in the Second Coordination Sphere as Electrocatalysts for H2 Production

    SciTech Connect

    Fang, Ming; Wiedner, Eric S.; Dougherty, William G.; Kassel, W. S.; Liu, Tianbiao L.; DuBois, Daniel L.; Bullock, R. Morris

    2014-10-27

    A series of heteroleptic 17e- cobalt complexes, [CpCoII(PtBu2NPh2)](BF4), [CpC6F5CoII(PtBu2NPh2)](BF4), [CpC5F4NCoII(PtBu2NPh2)](BF4), [where P2tBuN2Ph = 1,5-diphenyl-3,7-di(tert-butyl)-1,5-diaza-3,7-diphosphacyclooctane, CpC6F5 = C5H4(C6F5), and CpC5F4N = C5H4(C5F4N)] were synthesized, and structures of all three were determined by X-ray crystallography. Electrochemical studies showed that the CoIII/II couple of [CpC5F4NCoII(PtBu2NPh2)]+ appears 250 mV positive of the CoIII/II couple of [CpCoII(PtBu2NPh2)] as a result of the strongly electron-withdrawing perfluorpyridyl substituent on the Cp ring. Reduction of these paramagnetic CoII complexes by KC8 led to the diamagnetic 18e- complexes CpICo(PtBu2NPh2), CpC6F5CoI(PtBu2NPh2), CpC5F4NCoI(PtBu2NPh2), which were also characterized by crystallography. Protonation of these neutral CoI complexes led to the cobalt hydrides [CpCoIII(PtBu2NPh2)H](BF4), [CpC6F5CoIII(PtBu2NPh2)H](BF4), and [CpC5F4NCoIII(PtBu2NPh2)H](BF4). The cobalt hydride with the most electron-withdrawing Cp ligand, [CpC5F4NCoIII(PtBu2NPh2)H]+ is an electrocatalyst for production of H2 using 4-MeOC6H4NH3BF4 (pKaMeCN = 11.86) with a turnover frequency of 350 s-1 and an overpotential of 0.75 V. Experimental measurement of thermochemical data provided further insights into the thermodynamics of H2 elimination. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  11. A 3D porous indium(III) coordination polymer involving in-situ ligand synthesis

    SciTech Connect

    Han Zhengbo; Song Yongjuan; Ji Jianwei; Zhang Wei; Han Guangxi

    2009-11-15

    The hydrothermal reaction of In{sup 3+} and 1,2,4-benzenetricarboxylic acid with the presence of piperazine leads to the generation of a novel 3D porous coordination polymer, [H{sub 3}O][In{sub 2}(btc)(bdc)(OH){sub 2}].5.5H{sub 2}O (1), (btc=1,2,4-benzenetricarboxylate, bdc=1,4-benzenedicarboxylate). Compound 1 crystallizes in orthorhombic space group Pbca with a=16.216(7) A, b=13.437(6) A, c=31.277(14) A, and Z=8. It is interesting to find that the in-situ decarboxylation reaction of 1,2,4-benzenetricarboxylate (btc) partially transformed into 1,4-benzenedicarboxylate (bdc) occurs. The 16 indium(III) centers were linked by four btc, four bdc and two mu{sub 2}-OH ligands to form a box-girder. The adjacent box-girders are further connected by the bdc and btc ligands to generate a novel porous metal-organic framework containing nanotubular open channel with a cross-section of approximately 11.5x11.3 A{sup 2}. The micropores are occupied by lattice water molecules, and the solvent-accessible volume of the unit cell was estimated to be 3658.6 A{sup 3}, which is approximately 53.7% of the unit-cell volume (6815.4 A{sup 3}). - Graphical Abstract: The hydrothermal reaction of In{sup 3+} and 1,2,4-benzenetricarboxylic acid with the presence of piperazine leads to the generation of a novel 3D porous coordination polymer, [H{sub 3}O][In{sub 2}(btc)(bdc)(OH){sub 2}].5.5H{sub 2}O, (btc=1,2,4-benzenetricarboxylate, bdc=1,4-benzenedicarboxylate).

  12. Semirigid aromatic sulfone-carboxylate molecule for dynamic coordination networks: multiple substitutions of the ancillary ligands.

    PubMed

    Zhou, Xiao-Ping; Xu, Zhengtao; Zeller, Matthias; Hunter, Allen D; Chui, Stephen Sin-Yin; Che, Chi-Ming

    2011-08-01

    We report dynamic, multiple single-crystal to single-crystal transformations of a coordination network system based on a semirigid molecule, TCPSB = 1,3,5-tri(4'-carboxyphenylsulphonyl)benzene, which nicely balances shape persistence and flexibility to bring about the framework dynamics in the solid state. The networks here generally consist of (1) the persistent core component (denoted as CoTCPSB) of linear Co(II) aqua clusters (Co-O-Co-O-Co) integrated into 2D grids by 4,4'-bipyridine and TCPSB and (2) ancillary ligands (AL) on the two terminal Co(II) ions-these include DMF (N,N'-dimethylformamide), DMA (N,N'-dimethylacetamide), CH(3)CN, and water. Most notably, the ancillary ligand sites are highly variable and undergo multiple substitution sequences while maintaining the solid reactants/products as single-crystals amenable to X-ray structure determinations. For example, when immersed in CH(3)CN, the AL of an as-made single crystal of CoTCPSB-DMF (i.e., DMF being the AL) is replaced to form CoTCPSB-CH(3)CN, which, in air, readily loses CH(3)CN to form CoTCPSB-H(2)O; the CoTCPSB-H(2)O single crystals, when placed in DMF, give back CoTCPSB-DMF in single-crystal form. Other selective, dynamic exchanges include the following: CoTCPSB-DMF reacts with CH(3)CN (to form CoTCPSB-CH(3)CN) but NOT with water, methanol, ethanol, DMA, or pyridine; CoTCPSB-H(2)O specifically pick outs DMF from a mixture of DMF, DMA, and DEF; an amorphous, dehydrated solid from CoTCPSB-H(2)O regains crystalline order simply by immersion in DMF (to form CoTCPSB-DMF). Further exploration with functional, semirigid ligands like TCPSB shall continue to uncover a wider array of advanced dynamic behaviors in solid state materials.

  13. Hydrothermal syntheses, crystal structures, and photophysical properties of two coordination polymers with mixed ligands

    NASA Astrophysics Data System (ADS)

    Yan, Li; Liu, Chun-Ling

    2017-10-01

    Two novel metal-organic coordination polymers [Cd(ipdt)(m-BDC)·3H2O]n (1) and [Pb(mip)2(NTC) ·2H2O]n (2) [ipdt = 2,6-Dimethoxy-4-(1H-1,3,7,8-tetraaza-cyclopenta[l]phenanthren-2-yl)-phenol, mip = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, m-BDC = isophthalic acid, NTC = nicotinic acid] have been synthesized by hydrothermal reactions and characterized by elemental analysis, thermogravimetric (TG) analysis, infrared spectrum (IR) and single-crystal X-ray diffraction. Single-crystal X-ray diffraction reveals that 1 exhibits two-dimensional (2D) layer architecture, and 2 shows 1D chain architecture. TG analysis shows clear courses of weight loss, which corresponds to the decomposition of different ligands. The luminescent properties for the ligand ipdt, mip and complexes 1-2 are also discussed in detail, which should be acted as potential luminescent material.

  14. Aspartate 46, a second sphere ligand to the catalytic zinc, is essential for activity of yeast alcohol dehydrogenase

    SciTech Connect

    Ganzhorn, A.J.; Plapp, B.V.

    1987-05-01

    The crystal structure of horse liver alcohol dehydrogenase (ADH) shows a hydrogen bond between the imidazole of His-67, a ligand to the active site zinc, and the carboxylate of Asp-49. Both residues are conserved in alcohol dehydrogenases. Directed mutagenesis was used to replace the homologous Asp-46 in ADH I from S. cerevisiae with asparagine. The substitution did not alter the overall structure of the enzyme, as judged by CD measurements, but the removal of a negative charge was evident in electrophoresis, and in the absorption and fluorescence spectra. The mutant and wild-type enzymes had similar zinc contents as determined by atomic absorption spectroscopy. Active site titration and steady state kinetics indicated that binding of coenzymes, substrates and substrate analogs is 4-24 fold weaker in the asparagine enzyme. The turnover numbers were reduced by a factor of 70 for ethanol oxidation and 30 for acetaldehyde reduction at pH 7.3, 30/sup 0/C. Dead end inhibition studies and the kinetic isotope effect showed that NAD and ethanol binding follow a rapid equilibrium random mechanism as opposed to the ordered mechanism found for ADH I. They conclude that the carboxyl group of Asp-46 is essential for the electrostatic environment near the active site zinc. Amidation may affect the geometry and/or coordination of the metal complex.

  15. From achiral ligands to chiral coordination polymers: spontaneous resolution, weak ferromagnetism, and topological ferrimagnetism.

    PubMed

    Gao, En-Qing; Yue, Yan-Feng; Bai, Shi-Qiang; He, Zheng; Yan, Chun-Hua

    2004-02-11

    Using the achiral diazine ligands bearing two bidentate pyridylimino groups as sources of conformational chirality, five azido-bridged coordination polymers are prepared and characterized crystallographically and magnetically. The chirality of the molecular units is induced by the coordination of the diazine ligands in a twisted chiral conformation. The use of L(1) (1,4-bis(2-pyridyl)-1-amino-2,3-diaza-1,3-butadiene) and L(2) (1,4-bis(2-pyridyl)-1,4-diamino-2,3-diaza-1,3-butadiene) induces spontaneous resolution, yielding conglomerates of chiral compounds [Mn(3)(L(1))(2)(N(3))(6)](n) (1) and [Mn(2)(L(2))(2)(N(3))(3)](n)(ClO(4))(n).nH(2)O (2), respectively, where triangular (1) or double helical (2) chiral units are connected into homochiral one-dimensional (1D) chains via single end-to-end (EE) azido bridges. The chains are stacked via hydrogen bonds in a homochiral fashion to yield chiral crystals. When L(3) (2,5-bis(2-pyridyl)-3,4-diaza-2,4-hexadiene) is employed, a partial spontaneous resolution occurs, where binuclear chiral units are interlinked into fish-scale-like homochiral two-dimensional (2D) layers via single EE azido bridges. The layers are stacked in a heterochiral or homochiral fashion to yield simultaneously a racemic compound, [Mn(2)(L(3))(N(3))(4)](n) (3a), and a conglomerate, [Mn(2)(L(3))(N(3))(4)](n).nMeOH (3b). On the other hand, the ligand without amino and methyl substituents (L(4), 1,4-bis(2-pyridyl)-2,3-diaza-1,3-butadiene) does not induce spontaneous resolution. The resulting compound, [Mn(2)(L(4))(N(3))(4)](n) (4), consists of centrosymmetric 2D layers with alternating single diazine, single EE azido, and double end-on (EO) azido bridges, where the chirality is destroyed by the centrosymmetric double EO bridges. These compounds exhibit very different magnetic behaviors. In particular, 1 behaves as a metamagnet built of homometallic ferrimagnetic chains with a unique "fused-triangles" topology, 2 behaves as a 1D antiferromagnet with

  16. Utilization of mixed ligands to construct two new coordination polymers: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, Yansong; Zhou, Zhimin

    2015-08-01

    The use of triazine and aromatic carboxylic acid as mixed chelating ligands in preparing two coordination polymers is described. Two new transition-metal coordination polymers, namely, [Co2(bpdc)4(phdat)2] (1) and [Zn(bpdc)]n (2) (H2bpdc=2,4-biphenyldicarboxylic acid, phdat=2,4-diamine-6-phenyl-1,3,5-triazine), have been hydrothermally synthesized and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. Compound 1 is a 0D structure and extends to a 3D network by two different N-H···O and N-H···N hydrogen bonds. Compound 2 exhibits a 2D network with 44.62 topological net, which contains two kinds of single helical chains. The interactions within each Co(II)-Co(II) pair of compound 1 are antiferromagnetic (g=2.19, J=-22 K, zj‧=-0.00351 K). Furthermore, the photoluminescence property of 2 was also investigated in the solid state at room temperature.

  17. Ligand effects on the structural dimensionality and antibacterial activities of silver-based coordination polymers.

    PubMed

    Lu, Xinyi; Ye, Junwei; Sun, Yuan; Bogale, Raji Feyisa; Zhao, Limei; Tian, Peng; Ning, Guiling

    2014-07-14

    Four Ag-based coordination polymers [Ag(Bim)] (1), [Ag2(NIPH)(HBim)] (2), [Ag6(4-NPTA)(Bim)4] (3) and [Ag2(3-NPTA)(bipy)0.5(H2O)] (4) (HBim = 1H-benzimidazole, bipy = 4,4'-bipyridyl, H2NIPH = 5-nitroisophthalic acid, H2NPTA = 3-/4-nitrophthalic acid) have been synthesized by hydrothermal reaction of Ag(i) salts with N-/O-donor ligands. Single-crystal X-ray diffraction indicated that these coordination polymers constructed from mononuclear or polynuclear silver building blocks exhibit three typical structure features from 1-D to 3-D frameworks. These compounds favour a slow release of Ag(+) ions leading to excellent and long-term antimicrobial activities, which is distinguished by their different topological structures, towards both Gram-negative bacteria, Escherichia coli (E. coli) and Gram-positive bacteria, Staphylococcus aureus (S. aureus). In addition, these compounds show good thermal stability and light stability under UV-vis and visible light, which are important characteristics for their further application in antibacterial agents.

  18. Zinc coordination to the bapbpy ligand in homogeneous solutions and at liposomes: zinc detection via fluorescence enhancement.

    PubMed

    Molenbroek, Elwin; Straathof, Natan; Dück, Sebastian; Rashid, Zahid; van Lenthe, Joop H; Lutz, Martin; Gandubert, Aurore; Klein Gebbink, Robertus J M; De Cola, Luisa; Bonnet, Sylvestre

    2013-02-28

    In this work, the complexation of the bapbpy ligand to zinc dichloride is described (bapbpy = 6,6′-bis(2-aminopyridyl)-2,2′-bipyridine). The water-soluble, colorless complex [Zn(bapbpy)Cl]Cl·2H2O (compound 2·H2O) was synthesized; its X-ray crystal structure shows a mononuclear, pentacoordinated geometry with one chloride ligand in apical position. Upon excitation of its lowest-energy absorption band (375 nm) compound 2 shows intense emission (Φ = 0.50) at 418 nm in aqueous solution, and an excited state lifetime of 5 ns at room temperature. Photophysical measurements, DFT, and TD-DFT calculations prove that emission arises from vibronically coupled Ligand-to-Ligand Charge Transfer singlet excited states, characterized by electron density flowing from the lone pairs of the non-coordinated NH bridges to the π* orbitals of the pyridine rings. Monofunctionalization of the ligand with one long alkyl chain was realized to afford ligand 3, which can be inserted into dimyristoylphosphatidylglycerol (DMPG) or dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles. For negatively charged DMPG membranes the addition of a zinc salt to the vesicles leads to an enhancement of the fluorescence due to zinc coordination to the membrane-embedded tetrapyridyl ligand. No changes were observed for the zwitterionic DMPC lipids, where binding of the Zn ions does not take place. A modest binding constant was found (5 × 10(6) M(−1)) for the coordination of zinc cations to bapbpy-functionalized DMPG membranes, which allows for the detection of micromolar zinc concentrations in aqueous solution. The influence of chloride concentration and other transition metal ions on the zinc binding was evaluated, and the potential of liposome-supported metal chelators such as ligand 3 for zinc detection in biological media is discussed.

  19. Increased dimensionalities of zinc-diphenic acid coordination polymers by simultaneous or subsequent addition of neutral bridging ligands.

    PubMed

    Dietzel, Pascal D C; Blom, Richard; Fjellvåg, Helmer

    2006-01-28

    Three coordination polymers containing zinc and diphenic acid (H2dpa) were synthesised by solvothermal reaction. Zn(dpa)(H2O) is a one-dimensional coordination polymer that consists of parallel ladder-like chains. One carboxylate group of the diphenic acid coordinates two zinc atoms forming a dinuclear unit which composes the steps of the ladder. The other carboxylate connects to a zinc atom in the next step of the ladder. The fourth coordination site at the zinc atom is occupied by water. Attempts to crosslink the chains by replacing the water molecule with the neutral ligands triethylenediamine (dabco) or 4,4'-bipyridyl lead to the compounds Zn2(dpa)2(dabco) and Zn(dpa)(4,4'-bpy). Their structures can be rationalised as being derived from action of the neutral ligand on Zn(dpa)(H2O), and while they are most conveniently prepared in a one-pot synthesis, it is also possible to obtain them by exposing Zn(dpa)(H2O) to the respective neutral ligand. Zn2(dpa)2(dabco) is a layered two-dimensional coordination polymer in which dinculear zinc carboxylate paddle wheel units and the dabco ligand form infinite linear chains. The chains are interconnected by the dpa unit. The structure of Zn(dpa)(4,4'-bpy) consists of two identical interpenetrating three-dimensional networks. In the network, helical Zn(dpa) chains are interconnected by the rigid 4,4'-bipyridine ligand. Thermogravimetric analysis indicates a high thermal stability of this coordination polymer with decomposition occurring in the range 350-450 degrees C. This is complemented by X-ray thermodiffractometry that indicates a phase transition at 337 degrees C and the final loss of crystallinity at 427 degrees C. The room temperature phase expands drastically along one axis and contracts along the other two axes on heating.

  20. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    PubMed Central

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet–visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms. PMID:24070648

  1. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.

  2. Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    SciTech Connect

    Hu, Bo-Wen Zheng, Xiang-Yu; Ding, Cheng

    2015-12-15

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groups are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.

  3. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation

    PubMed Central

    Moriarty, Nigel W.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.

    2009-01-01

    The electronic Ligand Builder and Optimization Workbench (eLBOW) is a program module of the PHENIX suite of computational crystallographic software. It is designed to be a flexible procedure that uses simple and fast quantum-chemical techniques to provide chemically accurate information for novel and known ligands alike. A variety of input formats and options allow the attainment of a number of diverse goals including geometry optimization and generation of restraints. PMID:19770504

  4. electronic Ligand Builder and Optimisation Workbench (eLBOW): A tool for ligand coordinate and restraint generation

    SciTech Connect

    Moriarty, Nigel; Grosse-Kunstleve, Ralf; Adams, Paul

    2009-07-01

    The electronic Ligand Builder and Optimisation Workbench (eLBOW) is a program module of the PHENIX suite of computational crystallographic software. It's designed to be a flexible procedure using simple and fast quantum chemical techniques to provide chemically accurate information for novel and known ligands alike. A variety of input formats and options allow for the attainment of a number of diverse goals including geometry optimisation and generation of restraints.

  5. A water-swap reaction coordinate for the calculation of absolute protein-ligand binding free energies.

    PubMed

    Woods, Christopher J; Malaisree, Maturos; Hannongbua, Supot; Mulholland, Adrian J

    2011-02-07

    The accurate prediction of absolute protein-ligand binding free energies is one of the grand challenge problems of computational science. Binding free energy measures the strength of binding between a ligand and a protein, and an algorithm that would allow its accurate prediction would be a powerful tool for rational drug design. Here we present the development of a new method that allows for the absolute binding free energy of a protein-ligand complex to be calculated from first principles, using a single simulation. Our method involves the use of a novel reaction coordinate that swaps a ligand bound to a protein with an equivalent volume of bulk water. This water-swap reaction coordinate is built using an identity constraint, which identifies a cluster of water molecules from bulk water that occupies the same volume as the ligand in the protein active site. A dual topology algorithm is then used to swap the ligand from the active site with the identified water cluster from bulk water. The free energy is then calculated using replica exchange thermodynamic integration. This returns the free energy change of simultaneously transferring the ligand to bulk water, as an equivalent volume of bulk water is transferred back to the protein active site. This, directly, is the absolute binding free energy. It should be noted that while this reaction coordinate models the binding process directly, an accurate force field and sufficient sampling are still required to allow for the binding free energy to be predicted correctly. In this paper we present the details and development of this method, and demonstrate how the potential of mean force along the water-swap coordinate can be improved by calibrating the soft-core Coulomb and Lennard-Jones parameters used for the dual topology calculation. The optimal parameters were applied to calculations of protein-ligand binding free energies of a neuraminidase inhibitor (oseltamivir), with these results compared to experiment. These

  6. [Synthesis and structure of silver(I) coordination polymers with bis(pyridyl) ligands linked by an aromatic sulfonamide].

    PubMed

    Katagiri, Kosuke

    2014-01-01

    Aromatic sulfonamides exist in a synclinal conformation with the twisted structure arising from rotation around the S-N bond in both the solid state and in solution. Simple bidentate ligands containing the sulfonamide moiety can be extended to form elongated ligands, and optically active components can be added to form a versatile building block for the construction of coordination polymers with many structures. Mixing the simple ligands 1 and 2 and the elongated ligands 3 and 4 with different Ag(I) salts yielded the corresponding complexes [Ag(1)OTf]n (1a), [Ag(2)]n•nOTf(2a), [Ag(3)OTf]n (3a), [Ag(3)]n•nBF₄ (3b), [Ag(4)CH₃CN]n•nBF₄•nCHCl₃ (4b), and [Ag(4)]n•nSbF₆•nCH₄O (4c). Straight chains and racemic helical polymers were observed in the crystal structure of complexes 1a and 2a, respectively. In the crystal structures of complexes 3a and 4b, infinite 1D straight chains containing a T-shaped coordination geometry about the Ag(I) centers were formed by the reaction of ligands 3 or 4 with Ag(I) salts in CH₃CN/CHCl₃. A continuous 1D coordination polymer containing a racemic mixture of left- and right-handed helices formed in the crystal structure of complex 3b. Furthermore, a layered coordination polymer consisting of a racemic mixture of left- and right-handed polymers was observed from the crystal structure of complex 4c. The construction of optically pure left- or right-handed 1D helical polymers via the introduction of chiral functional groups on the nitrogen atom of the sulfonamide ligand is currently under investigation in our laboratory.

  7. Spirocyclic sulfur and selenium ligands as molecular rigid rods in coordination of transition metal centers.

    PubMed

    Petrukhina, Marina A; Henck, Colin; Li, Bo; Block, Eric; Jin, Jin; Zhang, Shao-Zhong; Clerac, Rodolphe

    2005-01-10

    A set of analogous chalcogen-containing spirocycles, 2,6-dithiaspiro[3.3]heptane, 2,6-diselenaspiro[3.3]heptane, and 2-thia-6-selenaspiro[3.3]heptane [E(2)C(5)H(8), E = S (1), Se (2), and S/Se (3)], has been prepared and fully characterized by spectroscopic methods and by X-ray diffraction. The structural characterization of 2 was presented by us earlier, while the crystal structures of 1 and 3 are reported here for the first time. Molecules 1-3 are built around the central tetrahedral carbon atom and therefore are nonplanar. The E...E separation ranges from 4.690(1) A in 1 to 4.906(1) A in 2. Molecule 3 has statistically mixed positions of sulfur and selenium atoms in the solid state with all geometric characteristics being intermediate between those of 1 and 2. Compounds 2 and 3 have been tested as molecular rigid rod ligands in coordination reactions with transition metal complexes such as Cu(hfac)(2) (4), cis-Co(hfac)(2).2H(2)O (5), and cis-Ni(hfac)(2).2H(2)O (6) (hfac = hexafluoroacetylacetonate). Several coordination products built of two building blocks, M(hfac)(2) (M = Cu, Co, and Ni) and Se(2)C(5)H(8) (2), have been prepared in crystalline form and structurally characterized. The copper-based product (7) is comprised of the oligomeric units {[Cu(hfac)(2)](3).2mu(2)-Se(2)C(5)H(8)-Se,Se'} built on the axial Cu...Se interactions averaged at 2.909 A. These units are further assembled into 1D polymeric chains via intermolecular Cu...F contacts at 2.829 A. The SSeC(5)H(8) (3) ligand was also used in the reaction with Cu(hfac)(2) to afford an analogue of 7, namely {[Cu(hfac)(2)](3).2mu(2)-SSeC(5)H(8)-S,Se} (8). Complex 8 exhibits statistically mixed positions of the donor sulfur and selenium atoms to give an average axial Cu...S/Se contact at 2.892 A. In contrast to the copper complexes of composition 3:2, the stoichiometries of the isolated cobalt and nickel products are 1:1, [M(hfac)(2).Se(2)C(5)H(8)] (M = Co (9) and Ni (10)). Complexes 9 and 10 exhibit 1D

  8. A novel cobalt (I) coordination polymer with mixed thiocyanate and quinoline ligands: crystal structure, magnetism and luminescent properties.

    PubMed

    Li, Lei; Chen, Shuai; Zhou, Rui-Min; Bai, Yan; Dang, Dong-Bin

    2014-01-01

    A new Co(I) one-dimensional coordination polymer [Co(SCN)(ql)]n (ql=quinoline) (1) has been synthesized and characterized by IR, elemental analysis, TG technique and X-ray crystallography. Co(I) atom has a distorted trigonal pyramidal N2S2 (1) environment with two S atoms and one N atom from three μ-1,1,3-thiocyanate bridge ligands and one N atom from ql ligand. Two S atoms from two μ-1,1,3-SCN- bridging ligands bridge two centers to obtain bimetallic 4-membered ring. Adjacent 4-membered rings are linked by a pair of μ-1,1,3-SCN- bridging ligands to form a 1D stair-case like chain. The luminescent properties and magnetic properties of the polymer 1 were investigated in the solid state. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Different aliphatic dicarboxylates affected assemble of new coordination polymers constructed from flexible-rigid mixed ligands

    SciTech Connect

    Xu Xinxin; Ma Ying; Wang Enbo

    2007-11-15

    In this article, seven coordination polymers: [Cd(C{sub 5}H{sub 6}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})]{sub n} (1), [Zn(C{sub 5}H{sub 6}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})]{sub n} (2), [Cd(C{sub 6}H{sub 8}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})]{sub n} (3), {l_brace}[Mn(C{sub 10}H{sub 8}N{sub 2})(H{sub 2}O){sub 4}] (C{sub 4}H{sub 4}O{sub 4}).4H{sub 2}O{r_brace}{sub n} (4), [Mn{sub 5}(C{sub 4}H{sub 4}O{sub 4}){sub 4}(O)]{sub n} (5), [Cd(C{sub 4}H{sub 4}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})(H{sub 2}O)]{sub n} (6) and [Zn(C{sub 6}H{sub 6}O{sub 4})(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)]{sub n} (7) were synthesized and characterized by single-crystallographic X-ray diffraction. Compounds 1 and 2 are two-dimensional layers connected by glutarate anions and 4,4'-bpy. Unlike compounds 1 and 2, compound 3 is a two-fold interpenetration network. Compound 4 is a one-dimensional chain-like structure, which is further extended to two-dimensional supramolecular layer structure with hydrogen bond. During the synthesis of compound 4, to our surprise, we got compound 5; compound 5 is an interesting three-dimensional network composed of pentanuclear Mn(II) building units and succinate anions. Compound 6 is also a two-dimensional supramolecular layer structure composed of one-dimensional chain-like structure with hydrogen bonds and {pi}-{pi} interactions. Compound 7 is also a one-dimensional chain-like structure, which is further connected with the same kind of interaction to generate two-dimensional supramolecular layer structure. Furthermore, compounds 1 and 2 both exhibit fluorescent property at room temperature. - Graphical abstract: Seven complexes composed by 3D metal ions, aliphatic acid ligand and rigid bidentate nitrogen ligands: 4,4'-bpy, 2,2'-bpy and 1,10'-phen. With the change of the carbon number of the backbone of aliphatic dicarboxylate ligand, we can synthesize different complexes with various structures.

  10. The Influence of the Second and Outer Coordination Spheres on Rh(diphosphine)2 CO2 Hydrogenation Catalysts

    SciTech Connect

    Bays, J. Timothy; Priyadarshani, Nilusha; Jeletic, Matthew S.; Hulley, Elliott; Miller, Deanna L.; Linehan, John C.; Shaw, Wendy J.

    2014-10-03

    A series of [Rh(PCH2XRCH2P)2]+ complexes were prepared to investigate second and outer coordination sphere effects on CO2 hydrogenation catalysis, where X is CH2 (dppp) or X-R is N-CH3, N-CH2COOH (glycine), N-CH2COOCH3 (Gly-OMe) or N-CH2C(O)N-CH(CH3)COOCH3 (GlyAla-OMe). All of these modified complexes were active for CO2 reduction to formate, with the N-CH3 derivative offering an eight-fold enhancement over dppp, which is consistent with decreased electron density around the phosphorous (and corresponding increase in electron density around the metal) observed in the 31P NMR spectrum. Despite the increase in rate with the addition of the pendant nitrogen, the addition of electron withdrawing amino acids and dipeptides to the amine resulted in complexes with reductions in rate of one to two orders of magnitude, most consistent with a change in pKa of the pendant amine resulting in lower activity. Collectively, the data suggests multiple contributions of the pendant amine in this catalytic system. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the DOE by Battelle. A portion of this research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  11. Synthesis and structure of bivalent ytterbocenes and their coordination chemistry with pi-acceptor ligands

    SciTech Connect

    Schultz, Madeleine

    2000-05-01

    The bivalent lanthanide metallocenes [1,3-(Me3C)2C5H3]2Yb and (Me4C5H)2Yb have been synthesized and their structures have been determined by X-ray crystallography. Comparison with the known structures of (Me5C5)2Yb and [1,3 -(Me3Si)2C5H3]2Yb leads to an understanding of the role of intermolecular contacts in stabilizing these coordinatively unsaturated molecules. The optical spectra of the base-free ytterbocenes and their Lewis-base adducts have been measured; the position of the HOMO - LUMO transition can be correlated with the degree of bending of the complexes in solution according to a molecular orbital model. Electron - electron repulsion, resulting from additional σ-donor ligands, also affects the HOMO - LUMO transition by increasing the energy of the filled f-orbitals. The base-free metallocene (Me5C5)2Yb coordinates carbon monoxide, resulting in a decrease in Vco relative to that of fi-ee carbon monoxide. This behavior is reminiscent of d-transition metallocene chemistry. Other base-free ytterbocenes also coordinate carbon monoxide and the degree of back-donation is related to the substituents on the cyclopentadienide rings. Isocyanides are coordinated in a 1:2 ratio by the ytterbocenes, giving complexes having vcN higher than those of the free isocyanides. An electrostatic bonding model has been used to explain the changes in CN stretching frequencies. The optical spectra of the carbonyl and isocyanide complexes are consistent with the molecular orbital model of the variation in the HOMO - LUMO gap upon bending, and the increase in electron - electron repulsion due to the additional ligands. The complex (Me5C5)2Yb(bipy) exhibits optical, infrared and NMIZ spectroscopy and an X-ray crystal

  12. Investigating the Role of the Outer-Coordination Sphere in [Ni(PPh2NPh-R2)2]2+ Hydrogenase Mimics

    SciTech Connect

    Jain, Avijita; Reback, Matthew L.; Lindstrom, Mary L.; Thogerson, Colleen E.; Helm, Monte L.; Appel, Aaron M.; Shaw, Wendy J.

    2012-06-18

    A series of dipeptide nickel complexes with the general formula, [Ni(PPh2NNNA-amino acid/ester2)2](BF4)2, have been synthesized and characterized (P2N2= 1,5-diaza-3,7-diphosphacyclooctane, amino acid/esters = glutamic acid, alanine, lysine, and aspartic acid). Each of these complexes is an efficient electrocatalyst for H2 production. The contribution of the outer-coordination sphere, specifically the impact of sterics, the ability to protonate and the pKa of amino acid side chain on the hydrogen production activity of these complexes, was investigated. The rates of all of the catalysts ranged over an order of magnitude. The amino acid containing complexes display 2-3 times higher rates of hydrogen production than the corresponding ester complexes, suggesting the significance of protonated species (side chains/backbone of amino acids) in the outer-coordination sphere. The largest had the fastest rates suggesting that catalytic activity is not hindered by sterics. However, the shapes of catalytic waves are indicative of hindered electron transfer and may suggest a competing mechanism for catalysis than that observed for the unsubstituted parent complex. These studies demonstrate the significant contribution that the outer-coordination sphere can have in tuning the catalytic activity of small molecule hydrogenase mimics.

  13. Electrical conductivity and luminescence properties of two silver(I) coordination polymers with heterocyclic nitrogen ligands

    SciTech Connect

    Rana, Abhinandan; Kumar Jana, Swapan; Pal, Tanusri; Puschmann, Horst; Zangrando, Ennio; Dalai, Sudipta

    2014-08-15

    The synthesis and X-ray structural characterization of two novel silver(I) coordination polymers, [Ag(NO{sub 3})(quin)]{sub n} (1) and [Ag{sub 8}(HL){sub 2}(H{sub 2}O){sub 4}(mpyz)]·3H{sub 2}O (2) are reported, where quin=5,6,7,8-tetrahydroquinoxaline, H{sub 6}L=cyclohexane-1,2,3,4,5,6-hexacarboxylic acid and mpyz=2-methyl pyrazine. The single crystal diffraction analyses showed that complex 1 is a 2D layered structure, while 2 presents a 3D polymeric architecture. In complex 2 the network is stabilized by argentophilic interactions and hydrogen bonding. Electrical conductivity of order 3×10{sup −4} Scm{sup −1} (1) and 1.6×10{sup −4} Scm{sup −1} (2) is measured on thin film specimen at room temperature. The photoluminescence and thermal properties of the complexes have also been studied. - Graphical abstract: Two new 1D and 3D coordination polymers of Ag(I) have been synthesized and characterized by X-ray analysis. The electrical, luminescence and thermal properties have been studied. - Highlights: • 1 is 2D layered while 2 present a 3D polymeric architecture. • The network in 2 is stabilized by argentophilic interactions and hydrogen bonding. • Electrical conductivity measurement is quite interesting. • Argentophilic interaction and intra-ligand π{sup ⁎}–π CT explains emission behavior of 2.

  14. Three-coordinate cationic aluminum alkyl complexes incorporating {Beta}-diketiminate ligands

    SciTech Connect

    Radzewich, C.E.; Guzei, I.A.; Jordan, R.F.

    1999-09-22

    Low-coordinate cationic aluminum complexes are expected to be highly electrophilic and therefore are of interest for Lewis acid catalysis, olefin polymerization, and other potential applications. The authors describe three-coordinate, base-free aluminum alkyl cations that incorporate {beta}-diketiminate ligands. The reaction of {l{underscore}brace}HC(CMeNAr){sub 2}{r{underscore}brace}AlMe{sub 2} (1, Ar = 2.6-{sup i}Pr{sub 2}-phenyl) with [PH{sub 3}C][B(C{sub 6}F{sub 5}){sub 4}] in C{sub 6}D{sub 6} or C{sub 6}D{sub 5}Cl proceeds by methyl abstraction and yields [{l{underscore}brace}HC(CMeNAr){sub 2}{r{underscore}brace}AlMe][B(C{sub 6}F{sub 5}){sub 4}] (2) and Ph{sub 3}CMe. Complex 2 is soluble in C{sub 6}D{sub 5}Cl, separates as a liquid clathrate (oil) from benzene, and was isolated as an off-white solid by the addition of hexanes to a liquid clathrate in benzene. The addition of benzene/hexanes (1:10 by volume) to the isolated powder of 2, gently heating to 50 C for 2 days, and slowly cooling the mixture yielded 2{center{underscore}dot}benzene as colorless crystals. Complex 2 crystallizes as an ion pair in which the B(C{sub 6}F{sub 5}){sub 4}{sup {minus}} anion binds weakly to the {l{underscore}brace}HC(CMeNAr){sub 2}{r{underscore}brace}AlMe{sup {plus}} cation through a meta fluorine.

  15. Bismuth coordination chemistry with allyl, alkoxide, aryloxide, and tetraphenylborate ligands and the {[2,6-(Me2NCH2)2C6H3]2Bi}+ cation.

    PubMed

    Casely, Ian J; Ziller, Joseph W; Mincher, Bruce J; Evans, William J

    2011-02-21

    A series of bis(aryl) bismuth compounds containing (N,C,N)-pincer ligands, [2,6-(Me(2)NCH(2))(2)C(6)H(3)](-) (Ar'), have been synthesized and structurally characterized to compare the coordination chemistry of Bi(3+) with similarly sized lanthanide ions, Ln(3+). Treatment of Ar'(2)BiCl, 1, with ClMg(CH(2)CH═CH(2)) affords the allyl complex Ar'(2)Bi(η(1)-CH(2)CH═CH(2)), 2, in which only one allyl carbon atom coordinates to bismuth. Complex 1 reacts with KO(t)Bu and KOC(6)H(3)Me(2)-2,6 to yield the alkoxide Ar'(2)Bi(O(t)Bu), 3, and aryloxide Ar'(2)Bi(OC(6)H(3)Me(2)-2,6), 4, respectively, but the analogous reaction with the larger KOC(6)H(3)(t)Bu(2)-2,6 forms [Ar'(2)Bi][OC(6)H(3)(t)Bu(2)-2,6], 6, in which the aryloxide ligand acts as an outer sphere anion. Chloride is removed from 1 by NaBPh(4) to form [Ar'(2)Bi][BPh(4)], 5, which crystallizes from THF in an unsolvated form with tetraphenylborate as an outer sphere counteranion.

  16. Syntheses and structural characterization of mercury (II) coordination polymers with neutral bidentate flexible pyrazole-based ligands

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Salavati, Hossein; Asadi, Amin; Gajda, Roman; Woźniak, Krzysztof

    2016-03-01

    Mercury(II) coordination compounds [Hg(μ-bbd)(μ-SCN)4]n(1) and [Hg(bpp)(SCN)2] (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethypyrazol-1-yl)butane (bbd) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp), NCS- ligand and appropriate mercury(II) salts. Compound 1 forms a polymeric network with moieties which are connected by SCN groups and the mercury ions present as HgN3S2 trigonal bipyramides. The crystal structure of 2 is build of monomers and the mercury(II) ion adopts an HgN2S2 tetrahedral geometry. In the complex 1, each bbd acts as bridging ligand connecting Hg(μ-SCN)4 ions, while in the complex 2, the bpp ligand is coordinated to an mercury(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Moreover, in the tetrahedral structure of 2, the neutral molecules form a 1D chain structure through the C-H···N hydrogen bonds, whereas in 1 no hydrogen bonds are observed. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction.

  17. Synthesis, structures and photocatalytic properties of two new Co(II) coordination polymers based on 5-(benzyloxy)isophthalate ligand

    NASA Astrophysics Data System (ADS)

    Li, Xia; Li, Jing; Li, Ming-Kai; Fei, Zhou

    2014-02-01

    Two new Co(II) coordination polymer, namely [Co2(L)2(H2O)]n (1) and [Co(L)(phen)(H2O)]n·xH2O (2) (H2L = 5-(benzyloxy)isophthalic acid, phen = 1,10-phenanthroline) have been hydrothermally synthesized and characterized by elemental analysis, powder X-ray diffraction, thermal analysis and single crystal X-ray analysis. The molecular structure of 1 contains two Co(II) ions, two L2- ligands and one coordinated water molecule, which further extends into a complicated 3D framework with the tails of L2- ligands filling in the hexagonal channels, and the molecular structure of 2 contains one Co(II) ions, one L2- ligands, one phen ligands, one coordinated water molecule and half of the water molecule of crystallization, which further extends into a 1D chain structure. In addition, photocatalytic investigation on compounds 1 and 2 reveals that they are active catalyst for degradation of methyl blue.

  18. One- and two-dimensional Cd(II) coordination polymers incorporating organophosphinate ligands.

    PubMed

    Rood, Jeffrey A; Boyer, Steven; Oliver, Allen G

    2014-11-01

    Reaction of cadmium nitrate with diphenylphosphinic acid in dimethylformamide solvent yielded the one-dimensional coordination polymer catena-poly[[bis(dimethylformamide-κO)cadmium(II)]-bis(μ-diphenylphosphinato-κ(2)O:O')], [Cd(C12H10O2P)2(C3H7NO)2]n, (I). Addition of 4,4'-bipyridine to the synthesis afforded a two-dimensional extended structure, poly[[(μ-4,4'-bipyridine-κ(2)N:N')bis(μ-diphenylphosphinato-κ(2)O:O')cadmium(II)] dimethylformamide monosolvate], {[Cd(C12H10O2P)2(C10H8N2)]·C3H7NO}n, (II). In (II), the 4,4'-bipyridine molecules link the Cd(II) centers in the crystallographic a direction, while the phosphinate ligands link the Cd(II) centers in the crystallographic b direction to complete a two-dimensional sheet structure. Consideration of additional π-π interactions of the phenyl rings in (II) produces a three-dimensional structure with channels that encapsulate dimethylformamide molecules as solvent of crystallization. Both compounds were characterized by single-crystal X-ray diffraction and FT-IR analysis.

  19. Molecular Simulations of Human and Mouse Aβ1-16 at Different pH Values: Structural Characteristics toward Understanding Cu(2+) -Coordinated Amyloid Beta Spheres.

    PubMed

    Zhang, Ran; Ai, Hongqi; Zhu, Xueying; Li, Qiang

    2016-06-03

    As the main sequence responsible for metal ion coordination in the amyloid beta (Aβ) peptide, Aβ1-16 plays a key role in the understanding of the aggregation of Aβ induced by Cu(2+) ions. There is no consensus on the nature of the coordination sphere of the Cu(2+) -Aβ complex so far due to the amorphous conformation of the Aβ1-16 peptide itself and the pH dependence of Cu(2+) -Aβ coordination. The simulation reported here reveals that human Aβ1-16 monomer has a U-shape morphology, which is preserved at any pH. This morphology accommodates Cu(2+) ions with several binding sites and is also the basis for establishing a center-distance statistical method (CDSM). Based on this CDSM, specific histidine residues for a Cu(2+) -coordinated sphere are identified and the corresponding accurate pH range is established, indicating that the CDSM can be used as a reference to predict the potential coordination sites of metal ions in other amorphous peptides. By contrast, mouse Aβ1-16 monomer has a more open and random morphology than human Aβ1-16 due to the differences of three sequence positions. These mutations not only reduce the number of binding sites required by a stable Cu(2+) -binding sphere but also diminish the capacity to generate salt bridges compared to the human peptide. These observations offer insights into the roles of three residues that differ in the mouse Aβ1-16 and perhaps into the reasons mice seldom develop Alzheimer's disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ligand coordination and spin crossover in a nickel porphyrin anchored to mesoporous TiO2 thin films.

    PubMed

    Achey, Darren; Meyer, Gerald J

    2013-08-19

    The coordination and spin equilibrium of a Ni(II) meso-tetra(4-carboxyphenyl)porphyrin compound, NiP, was quantified both in fluid solution and when anchored to mesoporous, nanocrystalline TiO2 thin films. This comparison provides insights into the relative rate constants for excited-state injection and ligand field population. In the presence of pyridine, the spectroscopic data were consistent with the presence of equilibrium concentrations of a 4-coordinate low-spin S = 0 ((1)A1g) Ni(II) compound and a high-spin S = 1 ((3)B1g) 6-coordinate compound. Temperature-dependent equilibrium constants were consistently smaller for the surface-anchored NiP/TiO2, as were the absolute values of ΔH and ΔS. In the presence of diethylamine (DEA), the ground-state 6-coordinate compound was absent, but evidence for it was present after pulsed light excitation of NiP. Arrhenius analysis of data, measured from -40 to -10 °C, revealed activation energies for ligand dissociation that were the same for the compound in fluid solution and anchored to TiO2, Ea = 6.6 kcal/mol, within experimental error. At higher temperatures, a significantly smaller activation energy of 3.5 kcal/mol was found for NiP(DEA)2/TiO2. A model is proposed wherein the TiO2 surface sterically hinders ligand coordination to NiP. The lack of excited-state electron transfer from Ni(II)P*/TiO2 indicates that internal conversion to ligand field states was at least 10 times greater than that of excited-state injection into TiO2.

  1. The physical chemistry of coordinated aqua-, ammine-, and mixed-ligand Co2+ complexes: DFT studies on the structure, energetics, and topological properties of the electron density.

    PubMed

    Varadwaj, Pradeep R; Marques, Helder M

    2010-03-07

    Spin-unrestricted DFT-X3LYP/6-311++G(d,p) calculations have been performed on a series of complexes of the form [Co(H(2)O)(6-n)(NH(3))(n)](2+) (n = 0-6) to examine their equilibrium gas-phase structures, energetics, and electronic properties in their quartet electronic ground states. In all cases Co(2+) in the energy-minimised structures is in a pseudo-octahedral environment. The calculations overestimate the Co-O and Co-N bond lengths by 0.04 and 0.08 A, respectively, compared to the crystallographically observed mean values. There is a very small Jahn-Teller distortion in the structure of [Co(H(2)O)(6)](2+) which is in contrast to the very marked distortions observed in most (but not all) structures of this cation that have been observed experimentally. The successive replacement of ligated H(2)O by NH(3) leads to an increase in complex stability by 6 +/- 1 kcal mol(-1) per additional NH(3) ligand. Calculations using UB3LYP give stabilisation energies of the complexes about 5 kcal mol(-1) smaller and metal-ligand bond lengths about 0.005 A longer than the X3LYP values since the X3LYP level accounts for the London dispersion energy contribution to the overall stabilisation energy whilst it is largely missing at the B3LYP level. From a natural population analysis (NPA) it is shown that the formation of these complexes is accompanied by ligand-to-metal charge transfer the extent of which increases with the number of NH(3) ligands in the coordination sphere of Co(2+). From an examination of the topological properties of the electron charge density using Bader's quantum theory of atoms in molecules it is shown that the electron density rho(c) at the Co-O bond critical points is generally smaller than that at the Co-N bond critical points. Hence Co-O bonds are weaker than Co-N bonds in these complexes and the stability increases as NH(3) replaces H(2)O in the metal's coordination sphere. Several indicators, including the sign and magnitude of the Laplacian of the

  2. Low-Coordinate First Row Early Transition Metal Complexes Stabilized by Modified Terphenyl Ligands

    NASA Astrophysics Data System (ADS)

    Boynton, Jessica Nicole

    The research in this dissertation is focused on the synthesis, structural, and magnetic characterization of two-coordinate open shell (d1-d4) transition metal complexes. Background information on this field of endeavor is provided in Chapter 1. In Chapter 2 I describe the synthesis and characterization of the mononuclear chromium (II) terphenyl substituted primary amido complexes and a Lewis base adduct. These studies suggest that the two-coordinate chromium complexes have significant spin-orbit coupling effects which lead to moments lower than the spin only value of 4.90 muB owing to the fact that lambda (the spin orbit coupling parameter) is positive. The three-coordinated complex 2.3 had a magnetic moment of 3.77 muB. The synthesis and characterization of the first stable two-coordinate vanadium complexes are described in Chapter 3. The values suggest a significant spin orbital angular momentum contribution that leads to a magnetic moment that is lower than their spin only value of 3.87 muB. DFT calculations showed that the major absorptions in their UV-Vis spectra were due to ligand to metal charge transfer transitions. The titanium synthesis and characterization of the bisamido complex along with its three-coordinate titanium(III) precursor are described in Chapter 4. Compound 4.1 was obtained via the stoichiometric reaction of LiN(H)AriPr 6 with the Ti(III) complex TiCl3 *2NMe 3 in trimethylamine. The precursor 4.1 has trigonal pyramidal coordination at the titanium atom, with bonding to two amido nitrogens and a chlorine as well as a secondary interaction to a flanking aryl ring of a terphenyl substituent. Compound 4.2 displays a very distorted four-coordinate metal environment in which the titanium atom is bound to two amido nitrogens and to two carbons from a terphenyl aryl ring. This structure is in sharp contrast to the two-coordinate linear structure that was observed in its first row metal (V-Ni) analogs. The synthesis and characterization of

  3. Two successive single crystal phase transitions involving the coordination sphere of antimony in PhSb(dmit), the first organo-antimony(III) dithiolene complex.

    PubMed

    Avarvari, N; Faulques, E; Fourmigué, M

    2001-05-21

    PhSb(dmit) (dmit(2)(-), 4,5-dithiolato-1,3-dithiole-2-thione), the first neutral organo-antimony dithiolene complex, has been synthesized by addition of PhSbCl(2) on a suspension of Na(2)(dmit). The complex was characterized by spectroscopic ((1)H and (13)C NMR and IR) methods and elemental analysis. Its crystal structure was determined by X-ray diffraction at room temperature in the monoclinic P2(1)/c space group, with a = 12.580(3), b = 8.9756(18), c = 15.905(3) A, beta = 109.06(3) degrees, V = 1697.5(6) A(3), Z = 4. A coordinating THF molecule was found in the structure and the coordination geometry around the antimony atom is of distorted pseudopentagonal bipyramid type, if taking into account the Sb.O and secondary Sb.S interactions, as well as the stereochemically active 5s(2) lone pair. The intermolecular Sb.S and S.S contacts, shorter than the sum of van der Waals radii of corresponding atoms, lead to the formation of a three-dimensional polymeric network in the solid state. A second X-ray diffraction experiment, performed at 85 K, revealed a very similar monoclinic unit cell with the noncentrosymmetrical space group P2(1) with a = 12.613(3), b = 8.9876(18), c = 15.109(3) A, beta = 107.01(3) degrees, V = 1637.8(6), Z = 4. The structural differences with the first one are basically due to the rotation of the THF ligand in the coordination sphere of the antimony center, leading to the loss of every inversion center found at room temperature. A temperature variable X-ray diffraction study on a PhSb(dmit) single-crystal allowed the detection, with a remarkable accuracy, of two successive first-order phase transitions, the first occurring at T = 162.5 K, while the second was observed at T = 182.5 K. Subsequently, a third set of X-ray data was collected at 180 K and the resulting structure (monoclinic, P2(1)/c, a = 16.736(3), b = 8.9653(18), c = 33.132(7) A, beta = 91.98(3) degrees, V = 4968.2(17), Z = 12) derives from the two others by a common b axis, a 3-fold

  4. Addendum to "An update on the classical and quantum harmonic oscillators on the sphere and the hyperbolic plane in polar coordinates" [Phys. Lett. A 379 (26-27) (2015) 1589-1593

    NASA Astrophysics Data System (ADS)

    Quesne, C.

    2016-02-01

    The classical and quantum solutions of a nonlinear model describing harmonic oscillators on the sphere and the hyperbolic plane, derived in polar coordinates in a recent paper (Quesne, 2015) [1], are extended by the inclusion of an isotonic term.

  5. The effect of the disposition of coordinated oxygen atoms on the magnitude of the energy barrier for magnetization reversal in a family of linear trinuclear Zn-Dy-Zn complexes with a square-antiprism DyO8 coordination sphere.

    PubMed

    Oyarzabal, Itziar; Rodríguez-Diéguez, Antonio; Barquín, Montserrat; Seco, José M; Colacio, Enrique

    2017-03-27

    A series of trimetallic Zn-Dy-Zn complexes of the general formula [ZnX(μ-L)Dy(μ-L)XZn]Y·nS, where H2L is the compartmental ligand N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromobenzyl)ethylenediamine, X is the coligand (X = Cl, Br, I and N3), Y is the counteranion and S are the crystallization solvent molecules have been synthesized and magnetically characterized. In all these complexes, the Dy(iii) ions exhibit DyO8 coordination environments with a slightly distorted square-antiprism D4d symmetry. Due to the disposition of the oxygen atoms around the Dy(iii) ions, large easy-axis anisotropy is expected, which is responsible for the high thermal energy barriers for the reversal of the magnetization observed at zero field (in the 144-170 K range for all complexes). A preliminary correlation between the disposition of the oxygen atoms of the ligand (phenoxo and aldehyde) in the DyO8 coordination sphere and the value of Ueff has been established.

  6. Self-assembly of metal-organic coordination polymers constructed from a bent dicarboxylate ligand: diversity of coordination modes, structures, and gas adsorption.

    PubMed

    Yang, Wenbin; Lin, Xiang; Blake, Alexander J; Wilson, Claire; Hubberstey, Peter; Champness, Neil R; Schröder, Martin

    2009-12-07

    We have synthesized five new metal-organic coordination polymers incorporating the bent ligand H(2)hfipbb [4,4'-(hexafluoroisopropylidene)bis(benzoic acid)] with different transition metal ions and co-ligands via solvothermal reactions to give [Zn(2)(hfipbb)(2)(py)(2)] x DMF (1), [Zn(2)(hfipbb)(2)(4,4'-bipy)(H(2)O)] (2), [Zn(2)(hfipbb)(2)(bpdab)].2DMF (3), [Cd(2)(hfipbb)(2)(DMF)(2)] x 2 DMF (4), and [Co(hfipbb)(dpp)] x MeOH (5) (py = pyridine, 4,4'-bipy = 4,4'-bipyridine, bpdab = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, dpp = 1,3-di(4-pyridyl)propane). Compound 1 displays a 2-fold 2D-->2D parallel interpenetrated layer network with one-dimensional (1D) helical channels, while 3 exhibits a three-dimensional pillared helical-layer open framework of alpha-Po topology based upon binuclear paddlewheel units. In compounds 2 and 5, binuclear motifs with double carboxylate bridges are linked by hfipbb(2-) ligands into a 1D ribbon, which are further assembled into two-dimensional non-interpenetrated (4,4) layers via bipyridyl co-ligands. However, the different bridging modes of hfipbb(2-) ligands and the different disposition of the coordinated co-ligands around metal ions result in subtle differences in the final architecture. Thus, 2 is based on a binuclear cluster node, double-stranded hfipbb(2-) linkers, and single-stranded 4,4'-bipy linkers, while 5 is based on a binuclear cluster node and hfipbb(2-) and dpp linkers which are both double-stranded. Among these compounds, the Cd(II) complex 4 is possibly the most interesting because it represents a rare example in which metal centers are linked by carboxylate groups into infinite chains further joined together by hfipbb(2-) spacers to form a 2D network with tubular helical channels. All these coordination polymers exhibit low solvent-accessible volumes. Both 3 and 4 retain structural integrity and permanent microporosity upon evacuation of guest molecules, with hydrogen uptakes of 0.57 and 0.78 wt %, respectively, at

  7. Application of the hard and soft acids and bases concept to explain ligand coordination in double salt structures

    NASA Astrophysics Data System (ADS)

    Balarew, Christo; Duhlev, Rumen

    1984-11-01

    The coordination polyhedra in 43 double salt structures are examined. Each structure is formed by at least two kinds of polyhedra. The differences in the environment around the metal ions are explained using HSAB concept. The values of hardness for 25 cations are calculated according to Klopman. A factor χ = Hacid· Hbase, where H is the hardness value, is introduced. The value of this factor can be used as a criterion for the stability of the complexes. The possibilities which the χ factor gives in explaining ligand coordination in known structures as well as for predicting structures for double salts are illustrated.

  8. Systematic investigation of silver-carbon bonding in coordination frameworks with aryl ligands that contain ethynyl and ethenyl substituents.

    PubMed

    Hau, Sam C K; Mak, Thomas C W

    2013-04-22

    Single-crystal X-ray diffraction of a series of ten crystalline silver(I)-trifluoroacetate complexes that contained designed ligands, each of which was composed of an aromatic system that was functionalized with terminal and internal ethynyl groups and a vinyl substituent, provided detailed information on the influence of ligand disposition and orientation, coordination preferences, and the co-existence of different types of silver(I)-carbon bonding interactions (silver-ethynide, silver-ethynyl, silver-ethenyl, and silver-aromatic) on the construction of coordination networks that were consolidated by argentophilic and weak inter/intramolecular interactions. The complex AgL10⋅6 AgCF3CO2⋅H2O⋅ MeOH (HL10 = 1-{[4-(prop-2-ynyloxy)-3-vinylphenyl]ethynyl}naphthalene) is the first reported example that exhibits all four kinds of silver(I)-carbon bonding interactions in the solid state.

  9. Lanthanide contraction effect on crystal structures of lanthanide coordination polymers with cyclohexanocucurbit[6]uril ligand

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Mei; Liu, Jing-Xin

    2017-01-01

    A series of compounds based on the macrocyclic ligand cyclohexanocucurbit[6]uril (Cy6Q[6]) with formulas {Ln(H2O)6Cy6Q[6]}·2(CdCl4)·H3O·xH2O [isomorphous with Ln=La (1), Ce (2), Pr (3) and Nd (4), x=11 (1), 11 (2), 10 (3) and 11 (4)], {Sm(H2O)5Cy6Q[6]}·2(CdCl4)·H3O·10H2O (5) and {Ln(H2O)5(NO3)@Cy6Q[6]}·2(CdCl4)·2H3O·xH2O [isomorphous with Ln=Gd (6), Tb (7) and Dy (8), x=8 (6), 6 (7) and 6 (8)], have been successfully synthesized by the self-assembly of Cy6Q[6] with the corresponding lanthanide nitrate under hydrochloric acid aqueous solution in the presence of CdCl2. Single-crystal X-ray diffraction analyses revealed that compounds 1-8 all crystallize in monoclinic space group P21/c, and display 1D coordination polymer structures. The lanthanide contraction effect on the structures of 1-8 has also been investigated and discussed in detail. In contrast, the reaction of Cy6Q[6] with the Ho(NO)3, Tm(NO)3, Yb(NO)3 under the same conditions resulted in the compounds 9-11 with formulas Cy6Q[6]·2(CdCl4)·2H3O·xH2O [isomorphous with x=10 (9), 10 (10), and 9 (11)], in which no lanthanide cations are observed. The structural difference of these compounds indicates that the Cy6Q[6] may be used in the separation of lanthanide cations.

  10. Coordinated modulation of cellular signaling through ligand-gated ion channels in Hydra vulgaris (Cnidaria, Hydrozoa).

    PubMed

    Pierobon, Paola

    2012-01-01

    Cnidarians lack well developed organs, but they have evolved the molecular and cellular components needed to assemble a nervous system. The apparent 'simplicity' of the cnidarian nervous net does not occur at the cellular level, but rather in the organisation of conducting systems. Cnidarian neurons are in fact electrically excitable, show the typical extended morphology and are connected by chemical synapses or gap junctions. They have been regarded as peptidergic, given the wealth of neuropeptides generally distributed along neurites and in cell bodies, supporting the hypothesis of a modulatory role in neurotransmission. However, the presence of clear-cored, as well as dense-cored synaptic vesicles in cnidarian neurons suggests both fast and slow synaptic transmission mechanisms. In fact, biochemical and functional evidence indicates that classical neurotransmitters and their metabolic partners are present in cnidarian tissues, where they are involved in coordinating motility and behavior. We have identified and characterized in Hydra tissues receptors to the inhibitory and excitatory amino acid neurotransmitters, GABA, glycine and NMDA, that are similar to mammalian ionotropic receptors in terms of their biochemical and pharmacological properties. These receptors appear to regulate pacemaker activities and their physiological correlates; in the live animal, they also affect feeding behavior, namely the duration and termination of the response elicited by reduced glutathione, with opposite actions of GABA and glycine or NMDA, respectively. These results suggest that modulation of cellular signaling through ligand-gated-ion channels is an ancient characteristic in the animal kingdom, and that the pharmacological properties of these receptors have been highly conserved during evolution.

  11. Axial Ligand Coordination to the C-H Amination Catalyst Rh2(esp)2: A Structural and Spectroscopic Study.

    PubMed

    Warzecha, Evan; Berto, Timothy C; Berry, John F

    2015-09-08

    The compound Rh2(esp)2 (esp = α,α,α',α'-tetramethyl-1,3-benzenediproponoate) is the most generally effective catalyst for nitrenoid amination of C-H bonds. However, much of its fundamental coordination chemistry is unknown. In this work, we study the effects of axial ligand coordination to the catalyst Rh2(esp)2. We report here crystal structures, cyclic voltammetry, UV-vis, IR, Raman, and (1)H NMR spectra for the complexes Rh2(esp)2L2 where L = pyridine, 3-picoline, 2,6-lutidine, acetonitrile, and methanol. The compounds all show well-defined π* → σ* electronic transitions in the 16500 to 20500 cm(-1) range, and Rh-Rh stretching vibrations in the range from 304 to 322 cm(-1). Taking these data into account we find that the strength of axial ligand binding to Rh2(esp)2 increases in the series CH3OH ∼ 2,6-lutidine < CH3CN < 3-methylpyridine ∼ pyridine. Quasi-reversible Rh2(4+/5+) redox waves are only obtained when either acetonitrile or no axial ligand is present. In the presence of pyridines, irreversible oxidation waves are observed, suggesting that these ligands destabilize the Rh2 complex under oxidative conditions.

  12. Cadmium coordination polymers based on flexible bis(imidazole) ligands: A rare example for doublet of doublet cadmium polyhedron arrangements

    NASA Astrophysics Data System (ADS)

    Babu, Chatla Naga; Suresh, Paladugu; Sampath, Natarajan; Prabusankar, Ganesan

    2014-10-01

    Two one-dimensional (1D) coordination polymers, [{LCd(O2NO)2(DMF)2}2{(LCd(O2NO)2(DMF))(DMF)}2]n (1) and [L‧Cd(O2NO)(ONO2)(DMF)2]n (2), having an aryl chromophoric unit and a flexible bis(imidazole) tail, 9,10-bis{(benzimidazol)methyl}anthracene (L) and 1,4-bis{(imidazol)methyl}benzene (L‧), with various coordination modes have been obtained. Molecule 1 represents the first structurally characterized one dimensional coordination polymer consisting of both hepta- and octa-coordinated cadmium centers. In 1, two distorted pentagonal bipyramidal Cd(II) centers and two distorted triangular dodecahedral Cd(II) centers are alternately arranged via bridging bidentate N,N-chelating ligand, L. Whereas, a distorted pentagonal bipyramidal Cd(II) center is formed in 2 where the sterically less crowded L‧ serves as a bridging bidentate N,N-chelating ligand. Furthermore, 1 and 2 have been characterized by elemental analysis, FT-IR, 1H NMR, UV-vis and fluorescent techniques.

  13. The role of a dipeptide outer-coordination sphere on H2-production catalysts: influence on catalytic rates and electron transfer.

    PubMed

    Reback, Matthew L; Ginovska-Pangovska, Bojana; Ho, Ming-Hsun; Jain, Avijita; Squier, Thomas C; Raugei, Simone; Roberts, John A S; Shaw, Wendy J

    2013-02-04

    The outer-coordination sphere of enzymes acts to fine-tune the active site reactivity and control catalytic rates, suggesting that incorporation of analogous structural elements into molecular catalysts may be necessary to achieve rates comparable to those observed in enzyme systems at low overpotentials. In this work, we evaluate the effect of an amino acid and dipeptide outer-coordination sphere on [Ni(P(Ph)(2)N(Ph-R)(2))(2)](2+) hydrogen production catalysts. A series of 12 new complexes containing non-natural amino acids or dipeptides was prepared to test the effects of positioning, size, polarity and aromaticity on catalytic activity. The non-natural amino acid was either 3-(meta- or para-aminophenyl)propionic acid terminated as an acid, an ester or an amide. Dipeptides consisted of one of the non-natural amino acids coupled to one of four amino acid esters: alanine, serine, phenylalanine or tyrosine. All of the catalysts are active for hydrogen production, with rates averaging ∼1000 s(-1), 40 % faster than the unmodified catalyst. Structure and polarity of the aliphatic or aromatic side chains of the C-terminal peptide do not strongly influence rates. However, the presence of an amide bond increases rates, suggesting a role for the amide in assisting catalysis. Overpotentials were lower with substituents at the N-phenyl meta position. This is consistent with slower electron transfer in the less compact, para-substituted complexes, as shown in digital simulations of catalyst cyclic voltammograms and computational modeling of the complexes. Combining the current results with insights from previous results, we propose a mechanism for the role of the amino acid and dipeptide based outer-coordination sphere in molecular hydrogen production catalysts.

  14. The Role of a Dipeptide Outer-Coordination Sphere on H2 -Production Catalysts: Influence on Catalytic Rates and Electron Transfer

    SciTech Connect

    Reback, Matthew L.; Ginovska-Pangovska, Bojana; Ho, Ming-Hsun; Jain, Avijita; Squier, Thomas C.; Raugei, Simone; Roberts, John A.; Shaw, Wendy J.

    2013-02-04

    The outer-coordination sphere of enzymes acts to fine-tune the active site reactivity and control catalytic rates, suggesting that incorporation of analogous structural elements into molecular catalysts may be necessary to achieve rates comparable to those observed in enzyme systems at low overpotentials. In this work, we evaluate the effect of an amino acid and dipeptide outer-coordination sphere on [Ni(PPh2NPh-R2)2]2+ hydrogen production catalysts. A series of 12 new complexes containing non-natural amino acids or dipeptides were prepared to test the effects of positioning, size, polarity and aromaticity on catalytic activity. The non-natural amino acid was either 3-(meta- or para-aminophenyl)propionic acid terminated as an acid, an ester or an amide. Dipeptides consisted of one of the non-natural amino acids coupled to one of four amino acid esters: alanine, serine, phenylalanine or tyrosine. All of the catalysts are active for hydrogen production, with rates averaging ~1000 s-1, 40% faster than the unmodified catalyst. Structure and polarity of the aliphatic or aromatic side chains of the C-terminal peptide do not strongly influence rates. However, the presence of an amide bond increases rates, suggesting a role for the amide in assisting catalysis. Overpotentials were lower with substituents at the N-phenyl meta position. This is consistent with slower electron transfer in the less compact, para-substituted complexes, as shown in digital simulations of catalyst cyclic voltammograms and computational modeling of the complexes. Combining the current results with insights from previous results, we propose a mechanism for the role of the amino acid and dipeptide based outer-coordination sphere in molecular hydrogen production catalysts.

  15. Catalytic dioxygen activation by Co(II) complexes employing a coordinatively versatile ligand scaffold.

    PubMed

    Sharma, Savita K; May, Philip S; Jones, Matthew B; Lense, Sheri; Hardcastle, Kenneth I; MacBeth, Cora E

    2011-02-14

    The ligand bis(2-isobutyrylamidophenyl)amine has been prepared and used to stabilize both mononuclear and dinuclear cobalt(II) complexes. The nuclearity of the cobalt product is regulated by the deprotonation state of the ligand. Both complexes catalytically oxidize triphenylphosphine to triphenylphosphine oxide in the presence of O(2).

  16. Driving Oxygen Coordinated Ligand Exchange at Nanocrystal Surfaces using Trialkylsilylated Chalcogenides

    SciTech Connect

    Caldwell, Marissa A.; Albers, Aaron E.; Levy, Seth C.; Pick, Teresa E.; Cohen, Bruce E.; Helms, Brett A.; Milliron, Delia J.

    2010-11-11

    A general, efficient method is demonstrated for exchanging native oxyanionic ligands on inorganic nanocrystals with functional trimethylsilylated (TMS) chalcogenido ligands. In addition, newly synthesized TMS mixed chalcogenides leverage preferential reactivity of TMS-S bonds over TMS-O bonds, enabling efficient transfer of luminescent nanocrystals into aqueous media with retention of their optical properties.

  17. Coordination-directed one-dimensional coordination polymers generated from a new oxadiazole bridging ligand and HgX2 (X=Cl, Br and I).

    PubMed

    Yang, Rui; Ma, Jian Ping; Huang, Ru Qi; Dong, Yu Bin

    2011-06-01

    A new 1,3,4-oxadiazole bridging bent organic ligand, 2,5-bis{5-methyl-2-[(4-pyridyl)methoxy]phenyl}-1,3,4-oxadiazole, C(28)H(24)N(4)O(3), L, has been used to create three novel one-dimensional isomorphic coordination polymers, viz. catena-poly[[[dichloridomercury(II)]-μ-2,5-bis{5-methyl-2-[(4-pyridyl)methoxy]phenyl}-1,3,4-oxadiazole] methanol monosolvate], {[HgCl(2)(C(28)H(24)N(4)O(3))]·CH(3)OH}(n), catena-poly[[[dibromidomercury(II)]-μ-2,5-bis{5-methyl-2-[(4-pyridyl)methoxy]phenyl}-1,3,4-oxadiazole] methanol monosolvate], {[HgBr(2)(C(28)H(24)N(4)O(3))]·CH(3)OH}(n), and catena-poly[[[diiodidomercury(II)]-μ-2,5-bis{5-methyl-2-[(4-pyridyl)methoxy]phenyl}-1,3,4-oxadiazole] methanol monosolvate], {[HgI(2)(C(28)H(24)N(4)O(3))]·CH(3)OH}(n). The free L ligand itself adopts a cis conformation, with the two terminal pyridine rings and the central oxadiazole ring almost coplanar [dihedral angles = 5.994 (7) and 9.560 (6)°]. In the Hg(II) complexes, however, one of the flexible pyridylmethyl arms of ligand L is markedly bent and helical chains are obtained. The Hg(II) atom lies in a distorted tetrahedral geometry defined by two pyridine N-atom donors from two L ligands and two halide ligands. The helical chains stack together via interchain π-π interactions that expand the dimensionality of the structure from one to two. The methanol solvent molecules link to the complex polymers through O-H···N and O-H···O hydrogen bonds. © 2011 International Union of Crystallography

  18. Spectroscopic techniques and cyclic voltammetry with synthesis: Manganese(II) coordination stability and its ligand field parameters effect on macrocyclic ligands

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chandra, Sulekh

    2007-05-01

    Manganese(II) macrocyclic complexes are prepared with different macrocyclic ligands, containing cyclic skeleton bearing organic components which have different chromospheres like N, O and S donor atoms and stereochemistry. Thus, six macrocyclic ligands, were prepared and their capacity to retain the manganese(II) ion in solid as well as in aqueous solution was determined and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic spectral and cyclic voltammetric studies. The electronic spectrum of this system showed a dependence that may be consistent with the formation of stable complexes and coordination behaviour of the ions. ESR spectra of all the complexes are recorded in solid as well as solution, which show the oxidation state of the manganese(II). Spin Hamiltonian manganese(II), which can be defined as the magnetic field vector (ℋ): ℋ=gβHS+DSz2-{35}/{12}+E[Sz2-Sy2]+ASI+ 1/6 a Sx4+Sy4+Sz4-{707}/{16}+ 1/180 F{35Sz2-475}/{2Sz2+3255/10} Significant distortion of the manganese(II) ion in observed geometry is evident from the angle subtended by the different membered chelate rings and the angles spanned by trans donor atoms octahedral geometry. Cyclic voltammetric studies indicate that complexes with all ligands undergoes one electron oxidation from manganese(II) to manganese(III) followed by a further oxidation to manganese(IV) at a significantly more positive potential.

  19. Synthesis, structure, and magnetic studies of manganese-oxygen clusters of reduced coordination number, featuring an unchelated, 5-coordinate octanuclear manganese cluster with water-derived oxo ligands.

    PubMed

    Kondaveeti, Sandeep K; Vaddypally, Shivaiah; Lam, Carol; Hirai, Daigorou; Ni, Ni; Cava, Robert J; Zdilla, Michael J

    2012-10-01

    The synthesis of reduced coordination (less than 6), unchelated manganese oxygen cluster systems is described. Addition of phenols to Mn(NR(2))(2) (R = SiMe(3)) results in protolytic amide ligand replacement, and represents the primary entry into the described chemistry. Addition of PhOH to Mn(NR(2))(2) results in the formation of the heteroleptic dimer Mn(2)(μ-OPh)(2)(NR(2))(2)(THF)(2) (1). Usage of the sterically larger 2,6-diphenylphenol (Ph(2)C(6)H(3)OH) as the ligand source results in the formation of a 3-coordinate heteroleptic dimer without THF coordination, Mn(2)(μ-OC(6)H(3)Ph(2))(2)(NR(2))(2) (2). Attempts to generate 2 in the presence of THF or Et(2)O resulted in isolation of monomeric Mn(OC(6)H(3)Ph(2))(2)L(2) (3, L = THF, Et(2)O). Use of the sterically intermediate 2,4,6-trimethylphenol (MesOH) resulted in formation of the linear trinuclear cluster Mn(3)(μ-OMes)(4)(NR(2))(2)(THF)(2) (4). Reaction of Mn(NR(2))(2) with PhOH in the presence of water, or reaction of 1 with water, results in the formation of a 5-coordinate, unchelated Mn-O cluster, Mn(8)(μ(5)-O)(2)(μ-OPh)(12)(THF)(6) (5). Preparation, structures, steric properties, and magnetic properties are presented. Notably, complex 5 exhibits a temperature-dependent phase transition between a 4-spin paramagnetic system at low temperature, and an 8-spin paramagnetic system at room temperature.

  20. Rare configuration of tautomeric benzimidazolecarboxylate ligands in cadmium(II) and copper(II) coordination polymers

    SciTech Connect

    Wu, Jing-Yun; Yang, Ciao-Wei; Chen, Hui-Fang; Jao, Yu-Chen; Huang, Sheng-Ming; Tsai, Chiitang; Tseng, Tien-Wen; Lee, Gene-Hsiang; Peng, Shie-Ming; Lu, Kuang-Lieh

    2011-07-15

    Two Cd(HBimc)-based isomers, [Cd(HBimc{sup N})(HBimc{sup T})(H{sub 2}O)].3.5H{sub 2}O.EtOH (1a.3.5H{sub 2}O.EtOH, H{sub 2}Bimc=1H-benzimidazole-5-carboxylic acid) and [Cd(HBimc{sup N})(HBimc{sup T})(H{sub 2}O)] (1b), and two Cu(HMBimc)-based coordination polymers, [Cu(HMBimc{sup N}){sub 2}(H{sub 2}O)].1/2H{sub 2}O (2.1/2H{sub 2}O, H{sub 2}MBimc=2-methyl-1H-benzimidazole-5-carboxylic acid) and [Cu(HMBimc{sup T}){sub 2}].2THF.H{sub 2}O (3.2THF.H{sub 2}O), were self-assembled from Cd(ClO{sub 4}){sub 2}.6H{sub 2}O/H{sub 2}Bimc and Cu(ClO{sub 4}){sub 2}.6H{sub 2}O/H{sub 2}MBimc systems, respectively. Compound 1a adopts a ladder-like chain structure, comprised of a hydrogen-bond-stabilized Cd{sub 2}(HBimc{sup N}){sub 2}-metallocyclic stair and a 1D straight -(Cd-HBimc{sup T}){sub n}- edge, whereas compound 1b exhibits a 2D (4,4)-rhombus layered structure, intercrossed by 1D -(Cd-HBimc{sup N}){sub n}- chains and -(Cd-HBimc{sup T}){sub n}- chains. Compound 2 shows a 1D double-stranded wave-like chain from two single-stranded wave-like -(Cu-HMBimc{sup N}){sub n}- chains and compound 3 adopts a 2D (4,4)-topological layer structure, intercrossed by subunits of 1D -(Cu-HMBimc{sup T}){sub n}- chains. Interestingly, a pair of tautomeric HBimc building blocks-normal (N or HBimc{sup N}) and tautomer (T or HBimc{sup T})-is simultaneously included in the structures of 1a and 1b, whilst the N- and T-configured HMBimc building blocks are present as separate entities in Cu species, 2 and 3, respectively. The existence of only a tautomer (T) mode of the benzimidazolecarboxylate-based ligand in a Cu(II) network is observed for the first time. - Graphical abstract: A pair of tautomeric HBimc building blocks (normal (N) and tautomer (T)) is found simultaneously in two Cd(II) networks, whereas, the normal and tautomer modes of HMBimc are present as separate entities in two Cu(II) frameworks. The isolation of a Cu(II) network with only a tautomer (T) mode of the benzimidazolecarboxylate

  1. A novel hemilabile calix[4],quinoline-based P,N-ligand: coordination chemistry and complex characterisation.

    PubMed

    Marson, Angelica; Ernsting, Johanneke E; Lutz, Martin; Spek, Anthony L; van Leeuwen, Piet W N M; Kamer, Paul C J

    2009-01-28

    The synthesis of the calix[4]arene-based P,N-ligand 3 (5,11,17,23-tetra-tert-butyl-25-[(2-quinolylmethyl)oxy]-26,27,28-(mu3-phosphorustrioxy)calix[4]arene), in which the nitrogen atom-containing moiety has been introduced at the lower rim of the cavity prior to P-functionalisation, is described and its coordination properties investigated. In the crystal structure, the calix[4]-cavity adopts a cone conformation with an exo orientation of the phosphorus lone pair enabling P-N chelation. 1H, 13C, 31P and 1H{15N} HMQC NMR spectra indicated that, in complexes [PdCl(CH3)(3)] (4) and [Rh(CO)Cl(3)] (5), ligand 3 coordinates in a chelating fashion, while in cis-[PtC12(3)2] (6) and [Rh(acac)(CO)(3)] (7) it behaves as a monodentate ligand, coordinating via the phosphorus atom only. X-Ray crystal structure determinations were performed for [PdCl(CH3)(3)] (4) and cis-[PtCl2(3)2] (6). The cationic Pd complex [Pd(CH3)(CH3CN)(3)][PF5] (8) was found to be active in a CO/ethylene copolymerisation reaction. Good selectivities were observed for the Pd-catalysed allylic alkylation of cinnamyl acetate with in situ prepared catalysts. [Rh(acac)(CO)2] modified with ligand 3 catalyses the hydroformylation of 1-octene with low selectivities towards linear aldehydes. High-pressure NMR experiments on the hydrido carbonyl rhodium(3) were inconclusive, different species were formed.

  2. Second-coordination-sphere effects increase the catalytic efficiency of an extended model for Fe(III)M(II) purple acid phosphatases.

    PubMed

    de Souza, Bernardo; Kreft, Gabriel L; Bortolotto, Tiago; Terenzi, Hernán; Bortoluzzi, Adailton J; Castellano, Eduardo E; Peralta, Rosely A; Domingos, Josiel B; Neves, Ademir

    2013-04-01

    Herein we describe the synthesis of a new heterodinuclear Fe(III)Cu(II) model complex for the active site of purple acid phosphatases and its binding to a polyamine chain, a model for the amino acid residues around the active site. The properties of these systems and their catalytic activity in the hydrolysis of bis(2,4-dinitrophenyl)phosphate are compared, and conclusions regarding the effects of the second coordination sphere are drawn. The positive effect of the polymeric chain on DNA hydrolysis is also described and discussed.

  3. Alkaline earth complexes of silylated aminopyridinato ligands: homoleptic compounds and heterobimetallic coordination polymers.

    PubMed

    Ortu, Fabrizio; Moxey, Graeme J; Blake, Alexander J; Lewis, William; Kays, Deborah L

    2013-11-04

    The synthesis and characterization of magnesium and calcium complexes of sterically demanding aminopyridinato ligands is reported. The reaction of the 2-Me3SiNH-6-MeC5H3N (L(1)H), 2-MePh2SiNH-6-MeC5H3N (L(2)H), and 2-Me3SiNH-6-PhC5H3N (L(3)H) with KH in tetrahydrofuran (THF) yielded potassium salts L(1)K(thf)0.5 (1), L(2)K (2), and L(3)K(thf)0.5 (3), which, through subsequent reaction with MgI2 and CaI2, afforded the homoleptic complexes (L)2Ae(thf)n [L = L(1), Ae = Mg, n = 1 (4); L = L(2), Ae = Mg, n = 0 (5); L = L(3), Ae = Mg, n = 0 (6); L = L(2), Ae = Ca, n = 2 (7)] and heterobimetallic calciates {[(L)3Ca]K}∞ [L = L(1) (8); L = L(2) (9)]. The solid state structure of 8 reveals a polymeric arrangement in which the calciate units are interlocked by bridging potassium ions. Metalation reactions between L(1)H or L(2)H and ((n)Bu)2Mg lead to the solvent-free compounds (L)2Mg [L = L(1) (10); L = L(2) (5)]. The bridged butyl mixed-metal complex [(L(1))Li(μ2-(n)Bu)Mg(L(1))]∞ (11) was also obtained via a cocomplexation reaction with (n)BuLi and ((n)Bu)2Mg. 11, which adopts a monodimensional polymeric array in the solid state, is a rare example of an alkyl-bridged Li/Mg complex and the first complex to feature an unsupported bridging butyl interaction between two metals. Changing the cocomplexation reaction conditions, the order of reagents added to the reactions mixture, and with the use of a coordinating solvent (tetrahydrofuran) formed the magnesiate complex (L(1))3MgLi(thf) (12).

  4. Photo- and thermochromic and adsorption properties of porous coordination polymers based on bipyridinium carboxylate ligands.

    PubMed

    Toma, Oksana; Mercier, Nicolas; Allain, Magali; Kassiba, Abdel Adi; Bellat, Jean-Pierre; Weber, Guy; Bezverkhyy, Igor

    2015-09-21

    The zwitterionic bipyridinium carboxylate ligand 1-(4-carboxyphenyl)-4,4'-bipyridinium (hpc1) in the presence of 1,4-benzenedicarboxylate anions (BDC(2-)) and Zn(2+) ions affords three porous coordination polymers (PCPs): [Zn5(hpc1)2(BDC)4(HCO2)2]·2DMF·EtOH·H2O (1), [Zn3(hpc1)(BDC)2(HCO2)(OH)(H2O)]·DMF·EtOH·H2O (2), and [Zn10(hpc1)4(BDC)7(HCO2)2(OH)4(EtOH)2]·3DMF·3H2O (3), with the formate anions resulting from the in situ decomposition of dimethylformamide (DMF) solvent molecules. 1 and 3 are photo- and thermochromic, turning dark green as a result of the formation of bipyridinium radicals, as shown by electron paramagnetic resonance measurements. Particularly, crystals of 3 are very photosensitive, giving an eye-detectable color change upon exposure to the light of the microscope in air within 1-2 min. A very nice and interesting feature is the regular discoloration of crystals from the "edge" to the "core" upon exposition to O2 (reoxidation of organic radicals) due to the diffusion of O2 inside the pores, with this discoloration being slower in an oxygen-poor atmosphere. The formation of organic radicals is explained by an electron transfer from the oxygen atoms of the carboxylate groups to pyridinium cycles. In the structure of 3', [Zn10(hpc1)4(BDC)7(OH)6(H2O)2], resulting from the heating of sample 3 (desolvation and loss of CO molecules due to the decomposition of formate anions), no suitable donor-acceptor interaction is present, and as a consequence, this compound does not exhibit any chromic properties. The presence of permanent porosity in desolvated 1, 2, and 3' is confirmed by methanol adsorption at 25 °C with the adsorbed amount reaching 5 wt % for 1, 10 wt % for 3', and 13 wt % for 2. The incomplete desorption of methanol at 25 °C under vacuum points to strong host-guest interactions.

  5. Inner-sphere vs. outer-sphere reduction of uranyl supported by a redox-active, donor-expanded dipyrrin.

    PubMed

    Pankhurst, James R; Bell, Nicola L; Zegke, Markus; Platts, Lucy N; Lamfsus, Carlos Alvarez; Maron, Laurent; Natrajan, Louise S; Sproules, Stephen; Arnold, Polly L; Love, Jason B

    2017-01-01

    The uranyl(vi) complex UO2Cl(L) of the redox-active, acyclic diimino-dipyrrin anion, L(-) is reported and its reaction with inner- and outer-sphere reductants studied. Voltammetric, EPR-spectroscopic and X-ray crystallographic studies show that chemical reduction by the outer-sphere reagent CoCp2 initially reduces the ligand to a dipyrrin radical, and imply that a second equivalent of CoCp2 reduces the U(vi) centre to form U(v). Cyclic voltammetry indicates that further outer-sphere reduction to form the putative U(iv) trianion only occurs at strongly cathodic potentials. The initial reduction of the dipyrrin ligand is supported by emission spectra, X-ray crystallography, and DFT; the latter also shows that these outer-sphere reactions are exergonic and proceed through sequential, one-electron steps. Reduction by the inner-sphere reductant [TiCp2Cl]2 is also likely to result in ligand reduction in the first instance but, in contrast to the outer-sphere case, reduction of the uranium centre becomes much more favoured, allowing the formation of a crystallographically characterised, doubly-titanated U(iv) complex. In the case of inner-sphere reduction only, ligand-to-metal electron-transfer is thermodynamically driven by coordination of Lewis-acidic Ti(iv) to the uranyl oxo, and is energetically preferable over the disproportionation of U(v). Overall, the involvement of the redox-active dipyrrin ligand in the reduction chemistry of UO2Cl(L) is inherent to both inner- and outer-sphere reduction mechanisms, providing a new route to accessing a variety of U(vi), U(v), and U(iv) complexes.

  6. Diverse lanthanide coordination polymers tuned by the flexibility of ligands and the lanthanide contraction effect: syntheses, structures and luminescence.

    PubMed

    Zhou, Xiaoyan; Guo, Yanling; Shi, Zhaohua; Song, Xueqin; Tang, Xiaoliang; Hu, Xiong; Zhu, Zhentong; Li, Pengxuan; Liu, Weisheng

    2012-02-14

    Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2 : 3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.

  7. Thiodiacetate-manganese chemistry with N ligands: unique control of the supramolecular arrangement over the metal coordination mode.

    PubMed

    Grirrane, Abdessamad; Pastor, Antonio; Galindo, Agustín; Alvarez, Eleuterio; Mealli, Carlo; Ienco, Andrea; Orlandini, Annabella; Rosa, Patrick; Caneschi, Andrea; Barra, Anne-Laure; Sanz, Javier Fernández

    2011-09-12

    Compounds based on the Mn-tda unit (tda=S(CH(2)COO)(2)(-2) ) and N co-ligands have been analyzed in terms of structural, spectroscopic, magnetic properties and DFT calculations. The precursors [Mn(tda)(H(2)O)](n) (1) and [Mn(tda)(H(2)O)(3)]·H(2)O (2) have been characterized by powder and X-ray diffraction, respectively. Their derivatives with bipyridyl-type ligands have formulas [Mn(tda)(bipy)](n) (3), [{Mn(N-N)}(2)(μ-H(2)O)(μ-tda)(2)](n) (N-N=4,4'-Me(2)bipy (4), 5,5'-Me(2)bipy, (5)) and [Mn(tda){(MeO)(2)bipy}·2H(2)O](n) (6). Depending on the presence/position of substituents at bipy, the supramolecular arrangement can affect the metal coordination type. While all the complexes consist of 1D coordination polymers, only 3 has a copper-acetate core with local trigonal prismatic metal coordination. The presence of substituents in 4-6, together with water co-ligands, reduces the supramolecular interactions and typical octahedral Mn(II) ions are observed. The unicity of 3 is also supported by magnetic studies and by DFT calculations, which confirm that the unusual Mn coordination is a consequence of extended noncovalent interactions (π-π stacking) between bipy ligands. Moreover, 3 is an example of broken paradigm for supramolecular chemistry. In fact, the desired stereochemical properties are achieved by using rigid metal building blocks, whereas in 3 the accumulation of weak noncovalent interactions controls the metal geometry. Other N co-ligands have also been reacted with 1 to give the compounds [Mn(tda)(phen)](2)·6H(2)O (7) (phen=1,10-phenanthroline), [Mn(tda)(terpy)](n) (8) (terpy=2,2':6,2''-terpyridine), [Mn(tda)(pyterpy)](n) (9) (pyterpy=4'-(4-pyridyl)-2,2':6,2''-terpyridine), [Mn(tda)(tpt)(H(2)O)]·2H(2)O (10) and [Mn(tda)(tpt)(H(2)O)](2)·2H(2)O (11) (tpt=2,4,6-tris(2-pyridyl)-1,3,5-triazine). Their identified mono-, bi- or polynuclear structures clearly indicate that hydrogen bonding is variously competitive with π-π stacking. Copyright © 2011 WILEY

  8. Mononuclear nickel (II) and copper (II) coordination complexes supported by bispicen ligand derivatives: Experimental and computational studies

    SciTech Connect

    Singh, Nirupama; Niklas, Jens; Poluektov, Oleg; Van Heuvelen, Katherine M.; Mukherjee, Anusree

    2017-01-01

    The synthesis, characterization and density functional theory calculations of mononuclear Ni and Cu complexes supported by the N,N’-Dimethyl-N,N’-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane ligand and its derivatives are reported. The complexes were characterized by X-ray crystallography as well as by UV-visible absorption spectroscopy and EPR spectroscopy. The solid state structure of these coordination complexes revealed that the geometry of the complex depended on the identity of the metal center. Solution phase characterization data are in accord with the solid phase structure, indicating minimal structural changes in solution. Optical spectroscopy revealed that all of the complexes exhibit color owing to d-d transition bands in the visible region. Magnetic parameters obtained from EPR spectroscopy with other structural data suggest that the Ni(II) complexes are in pseudo-octahedral geometry and Cu(II) complexes are in a distorted square pyramidal geometry. In order to understand in detail how ligand sterics and electronics affect complex topology detailed computational studies were performed. The series of complexes reported in this article will add significant value in the field of coordination chemistry as Ni(II) and Cu(II) complexes supported by tetradentate pyridyl based ligands are rather scarce.

  9. Synthesis and structures of ligand-dominated one-dimensional silver(I)-bis(pyridylmethyl)amine coordination chains

    NASA Astrophysics Data System (ADS)

    Lin, Hung-Jui; Liu, Yu-Chiao; Tseng, Yu-Jui; Wu, Jing-Yun

    2016-10-01

    Reactants slow diffusion of Ag(I) salts with 3,4‧-bis(pyridylmethyl)amine (3,4‧-bpma), an unsymmetric bis-pyridyl ligand equipped with a non-innocent amine backbone, afforded polymeric coordination adducts 1-5 having a general formula {[Ag(3,4‧-bpma)(solv)]X}n (solv = H2O, CH3OH, and none; X= CF3CO2-, BF4-, ClO4-, CF3SO3-, and SbF6-). Single-crystal X-ray diffraction (SCXRD) analyses reveal that colorless crystals of Ag(I) coordination polymers (CPs) 1-5 have very similar one-dimensional (1D) non-flat chain structures, which are preferentially depicted as a "zipper-like" rather than a ladder-like or a double-stranded chain topologies. The 3,4‧-bpma ligand in these Ag(I) CPs displays a μ3-bridging mode with a gauche-trans (1,4, and 5) and a trans-trans (2 and 3) conformations. Noteworthy, anions do not show strong influence on structural modulation of Ag(I) CPs in the solid state, but really affect CP conformations and packing fashions, indicative of a ligand-dominated assembly process for such a Ag(I)-3,4‧-bpma system. Thermal stabilities and solid-state photoluminescence properties of crystalline materials 1-5 were investigated.

  10. Modulating structural dimensionality of cadmium(II) coordination polymers by means of pyrazole, tetrazole and pyrimidine derivative ligands

    NASA Astrophysics Data System (ADS)

    Seco, Jose Manuel; Calahorro, Antonio; Cepeda, Javier; Rodríguez-Diéguez, Antonio

    2015-06-01

    Six new compounds with functionalized pyrazole, tetrazole, and pyrimidine ligands, namely [Cd(μ-4-Hampz)(μ-Cl)2]n(1), [Cd(μ3-pzdc)(μ-H2O)(H2O)]n(2), [Cd(μ-5-amtz)2(eda)]n(3), {[Cd9(μ4-5-amtz)8(μ-Cl)10(H2O)2]ṡxH2O}n(4), {[Cd2(μ-dm2-pmc)2Cl2(H2O)2]ṡH2O}n(5), and [Cd2(μ-Br2-pmc)(μ-Cl)3(H2O)2]n(6) (where 4-Hampz = 4-aminopyrazole, pzdc = 3,5-pyrazoledicarboxylate, 5-amtz = 5-aminotetrazolate, eda = ethylenediamine, dm2-pmc = 4,6-dimethoxy-2-pyrimidinecarboxylate, Br2-pmc = 5-bromopyrimidine-2-carboxylate) have been synthesized under hydrothermal conditions and structurally characterized by single crystal X-ray diffraction. Compounds 1 and 2 share the structural feature of being constructed from dinuclear building units that are further connected through the pyrazole based ligands, rendering a compact and a potentially open 3D frameworks, respectively. On the other hand, 5-amtz ligand exhibits two different coordination modes in compounds 3 and 4 as a result of the presence or absence of an additional blocking ligand. In this way, the μ-κ4N,N‧,N″,N‴ mode in 4 affords robust clusters that are joined in a topologically novel 3D open architecture containing two types of channels, whereas a simple bidentate bridging mode is limited for 5-amtz in 3 due to the presence of the chelating eda ligand. 1D and 3D structures are obtained with pyrimidine ligands in compounds 5 and 6 according to the steric hindrance of the substituents.

  11. Syntheses, structures and luminescent properties of a series of 3D lanthanide coordination polymers with tripodal semirigid ligand

    SciTech Connect

    Qin Junsheng; Du Dongying; Chen Lei; Sun Xiuyun; Lan Yaqian; Su Zhongmin

    2011-02-15

    Reactions of the tripodal bridging ligand 5-(4-carboxy-phenoxy)-isophthalic acid (abbreviated as H{sub 3}cpia) with lanthanide salts lead to the formation of a family of different coordination polymers, that is, [Ln(cpia)(H{sub 2}O){sub 2}]{sub n}.nH{sub 2}O (Ln=Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Dy (7), Er (8), Tm (9) and Y (10)) in the presence of formic acid or diethylamine, which are characterized by elemental analysis, IR spectrum, thermogravimetric analysis (TGA), XRPD spectrum and single-crystal X-ray diffraction. Compounds 1-10 are isostructural and exhibit three-dimensional microporous frameworks. Furthermore, the photoluminescent properties of 4, 5 and 7 have been studied in detail. -- Graphical abstract: Reactions of the tripodal bridging ligand (H{sub 3}cpia) with lanthanide ions lead to the formation of a series of coordination polymers in the presence of formic acid or diethylamine. Display Omitted Research Highlights: {yields} Ten new lanthanides-based coordination polymers (1-10) have been synthesized. {yields} 1-10 exhibit 3D (4,8)-connected fluorite topology networks with 1D channel parallel to the b-axis. {yields} Compounds 4, 5 and 7 exhibit characteristic luminescence of Sm{sup 3+}, Eu{sup 3+} and Dy{sup 3+} ions, respectively.

  12. Highly Electron-Rich β-Diketiminato Systems: Synthesis and Coordination Chemistry of Amino-Functionalized "N-nacnac" Ligands.

    PubMed

    Do, Dinh Cao Huan; Keyser, Ailsa; Protchenko, Andrey V; Maitland, Brant; Pernik, Indrek; Niu, Haoyu; Kolychev, Eugene L; Rit, Arnab; Vidovic, Dragoslav; Stasch, Andreas; Jones, Cameron; Aldridge, Simon

    2017-04-27

    The synthesis of a class of electron-rich amino-functionalized β-diketiminato (N-nacnac) ligands is reported, with two synthetic methodologies having been developed for systems bearing backbone NMe2 or NEt2 groups and a range of N-bound aryl substituents. In contrast to their (Nacnac)H counterparts, the structures of the protio-ligands feature the bis(imine) tautomer and a backbone CH2 group. Direct metalation with lithium, magnesium, or aluminium alkyls allows access to the respective metal complexes through deprotonation of the methylene function; in each case X-ray structures are consistent with a delocalized imino-amide ligand description. Transmetalation using lithium N-nacnac complexes is then exploited to access p- and f-block metal complexes, which allow for like-for-like benchmarking of the N-nacnac ligand family against their more familiar Nacnac counterparts. In the case of Sn(II) , the degree of electronic perturbation effected by introduction of the backbone NR2 groups appears to be constrained by the inability of the amino group to achieve effective conjugation with the N2 C3 heterocycle. More obvious divergence from established structural norms is observed for complexes of the harder Yb(II) ion, with azaallyl/imino and even azaallyl/NMe2 coordination modes being demonstrated by X-ray crystallography. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water

    PubMed Central

    Wen, Min; Li, Xu-Bing; Jian, Jing-Xin; Wang, Xu-Zhe; Wu, Hao-Lin; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-01-01

    Achieving highly efficient hydrogen (H2) evolution via artificial photosynthesis is a great ambition pursued by scientists in recent decades because H2 has high specific enthalpy of combustion and benign combustion product. [FeFe]-Hydrogenase ([FeFe]-H2ase) mimics have been demonstrated to be promising catalysts for H2 photoproduction. However, the efficient photocatalytic H2 generation system, consisting of PAA-g-Fe2S2, CdSe QDs and H2A, suffered from low stability, probably due to the hole accumulation induced photooxidation of CdSe QDs and the subsequent crash of [FeFe]-H2ase mimics. In this work, we take advantage of supramolecular interaction for the first time to construct the secondary coordination sphere of electron donors (HA−) to CdSe QDs. The generated secondary coordination sphere helps realize much faster hole removal with a ~30-fold increase, thus leading to higher stability and activity for H2 evolution. The unique photocatalytic H2 evolution system features a great increase of turnover number to 83600, which is the highest one obtained so far for photocatalytic H2 production by using [FeFe]-H2ase mimics as catalysts. PMID:27417065

  14. Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water.

    PubMed

    Wen, Min; Li, Xu-Bing; Jian, Jing-Xin; Wang, Xu-Zhe; Wu, Hao-Lin; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-07-15

    Achieving highly efficient hydrogen (H2) evolution via artificial photosynthesis is a great ambition pursued by scientists in recent decades because H2 has high specific enthalpy of combustion and benign combustion product. [FeFe]-Hydrogenase ([FeFe]-H2ase) mimics have been demonstrated to be promising catalysts for H2 photoproduction. However, the efficient photocatalytic H2 generation system, consisting of PAA-g-Fe2S2, CdSe QDs and H2A, suffered from low stability, probably due to the hole accumulation induced photooxidation of CdSe QDs and the subsequent crash of [FeFe]-H2ase mimics. In this work, we take advantage of supramolecular interaction for the first time to construct the secondary coordination sphere of electron donors (HA(-)) to CdSe QDs. The generated secondary coordination sphere helps realize much faster hole removal with a ~30-fold increase, thus leading to higher stability and activity for H2 evolution. The unique photocatalytic H2 evolution system features a great increase of turnover number to 83600, which is the highest one obtained so far for photocatalytic H2 production by using [FeFe]-H2ase mimics as catalysts.

  15. Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water

    NASA Astrophysics Data System (ADS)

    Wen, Min; Li, Xu-Bing; Jian, Jing-Xin; Wang, Xu-Zhe; Wu, Hao-Lin; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-07-01

    Achieving highly efficient hydrogen (H2) evolution via artificial photosynthesis is a great ambition pursued by scientists in recent decades because H2 has high specific enthalpy of combustion and benign combustion product. [FeFe]-Hydrogenase ([FeFe]-H2ase) mimics have been demonstrated to be promising catalysts for H2 photoproduction. However, the efficient photocatalytic H2 generation system, consisting of PAA-g-Fe2S2, CdSe QDs and H2A, suffered from low stability, probably due to the hole accumulation induced photooxidation of CdSe QDs and the subsequent crash of [FeFe]-H2ase mimics. In this work, we take advantage of supramolecular interaction for the first time to construct the secondary coordination sphere of electron donors (HA‑) to CdSe QDs. The generated secondary coordination sphere helps realize much faster hole removal with a ~30-fold increase, thus leading to higher stability and activity for H2 evolution. The unique photocatalytic H2 evolution system features a great increase of turnover number to 83600, which is the highest one obtained so far for photocatalytic H2 production by using [FeFe]-H2ase mimics as catalysts.

  16. Selective coordination ability of sulfamethazine Schiff-base ligand towards copper(II): molecular structures, spectral and SAR study.

    PubMed

    Mansour, Ahmed M

    2014-04-05

    In the present work, a combined experimental and theoretical study of the N-(4,6-Dimethyl-pyrimidin-2-yl)-4-[(2-hydroxy-benzylidene)amino]benzenesulfonamide ligand (H2L) and its mononuclear and magnetically diluted binuclear Cu(II) complexes has been performed using IR, TG/DTA, magnetic, EPR, and conductivity measurements. Calculated g-tensor values showed best agreement with experimental values from EPR when carried out using the MPW1PW91 functional. Coordination of H2L to a Cu(II) center, regardless of the binding site and Cu:L stoichiometry, leads to a significant decrease in the antibacterial activity compared to the free ligand as well as reference drugs in the case of Staphylococcus aureus. Structural-activity relationship suggests that ELUMO, ΔE, dipole moment, polarizability and electrophilicity index were the most significant descriptors for the correlation with the antibacterial activity.

  17. Structural diversification and photocatalytic properties of three Cd(II) coordination polymers decorated with different auxiliary ligands

    SciTech Connect

    Yin, Wen-Yu; Zhuang, Guo-Yong; Huang, Zuo-Long; Cheng, Hong-Jian; Zhou, Li; Ma, Man-Hong; Wang, Hao; Tang, Xiao-Yan Ma, Yun-Sheng; Yuan, Rong-Xin

    2016-03-15

    Three cadmium coordination polymers, [Cd(bismip)]{sub n} (1), {[Cd(bismip)(phen)]·H_2O}{sub n} (2) and {[Cd_2(bismip)_2(4,4′-bipy)]·2H_2O}{sub n} (3) (H{sub 2}bismip=5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine) have been prepared under solvothermal conditions. In 1, the [Cd{sub 4}(bismip){sub 3}] units are jointed by bismip ligands to afford a three-dimensional (3D) architecture. Complex 2 exhibits a 3D supramolecular framework based on the interconnection of 1D chains through hydrogen bonding interactions and π-π packing interactions. 3 is a two-fold interpenetrating 3D architecture with a (4·8{sup 2})(4{sup 2}·8{sup 4}) Schläfli symbol in which 2D layers are interlinked by 4,4′-bipy ligands. The diverse structures of compounds 1–3 indicate that the auxiliary ligands have significant effects on the final structures. The photoluminescent properties and photocatalytic properties of these coordination polymers in the solid state were also investigated. Remarkably, 3 shows the wide gap semiconductor nature and exhibit excellent photocatalytic performance. - Graphical abstract: Three cadmium coordination polymers with different architectures based on 5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid have been prepared. Their photoluminescent properties were also investigated. - Highlights: • Three new Cd(II) Cps were synthesized based on H{sub 2}bismip. • Compounds 1 and 3 show 3D networks and 2 exhibits a 1D chain. • Compoud 3 exhibits good catalytic activity of methylene blue photodegradation.

  18. Control of water molecule aggregations in copper 1,4-cyclohexanedicarboxylate coordination polymers containing pyridyl-piperazine type ligands

    NASA Astrophysics Data System (ADS)

    Qiblawi, Sultan H.; LaDuca, Robert L.

    2014-01-01

    A series of layered divalent copper coordination polymers containing 1,4-cyclohexanedicarboxylate and long-spanning pyridyl-piperazine type ligands exhibits greatly different co-crystallized water molecule aggregations depending on the specific ligands used. Both [Cu(t-14cdc)(4-bpmp)]n (1, t-14cdc = trans-1,4-cyclohexanedicarboxylate, 4-bpmp = bis(4-pyridylmethyl)piperazine) and {[Cu(t-14cdc)(4-bpfp)(H2O)2]·6H2O}n (2, 4-bpfp = bis(4-pyridylformyl)piperazine) possess 2D (4,4) coordination polymer grids. However 1 lacks any co-crystallized water and has pinched grid apertures, while 2 manifests infinite water tapes with T6(2)4(2) classification and rectangular grid apertures. {[Cu2(c-14cdc)2(4-bpmp)]·2H2O}n (3, c-14cdc = cis-1,4-cyclohexanedicarboxylate) has [Cu2(c-14cdc)]2 ribbons with paddlewheel dimeric units linked into 2D slabs by 4-bpmp tethers, along with isolated water molecule pairs. In contrast, {[Cu2(c-14cdc)2(4-bpfp)]·10H2O}n (4) shows a very similar underlying coordination polymer topology but entrains unique decameric water molecule clusters. The minor product {[Cu2(c-14cdcH)2(t-1,4-cdc)(4-bpfp)2(H2O)2]·2H2O}n (5) was isolated along with 4; this compound underwent some in situ cis to trans cyclohexane-dicarboxylate ligand isomerization and exhibits a ladder polymer motif.

  19. Synthesis and characterisation of dimeric eight-coordinate lanthanide(III) complexes of a macrocyclic tribenzylphosphinate ligand.

    PubMed

    Senanayake, Kanthi; Thompson, Amber L; Howard, Judith A K; Botta, Mauro; Parker, David

    2006-12-07

    The macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7-triyl(methylenebenzyl-phosphinic acid) H3L3, has been prepared and its complexes with Eu, Gd and Tb(III) studied by NMR, relaxometry, luminescence and single crystal X-ray crystallography. In solution and in the crystal, the complexes have eight-coordinate metal centres with bridging phosphinate groups linking the two twisted square antiprismatic coordination polyhedra. A single stereoisomer crystallises from solution with an RRR and SSS configuration at the P centres in each sub-unit. The relaxivity of [GdL3]2 is low (1.9 mM-1 s-1, 298 K, 20 MHz), consistent with the absence of any proximate water molecules. The terbium dimer possesses a relatively long excited state lifetime (2.47 ms, 298 K).

  20. Second sphere coordination in anion binding: Synthesis, Characterization and X-ray structure of tris(1,10-phenanthroline)cobalt(III) periodate dihydrate, [Co(phen) 3](IO 4) 3·2H 2O

    NASA Astrophysics Data System (ADS)

    Sharma, Raj Pal; Singh, Ajnesh; Brandão, Paula; Felix, Vitor; Venugopalan, Paloth

    2008-10-01

    Single crystals of [Co(phen) 3](IO 4) 3·2H 2O were obtained by dissolving the yellow coloured precipitated product (obtained by slowly mixing the separately dissolved tris(1,10-phenanthroline)cobalt(III) chloride with sodium periodate in aqueous medium in 1:3 molar ratio) in hot water and allowing it to evaporate slowly at room temperature. The newly synthesized complex salt was characterized by elemental analyses, spectroscopic studies (IR, UV/Visible, 1H and 13C NMR), solubility product and conductance measurements. The complex salt crystallizes in the monoclinic space group P2 1/ n with a = 11.6865(3), b = 19.9546(4), c = 16.6808(3) Å, β = 98.4730(10)°, V = 3847.5(6) Å 3, Z = 4. X-ray structure determination revealed an ionic structure consisting of one [Co(phen) 3] 3+, three [IO 4] - ions and two lattice water molecules per asymmetric unit. The six nitrogen atoms, originating from three 1,10-phenanthroline ligands (each bidentate) show distorted octahedral geometry around the central Co(III) metal ion. Supramolecular hydrogen bonding networks between ionic groups [Co-phenCH…Oδ-anion] by second sphere coordination besides electrostatic forces of attraction have been observed that stabilize crystal lattice. The structural studies suggest that [Co(phen) 3] 3+ is a potential anion receptor for the periodate ion, (IO 4) - in aqueous medium.

  1. Calix[6]azacryptand Ligand with a Sterically Protected Tren-Based Coordination Site for Metal Ions.

    PubMed

    Zahim, Sara; Wickramasinghe, Lasantha A; Evano, Gwilherm; Jabin, Ivan; Schrock, Richard R; Müller, Peter

    2016-04-01

    A new calix[6]azacryptand ligand has been prepared in six steps starting from 1,3,5-trismethoxycalix[6]arene. An X-ray study shows that this ligand has a sterically protected tren-based binding site at the bottom of a polyaromatic bowl and ether sites around its rim. It binds Zn(2+) to give a complex in which zinc is in a trigonal bipyramidal geometry with a water bound in one apical position and two additional hydrogen-bonded waters that fill the calixarene cavity.

  2. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    ERIC Educational Resources Information Center

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  3. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    SciTech Connect

    Ligare, Marshall R.; Baker, Erin S.; Laskin, Julia; Johnson, Grant E.

    2017-01-01

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  4. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    ERIC Educational Resources Information Center

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  5. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DOE PAGES

    Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; ...

    2016-08-25

    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN–) ligands and one 2,2'-bipyridine (bpy) ligand. This enables MLCTmore » excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN)4(bpy)]2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine)3]2+ by more than two orders of magnitude.« less

  6. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    SciTech Connect

    Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; Bergmann, Uwe; Chollet, Matthieu; Fredin, Lisa A.; Hadt, Ryan G.; Hartsock, Robert W.; Harlang, Tobias; Kroll, Thomas; Kubicek, Katharina; Lemke, Henrik T.; Liang, Huiyang W.; Liu, Yizhu; Nielsen, Martin M.; Persson, Petter; Robinson, Joseph S.; Solomon, Edward I.; Sun, Zheng; Sokaras, Dimosthenis; van Driel, Tim B.; Weng, Tsu -Chien; Zhu, Diling; Warnmark, Kenneth; Sundstrom, Villy; Gaffney, Kelly J.

    2016-08-25

    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN) ligands and one 2,2'-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN)4(bpy)]2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine)3]2+ by more than two orders of magnitude.

  7. A mixed-ligand approach for spin-crossover modulation in a linear Fe(II) coordination polymer.

    PubMed

    Calvo Galve, Néstor; Coronado, Eugenio; Giménez-Marqués, Mónica; Mínguez Espallargas, Guillermo

    2014-05-05

    In this work, we present a family of Fe(II) coordination polymers of general formula [Fe(btzx)(3-3x)(btix)(3x)](ClO4)2 with interesting spin-crossover properties. These coordination polymers have been synthesized using chemical mixtures of two different but closely related ligands, 1,4-bis(tetrazol-1-ylmethyl)benzene (btzx) and 1,4-bis(triazol-1-ylmethyl)benzene (btix), and the effect of a gradual substitution of the ligand in the spin transition temperature has been investigated. Several chemical mixtures have been structurally characterized by X-ray powder diffraction indicating a clear critical amount in the composition of the mixture after which mixed phases rather than a single phase comprising mixed components are observed. Importantly, this approach causes the appearance of a new transition at lower temperatures that is not present in the pure [Fe(L)3](ClO4)2 systems.

  8. Metal-organic coordination architectures of azole heterocycle ligands bearing acetic acid groups: Synthesis, structure and magnetic properties

    SciTech Connect

    Hu Bowen; Zhao Jiongpeng; Yang Qian; Hu Tongliang; Du Wenping; Bu Xianhe

    2009-10-15

    Four new coordination complexes with azole heterocycle ligands bearing acetic acid groups, [Co(L{sup 1}){sub 2}]{sub n} (1), [CuL{sup 1}N{sub 3}]{sub n} (2), [Cu(L{sup 2}){sub 2}.0.5C{sub 2}H{sub 5}OH.H{sub 2}O]{sub n} (3) and [Co(L{sup 2}){sub 2}]{sub n} (4) (here, HL{sup 1}=1H-imidazole-1-yl-acetic acid, HL{sup 2}=1H-benzimidazole-1-yl-acetic acid) have been synthesized and structurally characterized. Single-crystal structure analysis shows that 3 and 4 are 2D complexes with 4{sup 4}-sql topologies, while another 2D complex 1 has a (4{sup 3}){sub 2}(4{sup 6})-kgd topology. And 2 is a 3D complex composed dinuclear mu{sub 1,1}-bridging azido Cu{sup II} entities with distorted rutile topology. The magnetic properties of 1 and 2 have been studied. - Graphical Abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with azole heterocycle ligands bearing acetic acid groups are reported.

  9. Mechanistic studies of Hoveyda-Grubbs metathesis catalysts bearing S-, Br-, I-, and N-coordinating naphthalene ligands.

    PubMed

    Grudzień, Krzysztof; Żukowska, Karolina; Malińska, Maura; Woźniak, Krzysztof; Barbasiewicz, Michał

    2014-03-03

    Derivatives of the Hoveyda-Grubbs complex bearing S-, Br-, I-, and N-coordinating naphthalene ligands were synthesized and characterized with NMR and X-ray studies. Depending on the arrangement of the coordinating sites on the naphthalene core, the isomeric catalysts differ in activity in model metathesis reactions. In particular, complexes with the RuCH bond adjacent to the second aromatic ring of the ligand suffer from difficulties experienced on their preparation and initiation. The behavior most probably derives from steric hindrance around the double bond and repulsive intraligand interactions, which result in abnormal chemical shifts of benzylidene protons observed with (1) H NMR. Furthermore EXSY studies revealed that the halogen-chelated ruthenium complexes display an equilibrium, in which major cis-Cl2 structures are accompanied with small amounts of isomeric forms. In general, contents of the minor forms, measured at 80 °C, correlate with the observed activity trends of the catalysts, although some exceptions complicate the mechanistic picture. We assume that for the family of halogen-chelated metathesis catalysts the initiation mechanism starts with the cis-Cl2 ⇌trans-Cl2 isomerization, although further steps may become rate-limiting for selected systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ancillary ligand assisted self-assembly of coordination architectures of Mn(II): the effect of the N-alkyl group on a tridentate ligand.

    PubMed

    Khullar, Sadhika; Mandal, Sanjay K

    2015-01-21

    For a subtle change in the N-alkyl group of the tridentate ancillary ligand, bis(2-pyridylmethyl)alkylamine (where the alkyl group = methyl (bpma) or ethyl (bpea)), completely different products are formed under similar reaction (in methanol) as well as crystallization conditions (in water). One containing coordinated water molecules is the 3D supramolecular assembly of a tetrameric synthon comprised of the dimeric subunits, [Mn2(adc)2(bpma)2(H2O)2] (), organized by strong hydrogen bonding while the other without a coordinated water molecule forms the 1D coordination polymer, [Mn2(adc)2(bpea)2]n () (where adc = acetylene dicarboxylate), featuring a uninodal 4-connected SP 1-periodic net (3,6)(1,2) for 1D→2D with the point group {3^3.4^2.5}. Unlike , two chains of 1D CP in have a moderate π-π interaction between two corresponding pyridine rings (the centroid-centroid distance: 3.659 Å) resulting in the formation of a ladder like supramolecular assembly. On the other hand, there is no effect in changing the dicarboxylate linker from adc to fumarate as the product [Mn2(fumarate)2(bpea)2]n () is found to be similar to . All these are also characterized by elemental analysis, powder X-ray diffraction (PXRD), FTIR and Raman spectroscopy. Their thermal stability was studied by thermogravimetric analysis. Based on variable temperature PXRD studies, compounds and retain their crystallinity and overall structure up to 100 °C and 175 °C, respectively. The water vapor adsorption study of and corroborates well with their solid state structures determined by single crystal X-ray diffraction, specifically their affinity towards water; furthermore, the study of with or without pre-treatment conditions shows its structural integrity intact due to dehydration.

  11. In situ ligand generation for novel Mn(II) and Ni(II) coordination polymers with disulfide ligand: Solvothermal syntheses, structures and magnetic properties

    SciTech Connect

    Han, Yinfeng Wang, Chang'an; Zheng, Zebao; Sun, Jiafeng; Nie, Kun; Zuo, Jian; Zhang, Jianping

    2015-07-15

    Two coordination polymers, ([Mn{sub 2}(L1){sub 2}(μ{sub 2}-H{sub 2}O)(H{sub 2}O){sub 4}]·5H{sub 2}O){sub n}1 and ([Ni(L1)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n}2 (H{sub 2}L1=2,2′-dithiobisnicotinic acid), were prepared by the solvothermal reactions of the Mn(II) or Ni(II) ions with 2-mercaptonanicotinic acid. In 1, the [Mn{sub 2}(COO){sub 4}] units are connected by the 2,2′-dithiobisnicotinic dianion to form a two-dimensional (4,4)-connected network. In 2, the adjacent Ni(II) ions are connected by the carboxyl groups of the 2,2′-dithiobisnicotinic dianion to form an one-dimensional inorganic rod-shaped chain [Ni(COO){sub 2}]{sub n}, which are further interconnected by the 2,2′-dithiobisnicotinic ligand, giving rise to a two-dimensional framework. Variable-temperature magnetic susceptibilities of 1 and 2 exhibit overall weak antiferromagnetic coupling between the adjacent metal ions. - Graphical abstract: Two 2D coordination polymers were synthesized by transition-metal/in-situ oxidation of 2-mercaptonicotinic acid. The compounds pack into 2D frameworks by the carboxyl groups of 2,2′-dithiobisnicotinic dianion and exhibit overall weak antiferromagnetic coupling. - Highlights: • Two 2D coordination polymers containing 2,2′-dithiobisnicotinic dianion. • In situ oxidation and dehydro coupling reaction of 2-mercaptonbenzoic acid. • Two compounds display weak antiferromagnetic exchanges.

  12. Self-Healing, Highly Sensitive Electronic Sensors Enabled by Metal-Ligand Coordination and Hierarchical Structure Design.

    PubMed

    Han, Yangyang; Wu, Xiaodong; Zhang, Xinxing; Lu, Canhui

    2017-06-14

    Electronic sensors capable of capturing mechanical deformation are highly desirable for the next generation of artificial intelligence products. However, it remains a challenge to prepare self-healing, highly sensitive, and cost-efficient sensors for both tiny and large human motion monitoring. Here, a new kind of self-healing, sensitive, and versatile strain sensors has been developed by combining metal-ligand chemistry with hierarchical structure design. Specifically, a self-healing and nanostructured conductive layer is deposited onto a self-healing elastomer substrate cross-linked by metal-ligand coordinate bonds, forming a hierarchically structured sensor. The resultant sensors exhibit high sensitivity, low detection limit (0.05% strain), remarkable self-healing capability, as well as excellent reproducibility. Notably, the self-healed sensors are still capable to precisely capture not only tiny physiological activities (such as speech, swallowing, and coughing) but also large human motions (finger and neck bending, touching). Moreover, harsh treatments, including bending over 50000 times and mechanical washing, could not influence the sensitivity and stability of the self-healed sensors in human motion monitoring. This proposed strategy via alliance of metal-ligand chemistry and hierarchical structure design represents a general approach to manufacturing self-healing, robust sensors, and other electronic devices.

  13. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    SciTech Connect

    Feng, Xun; Liu, Lang; Wang, Li-Ya; Song, Hong-Liang; Qiang Shi, Zhi; Wu, Xu-Hong; Ng, Seik-Weng

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this case results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.

  14. AhR ligand Aminoflavone inhibits α6-integrin expression and breast cancer sphere-initiating capacity.

    PubMed

    Brantley, Eileen; Callero, Mariana A; Berardi, Damian E; Campbell, Petreena; Rowland, Leah; Zylstra, Dain; Amis, Louisa; Yee, Michael; Simian, Marina; Todaro, Laura; Loaiza-Perez, Andrea I; Soto, Ubaldo

    2016-06-28

    Traditional chemotherapies debulk tumors but fail to produce long-term clinical remissions due to their inability to eradicate tumor-initiating cells (TICs). This necessitates therapy with activity against the TIC niche. Αlpha6-integrin (α6-integrin) promotes TIC growth. In contrast, aryl hydrocarbon receptor (AhR) signaling activation impedes the formation of mammospheres (clusters of cells enriched for TICs). We investigated the ability of AhR agonist Aminoflavone (AF) and AF pro-drug (AFP464) to disrupt mammospheres derived from breast cancer cells and a M05 mammary mouse model of breast cancer respectively. We further examined the capacity of AF and AFP464 to exhibit anticancer activity and modulate the expression of 'stemness' genes including α6-integrin using immunofluorescence, flow cytometry and qRT-PCR analysis. AF disrupted mammospheres and prevented secondary mammosphere formation. In contrast, AF did not disrupt mammospheres derived from AhR ligand-unresponsive MCF-7 cells. AFP464 treatment suppressed M05 tumor growth and disrupted corresponding mammospheres. AF and AFP464 reduced the expression and percentage of cells that stained for 'stemness' markers including α6-integrin in vitro and in vivo respectively. These data suggest AFP464 thwarts bulk breast tumor and TIC growth via AhR agonist-mediated α6-integrin inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Tuning the Reactivity of Chromium(III)-Superoxo Species by Coordinating Axial Ligands.

    PubMed

    Goo, Yi Re; Maity, Annada C; Cho, Kyung-Bin; Lee, Yong-Min; Seo, Mi Sook; Park, Young Jun; Cho, Jaeheung; Nam, Wonwoo

    2015-11-02

    Metal-superoxo species have attracted much attention recently as key intermediates in enzymatic and biomimetic oxidation reactions. The effect(s) of axial ligands on the chemical properties of metal-superoxo complexes has never been explored previously. In this study, we synthesized and characterized chromium(III)-superoxo complexes bearing TMC derivatives with pendant pyridine and imidazole donors, such as [Cr(III)(O2)(TMC-Py)](2+) (1, TMC-Py = 4,8,11-trimethyl-1-(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane) and [Cr(III)(O2)(TMC-Im)](2+) (2, TMC-Im = 4,8,11-trimethyl-1-(2-methylimidazolmethyl)-1,4,8,11-tetraazacyclotetradecane). The reactivity of chromium(III)-superoxo complexes binding different axial ligands, such as 1, 2, and [Cr(III)(O2)(TMC)(Cl)](+) (3, TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was then investigated in C-H bond activation and oxygen atom transfer reactions. Kinetic studies revealed that the reactivity of the Cr(III)-superoxo complexes depends on the axial ligands, showing the reactivity order of 1 > 2 > 3 in those electrophilic oxidation reactions. It was also shown that there is a good correlation between the reactivity of the chromium(III)-superoxo complexes and their redox potentials, in which the redox potentials of the chromium(III)-superoxo complexes are in the order 1 > 2 > 3. DFT calculations reproduced the reactivity order between 1 and 3 in both C-H bond activation and oxygen atom transfer reactions, and the latter reaction is described using orbital interactions. The calculations are also in agreement with the experimentally obtained redox potentials. The present results provide the first example showing that the reactivity of metal-superoxo species can be tuned by the electron-donating ability of axial ligands bound trans to the metal-superoxo moiety.

  16. Synthesis and characterization of nitrogen-rich macrocyclic ligands and an investigation of their coordination chemistry with lanthanum(III).

    PubMed

    Wilson, Justin J; Birnbaum, Eva R; Batista, Enrique R; Martin, Richard L; John, Kevin D

    2015-01-05

    Derivatives of the ligand 1,4,7,10-tetraazacyclododecane (cyclen) containing pendant N-heterocyclic donors were prepared. The heterocycles pyridine, pyridazine, pyrimidine, and pyrazine were conjugated to cyclen to give 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (L(py)), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (L(pyd)), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (L(pyr)), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (L(pz)), respectively. The coordination chemistry of these ligands was explored using the La(3+) ion. Accordingly, complexes of the general formula [La(L)(OTf)](OTf)2, where OTf = trifluoromethanesulfonate and L = L(py) (1), L(pyd) (2), L(pyr) (3), and L(pz) (4), were synthesized and characterized by NMR spectroscopy. Crystal structures of 1 and 2 were also determined by X-ray diffraction studies, which revealed 9-coordinate capped, twisted square-antiprismatic coordination geometries for the central La(3+) ion. The conformational dynamics of 1-4 in solution were investigated by variable-temperature NMR spectroscopy. Dynamic line-shape and Eyring analyses enabled the determination of the activation parameters for the interconversion of enantiomeric forms of the complexes. Unexpectedly, the different pendant N-heterocycles of 1-4 give rise to varying values for the enthalpies and entropies of activation for this process. Density functional theory calculations were carried out to investigate the mechanism of this enantiomeric interconversion. Computed activation parameters were consistent with those experimentally determined for 1 but differed somewhat from those of 2-4.

  17. Temperature-controlled metal/ligand stoichiometric ratio in Ag-TCNE coordination networks

    SciTech Connect

    Rodríguez-Fernández, Jonathan; Lauwaet, Koen; Herranz, Maria Ángeles; Miranda, Rodolfo; Otero, Roberto

    2015-03-14

    The deposition of tetracyanoethylene (TCNE) on Ag(111), both at Room Temperature (RT, 300 K) and low temperatures (150 K), leads to the formation of coordination networks involving silver adatoms, as revealed by Variable-Temperature Scanning Tunneling Microscopy. Our results indicate that TCNE molecules etch away material from the step edges and possibly also from the terraces, which facilitates the formation of the observed coordination networks. Moreover, such process is temperature dependent, which allows for different stoichiometric ratios between Ag and TCNE just by adjusting the deposition temperature. X-ray Photoelectron Spectroscopy and Density Functional Theory calculations reveal that charge-transfer from the surface to the molecule and the concomitant geometrical distortions at both sides of the organic/inorganic interface might facilitate the extraction of silver atoms from the step-edges and, thus, its incorporation into the observed TCNE coordination networks.

  18. Zinc(II) and Cadmium(II) coordination polymers constructed from phenylenediacetate ligands

    SciTech Connect

    Sezer, Güneş Günay; Yeşilel, Okan Zafer; Erer, Hakan; Şahin, Onur

    2016-01-15

    ABSTRACT: A series of new coordination polymers {[Zn(μ-opda)(μ-bpa)]·2H_2O}{sub n} (1), [Zn(μ{sub 3}-ppda)(μ-bpa)]{sub n} (2), [Cd(μ{sub 3}-ppda)(μ-bpa)]{sub n} (3), [Cd(μ{sub 3}-mpda)(μ-bpa)]{sub n} (4) and [Cd(μ{sub 3}-mpda)(μ-bipy)]{sub n} (5), (o/m/ppda=1,2/1,3/1,4-phenylenediacetate, bpa=1,2-bi(4-pyridyl)ethane, bipy=4,4′-bipyridine) were synthesized. Their structures were characterized by elemental analysis, IR spectroscopy, single-crystal and powder X-ray diffraction. Furthermore, the effect of metal sources (zinc acetate and zinc oxide) and acidity of the solution on the structure of the coordination polymers was discussed for complexes 1 and 5, respectively. The single-crystal X-ray crystallographic studies revealed that complexes 1, 3, 4 and 5 are uninodal (4)-connected 2D frameworks and display sql topology with the point symbol of (4{sup 4}.6{sup 2}). Complex 2 is 3D coordination polymer and exhibits pcu topology with the point symbol of (4{sup 12}.6{sup 3}). In addition, the luminescent properties and thermal behavior of all complexes were also investigated. - Graphical abstract: Scheme 1. Topologies of Coordination Polymers Reported in This Paper.

  19. Chelate electronic properties control the redox behaviour and superoxide reactivity of seven-coordinate manganese(II) complexes.

    PubMed

    Liu, Gao-Feng; Dürr, Katharina; Puchta, Ralph; Heinemann, Frank W; van Eldik, Rudi; Ivanović-Burmazović, Ivana

    2009-08-28

    We have synthesized and characterized two Mn(II) seven-coordinate complexes with N5 pentadentate ligands, which contain hydrazone and hydrazide groups respectively. We have shown that insertion of hydrazido (amido) groups into the ligand sphere increases the negative charge of the chelate, without changing a donor atom set and coordination geometry, and radically modulate a redox activity of seven-coordinate manganese complexes, which is important for the function of manganese as a superoxide dismutase catalytic center.

  20. Synthesis, structures, luminescent and magnetic properties of four coordination polymers with the flexible 1,3-phenylenediacetate ligands

    SciTech Connect

    Gu, Jin-Zhong; Lv, Dong-Yu; Gao, Zhu-Qing; Liu, Jian-Zhao; Dou, Wei; Tang, Yu

    2011-03-15

    Four coordination polymers, [Zn(pda)(bpy)(H{sub 2}O)]{sub n}.nH{sub 2}O (1), [Cd(pda)(prz)(H{sub 2}O)]{sub n} (2), [Co{sub 3}({mu}{sub 3}-OH){sub 2}(pda){sub 2}(pyz)]{sub n}.2nH{sub 2}O (3) and [Pr{sub 2}(pda){sub 3}(H{sub 2}O){sub 2}]{sub n} (4) (H{sub 2}pda=1,3-phenylendiacetic acid, bpy=4,4'-bipyridine, prz=piperazine and pyz=pyrazine) have been hydrothermally synthesized and characterized. Complex 1 is a 1D wheel-like chain structure, which is further extended into a 3D metal-organic supramolecular framework by H-bonds and {pi}-{pi} stacking interactions. Complex 2 is a 1D ladder-like chain structure, which is also further extended into a 3D metal-organic supramolecular framework by H-bonds. Complex 3 possess a 2D sheet structure with infrequent two pairs of double-helix chains. Complex 4 features a 3D structure. Both 1 and 2 display strong blue fluorescent emission at room temperature. Magnetic susceptibility measurements of complexes 3 and 4 exhibit antiferromagnetic interactions between the nearest metal ions, with C=9.99 and 3.43 cm{sup 3} mol{sup -1} K, and {theta}=-23.9 and -46.3 K, respectively. -- Graphical abstract: Four new coordination polymers with 1,3-phenylenediacetate ligands have been hydrothermally synthesized and characterized. Complexes 1 and 2 display strong blue fluorescent emission at room temperature. Magnetic susceptibility measurements of 3 and 4 exhibit antiferromagnetic interactions between the nearest metal centers. Display Omitted Research highlights: > Coordinative property of H{sub 2}pda ligand was shown when bonded by different block metals. > Careful selection of co-ligand and metals resulted in dramatic framework evolution. > (c) The compounds constructed with Zn{sup 2+} and Cd{sup 2+} exhibit strong blue fluorescent emission. > The magneto-structural correlation of the complexes constructed with Co{sup 2+} and Pr{sup 3+} was elucidated.

  1. Zn(II) coordination polymers with flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    SciTech Connect

    Li, Lin; Liu, Chong-Bo; Yang, Gao-Shan; Xiong, Zhi-Qiang; Liu, Hong; Wen, Hui-Liang

    2015-11-15

    Hydrothermal reactions of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn{sub 2}(μ{sub 2}-OH)(μ{sub 4}-O){sub 0.5}(L)]·0.5H{sub 2}O (1), [Zn(L)(2,2′-bipy)(H{sub 2}O)] (2), [Zn{sub 3}(L){sub 3}(phen){sub 2}]·H{sub 2}O (3) and [Zn{sub 2}(L){sub 2}(4,4′-bipy)] (4) (2,2′-bipy=2,2′-bipyridine; 4,4′-bipy=4,4′-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn{sub 4}(µ{sub 4}-O)(µ{sub 2}-OH){sub 2}]{sup 4+} clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}{sub 2}{3"4·4"4·5"2·6"6·7"1"0·8"2}, and contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {4"4·6"2} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {4"4·6"2} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1–4 have been investigated. - Graphical abstract: Four new Zn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent properties have been investigated. - Highlights: • Four novel Zn(II) coordination polymers with V-shaped ligand were characterized. • Complexes 1–4 show diverse intriguing helical characters. • Fluorescence properties of complexes 1–4 were investigated.

  2. The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry.

    PubMed

    Byrne, Joseph P; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2014-08-07

    Ligands containing the btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] motif have appeared with increasing regularity over the last decade. This class of ligands, formed in a one pot ‘click’ reaction, has been studied for various purposes, such as for generating d and f metal coordination complexes and supramolecular self-assemblies, and in the formation of dendritic and polymeric networks, etc. This review article introduces btp as a novel and highly versatile terdentate building block with huge potential in inorganic supramolecular chemistry. We will focus on the coordination chemistry of btp ligands with a wide range of metals, and how it compares with other classical pyridyl and polypyridyl based ligands, and then present a selection of applications including use in catalysis, enzyme inhibition, photochemistry, molecular logic and materials, e.g. polymers, dendrimers and gels. The photovoltaic potential of triazolium derivatives of btp and its interactions with anions will also be discussed.

  3. A macrocyclic ligand able to bind gallium(III) by preorganized pendant arms; coordination and kinetic studies.

    PubMed

    Ambrosi, Gianluca; Boggioni, Alessia; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Lucarini, Simone; Micheloni, Mauro; Secco, Fernando; Venturini, Marcella; Zappia, Giovanni

    2005-02-07

    The equilibria and kinetics of the binding of gallium(III) to 4-(N),10-(N)-bis[2-(3-hydroxo-2-oxo-2-H-pyridine-1-y1)acetamido]-1,7-dimethyl-1,4,7,10-tetraazacyclododecane (L) were investigated in acidic medium at ionic strength 1 M (NaClO4). Spectrophotometric titrations in the UV region revealed that L is able to bind Ga3+ also at high H+ concentration. The kinetic (stopped-flow) experiments are interpreted on the basis of three parallel reaction paths (i) M3+ + H2L2+ = M(H2L)5+ where M(H2L)5+ is in a steady state, (ii) M(OH)2+ + H2L2+ = M(HL)4+ + H2O and (iii) M(OH)2+ + HL+ = ML3+ + H2O. The first-order rate constants for conversion of the outer-sphere into the inner-sphere complexes are similar to those of the Ga(III)/tropolone system which is known to react according to the dissociative Id mechanism and to the relevant rate constants for water exchange at the metal ion. The effects of pH on the UV-Vis absorption, fluorescence emission properties and NMR spectral features on the Ga(III)/L system were also investigated. Spectrophotometric titrations in the UV region reveal that, in acid medium the prevailing species is M(HL)4+ whereas the chelate ML3+ prevails for [H+] < 0.01 M. The results indicate metal coordination at the oxygen atoms of the 3-hydroxo-2-oxopyridine residues.

  4. N-aryl pyrrolo-tetrathiafulvalene based ligands: synthesis and metal coordination.

    PubMed

    Balandier, Jean-Yves; Chas, Marcos; Dron, Paul I; Goeb, Sébastien; Canevet, David; Belyasmine, Ahmed; Allain, Magali; Sallé, Marc

    2010-03-05

    A straightforward general synthetic access to N-aryl-1,3-dithiolo[4,5-c]pyrrole-2-thione derivatives 6 from acetylenedicarbaldehyde monoacetal is depicted. In addition to their potentiality as precursors to dithioalkyl-pyrrole derivatives, thiones 6 are key building blocks to N-aryl monopyrrolo-tetrathiafulvalene (MPTTF) derivatives 10. X-ray structures of four of these thiones intermediates, reminiscent of the corresponding MPTTF derivatives, are provided. When the aryl group is a binding pyridyl unit, the MPTTF derivative 10a can coordinate M(II) salts (M = Pt, Pd). The first examples of metal-directed orthogonal MPTTF-based dimers 11-14, obtained through coordination of 10a to cis-blocked square planar Pt or Pd complexes are described. Studies on the parameters influencing the dimer construction are presented, as well as first recognition properties of the resulting electron-rich clip for C(60).

  5. Coordination complexes of niobium and tantalum pentahalides with a bulky NHC ligand.

    PubMed

    Bortoluzzi, Marco; Ferretti, Eleonora; Marchetti, Fabio; Pampaloni, Guido; Zacchini, Stefano

    2016-04-28

    The 1 : 1 molar reactions of niobium and tantalum pentahalides with the monodentate NHC ligand 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (Ipr), in toluene (or benzene) at ca. 80 °C, afforded the complexes NbX5(Ipr) (X = F, ; Br, ) and TaX5(Ipr) (X = F, ; Cl, ; Br, ), in generally good yields. Complexes represent uncommon cases of stable NHC adducts of metal halides with the metal in an oxidation state higher than +4, and also rare examples of Nb-NHC and Ta-NHC bonding systems. In particular, the X-ray molecular structure determined for provides the unprecedented crystallographic characterization of a tantalum compound with a monodentate NHC ligand. DFT results indicate that the metal-carbon bond in is a purely σ one. According to NMR studies ((1)H, (13)C, (93)Nb), the formation of , , , as well as the previously communicated NbCl5(Ipr), , proceeded with the intermediacy of [MX6](-) salts, presumably due to steric reasons. On the other hand, the intermediate formation of MF6(-) in the pathways to and was not observed, according to (19)F (and (93)Nb in the case of ) NMR. DFT calculations were carried out in order to shed light on structural and mechanistic aspects, and allowed to trace possible reaction routes.

  6. Coordination polymers undergoing spin crossover and reversible ligand exchange in the solid.

    PubMed

    Galet, Ana; Muñoz, M Carmen; Real, José Antonio

    2006-11-04

    Here we report the synthesis and characterisation of a polymer made up of a system of parallel 2-D grids of Fe(II) ions linked by [Au(CN)2]- bridges and its transformation into a new system of three interpenetrated 3-D coordination open frameworks with the NbO topology. Reversibility of this crystal-to-crystal transformation is evidenced by X-ray crystallographic data and from their spin crossover properties.

  7. Honeycomb-shaped coordination polymers based on the self-assembly of long flexible ligands and alkaline-earth ions

    SciTech Connect

    Lian, Chen; Liu, Liu; Guo, Xu; Long, Yinshuang; Jia, Shanshan; Li, Huanhuan; Yang, Lirong

    2016-01-15

    Two novel coordination polymers, namely, [Ca(NCP){sub 2}]{sub ∞} (I) and [Sr(NCP){sub 2}]{sub ∞} (II) were synthesized under hydrothermal conditions based on 2-(4-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (HNCP) and characterized by elemental analysis, infrared spectrometry, X-ray powder diffraction and single crystal X-ray diffraction. Findings indicate that I and II are isomorphous and isostructural, containing the unit of M(NCP{sup −}){sub 4} (M=Ca(II) and Sr(II)), based on which to assemble into three-dimensional (3D) porous 4-fold interpenetration honeycomb-shaped neutral coordination polymers (CPs). Between the adjacent lamellar structures in I and II, there exist π–π interactions between the pyridine rings belonging to phenanthroline of NCP{sup −} which stabilize the frameworks. Both I and II display stronger fluorescence emissions as well as high thermal stability. - Graphical abstract: One-dimensional nanotubular channels with the cross dimension of 37.1959(20)×23.6141(11)Å{sup 2} in the three-dimensional honeycomb-shaped coordination network of II are observed. The topological analysis of II indicates that there exists a typical diamond framework possessing large adamantanoid cages, which containing four cyclohexane-shaped patterns in chair conformations. - Highlights: • Two isomorphous and isostructural coordination polymers based on flexible ligand and two alkaline-earth metal salts have been synthesized and characterized. • Structural analysis indicates that I and II are assembled into 3D porous honeycomb-shaped metal-organic frameworks. • Both I and II display stronger fluorescence emissions and higher thermal stability.

  8. Diverse CdII coordination complexes derived from bromide isophthalic acid binding with auxiliary N-donor ligands

    NASA Astrophysics Data System (ADS)

    Tang, Meng; Dong, Bao-Xia; Wu, Yi-Chen; Yang, Fang; Liu, Wen-Long; Teng, Yun-Lei

    2016-12-01

    The coordination characteristics of 4-bromoisophthalic acid (4-Br-H2ip) have been investigated in a series of CdII-based frameworks. Hydrothermal reactions of CdII salts and 4-Br-H2ip together with flexible or semiflexible N-donor auxiliary ligands resulted in the formation of four three-dimensional coordination complexes with diverse structures: {Cd(bix)0.5(bix)0.5(4-Br-ip)]·H2O}n (1), [Cd(bbi)0.5(bbi)0.5(4-Br-ip)]n (2), {[Cd(btx)0.5(4-Br-ip)(H2O)]·0.5CH3OH·H2O}n (3) and {[Cd(bbt)0.5(4-Br-ip)(H2O)]·3·5H2O}n (4). These compounds were characterized by elemental analyses, IR spectra, single-crystal and powder X-ray diffraction. They displayed diverse structures depending on the configuration of the 4-connected metal node, the coordination mode of the 4-Br-H2ip, the coordination ability and conformationally flexibility of the N-donor auxiliary. Compound 1 exhibits 3-fold interpenetrated 66 topology and compound 2 has a 412 topology. Compounds 3-4 have similar 3D pillar-layered structures based on 3,4-connected binodal net with the Schläfli symbol of (4·38). The thermal stabilities and photoluminescence properties of them were discussed in detail.

  9. Five-coordinate H64Q neuroglobin as a ligand-trap antidote for carbon monoxide poisoning.

    PubMed

    Azarov, Ivan; Wang, Ling; Rose, Jason J; Xu, Qinzi; Huang, Xueyin N; Belanger, Andrea; Wang, Ying; Guo, Lanping; Liu, Chen; Ucer, Kamil B; McTiernan, Charles F; O'Donnell, Christopher P; Shiva, Sruti; Tejero, Jesús; Kim-Shapiro, Daniel B; Gladwin, Mark T

    2016-12-07

    Carbon monoxide (CO) is a leading cause of poisoning deaths worldwide, with no available antidotal therapy. We introduce a potential treatment paradigm for CO poisoning, based on near-irreversible binding of CO by an engineered human neuroglobin (Ngb). Ngb is a six-coordinate hemoprotein, with the heme iron coordinated by two histidine residues. We mutated the distal histidine to glutamine (H64Q) and substituted three surface cysteines with less reactive amino acids to form a five-coordinate heme protein (Ngb-H64Q-CCC). This molecule exhibited an unusually high affinity for gaseous ligands, with a P50 (partial pressure of O2 at which hemoglobin is half-saturated) value for oxygen of 0.015 mmHg. Ngb-H64Q-CCC bound CO about 500 times more strongly than did hemoglobin. Incubation of Ngb-H64Q-CCC with 100% CO-saturated hemoglobin, either cell-free or encapsulated in human red blood cells, reduced the half-life of carboxyhemoglobin to 0.11 and 0.41 min, respectively, from ≥200 min when the hemoglobin or red blood cells were exposed only to air. Infusion of Ngb-H64Q-CCC to CO-poisoned mice enhanced CO removal from red blood cells, restored heart rate and blood pressure, increased survival, and was followed by rapid renal elimination of CO-bound Ngb-H64Q-CCC. Heme-based scavenger molecules with very high CO binding affinity, such as our mutant five-coordinate Ngb, are potential antidotes for CO poisoning by virtue of their ability to bind and eliminate CO.

  10. Five-coordinate H64Q neuroglobin as a ligand-trap antidote for carbon monoxide poisoning

    PubMed Central

    Azarov, Ivan; Wang, Ling; Rose, Jason J.; Xu, Qinzi; Huang, Xueyin N.; Belanger, Andrea; Wang, Ying; Guo, Lanping; Liu, Chen; Ucer, Kamil B.; McTiernan, Charles F.; O’Donnell, Christopher P.; Shiva, Sruti; Tejero, Jesús; Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2016-01-01

    Carbon monoxide (CO) is a leading cause of poisoning deaths worldwide, with no available antidotal therapy. We introduce a potential treatment paradigm for CO poisoning, based on near-irreversible binding of CO by an engineered human neuroglobin (Ngb). Ngb is a six-coordinate hemoprotein, with the heme iron coordinated by two histidine residues. We mutated the distal histidine to glutamine (H64Q) and substituted three surface cysteines with less reactive amino acids to form a five-coordinate heme protein (Ngb-H64Q-CCC). This molecule exhibited an unusually high affinity for gaseous ligands, with a P50 value for oxygen of 0.015 mmHg. Ngb-H64Q-CCC bound CO about 500 times more strongly than did hemoglobin. Incubation of Ngb-H64Q-CCC with 100% CO-saturated hemoglobin, either cell-free or encapsulated in human red blood cells, reduced the half-life of carboxy-hemoglobin to 0.11 and 0.41 minutes, respectively, from a value that is ≥ 200 minutes when the hemoglobin or cells are only exposed to air. Infusions of Ngb-H64Q-CCC to CO-poisoned mice enhanced CO removal from red blood cells, restored heart rate and blood pressure, increased survival, and were followed by rapid renal elimination of CO-bound Ngb-H64Q-CCC. Heme-based scavenger molecules with very high CO binding affinity such as our mutant five-coordinate Ngb are potential antidotes for CO poisoning by virtue of their ability to bind and eliminate CO. PMID:27928027

  11. Iron(III) complexes of certain meridionally coordinating tridentate ligands as models for non-heme iron enzymes: the role of carboxylate coordination.

    PubMed

    Dhanalakshmi, Thirumanasekaran; Bhuvaneshwari, Mookkan; Palaniandavar, Mallayan

    2006-09-01

    The iron(III) complexes [Fe(pda)Cl(H(2)O)(2)] (1), [Fe(tpy)Cl(3)] (2), and [Fe(bbp)Cl(3)] (3), where H(2)pda is pyridine-2,6-dicarboxylic acid, tpy is 2,2':6,2''-terpyridine and bbp is 2,6-bis(benzimidazolyl)pyridine, have been isolated and studied as functional models for the intradiol-cleaving catechol dioxygenase enzymes. Mixed ligand complexes of H(2)pda with the bidentate ligands 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) have been also prepared and studied. All the complexes have been characterized using absorption spectral and electrochemical methods. The spectral changes in the catecholate adducts of the complexes generated in situ have been investigated. Upon interacting the complexes with catecholate anions a low energy catecholate to iron(III) charge transfer band appears, which is similar to that observed for enzyme-substrate complexes. All the complexes catalyze the oxidative intradiol cleavage of 3,5-di-tert-butylcatechol (H(2)dbc) in the presence of dioxygen. Interestingly, on replacing the pyridyl groups in 2 and the bulky benzimidazole groups in 3 by the carboxylate groups, the yields of the intradiol cleavage products of dioxygenation increases, 1 (50%)>2 (20%)>3 (10%). The higher intradiol yield for 1 has been ascribed to the meridional coordination of two carboxylate groups of pda(2-). In contrast to the trend in the intradiol cleavage yields, a tremendous decrease in the rate (200 times) is observed on replacing the two pyridyl moieties in 2 by two carboxylates as in 1 and a significant decrease in rate is observed on replacing the pyridyl moieties in 2 by strongly sigma-donating benzimidazole moieties as in 3. This is in conformity with the decrease in Lewis acidities of the iron(III) centers.

  12. Synthesis, magnetic and photomagnetic study of new iron(II) spin-crossover complexes with N₄O₂ coordination sphere.

    PubMed

    Zhang, Li; Xu, Guan-Cheng; Xu, Hong-Bin; Mereacre, Valeriu; Wang, Zhe-Ming; Powell, Annie K; Gao, Song

    2010-05-28

    A new family of neutral mononuclear iron(II) spin crossover (SCO) compounds, Fe(L¹⁻⁶)₂ (L¹⁻⁶ = N'-((pyridin-2-yl)methylene)benzohydrazide (HL¹), N'-(1-(pyridin-2-yl)ethylidene)-benzohydrazide (HL²), N'-(phenyl(pyridin-2-yl)methylene)benzohydrazide (HL³), 2-hydroxy-N'-((pyridin-2-yl)methylene)benzohydrazide (HL⁴), 2-hydroxy-N'-(1-(pyridin-2-yl)ethylidene)benzohydrazide (HL⁵), 2-hydroxy-N'-(phenyl(pyridin-2-yl)methylene)benzohydrazide (HL⁶)) with N₄O₂ donor sets have been synthesized from series tridentate Schiff base ligands with N,N,O donor sets. The investigation of magnetic properties of these compounds reveal that in the measured temperature range, compound 1 is in the high-spin (HS) state, and compound 3 and 6 are mainly in the low-spin (LS) state, whereas the other compounds exhibit various SCO properties: compound 2 undergoes a gradual incomplete SCO with characteristic temperature T(1/2) higher than 350 K; compound 4 exhibits a special stepwise thermally induced SCO occurring at ~150 K (smooth) and 200 K (two-steps, with T(S1↑/↓) = 204/202 K and T(S2↑/↓) = 227/219 K) with a mixture of the HS and LS states yielded below 100 K; compound 5 shows a gradual and complete LS↔HS SCO with characteristic temperature T(1/2) = 273 K. All the three SCO compounds show the LIESST (light induced exited spin state trapping) effect with different levels of photoconversion. To thoroughly analyze these behaviours, Mössbauer spectra and DSC of 4 and 5, crystal structures of all the compounds at 290 K and 5 in the LS state at 110 K were carried out, which confirmed the structural changes accompanying the spin transition. In addition, alkyl substitution effect on the ligand field was suggested for this system.

  13. Coordination of 1,4-Diazabutadiene Ligands to Decamethylytterbocene: Additional Examples of Spin Coupling in Ytterbocene Complexes

    SciTech Connect

    Andersen, Richard; Walter, Marc D.; Berg, David J.; Andersen, Richard A.

    2006-11-04

    The paramagnetic 1:1 coordination complexes of (C5Me5)2Yb with a series of diazabutadiene ligands, RN=C(R')C(R')=NR, where R= CMe3, CHMe2, adamantyl, p-tolyl, p-anisyl, and mesityl when R'=H, and R= p-anisyl when R'= Me, have been prepared. The complexes are paramagnetic, but their magnetic moments are less than expected for the two uncoupled spin carriers, (C5Me5)2Yb(III, 4f13) and the diazabutadiene radical anions (S=1/2), which implies exchange coupling between the spins. The variable temperature 1H NMR spectra show that rotation about the R-N bond is hindered and these barriers are estimated. The barriers are largely determined by steric effects but electronic effects are not unimportant.

  14. Versatile coordination of a reactive P,N-ligand toward boron, aluminum and gallium and interconversion reactivity.

    PubMed

    Devillard, M; Alvarez Lamsfus, C; Vreeken, V; Maron, L; van der Vlugt, J I

    2016-07-05

    The synthesis and reactivity of the first Group 13 complexes bearing a dearomatized phosphino-amido ligand are reported, i.e. alane AlEt2(L) , gallane GaCl2(L) and borane B(Cl)(Ph)(L) . The three complexes react very differently with Group 13 trihalogenides, providing access to zwitterionic anti-·GaCl3 and the unique bis(metalloid) ·BCl2, with the boron center part of a highly unusual anionic four-membered ring (charge on C) and Ga bound to P. The coordination chemistry and the various transformations are supported by DFT calculations, X-ray crystallography and multinuclear NMR spectroscopic data.

  15. Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2′,4,4′-tetracarboxylic acid and varied N-donor co-ligands

    SciTech Connect

    Wang, Chao; Zhao, Jun; Xia, Liang; Wu, Xue-Qian; Wang, Jian-Fang; Dong, Wen-Wen; Wu, Ya-Pan

    2016-06-15

    Three new coordination polymers, namely, {[Ni(H_2L)(bix)(H_2O)_2]·2h_2O}{sub n} (1), {[Ni(HL)(Hdpa)(H_2O)_2]·H_2O}{sub n} (2), {[Ni(L)_0_._5(bpp)(H_2O)]·H_2O}{sub n} (3) (H{sub 4}L=terphenyl-2,2′,4,4′-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4′-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H{sub 4}L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 6{sup 6}-dia-type framework with H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two symmetry-related carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 0} monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, in which the H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 1} and μ{sub 1}-η{sup 1}:η{sup 0} monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H{sub 4}L ligand displays a μ{sub 4}-bridging coordination mode. The H{sub 4}L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1–3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented. - Graphical abstract: Three nickel coordination polymers with different architectures based on mixed ligand system were synthesized and structurally characterized. Topology analyses indicate that 1 shows the 4-connected 6{sup 6}-dia net, 1D ribbon chains for 2 and 3D (4,4)-connected bbf network for 3. Display Omitted - Highlights: • Three Ni-based coordination polymers with distinct features have been prepared. • Compound 1 features a 3D 4-connected 66-dia-type framework, 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology. • The “mixed ligand assembled

  16. Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2‧,4,4‧-tetracarboxylic acid and varied N-donor co-ligands

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhao, Jun; Xia, Liang; Wu, Xue-Qian; Wang, Jian-Fang; Dong, Wen-Wen; Wu, Ya-Pan

    2016-06-01

    Three new coordination polymers, namely, {[Ni(H2L)(bix)(H2O)2]·2h2O}n (1), {[Ni(HL)(Hdpa)(H2O)2]·H2O}n (2), {[Ni(L)0.5(bpp)(H2O)]·H2O}n (3) (H4L=terphenyl-2,2‧,4,4‧-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4‧-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H4L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 66-dia-type framework with H4L ligand adopts a μ2-bridging mode with two symmetry-related carboxylate groups in μ1-η1:η0 monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]n ribbon chains motif, in which the H4L ligand adopts a μ2-bridging mode with two carboxylate groups in μ1-η1:η1 and μ1-η1:η0 monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H4L ligand displays a μ4-bridging coordination mode. The H4L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1-3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented.

  17. Extending framework based on the linear coordination polymers: Alternative chains containing lanthanum ion and acrylic acid ligand

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guo, Ming; Tian, Hong; He, Fei-Yue; Lee, Gene-Hsiang; Peng, Shie-Ming

    2006-11-01

    One-dimensional alternative chains of two lanthanum complexes: [La( L1) 3(CH 3OH)(H 2O) 2]·5H 2O ( L1=anion of α-cyano-4-hydroxycinnamic acid ) 1 and [La( L2) 3(H 2O) 2]·3H 2O ( L2=anion of trans-3-(4-methyl-benzoyl)-acrylic acid) 2 were synthesized and structurally characterized by single-crystal X-ray diffraction, element analysis, IR and thermogravimetric analysis. The crystal structure data are as follows for 1: C 31H 36LaN 3O 17, triclinic, P-1, a=9.8279(4) Å, b=11.8278(5) Å, c=17.8730(7) Å, α=72.7960(10)°, β=83.3820(10)°, γ=67.1650(10)º, Z=2, R1=0.0377, wR2=0.0746; for 2: C 33H 37LaO 14, triclinic, P-1, a=8.7174(5) Å, b=9.9377(5) Å, c=21.153(2) Å, α=81.145(2)°, β=87.591(2)°, γ=67.345(5)°, Z=2, R1=0.0869, wR2=0.220. 1 is a rare example of the alternative chain constructed by syn-syn and anti-syn coordination mode of carboxylato ligand arranged along the chain alternatively. La(III) ions in 2 are linked by two η3-O bridges and four bridges (two η2-O and two η3-O) alternatively. Both of the linear coordination polymers grow into two- and three-dimensional networks by packing through extending hydrogen-bond network directed by ligands.

  18. An Unusual Ligand Coordination Gives Rise to a New Family of Rhodium Metalloinsertors with Improved Selectivity and Potency

    PubMed Central

    2015-01-01

    Rhodium metalloinsertors are octahedral complexes that bind DNA mismatches with high affinity and specificity and exhibit unique cell-selective cytotoxicity, targeting mismatch repair (MMR)-deficient cells over MMR-proficient cells. Here we describe a new generation of metalloinsertors with enhanced biological potency and selectivity, in which the complexes show Rh–O coordination. In particular, it has been found that both Δ- and Λ-[Rh(chrysi)(phen)(DPE)]2+ (where chrysi =5,6 chrysenequinone diimmine, phen =1,10-phenanthroline, and DPE = 1,1-di(pyridine-2-yl)ethan-1-ol) bind to DNA containing a single CC mismatch with similar affinities and without racemization. This is in direct contrast with previous metalloinsertors and suggests a possible different binding disposition for these complexes in the mismatch site. We ascribe this difference to the higher pKa of the coordinated immine of the chrysi ligand in these complexes, so that the complexes must insert into the DNA helix with the inserting ligand in a buckled orientation; spectroscopic studies in the presence and absence of DNA along with the crystal structure of the complex without DNA support this assignment. Remarkably, all members of this new family of compounds have significantly increased potency in a range of cellular assays; indeed, all are more potent than cisplatin and N-methyl-N′-nitro-nitrosoguanidine (MNNG, a common DNA-alkylating chemotherapeutic agent). Moreover, the activities of the new metalloinsertors are coupled with high levels of selective cytotoxicity for MMR-deficient versus proficient colorectal cancer cells. PMID:25254630

  19. Stereochemistry of lead(II) complexes with oxygen donor ligands.

    SciTech Connect

    Stavilla, Vitalie; Davidovich, Ruven L.; Whitmire, Kenton Herbert; Voit, Elena I.; Marinin, Dmitry V.

    2008-10-01

    This review discusses the coordination number (CN) and the coordination geometry of the first coordination sphere of Pb(II) atoms in crystal structures of 98 lead(II) complexes with O-donor ligands and the stereochemically active lone pair of electrons (LP, E) in the terms of the valence shell electron-pair repulsion (VSEPR) model. The CN of Pb(II) atoms of the first coordination sphere has values falling into the range (3 + E) to (6 + E). The following coordination polyhedra-{psi}-tetrahedron (I), {psi}-trigonal bipyramid (II), {psi}-octahedron (III), {psi}-pentagonal bipyramid with an axial (IV) or equatorial (V) vacant position are formed. For the investigated structures of the Pb(II) complexes, the formula of each compound, the overall CN of the Pb(II) atom considered as the sum of the CN in the first coordination sphere and the number of secondary bonds, the polyhedron shape, the Pb-O bond lengths, and O-Pb-O bond angles in the first coordination sphere, secondary bond lengths, references and REFCODEs are presented in the comprehensive Tables. The quantum chemical investigations performed using density functional theory (DFT) method have confirmed the stereochemical activity of the LP of Pb(II) atoms in the studied structures of lead(II) complexes with O-donor ligands.

  20. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox)0.5(H2O)]n·2n(H2O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H2sfpip)(ox)(H2O)4]n·2n(H2O) (Ln=Nd (8) Sm (9)), [H2ox=oxalic acid, H3sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H3sfpip resulted in two types of structures. Compounds 1-7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox2- anions as linkers to bridge the adjacent layers. Compounds 8-9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1-7 to 8-9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1-9 were also investigated.

  1. Luminescent zinc terephthalate coordination polymers with pyridylnicotinamide ligands: Effect of added base and nitrogen donor disposition on topology

    NASA Astrophysics Data System (ADS)

    Goldsworthy, Jessica S.; Staples, Richard J.; LaDuca, Robert L.

    2014-03-01

    Hydrothermal reaction of zinc nitrate, potassium terephthalate (K2tere), and 3-pyridylnicotinamide (3-pna) or 4-pyridylnicotinamide (4-pna) afforded coordination polymers with different dimensionality depending on nitrogen donor disposition and the initial pH of the reaction mixture. {[Zn(tere)(3-pna)2(H2O)2]ṡ2H2O}n (1) was prepared in the presence of aqueous NaOH, and manifests 1-D coordination polymer chains with monodentate 3-pna ligands. A mixture of {[Zn(tere)(3-pna)]ṡ3H2O}n (2) and {[Zn4(tere)3(OH)2(3-pna)2]ṡ2H2O}n (3) was prepared by performing a similar reaction in the absence of extra base. Compound 2 shows a 2-D (6,3) hexagonal grid topology with very tight interdigitation, while 3 has a 2-fold interpenetrated 3-D pcu network built from {Zn4(OCO)2(OH)2} centrosymmetric tetrameric nodes. {[Zn(tere)(4-pna)]ṡH2O}n (4) has parallel 2-fold interpenetrated sawtooth layer motifs. Luminescent and thermal decomposition properties are also discussed.

  2. Coordination chemistry of a pi-extended, rigid and redox-active tetrathiafulvalene-fused Schiff-base ligand.

    PubMed

    Wu, Jin-Cai; Liu, Shi-Xia; Keene, Tony D; Neels, Antonia; Mereacre, Valeriu; Powell, Annie K; Decurtins, Silvio

    2008-04-21

    A pi-extended, redox-active tetradentate tetrathiafulvalene-fused salphen [salphen = N,N'-phenylenebis(salicylideneimine)] compound (L) was prepared via a direct Schiff-base condensation of the corresponding diamine-tetrathiafulvalene (TTF) precursor with salicylaldehyde. Its chelating coordination ability has been demonstrated by the formation of the corresponding transition metal complexes in the presence of M(OAc)2.nH2O (M = Co(II), Ni(II), Cu(II)) and FeCl3.6H2O. Three complexes have been characterized by single-crystal X-ray diffraction analysis showing that the TTF-salphen ligand coordinates to the metal ions in a planar mode through the nitrogen and oxygen atoms in a N2O2 cis-configuration. In the case of Fe(III), a dinuclear oxo-bridged Fe(III) complex is formed. These paramagnetic complexes are promising building blocks for the construction of dual functional materials due to their unique structural features (planarity and rigidity) as well as their inherent redox properties.

  3. Structural Investigations of Silica Polyamine Composites: Surface Coverage, Metal Ion Coordination, and Ligand Modification

    SciTech Connect

    Hughes, Mark; Nielsen, Daniel; Rosenberg, Edward; Gobetto, Roberto; Viale, Alessandra; Burton, Sarah D.; Ferel, Joseph

    2006-09-13

    Silanization of the silica gel surface in the synthesis of silica gel polyamine composites uses (chloropropyl)-trichlorosilane (CPTCS). It is possible to substitute a molar fraction of reagent CPTCS with methyltrichlorosilane (MTCS), creating a mixed silane surface layer. Two types of silica gels were modified with a series of MTCS:CPTCS molar ratios. Solid-state CP/MAS 29Si and 13C NMR spectroscopies were used to evaluate the surface silane composition. Surface silane coverage was markedly improved for the resulting gels. When polyamines were grafted to the resultant MTCS:CPTCS silane layers, it was shown that the decrease in the number of propyl attachments to the polyamine resulted in increased quantities of ''free amines''. Optimum MTCS:CPTCS ratios were determined for three polyamines grafted onto one silica gel. A substantial free amine increase was observed for poly(allylamine) (PAA). Metal uptake studies show increases in Cu(II) capacity and/or an improvement in Cu(II) mass-transfer kinetics. The effect of polymer molecular weight upon Cu(II) capacity was investigated for each polyamine. Substantial differences in Cu(II) capacity between 50,000 MW poly(vinylamine) (PVA) and >1000 MW PVA were evident. Similar differences between 25,000 MW poly(ethyleneimine) (PEI) and 1200 MW PEI were found. The mass-transfer kinetics was shown to be improved for composites prepared using a large fraction of MTCS in the reagent silane mixture. This resulted in substantial improvements in the 10% breakthrough Cu(II) capacity for PVA (50 000 MW). PEI composites were further modified to form an amino-acetate ligand. The impact of the MTCS:CPTCS silane ratio on the acetate ligand loading and ultimately on the Cu(II) capacity at pH 2 was investigated. A ratio of 12.5:1 was shown to result in an acetate modified PEI composite with a Cu(II) capacity 140% of the Cu(II) capacity of the same composite prepared with ''CPTCS only''.

  4. Synthesis of Coordination Polymers of Tetravalent Actinides (Uranium and Neptunium) with a Phthalate or Mellitate Ligand in an Aqueous Medium.

    PubMed

    Martin, Nicolas P; März, Juliane; Volkringer, Christophe; Henry, Natacha; Hennig, Christoph; Ikeda-Ohno, Atsushi; Loiseau, Thierry

    2017-03-06

    Four metal-organic coordination polymers bearing uranium or neptunium have been hydrothermally synthesized from a tetravalent actinide chloride (AnCl4) and phthalic (1,2-H2bdc) or mellitic (H6mel) acid in aqueous media at 130 °C. With the phthalate ligand, two analogous assemblies ([AnO(H2O)(1,2-bdc)]2·H2O; An = U(4+) (1) or Np(4+) (2)) have been isolated, in which the square-antiprismatic polyhedra of AnO8 are linked to each other via μ3-oxo groups with an edge-sharing mode to materialize infinite zigzag ribbons. The phthalate molecules play a role in connecting the adjacent zigzag chains to build a two-dimensional (2D) network. Water molecules are bonded to the actinide center or found intercalated between the layers. With the mellitate ligand, two distinct structures have been identified. The uranium-based compound [U2(OH)2(H2O)2(mel)] (3) exhibits a three-dimensional (3D) structure composed of the dinuclear units of UO8 polyhedra (square antiprism), which are further linked via the μ2-hydroxo groups. The mellitate linkers use their carboxylate groups to connect the dinuclear units, eventually building a 3D framework. The compound obtained for the neptunium mellitate ([(NpO2)10(H2O)14(Hmel)2]·12H2O (4)) reveals oxidation of the initial Np(IV) to Np(V) under the applied hydrothermal synthetic conditions, yielding the neptunyl(V) (NpO2(+)) unit with a pentagonal-bipyramidal NpO7 environment. This further leads to the formation of a layered assembly of the square-frame NpO7 sheets via the bridging oxygen atoms from the neptunyl oxo groups, which further coordinate to the pentagonal equatorial coordination plane of the adjacent neptunium unit (i.e., cation-cation interactions). In compound 4, the mellitate molecules act as bridging linkers between the NpO7 sheets by using four of their carboxylage groups, eventually building up a 3D structure.

  5. Copper coordinated ligand thioether-S and NO2(-) oxidation: relevance to the CuM site of hydroxylases.

    PubMed

    Maji, Ram Chandra; Bhandari, Anirban; Singh, Ravindra; Roy, Suprakash; Chatterjee, Sudip K; Bowles, Faye L; Ghiassi, Kamran B; Maji, Milan; Olmstead, Marilyn M; Patra, Apurba K

    2015-10-28

    In order to gain insight into the coordination site and oxidative activity of the CuM site of hydroxylases such as peptidylglycine α-hydroxylating monooxygenase (PHM), dopamine β-monooxygenase (DβM), and tyramine β-monooxygenase (TβM), we have synthesized, characterized and studied the oxidation chemistry of copper complexes chelated by tridentate N2Sthioether, N2Osulfoxide or N2Osulfone donor sets. The ligands are those of N-2-methylthiophenyl-2'-pyridinecarboxamide (HL1), and the oxidized variants, N-2-methylsulfenatophenyl-2'-pyridinecarboxamide (HL1(SO)), and N-2-methylsulfinatophenyl-2'-pyridinecarboxamide (HL1(SO2)). Our studies afforded the complexes [(L1)Cu(II)(H2O)](ClO4)·H2O (1·H2O), {[(L1(SO))Cu(II)(CH3CN)](ClO4)}n (2), [(L1)Cu(II)(ONO)] (3), [(L1(SO))Cu(II)(ONO)]n (4), [(L1)Cu(II)(NO3)]n (5), [(L1(SO))Cu(II)(NO3)]n (6) and [(L1(SO2))Cu(II)(NO3)] (7). Complexes 1 and 3 were described in a previous publication (Inorg. Chem., 2013, 52, 11084). The X-ray crystal structures revealed either distorted octahedral (in 2, 4-6) or square-pyramidal (in 1, 3) coordination geometry around Cu(II) ions of the complexes. In the presence of H2O2, conversion of 1→2, 3-5→6 and 6→7 occurs quantitatively via oxidation of thioether-S and/or Cu(ii) coordinated NO2(-) ions. Thioether-S oxidation of L1 also occurs when [L1](-) is reacted with [Cu(I)(CH3CN)4](ClO4) in DMF under O2, albeit low in yield (20%). Oxidations of thioether-S and NO2(-) were monitored by UV-Vis spectroscopy. Recovery of the sulfur oxidized ligands from their metal complexes allowed for their characterization by elemental analysis, (1)H NMR, FTIR and mass spectrometry.

  6. Dangling and Hydrolyzed Ligand Arms in [Mn3] and [Mn6] Coordination Assemblies: Synthesis, Characterization, and Functional Activity.

    PubMed

    Chattopadhyay, Krishna; Craig, Gavin A; Heras Ojea, María José; Pait, Moumita; Kundu, Animesh; Lee, Junseong; Murrie, Mark; Frontera, Antonio; Ray, Debashis

    2017-03-06

    Two flexible, branched, and sterically constrained di- and tripodal side arms around a phenol backbone were utilized in ligands H3L1 and H5L2 to isolate {Mn6} and {Mn3} coordination aggregates. 2,6-Bis{(1-hydroxy-2-methylpropan-2-ylimino)methyl}-4-methylphenol (H3L1) gave trinuclear complex [Mn3(μ-H2L1)2(μ1,3-O2CCH3)4(CH3OH)2](ClO4)2·4CH3OH (1), whereas 2,6-bis[{1-hydroxy-2-(hydroxymethyl)butan-2-ylimino}methyl]-4-methylphenol (H5L2) provided hexanuclear complex [Mn6(μ4-H2L2)2(μ-HL3)2(μ3-OH)2(μ1,3-O2CC2H5)4](ClO4)2·2H2O (2). Binding of acetates and coordination of {H2L1}(-) provided a linear Mn(III)Mn(II)Mn(III) arrangement in 1. A Mn(III)6 fused diadamantane-type assembly was obtained in 2 from propionate bridges, coordination of {H2L2}(3-), and in situ generated {HL3}(2-). The magnetic characterization of 1 and 2 revealed the properties dominated by intramolecular anti-ferromagnetic exchange interactions, and this was confirmed using density functional theory calculations. Complex 1 exhibited field-induced slow magnetic relaxation at 2 K due to the axial anisotropy of Mn(III) centers. Both the complexes show effective solvent-dependent catechol oxidation toward 3,5-di-tert-butylcatechol in air. The catechol oxidation abilities are comparable from two complexes of different nuclearity and structure.

  7. Two organoantimony (V) coordination complexes modulated by isomers of trifluoromethylbenzoate ligands: Syntheses, crystal structure, photodegradation properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yin; Cui, Lian-sheng; Zhang, Xia; Jin, Fan; Fan, Yu-Hua

    2017-04-01

    Two organoantimony (V) coordination complexes, namely Ph3Sb(2-tmbc) (1) and Ph3Sb(3-tmbc) (2) (2-tmbc = 2-(trifluoromethyl)benzoic carboxyl, 3-tmbc = 3-(trifluoromethyl)benzoic carboxyl) have been synthesized and characterized by IR spectra, elemental analysis, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Single-crystal X-ray diffraction analysis reveals that complexes 1 and 2 show different architectures by the intermolecular hydrogen bonds (Csbnd H⋯F), complex 1 displays an 1D straight chain structure, while complex 2 shows an 1D zigzag chain structure. The photodegradation properties of complexes 1 and 2 has been investigated in organic dyes (RhB, MV, MB) the results indicated that the two complexes are good candidates for the photocatalytic degradation of three dyes. The tentative photocatalytic degradations mechanism is discussed.

  8. Two new coordination polymers based on tartaric acid ligand: Syntheses, crystal structure and thermal stability

    NASA Astrophysics Data System (ADS)

    Chen, Fei-Yan; Lan, You-Zhao; Han, Min-Min; Feng, Yun-Long

    2016-09-01

    Two new coordination polymers [Cd3(D-Tar)3]n ( 1) and [Pb( meso-Tar)]n ( 2) (H2 Tar = tartaric acid) have been synthesized by hydrothermal reaction and characterized by single crystal X-ray diffraction analysis and IR spectra. 1 crystallizes in the C2221 chiral space group and shows a 3D (4,4)-connected net with the (4.6.84)4(4.62.82.10)(4.62.83)(4.63.82)(4.63.82)4(4.85)2 topology. 2 possesses a 3D (4,4)-connected net with the (43.62.8) topology. In addition, the thermogravimetric analyses (TGA) results for polymers are discussed.

  9. Structures and magnetic properties of two noncentrosymmetric coordination polymers based on carboxyphosphinate ligand

    NASA Astrophysics Data System (ADS)

    Li, Jianyong; Xue, Chao-Chao; Liu, Siming; Wang, Zhao-Xi

    2016-11-01

    Two novel coordination polymers have been hydrothermally synthesized by reactions of Cu(II), Mn(II) salt with 2-carboxyethyl(phenyl)phosphinic acid (H2L), namely, [Cu(L)(H2O)]n (1) and [Mn(HL)2]n (2). Both compounds were well characterized by single crystal X-ray diffraction, elemental analysis, IR spectroscopic, power X-ray diffraction and magnetic studies. Compound 1 crystallizes in a noncentrosymmetric monoclinic Cc space group and presents an inorganic two-dimensional (2D) network, whereas compound 2 adopts a noncentrosymmetric Pca21 space group and exhibits a 2D layer structure. Magnetic studies reveal a dominant ferromagnetic interaction in 1, and weak antiferromagnetic coupling between the Mn(II) ions in 2 mediated by phosphinico group, respectively.

  10. Assembly of three coordination polymers based on a sulfonic-carboxylic ligand showing high proton conductivity.

    PubMed

    Zhao, Shu-Na; Song, Xue-Zhi; Zhu, Min; Meng, Xing; Wu, Lan-Lan; Song, Shu-Yan; Wang, Cheng; Zhang, Hong-Jie

    2015-01-21

    Three new coordination polymers (CPs)/metal-organic frameworks (MOFs) with different structures have been synthesized using 4,8-disulfonyl-2,6-naphthalenedicarboxylic acid (H4L) and metal ions, Cu(2+), Ca(2+) and Cd(2+). The Cu compound features a one-dimensional chain structure, further extending into a 2D layer network through H-bond interactions. Both the Ca and Cd compounds show 3D frameworks with (4,4)-connected PtS-type topology and (3,6)-connected bct-type topology, respectively. These CPs/MOFs all exhibit proton conduction behavior, especially for the Cu compound with a proton conductivity of 3.46 × 10(-3) S cm(-1) at 368 K and 95% relative humidity (RH). Additionally, the activation energy (Ea) has also been investigated to deeply understand the proton-conduction mechanism.

  11. Electrical conductivity and luminescence properties of two silver(I) coordination polymers with heterocyclic nitrogen ligands

    NASA Astrophysics Data System (ADS)

    Rana, Abhinandan; Kumar Jana, Swapan; Pal, Tanusri; Puschmann, Horst; Zangrando, Ennio; Dalai, Sudipta

    2014-08-01

    The synthesis and X-ray structural characterization of two novel silver(I) coordination polymers, [Ag(NO3)(quin)]n (1) and [Ag8(HL)2(H2O)4(mpyz)]·3H2O (2) are reported, where quin=5,6,7,8-tetrahydroquinoxaline, H6L=cyclohexane-1,2,3,4,5,6-hexacarboxylic acid and mpyz=2-methyl pyrazine. The single crystal diffraction analyses showed that complex 1 is a 2D layered structure, while 2 presents a 3D polymeric architecture. In complex 2 the network is stabilized by argentophilic interactions and hydrogen bonding. Electrical conductivity of order 3×10-4 Scm-1 (1) and 1.6×10-4 Scm-1 (2) is measured on thin film specimen at room temperature. The photoluminescence and thermal properties of the complexes have also been studied.

  12. Tailoring stimuli-responsive delivery system driven by metal–ligand coordination bonding

    PubMed Central

    Liang, Hongshan; Zhou, Bin; He, Yun; Pei, Yaqiong; Li, Bin; Li, Jing

    2017-01-01

    In this study, a novel coordination bonding system based on metal–tannic acid (TA) architecture on zein/carboxymethyl chitosan (CMCS) nanoparticles (NPs) was investigated for the pH-responsive drug delivery. CMCS has been reported to coat on zein NPs as delivery vehicles for drugs or nutrients in previous studies. The cleavage of either the “metal–TA” or “NH2–metal” coordination bonds resulted in significant release of guest molecules with high stimulus sensitivity, especially in mild acidic conditions. The prepared metal–TA-coated zein/CMCS NPs (zein/CMCS-TA/metal NPs) could maintain particle size in cell culture medium at 37°C, demonstrating good stability compared with zein/CMCS NPs. In vitro release behavior of doxorubicin hydrochloride (DOX)-loaded metal–TA film-coated zein/CMCS NPs (DOX-zein/CMCS-TA/metal NPs) showed fine pH responsiveness tailored by the ratio of zein to CMCS as well as the metal species and feeding concentrations. The blank zein/CMCS-TA/metal NPs (NPs-TA/metal) were of low cytotoxicity, while a high cytotoxic activity of DOX-zein/CMCS-TA/metal NPs (DOX-NPs-TA/metal) against HepG2 cells was demonstrated by in vitro cell assay. Confocal laser scanning microscopy (CLSM) and flow cytometry were combined to study the uptake efficiency of DOX-NPs or DOX-NPs-TA/metal. This system showed significant potential as a highly versatile and potent platform for drug delivery. PMID:28490873

  13. Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere

    PubMed Central

    Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P

    2015-01-01

    Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782

  14. Second-sphere coordination in non-spherical anion binding: Synthesis, characterization and X-ray structure of cis-diazidobis(ethylenediamine)cobalt(III) 2-chloro,5-nitrobenzenesulphonate monohydrate

    NASA Astrophysics Data System (ADS)

    Sharma, Rajni; Sharma, Raj Pal; Bala, Ritu; Pretto, Loretta; Ferretti, Valeria

    2006-12-01

    Dark red coloured single crystals of [ cis-Co(en) 2(N 3) 2] C 6H 3ClNO 5S·H 2O were obtained by slowly mixing the separately dissolved cis-diazidobis(ethylenediamine)cobalt(III) nitrate with sodium 2-chloro,5-nitrobenzenesulphonate in aqueous medium in 1:1 molar ratio. The complex salt was characterized by elemental analyses, spectroscopic studies (IR, UV/visible, 1H and 13C NMR) and solubility measurements. The compound crystallizes in the triclinic space group P1¯ with a = 7.8128(2), b = 8.3219(2), c = 17.4526(2) Å, α = 95.224(1), β = 95.759(1), γ = 116.636(2)°, V = 997.36(5) Å 3, Z = 2. Single crystal X-ray structure determination revealed an ionic structure consisting of [ cis-Co(en) 2(N 3) 2] +, [C 6H 3ClNO 5S] - and one lattice water molecule. In the complex cation [ cis-Co(en) 2(N 3) 2] +, the cobalt(III) is bonded to six nitrogen atoms, originating from two ethylenediamine ligands, and two azide groups showing an octahedral geometry around cobalt(III). Supramolecular hydrogen-bonding networks involving second-sphere coordination like [NHen+⋯Xanion-] and NHen+⋯Owater besides electrostatic forces of attraction have been observed to stabilize crystal lattice. This is the first crystal structure of a salt containing 2-chloro,5-nitrobenzenesulphonate anion and cis-diazidobis(ethylenediamine)cobalt(III) cation.

  15. Behavior of the potential antitumor V(IV)O complexes formed by flavonoid ligands. 1. Coordination modes and geometry in solution and at the physiological pH.

    PubMed

    Sanna, Daniele; Ugone, Valeria; Lubinu, Giuseppe; Micera, Giovanni; Garribba, Eugenio

    2014-11-01

    The coordination modes and geometry assumed in solution by the potent antitumor oxidovanadium(IV) complexes formed by different flavonoids were studied by spectroscopic (Electron Paramagnetic Resonance, EPR) and computational (Density Functional Theory, DFT) methods. A series of bidentate flavonoid ligands (L) with increasing structural complexity was examined, which can involve (CO, O(-)) donors and formation of five- and six-membered chelate rings, or (O(-), O(-)) donors and five-membered chelate rings. The geometry corresponding to these coordination modes can be penta-coordinated, [VOL2], or cis-octahedral, cis-[VOL2(H2O)]. The results show that, at physiological pH, ligands provided with (CO, O(-)) donor set yield cis-octahedral species with "maltol-like" coordination when five-membered chelate rings are formed (as with 3-hydroxyflavone), while penta-coordinated structures with "acetylacetone-like" coordination are preferred when the chelate rings are six-membered (as with chrysin). When both the binding modes are possible, as with morin, the "acetylacetone-like" coordination is observed. For the ligands containing a catecholic donor set, such as 7,8-dihydroxyflavone, baicalein, fisetin, quercetin and rutin, the formation of square pyramidal complexes with (O(-), O(-)) "catechol-like" coordination and five-membered chelate rings is preferred at physiological pH. The determination of the different coordination modes and geometry is important to define the biotransformation in the blood and the interaction of these complexes with the biological membranes. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites.

    PubMed

    Li, Baiyan; Zhang, Yiming; Ma, Dingxuan; Li, Lu; Li, Guanghua; Li, Guodong; Shi, Zhan; Feng, Shouhua

    2012-06-21

    A new strategy toward constructing bifunctionalized MOFs has been developed based on post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites, respectively. Based on this strategy, an organo-bifunctionalized MOF catalyst has been synthesized for the first time and successfully applied in one-pot tandem reaction.

  17. ESI-MS and theoretical study on the coordination structures and reaction modes of the diperoxovanadate complexes containing histidine-like ligands

    NASA Astrophysics Data System (ADS)

    Yu, Xian-Yong; Xu, Xin; Chen, Zhong

    2008-01-01

    In order to study the coordination structures and the reaction modes of diperoxovanadate complexes in the gas phase, the interaction between K3[OV(O2)2(C2O4)]·H2O and a series of histidine-like ligands has been investigated by the combination of the electrospray ionization-mass spectrometry (ESI-MS) and the density functional theory (DFT) calculations. The experimental results proved the formation of both [OV(O2)2L]- (L = all histidine-like ligands) and [OV(O2)2L'2]- (L' = histidine and carnosine only) species. DFT calculations at the level of B3LYP/6-31+G* showed that [OV(O2)2L'2]- is a hexa-coordinated complex, instead of a hepta-coordinated complex as proposed before. The unique coordination mode in the gas phase is for one ligand to bind to the oxygen atoms via hydrogen binding, rather than both ligands to the metal center. The L'2 dimer formation and the maintenance of the hydrogen bonding within the dimer during the complex formation are two important factors that enhance the abundance of the [OV(O2)2L'2]- species. The calculated bonding enthalpy and free energy changes provided an explanation on the reaction modes of the interaction systems, in agreement with the observations of the ESI-MS experiments.

  18. Synthesis of axially chiral oxazoline-carbene ligands with an N-naphthyl framework and a study of their coordination with AuCl·SMe(2).

    PubMed

    Wang, Feijun; Li, Shengke; Qu, Mingliang; Zhao, Mei-Xin; Liu, Lian-Jun; Shi, Min

    2012-01-01

    Axially chiral oxazoline-carbene ligands with an N-naphthyl framework were successfully prepared, and their coordination behavior with AuCl·SMe(2) was also investigated, affording the corresponding Au(I) complexes in moderate to high yields.

  19. Neutral ligand induced methane elimination from rare-earth metal tetramethylaluminates up to the six-coordinate carbide state.

    PubMed

    Venugopal, Ajay; Kamps, Ina; Bojer, Daniel; Berger, Raphael J F; Mix, Andreas; Willner, Alexander; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2009-08-07

    The reaction of 1,3,5-trimethyl-1,3,5-triazacyclohexane (TMTAC) with [La{Al(CH(3))(4)}(3)] resulted in C-H activation, leading to the formation of [(TMTAC)La{Al(CH(3))(4)}{(mu(3)-CH(2))[Al(CH(3))(2)(mu(2)-CH(3))](2)}] (1) containing a bis(aluminate) dianion and subsequent extrusion of methane. A similar reaction with [Y{Al(CH(3))(4)}(3)] led to the formation of CH(4), [TMTAC{Al(CH(3))(3)}(2)] (2) and {[(TMTAC)Y][Y(2)(mu(2)-CH(3))][{(mu(6)-C)[Al(mu(2)-CH(3))(2)(CH(3))](3)}{(mu(3)-CH(2))(mu(2)-CH(3))Al(CH(3))(2)}(2)] (3), containing a six-coordinate carbide ion and two [CH(2)Al(CH(3))(3)](2)(-) anions. Compound 3 is a product of multiple C-H activation. This reaction was monitored by in situ(1)H NMR spectroscopy. The analogous reaction with [Sm{Al(CH(3))(4)}(3)] led to the formation of 2, of [(TMTAC)Sm{(mu(2)-CH(3))(CH(3))(2)Al}(2){(mu(3)-CH(2))(2)Al(CH(3))(2)}(2)] (4), which contains a tris(aluminate) trianion, and [{(TMTAC)Sm}{Sm(2)(mu(2)-CH(3))}{(mu(6)-C)[Al(mu(2)-CH(3))(2)(CH(3))](3)}{(mu(3)-CH(2))(mu(2)-CH(3))Al(CH(3))(2)}(2)] (5), which is isostructural to 3. The products were characterised by elemental analyses (except 4, 5), 1 by multinuclear NMR spectroscopy and compounds 1, 2, 3, 4 and 5 by X-ray crystallography. Quantumchemical calculations were undertaken to support the crystallographic data analysis and confirm the structure of 3 and to compare it with an analogous compound where the central six-coordinate carbon has been replaced by oxygen. The investigations point to a mechanism of sterically induced condensation of [Al(CH(3))(4)](-) groups in close proximity in the coordination spheres of the rare-earth metal atoms, which is dependent on the size of these metal atoms.

  20. The investigation of the solvent effect on coordination of nicotinato ligand with cobalt(II) complex containing tris(2-benzimidazolylmethyl)amine: A computational study

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Karakaş, Duran

    2014-11-01

    The electronic structure of [Co(ntb)(nic)]+ complex ion are optimized by using density functional theory (DFT) method with mix basis set. Where (ntb) represents tris(2-benzimidazolylmethyl)amine ligand and (nic) is the anion of nicotinic acids. Six different fields, vacuum, chloroform, butanonitrile, methanol, water and formamide solvents are used in these calculations. The calculated structural parameters indicate that (nic) ligand coordinates to cobalt(II) containing (ntb) ligand with one oxygen atom in butanonitrile, methanol, water and formamide solvents but coordinates with two oxygen atoms in vacuum. These results are supported with IR, UV and 1H NMR spectra. According to the calculated results, the geometry of [Co(ntb)(nic)]+ complex ion is distorted octahedral in vacuum while the geometry is distorted square pyramidal in the all other solvents. Distorted octahedral [Co(ntb)(nic)]+ complex ion have not been synthesized as experimentally and it is predicted with computational chemistry methods.

  1. Synthesis and crystal structures of two nickel coordination polymers generated from asymmetric malate ligand

    SciTech Connect

    Guo Yaqin; Xiao Dongrong; Wang Enbo . E-mail: wangenbo@public.cc.jl.cn; Lu Ying; Lue Jian; Xu Xinxin; Xu Lin

    2005-03-15

    Two nickel coordination polymers [Ni(H{sub 2}O)(C{sub 4}H{sub 4}O{sub 5})].H{sub 2}O 1 and [Ni(H{sub 2}O)(mal)(phen)] 2, have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Crystal data for 1: C{sub 4}H{sub 8}O{sub 7}Ni, monoclinic Cc, a=13.156(3)A, b=7.5436(15)A, c=9.6982(19)A, {beta}=130.96(3){sup o}, Z=4. Crystal data for 2: C{sub 16}H{sub 14}N{sub 2}O{sub 6}Ni, orthorhombic Pna2{sub 1}, a=9.6113(19)A, b=19.691(4)A, c=8.0944(16)A, Z=4. Compound 1 is constructed from [Ni(H{sub 2}O)(C{sub 4}H{sub 4}O{sub 5})] sheets pillared through {beta}-carboxylate groups into a 3D framework, which exhibits a diamond-like network. Compound 2 exhibits a 3D supramolecular network. To our knowledge, compound 1 represents the first diamond-like topology in the system of metal-malate. Other characterizations by elemental analysis, IR and TG are also described. The magnetic behavior of compound 1 has been studied.

  2. Free energies for the coordination of ligands to the magnesium of chlorophyll-a in solvents

    NASA Astrophysics Data System (ADS)

    Kobayashi, Rika; Reimers, Jeffrey R.

    2015-07-01

    The coordination of bases to chlorophyll magnesium modifies spectroscopic properties in solution as well as in situ in reaction centres. We evaluate the free energies of complexation of one or two pyridine, 1-propanol, diethyl ether or water solvent molecules at 298 and 150 K to rationalise observed phenomena. Various a priori dispersion-corrected density functional theory calculations are performed as well as second-order Møller-Plesset calculations, focusing on the effects of dispersion modifying the intermolecular interactions, of dispersion modifying solvation energies, of entropy, and of basis-set superposition error. A process of particular interest is magnesium complexation in ether at low temperature that is often exploited to assign the Q-band visible absorption spectrum of chlorophyll. Recently, we demonstrated that trace water interferes with this process, but the nature of the resulting complex could not be uniquely determined; here, it is identified as ether.Chlorophyll-a.H2O, consistent with interpretations based on our authoritative 2013 assignment.

  3. A two-dimensional zinc(II) coordination polymer based on mixed dimethyl succinate and bipyridine ligands: synthesis, structure, thermostability and luminescence properties.

    PubMed

    Liu, Yang; Feng, Yong Lan; Fu, Wei Wei

    2016-04-01

    From the viewpoint of crystal engineering, the construction of crystalline polymeric materials requires a rational choice of organic bridging ligands for the self-assembly process. Multicarboxylate ligands are of particular interest due to their strong coordination activity towards metal ions, as well as their various coordination modes and versatile conformations. The structural chemistry of dicarboxylate-based coordination polymers of transition metals has been developed through the grafting of N-containing organic linkers into carboxylate-bridged transition metal networks. A new luminescent two-dimensional zinc(II) coordination polymer containing bridging 2,2-dimethylsuccinate and 4,4'-bipyridine ligands, namely poly[[aqua(μ2-4,4'-bipyridine-κ(2)N:N')bis(μ3-2,2-dimethylbutanedioato)-κ(4)O(1),O(1'):O(4):O(4');κ(5)O(1):O(1),O(4):O(4),O(4')-dizinc(II)] dihydrate], {[Zn2(C6H8O4)2(C10H8N2)(H2O)]·2H2O}n, has been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction and elemental, IR and thermogravimetric analyses. In the structure, the 2,2-dimethylsuccinate ligands link linear tetranuclear Zn(II) subunits into one-dimensional chains along the c axis. 4,4'-Bipyridine acts as a tethering ligand expanding these one-dimensional chains into a two-dimensional layered structure. Hydrogen-bonding interactions between the water molecules (both coordinated and free) and carboxylate O atoms strengthen the packing of the layers. Furthermore, the luminescence properties of the complex were investigated. The compound exhibits a blue photoluminescence in the solid state at room temperature and may be a good candidate for potential hybrid inorganic-organic photoactive materials.

  4. It's all about Me: methyl-induced control of coordination stereochemistry by a flexible tridentate N,C,N' ligand.

    PubMed

    Kariuki, Benson M; Platts, James A; Newman, Paul D

    2014-02-21

    A chiral, tridentate, pyridyl-functionalised NHC pro-ligand, S-L(Me)-H[PF₆], has been prepared diastereoselectively via a five step synthesis starting from 1R,3S-diamino-1,2,2-trimethylcyclopentane. The S prefix refers to the stereochemistry of a methyl substituted stereogenic carbon in one of the pyridyl arms which is generated by a stereoselective BH4(-) reduction of an imine precursor. The ligand has been coordinated to Rh(I) and Ir(I) to give trigonal bipyramidal complexes of the type [M(κ(3)-N,C,N'-S-L(Me))(1,5-COD)]PF6 (M = Rh, Ir) as single diastereomers. A combination of spectroscopic and X-ray techniques confirm the stereoselective formation of the thermodynamically preferred endo,endo isomer. Similar reactions with R,S-L(Me)-H[PF₆] gave a mixture of endo,endo-[M(κ(3)-N,C,N'-S-L(Me))(1,5-COD)](+) and exo,exo-[M(κ(3)-N,C,N'-R-L(Me))(1,5-COD)](+). The absolute configuration at the metal is, therefore, solely dictated by the stereochemistry of the single methylpyridyl carbon. The observation of stereoselection extends to the square planar Ni(II) complex [Ni(δ-κ(3)-N,C,N'-S-L(Me))Cl](+) which is isolated as one (δ) of the two possible conformational isomers. DFT studies have been employed to explain the observed stereoselectivity with the configurations observed in the solid state being confirmed as those of lowest energy.

  5. Syntheses, structures, and photoluminescence of d 10 coordination architectures: From 1D to 3D complexes based on mixed ligands

    NASA Astrophysics Data System (ADS)

    Yuan, Gang; Shao, Kui-Zhan; Du, Dong-Ying; Wang, Xin-Long; Su, Zhong-Min

    2011-05-01

    Six new compounds, namely, {[Cd 3(Himpy) 3(tda) 2]·3H 2O} n ( 1), {[Zn 3(bipy) 2(tda) 2(H 2O) 2]·4H 2O} n ( 2), {[Cd 3(bipy) 3(tda) 2]·4H 2O} n ( 3), {[Cd 3(tda) 2(H 2O) 3Cl]·H 2O} n ( 4), {[Zn 2(tz)(tda)(H 2O) 2]·H 2O} n ( 5) and {[Cd 7(pz)(tda) 4(OAc)(H 2O) 7]·3H 2O} n ( 6) [H 3tda = 1H-1,2,3-triazole-4,5-dicarboxylic acid, Himpy = 2-(1H-imidazol-2-yl)pyridine, bipy = 2,2'-bipyridine, Htz = 1H-1,2,4-triazole, H 2pz = piperazine] have been prepared under hydrothermal condition and characterized by elemental analyses, infrared spectroscopy, powder X-ray diffraction and single-crystal X-ray diffraction analyses. Compound 1 is a 1D column-like structure and displays a 3D supramolecular network via the π···π stacking interaction. The compounds 2 and 3 exhibit similar 2D layer-like structure, which further extend to 3D supermolecular structure by the π···π stacking interaction. All of compounds 4- 6 display 3D framework with diverse topology constructed from the tda 3- ligands in different coordination modes and secondary ligands (or bridging atom) connecting metal ions. Furthermore, the thermal stabilities and photoluminescent properties of compounds 1- 6 were studied.

  6. Increasing the rate of hydrogen oxidation without increasing the overpotential: A bio-inspired iron molecular electrocatalyst with an outer coordination sphere proton relay

    SciTech Connect

    Darmon, Jonathan M.; Kumar, Neeraj; Hulley, Elliott B.; Weiss, Charles J.; Raugei, Simone; Bullock, R. Morris; Helm, Monte L.

    2015-03-05

    Oxidation of hydrogen (H₂) to protons and electrons for energy production in fuel cells is catalyzed by platinum, but its low abundance and high cost present drawbacks to widespread adoption. Precisely controlled proton delivery and removal is critical in hydrogenase enzymes in nature that catalyze H₂ oxidation using earth-abundant metals (iron and nickel). Here we report a synthetic iron complex, (CpC5F4N)Fe(PEtN(CH2)3NMe2PEt)(Cl), that serves as a precatalyst for the oxidation of H₂, with turnover frequencies of 290 s⁻¹ in fluorobenzene, under 1 atm of H₂ using 1,4-diazabicyclo[2.2.2]octane (DABCO) as the exogenous base. The cooperative effect of the primary, secondary and outer coordination spheres for moving protons in this remarkably fast catalyst emphasizes the key role of pendant amines in mimicking the functionality of the proton pathway in the hydrogenase enzymes.

  7. Increasing the rate of hydrogen oxidation without increasing the overpotential: A bio-inspired iron molecular electrocatalyst with an outer coordination sphere proton relay

    DOE PAGES

    Darmon, Jonathan M.; Kumar, Neeraj; Hulley, Elliott B.; ...

    2015-03-05

    Oxidation of hydrogen (H₂) to protons and electrons for energy production in fuel cells is catalyzed by platinum, but its low abundance and high cost present drawbacks to widespread adoption. Precisely controlled proton delivery and removal is critical in hydrogenase enzymes in nature that catalyze H₂ oxidation using earth-abundant metals (iron and nickel). Here we report a synthetic iron complex, (CpC5F4N)Fe(PEtN(CH2)3NMe2PEt)(Cl), that serves as a precatalyst for the oxidation of H₂, with turnover frequencies of 290 s⁻¹ in fluorobenzene, under 1 atm of H₂ using 1,4-diazabicyclo[2.2.2]octane (DABCO) as the exogenous base. The cooperative effect of the primary, secondary and outermore » coordination spheres for moving protons in this remarkably fast catalyst emphasizes the key role of pendant amines in mimicking the functionality of the proton pathway in the hydrogenase enzymes.« less

  8. Second sphere coordination in oxoanion binding: Synthesis, spectroscopic characterisation and crystal structures of trans-[bis(ethylenediamine)dinitrocobalt(III)] diclofenac and chlorate

    NASA Astrophysics Data System (ADS)

    Sharma, Rajni; Sharma, Raj Pal; Bala, Ritu; Kariuki, B. M.

    2007-01-01

    In the exploration of cationic cobaltammine [ trans-Co(en) 2(NO 2) 2] + as an anion receptor, binding with oxoanions diclofenac and chlorate ions has been investigated. Yellow crystals of [ trans-Co(en) 2(NO 2) 2]C 14H 10Cl 2NO 2. 2H 2O I, and [ trans-Co(en) 2(NO 2) 2]ClO 3II, have been obtained from a mixture of trans-[bis(ethylenediamine)dinitrocobalt(III)] nitrate solution with sodium diclofenac and sodium chlorate, respectively, in aqueous medium. The products were characterised by elemental analyses, IR, UV/vis, 1H and 13C NMR spectroscopy. Single crystal X-ray structure determinations revealed that electrostatic forces of attraction besides second sphere hydrogen bonding interactions stabilize the crystal lattice. Oxygen atoms of the halate and carboxylate group in diclofenac ions act as hydrogen bond acceptors thereby forming N sbnd H en⋯O bonds. The results show that [ trans-Co(en) 2(NO 2) 2] + is a promising anion receptor for the weakly coordinating halate and diclofenac ions in aqueous medium. Solubility measurements indicate that the affinity of cationic cobaltammine [ trans-Co(en) 2(NO 2) 2] + is greater for diclofenac than for the chlorate ion.

  9. Extending framework based on the linear coordination polymers: Alternative chains containing lanthanum ion and acrylic acid ligand

    SciTech Connect

    Li Hui . E-mail: lihui@bit.edu.cn; Guo Ming; Tian Hong; He Feiyue; Lee, G.-H.; Peng, S.-M.

    2006-11-15

    One-dimensional alternative chains of two lanthanum complexes: [La(L{sup 1}){sub 3}(CH{sub 3}OH)(H{sub 2}O){sub 2}].5H{sub 2}O (L{sup 1}=anion of {alpha}-cyano-4-hydroxycinnamic acid ) 1 and [La(L{sup 2}){sub 3}(H{sub 2}O){sub 2}].3H{sub 2}O (L{sup 2}=anion of trans-3-(4-methyl-benzoyl)-acrylic acid) 2 were synthesized and structurally characterized by single-crystal X-ray diffraction, element analysis, IR and thermogravimetric analysis. The crystal structure data are as follows for 1: C{sub 31}H{sub 36}LaN{sub 3}O{sub 17}, triclinic, P-1, a=9.8279(4)A, b=11.8278(5)A, c=17.8730(7)A, {alpha}=72.7960(10){sup o}, {beta}=83.3820(10){sup o}, {gamma}=67.1650(10)-bar , Z=2, R{sub 1}=0.0377, wR{sub 2}=0.0746; for 2: C{sub 33}H{sub 37}LaO{sub 14}, triclinic, P-1, a=8.7174(5)A, b=9.9377(5)A, c=21.153(2)A, {alpha}=81.145(2){sup o}, {beta}=87.591(2){sup o}, {gamma}=67.345(5){sup o}, Z=2, R{sub 1}=0.0869, wR{sub 2}=0.220. 1 is a rare example of the alternative chain constructed by syn-syn and anti-syn coordination mode of carboxylato ligand arranged along the chain alternatively. La(III) ions in 2 are linked by two {eta}{sup 3}-O bridges and four bridges (two {eta}{sup 2}-O and two {eta}{sup 3}-O) alternatively. Both of the linear coordination polymers grow into two- and three-dimensional networks by packing through extending hydrogen-bond network directed by ligands.

  10. Heme-Copper/Dioxygen Complexes: Towards Understanding Ligand-Environmental Effects on Coordination Geometry, Electronic Structure and Reactivity

    PubMed Central

    Halime, Zakaria; Kieber-Emmons, Matthew T.; Qayyum, Munzarin F.; Mondal, Biplab; Puiu, Simona C.; Chufán, Eduardo E.; Sarjeant, Amy A. N.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; Karlin, Kenneth D.

    2010-01-01

    The nature of the ligand is an important aspect of controlling structure and reactivity in coordination chemistry. In connection with our study of heme/copper/oxygen reactivity relevant to cytochrome c oxidase O2-reduction chemistry, we compare the molecular and electronic structure of two high-spin heme-peroxo-copper [FeIII-O22--CuII]+ complexes containing N4-tetradentate (1) or N3-tridentate (2) copper ligands. Combining previously reported and new resonance Raman and EXAFS data coupled to DFT calculations we report a geometric structure and more complete electronic description of the high-spin heme-peroxo-copper complexes 1 and 2, which establish μ-(O22-) side-on to the FeIII and end-on to CuII (μ-η2:η1) binding for the complex 1 but side-on/side-on (μ-η2:η2) μ-peroxo coordination for the complex 2. We also compare and summarize the differences and similarities of these two complexes in their reactivity toward CO, PPh3, acid and phenols. The comparison of a new X-ray structure of μ-oxo complex 2a with the previously reported 1a X-ray structure, two thermal decomposition products respectively of 2 and 1, reveals a considerable difference in the Fe-O-Cu angle between the two μ-oxo complexes (∠Fe-O-Cu = 178.2° in 1a, ∠Fe-O-Cu = 149.5° in 2a). The reaction of 2 with one equivalent of exogenous N-donor axial base leads to the formation of a distinctive low-temperature stable, low-spin heme-O2-Cu complex (2b), but under the same conditions the addition of an axial base to 1 leads to the dissociation of the heme-peroxo-Cu assembly and the release of O2. 2b reacts with phenols performing hydrogen-atom (e– + H+) abstraction resulting in O-O bond cleavage and the formation of high-valent ferryl [FeIV=O] complex (2c). The nature of 2c was confirmed by comparison of its spectroscopic features and reactivity with those of an independently prepared ferryl complex. The phenoxyl radical generated by the hydrogen-atom abstraction was either 1) directly detected

  11. Heme-copper-dioxygen complexes: toward understanding ligand-environmental effects on the coordination geometry, electronic structure, and reactivity.

    PubMed

    Halime, Zakaria; Kieber-Emmons, Matthew T; Qayyum, Munzarin F; Mondal, Biplab; Gandhi, Thirumanavelan; Puiu, Simona C; Chufán, Eduardo E; Sarjeant, Amy A N; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I; Karlin, Kenneth D

    2010-04-19

    The nature of the ligand is an important aspect of controlling the structure and reactivity in coordination chemistry. In connection with our study of heme-copper-oxygen reactivity relevant to cytochrome c oxidase dioxygen-reduction chemistry, we compare the molecular and electronic structures of two high-spin heme-peroxo-copper [Fe(III)O(2)(2-)Cu(II)](+) complexes containing N(4) tetradentate (1) or N(3) tridentate (2) copper ligands. Combining previously reported and new resonance Raman and EXAFS data coupled to density functional theory calculations, we report a geometric structure and more complete electronic description of the high-spin heme-peroxo-copper complexes 1 and 2, which establish mu-(O(2)(2-)) side-on to the Fe(III) and end-on to Cu(II) (mu-eta(2):eta(1)) binding for the complex 1 but side-on/side-on (mu-eta(2):eta(2)) mu-peroxo coordination for the complex 2. We also compare and summarize the differences and similarities of these two complexes in their reactivity toward CO, PPh(3), acid, and phenols. The comparison of a new X-ray structure of mu-oxo complex 2a with the previously reported 1a X-ray structure, two thermal decomposition products respectively of 2 and 1, reveals a considerable difference in the Fe-O-Cu angle between the two mu-oxo complexes ( angleFe-O-Cu = 178.2 degrees in 1a and angleFe-O-Cu = 149.5 degrees in 2a). The reaction of 2 with 1 equiv of an exogenous nitrogen-donor axial base leads to the formation of a distinctive low-temperature-stable, low-spin heme-dioxygen-copper complex (2b), but under the same conditions, the addition of an axial base to 1 leads to the dissociation of the heme-peroxo-copper assembly and the release of O(2). 2b reacts with phenols performing H-atom (e(-) + H(+)) abstraction resulting in O-O bond cleavage and the formation of high-valent ferryl [Fe(IV)=O] complex (2c). The nature of 2c was confirmed by a comparison of its spectroscopic features and reactivity with those of an independently prepared

  12. Versatile Coordination Mode of a New Pyridine-Based Ditopic Ligand with Transition Metals: From Regular Pyridine to Alkyne and Alkenyl Bindings and Indolizinium Formation.

    PubMed

    Kumar, Sushil; Mandon, Dominique

    2015-08-03

    The new BPMPB ligand, namely, bis[1-bis(2-pyridylmethyl),1 (pyridyl)]butyne, can be very easily obtained as a side product in the known reaction of picolyl chloride and sodium acetylide (which major product is the known terminal alkyne-substituted tripod). This symmetrical ligand contains two identical coordination sites with two methylenepyridines and one pyridyl group on each side, linked by an alkyne function providing a semirigid segment. Together with the molecular structure of the ligand which is reported, we describe the preparation of complexes with Fe(II)Cl2, Co(II)Cl2, Ni(II)Cl2, Cu(I)Cl, and Zn(II)Cl2 salts. All complexes have been characterized by X-ray diffraction studies as well as by standard spectroscopic techniques. The striking point in this work is the diversity of the structures that are obtained. Co(II) and Zn(II) provide isostructural dinuclear complexes in which both coordination sites are occupied within a tetrahedral symmetry. The Cu(I) complex is also a dinuclear compound, but in that case, the copper atom is coordinated to the alkyne moiety, two pyridines, and a bridging chloride. The (13)C NMR spectrum of the copper complex confirms that the metal center is coordinated to the alkyne in solution. The coordination of Ni(II) results in the formation of a mononuclear complex in which a pyridine has fused with the alkyne moiety to generate an indolizinium group; the structure of the corresponding alkenyl complex is reported. Finally, the addition of FeCl2 to the ligand results in the formation of a mononuclear complex with a free, noncoordinated indolizinium. The sequence developed in the present work illustrates the possibility for the metal centers to adopt various coordination modes which may be relevant to the conversion of an alkyne and a pyridyl unit into indolizinium.

  13. Quantum Effects in Cation Interactions with First and Second Coordination Shell Ligands in Metalloproteins

    PubMed Central

    2015-01-01

    electrostatic properties of the protein sites and the importance of specific ion-protein interactions. One of the most interesting findings is that secondary coordination shells of proteins are noticeably perturbed in a cation-dependent manner, showing significant delocalization and long-range effects of charge transfer and polarization upon binding Ca2+. PMID:26574284

  14. A new three-dimensional manganese(II) coordination polymer based on the 1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene ligand.

    PubMed

    Lu, Xin Hua; Zhong, Kai Long

    2016-11-01

    The self-assembly of coordination polymers and the crystal engineering of metal-organic coordination frameworks have attracted great interest, but it is still a challenge to predict and control the compositions and structures of the complexes. Employing multidentate organic ligands and suitable metal ions to construct inorganic-organic hybrid materials through metal-ligand coordination and hydrogen-bonding interactions has become a major strategy. Recently, imidazole-containing multidentate ligands that contain an aromatic core have received much attention. A new three-dimensional Mn(II) coordination polymer based on 1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene, namely poly[(ethane-1,2-diol-κO)(μ-sulfato-κ(2)O:O'){μ3-1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene-κ(3)N:N':N''}manganese(II)], [Mn(SO4)(C18H18N6)(C2H6O2)]n, was synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Crystal structural analysis shows that there are two kinds of crystallographically independent Mn(II) centres, each lying on a centrosymmetric position and having a similar six-coordinated octahedral structure. One is coordinated by four N atoms from four 1,3,5-tris[(1H-imidazol-1-yl)methyl]benzene (timb) ligands and two O atoms from two different bridging sulfate anions. The second is surrounded by two timb N atoms and four O atoms, two from sulfate anions and two from two ethane-1,2-diol ligands. The tripodal timb ligand bridges neighbouring Mn(II) centres to generate a two-dimensional layered structure running parallel to the ab plane. Adjacent layers are further bridged by sulfate anions, resulting in a three-dimensional structure with 3,4,6-c topology. Thermogravimetric analysis of the title polymer shows that it is stable up to 533 K. The first weight loss between 533 and 573 K corresponds to the release of coordinated ethane-1,2-diol molecules, and further decomposition occurred at 648 K.

  15. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.

    PubMed

    De La Cruz, Carlos; Sheppard, Norman

    2011-01-01

    The vibrational spectra of nitrogen monoxide or nitric oxide (NO) bonded to one or to several transition-metal (M) atom(s) in coordination and cluster compounds are analyzed in relation to the various types of such structures identified by diffraction methods. These structures are classified in: (a) terminal (linear and bent) nitrosyls, [M(σ-NO)] or [M(NO)]; (b) twofold nitrosyl bridges, [M2(μ2-NO)]; (c) threefold nitrosyl bridges, [M3(μ3-NO)]; (d) σ/π-dihaptonitrosyls or "side-on" nitrosyls; and (e) isonitrosyls (oxygen-bonded nitrosyls). Typical ranges for the values of internuclear N-O and M-N bond-distances and M-N-O bond-angles for linear nitrosyls are: 1.14-1.20 Å/1.60-1.90 Å/180-160° and for bent nitrosyls are 1.16-1.22 Å/1.80-2.00 Å/140-110°. The [M2(μ2-NO)] bridges have been divided into those that contain one or several metal-metal bonds and those without a formal metal/metal bond (M⋯M). Typical ranges for the M-M, N-O, M-N bond distances and M-N-M bond angles for the normal twofold NO bridges are: 2.30-3.00 Å/1.18-1.22 Å/1.80-2.00 Å/90-70°, whereas for the analogous ranges of the long twofold NO bridges these are 3.10-3.40 Å/1.20-1.24 Å/1.90-2.10 Å/130-110°. In both situations the N-O vector is approximately at right angle to the M-M (or M⋯M) vector within the experimental error; i.e. the NO group is symmetrical bonded to the two metal atoms. In contrast the threefold NO bridges can be symmetrically or unsymmetrically bonded to an M3-plane of a cluster compound. Characteristic values for the N-O and M-N bond-distances of these NO bridges are: 1.24-1.28 Å/1.80-1.90 Å, respectively. As few dihaptonitrosyl and isonitrosyl complexes are known, the structural features of these are discussed on an individual basis. The very extensive vibrational spectroscopy literature considered gives emphasis to the data from linearly bonded NO ligands in stable closed-shell metal complexes; i.e. those which are consistent with the

  16. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters

    NASA Astrophysics Data System (ADS)

    De La Cruz, Carlos; Sheppard, Norman

    2011-01-01

    The vibrational spectra of nitrogen monoxide or nitric oxide (NO) bonded to one or to several transition-metal (M) atom(s) in coordination and cluster compounds are analyzed in relation to the various types of such structures identified by diffraction methods. These structures are classified in: (a) terminal (linear and bent) nitrosyls, [M(σ-NO)] or [M(NO)]; (b) twofold nitrosyl bridges, [M 2(μ 2-NO)]; (c) threefold nitrosyl bridges, [M 3(μ 3-NO)]; (d) σ/π-dihaptonitrosyls or " side-on" nitrosyls; and (e) isonitrosyls (oxygen-bonded nitrosyls). Typical ranges for the values of internuclear N-O and M-N bond-distances and M-N-O bond-angles for linear nitrosyls are: 1.14-1.20 Å/1.60-1.90 Å/180-160° and for bent nitrosyls are 1.16-1.22 Å/1.80-2.00 Å/140-110°. The [M 2(μ 2-NO)] bridges have been divided into those that contain one or several metal-metal bonds and those without a formal metal/metal bond (M⋯M). Typical ranges for the M-M, N-O, M-N bond distances and M-N-M bond angles for the normal twofold NO bridges are: 2.30-3.00 Å/1.18-1.22 Å/1.80-2.00 Å/90-70°, whereas for the analogous ranges of the long twofold NO bridges these are 3.10-3.40 Å/1.20-1.24 Å/1.90-2.10 Å/130-110°. In both situations the N-O vector is approximately at right angle to the M-M (or M⋯M) vector within the experimental error; i.e. the NO group is symmetrical bonded to the two metal atoms. In contrast the threefold NO bridges can be symmetrically or unsymmetrically bonded to an M 3-plane of a cluster compound. Characteristic values for the N-O and M-N bond-distances of these NO bridges are: 1.24-1.28 Å/1.80-1.90 Å, respectively. As few dihaptonitrosyl and isonitrosyl complexes are known, the structural features of these are discussed on an individual basis. The very extensive vibrational spectroscopy literature considered gives emphasis to the data from linearly bonded NO ligands in stable closed-shell metal complexes; i.e. those which are consistent with the

  17. One-dimensional coordination polymers generated from a new triazole bridging ligand and HgX2 (X = Cl, Br and I): characterization and luminescent properties.

    PubMed

    Qin, Na; Zhao, Chao-Wei; Ma, Jian-Ping; Liu, Qi-Kui; Dong, Yu-Bin

    2012-06-01

    The new 4-amino-1,2,4-triazole asymmetric bridging ligand 4-amino-5-(pyridin-3-yl)-3-[4-(pyridin-4-yl)phenyl]-4H-1,2,4-triazole (L) has been used to generate three novel isomorphic one-dimensional coordination polymers, viz. catena-poly[[tris[dichloridomercury(II)]-bis{μ(3)-4-amino-5-(pyridin-3-yl)-3-[4-(pyridin-4-yl)phenyl]-4H-1,2,4-triazole}] acetonitrile monosolvate], {[Hg(3)Cl(6)(C(18)H(14)N(6))(2)]·CH(3)CN}(n), (I), and the bromido, {[Hg(3)Br(6)(C(18)H(14)N(6))(2)]·CH(3)CN}(n), (II), and iodido, {[Hg(3)I(6)(C(18)H(14)N(6))(2)]·CH(3)CN}(n), (III), analogs. The asymmetric ligand acts as a tridentate ligand to coordinate the three different Hg(II) centers (two of which are symmetry-related). Two ligands and two symmetry-related Hg(II) centers form centrosymmetric rectangular units which are linked into one-dimensional chains via the other unique Hg atoms, which sit on mirror planes. The chains are elaborated into a three-dimensional structure via interchain hydrogen bonds. The acetonitrile solvent molecules are located in ellipsoidal cavities. The luminescent character of these three coordination complexes was investigated in the solid state.

  18. Crystal structure, infrared spectra and luminescence of a 1D Cd coordination polymer with 4-nitrophthalic acid and 1,10-phenanthroline monohydrate ligands

    NASA Astrophysics Data System (ADS)

    Han, Li-Juan; Kong, Ya-Jie; Sheng, Ning

    2015-01-01

    A new one-dimensional (1D) coordination polymer, [Cd(NPTA)(1,10-phen)(H2O)] n ( 1) (H2NPTA = 4-nitrophthalic acid; 1,10-phen = 1,10-phenanthroline monohydrate), has been synthesized under hydrothermal conditions and characterized by elemental analysis, single-crystal X-ray diffraction, solid state emission spectra, FT-IR spectra, and thermogravimetric analyses. The compound belongs to triclinic system with space group , and exhibits a one-dimensional linear chain. Each Cd with a strongly distorted octahedral coordination geometry is six-coordinated by two N atoms from one 1,10-phenanthroline ligand, three O atoms from two carboxylate groups of two different NPTA2- ligands and one O atoms from lattice water. Layer supramolecular architecture is formed by medium π-π stacking interactions between two neighboring phenanthroline rings from two independent linear chains. Studies on luminescent property of 1 exhibit the solid state emission originating from an intra ligand π → π* transition of NPTA2- ligand.

  19. Synthesis and Coordination Properties of Trifluoromethyl Decorated Derivatives of 2,6-Bis[(diphenylphosphinoyl)methyl]pyridine N-Oxide Ligands with Lanthanide Ions

    SciTech Connect

    Pailloux, Sylvie; Shirima, Cornel Edicome; Ray, Alicia D.; Duesler, Eileen N.; Paine, Robert T.; Klaehn, John D.; McIlwain, Michael E; Hay, Benjamin

    2009-01-01

    Phosphinoyl Grignard-based substitutions on 2,6-bis(chloromethyl)pyridine followed by N-oxidation of the intermediate 2,6-bis(phosphinoyl)methyl pyridine compounds with mCPBA give the target trifunctional ligands 2,6-bis[bis-(2-trifluoromethyl-phenyl)-phosphinoylmethyl]-pyridine 1-oxide (2a) and 2,6-bis[bis-(3,5-bis-trifluoromethyl-phenyl)-phosphinoylmethyl]-pyridine 1-oxide (2b) in high yields. The ligands have been spectroscopically characterized, the molecular structures confirmed by single crystal X-ray diffraction methods and the coordination chemistry surveyed with lanthanide nitrates. Single crystal X-ray diffraction analyses are described for the coordination complexes Nd(2a)(NO3)3, Nd(2a)(NO3)3 (CH3CN)0.5, Eu(2a)(NO3)3 and Nd(2b)(NO3)3 (H2O)1.25; in each case the ligand binds in a tridentate mode to the Ln(III) cation. These structures are compared with the structures found for lanthanide coordination complexes of the parent NOPOPO ligand, [Ph2P(O)CH2]2C5H3NO.

  20. Versatile bonding and coordination modes of ditriazolylidene ligands in rhodium(iii) and iridium(iii) complexes.

    PubMed

    Farrell, Kevin; Müller-Bunz, Helge; Albrecht, Martin

    2016-10-12

    Metalation of novel ditriazolium salts containing a trimethylene (-CH2CH2CH2-) or dimethylether linker (-CH2OCH2-) was probed with different rhodium(iii) and iridium(iii) precursors. When using [MCp*Cl2]2, a transmetalation protocol via a triazolylidene silver intermediate was effective, while base-assisted metalation with MCl3via sequential deprotonation of the triazolium salt with KOtBu and addition of the metal precursor afforded homoleptic complexes. The N-substituent on the triazole heterocycle directed the metalation process and led to Ctrz,Ctrz,CPh-tridentate chelating ditriazolylidene complexes for N-phenyl substituents. With ethyl substituents, only Ctrz,Ctrz-bidentate complexes were formed, while metalation with mesityl substituents was unsuccessful, presumably due to steric constraints. Through modification of the reaction conditions for the metalation step, an intermediate species was isolated that contains a Ctrz,CPh-bidentate chelate en route to the formation of the tridentate ligand system. Accordingly, Cphenyl-H bond activation occurs prior to formation of the second metal-triazolylidene bond. Stability studies with a Ctrz,Ctrz,CPh-tridentate chelating ditriazolylidene iridium complex towards DCl showed deuterium incorporation at both N-phenyl groups and indicate that Cphenyl-H bond activation is reversible while the Ctrz-Ir bond is robust. The flexible linker between the two triazolylidene donor sites provides access to both facial and meridional coordination modes.

  1. Controllable assemblies of Cd(II) supramolecular coordination complexes based on a versatile tripyridyltriazole ligand and halide/pseduohalide anions

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Guo, Wei; Guo, Ya-Mei

    2015-09-01

    Three Cd(II) complexes [Cd(L)(H2O)Cl2]n (1), [Cd(L)(H2O)Br2]n (2), and [Cd(L)I2]2 (3) have been assembled from CdX2 (1, X = Cl; 2, X = Br; 3, X = I) and a tripyridyltriazole ligand 3-(2-pyridyl)-4-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazole (L). Complexes 1 and 2 are isostructural and exhibit 1-D loop-like chain, while complex 3 has a distinct dimeric macrocyclic motif. Interestingly, another 1-D chain [Cd(L)I(SCN)]n (4) can be achieved when NH4SCN is introduced into the assembled system of 3. Structural analysis of 1-4 illustrates that the halide and thiocyanate anions in these coordination complexes behave as not only the counteranions, but also the structure directing agents. The fluorescent and thermal properties of 1-4 have also been investigated.

  2. A series of coordination polymers based on a V-shaped multicarboxylate and bisimidazole ligands: Synthesis, characterization and luminescent properties

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Yan, Yongnian; Guo, Xianmin; Wang, Nan; Qi, Yanjuan

    2016-03-01

    Based on a V-shaped multicarboxylic acid and various bisimidazole ligands, six new coordination polymers, namely, [Zn4(otba) (1,4-bix)4]·3H2O (1), [Ni4(otba)2(1,4-bix)3(H2O)2]·2H2O (2), [Zn2(H2otba)2(bib) (H2O)2] (3), [Cd2(H2otba)2(bib)]·2H2O (4), [Zn3(otba)2(bidpe)2(H2O)2] (5), [Ni2(H2otba)2(bidpe)3(H2O)2]·H2O (6) (H4otba = 3,5,3‧,5‧-oxytetrabenzoic acid, 1,4-bix = 1,2-bis(imidazol-1-ylmethyl)benzene, bib = 1,4-bis(imidazol-1-yl)benzene and bidpe = 4,4'-bis(imidazol-1-yl)diphenyl ether) have been hydrothermally synthesized and structurally characterized. Compound 1 displays an uncommon hexanodal 3D 4-connected network. Compound 2 features a trinodal 3D (4, 4, 6)-connected framework. Compound 3 shows an interesting polythreaded 1D→3D species. Compound 4 exhibits a binodal 3D (3, 8)-connected network. Compound 5 displays a three-fold interpenetration of trinodal (3, 3, 4)-connected network. Compound 6 shows a five-fold interpenetration of five-connected bilayer network. The luminescent properties of compounds 1, 3, 4 and 5 were also measured.

  3. Four new coordination polymers based on carboxyphenyl-substituted dipyrazinylpyridine ligand: Syntheses, structures, magnetic and luminescence properties

    NASA Astrophysics Data System (ADS)

    Yuan, Fei; Zhang, Lu; Hu, Huai-Ming; Bai, Chao; Xue, Ganglin

    2017-01-01

    Four new coordination polymers, namely, [Co(L)2]n (1) and [Co(L)(tp)0.5]n·nH2O (2), [Zn(L)2]n·0.5nH2O (3) and [Zn(L)(suc)0.5]n·nH2O (4) (HL = 4-(3-carboxyphenyl)-2,6-di(pyrazinyl)pyridine, H2tp = benzene-1,4-dicarboxylic acid, H2suc = succinic acid), were constructed by changing metal ion and introducing auxiliary ligand under hydrothermal condition. X-ray single diffraction studies reveal that compounds 1 and 3 have similar structures and crystallized in the monoclinic system with P21/c space group, which show infinite zigzag chains and are further extended into a 2D supramolecular layer by inter-molecular hydrogen bonds. Compounds 2 and 4 display infinite ladder chains and are further extended into a 3D supramolecular network by inter-molecular hydrogen bonds. Additionally, magnetic and photoluminescence properties of 1-4 have been investigated.

  4. Synthesis, crystal structures, luminescence and catalytic properties of two d10 metal coordination polymers constructed from mixed ligands

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-xiao; Zhang, Ming-xi; Yu, Baoyi; Van Hecke, Kristof; Cui, Guang-hua

    2015-03-01

    Two new coordination polymers [Cd(bmb)(hmph)]n (1), {[Ag(bmb)]·H2btc}n (2) (bmb = 1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2hmph = homophthalic acid, H3btc = 1,3,5-benzenetetracarboxylic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction methods, IR spectroscopy, TGA, XRPD and elemental analysis. Complex 1 features a 3D threefold interpenetrating dia array with a 4-connected 66 topology. Complex 2 shows a 1D helix chain structure connected by L1 ligands, which is finally extended into a rarely 2D 4L2 supramolecular network via C-H⋯O hydrogen bond interactions. In addition, the luminescence and catalytic properties of the two complexes for the degradation of the methyl orange azo dye in a Fenton-like process were presented. The degradation efficiency of the methyl orange azo dye for 1 and 2 are 56% and 96%, respectively.

  5. Luminescent pillared Ln{sup III}–Zn{sup II} heterometallic coordination frameworks with two kinds of N-heterocyclic carboxylate ligands

    SciTech Connect

    Liu, Sui-Jun; Jia, Ji-Min; Cui, Yu; Han, Song-De; Chang, Ze

    2014-04-01

    In our efforts toward rational design and systematic synthesis of ‘pillar-layer’ structure coordination frameworks, four new Ln{sup III}–Zn{sup II} heterometallic coordination polymers (CPs) based on two kinds of N-heterocyclic carboxylic ligands with formula ([LnZn(L1){sub 2}(L2)(H{sub 2}O){sub m}]·nH{sub 2}O){sub ∞} (Ln=La (1), Eu (2), Gd (3) and Dy (4), m=3 (for 1) and 2 (for 2–4), n=8 (for 1) and 7 (for 2–4), H{sub 2}L1=pyridine-2,3-dicarboxylate acid, HL2=isonicotinic acid), have been synthesized under hydrothermal reaction of Ln{sub 2}O{sub 3}, ZnO, H{sub 2}L1 and HL2. CP 1 has a three-dimensional (3D) structure with a (3,6)-connected sit topology network, while CPs 2–4 are isostructural with 3D single-node pcu alpha-Po topology network. Also, luminescent properties of these CPs have also been investigated. The emission of 1 and 3 should be attributed to the coordination-perturbed ligand-centered luminescence and the emission spectra of 2 and 4 show the characteristic bands of the corresponding Ln{sup III} ions. - Graphical abstract: Four new 3D Ln{sup III}–Zn{sup II} coordination frameworks with “pillar-layer” sit or pcu alpha-Po topology have been successfully obtained. Moreover, the photoluminescent properties of compounds 1–4 have also been investigated. - Highlights: • Four new Ln{sup III}–Zn{sup II} heterometallic coordination frameworks with two types of topologies have been synthesized. • Metal oxides and two kinds of N-heterocyclic carboxylate ligands were used for the construction of targeted coordination polymers. • The luminescent properties of the coordination polymers are investigated.

  6. Interfacial self-assembly of metal-mediated viologen-like coordination polyelectrolyte hybrids of the bisterpyridine ligand and their optical, electrochemical, and electrochromic properties.

    PubMed

    Zhang, Chao-Feng; Liu, An; Chen, Meng; Nakamura, Chikashi; Miyake, Jun; Qian, Dong-Jin

    2009-06-01

    Metal-mediated coordination polyelectrolyte multilayers with a bisterpyridine ligand (Bisterpy) have been self-assembled at air-water interfaces via coordination reactions of the bidentate ligand Bisterpy with inorganic salts in the subphases. To avoid dissolution of the viologen-like coordination polyelectrolyte monolayers, anionic poly(styrenesulfonic acid-o-maleic) (PSS) acid was added in the subphases as a supporting layer. The average molecular area of the ligand Bisterpy could reach 1.2-1.5 nm(2) on the surfaces of the subphases containing mixtures of inorganic salts (M) and PSS, although the ligand was unable to form a stable monolayer on the pure water surface. The Langmuir-Blodgett (LB) method was used to deposit the Bisterpy/PSS and M-Bisterpy/PSS hybrid multilayers on the substrate surfaces, which were characterized by using absorption and fluorescence spectroscopy as well as electrochemical analysis. Quasi-reversible redox waves were recorded and centered at about -0.68 and -0.92 V (vs Ag/AgCl), respectively, corresponding to the two-electron process of the ligand, Bisterpy2+ <--> Bisterpy(*+) <--> Bisterpy(0), which were slightly shifted to lower potentials in the LB films of metal-mediated coordination polymers. The film compositions were determined by using X-ray photoelectron spectroscopy. The as-prepared LB films showed strong stability and good electrochromic response upon the applied potential of -1.1 V vs Ag/AgCl and thus could act as potential materials in the development of redox-based molecular switches and display devices.

  7. Cd(II) and Co(II) coordination polymers constructed from benzene-1,4-dicarboxylic acid and 2-(pyridin-3-yl)-1H-benzimidazole ligands.

    PubMed

    Chen, Xiao-Hua; Huang, Hua; Yang, Ming-Xing; Chen, Li-Juan; Lin, Shen

    2014-05-01

    In poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(5)O(1),O(1'):O(1):O(4),O(4'))[2-(pyridin-3-yl-κN)-1H-benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each Cd(II) ion is seven-coordinated by the pyridine N atom from a 2-(pyridin-3-yl)benzimidazole (3-PyBIm) ligand, five O atoms from three benzene-1,4-dicarboxylate (1,4-bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two-dimensional carboxylate layer structure, which is further extended into a three-dimensional network by hydrogen-bonding interactions. In catena-poly[[diaquabis[2-(pyridin-3-yl-κN)-1H-benzimidazole]cobalt(II)]-μ2-benzene-1,4-dicarboxylato-κ(2)O(1):O(4)], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each Co(II) ion is six-coordinated by two pyridine N atoms from two 3-PyBIm ligands, two O atoms from two 1,4-bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one-dimensional chain-like coordination polymer and is further assembled by hydrogen-bonding interactions to form a three-dimensional network.

  8. A spectroscopic study on the coordination and solution structures of the interaction systems between biperoxidovanadate complexes and the pyrazolylpyridine-like ligands.

    PubMed

    Yu, Xian-Yong; Deng, Lin; Zheng, Baishu; Zeng, Bi-Rong; Yi, Pinggui; Xu, Xin

    2014-01-28

    In order to understand the substitution effects of pyrazolylpyridine (pzpy) on the coordination reaction equilibria, the interactions between a series of pzpy-like ligands and biperoxidovanadate ([OV(O2)2(D2O)](-)/[OV(O2)2(HOD)](-), abbrv. bpV) have been explored using a combination of multinuclear ((1)H, (13)C, and (51)V) magnetic resonance, heteronuclear single quantum coherence (HSQC), and variable temperature NMR in a 0.15 mol L(-1) NaCl D2O solution that mimics the physiological conditions. Both the direct NMR data and the equilibrium constants are reported for the first time. A series of new hepta-coordinated peroxidovanadate species [OV(O2)2L](-) (L = pzpy-like chelating ligands) are formed due to several competitive coordination interactions. According to the equilibrium constants for products between bpV and the pzpy-like ligands, the relative affinity of the ligands is found to be pzpy > 2-Ester-pzpy ≈ 2-Me-pzpy ≈ 2-Amide-pzpy > 2-Et-pzpy. In the interaction system between bpV and pzpy, a pair of isomers (Isomers A and B) are observed in aqueous solution, which are attributed to different types of coordination modes between the metal center and the ligands, while the crystal structure of NH4[OV(O2)2(pzpy)]·6H2O (CCDC 898554) has the same coordination structure as Isomer A (the main product for pzpy). For the N-substituted ligands, however, Isomer A or B type complexes can also be observed in solution but the molar ratios of the isomer are reversed (i.e., Isomer B type is the main product). These results demonstrate that when the N atom in the pyrazole ring has a substitution group, hydrogen bonding (from the H atom in the pyrazole ring), the steric effect (from alkyl) and the solvation effect (from the ester or amide group) can jointly affect the coordination reaction equilibrium.

  9. Two-dimensional (14)N HYSCORE spectroscopy of the coordination geometry of ligands in dimanganese di-μ-oxo mimics of the oxygen evolving complex of photosystem II.

    PubMed

    Chatterjee, Ruchira; Milikisiyants, Sergey; Lakshmi, K V

    2012-05-21

    We use two-dimensional hyperfine sublevel correlation (HYSCORE) spectroscopy to investigate the coordination geometry of the nitrogen ligands of biomimetic models of the oxygen-evolving complex of photosystem II. In the 2D HYSCORE spectroscopy study, [(bpy)2Mn(III)(μ-O)2Mn(IV)(bpy)2](ClO4)3 (bpy, 2,2'-bipyridine) (1) and [H2O(terpy)Mn(III)(μ-O)2Mn(IV)(terpy)OH2](NO3)3 (terpy = 2,2':6',2″-terpyridine) (2) exhibit electron-nuclear hyperfine interactions that depend on both the oxidation state of the manganese ion and the geometry of the nitrogen ligand. We observe four types of (14)N hyperfine interactions corresponding to the Mn(iii) and Mn(iv) ion of each mixed-valence complex and the equatorial and axial geometry of the ligand, respectively. The strongest and the weakest hyperfine interactions arise from the axial and equatorial ligands of the Mn(iii) ion, respectively. The hyperfine interactions of intermediate strength are due to the axial and equatorial ligands of the Mn(iv) ion. Based on the results of this study, we assign the location and ligand geometry of the Mn(iii) ion of the tetranuclear manganese-calcium-oxo cluster in the S2 state of photosystem II.

  10. Transition metal coordination polymers based on tetrabromoterephthalic and bis(imidazole) ligands: Syntheses, structures, topological analysis and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Xing, Peiqi; Geng, Xiujuan; Sun, Daofeng; Xiao, Zhenyu; Wang, Lei

    2015-09-01

    Eight new coordination polymers (CPs), namely, [Zn(1,2-mbix)(tbtpa)]n (1), [Co(1,2-mbix)(tbtpa)]n (2), [CdCl(1,2-mbix)(tbtpa)0.5]n (3), {[Cd(1,2-bix)(tbtpa)]·H2O}n (4), {[Cd0.5(1,2-bix)(tbtpa)0.5]·H2O}n (5), {[Co0.5(1,2-bix)(tbtpa)0.5]·2H2O}n (6), {[Co(1,2-bix)(tbtpa)]·H2O}n (7) and {[Co(1,2-bix)(tbtpa)]·Diox·2H2O}n (8), were synthesized under solvothermal conditions based on mix-ligand strategy (H2tbtpa=tetrabromoterephthalic acid and 1,2-mbix=1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,2-bix=1,2-bis(imidazol-1-ylmethyl)benzene). All of the CPs have been structurally characterized by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectroscopy, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). X-ray diffraction analyses show that 1 and 2 are isotypics which have 2D highly undulated networks with (4,4)-sql topology with the existence of C-H ⋯Br interactions; for 3, it has a 2D planar network with (4,4)-sql topology with the occurrence of C-H ⋯Cl interactions other than C-H ⋯Br interactions; 4 shows a 3D 2-fold interpenetrated nets with rare 65·8-mok topology which has a self-catention property. As the same case as 1 and 2, 5 and 6 are also isostructural with planar layers with 44-sql topology which further assembled into 3D supramolecular structure through the interdigitated stacking fashion and the C-Br ⋯Cph interactions. As for 7, it has a 2D slightly undulated networks with (4,4)-sql topology which has one dimension channel. While 8 has a 2-fold interpenetrated networks with (3,4)-connect jeb topology with point symbol {63}{65·8}. And their structures can be tuned by conformations of bis(imidazol) ligands and solvent mixture. Besides, the TGA properties for all compounds and the luminescent properties for 1, 3, 4, 5 are discussed in detail.

  11. Two Pathways for Electrocatalytic Oxidation of Hydrogen by a Nickel Bis(diphosphine) Complex with Pendant Amines in the Second Coordination Sphere

    SciTech Connect

    Yang, Jenny Y.; Smith, Stuart E.; Liu, Tianbiao L.; Dougherty, William G.; Hoffert, Wesley A.; Kassel, W. S.; Rakowski DuBois, Mary; DuBois, Daniel L.; Bullock, R. Morris

    2013-07-03

    A nickel bis(diphosphine) complex containing pendant amines in the second coordination sphere, [Ni(PCy2Nt-Bu2)2](BF4)2 (PCy2Nt-Bu2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. Under 1.0 atm H2 using NEt3 as a base and with added water, a turnover frequency of 45 s-1 is observed at 23 °C; this is the fastest observed for a molecular catalyst. The addition of hydrogen to the NiII complex gives thee isomers of the doubly protonated Ni0 complex [Ni(PCy2HNt-Bu2)2](BF4)2; these complexes have been studied by 1H and 31P NMR spectroscopy, and for one isomer, an X-ray diffraction study. Using the pKa values and NiII/I and NiI/0 redox potentials in a thermochemical cycle, the free energy of hydrogen addition to [Ni(PCy2Nt-Bu2)2]2+ was determined to be -7.9 kcal mol-1. The catalytic rate observed in dry acetonitrile for the oxidation of H2 at the NiII/I couple depends on base size, with larger bases (NEt3, tert-BuNH2) resulting in slower catalysis than n-BuNH2. Addition of water accelerates the rate of catalysis, especially for the larger bases. The results of these studies provide important insights into the design of catalysts for hydrogen oxidation that facilitate proton movement and operate at moderate potentials. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  12. Synthesis, structural characterization and antitumor activity of a Ca(II) coordination polymer based on 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide ligands

    NASA Astrophysics Data System (ADS)

    Tai, Xi-Shi; Wang, Xin

    2017-03-01

    A new Ca(II) coordination polymer, {[CaL(H2O)4] · (H2O)4} n (L = 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide) has been prepared by one-pot synthesis method. And it was characterized by elemental analysis, IR and thermal analysis. The result of X-ray single-crystal diffraction analysis shows that the Ca(II) complex molecules form one-dimensional chain structure by the bridging oxygen atoms. The anti-tumor activity of L ligand and the Ca(II) coordination polymer has also been studied.

  13. Rhodium nanocatalysts stabilized by various bipyridine ligands in nonaqueous ionic liquids: influence of the bipyridine coordination modes in arene catalytic hydrogenation.

    PubMed

    Léger, Bastien; Denicourt-Nowicki, Audrey; Olivier-Bourbigou, Hélène; Roucoux, Alain

    2008-10-06

    Rhodium nanoparticles stabilized by 2,2'-, 3,3'-, 4,4'-bipyridine ligands were prepared in various ionic liquids according to a chemical reduction approach. Zerovalent nanospecies in the size range of 2.0-2.5 nm were characterized. The nature of the bipyridine and its influence on the coordination environment of rhodium nanoparticles were investigated in various nonaqueous ionic liquids according to the cation and anion. The hydrogenation of various aromatic compounds by these colloidal suspensions was carried out at 80 degrees C and under 40 bar of H 2. A first structural explanation based on bipyridine coordination modes is proposed to justify the observed different activities.

  14. Chinese Armillary Spheres

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.

  15. Two fluorescent coordination polymers constructed from mixed rigid and flexible carboxylate ligands: Formation of cross-linking helical and zigzag chains

    SciTech Connect

    Wang Zhen; Zhang Hanhui . E-mail: zhanghh1840@hotmail.com; Chen Yiping; Huang Changcang; Sun Ruiqing; Cao Yanning; Yu Xiaohong

    2006-05-15

    Two 3D coordination polymers with different structure motifs, [Zn{sub 2}(PCPA){sub 2}(IN){sub 2}] {sub n} (1) and [Co(PCPA)(IN)] {sub n} (2) (PCPA=p-chlorophenoxyacetate, IN=isonicotinate), first constructed from mixed rigid and flexible carboxylate ligands, have been obtained under hydrothermal condition and characterized by elemental analyses, IR spectra, thermogravimetric analysis, fluorescent spectra and single crystal X-ray diffraction analysis. The most intriguing structural feature is that each complex exhibits both infinite helical Zn({mu} {sub 2}-carboxylate) or Co({mu} {sub 3}-carboxylates) chain units with 2{sub 1} helices and zigzag M {sub 2}(IN){sub 2} (M=zinc and cobalt) chain units by reason of two different carboxylate ligands coordinating to metal centers. Additionally, compounds 1 and 2 show similar blue fluorescence in the solid state at room temperature.

  16. Copper(II) 5-methoxyisophthalate coordination polymers incorporating dipyridyl co-ligands: syntheses, crystal structures, and magnetic properties.

    PubMed

    Ma, Lu-Fang; Liu, Bin; Wang, Li-Ya; Li, Cheng-Peng; Du, Miao

    2010-03-07

    Hydrothermal reactions of mixed ligands 5-methoxyisophthalate (CH(3)O-H(2)ip) and dipyridyl with Cu(OAc)(2).2H(2)O afford five new coordination polymers, including {[Cu(CH(3)O-ip)(bpa)].H(2)O}(n) (1), [Cu(2)(CH(3)O-ip)(2)(bpa)(0.5)(H(2)O)](n) (2), [Cu(2)(CH(3)O-ip)(2)(bpp)(H(2)O)](n) (3), {[Cu(3)(CH(3)O-ip)(3)(bpp)(2)(H(2)O)].3H(2)O}(n) (4) and [Cu(4)(CH(3)O-ip)(3)(bpe)(OH)(2)](n) (5) (bpp = 1,3-di(4-pyridyl)propane, bpa = 1,2-bi(4-pyridyl)ethane, and bpe = 1,2-di(4-pyridyl)ethylene). Compound 1 consists of CH(3)O-ip anion-bridged 1D Cu(II) chains that are linked by trans-bpa into a 2D layer. Compound 2 is a 2D (4,4) layer that is connected by CH(3)O-ip anions. The gauche bpa in 2 lies in the cavity and meets the coordination requirement of the paddle-wheel dimeric copper unit. Compound 3 is an extended 3D polythreading network consisting of 2D (4,4) motifs with dangling bpp lateral arms. Compound 4 exhibits a 3D (4,6)-connected self-penetrating (6(5).8)(6(14).8) network that is composed of binuclear and mononuclear metal nodes. Compound 5 exhibits a 3D network with the tetranuclear [Cu(4)(mu(3)-OH)(2)](6+) cluster acting as nodes, which is constructed by the interconnection of 2D helical layers via bpe pillars. The results of magnetic determination show that the syn-anti carboxylato bridges in our cases induce a weak antiferromagnetic interaction in 1, and the syn-syn carboxylato bridge in 3 and 4 mediates a strong antiferromagnetic interaction.

  17. Synthesis and characterization of a cadmium(II)-organic supramolecular coordination compound based on the multifunctional 2-amino-5-sulfobenzoic acid ligand.

    PubMed

    Yuan, Gan Yin; Zhang, Lei; Wang, Meng Jie; Zhang, Kou Lin

    2016-12-01

    Much attention has been paid by chemists to the construction of supramolecular coordination compounds based on the multifunctional ligand 5-sulfosalicylic acid (H3SSA) due to the structural and biological interest of these compounds. However, no coordination compounds have been reported for the multifunctional amino-substituted sulfobenzoate ligand 2-amino-5-sulfobenzoic acid (H2asba). We expected that H2asba could be a suitable building block for the assembly of supramolecular networks due to its interesting structural characteristics. The reaction of cadmium(II) nitrate with H2asba in the presence of the auxiliary flexible dipyridylamide ligand N,N'-bis[(pyridin-4-yl)methyl]oxamide (4bpme) under ambient conditions formed a new mixed-ligand coordination compound, namely bis(3-amino-4-carboxybenzenesulfonato-κO(1))diaquabis{N,N'-bis[(pyridin-4-yl)methyl]oxamide-κN}cadmium(II)-N,N'-bis[(pyridin-4-yl)methyl]oxamide-water (1/1/4), [Cd(C7H6NO5S)2(C14H14N4O2)2(H2O)2]·C14H14N4O2·4H2O, (1), which was characterized by single-crystal and powder X-ray diffraction analysis (PXRD), FT-IR spectroscopy, thermogravimetric analysis (TG), and UV-Vis and photoluminescence spectroscopic analyses in the solid state. The central Cd(II) atom in (1) occupies a special position on a centre of inversion and exhibits a slightly distorted octahedral geometry, being coordinated by two N atoms from two monodentate 4bpme ligands, four O atoms from two monodentate 4-amino-3-carboxybenzenesulfonate (Hasba(-)) ligands and two coordinated water molecules. Interestingly, complex (1) further extends into a threefold polycatenated 0D→2D (0D is zero-dimensional and 2D is two-dimensional) interpenetrated supramolecular two-dimensional (4,4) layer through intermolecular hydrogen bonding. The interlayer hydrogen bonding further links adjacent threefold polycatenated two-dimensional layers into a three-dimensional network. The optical properties of complex (1) indicate that it may be used as a

  18. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Zhu, Xian-Dong; Li, Yong; Gao, Jian-Gang; Wang, Fen-Hua; Li, Qing-Hai; Yang, Hong-Xun; Chen, Lei

    2017-02-01

    Two new coordination polymers generally formulated as [Ni3(Hchda)2(chda)2(bpy)2(H2O)2]n (1) and [Ni3(Hchda)2(chda)2(bpp)2(H2O)2]n (2) [H2chda = 1,1'-cyclohexanediacetic acid, bpy = 4,4'-bipyridine and bpp = 1,3-bis(4-pyridyl)propane], have been successfully assembled through mixed-ligands synthetic strategy with flexible alicyclic carboxylate and bipyridyl ligands. There structures feature trinuclear nickel secondary building units connected via the bridging bipyridyl spacers to form two-dimensional (4,4) grid layer. The nature of the different N-donor auxiliary ligands leads to the discrepancy in supramolecular structure of the two compounds. Magnetic studies indicate the ferromagnetic intra-complex magnetic interaction in the molecule for 1 and 2.

  19. Metal-organic coordination polymers based on imidazolyl- and benzimidazolyl-containing 4,4‧-bipy type ligands

    NASA Astrophysics Data System (ADS)

    Jin, Guo-Xia; Ma, Jian-Ping; Dong, Yu-Bin

    2013-11-01

    Two new semirigid ligands 2,2'-bis(imidazol-1-ylmethyl)-4,4'-bis(4-pyridyl)biphenyl(L1) and 2,2'-bis(benzimidazol-1-ylmethyl)-4,4'-bis(4-pyridyl)biphenyl(L2) were designed and synthesized. Six new coordination compounds, {Cd(L1)Br2}n (1), {Cd(L1)(1,2-bdc)(H2O)ṡH2O}n (2), {Zn(L1) (1,3-bdc)ṡ2.7H2O}n (3), {Co(L1)(1,3-bdc)ṡH2O}n (4), (1,2-bdc = 1,2-benzenedicarboxylate, 1,3-bdc = 1,3-benzenedicarboxylate, {Cd(L2)2(NO3)2ṡ2H2O}n (5) and, [Ni(L2)2(H2O)2](ClO4)2ṡ3H2O (6) based on them were obtained and characterized by single-crystal X-ray diffraction methods. 1 is a 2D infinite spongy cushion-like network. In 2, two bridging 1,2-bdc anions chelate two neighboring Cd(II) atoms with their carboxylate groups to form a 1D double chain. 3 displays a 2D network in which the wavelike {Zn(1,3-bdc2-)}n chains are linked to each other by bidentate L1. 4 adopts a unique 3D framework, in which the coplanar {Co(1,3-bdc2-)}n chains are connected to each other through tridentate L1. 5 features a 1D double chain motif composed of a square bimetallic ring as the building block. 6 is mononuclear nickel complex. The photoluminescence properties of L1-L2, 1-3 and 5 were investigated, and all of them exhibit intense fluorescent emissions in the solid state at room temperature.

  20. Synthesis and crystal structures of two coordination polymers and a binuclear cadmium(II) complex containing 3- and 4-aminobenzoate ligands.

    PubMed

    Zhou, Dong-Mei; Zhao, Xiao-Lan; Liu, Feng-Yi; Kou, Jun-Feng

    2015-08-01

    Due to their wide range of coordination modes and versatile conformations when binding to metal atoms, multicarboxylate ligands are of interest in the design of metal-organic frameworks (MOFs). Three Cd(II) complexes, namely catena-poly[diammonium [[chloridocadmium(II)]-di-μ-chlorido-[chloridocadmium(II)]-bis(μ-3-aminobenzoato)-κ(3)N:O,O';κ(3)O,O':N

  1. The tunable coordination architectures of a flexible multicarboxylate N-(4-carboxyphenyl)iminodiacetic acid via different metal ions, pH values and auxiliary ligand

    SciTech Connect

    Chai Xiaochuan; Zhang Hanhui; Zhang Shuai; Cao Yanning; Chen Yiping

    2009-07-15

    {l_brace}[Pb{sub 3}(CPIDA){sub 2}(H{sub 2}O){sub 3}].H{sub 2}O{r_brace}{sub n}1, {l_brace}[Cd{sub 3}(CPIDA){sub 2}(H{sub 2}O){sub 4}].5H{sub 2}O{r_brace}{sub n}2, [Cd(HCPIDA)(bpy)(H{sub 2}O)]{sub n}3 (bpy=4,4'-bipyridine) and {l_brace}[Co{sub 3}(CPIDA){sub 2}(bpy){sub 3}(H{sub 2}O){sub 4}].2H{sub 2}O{r_brace}{sub n}4 were synthesized with N-(4-carboxyphenyl) iminodiacetic acid (H{sub 3}CPIDA). In 1, the CPIDA{sup 3-} ligands adopt chelating and bridging modes with Pb(II) to possess a 3D porous framework. In 2D-layer 2, the CPIDA{sup 3-} ligands display a simple bridging mode with Cd(II). The 2D layers have parallelogram-shaped channels along a axis. With bpy ligands, the HCPIDA{sup 2-} ligands in 3 show more abundant modes, but 3 still displays a 2D sheet on bc plane for the unidentate bpy molecules. However, in 3D-framework 4, the bpy ligands adopt bridging bidentate at a higher pH value and the CPIDA{sup 3-} ligands show bis-bidentate modes with Co(II). Additionally, 2D correlation analysis of FTIR was introduced to ascertain the characteristic adsorptions location of the carboxylate groups with different coordination modes in 4 with thermal and magnetic perturbation. Compounds 1, 2 and 4 exhibit the fluorescent emissions at room temperature. - Graphical abstract: A series of coordination polymers were synthesized with H{sub 3}CPIDA and transition metal ions at lower pH values. The figure displays a 3D porous framework with three parallel channels in compound 1.

  2. Structural and thermodiffractometric analysis of coordination polymers. Part II: zinc and cadmium derivatives of the Bim ligand [Bim = bis(1-imidazolyl)methane].

    PubMed

    Masciocchi, Norberto; Pettinari, Claudio; Alberti, Enrica; Pettinari, Riccardo; Nicola, Corrado Di; Albisetti, Alessandro Figini; Sironi, Angelo

    2007-12-10

    New polynuclear coordination species containing the ditopic bis(1-imidazolyl)methane (Bim) ligand have been prepared as microcrystalline powders and structurally characterized by ab initio X-ray powder diffraction methods. [Zn(CH3COO)2(Bim)]n contains 1D chains with tetrahedral metal atoms bridged by Bim ligands; [CdBr2(Bim)]n shows a dense packing with hexacoordinated Cd(II) ions and mu-Br and mu-Bim bridges; at variance, the isomorphous [ZnCl2(Bim)]n and [ZnBr2(Bim)]n species contain cyclic dimers based on tetrahedral Zn(II) ions. Thermodiffractometric analysis allowed estimation of the linear thermal expansion coefficients and strain tensors derived there from. Bim-rich phases, with 2:1 ligand-to-metal ratio, were also isolated: ZnBr2(Bim)2(H2O)3 and [Cd(CH3COO)2(Bim)2]n containing cis and trans MN4O2 chromophores, respectively, show 1D polymers built upon M2Bim2 cycles, hinged on the metal ions. In all species the conformation of the Bim ligands is Cs (or nearly so), while in the few sparse reports of similar coordination polymers the alternative C2 one was preferentially observed.

  3. Coordination behavior of new bis Schiff base ligand derived from 2-furan carboxaldehyde and propane-1,3-diamine. Spectroscopic, thermal, anticancer and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Zayed, Ehab M.; Hindy, Ahmed M. M.

    2015-06-01

    Novel bis Schiff base ligand, [N1,N3-bis(furan-2-ylmethylene)propane-1,3-diamine], was prepared by the condensation of furan-2-carboxaldehyde with propane-1,3-diamine. Its conformational changes on complexation with transition metal ions [Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II) and Fe(III)] have been studied on the basis of elemental analysis, conductivity measurements, spectral (infrared, 1H NMR, electronic), magnetic and thermogravimetric studies. The conductance data of the complexes revealed their electrolytic nature suggesting them as 1:2 (for bivalent metal ions) and 1:3 (for Fe(III) ion) electrolytes. The complexes were found to have octahedral geometry based on magnetic moment and solid reflectance measurements. Thermal analysis data revealed the decomposition of the complexes in successive steps with the removal of anions, coordinated water and bis Schiff base ligand. The thermodynamic parameters were calculated using Coats-Redfern equation. The Anticancer screening studies were performed on human colorectal cancer (HCT), hepatic cancer (HepG2) and breast cancer (MCF-7) cell lines. The antimicrobial activity of all the compounds was studied against Gram negative (Escherichia coli and Proteus vulgaris) and Gram positive (Bacillus vulgaris and Staphylococcus pyogones) bacteria. It was observed that the coordination of metal ion has a pronounced effect on the microbial activities of the bis Schiff base ligand. All the metal complexes have shown higher antimicrobial effect than the free bis Schiff base ligand.

  4. A one-dimensional copper(II) coordination polymer incorporating succinate and N,N-diethylethylenediamine ligands: crystallographic analysis, vibrational and surface features, and DFT analysis.

    PubMed

    Şen, Fatih; Kansiz, Sevgi; Uçar, İbrahim

    2017-07-01

    Transition metal atoms can be bridged by aliphatic dicarboxylate ligands to produce chains, layers and frameworks. The reaction of copper sulfate with succinic acid (H2succ) and N,N-diethylethylenediamine (deed) in basic solution produces the complex catena-poly[[[(N,N-diethylethylenediamine-κ(2)N,N')copper(II)]-μ-succinato-κ(2)O(1):O(4)] tetrahydrate], {[Cu(C4H4O4)(C6H16N2)]·4H2O}n or {[Cu(succ)(deed)]·4H2O}n. Each carboxylate group of the succinate ligand coordinates to a Cu(II) atom in a monodentate fashion, giving rise to a square-planar coordination environment. The succinate ligands bridge the Cu(II) centres to form one-dimensional polymeric chains. Hydrogen bonds between the ligands and water molecules link these chains into sheets that lie in the ab plane. Density functional theory (DFT) calculations were used to support the experimental data. From these calculations, a good linear correlation was observed between the experimental and theoretically predicted structural and spectroscopic parameters (R(2) ∼ 0.97).

  5. Synthesis and structural characterization of homochiral 2D coordination polymers of zinc and copper with conformationally flexible ditopic imidazolium-based dicarboxylate ligands.

    PubMed

    Nicasio, Antonio I; Montilla, Francisco; Álvarez, Eleuterio; Colodrero, Rosario P; Galindo, Agustín

    2017-01-03

    Different novel coordination polymers containing zinc, 1-4, and copper, 5-8, metals, connected via chiral imidazolium-based dicarboxylate ligands, [L(R)](-), were isolated by reaction between zinc acetate or copper acetate and enantiomerically pure HL(R) compounds. They were characterised and structurally identified by X-ray diffraction methods (single crystal and powder). These compounds are two-dimensional homochiral coordination polymers, [M(L(R))2]n, in which the metal ions are coordinated by the two carboxylate groups of [L(R)](-) anions in a general bridging monodentate μ(2)-κ(1)-O(1),κ(1)-O(3) fashion that afforded tetrahedral metal coordination environments for zinc, 1-4, and square planar for copper, 5-8, complexes. In all the compounds the 3D supramolecular architecture is constructed by non-covalent interactions between the hydrophobic parts (R groups) of the homochiral 2D coordination polymers and, in some cases, by weak C-HO non-classical hydrogen bonds that provided, in general, a dense crystal packing. DFT calculations on the [L(R)](-) anions confirmed their conformational flexibility as ditopic linkers and this fact makes possible the formation of different coordination polymers for four-coordinated metal centers. Preliminary studies on the Zn-catalyzed synthesis of chiral α-aminophosphonates were carried out and, unfortunately, no enantioselectivity was observed in these reactions.

  6. Syntheses and structural characterization of iron(II) and copper(II) coordination compounds with the neutral flexible bidentate N-donor ligands

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2014-08-01

    Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.

  7. Preparation of core-shell coordination molecular assemblies via the enrichment of structure-directing "codes" of bridging ligands and metathesis of metal units.

    PubMed

    Park, Jinhee; Chen, Ying-Pin; Perry, Zachary; Li, Jian-Rong; Zhou, Hong-Cai

    2014-12-03

    A series of molybdenum- and copper-based MOPs were synthesized through coordination-driven process of a bridging ligand (3,3'-PDBAD, L(1)) and dimetal paddlewheel clusters. Three conformers of the ligand exist with an ideal bridging angle between the two carboxylate groups of 0° (H2α-L(1)), 120° (H2β-L(1)), and of 90° (H2γ-L(1)), respectively. At ambient or lower temperature, H2L(1) and Mo2(OAc)4 or Cu2(OAc)4 were crystallized into a molecular square with γ-L(1) and Mo2/Cu2 units. With proper temperature elevation, not only the molecular square with γ-L(1) but also a lantern-shaped cage with α-L(1) formed simultaneously. Similar to how Watson-Crick pairs stabilize the helical structure of duplex DNA, the core-shell molecular assembly possesses favorable H-bonding interaction sites. This is dictated by the ligand conformation in the shell, coding for the formation and providing stabilization of the central lantern shaped core, which was not observed without this complementary interaction. On the basis of the crystallographic implications, a heterobimetallic cage was obtained through a postsynthetic metal ion metathesis, showing different reactivity of coordination bonds in the core and shell. As an innovative synthetic strategy, the site-selective metathesis broadens the structural diversity and properties of coordination assemblies.

  8. Preparation of Core-Shell Coordination Molecular Assemblies via the Enrichment of Structure-Directing "Codes" of Bridging Ligands and Metathesis of Metal Units

    SciTech Connect

    Park, J; Chen, YP; Perry, Z; Li, JR; Zhou, HC

    2014-12-03

    A series of molybdenum- and copper-based MOPs were synthesized through coordination-driven process of a bridging ligand (3,3'-PDBAD, L-1) and dimetal paddlewheel clusters. Three conformers of the ligand exist with an ideal bridging angle between the two carboxylate groups of 0 degrees (H-2 zeta-L(1)), 120 degrees (H-2 beta-L-1), and of 90 degrees (H-2 beta-L-1), respectively. At ambient or lower temperature, (HL1)-L-2 and Mo-2(OAc)(4) or Cu-2(OAc)(4) were crystallized into a molecular square with ?-L-1 and Mo-2/Cu-2 units. With proper temperature elevation, not only the molecular square with ?-L-1 but also a lantern-shaped cage with a-L-1 formed simultaneously. Similar to how Watson-Crick pairs stabilize the helical structure of duplex DNA, the core-shell molecular assembly possesses favorable H-bonding interaction sites. This is dictated by the ligand conformation in the shell, coding for the formation and providing stabilization of the central lantern shaped core, which was not observed without this complementary interaction. On the basis of the crystallographic implications, a heterobimetallic cage was obtained through a postsynthetic metal ion metathesis, showing different reactivity of coordination bonds in the core and shell. As an innovative synthetic strategy, the site-selective metathesis broadens the structural diversity and properties of coordination assemblies.

  9. SPHERES National Lab Facility

    NASA Technical Reports Server (NTRS)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  10. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, tau4.

    PubMed

    Yang, Lei; Powell, Douglas R; Houser, Robert P

    2007-03-07

    Four Cu(I) complexes were synthesized with a family of pyridylmethylamide ligands, HL(R) [HL(R) = N-(2-pyridylmethyl)acetamide, R = null; 2,2-dimethyl-N-(2-pyridylmethyl)propionamide, R = Me(3); 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide, R = Ph(3))]. Complexes 1-3 were synthesized from the respective ligand and [Cu(CH(3)CN)(4)]PF(6) in a 2 : 1 molar ratio: [Cu(HL)(2)]PF(6) (1), [Cu(2)(HL(Me3))(4)](PF(6))(2) (2), [Cu(HL(Ph3))(2)]PF(6) (3). Complex 4, [Cu(HL)(CH(3)CN)(PPh(3))]PF(6), was synthesized from the reaction of HL with [Cu(CH(3)CN)(4)]PF(6) and PPh(3) in a 1 : 1 : 1 molar ratio. X-Ray crystal structures reveal that complexes 1, 3 and 4 are mononuclear Cu(I) species, while complex 2 is a Cu(I) dimer. The copper ions are four-coordinate with geometries ranging from distorted tetrahedral to seesaw in 1, 2, and 4. Complexes 1 and 2 are very air sensitive and they display similar electrochemical properties. The coordination geometry of complex 3 is nearly linear, two-coordinate. Complex 3 is exceptionally stable with respect to oxidation in the air, and its cyclic voltammetry shows no oxidation wave in the range of 0-1.5 V. The unusual inertness of complex 3 towards oxidation is attributed to the protection from bulky triphenyl substituent of the HL(Ph3) ligand. A new geometric parameter for four-coordinate compounds, tau(4), is proposed as an improved, simple metric for quantitatively evaluating the geometry of four-coordinate complexes and compounds.

  11. Extraction and coordination studies of a carbonyl-phosphine oxide scorpionate ligand with uranyl and lanthanide(III) nitrates: structural, spectroscopic and DFT characterization of the complexes.

    PubMed

    Matveeva, Anna G; Vologzhanina, Anna V; Goryunov, Evgenii I; Aysin, Rinat R; Pasechnik, Margarita P; Matveev, Sergey V; Godovikov, Ivan A; Safiulina, Alfiya M; Brel, Valery K

    2016-03-28

    Hybrid scorpionate ligand (OPPh2)2CHCH2C(O)Me (L) was synthesized and characterized by spectroscopic methods and X-ray diffraction. The selected coordination chemistry of L with UO2(NO3)2 and Ln(NO3)3 (Ln = La, Nd, Lu) has been evaluated. The isolated mono- and binuclear complexes, namely, [UO2(NO3)2L] (1), [{UO2(NO3)L}2(μ2-O2)]·EtOH (2), [La(NO3)3L2]·2.33MeCN (3), [Nd(NO3)3L2]·3MeCN (4), [Nd(NO3)2L2]+·(NO3)−·EtOH (5) and [Lu(NO3)3L2] (6) have been characterized by IR spectroscopy and elemental analysis. Single-crystal X-ray structures have been determined for complexes 1-5. Intramolecular intraligand π-stacking interactions between two phenyl fragments of the coordinated ligand(s) were observed in all complexes 1-5. The π-stacking interaction energy was estimated from Bader's AIM theory calculations performed at the DFT level. Solution properties have been examined using IR and multinuclear ((1)H, (13)C, and (31)P) NMR spectroscopy in CD3CN and CDCl3. Coordination modes of L vary with the coordination polyhedron of the metal and solvent nature showing many coordination modes: P(O),P(O), P(O),P(O),C(O), P(O),C(O), and P(O). Preliminary extraction studies of U(VI) and Ln(III) (Ln = La, Nd, Ho, Yb) from 3.75 M HNO3 into CHCl3 show that scorpionate L extracts f-block elements (especially uranium) better than its unmodified prototype (OPPh2)2CH2.

  12. Probing mesitylborane and mesitylborate ligation within the coordination sphere of Cp*Ru(P(i)Pr3)+: a combined synthetic, X-ray crystallographic, and computational study.

    PubMed

    Hesp, Kevin D; Kannemann, Felix O; Rankin, Matthew A; McDonald, Robert; Ferguson, Michael J; Stradiotto, Mark

    2011-03-21

    The reaction of Cp*Ru(P(i)Pr(3))Cl (1) with MesBH(2) (Mes = 2,4,6-trimethylphenyl) afforded the mesitylborate complex Cp*Ru(P(i)Pr(3))(BH(2)MesCl) (2, 66%). Exposure of 2 to the chloride abstracting agent LiB(C(6)F(5))(4)·2.5OEt(2) provided [Cp*Ru(P(i)Pr(3))(BH(2)Mes)](+)B(C(6)F(5))(4)(-) (3, 54%), which features an unusual η(2)-B-H monoborane ligand. The related borate complex Cp*Ru(P(i)Pr(3))(BH(3)Mes) (5, 65%) was prepared from 1 and LiH(3)BMes. Attempts to effect the insertion of unsaturated organic substrates into the B-H bonds of 3 were unsuccessful, and efforts to dehydrohalogenate 2 using KO(t)Bu instead afforded the mesitylborate complex Cp*(P(i)Pr(3))Ru(BH(2)MesOH) (6, 48%). Treatment of 1 with benzyl potassium generated an intermediate hydridoruthenium complex (7) resulting from dehydrogenation of a P(i)Pr fragment, which in turn was observed to react with MesBH(2) to afford the mesitylborate complex Cp*(P((i)Pr)(2)(CH(3)CCH(2)))Ru(BH(3)Mes) (8, 47%). Crystallographic characterization data are provided for 2, 3, 5, 6, and 8. A combined X-ray crystallographic and density functional theory (DFT) investigation of 3 and 5, using Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) analysis, revealed that 3 and 5 are best described as donor-acceptor complexes between a Cp*(P(i)Pr(3))Ru(+) fragment and a bis(η(2)-B-H) coordinating mesitylborane(borate) ligand. Significant σ-donation from the B-H bonds into the Ru(II) center exists as evidenced by the NBO populations, bond orders, and AIM delocalization indices. In the case of 3, the vacant p orbital on boron is stabilized by Ru→B π back-donation as well as by resonance with the mesityl group.

  13. Variations of structures and solid-state conductivity of isomeric silver(I) coordination polymers having linear and V-shaped thiophene-centered ditriazole ligands

    SciTech Connect

    Hu, Bin; Geng, Jiao; Zhang, Lie; Huang, Wei

    2014-07-01

    A pair of new linear and V-shaped acceptor–donor–acceptor (A−D−A) thiophene-centered ditriazole structural isomers, i.e., 2,5-di(1H-1,2,4-triazol-1-yl)thiophene (L{sup 1}) and 3,4-di(1H-1,2,4-triazol-1-yl)thiophene (L{sup 2}), has been synthesized and characterized. They are used as μ{sub 2}-bridging ligands to prepare a pair of silver(I) coordination polymers formulated as [Ag(L{sup 1})(NO{sub 3})]{sub n} (1) and [Ag(L{sup 2})(NO{sub 3})]{sub n} (2), which are also structural isomers at the supramolecular level. X-ray single-crystal diffraction analyses for 1 and 2 reveal that they exhibit the same one-dimensional (1D) coordination polymers but different structural architectures because of the distinguishable shape and configuration of isomeric ligands (L{sup 1} and L{sup 2}) and the alterations of the coordination numbers. More interestingly, compared with the free ligands, 1D silver(I) polymeric isomers 1 and 2 show significant enhancement of solid-state conductivity to different extents (1.42×10{sup 4} and 2.17×10{sup 3} times), where 6.96 times' enhancement of solid-state conductivity from 1 to 2 has been observed. The formation of Ag–N coordinative bonds and the configurational discrepancy of L{sup 1} and L{sup 2} are believed to play important roles in facilitating the electron transport between molecules, which can also be supported by Density Function Theory calculations of their band gaps. - Graphical abstract: A pair of linear and V-shaped isomeric thiophene-centered ditriazole ligands (L{sup 1}) and L{sup 2} are used to prepare a pair of silver(I) polymeric isomers (1 and 2), where significant enhancement of solid-state conductivity to different extents are observed originating from the distinguishable shape and configuration of isomeric ligands. - Highlights: • A pair of linear and V-shaped thiophene-centered ditriazole structural isomers is prepared. • They are used as µ{sub 2}-bridging ligands to prepare a pair of silver

  14. The stacking tryptophan of galactose oxidase: a second coordination sphere residue that has profound effects on tyrosyl radical behavior and enzyme catalysis

    PubMed Central

    Rogers, Melanie S.; Tyler, Ejan M.; Akyumani, Nana; Kurtis, Christian R.; Spooner, R. Kate; Deacon, Sarah E.; Tamber, Sunita; Firbank, Susan J.; Mahmoud, Khaled; Knowles, Peter F.; Phillips, Simon E. V.; McPherson, Michael J.; Dooley, David M.

    2008-01-01

    The function of the stacking tryptophan, W290, a second coordination sphere residue in galactose oxidase has been investigated via steady-state kinetics measurements, absorption, CD and EPR spectroscopy, and x -ray crystallography of the W290F, W290G, and W290H variants. Enzymatic turnover is significantly lower in the W290 variants. The Km for D-galactose for W290H is similar to wild type, whereas the Km is greatly elevated in W290G and W290F, suggesting a role for W290 in substrate binding/positioning via the –NH group of the indole ring. Hydrogen bonding between W290 and azide in the wild type-azide crystal structure are consistent with this function. W290 modulates the properties and reactivity of the redox-active tyrosine radical; the Y272 tyrosyl radical in both the W290G and W290H variants have elevated redox potentials and are highly unstable compared to the radical in W290F, which has similar properties to the wild type tyrosyl radical. W290 restricts the accessibility of the Y272 radical site to solvent. Crystal structures show that Y272 is significantly more solvent exposed in W290G variant but that W290F limits solvent access comparable to the wild-type indole side chain. Spectroscopic studies indicate that the Cu(II) ground states in the semi-reduced W290 variants are very similar to that of the wild-type protein. In addition, the electronic structures of W290X-azide complexes the variants are also closely similar to the wild type electronic structure. Azide binding and azide-mediated proton uptake by Y495 are perturbed in the variants, indicating that tryptophan also modulates the function of the catalytic base (Y495) in the wild-type enzyme. Thus, W290 plays multiple critical roles in enzyme catalysis, affecting substrate binding, the tyrosyl radical redox potential and stability, and the axial tyrosine function. PMID:17385891

  15. Cu(I) complexes bearing the new sterically demanding and coordination flexible tris(3-phenyl-1-pyrazolyl)methanesulfonate ligand and the water-soluble phosphine 1,3,5-triaza-7-phosphaadamantane or related ligands.

    PubMed

    Wanke, Riccardo; Smoleński, Piotr; da Silva, M Fátima C Guedes; Martins, Luísa M D R S; Pombeiro, Armando J L

    2008-11-03

    The new sterically hindered scorpionate tris(3-phenylpyrazolyl)methanesulfonate (Tpms(Ph))(-) has been synthesized and its coordination behavior toward a Cu(I) center, in the presence of 1,3,5-triaza-7-phosphaadamantane (PTA), N-methyl-1,3,5-triaza-7-phosphaadamantane tetraphenylborate ((mPTA)[BPh4]) or hexamethylenetetramine (HMT) has been studied. The reaction between Li(Tpms(Ph)) (1) and [Cu(MeCN)4][PF6] yields [Cu(Tpms(Ph))(MeCN)] (2) which, upon further acetonitrile displacement on reaction with PTA, HMT, or (mPTA)[BPh4], gives the corresponding complexes [Cu(Tpms(Ph))(PTA)] (3), [Cu(Tpms(Ph))(HMT)] (4), and [Cu(Tpms(Ph))(mPTA)][PF6] (5). All the compounds have been characterized by (1)H, (31)P, (13)C, COSY or HMQC-NMR, IR, elemental analysis, and single crystal X-ray diffraction. In the complexes (3) and (5), which bear a phosphine ligand (i.e., PTA and mPTA, respectively), the new scorpionate ligand shows the typical N, N, N-coordination mode, whereas in (2) and (4), bearing a N-donor ligand (i.e., MeCN and HMT, respectively), it binds the metal via the N,N,O chelating mode, involving the sulfonate moiety.

  16. pH-controlled coordination mode rearrangements of "clickable" Huisgen-based multidentate ligands with [M(I)(CO)3]+ (M = Re, (99m)Tc).

    PubMed

    Bottorff, Shalina C; Moore, Adam L; Wemple, Ariana R; Bučar, Dejan-Krešimir; MacGillivray, Leonard R; Benny, Paul D

    2013-03-18

    The viability of the Huisgen cycloaddition reaction for clickable radiopharmaceutical probes was explored with an alkyne-functionalized 2-[(pyridin-2-ylmethyl)amino]acetic acid (PMAA) ligand system, 3, and fac-[M(I)(OH2)3(CO)3](+) (M = Re, (99m)Tc). Two synthetic strategies, (1) click, then chelate and (2) chelate, then click, were investigated to determine the impact of assembly order on the reactivity of the system. In the click, then chelate approach, fac-[M(I)(OH2)3(CO)3](+) was reacted with the PMAA ligand "clicked" to the benzyl azide, 5, to yield two unique coordination species, fac-[M(I)(CO)3(O,N(amine),N(py)-5)], M = Re (8), (99m)Tc (8A), and fac-[M(I)(CO)3(N(tri),N(amine),N(py)-5)], M = Re (9), (99m)Tc (9A), where coordination is through the triazole (N(tri)), central amine (N(amine)), pyridine (N(py)), or carboxylate (O). Depending on the reaction pH, different ratios of complexes 8(A) and 9(A) were observed, but single species were obtained of (O,N(amine),N(py)) coordination, 8(A), in basic pHs (>9) and (N(tri),N(amine),N(py)) coordination, 9(A), in slightly acidic pHs (<4). In the chelate, then click approach, the (O,N(amine),N(py)) coordination of [M(I)(CO)3](+) was preorganized in the alkyne-functionalized fac-[M(I)(CO)3(O,N(amine),N(py)-3)], M = Re (6), (99m)Tc (6A), followed by standard Cu(I)-catalyzed Huisgen "click" conditions at pH ≈ 7.4, where the (O,N(amine),N(py)) coordination mode remained unchanged upon formation of the triazole product in the clicked molecule. Despite the slow substitution kinetics of the low-spin d(6) metal, the coordination modes (O,N(amine),N(py)) and (N(tri),N(amine),N(py)) were found to reversibly intraconvert between 8(A) and 9(A) based upon changes in pH that mirrored the (O,N(amine),N(py)) coordination in basic pHs and (N(tri),N(amine),N(py)) coordination in acidic pHs. Comparison of the Re and (99m)Tc analogs also revealed faster intraconversion between the coordination modes for (99m)Tc.

  17. Comparitive study on structural, magnetic and spectroscopic properties of four new copper(II) coordination polymers with 4‧-substituted terpyridine ligands

    NASA Astrophysics Data System (ADS)

    Toledo, Dominique; Vega, Andrés; Pizarro, Nancy; Baggio, Ricardo; Peña, Octavio; Roisnel, Thierry; Pivan, Jean-Yves; Moreno, Yanko

    2017-09-01

    The synthesis and characterization of four copper(II) complexes with different terpyridyl ligands have been carried out, their crystal and molecular structures determined and their magnetic and luminescent properties analyzed. The ligands used in the coordination reactions were 4‧-(3-methyl-2-thienyl)-4,2‧:6‧,4''-terpyridine (4-stpy), -4‧-(4-quinolinyl)-4,2‧:6‧,4''-terpyridine (4-qtpy), 4‧-(4-quinolinyl)-3,2‧:6‧,3''-terpyridine (3-qtpy, unreported so far) and 4‧-(4-cyanophenyl)-4,2‧:6‧,4''-terpyridine (4-cntpy); the reaction of these ligands with Cu(II)-hexafluoroacetylacetone (Cu(hfacac)2) gives rise to coordination polymers Cu(4-stpy)(hfacac)2 (I), Cu(4-qtpy)(hfacac)2 (II), Cu(3-qtpy)(hfacac)2 (III) and Cu(4-cntpy)(hfacac)2 (IV). The different location of the nitrogen atom of the outer ring is responsible for the different coordination modes. The emission spectra of dichloromethane solutions are consistent with dissociation of the complexes; the emission maxima simulate those of the free ligands. The emission of I, III and IV in the solid state is essentially quenched upon complexation with Cu(II), whereas for compound II an emission at 420 nm is observed. The interaction between copper centers has been related with the coplanarity of terpyridine rings. Complexes I-III exhibit a paramagnetic behavior, while compound IV, with the smallest torsion angle between pyridine moieties, shows an antiferromagnetic behavior described by a dimeric model, with J=-4.38 cm-1, g =2.06 and ρ=0.07.

  18. Solid-state and solution-state coordination chemistry of the zinc triad with the mixed N,S donor ligand bis(2-methylpyridyl) sulfide.

    PubMed

    Berry, Steven M; Bebout, Deborah C; Butcher, Raymond J

    2005-01-10

    The binding of group 12 metal ions to bis(2-methylpyridyl) sulfide (1) was investigated by X-ray crystallography and NMR. Seven structures of the chloride and perchlorate salts of Hg(II), Cd(II), and Zn(II) with 1 are reported. Hg(1)(2)(ClO(4))(2), Cd(1)(2)(ClO(4))(2), and Zn(1)(2)(ClO(4))(2).CH(3)CN form mononuclear, six-coordinate species in the solid state with 1 binding in a tridentate coordination mode. Hg(1)(2)(ClO(4))(2) has a distorted trigonal prismatic coordination geometry while Cd(1)(2)(ClO(4))(2) and Zn(1)(2)(ClO(4))(2).CH(3)CN have distorted octahedral geometries. With chloride anions, the 1:1 metal to ligand complexes Hg(1)Cl(2), [Cd(1)Cl(2)](2), and Zn(1)Cl(2) are formed. A bidentate binding mode that lacks thioether coordination is observed for 1 in the four-coordinate, distorted tetrahedral complexes Zn(1)Cl(2) and Hg(1)Cl(2). [Cd(1)Cl(2)](2) is dimeric with a distorted octahedral coordination geometry and a tridentate 1. Hg(1)Cl(2) is comprised of pairs of loosely associated monomers and Zn(1)Cl(2) is monomeric. In addition, Hg(2)(1)Cl(4) is formed with alternating chloride and thioether bridges. The distorted square pyramidal Hg(II) centers result in a supramolecular zigzagging chain in the solid state. The solution (1)H NMR spectra of [Hg(1)(2)](2+) and [Hg(1)(NCCH(3))(x)()](2+) reveal (3)(-)(5)J((199)Hg(1)H) due to slow ligand exchange found in these thioether complexes. Implications for use of Hg(II) as a metallobioprobe are discussed.

  19. Structural diversity in Cu(i) complexes of the PNP ligand: from pincer to binuclear coordination modes and their effects upon the electrochemical and photophysical properties.

    PubMed

    Arce, Pablo; Vera, Cristian; Escudero, Dayra; Guerrero, Juan; Lappin, Alexander; Oliver, Allen; Jara, Danilo H; Ferraudi, Guillermo; Lemus, Luis

    2017-09-26

    A set of new copper(i) complexes is synthesized and characterized using a labile PNP pincer ligand (PNP = N,N'-bis(diphenylphosphine)-2,6-diaminopyridine). A homoleptic Cu(i) complex [Cu(PNP-κP(1):κN(1))2](+), (1), was prepared, and taking advantage of the uncoordinated phosphorus atoms in (1), reaction with a second Cu(i) atom bearing secondary ligands (PPh3, phen or dmp) allows the formation of new complexes: a bimetallic helicate [Cu(PNP)2(phen)](2+), (2), a mononuclear pincer complex [Cu(I)(PNP)(PPh3)](+), (3), and a heteroleptic complex [Cu(I)(PNP)(dmp)](+), (4). All complexes were characterized by X-ray crystallography, NMR (VT-NMR for (1) and (4)), cyclic-voltammetry, and steady-state and time-resolved luminescence spectroscopy. The fluxional behavior in (1) was studied by (31)P VT-NMR, where an Ea value of 47.42 kJ mol(-1) was calculated for the intramolecular alternating coordination of -PPh2 moieties in PNP to the metal atom. This set of compounds reveals the versatility of the PNP ligand when added to the coordinating properties of Cu(i). The four complexes exhibit emission in solution and complexes (2)-(4) display intense luminescence in the solid state. The oscillographic traces showing the decay of the luminescence were fitted to biexponential functions with time constants: 8.0 μs > τem,1 > 0.37 μs and 50 μs >τem, 2 > 2.2 μs for complexes (2), (3) and (4), respectively. Radiative relaxation is associated with electronic transitions in both the ligand PNP and metal-to-ligand charge transfer (MLCT).

  20. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014147 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (foreground), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  1. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014536 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  2. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014615 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (top), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  3. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014444 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  4. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-013914 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  5. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-015415 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson, Expedition 40 commander; and Reid Wiseman (partially obscured), flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  6. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-013952 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, enters data in a computer during test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES (out of frame). The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  7. Cyclodextrin and phosphorus(III): a versatile combination for coordination chemistry and catalysis.

    PubMed

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique

    2015-08-07

    With the advent of efficient methods for functionalising cyclodextrins, the synthesis of a variety of cyclodextrin-based P(iii) ligands has been made possible. Capable of acting both as first and second coordination sphere ligands towards various transition metals, these compounds have found many applications in homogeneous catalysis. This perspective article describes the different approaches that have been used to covalently associate the ubiquitous P(iii) donor atom with a cyclodextrin cavity. In addition, special emphasis is placed on the influence the cyclodextrin receptor has on the coordination and catalytic properties of these cavity-shaped ligands.

  8. Exploratory studies on coordination chemistry of a redox-active bridging ligand: synthesis, properties and solid state structures of the complexes.

    PubMed

    Ran, Ying-Fen; Liu, Shi-Xia; Sereda, Olha; Neels, Antonia; Decurtins, Silvio

    2011-08-28

    The explorative coordination chemistry of the bridging ligand TTF-PPB is presented. Its strong binding ability to Co(II) and then to Ni(II) or Cu(II) in the presence of hexafluoroacetylacetonate (hfac(-)), forming new mono- and dinuclear complexes 1-3, is described. X-ray crystallographic studies have been conducted in the case of the free ligand TTF-PPB as well as its complexes [Co(TTF-PPB)(hfac)(2)] (1) and [Co(hfac)(2)(μ-TTF-PPB)Ni(hfac)(2)] (2). Each metal ion is bonded to two bidentate hfac(-) anions through their oxygen atoms and two nitrogen atoms of the PPB moiety with a distorted octahedral coordination geometry. Specifically, nitrogen donor atoms of TTF-PPB adopt a cis-coordination but not in the equatorial plane, which is quite rare. Electronic absorption, photoinduced intraligand charge transfer ((1)ILCT), and electrochemical behaviour of 1-3 have been investigated. UV-Vis spectroscopy shows very strong bands in the UV region consistent with ligand centred π-π* transitions and an intense broad band in the visible region corresponding to a spin-allowed π-π* (1)ILCT transition. Upon coordination, the (1)ILCT band is bathochromically shifted by 3100, 6100 and 5900 cm(-1) on going from 1 to 3. The electrochemical studies reveal that all of them undergo two reversible oxidation and one reversible reduction processes, ascribed to the successive oxidations of the TTF moiety and the reduction of the PPB unit, respectively. This journal is © The Royal Society of Chemistry 2011

  9. Some metal complexes of three new potentially heptadentate (N4O3) tripodal Schiff base ligands; synthesis, characterizatin and X-ray crystal structure of a novel eight coordinate Gd(III) complex

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Moradi, Somaeyh; Salehzadeh, Sadegh; Blackman, Allan G.

    2016-03-01

    The symmetrical and asymmetrical potentially heptadentate (N4O3) tripodal Schiff base ligands (H3L1-H3L3) were synthesized from the condensation reaction of three tripodal tetraamine ligands tpt (trpn), tris (3-aminopropyl) amine; ppe (abap), (2-aminoethyl)bis(3-aminopropyl)amine, and tren, tris(2-aminoethyl)amine, with 5-methoxysalicylaldehyde. Then, the reaction of Ln(III) (Ln = Gd, La and Sm), Al(III), and Fe(III) metal ions with the above ligands was investigated. The resulting compounds were characterized by IR, mass spectrometry and elemental analysis in all cases and NMR spectroscopy in the case of the Schiff base ligands. The X-ray crystal structure of the Gd complex of H3L3 ligand showed that in addition to all donor atoms of the ligand one molecule of H2O is also coordinated to the metal ion and a neutral eight-coordinate complex is formed.

  10. Novel lanthanide coordination polymers with a flexible disulfoxide ligand, 1,2-bis(ethylsulfinyl)ethane: structures, stereochemistry, and the influences of counteranions on the framework formations.

    PubMed

    Li, Jian-Rong; Bu, Xian-He; Zhang, Ruo-Hua

    2004-01-12

    The reactions of meso-1,2-bis(ethylsulfinyl)ethane (meso-L) with Ln(ClO(4))(3) [Ln(NO(3))(3) or Ln(NCS)(3)] in MeOH and CHCl(3) gave a series of new lanthanide coordination polymers, [[Ln(micro-meso-L)(rac-L)(2)(CH(3)OH)(2)](ClO(4))(3)](n) [Ln: La (1), Nd (2), Eu (3), Gd (4), Tb (5), Dy (6), and Yb (7)], [Yb(micro-meso-L)(1.5)(NO(3))(3)](n) (8), and [La(micro-meso-L)(2.5)(NCS)(3)](n) (9). All the structures were established by single-crystal X-ray diffraction. Complexes 1-7 are isostructural with infinite single micro-chain structure, in which the L ligands take two kinds of coordination modes: bidentate chelating and bis-monodentate bridging. Six sulfur atoms of the sulfoxide groups around each Ln(III) center adopt alternatively the same R or S configuration in the chain. In addition, the configuration change of partial ligands occurred from the meso to the rac form when reacting with Ln(ClO(4))(3). To our knowledge, this is the first example of disulfoxide complexes with two kinds of coordination modes and three kinds of configurations (R,R, S,S, and R,S) occurring simultaneously in the same complex. 8 exhibits single-double bridging chain structure, in which dinuclear macrometallacycles formed through bridging two Yb(III) by two meso-L ligands are further linked by another meso-L ligand. In 9 each La(III) ion is linked to five other La(III) ions by five meso-L ligands to form a 5-connected 2-D (3/4,5) network containing two types of macrometallacyclic arrays: quadrilateral and triangle grids. The structural differences among 1-7, 8, and 9 show that counteranions play important roles in the framework formation of such coordination polymers. In addition, the luminescent properties of 3 and 5 were also investigated.

  11. Construction of a dinuclear silver(I) coordination complex with a Schiff base containing 4-amino-1,2,4-triazole ligands.

    PubMed

    Sun, Qiaozhen; Zheng, Feng; Sun, Xiaodan; Wang, Wei

    2009-02-18

    The new ligand 1-(1,2,4-triazol-4-ylimino-meth-yl)-2-naphthol (L) and the title silver(I) complex, namely bis-[μ-1-(1,2,4-triazol-4-ylimino-meth-yl)-2-naphthol]bis-{[1-(1,2,4-triazol-4-yl-imino-meth-yl)-2-naphthol]silver(I)} dinitrate monohydrate, [Ag(2)(C(13)H(10)N(4)O)(4)](NO(3))(2)·H(2)O, were synthesized. Each silver center in the dimeric complex (related by an inversion centre) is coordinated by two bridging L ligands and one additional L ligand in a monodentate fashion, exhibiting a distorted trigonal-planar coordination. The discrete dimers are further linked through O-H⋯O hydrogen bonds and weak π-π stacking inter-actions [the shortest atom-atom separation is ca 3.46 Å between the parallel stacking pairs]. Intramolecular O-H⋯N hydrogen bonds are also present.

  12. Two coordination modes of Cu(II) in a binuclear complex with N-(pyridin-2-yl-carbon-yl)pyridine-2-carboxamidate ligands.

    PubMed

    Campos-Gaxiola, José J; Morales-Morales, David; Höpfl, Herbert; Parra-Hake, Miguel; Reyes-Martínez, Reyna

    2012-10-01

    In the title dinuclear complex, (acetonitrile-1κN)[μ-N-(pyri-din-2-ylcarbonyl)pyridine-2-carboxamidato-1:2κ(5)N,N',N'':O,O'][N-(pyridin-2-ylcarbonyl)pyridine-2-carboxamidato-2κ(3)N,N',N'']bis(trifluoromethanesulfonato-1κO)dicopper(II), [Cu(2)(C(12)H(8)N(3)O(2))(2)(CF(3)O(3)S)(2)(CH(3)CN)], one of the Cu(II) ions is five-coordinated in a distorted square-pyramidal N(3)O(2) environment provided by two N-(pyridin-2-ylcarbon-yl)pyridine-2-carboxamidate (bpca) ligands, while the second Cu(II) ion is six-coordinated in a distorted octa-hedral N(4)O(2) environment provided by one bpca ligand, two trifluoro-methansulfonate ligands and one acetonitrile mol-ecule. Weak inter-molecular C-H⋯O and C-H⋯F hydrogen bonds and π-π stacking inter-actions with centroid-centroid distances of 3.6799 (15) and 3.8520 (16) Å stabilize the crystal packing and lead to a three-dimensional network.

  13. Two coordination modes of CuII in a binuclear complex with N-(pyridin-2-yl­carbon­yl)pyridine-2-carboxamidate ligands

    PubMed Central

    Campos-Gaxiola, José J.; Morales-Morales, David; Höpfl, Herbert; Parra-Hake, Miguel; Reyes-Martínez, Reyna

    2012-01-01

    In the title dinuclear complex, (acetonitrile-1κN)[μ-N-(pyri­din-2-ylcarbonyl)pyridine-2-carboxamidato-1:2κ5 N,N′,N′′:O,O′][N-(pyridin-2-ylcarbonyl)pyridine-2-carboxamidato-2κ3 N,N′,N′′]bis(trifluoromethanesulfonato-1κO)dicopper(II), [Cu2(C12H8N3O2)2(CF3O3S)2(CH3CN)], one of the CuII ions is five-coordinated in a distorted square-pyramidal N3O2 environment provided by two N-(pyridin-2-ylcarbon­yl)pyridine-2-carboxamidate (bpca) ligands, while the second CuII ion is six-coordinated in a distorted octa­hedral N4O2 environment provided by one bpca ligand, two trifluoro­methansulfonate ligands and one acetonitrile mol­ecule. Weak inter­molecular C—H⋯O and C—H⋯F hydrogen bonds and π–π stacking inter­actions with centroid–centroid distances of 3.6799 (15) and 3.8520 (16) Å stabilize the crystal packing and lead to a three-dimensional network. PMID:23125602

  14. A family of four-coordinate iron(II) complexes bearing the sterically hindered tris(pyrazolyl)borato ligand Tp(tBu,Me).

    PubMed

    Jové, Fernando A; Pariya, Chandi; Scoblete, Michael; Yap, Glenn P A; Theopold, Klaus H

    2011-01-24

    A new family of 14-electron, four-coordinate iron(II) complexes of the general formula [Tp(tBu,Me)FeX] (Tp(tBu,Me) is the sterically hindered hydrotris(3-tert-butyl-5-methyl-pyrazolyl) borate ligand and X=Cl (1), Br, I) were synthesized by salt metathesis of FeX(2) with Tp(tBu,Me)K. The related fluoride complex was prepared by reaction of 1 with AgBF(4). Chloride 1 proved to be a good precursor for ligand substitution reactions, generating a series of four-coordinate iron(II) complexes with carbon, oxygen, and sulphur ligands. All of these complexes were fully characterized by conventional spectroscopic methods and most were characterized by single-crystal X-ray crystallographic analysis. Magnetic measurements for all complexes agreed with a high-spin (d(6), S=2) electronic configuration. The halide series enabled the estimation of the covalent radius of iron in these complexes as 1.24 Å.

  15. Probing the Effects of Ligand Field and Coordination Geometry on Magnetic Anisotropy of Pentacoordinate Cobalt(II) Single-Ion Magnets.

    PubMed

    Mondal, Amit Kumar; Goswami, Tamal; Misra, Anirban; Konar, Sanjit

    2017-06-19

    In this work, the effects of ligand field strength as well as the metal coordination geometry on magnetic anisotropy of pentacoordinated Co(II) complexes have been investigated using a combined experimental and theoretical approach. For that, a strategic design and synthesis of three pentacoordinate Co(II) complexes [Co(bbp)Cl2]·(MeOH) (1), [Co(bbp)Br2]·(MeOH) (2), and [Co(bbp)(NCS)2] (3) has been achieved by using the tridentate coordination environment of the ligand in conjunction with the accommodating terminal ligands (i.e., chloride, bromide, and thiocyanate). Detailed magnetic studies disclose the occurrence of slow magnetic relaxation behavior of Co(II) centers with an easy-plane magnetic anisotropy. A quantitative estimation of ZFS parameters has been successfully performed by density functional theory (DFT) calculations. Both the sign and magnitude of ZFS parameters are prophesied well by this DFT method. The theoretical results also reveal that the α → β (SOMO-SOMO) excitation contributes almost entirely to the total ZFS values for all complexes. It is worth noting that the excitation pertaining to the most positive contribution to the ZFS parameter is the dxy → dx(2)-y(2) excitation for complexes 1 and 2, whereas for complex 3 it is the dz(2) → dx(2)-y(2) excitation.

  16. Effect of three bis-pyridyl-bis-amide ligands with various spacers on the structural diversity of new multifunctional cobalt(II) coordination polymers

    SciTech Connect

    Lin, Hong-Yan; Lu, Huizhe; Le, Mao; Luan, Jian; Wang, Xiu-Li; Liu, Guocheng; Zhang, Juwen

    2015-03-15

    Three new cobalt(II) coordination polymers [Co{sub 2}(1,4-NDC){sub 2}(3-bpye)(H{sub 2}O)] (1), [Co(1,4-NDC)(3-bpfp)(H{sub 2}O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N′-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N′-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H{sub 2}NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1–3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology constructed from 3D [Co{sub 2}(1,4-NDC){sub 2}(H{sub 2}O)]{sub n} framework and bidentate 3-bpye ligands. Complex 2 shows 1D “cage+cage”-like chain formed by 1D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} ribbon chains and [Co{sub 2}(3-bpfp){sub 2}] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology based on 2D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1–3 have been investigated. - Graphical abstract: Three multifunctional cobalt(II) complexes constructed from three bis-pyridyl-bis-amide and 1,4-naphthalenedicarboxylic acid have been hydrothermally synthesized and characterized. The fluorescent, electrochemical and magnetic properties of 1–3 have been investigated. - Highlights: • Three multifunctional cobalt(II) complexes based on various bis-pyridyl-bis-amide ligands. • Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8

  17. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand

    SciTech Connect

    Yuan, Gang; Shao, Kui-Zhan; Chen, Lei; Liu, Xin-Xin; Su, Zhong-Min; Ma, Jian-Fang

    2012-12-15

    Three new polymers, [Cd(L){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Cd{sub 3}(L){sub 2}({mu}{sub 3}-OH){sub 2}({mu}{sub 2}-Cl){sub 2}(H{sub 2}O){sub 2}]{sub n} (2), {l_brace}[Cd{sub 2}(L){sub 2}(nic){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace}{sub n} (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L{sup -} ligands connecting chain-like [Cd({mu}{sub 3}-OH)({mu}{sub 2}-Cl)]{sub n} secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4{center_dot}8{sup 2})(4{center_dot}8{sup 2}{center_dot}10{sup 3}) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated. - Graphical abstract: Three new coordination polymers based on the semi-rigid multidentate N-donor ligand have been successfully synthesized by hydrothermal reaction. Complexes 1 and 2 exhibit the 2D layers formed by inter-linking single helices and L{sup -} anions bridging 1D chain-like SBUs, respectively. Complex 3 is buit by L{sup -} and assistant nic{sup -} ligands connecting metal centers and possesses a (3,4)-connected framework with (4 Multiplication-Sign 8{sup 2})(4 Multiplication-Sign 8{sup 2} Multiplication-Sign 10{sup 3}) topology. Moreover, these complexes display fluorescent properties indicating that they may have potential applications as optical materials. Highlights: Black-Right-Pointing-Pointer Three Cd-compounds were prepared from semi-rigid HL ligand with different N-containing groups. Black-Right-Pointing-Pointer They exhibit diverse structures from 2D monomolecular layer to 3D covalent framework. Black-Right-Pointing-Pointer The HL ligands displayed various coordination modes under different reaction conditions. Black-Right-Pointing-Pointer These compounds exhibit

  18. Analysis of the Role of Peripheral Ligands Coordinated to Zn(II) in Enhancing the Energy Barrier in Luminescent Linear Trinuclear Zn-Dy-Zn Single-Molecule Magnets.

    PubMed

    Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique

    2015-10-26

    Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L(2-) is the di-deprotonated form of the N2 O2 compartmental N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2 O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2 O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff ) for the reversal of the magnetization of 96.9(6) K with τ0 =2.4×10(-7)  s, 146.8(5) K with τ0 =9.2×10(-8)  s, and 146.1(10) K with τ0 =9.9×10(-8)  s for compounds with ZnOH2 , ZnBr, and ZnCl motifs, respectively. The Cole-Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff =128.6(5) K and τ0 =1.8×10(-8)  s for 1, Ueff =214.7 K and τ0 =9.8×10(-9)  s for 2, and Ueff =202.4 K and τ0 =1.5×10(-8)  s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy(3+) ion, which thus creates a strong crystal field that stabilizes the axial MJ =±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination

  19. Synthesis, properties and structures of eight-coordinate zirconium(IV) and hafnium(IV) halide complexes with phosphorus and arsenic ligands.

    PubMed

    Levason, William; Matthews, Melissa L; Patel, Bhavesh; Reid, Gillian; Webster, Michael

    2004-10-21

    Eight-coordinate [MX(4)(L-L)(2)] (M = Zr or Hf; X = Cl or Br; L-L = o-C(6)H(4)(PMe(2))(2) or o-C(6)H(4)(AsMe(2))(2)) were made by displacement of Me(2)S from [MX(4)(Me(2)S)(2)] by three equivalents of L-L in CH(2)Cl(2) solution, or from MX(4) and L-L in anhydrous thf solution. The [MI(4)(L-L)(2)] were made directly from reaction of MI(4) with the ligand in CH(2)Cl(2) solution. The very moisture-sensitive complexes were characterised by IR, UV/Vis, and (1)H and (31)P NMR spectroscopy and microanalysis. Crystal structures of [ZrCl(4)[o-C(6)H(4)(AsMe(2))(2)](2)], [ZrBr(4)[-C(6)H(4)(PMe(2))(2)](2)], [ZrI(4)[o-C(6)H(4)(AsMe(2))(2)](2)] and [HfI(4)[o-C(6)H(4)(AsMe(2))(2)](2)] all show distorted dodecahedral structures. Surprisingly, unlike the corresponding Ti(iv) systems, only the eight-coordinate complex was found in each system. In contrast, the ligand o-C(6)H(4)(PPh(2))(2) forms only six-coordinate complexes [MX(4)[-C(6)H(4)(PPh(2))(2)

  20. 2-and 1-D coordination polymers of Dy(III) and Ho(III) with near infrared and visible luminescence by efficient charge-transfer antenna ligand

    NASA Astrophysics Data System (ADS)

    Oylumluoglu, Gorkem; Coban, Mustafa Burak; Kocak, Cagdas; Aygun, Muhittin; Kara, Hulya

    2017-10-01

    Two new lanthanide-based coordination complexes, [Dy(2-stp).2(H2O)]n (1) and {[Ho(2-stp).3(H2O)]·(H2O)}n (2) [2-stp = 2-sulfoterephthalic acid] were synthesized by hydrothermal reaction and characterized by elemental analysis, UV, IR, single crystal X-ray diffraction and solid state photoluminescence. DyIII and HoIII atoms are eight-coordinated and adopt a distorted square-antiprismatic geometry in complexes 1 and 2, respectively. In compound 1, Dy atoms are coordinated by four bridging 2-stp ligands forming two-dimensional (2D) layer, while Ho atoms by three bridging 2-stp ligands creating one dimensional (1D) double chains in 2. In addition, complexes 1 and 2 display in the solid state and at room temperature an intense yellow emission, respectively; this photoluminescence is achieved by an indirect process (antenna effect). The excellent luminescent performances make these complexes very good candidates for potential luminescence materials.

  1. o-, m-, and p-Pyridyl isomer effects on construction of 1D loop-and-chains: Silver(I) coordination polymers with Y-type tridentate ligands

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Gyun; Cho, Yoonjung; Lee, Haeri; Lee, Young-A.; Jung, Ok-Sang

    2016-10-01

    Self-assembly of silver(I) hexafluorophosphate with unique Y-type tridentate ligands (2,6-bis[(2-picolinoyloxy-5-methylphenyl)methyl]-p-tolylpicolinate (o-L), 2-nicotinoyloxy- (m-L), and 2-isonicotinoyloxy- (p-L)) produces single crystals consisting of 1D loop-and-chain coordination polymers of [Ag(o-L)](PF6)·Me2CO·CHCl3, [Ag(m-L)](PF6)·Me2CO, and [Ag3(p-L)2](PF6)3·2H2O·2C2H5OH·4CH2Cl2 with quite different trigonal prismatic, trigonal, and linear silver(I) coordination geometry, respectively. Coordinating ability of the three ligands for AgPF6 is in the order of p-L > o-L > m-L. The solvate molecules of [Ag(o-L)](PF6)·Me2CO·CHCl3 can be removed, and be replaced reversibly in the order of acetone ≫ chloroform ≈ dichloromethane ≫ benzene, without destruction of its skeleton.

  2. Three coordination polymers based on 9,10-di(pyridine-4-yl)anthracene ligand: Syntheses, structures and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Dong, Jun-Liang; Wang, Duo-Zhi; Jia, Yan-Yuan; Wang, Dan-Hong

    2017-08-01

    Three new mixed-ligand divalent coordination polymers (CPs) {[Zn3(L)(1,4-bdc)3]·2DMF}n (1), {[Zn2(L)(2,6-ndc)2]·3DMF}n (2) and {[Cd2(L)3(2,6-ndc)2]}n (3) [L = 9,10-di(pyridine-4-yl)anthracene, 1,4-H2bdc = 1,4-benzenedicarboxylic acid, 2,6-H2ndc = 2,6-naphthalenedicarboxylic acid] have been prepared and well characterized by elemental analyses, infrared spectroscopy, single-crystal X-ray diffraction techniques, powder X-ray diffraction patterns and thermogravimetric analyses. The crystal structure analyses of coordination polymers (CPs) reveal that all the complexes 1-3 have the three-dimensional (3D) coordination networks. The structure of 1 can be simplified as a sqc3 3D 8-connected framework with the point symbol of (424·64). Particularly, in the presence of the linear 2,6-H2ndc auxiliary ligand, a double-deck interpenetrating pcu 3D network of 2 is assembled by 6-connecting framework with the point symbol of (412·63). Complex 3 exhibits a ttd 3D 5-connected net with a point symbol of (46·64). Further, the solid-state luminescent properties of the complexes 1-3 were measured and studied at room temperature.

  3. Three Mn(II) coordination polymers with a bispyridyl-based quinolinate ligand: the anion-controlled tunable structural and magnetic properties.

    PubMed

    Yuan, Guozan; Shan, Weilong; Liu, Bin; Rong, Lulu; Zhang, Liyan; Zhang, Hui; Wei, Xianwen

    2014-07-07

    Three new Mn(ii) coordination polymers, namely [Mn3L6·2H2O] (), [MnL2] (), and [MnL2·2H2O] (), were prepared by solvothermal reactions of Mn(ii) salts with a bispyridyl-based quinolinate ligand. All complexes were characterized by elemental analysis, IR spectra, powder and single-crystal X-ray crystallography. Single crystal X-ray studies show that these coordination polymers exhibit a structural diversification due to the different counteranions (OAc(-), Cl(-), and NO3(-)). Complex has a 2D supramolecular structure with a cyclic tetramer Mn3L6 secondary building unit. Complex possesses a rhombohedral grid network containing a type of meso-helical chain (P + M) constructed via the metal-ligand coordination interaction. Complex features a 3D non-porous structure based on the arrangement of 2D grids. Magnetic susceptibility measurements indicate that the three Mn(ii) polymers show disparate magnetic properties due to their different supramolecular structures.

  4. Using low-frequency IR spectra for the unambiguous identification of metal ion-ligand coordination sites in purpose-built complexes

    NASA Astrophysics Data System (ADS)

    Varga, Gábor; Csendes, Zita; Peintler, Gábor; Berkesi, Ottó; Sipos, Pál; Pálinkó, István

    2014-03-01

    One of the aims of our long-term research is the identification of metal ion-ligand coordination sites in bioinspired metal ion-C- or N-protected amino acid (histidine, tyrosine, cysteine or cystine) complexes immobilised on the surface of chloropropylated silica gel or Merrifield resin. In an attempt to reach this goal, structurally related, but much simpler complexes have been prepared and their metal ion-ligand vibrations were determined from their low-frequency IR spectra. The central ions were Mn(II), Co(II), Ni(II) or Cu(II) and the ligands (imidazole, isopropylamine, monosodium malonate) were chosen to possess only one-type of potential donor group. The low-frequency IR spectra were taken of the complexes for each ion-ligand combination and the typical metal ion-functional group vibration bands were selected and identified. The usefulness of the obtained assignments is demonstrated on exemplary immobilised metal ion-protected amino acid complexes.

  5. Synthesis, selected coordination chemistry and extraction behavior of a (phosphinoylmethyl)pyridyl N-oxide-functionalized ligand based upon a 1,4-diazepane platform

    DOE PAGES

    Ouizem, Sabrina; Rosario Amorin, Daniel; Dickie, Diane A.; ...

    2015-05-09

    For syntheses of new multidentate chelating ligands ((6,6'4(1,4-diazepane-1,4-diyl)bis(methylene))bis(pyridine-6,2-diyl))bis(methylene))bis(diphenylphosphine oxide) (2) and 6,6'-((1,4-diazepane1,4-diyl)bis(methylene))bis(2-((diphenylphosphoryl)methyl)pyridine 1-oxide) (3), based upon a 1,4-diazepane platform functionalized with 2-(diphenylphosphinoylmethyl)pyridine P-oxide and 2-(diphenylphosphinoylmethyl)pyridine NP-dioxide fragments, respectively, the results are reported. Our results from studies of the coordination chemistry of the ligands with selected lanthanide nitrates and Cu(BF4)(2) are outlined, and crystal structures for two complexes, [Cu(2)](BF4)2 and [Cu(3)](BF4)2, are described along with survey Eu(III) and Am(III) solvent extraction analysis, for 3.

  6. Synthesis, selected coordination chemistry and extraction behavior of a (phosphinoylmethyl)pyridyl N-oxide-functionalized ligand based upon a 1,4-diazepane platform

    SciTech Connect

    Ouizem, Sabrina; Rosario Amorin, Daniel; Dickie, Diane A.; Cramer, Roger E.; Campana, Charles F.; Hay, Benjamin P.; Podair, Julien; Delmau, Laetitia H.; Paine, Robert T.

    2015-05-09

    For syntheses of new multidentate chelating ligands ((6,6'4(1,4-diazepane-1,4-diyl)bis(methylene))bis(pyridine-6,2-diyl))bis(methylene))bis(diphenylphosphine oxide) (2) and 6,6'-((1,4-diazepane1,4-diyl)bis(methylene))bis(2-((diphenylphosphoryl)methyl)pyridine 1-oxide) (3), based upon a 1,4-diazepane platform functionalized with 2-(diphenylphosphinoylmethyl)pyridine P-oxide and 2-(diphenylphosphinoylmethyl)pyridine NP-dioxide fragments, respectively, the results are reported. Our results from studies of the coordination chemistry of the ligands with selected lanthanide nitrates and Cu(BF4)(2) are outlined, and crystal structures for two complexes, [Cu(2)](BF4)2 and [Cu(3)](BF4)2, are described along with survey Eu(III) and Am(III) solvent extraction analysis, for 3.

  7. Five-coordinate [Pt(II)(bipyridine)2(phosphine)](n+) complexes: long-lived intermediates in ligand substitution reactions of [Pt(bipyridine)2](2+) with phosphine ligands.

    PubMed

    Lo, Warrick K C; Cavigliasso, Germán; Stranger, Robert; Crowley, James D; Blackman, Allan G

    2014-04-07

    The reaction of [Pt(N-N)2](2+) [N-N = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (4,4'-Me2bpy)] with phosphine ligands [PPh3 or PPh(PhSO3)2(2-)] in aqueous or methanolic solutions was studied by multinuclear ((1)H, (13)C, (31)P, and (195)Pt) NMR spectroscopy, X-ray crystallography, UV-visible spectroscopy, and high-resolution mass spectrometry. NMR spectra of solutions containing equimolar amounts of [Pt(N-N)2](2+) and phosphine ligand give evidence for rapid formation of long-lived, 5-coordinate [Pt(II)(N-N)2(phosphine)](n+) complexes. In the presence of excess phosphine ligand, these intermediates undergo much slower entry of a second phosphine ligand and loss of a bpy ligand to give [Pt(II)(N-N)(phosphine)2](n+) as the final product. The coordination of a phosphine ligand to the Pt(II) ion in the intermediate [Pt(N-N)2(phosphine)](n+) complexes is supported by the observation of (31)P-(195)Pt coupling in the (31)P NMR spectra. The 5-coordinate nature of [Pt(bpy)2{PPh(PhSO3)2}] is confirmed by X-ray crystallography. X-ray crystal structural analysis shows that the Pt(II) ion in [Pt(bpy)2{PPh(PhSO3)2}]·5.5H2O displays a distorted square pyramidal geometry, with one bpy ligand bound asymmetrically. These results provide strong support for the widely accepted associative ligand substitution mechanism for square planar Pt(II) complexes. X-ray structural characterization of the distorted square planar complex [Pt(bpy)(PPh3)2](ClO4)2 confirms this as the final product of the reaction of [Pt(bpy)2](2+) with PPh3 in CD3OD. The results of density functional calculations on [Pt(bpy)2](2+), [Pt(bpy)2(phosphine)](n+), and [Pt(bpy)(phosphine)2](n+) indicate that the bonding energy follows the trend of [Pt(bpy)(phosphine)2](n+) > [Pt(bpy)2(phosphine)](n+) > [Pt(bpy)2](2+) for stability and that the formation reactions of [Pt(bpy)2(phosphine)](n+) from [Pt(bpy)2](2+) and [Pt(bpy)(phosphine)2](n+) from [Pt(bpy)2(phosphine)](n+) are energetically favorable. These

  8. Design of new heteroscorpionate ligands and their coordinative ability toward Group 4 transition metals; an efficient synthetic route to obtain enantiopure ligands.

    PubMed

    Otero, Antonio; Fernández-Baeza, Juan; Antiñolo, Antonio; Tejeda, Juan; Lara-Sánchez, Agustín; Sánchez-Barba, Luis; Sánchez-Molina, Margarita; Franco, Sonia; López-Solera, Isabel; Rodríguez, Ana M

    2006-09-28

    The reaction of different types of bis(pyrazol-1-yl)methane derivatives with Bu(n)Li and alkyl or aryl-containing-isocyanates or isothiocyanates, some of these as chiral reagents, gives rise to the preparation of new heteroscorpionate ligands in the form of the lithium derivatives [Li(NNE)]2 (1-10), although a similar process with trimethylsilyl isocyanate or isothiocyanate gave the complexes [Li(NCX)(bdmpzs)(THF)](X = O, 11; X = S, 12)[bdmpzs = bis(3,5-dimethylpyrazol-1-yl)trimethylsilylmethane]. Compounds 1-8 reacted with [TiCl4(THF)2] or [MCl4](M = Zr, Hf) to give a series of cationic complexes [MCl3{kappa3-NNE(H)}]Cl (13-36) where the heteroscorpionate ligand contains either an acetamide or thioacetamide group resulting from the protonation of the corresponding acetamidate or thioacetamidate. However, under appropriate experimental conditions neutral Ti complexes were isolated-namely [TiClx(NMe2)3-x(S-mbbpam)](37-39)[S-mbbpam =(S)-(-)-N-alpha-methylbenzyl-2,2-bis(3,5-dimethylpyrazol-1-yl)acetamidate]. Finally, two alkoxide-containing titanium complexes [TiClx(OR)3-x(S-mbbpamH)]Cl (40-41) were also prepared. The structures of these complexes have been determined by spectroscopic methods and, in addition, the X-ray crystal structures of 1, 12, and 19 were also established.

  9. Absolute multilateration between spheres

    NASA Astrophysics Data System (ADS)

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m-1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  10. Synthesis and explosive properties of copper(II) chlorate(VII) coordination polymer with 4-amino-1,2,4-triazole bridging ligand.

    PubMed

    Cudziło, Stanisław; Nita, Marcin

    2010-05-15

    Copper(II) chlorate(VII) coordination polymer with 4-amino-1,2,4-triazole as bridging ligand was prepared and characterized by elemental analysis, IR spectra and TG/DTA analyses. Sensitivity and detonator tests were also preformed. The compound has a 1D chain structure in which Cu(II) ions are linked by triple triazole N1,N2 bridges. It is a detonat with performance close to that of lead azide, but at the same time it shows moderate sensitivity to thermal (explosively decomposes above 250 degrees C) and mechanical stimuli (sensitivity to friction 10N).

  11. A one-dimensional coordination polymer based on Cu3-oximato metallacrowns bridged by benzene-1,4-dicarboxylato ligands: structure and magnetic properties.

    PubMed

    Croitor, Lilia; Coropceanu, Eduard B; Petuhov, Oleg; Krämer, Karl W; Baca, Svetlana G; Liu, Shi-Xia; Decurtins, Silvio; Fonari, Marina S

    2015-05-07

    A one-dimensional linear coordination polymer {[Cu3(μ3-OH)(2-pyao)3(bdc)]·6(H2O)}n () composed of trinuclear [Cu3(μ3-OH)(2-pyao)3](2+) metallacrown cores bridged by bis-carboxylato linkers has been obtained by treatment of copper(ii) fluoride with pyridine-2-aldoxime (2-pyaoH) ligand and benzene-1,4-dicarboxylic acid (H2bdc). Magnetic susceptibility measurements show strong antiferromagnetic interactions between Cu(ii) centers within the trinuclear metallacrown core with J = -430 cm(-1).

  12. New reversible crystal-to-crystal conversion of a mixed-ligand lead(II) coordination polymer by de- and rehydration.

    PubMed

    Sadeghzadeh, Homa; Morsali, Ali

    2009-12-07

    A reversible crystal-to-crystal transformation of a new 2D lead(II) coordination polymer with the ligand 4-pyridinecarboxylic acid (4-Hpyc), [Pb(4-pyc)(Br)(H(2)O)](n) (1) to [Pb(4-pyc)(Br)](n) (2) by de- and rehydration, has been observed, and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction. The thermal stabilities of compounds 1 and 2 were studied by thermal gravimetric and differential thermal analyses. Powder X-ray diffraction experiments showed that the structural transformation occurs in the batch powder samples and leads to monophasic products.

  13. Three-component entanglements consisting of three crescent-shaped bidentate ligands coordinated to an octahedral metal centre.

    PubMed

    Durola, Fabien; Russo, Luca; Sauvage, Jean-Pierre; Rissanen, Kari; Wenger, Oliver S

    2007-01-01

    3,3'-biisoquinoline ligands (biiq) L, bearing aromatic substituents on their 8 and 8' positions, have been used to generate interwoven systems consisting of three crescent-shaped ligands disposed around an octahedral metal centre. Mono-ligand complexes of the type [ReL(CO)3py]+ (py: pyridine) have also been prepared, leading to sterically non-hindering complexes in spite of the endotopic nature of the chelate used. The three-component entanglements have been prepared by using either FeII or RuII as gathering metal centre. The synthetic procedure is simple and efficient, affording fully characterised complexes as their PF6 or SbCl6 salts. X-ray crystallography clearly shows that the crescent-shaped ligands do not repel each other in the tris-chelate complexes. In an analogous way, the ReI complexes show open structures with no steric repulsion between the L ligand and the ancillary CO or py groups. The FeL3 or RuL3 compounds are very unusual in the sense that, contrary to all the other tris-bidentate chelate complexes made till now, the three organic components are tangled up, in a situation which will be very favourable to the formation of new non trivial topologies of the catenane type.

  14. The Problems of Coordination of the International Duties of the Kazakhstan Republic in the Social-Labour Sphere and National Law

    ERIC Educational Resources Information Center

    Buribayev, Yermek A.; Oryntayev, Zhambyl K.; Bekbossynov, Yermek; Mazhinbekov, Saken; Yessenbekova, Patima; Blasheva, Manshuk

    2016-01-01

    Background/Objectives: The research topicality is conditioned by the fact that the labour secure of the social and labour human rights is realized not only by the national law but also by the international law that is usually more progressive and establishes the generally accepted standards and norms of human rights in the social-labour sphere.…

  15. Monodisperse TiO2 Spheres with High Charge Density and Their Self-Assembly.

    PubMed

    Xia, Hongbo; Wu, Suli; Su, Xin; Zhang, Shufen

    2017-01-03

    Titanium dioxide (TiO2 ) spheres are potential candidates to fabricate three-dimensional (3D) photonic crystals owing to their high refractive index and low absorption in the visible and near-infrared regions. Here, TiO2 spheres with both high surface charge density and uniform size, which are necessary for the self-assembly of TiO2 spheres, have been prepared by means of sol-gel methods in ethanol in the presence of thioglycolic acid as ligand. Thioglycolic acid, which contains two functional groups, not only acts as coordinating ligand for stabilizing and controlling the growth of TiO2 spheres but also endows the resulting TiO2 spheres with high charge density as based on ζ-potential analysis when the pH of the TiO2 aqueous dispersion was 6.5 or higher. The SEM images illustrate that the diameter of the prepared TiO2 spheres can be tuned from 100 to 300 nm by simply controlling the concentration of H2 O. FTIR spectra confirm that thioglycolic acid bonded to the surface of TiO2 spheres through carboxylic groups. As anticipated, the obtained TiO2 spheres could self-assemble to form a 3D opal photonic crystal structure by means of a simple gravity sedimentation method. Then the TiO2 spheres in the 3D opal photonic crystal structure were able to transform into a pure anatase phase by annealing at different temperatures.

  16. Zn(II)-coordination modulated ligand photophysical processes – the development of fluorescent indicators for imaging biological Zn(II) ions

    PubMed Central

    Yuan, Zhao; Simmons, J. Tyler; Sreenath, Kesavapillai

    2014-01-01

    Molecular photophysics and metal coordination chemistry are the two fundamental pillars that support the development of fluorescent cation indicators. In this article, we describe how Zn(II)-coordination alters various ligand-centered photophysical processes that are pertinent to developing Zn(II) indicators. The main aim is to show how small organic Zn(II) indicators work under the constraints of specific requirements, including Zn(II) detection range, photophysical requirements such as excitation energy and emission color, temporal and spatial resolutions in a heterogeneous intracellular environment, and fluorescence response selectivity between similar cations such as Zn(II) and Cd(II). In the last section, the biological questions that fluorescent Zn(II) indicators help to answer are described, which have been motivating and challenging this field of research. PMID:25071933

  17. Metal ions directed assembly of two coordination polymers based on an organic phosphonate anion and a multidentate N-donor ligand

    NASA Astrophysics Data System (ADS)

    Kan, Wei-Qiu; Xu, Ji-Ming; Wen, Shi-Zheng; Yang, Lin

    2017-01-01

    Two new coordination polymers [Cd(4,4‧-tmbpt)(HL)(H2O)] (1) and [Cu(4,4‧-tmbpt)(HL)]·H2O (2) (H3L = 2‧-carboxybiphenyl-4-ylmethylphosphonic and 4,4‧-tmbpt = 1-((1H-1,2,4-triazol-1-yl)methyl)-3,5-bis(4-pyridyl)-1,2,4-triazole) have been synthesized hydrothermally. The two compounds have the same metal to ligand ratio, but different metal ions. As a result, the two compounds display different 2D layer structures, which is mainly caused by the different coordination numbers of the different metal ions. The effects of the metal ions on the structures, the optical band gaps and photoluminescent and photocatalytic properties of the compounds have been studied.

  18. A novel one-dimensional manganese(II) coordination polymer containing both dicyanamide and pyrazinamide ligands: Synthesis, spectroscopic investigations, X-ray studies and evaluation of biological activities

    NASA Astrophysics Data System (ADS)

    Tabrizi, Leila; Chiniforoshan, Hossein; McArdle, Patrick

    2015-03-01

    A novel 1D coordination polymer {[Mn(μ1,5-dca)2(PZA)2](PZA)2}n, 1, has been synthesized and characterized by single crystal X-ray crystallography. The coordination mode of dicyanamide (dca) and pyrazinamide (PZA) ligands was inferred by IR spectroscopy. The compound 1 was evaluated for in vitro antimycobacterial and antitumor activities. It demonstrated better in vitro activity against Mycobacterium tuberculosis than pyrazinamide and its MIC value was determined. Complex 1 was also screened for its in vitro antitumor activity towards LM3 and LP07 murine cancer cell lines. In addition, the antibacterial activity of complex 1 has been tested against Gram(+) and Gram(-) bacteria and it has shown promising broad range anti-bacterial activity.

  19. SPHERES Slosh

    NASA Image and Video Library

    2014-06-18

    ISS040-E-014468 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity. Russian cosmonaut Maxim Suraev (bottom right), flight engineer, looks on.

  20. Synthesis and catalytic activity of heterogeneous rare-earth metal catalysts coordinated with multitopic Schiff-base ligands.

    PubMed

    Sun, Yilin; Wu, Guangming; Cen, Dinghai; Chen, Yaofeng; Wang, Limin

    2012-08-28

    Four multitopic Schiff-base ligand precursors were synthesized via condensation of 4,4'-diol-3,3'-diformyl-1,1'-diphenyl or 1,3,5-tris(4-hydroxy-5-formylphenyl)benzene with 2,6-diisopropylaniline or 2,6-dimethylaniline. Amine elimination reactions of Ln[N(SiMe(3))(2)](3) (Ln = La, Nd, Sm or Y) with these multitopic ligand precursors gave ten heterogeneous rare-earth metal catalysts. These heterogeneous rare-earth metal catalysts are active for intramolecular hydroalkoxylation of alkynols, and the catalytic activities are influenced by the ligand and metal ion. The recycling experiment on the most active heterogeneous catalyst showed the catalyst has a good reusability.

  1. Coordination chemistry of tetradentate N-donor ligands containing two pyrazolyl-pyridine units separated by a 1,8-naphthyl spacer: dodecanuclear and tetranuclear coordination cages and cyclic helicates.

    PubMed

    Argent, Stephen P; Adams, Harry; Riis-Johannessen, Thomas; Jeffery, John C; Harding, Lindsay P; Mamula, Olimpia; Ward, Michael D

    2006-05-15

    The tetradentate ligand L(naph) contains two N-donor bidentate pyrazolyl-pyridine units connected to a 1,8-naphthyl core via methylene spacers; L45 and L56 are chiral ligands with a structure similar to that of L(naph) but bearing pinene groups fused to either C4 and C5 or C5 and C6 of the terminal pyridyl rings. The complexes [Cu(L(naph))](OTf) and [Ag(L(naph))](BF4) have unremarkable mononuclear structures, with Cu(I) being four-coordinate and Ag(I) being two-coordinate with two additional weak interactions (i.e., "2 + 2" coordinate). In contrast, [Cu4(L(naph))4][BF4]4 is a cyclic tetranuclear helicate with a tetrafluoroborate anion in the central cavity, formed by an anion-templating effect; electrospray mass spectrometry (ESMS) spectra show the presence of other cyclic oligomers in solution. The chiral ligands show comparable behavior, with [Cu(L45)](BF4) and [Ag(L45)](ClO4) having similar mononuclear crystal structures and with the ligands being tetradentate chelates. In contrast, [Ag4(L56)4](BF4)4 is a cyclic tetranuclear helicate in which both diastereomers of the complex are present in the crystal; the two diastereomers have similar gross geometries but are significantly different in detail. Despite their different crystal structures, [Ag(L45)](ClO4) and [Ag4(L56)4](BF4)4 behave similarly in solution according to ESMS studies, with a range of cyclic oligomers (up to Ag9L9) forming. With transition-metal dications Co(II), Cu(II), and Cd(II), L(naph) generates a series of unusual dodecanuclear coordination cages [M12(L(naph))18]X24 (X- = ClO4- or BF4-) in which the 12 metal ions occupy the vertices of a truncated tetrahedron and a bridging ligand spans each of the 18 edges. The central cavity of each cage can accommodate four counterions, and each cage molecule is chiral, with all 12 metal trischelates being homochiral; the crystals are racemic. Extensive aromatic stacking between ligands around the periphery of the cages appears to be a significant factor in

  2. Exploration of a Variety of Copper Molybdate Coordination Hybrids Based on a Flexible Bis(1,2,4-triazole) Ligand: A Look through the Composition-Space Diagram.

    PubMed

    Senchyk, Ganna A; Lysenko, Andrey B; Domasevitch, Konstantin V; Erhart, Oliver; Henfling, Stefan; Krautscheid, Harald; Rusanov, Eduard B; Krämer, Karl W; Decurtins, Silvio; Liu, Shi-Xia

    2017-10-11

    We investigated the coordination ability of the bis(1,2,4-triazolyl) module, tr2pr = 1,3-bis(1,2,4-triazol-4-yl)propane, toward the engineering of solid-state structures of copper polyoxomolybdates utilizing a composition space diagram approach. Different binding modes of the ligand including [N-N]-bridging and N-terminal coordination and the existence of favorable conformation forms (anti/anti, gauche/anti, and gauche/gauche) resulted in varieties of mixed metal Cu(I)/Mo(VI) and Cu(II)/Mo(VI) coordination polymers prepared under hydrothermal conditions. The composition space analysis employed was aimed at both the development of new coordination solids and their crystallization fields through systematic changes of the reagent ratios [copper(II) and molybdenum(VI) oxide precursors and the tr2pr ligand]. Nine coordination compounds were synthesized and structurally characterized. The diverse coordination architectures of the compounds are composed of cationic fragments such as [Cu(II)3(μ2-OH)2(μ2-tr)2](4+), [Cu(II)3(μ2-tr)6](6+), [Cu(II)2(μ2-tr)3](4+), etc., connected to polymeric arrays by anionic species (molybdate MoO4(2-), isomeric α-, δ-, and β-octamolybdates {Mo8O26}(4-) or {Mo8O28H2}(6-)). The inorganic copper(I,II)/molybdenum(VI) oxide matrix itself forms discrete or low-dimensional subtopological motifs (0D, 1D, or 2D), while the organic spacers interconnect them into higher-dimensional networks. The 3D coordination hybrids show moderate thermal stability up to 230-250 °C, while for the 2D compounds, the stability of the framework is distinctly lower (∼190 °C). The magnetic properties of the most representative samples were investigated. The magnetic interactions were rationalized in terms of analyzing the planes of the magnetic orbitals.

  3. Laser range profile of spheres

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-09-01

    Profile information about a three-dimensional target can be obtained by laser range profile (LRP). A mathematical LRP model from rough sphere is presented. LRP includes laser one-dimensional range profile and laser two-dimensional range profile. A target coordinate system and an imaging coordinate system are established, the mathematical model of the range profile is derived in the imaging coordinate system. The mathematical model obtained has nothing to do with the incidence direction of laser. It is shown that the laser range profile of the sphere is independent of the incidence direction of laser. This is determined by the symmetry of the sphere. The laser range profile can reflect the shape and material properties of the target. Simulations results of LRP about some spheres are given. Laser range profile of sphere, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profile of sphere, whose surface mater with diffuse materials whose retro-reflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser range profiles of different pulse width of sphere are given in this paper. The influences of geometric parameters, pulse width on the range profiles are analyzed.

  4. The collective coordinates Jacobian

    NASA Astrophysics Data System (ADS)

    Schwartz, Moshe; Vinograd, Guy

    2002-05-01

    We develop an expansion for the Jacobian of the transformation from particle coordinates to collective coordinates. As a demonstration, we use the lowest order of the expansion in conjunction with a variational principle to obtain the Percus Yevick equation for a monodisperse hard sphere system and the Lebowitz equations for a polydisperse hard sphere system.

  5. Effect of axial ligand, spin state, and hydrogen bonding on the inner-sphere reorganization energies of functional models of cytochrome P450.

    PubMed

    Bandyopadhyay, Sabyasachi; Rana, Atanu; Mittra, Kaustuv; Samanta, Subhra; Sengupta, Kushal; Dey, Abhishek

    2014-10-06

    Using a combination of self-assembly and synthesis, bioinspired electrodes having dilute iron porphyrin active sites bound to axial thiolate and imidazole axial ligands are created atop self-assembled monolayers (SAMs). Resonance Raman data indicate that a picket fence architecture results in a high-spin (HS) ground state (GS) in these complexes and a hydrogen-bonding triazole architecture results in a low-spin (LS) ground state. The reorganization energies (λ) of these thiolate- and imidazole-bound iron porphyrin sites for both HS and LS states are experimentally determined. The λ of 5C HS imidazole and thiolate-bound iron porphyrin active sites are 10-16 kJ/mol, which are lower than their 6C LS counterparts. Density functional theory (DFT) calculations reproduce these data and indicate that the presence of significant electronic relaxation from the ligand system lowers the geometric relaxation and results in very low λ in these 5C HS active sites. These calculations indicate that loss of one-half a π bond during redox in a LS thiolate bound active site is responsible for its higher λ relative to a σ-donor ligand-like imidazole. Hydrogen bonding to the axial ligand leads to a significant increase in λ irrespective of the spin state of the iron center. The results suggest that while the hydrogen bonding to the thiolate in the 5C HS thiolate bound active site of cytochrome P450 (cyp450) shifts the potential up, resulting in a negative ΔG, it also increases λ resulting in an overall low barrier for the electron transfer process.

  6. Rational assembly of Pb(II)/Cd(II)/Mn(II) coordination polymers based on flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    SciTech Connect

    Yang, Gao-Shan; Liu, Chong-Bo; Liu, Hong; Robbins, Julianne; Zhang, Z. John; Yin, Hong-Shan; Wen, Hui-Liang; Wang, Yu-Hua

    2015-05-15

    Six new coordination polymers, namely, [Pb(L)(H{sub 2}O)] (1), [Pb(L)(phen)] (2), [Pb{sub 2}(L){sub 2}(4,4′-bipy){sub 0.5}] (3), [Cd(L)(phen)] (4), [Cd(L)(4,4′-bipy)]·H{sub 2}O (5) and [Mn(L)(4,4′-bipy)]·H{sub 2}O (6) have been synthesized by the hydrothermal reaction of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) with Pb(II)/Cd(II)/Mn(II) in the presence of ancillary ligands 4,4′-bipyridine (4,4′-bipy) or 1,10-phenanthroline (phen). Complexes 1 and 4–6 exhibit 2-D structures, and complexes 2–3 display 3-D frameworks, of which L{sup 2−} ligands join metal ions to single-stranded helical chains of 1, 3–6 and double-stranded helical chains of 2. Complexes 2 and 3 also contain double-stranded Metal–O helices. Topology analysis reveals that complexes 1 and 4 both represent 4-connected sql net, 2 represents 6-connected pcu net, 3 exhibits a novel (3,12)-connected net, while 5 and 6 display (3,5)-connected gek1 net. The six complexes exhibit two kinds of inorganic–organic connectivities: I{sup 0}O{sup 2} for 1, 4–6, and I{sup 1}O{sup 2} for 2–3. The photoluminescent properties of 4–5 and the magnetic properties of 6 have been investigated. - Graphical abstract: Six new Pb(II)/Cd(II)/Mn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent and magnetic properties have been investigated. - Highlights: • Six novel M(II) coordination polymers with 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid and N-donor ligands. • Complexes 1–6 show diverse intriguing helical characters. • The luminescent properties of complexes 1–5 were investigated. • Complex 6 shows antiferromagnetic coupling.

  7. Visible and NIR photoluminescence properties of a series of novel lanthanide-organic coordination polymers based on hydroxyquinoline-carboxylate ligands.

    PubMed

    Gai, Yan-Li; Xiong, Ke-Cai; Chen, Lian; Bu, Yang; Li, Xing-Jun; Jiang, Fei-Long; Hong, Mao-Chun

    2012-12-17

    A series of novel two-dimensional (2D) lanthanide coordination polymers with 4-hydroxyquinoline-2-carboxylate (H(2)hqc) ligands, [Ln(Hhqc)(3)(H(2)O)](n)·3nH(2)O (Ln = Eu (1), Tb (2), Sm (3), Nd (4), and Gd (5)) and [Ln(Hhqc)(ox)(H(2)O)(2)](n) (Ln = Eu (6), Tb (7), Sm (8), Tm (9), Dy (10), Nd (11), Yb (12), and Gd (13); H(2)ox = oxalic acid), have been synthesized under hydrothermal conditions. Complexes 1-5 are isomorphous, which can be described as a two-dimensional (2D) hxl/Shubnikov network based on Ln(2)(CO(2))(4) paddle-wheel units, and the isomorphous complexes 6-13 feature a 2D decker layer architecture constructed by Ln-ox infinite chains cross-linked alternatively by bridging Hhqc(-) ligands. The room-temperature photoluminescence spectra of complexes Eu(III) (1 and 6), Tb(III) (2 and 7), and Sm(III) (3 and 8) exhibit strong characteristic emissions in the visible region, whereas Nd(III) (4 and 11) and Yb(III) (12) complexes display NIR luminescence upon irradiation at the ligand band. Moreover, the triplet state of H(2)hqc matches well with the emission level of Eu(III), Tb(III), and Sm(III) ions, which allows the preparation of new optical materials with enhanced luminescence properties.

  8. Two 2D Cd(II) coordination polymers based on asymmetrical Schiff-base ligand: synthesis, crystal structures and luminescent properties.

    PubMed

    Dang, Dong-Bin; Li, Meng-Meng; Bai, Yan; Zhou, Rui-Min

    2013-02-15

    Two new two-dimensional coordination polymers [Cd(3)L(2)(SCN)(6)](n) (1) and [CdLI(2)](n) (2) have been synthesized and characterized by IR spectroscopy, elemental analysis, TG technique, XRPD and complete single crystal structure analysis, where L is 4-(pyridine-2-yl)methyleneamino-1,2,4-trizaole. Asymmetrical Schiff-base ligand L with five- and six-membered N-containing heterocyclic rings acts as a tridentate bridging ligand to bind two Cd(II) centers through one terminal N(triazolyl) and one pyridylimine chelate unit in 1 and 2. For polymer 1, tridentate bridging ligands link Cd-(1,3-μ-SCN(-)) 1D inorganic chains to form a 2D layer network. The existence of C-H···π and π-π stacking interactions between 2D hybrid layers further gives rise to a 3D supramolecular network. In comparison with 1, polymer 2 shows a 2D layer network containing hexanuclear macrometallacyclic units. The 2D layers are staggered together through the combination of C-H···π and π-π stacking interactions and forming a 3D supramolecular structure. The luminescent properties of the polymers 1 and 2 were investigated in the solid state at room temperature.

  9. Copper(II) complexes with peptides based on the second cell binding site of fibronectin: metal coordination and ligand exchange kinetics.

    PubMed

    Pizzanelli, Silvia; Forte, Claudia; Pinzino, Calogero; Magrì, Antonio; La Mendola, Diego

    2016-02-07

    Copper(ii) complexes with short peptides based on the second cell binding site of fibronectin, PHSFN and PHSEN, have been characterized by potentiometric, UV-vis, CD, EPR and NMR spectroscopic methods. The histidine imidazole nitrogen is the anchoring site for the metal ion binding. Thermodynamic and spectroscopic evidence is given that the side chain oxygen donor atom of glutamyl residue in Ac-PHSEN-NH2 is also involved in the binding up to physiological pH. To determine ligand exchange kinetic parameters after the imidazole nitrogen anchoring, proton relaxation enhancement NMR data have been collected for the two hydrogen atoms of the imidazole ring in the temperature range 293-315 K at pH 5.2 and globally treated within different kinetic models for ligand exchange. The best fitting model involves two steps. In the first one, which is slow, a water molecule disengages a carbonyl or a carboxylate group coordinated to the metal ion in the complex formed by PHSFN or PHSEN, respectively. This stage is one order of magnitude slower for PHSEN, due to entropic effects. In the second step, which is fast, the complex just formed exchanges with the ligand. In this step, no appreciable differences are found for the two cases examined.

  10. Alkyl group dependence on structure and magnetic properties in layered cobalt coordination polymers containing substituted glutarate ligands and 4,4'-bipyridine

    SciTech Connect

    Nettleman, Joseph H.; Supkowski, Ronald M.; LaDuca, Robert L.

    2010-02-15

    Five two-dimensional divalent cobalt coordination polymers containing 4,4'-bipyridine (bpy) and substituted or unsubstituted glutarate ligands have been prepared hydrothermally and structurally characterized by single-crystal X-ray diffraction. [Co(mg)(bpy)]{sub n} (1, mg=3-methylglutarate) forms a (4,4) rhomboid grid structure based on the connection of {l_brace}Co{sub 2}(CO{sub 2}){sub 2}{r_brace} dimeric units. Using the more sterically encumbered ligands 3,3-dimethylglutarate (dmg) and 3-ethyl, 3-methylglutarate (emg) generated {l_brace}[Co(dmg)(bpy)(H{sub 2}O)].2H{sub 2}O{r_brace}{sub n} (2) and {l_brace}[Co(emg)(bpy)(H{sub 2}O)].H{sub 2}O{r_brace}{sub n} (3), respectively. These complexes manifest {l_brace}Co(CO{sub 2}){r_brace}{sub n} chains linked into 2-D by aliphatic dicarboxylate and bpy ligands. The 'tied-back' substituted glutarate ligand 1,1-cyclopentanediacetate (cda) afforded [Co(cda)(bpy)]{sub n} (4), and the unsubstituted glutarate (glu) generated [Co(glu)(bpy)]{sub n} (5), both of which exhibit a topology similar to that of 1. The magnetic properties of complexes 1-4 were analyzed successfully with a recently developed phenomenological chain model accounting for both magnetic coupling (J) and zero-field splitting effects (D), even though 1 and 4 contain isolated, discrete {l_brace}Co{sub 2}(CO{sub 2}){sub 2}{r_brace} dimers. The D parameter in this series varied between 21.8(8) and 48.0(9) cm{sup -1}. However weak antiferromagnetic coupling was observed in 1 (J=-2.43(4) cm{sup -1}) and 4 (J=-0.89(2) cm{sup -1}), while weak ferromagnetic coupling appears to be operative in both 2 (J=0.324(5) cm{sup -1}) and 3 (J=0.24(1) cm{sup -1}). - Five two-dimensional divalent cobalt coordination polymers containing 4,4'-bipyridine (bpy) and substituted or unsubstituted glutarate ligands have been prepared and structurally characterized by single-crystal X-ray diffraction. Three contain dimeric {l_brace}Co{sub 2}(CO{sub 2}){sub 2}{r_brace} units, while two

  11. Crystal structure of a pyrazine-2,3-dicarboxamide ligand and of its silver(I) nitrate complex, a three-dimensional coordination polymer.

    PubMed

    Cati, Dilovan S; Stoeckli-Evans, Helen

    2017-06-01

    The title ligand, C18H16N6O2·2H2O (L1) [N(2),N(3)-bis-(pyridin-4-ylmeth-yl)pyrazine-2,3-dicarboxamide], crystallized as a dihydrate. The mol-ecule is U-shaped with the carboxamide groups being cis to one another, making a dihedral angle of 81.6 (5)°. The terminal pyridine rings are inclined to one another by 58.5 (4)°. There is an intra-molecular N-H⋯Npyrazine hydrogen bond present, forming an S(5) ring motif. In the crystal, adjacent mol-ecules are linked by N-H⋯Ocarboxamide hydrogen bonds, forming a chain along [001]. A chain of hydrogen-bonded water mol-ecules is linked to the chain of (L1) mol-ecules by O-H⋯N hydrogen bonds, forming columns propagating along the c axis. The columns are linked by C-H⋯O and C-H⋯N hydrogen bonds, forming a three-dimensional supra-molecular structure. The reaction of ligand (L1) with silver(I) nitrate led to the formation of a new three-dimensional coordination polymer, {[Ag(C18H16N6O2)]NO3} n , poly[[[μ4-N(2),N(3)-bis-(pyridin-4-ylmeth-yl)pyrazine-2,3-dicarboxamide]-silver(I)] nitrate] (I). The asymmetric unit is composed of half of one silver ion, located on a twofold rotation axis, half a ligand mol-ecule and half a positionally disordered nitrate anion located about a twofold rotation axis. The full mol-ecule of the ligand is generated by twofold rotational symmetry, with this twofold axis bis-ecting the Car-Car bonds of the pyrazine ring and the Ag-Ag bond. The carboxamide groups are now trans to one another, making a dihedral angle of 65.8 (4)°. The two terminal pyridine rings are inclined to one another by 6.6 (3)°. Two ligands wrap around an Ag-Ag bond of 3.1638 (11) Å, forming a figure-of-eight-shaped complex mol-ecule. Each silver ion is coordinated by two pyridine N atoms and by two carboxamide O atoms of neighbouring mol-ecules, hence forming a three-dimensional framework. The nitrate anion is linked to the framework by N-H⋯O and C-H⋯O hydrogen bonds.

  12. Contrasting coordination behavior of Group 12 perchlorate salts with an acyclic N3O2 donor ligand by X-ray crystallography and (1)H NMR.

    PubMed

    Tice, Daniel B; Pike, Robert D; Bebout, Deborah C

    2016-08-09

    An unbranched N3O2 ligand 2,6-bis[((2-pyridinylmethyl)oxy)methyl]pyridine (L1) was used to prepare new mononuclear heteroleptic Group 12 perchlorate complexes characterized by IR, (1)H NMR and X-ray crystallography. Racemic complexes with pentadentate L1 and one to four oxygens from either water or perchlorate bound to a metal ion were structurally characterized. Octahedral [Zn(L1)(OH2)](ClO4)2 (1) and pentagonal bipyramidal [Cd(L1)(OH2)(OClO3)]ClO4 (2) structures were found with lighter congeners. The polymorphic forms of [Hg(L1)(ClO4)2] characterized (3 in P1[combining macron] and 4 in P21/c) had a mix of monodentate, anisobidentate and bidentate perchlorates, providing the first examples of a tricapped trigonal prismatic Hg(ii) coordination geometry, as well as additional examples of a rare square antiprismatic Hg(ii) coordination geometry. Solution state (1)H NMR characterization of the Group 12 complexes in CD3CN indicated intramolecular reorganization remained rapid under conditions where intermolecular M-L1 exchange was slow on the chemical shift time scale for Zn(ii) and on the J(M(1)H) time scale for Cd(ii) and Hg(ii). Solution studies with more than one equivalent of ligand also suggested that a complex with a 1 : 2 ratio of M : L1 contributed significantly to solution equilibria with Hg(ii) but not the other metal ions. The behavior of related linear pentadentate ligands with Group 12 perchlorate salts is discussed.

  13. Tris(carbene)borate ligands featuring imidazole-2-ylidene, benzimidazol-2-ylidene, and 1,3,4-triazol-2-ylidene donors. Evaluation of donor properties in four-coordinate {NiNO}10 complexes.

    PubMed

    Muñoz, Salvador B; Foster, Wallace K; Lin, Hsiu-Jung; Margarit, Charles G; Dickie, Diane A; Smith, Jeremy M

    2012-12-03

    The synthesis and characterization of new tris(carbene)borate ligand precursors containing substituted benzimidazol-2-ylidene and 1,3,4-triazol-2-ylidene donor groups, as well as a new tris(imidazol-2-ylidene)borate ligand precursor are reported. The relative donor strengths of the tris(carbene)borate ligands have been evaluated by the position of ν(NO) in four-coordinate {NiNO}(10) complexes, and follow the order: imidazol-2-ylidene > benzimidazol-2-ylidene > 1,3,4-triazol-2-ylidene. There is a large variation in ν(NO), suggesting these ligands to have a wide range of donor strengths while maintaining a consistent ligand topology. All ligands are stronger donors than Tp* and Cp*.

  14. Tris(carbene)borate ligands featuring imidazole-2-ylidene, benzimidazol-2-ylidene and 1,3,4-triazol-2-ylidene donors. Evaluation of donor properties in four-coordinate {NiNO}10 complexes

    PubMed Central

    Muñoz, Salvador B.; Foster, Wallace K.; Lin, Hsiu-Jung; Margarit, Charles G.; Dickie, Diane A.

    2012-01-01

    The synthesis and characterization of new tris(carbene)borate ligand precursors containing substituted benzimidazol-2-ylidene and 1,3,4-triazol-2-ylidene donor groups, as well as a new tris(imidazol-2-ylidene)borate ligand precursor are reported. The relative donor strength of the tris(carbene)borate ligands have been evaluated by the position of ν(NO) in four-coordinate {NiNO}10 complexes, and follows the order: imidazol-2-ylidene > benzimidazol-2-ylidene > 1,3,4-triazol-2-ylidene. There is a large variation in ν(NO), suggesting these ligands to have a wide range of donor strengths while maintaining a consistent ligand topology. All ligands are stronger donors than Tp* and Cp*. PMID:23140462

  15. Syntheses, structures and luminescent properties of zinc(II) and cadmium(II) coordination complexes based on new bis(imidazolyl)ether and different carboxylate ligands.

    PubMed

    Wei, Guo-Hua; Yang, Jin; Ma, Jian-Fang; Liu, Ying-Ying; Li, Shun-Li; Zhang, Lai-Ping

    2008-06-21

    A series of mixed-ligand coordination complexes, namely [Zn(CA)(2)(BIE)] (1), [Zn(OX)(BIE)].H(2)O (2), [Zn(2)(m-BDC)(2)(BIE)(2)] (3), [Cd(m-BDC)(BIE)] (4), [Cd(5-OH-m-BDC)(BIE)] (5), [Zn(5-OH-m-BDC)(BIE)] (6), [Zn(2)(p-BDC)(2)(BIE)(2)].2.5H(2)O (7), [Cd(3)(p-BDC)(3)(BIE)] (8), [Cd(3)(BTC)(2)(BIE)(2)].0.5H(2)O (9) and [Zn(BTCA)(0.5)(BIE)] (10), where CA = cinnamate anion, OX = oxalate anion, m-BDC = 1,3-benzenedicarboxylate anion, 5-OH-m-BDC = 5-OH-1,3-benzenedicarboxylate anion, p-BDC = 1,4-benzenedicarboxylate anion, BTC = 1,3,5-benzenetricarboxylate anion, BTCA = 1,2,3,4-butanetetracarboxylate anion, and BIE = 2,2'-bis(1H-imidazolyl)ether, were synthesized under hydrothermal conditions. In 1, a pair of BIE ligands bridge adjacent Zn(II) atoms to give a centrosymmetric dimer. In 2 and 3, BIE ligands connect Zn(II)-carboxylate chains to form hexagonal honeycomb 6(3)-hcb and square 4(4)-sql layers, respectively. In 4 and 5, m-BDC and 5-OH-m-BDC bridge Cd(II) atoms to give dimeric units, respectively, which are further linked by BIE ligands to form sql nets. In 6, the BIE ligands extend the Zn(II)-carboxylate chains into 2D sinusoidal-like sql nets. The undulated sql nets polycatenate each other in the parallel manner with DOC (degree of catenation) = 2, yielding a rare 2D --> 3D parallel polycatenation net. In 7, the BIE and p-BDC ligands link the Zn(ii) atoms to give a rare 3-fold interpenetrated 3-connected 10(3)-ths net. 8 contains unusual edge-sharing polyhedral rods formed by [Cd(3)(CO(2))(6)] clusters. Each rod is connected by the benzene rings of p-BDC in four directions into a simple alpha-Po topology. In 9, two kinds of different 2D Cd-BTC layers are alternately linked to each other by sharing Cd(ii) centers to form a 3D framework, which is further linked by two kinds of BIE ligand to produce a complicated 3D polymeric structure. 10 possesses a unique (3,4)-connected 3D framework with (8(3))(2)(8(5).10) topology. The structural differences described

  16. Cytosine Nucleobase Ligand: A Suitable Choice for Modulating Magnetic Anisotropy in Tetrahedrally Coordinated Mononuclear Co(II) Compounds.

    PubMed

    Bruno, Rosaria; Vallejo, Julia; Marino, Nadia; De Munno, Giovanni; Krzystek, J; Cano, Joan; Pardo, Emilio; Armentano, Donatella

    2017-02-20

    A family of tetrahedral mononuclear Co(II) complexes with the cytosine nucleobase ligand is used as the playground for an in-depth study of the effects that the nature of the ligand, as well as their noninnocent distortions on the Co(II) environment, may have on the slow magnetic relaxation effects. Hence, those compounds with greater distortion from the ideal tetrahedral geometry showed a larger-magnitude axial magnetic anisotropy (D) together with a high rhombicity factor (E/D), and thus, slow magnetic relaxation effects also appear. In turn, the more symmetric compound possesses a much smaller value of the D parameter and, consequently, lacks single-ion magnet behavior.

  17. Tuning the electronic coupling in Mo2-Mo2 systems by variation of the coordinating atoms of the bridging ligands.

    PubMed

    Shu, Yao; Lei, Hao; Tan, Ying Ning; Meng, Miao; Zhang, Xiao Chun; Liu, Chun Y

    2014-10-21

    Three novel [Mo2]-bridge-[Mo2] complexes were synthesized by a convergent assembling reaction of the dimetal precursor Mo2(DAniF)3(O2CCH3) (DAniF = N,N'-di(p-anisyl)formamidinate) with the bridging ligands terephthalamidine, terephthalamide and dithioterephthalamide. The structures of these compounds, [Mo2(DAniF)3]2[μ-1,4-{C(E)NH}2-C6H4] (E = NH (), O () or S ()), were determined, either by X-ray crystallography or (1)H NMR spectroscopy, to be the analogues of the terephthalate bridged dimolybdenum dimer. These compounds are structurally and electronically closely related by having the same structural skeleton and similar bonding parameters, which allowed us to analyze the differences between N, O and S atoms on the bridging ligand in promoting electronic interaction between the two [Mo2] units. In the electronic spectra, the metal to ligand charge transfer absorption bands, attributed to the HOMO (dδ) → LUMO (pπ*) transition, was red shifted as the variable atoms change from N to O to S. The mixed-valence species (+), (+) and (+), generated by one-electron oxidation of the neutral precursors and measured in situ, exhibited characteristic intervalence absorption bands, for which the energy and half-height bandwidth decreased from (+) to (+). Therefore, in comparison to O atoms, S atoms are capable of enhancing the electronic coupling between the two [Mo2] units, and the incorporation of N atoms to the bridging ligands slightly diminished the metal-metal interaction. The molecular structures and spectroscopic properties of these compounds were simulated by theoretical calculations at DFT level on the simplified models, which gave results consistent with the experimental observations.

  18. Unusual saccharin-N,O (carbonyl) coordination in mixed-ligand copper(II) complexes: Synthesis, X-ray crystallography and biological activity

    NASA Astrophysics Data System (ADS)

    Mokhtaruddin, Nur Shuhada Mohd; Yusof, Enis Nadia Md; Ravoof, Thahira B. S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhi; Tahir, Mohamed Ibrahim Mohamed

    2017-07-01

    Three tridentate Schiff bases containing N and S donor atoms were synthesized via the condensation reaction between S-2-methylbenzyldithiocarbazate with 2-acetyl-4-methylpyridine (S2APH); 4-methyl-3-thiosemicarbazide with 2-acetylpyridine (MT2APH) and 4-ethyl-3-thiosemicarbazide with 2-acetylpyridine (ET2APH). Three new, binuclear and mixed-ligand copper(II) complexes with the general formula, [Cu(sac)(L)]2 (sac = saccharinate anion; L = anion of the Schiff base) were then synthesized, and subsequently characterized by IR and UV/Vis spectroscopy as well as by molar conductivity and magnetic susceptibility measurements. The Schiff bases were also spectroscopically characterized using NMR and MS to further confirm their structures. The spectroscopic data indicated that the Schiff bases behaved as a tridentate NNS donor ligands coordinating via the pyridyl-nitrogen, azomethine-nitrogen and thiolate-sulphur atoms. Magnetic data indicated a square pyramidal environment for the complexes and the conductivity values showed that the complexes were essentially non-electrolytes in DMSO. The X-ray crystallographic analysis of one complex, [Cu(sac)(S2AP)]2 showed that the Cu(II) atom was coordinated to the thiolate-S, azomethine-N and pyridyl-N donors of the S2AP Schiff base and to the saccharinate-N from one anion, as well as to the carbonyl-O atom from a symmetry related saccharinate anion yielding a centrosymmetric binuclear complex with a penta-coordinate, square pyramidal geometry. All the copper(II) saccharinate complexes were found to display strong cytotoxic activity against the MCF-7 and MDA-MB-231 human breast cancer cell lines.

  19. Complexes of Ag(I), Hg(I) and Hg(II) with multidentate pyrazolyl-pyridine ligands: From mononuclear complexes to coordination polymers via helicates, a mesocate, a cage and a catenate.

    PubMed

    Argent, Stephen P; Adams, Harry; Riis-Johannessen, Thomas; Jeffery, John C; Harding, Lindsay P; Clegg, William; Harrington, Ross W; Ward, Michael D

    2006-11-14

    The coordination chemistry of a series of di- and tri-nucleating ligands with Ag(I), Hg(I) and Hg(II) has been investigated. Most of the ligands contain two or three N,N'-bidentate chelating pyrazolyl-pyridine units pendant from a central aromatic spacer; one contains three binding sites (2 + 3 + 2-dentate) in a linear sequence. A series of thirteen complexes has been structurally characterised displaying a wide range of structural types. Bis-bidentate bridging ligands react with Ag(I) to give complexes in which Ag(I) is four-coordinate from two bidentate donors, but the complexes can take the form of one-dimensional coordination polymers, or dinuclear complexes (mesocate or helicate). A tris-bidentate triangular ligand forms a complicated two-dimensional coordination network with Ag(I) in which Ag...Ag contacts, as well as metal-ligand coordination bonds, play a significant role. Three dinuclear Hg(I) complexes were isolated which contain an {Hg2}2+ metal-metal bonded core bound to a single bis-bidentate ligand which can span both metal ions. Also characterised were a series of Hg(II) complexes comprising a simple mononuclear four-coordinate Hg(II) complex, a tetrahedral Hg(II)4 cage which incorporates a counter-ion in its central cavity, a trinuclear double helicate, and a trinuclear catenated structure in which two long ligands have spontaneously formed interlocked metallomacrocyclic rings thanks to cyclometallation of two of the Hg(II) centres.

  20. A series of novel 1D coordination polymers constructed from metal?quinolone complex fragments linked by aromatic dicarboxylate ligands

    NASA Astrophysics Data System (ADS)

    He, Jiang-Hong; Xiao, Dong-Rong; Yan, Shi-Wei; Sun, Dian-Zhen; Chen, Hai-Yan; Wang, Xin; Yang, Juan; Ye, Zhong-Li; Yuan, Ruo; Wang, En-Bo

    2012-08-01

    Self-assembly of quinolones with metal salts in the presence of aromatic dicarboxylate ligands affords a series of novel 1D metal-quinolone complexes, namely [Mn(Hppa)(oba)]·3H2O (1), [Co(Hppa)(oba)]·3.25H2O (2), [Zn(Hppa)(sdba)]·1.5H2O (3), [Mn(Hcf)(bpda)(H2O)]·2H2O (4), [Mn(Hppa)2(bpdc)] (5) and [Mn(Hlome)2(bpdc)]·4H2O (6) (Hppa = Pipemidic acid, Hcf = ciprofloxacin, Hlome = lomefloxacin). The structures of compounds 1-3 consist of novel polymeric chains spanning two different directions, which display an intriguing 1D → 3D inclined polycatenation of supramolecular ladders. Compound 4 exhibits a chain compound formed from the interconnection of [Mn2(Hcf)2(μ-CO2)2] dimers with bpda ligands. Compounds 5 and 6 are similar chain compounds constructed from [Mn(Hppa)2] (or [Mn(Hlome)2]) fragments linked by bpdc ligands. The magnetic properties of 4 have been studied, which indicate the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compound 3 are discussed.

  1. Cu(II) and Cu(I) coordination complexes involving two tetrathiafulvalene-1,3-benzothiazole hybrid ligands and their radical cation salts.

    PubMed

    Yokota, Sayo; Tsujimoto, Keijiro; Hayashi, Sadayoshi; Pointillart, Fabrice; Ouahab, Lahcène; Fujiwara, Hideki

    2013-06-03

    Preparations, crystal structure analyses, and magnetic property investigations on a new Cu(II)(hfac)2 complex coordinated with two TTF-CH═CH-BTA ligands, where hfac is hexafluoroacetylacetonate, TTF is tetrathiafulvalene, and BTA is 1,3-benzothiazole, are reported together with those of its dicationic AsF6(-) salt, [Cu(hfac)2(TTF-CH═CH-BTA)2](AsF6)2, in which each TTF part is in a radical cation state. In these Cu(II)(hfac)2 complexes, two ligands are bonded to the central Cu atom of the Cu(hfac)2 part through the nitrogen atom of the 1,3-benzothiazole ring and occupy the two apical positions of the Cu(hfac)2 complex with an elongated octahedral geometry. These two ligands are located parallelly in a transverse head-to-tail manner, and the Cu(hfac)2 moiety is closely sandwiched by these two ligands. In the AsF6(-) salt of the Cu(hfac)2 complex, each TTF dimer is separated by the AsF6(-) anions and has no overlap with each other within the one-dimensional arrays, resulting in an insulating behavior. Both Cu(hfac)2 complexes showed the simple Curie-like temperature dependence of paramagnetic susceptibilities (χM), indicating that no interaction exists between the paramagnetic Cu(II) d spins. Furthermore, crystal structure analysis and magnetic/conducting properties of a radical cation ReO4(-) salt of the Cu(I) complex with two TTF-CH═CH-BTA ligands, [Cu(TTF-CH═CH-BTA)2](ReO4)2, are also described. Two nitrogen atoms of the ligands are connected to the central Cu(I) in a linear dicoordination with a Cu-N bond length of 1.879(9) Å. Two TTF parts of the neighboring complexes form a dimerized structure, and such a TTF dimer forms a one-dimensional uniform array along the a direction with a short S-S contact of 3.88 Å. Magnetic property measurement suggested the existence of a strongly antiferromagnetic one-dimensional uniform chain of S = 1/2 spins that originate from the radical cation states of the TTF dimers. Due to the construction of the one

  2. Sticky surface: sphere-sphere adhesion dynamics

    PubMed Central

    Sircar, Sarthok; Younger, John G.; Bortz, David M.

    2014-01-01

    We present a multi-scale model to study the attachment of spherical particles with a rigid core, coated with binding ligands and suspended in the surrounding, quiescent fluid medium. This class of fluid-immersed adhesion is widespread in many natural and engineering settings, particularly in microbial surface adhesion. Our theory highlights how the micro-scale binding kinetics of these ligands, as well as the attractive / repulsive surface potential in an ionic medium affects the eventual macro-scale size distribution of the particle aggregates (flocs). The bridge between the micro-macro model is made via an aggregation kernel. Results suggest that the presence of elastic ligands on the particle surface lead to the formation of larger floc aggregates via efficient inter-floc collisions (i.e., non-zero sticking probability, g). Strong electrolytic composition of the surrounding fluid favors large floc formation as well. The kernel for the Brownian diffusion for hard spheres is recovered in the limit of perfect binding effectiveness (g → 1) and in a neutral solution with no dissolved salts. PMID:25159830

  3. On the search for NNO-donor enantiopure scorpionate ligands and their coordination to group 4 metals.

    PubMed

    Otero, Antonio; Fernández-Baeza, Juan; Tejeda, Juan; Lara-Sánchez, Agustín; Sánchez-Molina, Margarita; Franco, Sonia; López-Solera, Isabel; Rodríguez, Ana M; Sánchez-Barba, Luis F; Morante-Zarcero, Sonia; Garcés, Andrés

    2009-06-15

    The preparation of new chiral bis(pyrazol-1-yl)methane-based NNO-donor scorpionate ligands in the form of the lithium derivatives [Li(bpzb)(THF)] [1; bpzb = 1,1-bis(3,5-dimethylpyrazol-1-yl)-3,3-dimethyl-2-butoxide] and [Li(bpzte)(THF)] [2; bpzte = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-p-tolylethoxide] or the alcohol ligands (bpzbH) (3) and (bpzteH) (4) has been carried out by 1,2-addition reactions with trimethylacetaldehyde or p-tolualdehyde. The separation of a racemic mixture of the alcohol ligand 3 has been achieved and gave an enantiopure NNO alcohol-scorpionate ligand in three synthetic steps: (i) 1,2-addition of the appropriate lithium derivative to trimethylacetaldehyde, (ii) esterification and separation of diastereoisomers 5, (iii) saponification. Subsequently, the enantiopure scorpionate ligand (R,R)-bpzmmH {6; R,R-bpzmmH = (1R)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethanol} was obtained with an excellent diastereomeric excess (>99% de) in a one-pot process utilizing the aldehyde (1R)-(-)-myrtenal as a chiral substrate to control the stereochemistry of the newly created asymmetric center. These new chiral heteroscorpionate ligands reacted with [MX(4)] (M = Ti, Zr; X = NMe(2), O(i)Pr, OEt, O(t)Bu) in a 1:1 molar ratio in toluene to give, after the appropriate workup, the complexes [MX(3)(kappa(3)-NNO)] (7-18). The reaction of Me(3)SiCl with [Ti(NMe(2))(3)(bpzb)] (7) or [Ti(NMe(2))(3)(R,R-bpzmm)] (11) in different molar ratios gave the halide-amide-containing complexes [TiCl(NMe(2))(2)(kappa(3)-NNO)] (19 and 20) and [TiCl(2)(NMe(2))(kappa(3)-NNO)] (21 and 22) and the halide complex [TiCl(3)(kappa(3)-NNO)] (23 and 24). The latter complexes can also be obtained by reaction of the lithium compound 1 with TiCl(4)(THF)(2) and deprotonation of the alcohol group of 6 with NaH, followed by reaction with TiCl(4)(THF)(2) in a 1:1 molar ratio, respectively. Isolation of only one of the three possible diastereoisomers of the

  4. Metallogels derived from silver coordination polymers of C3-symmetric tris(pyridylamide) tripodal ligands: synthesis of Ag nanoparticles and catalysis.

    PubMed

    Paul, Mithun; Sarkar, Koushik; Dastidar, Parthasarathi

    2015-01-02

    By applying a recently developed crystal engineering rationale, four C3 symmetric tris(pyridylamide) ligands namely 1,3,5-tris(nicotinamidomethyl)-2,4,6-triethylbenzene, 1,3,5-tris(isonicotinamidomethyl)-2,4,6-triethylbenzene, 1,3,5-tris(nicotinamidomethyl)-2,4,6-trimethylbenzene, and 1,3,5-tris(isonicotinamidomethyl)-2,4,6-trimethylbenzene, which contain potential hydrogen-bonding sites, were designed and synthesized for generating Ag(I) coordination polymers and coordination-polymer-based gels. The coordination polymers thus obtained were characterized by single-crystal X-ray diffraction. The silver metallogels were characterized by transmission electron microscopy (TEM) and dynamic rheology. Upon exposure to visible light, these silver metallogels produced silver nanoparticles (AgNPs), which were characterized by TEM, powder X-ray diffraction, energy dispersive X-ray and X-ray photoelectron spectroscopy. These NPs were found to be effectively catalyzed the reduction of 4-nitrophenolate to 4-aminophenolate without the use of any exogenous reducing agent.

  5. Synthesis, structure, magnetic properties and EPR spectroscopy of a copper(II) coordination polymer with a ditopic hydrazone ligand and acetate bridges.

    PubMed

    Bikas, Rahman; Aleshkevych, Pavlo; Hosseini-Monfared, Hassan; Sanchiz, Joaquín; Szymczak, Ritta; Lis, Tadeusz

    2015-01-28

    A new one dimensional coordination polymer of copper(II), [Cu4(L)2(μ2-1,1-OAc)2(μ2-1,3-OAc)4]n (1), has been synthesized and characterized by spectroscopic methods and single crystal X-ray analysis [HL = (E)-N'-(phenyl(pyridin-2-yl)methylene)isonicotinhydrazide, OAc = acetate anion]. The coordination polymer contains two kinds of Cu(II) dimers which are connected by two types of acetate (μ2-1,1- and μ2-1,3-) bridging groups. The ditopic isonicotinhydrazone ligand coordinates to the Cu1 center through the N2O-donor set and connects to the Cu2 center by a pyridine group of the isonicotine part. The EPR and magnetic susceptibility measurements confirm the existence of two kinds of Cu(II) dimers. The intradimer isotropic exchange was estimated to be +0.80(1) cm(-1) for the ferromagnetic Cu1···Cu1 dimeric unit and -315 (1) cm(-1) for the antiferromagnetic Cu2···Cu2 dimeric unit.

  6. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079355 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (foreground), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  7. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079332 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (foreground), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  8. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079129 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (left), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  9. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079083 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson, Expedition 40 commander, enters data in a computer in preparation for a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  10. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079910 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (left), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  11. Series of Hydrated Heterometallic Uranyl-Cobalt(II) Coordination Polymers with Aromatic Polycarboxylate Ligands: Formation of U═O-Co Bonding upon Dehydration Process.

    PubMed

    Falaise, Clément; Delille, Jason; Volkringer, Christophe; Vezin, Hervé; Rabu, Pierre; Loiseau, Thierry

    2016-10-06

    Five new heterometallic UO2(2+)-Co(2+) coordination polymers have been obtained by hydrothermal reactions of uranyl nitrate and metallic cobalt with aromatic polycarboxylic acids. Single-crystal X-ray diffraction reveals the formation of four 3D frameworks with the mellitate (noted mel) ligand and one 2D network with the isophthalate (noted iso) ligand. The compounds [(UO2(H2O))2Co(H2O)4(mel)]·4H2O (1), [UO2Co(H2O)4(H2mel)]·2H2O (2), and [(UO2(H2O))2Co(H2O)4(mel)] (4) consist of 3D frameworks built up from the connection of mellitate ligands and mononuclear metallic centers. These three compounds exhibit two types of geometry for the uranyl cation: pentagonal bipyramidal environment for 1 and 4, and hexagonal bipyramidal environment for 2. Using the mellitate ligand, the uranyl dinuclear unit is isolated in the compound [(UO2)2(OH)2(Co(H2O)4)2(mel)]·2H2O (3). Due to their 2D framework and the presence of uncoordinated cobalt(II) cations, the compound [(UO2)(iso)3][Co(H2O)6]·3(H2O) (5) is drastically different than the previous one. The thermal behavior of compounds 1, 2, and 3 has been studied by thermogravimetric analysis, X-ray thermodiffraction, and in situ infrared. By heating, the dehydration of compounds 1 and 2 promotes two structural transitions (1 → 1' and 2 → 2'). The crystal structures of [(UO2(H2O))2Co(H2O)2(mel)] (1') and [(UO2)Co(H2mel)] (2') were determined by single-crystal X-ray diffraction; each of them presents a heterometallic interaction between uranyl bond and the Co(II) center. Due to the rarely reported coordination environment for the cobalt center in compound 2' (square pyramidal configuration), the magnetic properties and EPR characterizations of the compounds 2 and 2' were also investigated.

  12. Unprecedented coordination modes and demetalation pathways for unbridged polyenyl ligands. Ruthenium eta1,eta4-cycloheptadienyl complexes from allyl/alkyne cycloaddition.

    PubMed

    Older, Christina M; McDonald, Robert; Stryker, Jeffrey M

    2005-10-19

    Cationic (eta6-hexamethylbenzene)ruthenium(II) mediates the [3 + 2 + 2] cycloaddition of allyl and alkyne ligands, leading to the unexpected isolation of eta1,eta4-cycloheptadienyl complexes, an unprecedented coordination mode for transition metal complexes of simple organic rings. The nonconjugated, eta1,eta4-coordinated complex is obtained as the kinetic reaction product from treatment of the unsubstituted allyl complex with excess ethyne; this complex rearranges slowly at 80 degrees C to the thermodynamically more stable conjugated eta5-cycloheptadienyl isomer. The eta1,eta4-coordinated isomer is fluxional at room temperature, undergoing rapid and reversible equilibration with a cycloheptatriene hydride intermediate via facile beta-hydride elimination/reinsertion. The reinsertion process is remarkably regioselective, returning the nonconjugated eta1,eta4-cycloheptadienyl isomer exclusively at room temperature. For reactions incorporating dimethylacetylene dicarboxylate (DMAD) as one or both of the alkyne components, eta1,eta4-coordination appears to be both kinetically and thermodynamically favored, despite undergoing equilibration among all possible eta1,eta4-cycloheptadienyl and cycloheptatriene hydride isomers prior to arriving at one observed eta1,eta4-isomer. For this series, no isomerization to eta5-coordination is observed even upon prolonged heating. In contrast, the cyclization incorporating both DMAD and phenylacetylene proceeds directly to the eta5-cycloheptadienyl isomer at or below room temperature, indicating that eta5-coordination remains energetically accessible to this system. The DMAD-based cyclization reactions produce structurally diverse minor byproducts, including both eta1,eta4-methanocyclohexadiene and acyclic eta3,eta2-heptadienyl isomers, which have been isolated and rigorously characterized. The unusual eta1,eta4-coordination of the seven-membered ring leads to unique new organic products upon oxidative demetalation by iodinolysis

  13. Molecular and electronic structures of iron(II)/(III) complexes containing N,S-coordinated, closed-shell o-aminothiophenolato(1-) and o-iminothiophenolato(2-) ligands.

    PubMed

    Ghosh, Prasanta; Begum, Ameerunisha; Bill, Eckhard; Weyhermüller, Thomas; Wieghardt, Karl

    2003-05-19

    The coordination chemistry of the ligands o-aminothiophenol, H(abt), 4,6-di-tert-butyl-2-aminothiophenol, H[L(AP)], and 1,2-ethanediamine-N,N'-bis(2-benzenethiol), H(4)('N(2)S(2')), with FeCl(2) under strictly anaerobic and increasingly aerobic conditions has been systematically investigated. Using strictly anaerobic conditions, the neutral, air-sensitive, yellow complexes (mu-S,S)[Fe(II)(abt)(2)](2) (1), (mu-S,S)[Fe(II)(L(AP))(2)](2).8CH(3)OH (2), and (mu-S,S)[Fe(II)('H(2)N(2)S(2'))](2).CH(3)CN (3) containing high spin ferrous ions have been isolated where (abt)(1-), (L(AP))(1-), and ('H(2)N(2)S(2'))(2-) represent the respective N,S-coordinated, aromatic o-aminothiophenolate derivative of these ligands. When the described reaction was carried out in the presence of trace amounts of O(2) and [PPh(4)]Br, light-green crystals of [PPh(4)][Fe(II)(abt)(2)(itbs)].[PPh(4)]Br (4) were isolated. The anion [Fe(II)(abt)(2)(itbs)](-) contains a high spin ferrous ion, two N,S-coordinated o-aminophenolate(1-) ligands, and an S-bound, monoanionic o-iminothionebenzosemiquinonate(1-) pi radical, (itbs)(-). Complex 4 possesses an S(t) = 3/2 ground state. In the absence of [PPh(4)]Br and presence of a base NEt(3) and a little O(2), the ferric dimer (mu-NH,NH)[Fe(III)(L(AP))(L(IP))](2) (5a) and its isomer (mu-S,S)[Fe(III)(L(AP))(L(IP))](2) (5b) formed. (L(IP))(2-) represents the aromatic o-iminothiophenolate(2-) dianion of H[L(AP)]. The structures of compounds 2, 4, and 5a have been determined by X-ray crystallography at 100(2) K. Zero-field Mössbauer spectroscopy of 1, 2, 3, and 4 unambiguously shows the presence of high spin ferrous ions: The isomer shift at 80 K is in the narrow range 0.85-0.92 mm s(-1), and a large quadrupole splitting, |DeltaE(Q)|, in the range 3.24-4.10 mm s(-1), is observed. In contrast, 5a and 5b comprise both intermediate spin ferric ions (S(Fe) = 3/2) which couple antiferromagnetically in the dinuclear molecules yielding an S(t) = 0 ground state.

  14. Synthesis, crystal structure and luminescent properties of one coordination polymer of cadmium(II) with mixed thiocyanate and hexamethylenetetramine ligands.

    PubMed

    Bai, Yan; Shang, Wei-Li; Dang, Dong-Bin; Sun, Ji-De; Gao, Hui

    2009-03-01

    A novel Cd(II) coordination polymer [Cd(SCN)(2)(hmt)(1/2)(H(2)O)](2).H(2)O (hmt=hexamethylenetetramine) has been synthesized and characterized by IR, elemental analysis, TG technique and X-ray crystallography. Cd(II) atom has an distorted octahedral environment with an N(3)S(2)O donor set. Every six Cd(II) centers are linked by hmt and thiocyanato bridges to form a planar 2D coordination polymer containing hexagonal metallocyclic rings [Cd(6)(SCN)(8)(hmt)(2)]. A 2D layer structure is held together with its neighboring ones via a set of hydrogen-bonding interactions to form a 3D supramolecular structure. The luminescent properties of the title complex in the solid state were investigated.

  15. Coordinated and unique functions of the E-selectin ligand ESL-1 during inflammatory and hematopoietic recruitment in mice.

    PubMed

    Sreeramkumar, Vinatha; Leiva, Magdalena; Stadtmann, Anika; Pitaval, Christophe; Ortega-Rodríguez, Inés; Wild, Martin K; Lee, Brendan; Zarbock, Alexander; Hidalgo, Andrés

    2013-12-05

    Beyond its well-established roles in mediating leukocyte rolling, E-selectin is emerging as a multifunctional receptor capable of inducing integrin activation in neutrophils, and of regulating various biological processes in hematopoietic precursors. Although these effects suggest important homeostatic contributions of this selectin in the immune and hematologic systems, the ligands responsible for transducing these effects in different leukocyte lineages are not well defined. We have characterized mice deficient in E-selectin ligand-1 (ESL-1), or in both P-selectin glycoprotein-1 (PSGL-1) and ESL-1, to explore and compare the contributions of these glycoproteins in immune and hematopoietic cell trafficking. In the steady state, ESL-1 deficiency resulted in a moderate myeloid expansion that became more prominent when both glycoproteins were eliminated. During inflammation, PSGL-1 dominated E-selectin binding, rolling, integrin activation, and extravasation of mature neutrophils, but only the combined deficiency in PSGL-1 and ESL-1 completely abrogated leukocyte recruitment. Surprisingly, we find that the levels of ESL-1 were strongly elevated in hematopoietic progenitor cells. These elevations correlated with a prominent function of ESL-1 for E-selectin binding and for migration of hematopoietic progenitor cells into the bone marrow. Our results uncover dominant roles for ESL-1 in the immature compartment, and a functional shift toward PSGL-1 dependence in mature neutrophils.

  16. Over or under: hydride attack at the metal versus the coordinated nitrosyl ligand in ferric nitrosyl porphyrins.

    PubMed

    Abucayon, E G; Khade, R L; Powell, D R; Shaw, M J; Zhang, Y; Richter-Addo, G B

    2016-11-15

    Hydride attack at a ferric heme-NO to give an Fe-HNO intermediate is a key step in the global N-cycle. We demonstrate differential reactivity when six- and five-coordinate ferric heme-NO models react with hydride. Although Fe-HNO formation is thermodynamically favored from this reaction, Fe-H formation is kinetically favored for the 5C case.

  17. Synthesis, vibrational spectrometry and thermal characterizations of coordination polymers derived from divalent metal ions and hydroxyl terminated polyurethane as ligand.

    PubMed

    Laxmi; Khan, Shabnam; Kareem, Abdul; Zafar, Fahmina; Nishat, Nahid

    2018-01-05

    A series of novel coordination polyurethanes [HTPU-M, where M=Mn(II) 'd(5)', Ni(II) 'd(8)', and Zn(II) 'd(10)'] have been synthesized to investigate the effect of divalent metal ions coordination on structure, thermal and adsorption properties of low molecular weight hydroxyl terminated polyurethane (HTPU). HTPU-M have been synthesized in situ where, OH group of HTPU (synthesized by the condensation polymerization reaction of ethylene glycol (EG) and toluene diisocyanate (TDI) in presence of catalyst) on condensation polymerization with metal acetate in presence of acid catalyst synthesized HTPU-M followed by coordination of metal ions with hetero atoms. The structure, composition and geometry of HTPU-M have been confirmed by vibrational spectrometry (FTIR), (1)H NMR, elemental analysis and UV-Visible spectroscopy. Morphological structures of HTPU-M were analyzed by X-Ray Diffraction analysis (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray spectroscopy (EDX) and High Resolution Transmission Electron Microscope (HR-TEM) techniques. The thermal degradation pattern and thermal stability of HTPU-M in comparison to HTPU was investigated by thermal-gravimetric (TG)/differential thermal (DT), analyses along with Integral procedure decomposition temperature (IPDT) by Doyle method. The molecular weight of HTPU was determined by gel permeation chromatography (GPC). The preliminary adsorption/desorption studies of HTPU-M for Congo red (CR) was studied by batch adsorption techniques. The results indicated that HTPU-M have amorphous, layered morphology with higher number of nano-sized grooves in comparison to HTPU. Coordination of metal to HTPU plays a key role in enhancing the thermal stability [HTPU-Ni(II)>HTPU-Mn(II)>HTPU-Zn(II)>HTPU]. The HTPU-M can be utilized for industrial waste water treatment by removing environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Mixed ligand coordination polymers with flexible bis-imidazole linker and angular sulfonyldibenzoate: Crystal structure, photoluminescence and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Bisht, Kamal Kumar; Rachuri, Yadagiri; Parmar, Bhavesh; Suresh, Eringathodi

    2014-05-01

    Four ternary coordination polymers (CPs) namely, {[Ni(SDB)(BITMB)(H2O)]·H2O}n (CP1), {[Cd(SDB)(BITMB) (H2O)]·(THF)(H2O)}n (CP2), {[Zn2(SDB)2(BITMB)]·(THF)2}n (CP3) and {[Co2(SDB)2(BITMB)]·(Dioxane)3}n (CP4) composed of angular dicarboxylate SDB (4,4'-sulfonyldibenzoate) and N-donor BITMB (1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethyl benzene) have been synthesized by solvothermal reactions and characterized by single crystal X-ray diffraction and other physico-chemical techniques. CP1 possesses one-dimensional ribbon type metal-organic motifs glued together by H-bonds and π⋯π interactions, whereas CP2-CP4, exhibit non-interpenetrated sql networks supported by weak supramolecular interactions. Structural diversity of these CPs can be attributed to the coordination geometry adopted by the metal nodes, versatile coordination modes of SDB and conformational flexibility of BITMB. Solid state luminescence properties of CP1-CP4 were explored. Photocatalytic performance of all CPs for the decomposition of metanil yellow by dilute hydrogen peroxide in the presence of visible light was also investigated. 25-83% dye removal from aqueous solutions in the presence of CP1-CP4 was observed.

  19. Late First-Row Transition-Metal Complexes Containing a 2-Pyridylmethyl Pendant-Armed 15-Membered Macrocyclic Ligand. Field-Induced Slow Magnetic Relaxation in a Seven-Coordinate Cobalt(II) Compound.

    PubMed

    Antal, Peter; Drahoš, Bohuslav; Herchel, Radovan; Trávníček, Zdeněk

    2016-06-20

    The 2-pyridylmethyl N-pendant-armed heptadentate macrocyclic ligand {3,12-bis(2-methylpyridine)-3,12,18-triaza-6,9-dioxabicyclo[12.3.1]octadeca-1,14,16-triene = L} and [M(L)](ClO4)2 complexes, where M = Mn(II) (1), Fe(II) (2), Co(II) (3), Ni(II) (4), and Cu(II) (5), were prepared and thoroughly characterized, including elucidation of X-ray structures of all the compounds studied. The complexes 1-5 crystallize in non-centrosymmetric Sohncke space groups as racemic compounds. The coordination numbers of 7, 6 + 1, and 5 were found in complexes 1-3, 4, and 5, respectively, with a distorted pentagonal bipyramidal (1-4) or square pyramidal (5) geometry. On the basis of the magnetic susceptibility experiments, a large axial zero-field splitting (ZFS) was found for 2, 3, and 4 (D(Fe) = -7.4(2) cm(-1), D(Co) = 34(1) cm(-1), and D(Ni) = -12.8(1) cm(-1), respectively) together with a rhombic ZFS (E/D = 0.136(3)) for 4. Despite the easy plane anisotropy (D > 0, E/D = 0) in 3, the slow relaxation of the magnetization below 8 K was observed and analyzed either with Orbach relaxation mechanism (the relaxation time τ0 = 9.90 × 10(-10) s and spin reversal barrier Ueff = 24.3 K (16.9 cm(-1))) or with Raman relaxation mechanism (C = 2.12 × 10(-5) and n = 2.84). Therefore, compound 3 enlarges the small family of field-induced single-molecule magnets with pentagonal-bipyramidal chromophore. The cyclic voltammetry in acetonitrile revealed reversible redox processes in 1-3 and 5, except for the Ni(II) complex 4, where a quasi-reversible process was dominantly observed. Presence of the two 2-pyridylmethyl pendant arms in L with a stronger σ-donor/π-acceptor ability had a great impact on the properties of all the complexes (1-5), concretely: (i) strong pyridine-metal bonds provided slight axial compression of the coordination sphere, (ii) substantial changes in magnetic anisotropy, and (iii) stabilization of lower oxidation states.

  20. Second sphere coordination in binding of fluoroanions: Synthesis, spectroscopic characterization and single crystal X-ray structure determination of [Co(phen) 3](BF 4) 3·H 2O and [Co(phen) 3](PF 6) 3·CH 3COCH 3

    NASA Astrophysics Data System (ADS)

    Sharma, Raj Pal; Singh, Ajnesh; Brandão, Paula; Felix, Vitor; Venugopalan, Paloth

    2009-02-01

    In an effort to capture fluoroanions by cationic cobalt(III) complex, two new cobalt(III) complex salts of composition [Co(phen) 3](BF 4) 3·H 2O ( 1) and [Co(phen) 3](PF 6) 3·CH 3COCH 3 ( 2) have been synthesized by the reaction of tris(1,10-phenanthroline)cobalt(III)chloride with sodium salts of tetrafluorborate and hexafluorophosphate (1:3 molar ratio) in aqueous medium. Single crystals of 1 were obtained directly from the reaction mixture when the solution was allowed to evaporate slowly at room temperature and single crystals of 2 were obtained by recrystallizing the precipitated product from acetone and water solution by slow evaporation. The newly synthesized complex salts were characterized by elemental analyses, TGA spectroscopic studies (IR, UV/Visible, 1H, 13C, 19F and 11B NMR), solubility product and conductance measurements. X-ray structure determination revealed ionic structures consisting of one [Co(phen) 3] 3+, three [BF 4] - ions and one lattice water molecule in complex salt 1, one [Co(phen) 3] 3+, three [PF 6] - anions and one acetone molecule as solvent of crystallization in complex salt 2. The three 1,10-phenanthroline ligands (each bidentate) coordinated to cobalt(III) showed distorted octahedral geometry around the central metal ion. Supramolecular hydrogen bonding networks between ionic groups [Co-phenCH δ+⋯ Fanionδ-] by second sphere coordination have been observed that stabilize crystal lattice besides electrostatic forces of attraction. The structural studies suggest that [Co(phen) 3] 3+ is a promising anion receptor for the fluoroanions (BF 4) - and (PF 6) -in aqueous medium.

  1. Binding of ligands containing carbonyl and phenol groups to iron(iii): new Fe6, Fe10 and Fe12 coordination clusters.

    PubMed

    Kitos, Alexandros A; Papatriantafyllopoulou, Constantina; Tasiopoulos, Anastasios J; Perlepes, Spyros P; Escuer, Albert; Nastopoulos, Vassilios

    2017-03-07

    The initial use of ligands 2'-hydroxyacetophenone (HL(1)), 2-hydroxybenzophenone (HL(2)) and 2,2'-dihydroxybenzophenone (H2L(3)) in iron(iii) chemistry is described. The syntheses and crystal structures are reported for five iron(iii) clusters: [Fe10O4(OMe)14(L(1))6(MeOH)2](NO3)2·3MeOH (1·3MeOH), [Fe12O4(OH)(OMe)17(L(1))8](ClO4)2·2H2O (2·2H2O), [Fe10O4(OMe)14Cl4(L(2))4(MeOH)2] (3), [Fe10O4(OMe)14(L(2))6(py)2](ClO4)2·MeOH (4·MeOH), where py = pyridine, and [Fe6O2(OEt)6(O2CMe)2(L(3))2(HL(3))2] (5). The molecular structures of the decanuclear clusters 1, 3 and 4 are organized around a {Fe10(μ4-O)4(μ3-OMe)2(μ-OMe)12}(8+) core consisting of ten {Fe3O4} face-sharing defective cubane units. The core of 2 consists of a {Fe12(μ4-O)4(μ3-OMe)4(μ-OH)(μ-OMe)13}(10+) unit composed of twelve {Fe3O4} face-sharing defective cubanes. The ligands (L(1))(-) and (L(2))(-) in 1-4 adopt the O,O'-bidentate chelating coordination mode and their roles are to terminate the further aggregation of the Fe(III)/O(2-)/RO(-) cores. Complex 5 contains the {Fe6(μ4-O)2(μ-OEt)6(μ-Ocarbonyl)2}(4+) core, where the μ-Ocarbonyl atoms are the bridging carbonyl oxygens of the two η(1):η(2):η(1):μ (L(3))(2-) ligands; the (HL(3))(-) groups behave as Ophenolate, Ocarbonyl-bidentate chelating ligands with the neutral hydroxyl group being unbound to the Fe(III) atoms. The core is composed of four {Fe3O4} face-sharing defective cubanes. The Fe(III) atoms in 1-5 are all six-coordinate with distorted octahedral geometries. The IR spectra of the complexes are discussed in terms of the known coordination modes of the ligands and the ionic character of nitrates and perchlorates. Variable-temperature magnetic susceptibility and variable-field magnetization measurements establish that 2, 3 and 5 have S = 3, 0 and 5 ground states, respectively. The susceptibility data for 5 were fitted using a 3-J model indicating the simultaneous presence of both antiferromagnetic and ferromagnetic Fe

  2. Hydrothermal Crystallization of Uranyl Coordination Polymers Involving an Imidazolium Dicarboxylate Ligand: Effect of pH on the Nuclearity of Uranyl-Centered Subunits.

    PubMed

    Martin, Nicolas P; Falaise, Clément; Volkringer, Christophe; Henry, Natacha; Farger, Pierre; Falk, Camille; Delahaye, Emilie; Rabu, Pierre; Loiseau, Thierry

    2016-09-06

    Four uranyl-bearing coordination polymers (1-4) have been hydrothermally synthesized in the presence of the zwitterionic 1,3-bis(carboxymethyl)imidazolium (= imdc) anion as organic linkers after reaction at 150 °C. At low pH (0.8-3.1), the form 1 ((UO2)2(imdc)2(ox)·3H2O; ox stands for oxalate group) has been identified. Its crystal structure (XRD analysis) consists of the 8-fold-coordinated uranyl centers linked to each other through the imdc ligand together with oxalate species coming from the partial decomposition of the imdc molecule. The resulting structure is based on one-dimensional infinite ribbons intercalated by free water molecules. By adding NaOH solution, a second form 2 is observed for pH 1.9-3.9 but in a mixture with phase 1. The pure phase of 2 is obtained after a hydrothermal treatment at 120 °C. It corresponds to a double-layered network (UO2(imdc)2) composed of 7-fold-coordinated uranyl cations linked via the imdc ligands. In the same pH range, a third phase ((UO2)3O2(H2O)(imdc)·H2O, 3) is formed: it is composed of hexanuclear units of 7-fold- and 8-fold-coordinated uranyl cations, connected via the imdc molecules in a layered assembly. At higher pH, the chain-like solid (UO2)3O(OH)3(imdc)·2H2O (4) is observed and composed of the infinite edge-sharing uranyl-centered pentagonal bipyramidal polyhedra. As a function of pH, uranyl nuclearity increases from discrete 8- or 7-fold uranyl centers (1, 2) to hexanuclear bricks (3) and then infinite chains in 4 (built up from the hexameric fragments found in 3). This observation emphasized the influence of the hydrolysis reaction occurring between uranyl centers. The compounds have been further characterized by thermogravimetric analysis, infrared, and luminescence spectroscopy.

  3. A new one-dimensional cadmium(II) coordination polymer incorporating 4-[4-(1H-imidazol-1-yl)phenyl]pyridine and 5-hydroxybenzene-1,3-dicarboxylate ligands.

    PubMed

    Zhang, Zhi Liang; Liu, Jia Cheng

    2016-05-01

    The design and synthesis of new organic lgands is important to the rapid development of coordination polymers (CPs). However, CPs based on asymmetric ligands are still rare, mainly because such ligands are usually expensive and more difficult to synthesize. The new asymmetric ligand 4-[4-(1H-imidazol-1-yl)phenyl]pyridine (IPP) has been used to construct the title one-dimensional coordination polymer, catena-poly[[[aqua{4-[4-(1H-imidazol-1-yl-κN(3))phenyl]pyridine}cadmium(II)]-μ-5-hydroxybenzene-1,3-dicarboxylato-κ(3)O(1),O(1'):O(3)] monohydrate], {[Cd(C8H4O5)(C14H11N3)2(H2O)]·H2O}n, under hydrothermal reaction of IPP with Cd(II) in the presence of 5-hydroxyisophthalic acid (5-OH-H2bdc). The Cd(II) cation is coordinated by two N atoms from two distinct IPP ligands, three carboxylate O atoms from two different 5-OH-bdc(2-) dianionic ligands and one water O atom in a distorted octahedral geometry. The cationic [Cd(IPP)2](2+) nodes are linked by 5-OH-bdc(2-) ligands to generate a one-dimensional chain. These chains are extended into a two-dimensional layer structure via O-H...O and O-H...N hydrogen bonds and π-π interactions.

  4. A new nano-scale manganese (II) coordination polymer constructed from semicarbazone Schiff base and dicyanamide ligands: Synthesis, crystal structure and DFT calculations

    NASA Astrophysics Data System (ADS)

    Farhadi, Saeed; Mahmoudi, Farzaneh; Simpson, Jim

    2016-03-01

    A new nano-structured Mn(II) coordination polymer [Mn(HL)(dca)(Cl)]n(1), [HL= Pyridine-2-carbaldehyde semicarbazone, dca= dicyanamide] has been synthesized by a sonochemical method and has been characterized by scanning electron microscopy, X-ray powder diffraction elemental analysis and IR spectroscopy. Single crystals of compound 1 was synthesized by slow evaporation method and was structurally characterised by single crystal X-ray diffraction. The single crystal structure shows one dimensional zig-zag chains with end-to-end dicyanamide-bridged ligand. A distorted octahedral geometry around the Mn2+centers was achieved by NNO atoms from HL, two nitrogen atoms of dicyanamide and one chlorine atom. Also for more details, the structure of 1, has been optimized by density functional theory (DFT calculations).

  5. Synthesis, characterization, and evaluation of the antimicrobial potential of copper(II) coordination complexes with quinolone and p-xylenyl-linked quinolone ligands.

    PubMed

    Mjos, Katja Dralle; Polishchuk, Elena; Abrams, Michael J; Orvig, Chris

    2016-09-01

    The antimicrobial properties of copper have been known to mankind since the ancient times. In a coordination chemistry approach to develop novel antimicrobial agents, the quinolone antimicrobial agents ciprofloxacin (Hcipro) and pipemidic acid (Hpia), as well as dimers thereof (piperazinyl-linked with a p-xylenyl moiety) were complexed with copper(II). The synthesis and antimicrobial evaluation of bis(ciprofloxacino)copper(II) [Cu(cipro)2], bis(pipemido)copper(II) [Cu(pia)2], and the corresponding dimer complexes, [Cu2(ciproXcipro)2] and [Cu2(piaXpia)2], are reported. No combinational or synergistic effect between copper(II) and the respective quinolone ligands was observed in vitro. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. High resolution scanning tunneling microscopy of a 1D coordination polymer with imidazole-based N,N,O ligands on HOPG.

    PubMed

    Fischer, Nina V; Mitra, Utpal; Warnick, Karl-Georg; Dremov, Viacheslav; Stocker, Michael; Wölfle, Thorsten; Hieringer, Wolfgang; Heinemann, Frank W; Burzlaff, Nicolai; Görling, Andreas; Müller, Paul

    2014-09-08

    Novel κ(3) -N,N,O ligands tend to form 1D coordination polymer strands. Deposition of 1D structures on highly oriented pyrolytic graphite (HOPG) was achieved from diluted solutions and polymer strands have been studied on HOPG by AFM/STM. Single strands were mapped by STM and their electronic properties were subsequently characterized by current imaging tunneling spectroscopy (CITS). Periodic density functional calculations simulating a polymer strand deposited on a HOPG surface are in agreement with the zig-zag structure indicated by experimental findings. Both the observed periodicity and the Zn-Zn distances can be reproduced in the simulations. Van der Waals interactions were found to play a major role for the geometry of the isolated polymer strand, for the adsorption geometry on HOPG, as well as for the adsorption energy.

  7. Formation of Foam-like Microstructural Carbon Material by Carbonization of Porous Coordination Polymers through a Ligand-Assisted Foaming Process.

    PubMed

    Kongpatpanich, Kanokwan; Horike, Satoshi; Fujiwara, Yu-Ichi; Ogiwara, Naoki; Nishihara, Hirotomo; Kitagawa, Susumu

    2015-09-14

    Porous carbon material with a foam-like microstructure has been synthesized by direct carbonization of porous coordination polymer (PCP). In situ generation of foaming agents by chemical reactions of ligands in PCP during carbonization provides a simple way to create lightweight carbon material with a foam-like microstructure. Among several substituents investigated, the nitro group has been shown to be the key to obtain the unique foam-like microstructure, which is due to the fast kinetics of gas evolution during carbonization. Foam-like microstructural carbon materials showed higher pore volume and specific capacitance compared to a microporous carbon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electronic influence of β-diketonato-type ligands on the coordination of 1,5-cyclooctadiene to palladium(II) as defined by 'Venus fly trap' geometric parameters.

    PubMed

    Hill, Tania N; Roodt, Andreas; Steyl, Gideon

    2013-02-01

    A range of single-crystal structures of the type [Pd(cod)(LL'-Bid)]A, where LL'-Bid = acetylacetonato (acac), thenoyltrifluoroactetonato (thtfac) and hexafluoroacetylacetonato (hfacac), and A = tetrafluoroborate (BF(4)(-)) and hexafluorophosphate (PF(6)(-)), are reported. The complexes [Pd(cod)(acac)]PF(6) (I), [Pd(cod)(thtfac)]PF(6) (III), [Pd(cod)(thtfac)]BF(4) (IV) and [Pd(cod)(hfacac)]PF(6) (V) are isostructural in the monoclinic space group P2(1)/c. The influence of the variation of the β-diketonato-type ligands on the coordination geometry of cis,cis-1,5-cycloocta-1,5-diene (cod) was investigated and found that no significant changes to the Pd-C and C=C bond distances were observed. The `Venus fly trap' parameters vary by 7.8° for the 'jaw' angle (ψ), while the `bite' angle (χ) remains virtually constant.

  9. Synthesis and crystal structure of a novel Mn(II) coordination polymer with 3-(4-(1 H-benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one ligands

    NASA Astrophysics Data System (ADS)

    Wang, G.-F.; Zhang, X.; Sun, S.-W.; Han, Q.-P.; Yang, X.; Li, H.; Ma, H.-X.; Yao, C.-Z.; Sun, H.; Dong, H.-B.

    2015-12-01

    3-(4-(1 H-Benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one ( L 1 , 1) and its Mn(II) complex, [Mn( L 1 )2(SCN)2]∞ ( 2), were synthesized and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction. The Mn(II) ion in 2 is six-coordinated to four nitrogen atoms of two L 1 ligands, two SCN-ligands, and two oxygen atoms of other two L 1 ligands to form a distorted octahedral geometry. Therefore, each L 1 links Mn ions through the O and N atoms to generate 2D sheet structure.

  10. Binuclear complexes of technetium. Evidence for bis(terdentate)bidentate coordination by the bridging ligand 2,3,5,6-tetrakis(2-pyridyl)pyrazine to technetium(V)

    SciTech Connect

    Du Preez, J.G.H.; Gerber, T.I.A.; Gibson, M.L.; Geyser, R. )

    1990-01-01

    The authors have used the potentially bis(terdentate) nitrogen aromatic heterocyclic ligand 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz) to prepare mono- and bimetallic technetium(V) complexes bound to tppz. The stimulus for the development of the coordination chemistry of the man-made element technetium is provided by the use of complexes of this element as anatomical imaging agents in nuclear medicine. Although the chemistry of technetium(V) with nitrogen donor ligands is well understood, no complexes have been prepared using potentially terdentate neutral nitrogen donor ligands of this metal in the +5 oxidation state.

  11. Structural variability in Cu(I) and Ag(I) coordination polymers with a flexible dithione ligand: Synthesis, crystal structure, microbiological and theoretical studies

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Nozarian, Kimia; Babadi, Susan Soleymani; Noorizadeh, Siamak; Motamedi, Hossein; Mayer, Peter; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2017-05-01

    Two new compounds namely [Cu(SCN)(μ-L)]n (1) and {[Ag (μ2-L)](ClO4)}n (2) have been synthesized at room temperature by one-pot reactions between the 1,1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione) (L) and appropriate copper(I) and silver(I) salts. These polymers have been characterized by single crystal X-ray diffraction, XRPD, TGA, elemental analysis, infrared spectroscopy, antibacterial activity and scanning probe microscopy studies. In the crystal structure of 1, copper atoms have a distorted trigonal planar geometry with a CuS2N coordination environment. Each of the ligands in the structure of 1 acting as a bidentate S-bridging ligand to form a 1D chain structure. Additionally, the adjacent 1D chains are interconnected by the intermolecular C-H…S interactions to create a 2D network structure. In contrast to 1, in the cationic 3D structure of 2 each of the silver atoms exhibits an AgS4 tetrahedral geometry with 4-membered Ag2S2 rings. In the structure of 2, the flexible ligand adopts two different conformations; gauche-anti-gauche and anti-anti-anti. The antibacterial studies of these polymers showed that polymer 2 is more potent antibacterial agent than 1. Scanning probe microscopy (SPM) study of the treated bacteria was carried out to investigate the structural changes cause by the interactions between the polymers and target bacteria. Theoretical study of polymer 1 investigated by the DFT calculations indicates that observed transitions at 266 nm and 302 nm in the UV-vis spectrum could be attributed to the π→π* and MLCT transitions, respectively.

  12. Fluorescent sensing and electrocatalytic properties of three Zn(II)/Co(II) coordination complexes containing two different dicarboxylates and two various bis(pyridyl)-bis(amide) ligands

    NASA Astrophysics Data System (ADS)

    Lin, Hongyan; Rong, Xing; Liu, Guocheng; Wang, Xiang; Wang, Xiuli; Duan, Surui

    2016-09-01

    Three new transition metal(II) coordination complexes constructed from two different dicarboxylates (1,3-H2BDC = 1,3-benzenedicarboxylic acid, 1,4-H2NDC = 1,4-naphthalenedicarboxylic acid) and two bis(pyridyl)-bis(amide) ligands (3-bpcd = N,N‧-bis(3-pyridyl)cyclohexane-1,4-dicarboxamide, 3-bpod = N,N‧-bis(3-pyridyl)octandiamide), [Zn(1,3-BDC)(3-bpcd)0.5(H2O)]·H2O (1), [Zn(1,3-BDC)(3-bpod)0.5(H2O)] (2) and [Co(1,4-NDC)(3-bpod)1.5(H2O)] (3) have been synthesized in the hydrothermal environments and structurally characterized by IR, TG and single crystal X-ray diffraction. Complexes 1 and 2 possess the similar 1D ladder-like chain based on [Zn(1,3-BDC)]n zigzag chain and the bidentate ligands 3-bpcd/or 3-bpod. Complex 3 shows a 2D layered structure with a 5-connected {410} topology, which consists of 1D linear [Co(1,4-NDC)]n chain and [Co(3-bpod)1.5]n chain with alternating arrangement of 3-bpod ligands and Co2(3-bpod)2 dinuclear loops. The adjacent 1D chains for 1-2 or the 2D layers for 3 are further extended into 2D or 3D supramolecular frameworks through the hydrogen bonding interactions. Additionally, the solid state fluorescent properties for the title complexes 1-3, the fluorescent sensing behaviors of complexes 1-2 and the electrochemical behaviour of complex 3 have been investigated.

  13. Two new metal-organic coordination polymers of lead with O-, N-donor ligands: Synthesis, characterization, luminescence and thermal behavior

    SciTech Connect

    Rana, Abhinandan; Kumar Jana, Swapan; Bera, Madhusudan; Hazari, Debdoot; Sankar Chowdhuri, Durga; Zangrando, Ennio; Dalai, Sudipta

    2013-01-15

    The synthesis of two new lead(II) coordination polymers, [Pb{sub 2}(picOH){sub 4}]{center_dot}H{sub 2}O (1) and [Pb{sub 3}(Sip){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (2) has been reported, where HpicOH=3-hydroxypicolinic acid and NaH{sub 2}Sip=5-sulfoisophthalic acid monosodium salt. Both the complexes were structurally characterized by X-ray single crystal diffraction analysis. Complex 1, where the 3-hydroxypicolinate ligand is used for the first time in conjunction with Pb(II), revealed to be a 1D polymeric array. Complex 2 showed a 3D structure with 5-sulfoisophthalate ligand adopting two novel binding modes of high denticity ({eta}{sup 6}{mu}{sub 6} and {eta}{sup 7}{mu}{sub 7}). The photoluminescence and thermal properties of the two complexes have been studied. - Graphical abstract: 1D and 3D inorganic organic hybrid luminescent material of Pb(II) have been synthesized by using 3-hydroxypicolinate and 5-sulfoisophthalate anions. The 5-sulfoisophthalate ligand shows two novel binding modes with high denticity. Highlights: Black-Right-Pointing-Pointer 3-hydroxypicolinic acid is used for first time with Pb{sup 2+} in a MOF. Black-Right-Pointing-Pointer 5-sulfoisophthalic acid displays two novel binding modes of high denticity. Black-Right-Pointing-Pointer Complex 1 shows high thermal stability (up to 167 Degree-Sign C). Black-Right-Pointing-Pointer MLCT is present in both the complexes.

  14. Construction of five Zn(ii)/Cd(ii) coordination polymers derived from a new linear carboxylate/pyridyl ligand: design, synthesis, and photocatalytic properties.

    PubMed

    Liu, Lei-Lei; Yu, Cai-Xia; Du, Ji-Min; Liu, Shi-Min; Cao, Jing-Shuai; Ma, Lu-Fang

    2016-08-02

    Solvothermal reactions of Cd(OAc)2/Zn(OAc)2 with a new ligand, (pyridin-3-yl)methyl 4-(2-(4-((pyridin-3-yl)methoxy)phenyl)diazenyl)benzoate (L1), under different templates via an in situ ligand transformation reaction produced five coordination polymers, [CdL2(H2O)]n (1), [Cd1.5L3]n (2), [Cd2L4]n (3), [(ZnL2)·H2O]n (4) and {[Zn(1,3-BDC)(L1)]·MeCN·0.5H2O}n (5), where HL = 4-(2-(4-((pyridin-3-yl)methoxy)phenyl)diazenyl)benzoic acid, 1,3-H2BDC = 1,3-benzenedicarboxylic acid. Compound 1 is a three-dimensional (3D) wave-like structure constructed from 4-connected Cd(ii) nodes and L(-) linkers. Compounds 2 and 3 bear similar 2D networks built from metallocyclic [Cd4L4] units. Compound 4 features a wrinkled 2D layer based on metallocyclic [Zn4L4] units. Compound 5 has a novel 1D single-wall metal-organic nanotube (SWMONT) in which the 1,3-BDC ligands act as linkers to connect the [Zn2(L1)2] rings. The results reveal that the different templates have a significant effect on the final structures. Compounds 1-5 exhibited relatively high photocatalytic activity towards the degradation of methylene blue (MB) in aqueous solution under UV-Vis irradiation. The kinetics of the catalytic photodegradation reactions and the stabilities of photocatalysts were also investigated.

  15. Assemblies of a new flexible multicarboxylate ligand and d10 metal centers toward the construction of homochiral helical coordination polymers: structures, luminescence, and NLO-active properties.

    PubMed

    Zang, Shuangquan; Su, Yang; Li, Yizhi; Ni, Zhaoping; Meng, Qingjin

    2006-01-09

    Hydro(solvo)thermal reactions between a new flexible multicarboxylate ligand of 2,2',3,3'-oxydiphthalic acid (2,2',3,3'-H(4)ODPA) and M(NO(3))(2).xH(2)O (M = Zn, x = 6; M = Cd, x = 4) in the presence of 4,4'-bipyridine (bpy) afford two novel homochiral helical coordination polymers [[Zn(2)(2,2',3,3'-ODPA)(bpy)(H(2)O)(3)].(H(2)O)(2) for 1 and [Cd(2)(2,2',3,3'-ODPA)(bpy)(H(2)O)(3)].(H(2)O)(2) for 2]. Though having almost the same chemical formula, they have different space groups (P2(1)2(1)2(1) for 1 and P2(1) for 2) and different bridging modes of the 2,2',3,3'-ODPA ligand. Two kinds of homochiral helices (right-handed) are found in both 1 and 2, each of which discriminates only one kind of crystallographical nonequivalent metal atom. 1 has a 2D metal-organic framework and can be seen as the unity of two parallel homochiral Zn1 and Zn2 helices, in which the nodes are etheric oxygen atoms. In contrast, 2 has a 3D metal-organic framework and consists of two partially overlapped homochiral Cd1 and Cd2 helices in the two dimensions. Moreover, metal-ODPA helices give a 2D chiral herringbone structural motif in both 1 and 2 in the two dimensions, which are further strengthened by the second ligand of bpy. Bulk materials for 1 and 2 all have good second-harmonic generation activity, approximately 1 and 0.8 times that of urea.

  16. Ligand design for alkali-metal-templated self-assembly of unique high-nuclearity CuII aggregates with diverse coordination cage units: crystal structures and properties.

    PubMed

    Du, Miao; Bu, Xian-He; Guo, Ya-Mei; Ribas, Joan

    2004-03-19

    The construction of two unique, high-nuclearity Cu(II) supramolecular aggregates with tetrahedral or octahedral cage units, [(mu(3)-Cl)[Li subset Cu(4)(mu-L(1))(3)](3)](ClO(4))(8)(H(2)O)(4.5) (1) and [[Na(2) subset Cu(12)(mu-L(2))(8)(mu-Cl)(4)](ClO(4))(8)(H(2)O)(10)(H(3)O(+))(2)](infinity) (2) by alkali-metal-templated (Li(+) or Na(+)) self-assembly, was achieved by the use of two newly designed carboxylic-functionalized diazamesocyclic ligands, N,N'-bis(3-propionyloxy)-1,4-diazacycloheptane (H(2)L(1)) or 1,5-diazacyclooctane-N,N'-diacetate acid (H(2)L(2)). Complex 1 crystallizes in the trigonal R3c space group (a = b = 20.866(3), c = 126.26(4) A and Z = 12), and 2 in the triclinic P1 space group (a = 13.632(4), b = 14.754(4), c = 19.517(6) A, alpha = 99.836(6), beta = 95.793(5), gamma = 116.124(5) degrees and Z = 1). By subtle variation of the ligand structures and the alkali-metal templates, different polymeric motifs were obtained: a dodecanuclear architecture 1 consisting of three Cu(4) tetrahedral cage units with a Li(+) template, and a supramolecular chain 2 consisting of two crystallographically nonequivalent octahedral Cu(6) polyhedra with a Na(+) template. The effects of ligand functionality and alkali metal template ions on the self-assembly processes of both coordination supramolecular aggregates, and their magnetic behaviors are discussed in detail.

  17. Three Cadmium Coordination Polymers with Carboxylate and Pyridine Mixed Ligands: Luminescent Sensors for Fe(III) and Cr(VI) Ions in an Aqueous Medium.

    PubMed

    Lin, Yanna; Zhang, Xiaoping; Chen, Wenjie; Shi, Wei; Cheng, Peng

    2017-10-02

    Three new water-stable luminescent Cd(II) coordination polymers (CPs), {[Cd2(bptc)(2,2'-bipy)2(H2O)2]}n (1), {[Cd2(bptc)(phen)2]·4H2O}n (2), and {[Cd2(bptc)(4,4'-bipy)(H2O)2]·4H2O}n (3), were solvothermally synthesized with mixed ligands of 3,3',5,5'-biphenyltetracarboxylic acid (H4bptc) and N-donor ligands (2,2'-bipy = 2,2'-bipyridine; phen = 1,10-phenanthroline; 4,4'-bipy = 4,4'-bipyridine). The CPs 1-3 show structural diversity from a 1D ladder chain to a 2D layer to a 3D porous framework, tuned by different ancillary ligands. Topological analyses reveal that the CP 2 is a 4-connected uninodal 2D net with the Schläfli point symbol {4(4)·6(2)}, while the CP 3 displays a 4,6-connected 2-nodal 3D net with the point symbol {3·4(2)·5(2)·6}{3(2)·4(2)·5(2)·6(4)·7(4)·8}. Luminescent property studies reveal that the CPs 1-3 are promising luminescent sensors that can highly select and sensitively detect ferric and chromate/dichromate ions, in which the CP 1 with a 1D structure showed the best performance, free from the interference of other ions present in an aqueous medium. Moreover, the mechanism for the sensing properties was studied in detail.

  18. A PCP Pincer Ligand for Coordination Polymers with Versatile Chemical Reactivity: Selective Activation of CO2 Gas over CO Gas in the Solid State.

    PubMed

    He, Junpeng; Waggoner, Nolan W; Dunning, Samuel G; Steiner, Alexander; Lynch, Vincent M; Humphrey, Simon M

    2016-09-26

    A tetra(carboxylated) PCP pincer ligand has been synthesized as a building block for porous coordination polymers (PCPs). The air- and moisture-stable PCP metalloligands are rigid tetratopic linkers that are geometrically akin to ligands used in the synthesis of robust metal-organic frameworks (MOFs). Here, the design principle is demonstrated by cyclometalation with Pd(II) Cl and subsequent use of the metalloligand to prepare a crystalline 3D MOF by direct reaction with Co(II) ions and structural resolution by single crystal X-ray diffraction. The Pd-Cl groups inside the pores are accessible to post-synthetic modifications that facilitate chemical reactions previously unobserved in MOFs: a Pd-CH3 activated material undergoes rapid insertion of CO2 gas to give Pd-OC(O)CH3 at 1 atm and 298 K. However, since the material is highly selective for the adsorption of CO2 over CO, a Pd-N3 modified version resists CO insertion under the same conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Diverse assemblies of the (4,4) grid layers exemplified in Zn(II)/Co(II) coordination polymers with dual linear ligands

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Zhen; Li, Xiao-Dong; Xin, Ling-Yun; Li, Xiao-Ling; Wang, Li-Ya

    2013-07-01

    Diverse (4,4) grid layers are exemplified in five two-dimensional coordination polymers with dual μ2-bridged ligands, namely, {[Zn(cbaa)(bpp)]·H2O}n (1), [Zn2(cbaa)2(bpy)]n (2), [Co2(cbaa)2(bpp)2]n (3), [Co(cbaa)(bpp)]n (4), and [Co(bdaa)(bpp)(H2O)2]n (5) (H2cbaa=4-carboxybenzeneacetic acid, bpp=1,3-di(4-pyridyl)propane, bpy=4,4‧-bipyridyl, and H2bdaa=1,4-benzenediacrylic acid). For 1, two (4,4) grid layers with [ZnN2O2] tetrahedron as the node are held together by lattice water forming a H-bonding bilayer. Individual (4,4) grid layer in 2 is based on {Zn2(OCO)4} paddlewheel unit as the node. Two (4,4) grid layers with {Co2O(OCO)2} dimer as the node are covalently interconnected by organic ligands affording a thick bilayer of 3 with new framework topology. The different entanglements between two coincident (4,4) grid layers with [CoN2O4] octahedron as the node leads to two 2D→2D interpenetrated structures for 4 and 5. Furthermore, fluorescent properties of 1 and 2 as well as magnetic properties of 3 are investigated.

  20. Structural and thermodiffractometric analysis of coordination polymers. Part I: tin derivatives of the Bim ligand [Bim = Bis(1-imidazolyl)methane]).

    PubMed

    Masciocchi, Norberto; Pettinari, Claudio; Alberti, Enrica; Pettinari, Riccardo; Nicola, Corrado Di; Albisetti, Alessandro Figini; Sironi, Angelo

    2007-12-10

    New polynuclear coordination species containing the ditopic bis(1-imidazolyl)methane (Bim) ligand have been prepared as microcrystalline powders and structurally characterized by ab initio X-ray powder diffraction methods. [Bim(Me2SnCl2)]n (1), [Bim(nBu2SnCl2)]n (3), [Bim(Ph2SnCl2)]n (4), [Bim(MeSnCl3)]n (5), and [Bim(PhSnCl3)]n (6) all contain 1D chains with octahedral tin atoms with trans N-Sn-N linkages (but 4, which displays a cis N-Sn-N linkage). Their thermodiffractometric analysis allowed the estimation of the linear thermal expansion coefficients and strain tensors derived there from. The potential-energy surface of the free Bim ligand (as defined by two torsional degrees of freedom about the two N-CH2 bonds), eventually controlling the length of the repeating unit (polymer elongation), has been estimated using molecular mechanics and correlated with experimental observations.

  1. Enantioseparation of dansyl amino acids and dipeptides by chiral ligand exchange capillary electrophoresis based on Zn(II)-L-hydroxyproline complexes coordinating with γ-cyclodextrins.

    PubMed

    Mu, Xiaoyu; Qi, Li; Qiao, Juan; Yang, Xinzheng; Ma, Huimin

    2014-10-10

    A chiral ligand exchange capillary electrophoresis (CLE-CE) method using Zn(II) as the central ion and L-4-hydroxyproline as the chiral ligand coordinating with γ-cyclodextrin (γ-CD) was developed for the enantioseparation of amino acids (AAs) and dipeptides. The effects of various separation parameters, including the pH of the running buffer, the ratio of Zn(II) to L-4-hydroxyproline, the concentration of complexes and cyclodextrins (CDs) were systematically investigated. After optimization, it has been found that eight pairs of labeled AAs and six pairs of labeled dipeptides could be baseline-separated with a running electrolyte of 100.0mM boric acid, 5.0mM ammonium acetate, 3.0mM Zn(II), 6.0mM L-hydroxyproline and 4.0mM γ-CD at pH 8.2. The quantitation of AAs and dipeptides was conducted and good linearity (r(2)≥0.997) and favorable repeatability (RSD≤3.6%) were obtained. Furthermore, the proposed method was applied in determining the enantiomeric purity of AAs and dipeptides. Meanwhile, the possible enantiorecognition mechanism based on the synergistic effect of chiral metal complexes and γ-CD was explored and discussed briefly.

  2. Syntheses, structures, and magnetic properties of cobalt(II) and nickel(II) coordination polymers based on a V-shaped ligand

    NASA Astrophysics Data System (ADS)

    Yao, Shuang; Yi, Fei-Yan; Li, Guanghua; Yu, Yang; Wang, Jing-yuan; Liu, Dan; Song, Shu-Yan

    2017-06-01

    Two coordination polymers [Co2(TA)(4,4‧-bipy)2(H2O)2]·H2O (1) and [Ni2(TA)(4,4‧-bipy)2(H2O)4]·3H2O (2) were prepared by hydrothermal reactions of MCl2·6H2O (M = Co, Ni) with a V-shaped ligand TDPA (3,3‧,4,4‧-thiodiphthalic anhydride) and a I-shaped N-donor co-ligand (4,4‧-bipy). They were characterized by elemental analyses, thermogravinetric analyses, and magnetic behavior. As is expected, TDPA hydrolyzes into the corresponding tetra-carboxylate acid H4TA (3,3‧,4,4‧-thiodiphthalic acid) during the reactions. Co2 dimer and Ni mononuclear center are connected into two-dimensional (2D) layers by H4TA and 4,4‧-bipy bridge in 1 and 2, respectively. The most amazing feature is that 1 and 2 exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively, with the critical Néel temperature of TN =4 K for 1 and TN =13 K for 2, based on variable temperature magnetic susceptibility measurements. In low mono- or dinuclear metal system, such magnetic behaviors have rare been observed. Furthermore, complex 1 will be a potential metamagnet material.

  3. Fluorescent Cross-Linked Supramolecular Polymer Constructed by Orthogonal Self-Assembly of Metal-Ligand Coordination and Host-Guest Interaction.

    PubMed

    Qian, Xiaomin; Gong, Weitao; Li, Xiaopeng; Fang, Le; Kuang, Xiaojun; Ning, Guiling

    2016-05-10

    A new host molecule consists of four terpyridine groups as the binding sites with zinc(II) ion and a copillar[5]arene incorporated in the center as a spacer to interact with guest molecule was designed and synthesized. Due to the 120 ° angle of the rigid aromatic segment, a cross-linked dimeric hexagonal supramolecular polymer was therefore generated as the result of the orthogonal self-assembly of metal-ligand coordination and host-guest interaction. UV/Vis spectroscopy, (1) H NMR spectroscopy, viscosity and dynamic light-scattering techniques were employed to characterize and understand the cross-linking process with the introduction of zinc(II) ion and guest molecule. More importantly, well-defined morphology of the self-assembled supramolecular structure can be tuned by altering the adding sequence of the two components, that is, the zinc(II) ion and the guest molecule. In addition, introduction of a competitive ligand suggested the dynamic nature of the supramolecular structure.

  4. Stable Di- and Tri-coordinated Carbon(II) Supported by an Electron-Rich β-Diketiminate Ligand.

    PubMed

    Regnier, Vianney; Planet, Yoan; Moore, Curtis E; Pecaut, Jacques; Philouze, Christian; Martin, David

    2017-01-19

    Complexes of the ubiquitous β-diketiminates (NacNac) ligands have been reported with most elements of the periodic table, including Group 14 Si, Ge, Sn, and Pb. The striking absence of carbon representatives has been attributed to the extreme electrophilicity of the putative C-NacNac adducts. An electron enriched 2,4-(dimethylamino)diketiminato backbone is described, which allowed for the synthesis and isolation of such stable pyrimidin-1,3-diium and pyrimidinium-2-ylidene salts. Structural and preliminary reactivity studies are reported, including an air-stable gold complex. An unforeseen original class of stable N-heterocyclic carbenes and, more generally, the potential of electron-rich NacNac patterns for taming highly electrophilic centers are showcased. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mixed ligand coordination polymers with flexible bis-imidazole linker and angular sulfonyldibenzoate: Crystal structure, photoluminescence and photocatalytic activity

    SciTech Connect

    Bisht, Kamal Kumar; Rachuri, Yadagiri; Parmar, Bhavesh; Suresh, Eringathodi

    2014-05-01

    Four ternary coordination polymers (CPs) namely, ([Ni(SDB)(BITMB)(H{sub 2}O)]·H{sub 2}O){sub n} (CP1), ([Cd(SDB)(BITMB) (H{sub 2}O)]·(THF)(H{sub 2}O)){sub n} (CP2), ([Zn{sub 2}(SDB){sub 2}(BITMB)]·(THF){sub 2}){sub n} (CP3) and ([Co{sub 2}(SDB){sub 2}(BITMB)]·(Dioxane){sub 3}){sub n} (CP4) composed of angular dicarboxylate SDB (4,4'-sulfonyldibenzoate) and N-donor BITMB (1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethyl benzene) have been synthesized by solvothermal reactions and characterized by single crystal X-ray diffraction and other physico-chemical techniques. CP1 possesses one-dimensional ribbon type metal–organic motifs glued together by H-bonds and π⋯π interactions, whereas CP2–CP4, exhibit non-interpenetrated sql networks supported by weak supramolecular interactions. Structural diversity of these CPs can be attributed to the coordination geometry adopted by the metal nodes, versatile coordination modes of SDB and conformational flexibility of BITMB. Solid state luminescence properties of CP1–CP4 were explored. Photocatalytic performance of all CPs for the decomposition of metanil yellow by dilute hydrogen peroxide in the presence of visible light was also investigated. 25–83% dye removal from aqueous solutions in the presence of CP1–CP4 was observed. - Graphical abstract: Four new ternary transition metal CPs have been hydrothermally prepared and their structural aspects as well as photocatalytic activity for decolourization of metanil yellow (MY) dye have been investigated. - Highlights: • Four ternary coordination polymers containing Ni, Cd, Zn and Co center are prepared. • Crystal structure and thermal stability of all four CPs has been described. • PL and diffuse reflectance spectra of synthesized CPs have also been examined. • Band gap values suggest semiconducting behavior of prepared CPs. • Photocatalytic activity of CPs for oxidative degradation of metanil yellow is studied.

  6. mer, fac, and Bidentate Coordination of an Alkyl-POP Ligand in the Chemistry of Nonclassical Osmium Hydrides.

    PubMed

    Esteruelas, Miguel A; García-Yebra, Cristina; Martín, Jaime; Oñate, Enrique

    2017-01-03

    Nonclassical and classical osmium polyhydrides containing the diphosphine 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene (xant(P(i)Pr2)2), coordinated in κ(3)-mer, κ(3)-fac, and κ(2)-P,P fashions, have been isolated during the cyclic formation of H2 by means of the sequential addition of H(+) and H(-) or H(-) and H(+) to the classical trihydride OsH3Cl{xant(P(i)Pr2)2} (1). This complex adds H(+) to form the compressed dihydride dihydrogen complex [OsCl(H···H)(η(2)-H2){xant(P(i)Pr2)2}](+) (2). Under argon, cation 2 loses H2 and the resulting unsaturated fragment dimerizes to give [(Os(H···H){xant(P(i)Pr2)2})2(μ-Cl)2](2+) (3). During the transformation the phosphine changes its coordination mode from mer to fac. The benzofuran counterpart of 1, OsH3Cl{dbf(P(i)Pr2)2} (4; dbf(P(i)Pr2)2 = 4,6-bis(diisopropylphosphino)dibenzofuran), also adds H(+) to afford the benzofuran counterpart of 2, [OsCl(H···H)(η(2)-H2){xant(P(i)Pr2)2}](+) (5), which in contrast to the latter is stable and does not dimerize. Acetonitrile breaks the chloride bridge of 3 to form the dihydrogen [OsCl(η(2)-H2)(CH3CN){xant(P(i)Pr2)2}](+) (6), regenerating the mer coordination of the diphosphine. The hydride ion also breaks the chloride bridge of 3. The addition of KH to 3 leads to 1, closing a cycle for the formation of H2. Complex 1 reacts with a second hydride ion to give OsH4{xant(P(i)Pr2)2} (7) as consequence of the displacement of the chloride. Similarly to the latter, the oxygen atom of the mer-coordinated diphosphine of 7 has a tendency to be displaced by the hydride ion. Thus, the addition of KH to 7 yields [OsH5{xant(P(i)Pr2)2}](-) (8), containing a κ(2)-P,P-diphosphine. Complex 8 is easily protonated to afford OsH6{xant(P(i)Pr2)2} (9), which releases H2 to regenerate 7, closing a second cycle for the formation of molecular hydrogen.

  7. Identification of Coordinating Ligand Atoms in Cu(calcimycin) 2 Complex from EPR Linewidths in Chloroform Solutions

    NASA Astrophysics Data System (ADS)

    Prabhananda, B. S.; Kombrabail, M. H.

    The X-band EPR spectra of Cu(cal) 2 complex in CHCl 3 solutions (cal = calcimycin) do not show resolved 14N hyperfine structure (J. S. Puskin and T. E. Gunter, Biochemistry14, 187, 1975) even though they are expected from the nitrogen coordination to divalent metal ions inferred by NMR acid by model building (C. M. Deber and D. R. Pfeiffer, Biochemistry15, 132, 1976). In the present work, unresolved hyperfine structure from two equivalent 14N has been inferred in the EPR spectra of Cu(cal) 2 from an analysis of linewidths and lineshapes of mI = {3}/{2} and {1}/{2} transitions at 298 K and mI = {3}/{2} transition at 253 K, in CHCl 3 solutions ( mI = nuclear magnetic quantum number associated with the Cu hyperfine transition); g(parallel to); g|| - g⊥(=0.24), | A|| - A⊥| (=131 G), and 14N hyperfine constant AN (˜11.3 G) determined from liquid solution linewidth studies in this work favor a solution structure of the complex in which two nitrogens and two oxygens are involved in the square-planar coordination at the metal ion similar to that suggested on the basis of the model for Ca(cal) 2 complex.

  8. pH-value-controlled assembly of photoluminescent zinc coordination polymers in the mixed-ligand system

    NASA Astrophysics Data System (ADS)

    Liu, Kang; Hu, Hanbin; Sun, Jing; Zhang, Yiheng; Han, Jishu; Wang, Lei

    2017-04-01

    Three novel coordination polymers, [Zn(sdi)2(NO3)(H2O)]·NO3 (1), [Zn(sdi)2(H2O)2]·2NO3 (2) and [Zn(sdi)0.5(H2C3O4)(H2O)] (3), (sdi = N,N‧-sulfuryldiimidazole) have been synthesized and characterized by elemental analysis, IR spectroscopy, single crystal X-ray diffraction, powder X-ray diffraction and thermogravimetric analyses. These compounds have abundant structural chemistry ranging from zero-dimensional (0D) (1), one-dimensional (1D) (2), to three-dimensional (3D) (3) networks. Compound 1 displays a 0D structure which formed by [Zn(sdi)2]2 dimers. Compound 2 possesses 1D chain with closed loops. Notably, compound 3 exhibits a 3D (3,4)-connected net with a (63)(65·8) topology. Interestingly, compounds 1-3 were obtained under similar reaction conditions and the structural diversity of these coordination polymers illustrate the remarkable effect of pH on the self-assembling process. Moreover, the fluorescent properties of these compounds have been investigated.

  9. Syntheses, structures, photoluminescence of four dicarboxylate-controlled Zn(II) coordination complexes incorporating flexible 1-(4-pyridylmethyl)-benzimidazole ligand

    NASA Astrophysics Data System (ADS)

    Hao, Hong-Jun; Du, Ming-Yue; Wang, Dan-Feng; Sun, Cheng-Jie; Wang, Zhan-Hui; Huang, Rong-Bin; Zheng, Lan-Sun

    2013-09-01

    Four Zn(II) coordination complexes, namely {[Zn(pmbm)2(tpa)]·H2O}n (1), {[Zn(pmbm)(phda)]·2(H2O)}n (2), [Zn(pmbm)(aze)]n (3), {[Zn(pmbm)(1,4-ndc)]·2(CH3OH)}n (4) [pmbm = 1-(4-pyridylmethyl)-benzimidazole, H2tpa = terephthalic acid, H2phda = phenylenediacetic acid, H2aze = azelaic acid, 1,4-ndcH2 = 1,4-naphthalenedicarboxylic acid] have been synthesized by solution phase ultrasonic reactions of Zn(AC)2·2H2O with pmbm and various dicarboxylates ligands under the ammoniacal condition. All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. Complexes 1 and 2 exhibit one-dimensional chains structure and complex 3 and 4 are two-dimensional sheets structure with (4,4) topology. Complexes 1-4 spanning from one-dimensional chains to two-dimensional sheets suggest that dicarboxylates play significant roles in the formation of such coordination architectures. The photoluminescences of the complexes were also investigated in the solid state at room temperature.

  10. Successive coordination of palladium(II)-ions and terpyridine-ligands to a pyridyl-terminated self-assembled monolayer on gold

    NASA Astrophysics Data System (ADS)

    Poppenberg, Johannes; Richter, Sebastian; Darlatt, Erik; Traulsen, Christoph H.-H.; Min, Hyegeun; Unger, Wolfgang E. S.; Schalley, Christoph A.

    2012-02-01

    The deposition of palladium on a novel, reversibly protonatable, pyridyl-terminated self-assembled monolayer on gold substrates has been studied by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS spectroscopy) and time of flight-secondary ion mass spectrometry (ToF-SIMS). For this purpose, 12-(pyridin-4-yl)dodecane-1-thiol, consisting of a surface-active head group, an unfunctionalized hydrocarbon backbone and a terminal pyridyl group, has been synthesized and deposited on gold surfaces. Coordination of Pd(II) ions to the pyridyl group was examined. Furthermore, a reversible protonation/deprotonation cycle has been applied, and the relation between protonation and the amount of complexed palladium was studied. Investigation of the SAM by angle-resolved NEXAFS spectroscopy revealed the aliphatic backbone to be preferentially upright oriented with the aromatic head group being not preferentially oriented. The palladium layer was further coordinated with a CF3-labeled terpyridine ligand in order to prove the accessibility of the Pd(II) ions to further complexation and the platform useful for deposition of further layers toward a multi-layered system.

  11. Assembly, structures and properties of four Cu(II) coordination polymers based on a semi-rigid bis-pyridyl-bis-amide ligand and different polycarboxylates

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Li; Luan, Jian; Lin, Hong-Yan; Lu, Qi-Lin; Le, Mao; Liu, Guo-Cheng

    2014-09-01

    Four new Cu(II) coordination polymers, namely, [Cu(3-bpah)(1,4-NDC)(H2O)]·3H2O (1), [Cu2(3-bpah)(1,4-NDC)2]·(1,4-H2NDC)·3H2O (2), [Cu(3-bpah)(3-NIP)] (3), [Cu(3-bpah)(1,3,5-HBTC)]·2H2O (4), where 3-bpah = N,N‧-bis(3-pyridinecarboxamide)-1,2-cyclohexane, 1,4-H2NDC = 1,4-naphthalenedicarboxylic acid, 3-H2NIP = 3-nitrophthalic acid, 1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid, have been synthesized under hydrothermal conditions. The structures of 1-4 have been determined by single crystal X-ray diffraction and were further characterized by infrared spectroscopy (IR) and thermogravimetric analyses (TGA). Complex 1 displays a 1D double strand. Complex 2 shows a 3D α-Po framework with 1,4-H2NDC guest molecules inside the cages. Complex 3 reveals a 2D wave-like network. Complex 4 exhibits a 2D sql topology. The structural discrepancies of complexes 1-4 imply that the O-donor ancillary ligands play an important role in the formation of the resultant structures of the title coordination polymers. The fluorescent, electrochemical and photocatalytic properties of complexes 1-4 have been studied.

  12. Diaquatetrakis(tert-butyl isocyanide)cobalt(II) bis(perchlorate): an example of cobalt(II) coordinated by only four alkyl isocyanide ligands.

    PubMed

    Becker, Clifford A L; Forbes, Roy P; Black, Robert S

    2009-08-01

    The title compound, [Co(C5H9N)4(H2O)2](ClO4)2, crystallizes in the monoclinic space group C2/m. The cation has space-group-imposed 2/m symmetry, while the perchlorate ion is disordered about a mirror plane. The two slightly non-equivalent Co-C bonds [1.900 (3) and 1.911 (3) A] form a rectangular plane, with a C-Co-C bond angle of 86.83 (11) degrees, and the linear O-Co-O C2 axis is perpendicular to this plane. The C[triple-bond]N bond lengths are 1.141 (4) A and the Co-C[triple-bond]N and C[triple-bond]N-C angles average 175.5 (4) degrees. The perchlorate counter-ions are hydrogen bonded to the water molecules. The title compound is the first example of four alkyl isocyanide ligands coordinating Co(II) upon initial reaction of Co(ClO4)(2).6H2O/EtOH with alkyl isocyanide. In all other known examples, five alkyl isocyanide molecules are coordinated, as in [(RNC)5Co-Co(CNR)5](ClO4)4 (R = Me, Et, CHMe2, CH2Ph, C4H9-n or C6H11) or [Co(CNC8H17-t)5](ClO4)2. This complex, therefore, is unique and somewhat unexpected.

  13. Ambident nitrogen and oxygen ligands of the type tris(pyrazolyl)methanesulfonate: An “IR criterion” for the assignment of the coordination mode

    NASA Astrophysics Data System (ADS)

    Chenskaya, T. B.; Berghahn, M.; Kunz, P. C.; Frank, W.; Kläui, W.

    2007-03-01

    The IR spectra of a series of metal complexes with the ambident nitrogen and oxygen ligand tris(3- tert-butylpyrazolyl)methanesulfonate, Tpms tBu , were measured in the range 4000-50 cm -1. The solid-state structure of Li(Tpms)·{1}/{2}CH has been determined by X-ray analysis. MTpms tBu (M = Li, K, Tl), [Tpms tBu NiX] (X = Cl, Br), [Tpms tBu ZnX] (X = Cl, Br, I, Et), [(Tpms tBu )Co(Hpz tBu )X] (X = Cl, Br), [(Tpms tBu )Zn(μ-OAc)(μ-OH)Zn(Tpms tBu )] and [(Tpms tBu )CuL] (L = CO, PPh 3, CH 3CN) were investigated in solid state (KBr pellet) and in solution (CH 2Cl 2) and a band assignment is proposed. It could be shown that the assignment of the coordination mode to either N, N, N, N, N, O or N, O is possible by using an "IR criterion" specifying the binding mode. A dynamic equilibrium between the N, N, N and N, N, O coordination mode is observed in CH 2Cl 2 solutions of all investigated cobalt, nickel, copper and zinc complexes.

  14. Two cadmium coordination polymers with bridging acetate and phenyl­enedi­amine ligands that exhibit two-dimensional layered structures

    PubMed Central

    Geiger, David K.; Parsons, Dylan E.; Pagano, Bracco A.

    2016-01-01

    Poly[tetra-μ2-acetato-κ8 O:O′-bis­(μ2-benzene-1,2-di­amine-κ2 N:N′)dicadmium], [Cd2(CH3COO)4(C6H8N2)2]n, (I), and poly[[(μ2-acetato-κ2 O:O′)(acetato-κ2 O,O′)(μ2-benzene-1,3-di­amine-κ2 N:N′)cadmium] hemihydrate], {[Cd(CH3COO)2(C6H8N2)]·0.5H2O}n, (II), have two-dimensional polymeric structures in which monomeric units are joined by bridging acetate and benzenedi­amine ligands. Each of the CdII ions has an O4N2 coordination environment. The coordination geometries of the symmetry-independent CdII ions are distorted octa­hedral and distorted trigonal anti­prismatic in (I) and distorted anti­prismatic in (II). Both compounds exhibit an intra­layer hydrogen-bonding network. In addition, the water of hydration in (II) is involved in inter­layer hydrogen bonding. PMID:27980815

  15. Five novel transition metal coordination polymers with 2D/3D framework structure based on flexible H{sub 2}tzda and ancillary ligand bpe

    SciTech Connect

    Wang Yuting; Xu Yan; Fan Yaoting; Hou Hongwei

    2009-10-15

    Five new transition metal coordination polymers based on H{sub 2}tzda and co-ligand bpe, {l_brace}[M(tzda)(bpe)].H{sub 2}O{r_brace}{sub n} [M=Zn(1), Cd(2), Mn(3), Co(4)] and [Ni{sub 2}(tzda){sub 2}(bpe){sub 2}(H{sub 2}O)]{sub n} (5) [H{sub 2}tzda=(1,3,4-thiadiazole-2,5-diyldithio)diacetic acid, bpe=1,2-bis(4-pyridyl)ethane], have been hydrothermally synthesized and structurally characterized. Compounds 1-4 feature a 2D-layered architecture generated from [M(tzda)]{sub n} moiety with double-chain structure cross-linking bpe spacers. However, the conformations bpe adopts in 3 and 4 are different from those in 1 and 2 due to the rotation of C-C single bond in bpe. Polymer 5 exhibits an interesting 3D porous framework with 2-fold interpenetration, in which intriguing 1D double helix chains are observed. The photoluminescence properties of 1 and 2 in the solid-state at room temperature are investigated. In addition, variable-temperature magnetic data show weak antiferromagnetic behavior in 3-5. - Graphical abstract: Five new transition metal coordination polymers based on flexible H{sub 2}tzda and bpe have been hydrothermally synthesized and characterized by X-ray diffraction, luminescent emission spectra and low-temperature magnetic measurements, respectively.

  16. A trinuclear palladium(II) complex containing N,S-coordinating 2-(benzylsulfanyl)anilinide and 1,3-benzothiazole-2-thiolate ligands with a central square-planar PdN4 motif.

    PubMed

    Cross, Edward D; MacDonald, Kristen L; McDonald, Robert; Bierenstiel, Matthias

    2014-01-01

    The reaction of dichlorido(cod)palladium(II) (cod = 1,5-cyclooctadiene) with 2-(benzylsulfanyl)aniline followed by heating in N,N-dimethylformamide (DMF) produces the linear trinuclear Pd3 complex bis(μ2-1,3-benzothiazole-2-thiolato)bis[μ2-2-(benzylsulfanyl)anilinido]dichloridotripalladium(II) N,N-dimethylformamide disolvate, [Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NO. The molecule has -1 symmetry and a Pd...Pd separation of 3.2012 (4) Å. The outer Pd(II) atoms have a square-planar geometry formed by an N,S-chelating 2-(benzylsulfanyl)anilinide ligand, a chloride ligand and the thiolate S atom of a bridging 1,3-benzothiazole-2-thiolate ligand, while the central Pd(II) core shows an all N-coordinated square-planar geometry. The geometry is perfectly planar within the PdN4 core and the N-Pd-N bond angles differ significantly [84.72 (15)° for the N atoms of ligands coordinated to the same outer Pd atom and 95.28 (15)° for the N atoms of ligands coordinated to different outer Pd atoms]. This trinuclear Pd3 complex is the first example of one in which 1,3-benzothiazole-2-thiolate ligands are only N-coordinated to one Pd centre. The 1,3-benzothiazole-2-thiolate ligands were formed in situ from 2-(benzylsulfanyl)aniline.

  17. Chemical bonding analysis and properties of La{sub 7}Os{sub 4}C{sub 9}-A new structure type containing C- and C{sub 2}-units as Os-coordinating ligands

    SciTech Connect

    Dashjav, Enkhtsetseg; Prots, Yurii; Kreiner, Guido; Schnelle, Walter; Wagner, Frank R. Kniep, Ruediger

    2008-11-15

    The new ternary carbide La{sub 7}Os{sub 4}C{sub 9} was prepared by argon arc-melting of the elements followed by subsequent heat treatment at 900 deg. C for 250 h. The compound crystallizes monoclinic, in the space group C2/m (a=1198.5(2) pm, b=542.0(1) pm, c=1196.2(2) pm, {beta}=111.04(1){sup o}, V=725.2(2)x10{sup 6} pm{sup 3}, Z=2). The structure was determined from single crystal X-ray diffraction data and refined to a residual of R{sub 1}=0.02 (wR{sub 2}=0.03) for 4812 unique reflections and 64 variable parameters. Electrical resistivity and magnetic susceptibility measurements characterize the compound as a Pauli-paramagnetic metal. The crystal structure contains bridging C- and terminal C{sub 2}-units as Os-coordinating ligands, thereby forming polyanions {sub {infinity}}{sup 1}[Os{sub 4}(C{sub 2}){sub 2}C{sub 5}] running along the [101] direction. The polyanions are composed of alternating Os(C{sub 2})C{sub 2} and OsC{sub 3} units with the transition metal in distorted trigonal planar coordination. Charge compensation is ensured by La cations which are situated in-between the polyanions. The carbon-carbon bond (131 pm) within the C{sub 2} pairs is slightly shorter than the value of a common C-C double bond, and is discussed on the basis of COHP curves on the one side, and with ELI-D and electron density distributions on the other side. The method of partial ELI-D decomposition is shown to be well suited for the characterization of separated DOS structures in terms of chemical bonding signatures provided by ELI-D. The Os-La interactions are shown to be of a polar multicenter-bonding type with Os playing the role of the electron donor. Compared to an acetylide the C{sub 2} species were found to possess a significantly reduced bond order and an enhanced number of electrons in lone pair type spatial regions. This type of species cannot be simply classified in terms of model pictures such as C{sub 2}{sup 2-} and C{sub 2}{sup 4-}, respectively. - Graphical

  18. SPHERES test

    NASA Image and Video Library

    2013-07-05

    ISS036-E-015549 (5 July 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, watches as he devotes some time with the long-running SPHERES experiment, also known as Synchronized Position Hold Engage and Reorient Experimental Satellites. The experiment is run in conjunction with students who program bowling ball-sized satellites using algorithms. The free-floating satellites are programmed to perform maneuvers potentially influencing the design of future missions.

  19. CORM-EDE1: A Highly Water-Soluble and Nontoxic Manganese-Based photoCORM with a Biogenic Ligand Sphere.

    PubMed

    Mede, Ralf; Klein, Moritz; Claus, Ralf A; Krieck, Sven; Quickert, Stefanie; Görls, Helmar; Neugebauer, Ute; Schmitt, Michael; Gessner, Guido; Heinemann, Stefan H; Popp, Jürgen; Bauer, Michael; Westerhausen, Matthias

    2016-01-04

    [Mn(CO)5Br] reacts with cysteamine and 4-amino-thiophenyl with a ratio of 2:3 in refluxing tetrahydrofuran to the complexes of the type [{(OC)3Mn}2(μ-SCH2CH2NH3)3]Br2 (1, CORM-EDE1) and [{(OC)3Mn}2(μ-SC6H4-4-NH3)3]Br2 (2, CORM-EDE2). Compound 2 precipitates during refluxing of the tetrahydrofuran solution as a yellow solid whereas 1 forms a red oil that slowly solidifies. Recrystallization of 2 from water yields the HBr-free complex [{(OC)3Mn}2(μ-S-C6H4-4-NH2)2(μ-SC6H4-4-NH3)] (3). The n-propylthiolate ligand (which is isoelectronic to the bridging thiolate of 1) leads to the formation of the di- and tetranuclear complexes [(OC)4Mn(μ-S-nPr)2]2 and [(OC)3Mn(μ-S-nPr)]4. CORM-EDE1 possesses ideal properties to administer carbon monoxide to biological and medicinal tissues upon irradiation (photoCORM). Isolated crystalline CORM-EDE1 can be handled at ambient and aerobic conditions. This complex is nontoxic, highly soluble in water, and indefinitely stable therein in the absence of air and phosphate buffer. CORM-EDE1 is stable as frozen stock in aqueous solution without any limitations, and these stock solutions maintain their CO release properties. The reducing dithionite does not interact with CORM-EDE1, and therefore, the myoglobin assay represents a valuable tool to study the release kinetics of this photoCORM. After CO liberation, the formation of MnHPO4 in aqueous buffer solution can be verified.

  20. Solution Dynamics of Redox Noninnocent Nitrosoarene Ligands: Mapping the Electronic Criteria for the Formation of Persistent Metal-Coordinated Nitroxide Radicals.

    PubMed

    Barnett, Brandon R; Labios, Liezel A; Moore, Curtis E; England, Jason; Rheingold, Arnold L; Wieghardt, Karl; Figueroa, Joshua S

    2015-07-20

    The redox-noninnocence of metal-coordinated C-organo nitrosoarenes has been established on the basis of solid-state characterization techniques, but the solution-phase properties of this class of metal-coordinated radicals have been relatively underexplored. In this report, the solution-phase properties and dynamics of the bis-nitrosobenzene diradical complex trans-Pd(κ(1)-N-PhNO)2(CNAr(Dipp2))2 are presented. This complex, which is best described as containing singly reduced phenylnitroxide radical ligands, is shown to undergo facile nitrosobenzene dissociation in solution to form the metalloxaziridine Pd(η(2)-N,O-PhNO)(CNAr(Dipp2))2 and thus is not a persistent species in solution. An equilibrium between trans-Pd(κ(1)-N-PhNO)2(CNAr(Dipp2))2, Pd(η(2)-N,O-PhNO)(CNAr(Dipp2))2, and free nitrosobenzene is established in solution, with the metalloxaziridine being predominantly favored. Efforts to perturb this equilibrium by the addition of excess nitrosobenzene reveal that the formation of trans-Pd(κ(1)-N-PhNO)2(CNAr(Dipp2))2 is in competition with insertion-type chemistry of Pd(η(2)-N,O-PhNO)(CNAr(Dipp2))2 and is therefore not a viable strategy for the production of a kinetically persistent bis-nitroxide radical complex. Electronic modification of the nitrosoarene framework was explored as a means to generate a persistent trans-Pd(κ(1)-N-ArNO)2(CNAr(Dipp2))2 complex. While most substitution schemes failed to significantly perturb the kinetic lability of the nitrosoarene ligands in the corresponding trans-Pd(κ(1)-N-ArNO)2(CNAr(Dipp2))2 complexes, utilization of para-formyl or para-cyano nitrosobenzene produced bis-nitroxide diradical complexes that display kinetic persistence in solution. The origin of this persistence is rationalized by the ability of para-formyl- and para-cyano-aryl groups to both attenuate the trans effect of the corresponding nitrosoarene and, more importantly, delocalize spin density away from the aryl-nitroxide NO unit. The results

  1. Zirconium and hafnium complexes containing N-alkyl substituted amine biphenolate ligands: coordination chemistry and living ring-opening polymerization catalysis.

    PubMed

    Liang, Lan-Chang; Lin, Sheng-Ta; Chien, Chia-Cheng; Chen, Ming-Tsz

    2013-07-07

    The coordination chemistry of zirconium and hafnium complexes containing the tridentate amine biphenolate ligands [RN(CH2-2-O-3,5-C6H2(tBu)2)2](2-) ([R-ONO](2-); R = tBu (1a), iPr (1b), nPr (1c)) featuring distinct N-alkyl substituents is described. Alcoholysis of Zr(OiPr)4(HOiPr) or Hf(OiPr)4(HOiPr) with H2[1a] in diethyl ether solutions at -35 °C generates the corresponding five-coordinate [1a]M(OiPr)2 (M = Zr (2a), Hf (3a)) in high isolated yield. Similar reactions employing H2[1b] produce six-coordinate [1b]M(OiPr)2(HOiPr) (M = Zr (2b·HOiPr), Hf (3b·HOiPr)) as an isopropanol adduct. Repetitive trituration of 2b·HOiPr and 3b·HOiPr with diethyl ether gives five-coordinate 2b and 3b, respectively. Treatment of M(OiPr)4(HOiPr) with H2[1c] under similar conditions affords six-coordinate [1c]M(OiPr)2(HOiPr) (M = Zr (2c·HOiPr), Hf (3c·HOiPr)), subsequent recrystallization of which from acetonitrile-diethyl ether solutions leads to acetonitrile adducts 2c·MeCN and 3c·MeCN. Reactivity studies of these zirconium and hafnium complexes revealed that they are all active catalysts for ring-opening polymerization of ε-caprolactone. Among them, the N-isopropyl derived complexes are most reactive. Polymerizations catalyzed by 2b, 3b and 3c·MeCN were proved to be living. The X-ray structures of 2a·HOiPr, 2a·MeCN, 2c·HOiPr, 2c·MeCN, and 3c·MeCN are presented.

  2. Morphology controlled nanostructures self-assembled from phthalocyanine derivatives bearing alkylthio moieties: effect of sulfur-sulfur and metal-ligand coordination on intermolecular stacking.

    PubMed

    Hao, Zijuan; Wu, Xingcui; Sun, Ranran; Ma, Changqin; Zhang, Xiaomei

    2012-01-16

    To investigate the effect of sulfur-sulfur and metal-ligand coordination on the molecular structure and morphology of self-assembled nanostructures, metal-free 2,3,9,10,16,17,23,24-octakis(isopropylthio)phthalocyanine H(2)Pc(β-SC(3)H(7))(8) (1) and its copper and lead congeners CuPc(β-SC(3)H(7))(8) (2) and PbPc(β-SC(3)H(7))(8) (3) are synthesized and fabricated into organic nanostructures by a phase-transfer method. The self-assembly properties are investigated by electronic absorption and Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Experimental results reveal different molecular packing modes in these aggregates, which in turn result in self-assembled nanostructures with different morphologies ranging from nanobelts for 1 through nanoribbons for 2 to cluster nanoflowers for 3. Intermolecular π-π and sulfur-sulfur interactions between metal-free phthalocyanine 1 lead to the formation of nanobelts. The additional Cu-S coordination bond between the central copper ion of 2 and the sulfur atom of the adjacent molecule of 2 in cooperation with the intermolecular π-π stacking interaction increases the intermolecular interaction, and results in the formation of long nanoribbons for 2. In contrast to compounds 1 and 2, the special molecular structure of complex 3, together with the intermolecular π-π stacking interaction and additional Pb-S coordination bond, induces the formation of Pb-connected pseudo-double-deckers during the self-assembly process, which in turn further self-assemble into cluster nanoflowers. In addition, good semiconducting properties of the nanostructures fabricated from phthalocyanine derivatives 1-3 were also revealed by I-V measurements. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cobalt oxide 2D nano-assemblies from infinite coordination polymer precursors mediated by a multidentate pyridyl ligand.

    PubMed

    Li, Guo-Rong; Xie, Chen-Chao; Shen, Zhu-Rui; Chang, Ze; Bu, Xian-He

    2016-05-04

    In this work, the construction of Co3O4 two dimensional (2D) nano-assemblies utilizing infinite coordination polymers (ICPs) as precursors was investigated, aiming at the morphology targeted fabrication and utilization of 2D materials. Based on the successful modulation of morphology, a rose-like Co based ICP precursor was obtained, which was further transformed into porous Co3O4 nanoflake assemblies with a well-preserved 2D morphology and a large surface area. The mechanism of the morphology modulation was illustrated by systematic investigation, which demonstrated the crucial role of a modulating agent in the formation of 2D nano-assemblies. In addition, the cobalt oxide 2D nano-assemblies are fabricated into a lithium anode combined with graphene, and the remarkable capacity and stability (900 mA h g(-1) after 50 cycles) of the resulting Co3O4/G nanocomposite indicates its potential in lithium battery applications.

  4. Electrical conductivity and luminescence in coordination polymers based on copper(I)-halides and sulfur-pyrimidine ligands.

    PubMed

    Gallego, Almudena; Castillo, Oscar; Gómez-García, Carlos J; Zamora, Félix; Delgado, Salome

    2012-01-02

    The solvothermal reactions between pyrimidinedisulfide (pym(2)S(2)) and CuI or CuBr(2) in CH(2)Cl(2):CH(3)CN lead to the formation of [Cu(11)I(7)(pymS)(4)](n) (pymSH = pyrimidine-2(1H)-thione) (1) and the dimer [Cu(II)(μ-Br)(Br)L](2) (L = 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde) (2). In the later reaction, there is an in situ S-S, S-C(sp(2)), and C(sp(2))-N multiple bond cleavage of the pyrimidinedisulfide resulting in the formation of 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde. Interestingly, similar reactions carried out just with a change in the solvent (H(2)O:CH(3)CN instead of CH(2)Cl(2):CH(3)CN) give rise to the formation of coordination polymers with rather different architectures. Thus, the reaction between pym(2)S(2) and CuI leads to the formation of [Cu(3)I(pymS)(2)](n) (3) and [CuI(pym(2)S(3))] (pym(2)S(3) = pyrimidiltrisulfide) (4), while [Cu(3)Br(pymS)(2)](n) (5) is isolated in the reaction with CuBr(2). Finally, the solvothermal reactions between CuI and pyrimidine-2-thione (pymSH) in CH(2)Cl(2):CH(3)CN at different ratios, 1:1 or 2:1, give the polymers [Cu(2)I(2)(pymSH)(2)](n) (6) and [Cu(2)I(2)(pymSH)](n) (7), respectively. The structure of the new compounds has been determined by X-ray diffraction. The studies of the physical properties of the novel coordination polymers reveal that compounds 3 and 5 present excellent electrical conductivity values at room temperature, while compounds 1, 3, and 5-7 show luminescent strong red emission at room temperature.

  5. I. the Synthesis and Coordination Chemistry of Novel 6Pi-Electron Ligands. II. Improvement of Student Writing Skills in General Chemistry Lab Reports through the Use of Calibrated Peer Review

    ERIC Educational Resources Information Center

    William, Wilson Ngambeki

    2011-01-01

    Abstract I. The goal of this study was to synthesize and characterize a set of coordination complexes containing 6pi-cationic ligands. These compounds could be extremely useful as catalysts for the polymerization of olefins that are widely used in the synthetic polymer industry. The original strategy was to synthesize the 6pi-cationic ligands…