Science.gov

Sample records for coordination sphere ligands

  1. Shaping and enforcing coordination spheres: probing the ability of tripodal ligands to favour trigonal prismatic geometry.

    PubMed

    Knight, James C; Amoroso, Angelo J; Edwards, Peter G; Singh, Neha; Ward, Benjamin D

    2016-06-28

    We report two tripodal frameworks, mono(2,2'-bipyrid-6-yl)bis(2-pyridyl)methanol () and bis(2,2'-bipyrid-6-yl)mono(2-pyridyl)methanol () which have one and two bipyridyl arms, respectively. Both ligands form complexes with the first row transition metals. Both ligands appear to overcome the steric strain involved in twisting the ligand to produce an octahedral complex and the solid state structures in general show more octahedral character than complexes of the related ligand, tris(2,2'-bipyrid-6-yl)methanol (). Continuous Shape Mapping (CShM) calculations based on crystallographic data reveal that is incapable of enforcing a trigonal prismatic (TP) co-ordination geometry in the solid state, surprisingly even upon co-ordination to metals with no stereochemical preference such as cadmium (S(TP) = 7.15 and S(Oh) = 3.95). However, ligand clearly maintains an ability to enforce a trigonal prismatic conformation which is demonstrated in the crystal structures of the Mn(II) and Cd(II) complexes (S(TP) = 0.75 and 1.09, respectively). While maintains near-TP configurations in the presence of metal ions with strong octahedral preferences, distorts towards predominantly octahedral co-ordination geometries, increasing in the order Co(II) < Ni(II) < Fe(II) and no trigonal prismatic structures. PMID:27273116

  2. The secondary coordination sphere and axial ligand effects on oxygen reduction reaction by iron porphyrins: a DFT computational study.

    PubMed

    Ohta, Takehiro; Nagaraju, Perumandla; Liu, Jin-Gang; Ogura, Takashi; Naruta, Yoshinori

    2016-09-01

    Oxygen reduction reaction (ORR) catalyzed by a bio-inspired iron porphyrin bearing a hanging carboxylic acid group over the porphyrin ring, and a tethered axial imidazole ligand was studied by DFT calculations. BP86 free energy calculations of the redox potentials and pK a's of reaction components involved in the proton coupled electron transfer (PCET) reactions of the ferric-hydroxo and -superoxo complexes were performed based on Born-Haber thermodynamic cycle in conjunction with a continuum solvation model. The comparison was made with iron porphyrins that lack either in the hanging acid group or axial ligand, suggesting that H-bond interaction between the carboxylic acid and iron-bound hydroxo, aquo, superoxo, and peroxo ligands (de)stabilizes the Fe-O bonding, resulting in the increase in the reduction potential of the ferric complexes. The axial ligand interaction with the imidazole raises the affinity of the iron-bound superoxo and peroxo ligands for proton. In addition, a low-spin end-on ferric-hydroperoxo intermediate, a key precursor for O-O cleavage, can be stabilized in the presence of axial ligation. Thus, selective and efficient ORR of iron porphyrin can be achieved with the aid of the secondary coordination sphere and axial ligand interactions. PMID:27501847

  3. The outer-coordination sphere: incorporating amino acids and peptides as ligands for homogeneous catalysts to mimic enzyme function

    SciTech Connect

    Shaw, Wendy J.

    2012-10-09

    Great progress has been achieved in the field of homogeneous transition metal-based catalysis, however, as a general rule these solution based catalysts are still easily outperformed, both in terms of rates and selectivity, by their analogous enzyme counterparts, including structural mimics of the active site. This observation suggests that the features of the enzyme beyond the active site, i.e. the outer-coordination sphere, are important for their exceptional function. Directly mimicking the outer-coordination sphere requires the incorporation of amino acids and peptides as ligands for homogeneous catalysts. This effort has been attempted for many homogeneous catalysts which span the manifold of catalytic reactions and often require careful thought regarding solvent type, pH and characterization to avoid unwanted side reactions or catalyst decomposition. This article reviews the current capability of synthesizing and characterizing this often difficult category of metal-based catalysts. This work was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  4. Ligand-sensitive but not ligand-diagnostic: evaluating Cr valence-to-core X-ray emission spectroscopy as a probe of inner-sphere coordination.

    PubMed

    MacMillan, Samantha N; Walroth, Richard C; Perry, Demetra M; Morsing, Thorbjørn J; Lancaster, Kyle M

    2015-01-01

    This paper explores the strengths and limitations of valence-to-core X-ray emission spectroscopy (V2C XES) as a probe of coordination environments. A library was assembled from spectra obtained for 12 diverse Cr complexes and used to calibrate density functional theory (DFT) calculations of V2C XES band energies. A functional dependence study was undertaken to benchmark predictive accuracy. All 7 functionals tested reproduce experimental V2C XES energies with an accuracy of 0.5 eV. Experimentally calibrated, DFT calculated V2C XES spectra of 90 Cr compounds were used to produce a quantitative spectrochemical series showing the V2C XES band energy ranges for ligands comprising 18 distinct classes. Substantial overlaps are detected in these ranges, which complicates the use of V2C XES to identify ligands in the coordination spheres of unknown Cr compounds. The ligand-dependent origins of V2C intensity are explored for a homologous series of [Cr(III)(NH3)5X](2+) (X = F, Cl, Br, and I) to rationalize the variable intensity contributions of these ligand classes.

  5. Intramolecular N-H···Cl hydrogen bonds in the outer coordination sphere of a bipyridyl bisurea-based ligand stabilize a tetrahedral FeLCl2 complex.

    PubMed

    Gavette, Jesse V; Klug, Christina M; Zakharov, Lev N; Shores, Matthew P; Haley, Michael M; Johnson, Darren W

    2014-07-11

    A bipyridyl-based anion receptor is utilized as a ligand in a tetrahedral FeCl2 complex and demonstrates secondary coordination sphere influence through intramolecular hydrogen bonding to the chloride ligands as evidenced by X-ray crystallography.

  6. 5f state interaction with inner coordination sphere ligands: einsteinium 3+ ion fluorescence in aqueous and organic phases

    SciTech Connect

    Beitz, J.V.; Wester, D.W.; Williams, C.W.

    1983-01-01

    The interaction between 5f electron states of einsteinium 3+ ion and coordinated ligands in solution has been probed using laser-induced fluorescence. Aquo einsteinium 3+ ion was observed to fluoresce from its first excited J = 5 state in a broad-band peaking at 9260 wavenumbers. The observed fluorescence lifetimes were 1.05 microseconds and 2.78 microseconds in H/sub 2/O and D/sub 2/O (99+ % D atom), respectively. The non-radiative decay rates derived from the lifetime data are compared with previously reported data for Cm, Sm, Eu, Tb, and Dy aquo 3+ ions. The 5f actinide states exhibit substantially greater non-radiative decay rates than do lanthanide 4f states of similar energy gap. This provides evidence that actinide 5f electrons interact more strongly with their inner coordination sphere than do lanthanide ion 4f electrons. The fluorescence lifetime of einsteinium 3+ ion complexed with 1 formal di(2-ethylhexyl)orthophosphoric acid in h-heptane was 2.34 microseconds. 3 figures, 1 table.

  7. Unusual ligand coordination for cesium

    SciTech Connect

    Bryan, J.C.; Kavallieratos, K.; Sachleben, R.A.

    2000-04-03

    When complexed by tetrabenzo-24-crown-8, the cesium ion can accommodate unprecedented ligation. The structures of the complexes are presented. These structures are the first reported examples of linear {eta}{sup 2}-acetonitrile coordination to any metal ion and the first structures illustrating {eta}{sup 2}-acetonitrile and dichloromethane ligation to an alkali metal ion. Possible steric and electronic origins of these unusual metal-ligand interactions are discussed.

  8. Addition Reactions of Me3 SiCN with Aldehydes Catalyzed by Aluminum Complexes Containing in their Coordination Sphere O, S, and N Ligands.

    PubMed

    Yang, Zhi; Yi, Yafei; Zhong, Mingdong; De, Sriman; Mondal, Totan; Koley, Debasis; Ma, Xiaoli; Zhang, Dongxiang; Roesky, Herbert W

    2016-05-10

    The reaction of one equivalent of LAlH2 (1; L=HC(CMeNAr)2 , Ar=2,6-iPr2 C6 H3 , β-diketiminate ligand) with two equivalents of 2-mercapto-4,6-dimethylpyrimidine hydrate resulted in LAl[(μ-S)(m-C4 N2 H)(CH2 )2 ]2 (2) in good yield. Similarly, when N-2-pyridylsalicylideneamine, N-(2,6-diisopropylphenyl)salicylaldimine, and ethyl 3-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxylate were used as starting materials, the corresponding products LAl[(μ-O)(o-C6 H4 )CN(C5 NH4 )]2 (3), LAlH[(μ-O)(o-C4 H4 )CN(2,6-iPr2 C6 H3 )] (4), and LAl[(μ-NH)(o-C8 SH8 )(COOC2 H5 )]2 (5) were isolated. Compounds 2-5 were characterized by (1) H and (13) C NMR spectroscopy as well as by single-crystal X-ray structural analysis. Surprisingly, compounds 2-5 exhibit good catalytic activity in addition reactions of aldehydes with trimethylsilyl cyanide (TMSCN).

  9. Tripyrrindione as a Redox-Active Ligand: Palladium(II) Coordination in Three Redox States.

    PubMed

    Gautam, Ritika; Loughrey, Jonathan J; Astashkin, Andrei V; Shearer, Jason; Tomat, Elisa

    2015-12-01

    The tripyrrin-1,14-dione scaffold of urinary pigment uroerythrin coordinates divalent palladium as a planar tridentate ligand. Spectroscopic, structural and computational investigations reveal that the tripyrrindione ligand binds as a dianionic radical, and the resulting complex is stable at room temperature. One-electron oxidation and reduction reactions do not alter the planar coordination sphere of palladium(II) and lead to the isolation of two additional complexes presenting different redox states of the ligand framework. Unaffected by stability problems common to tripyrrolic fragments, the tripyrrindione ligand offers a robust platform for ligand-based redox chemistry.

  10. The dynamics of zinc sites in proteins: electronic basis for coordination sphere expansion at structural sites.

    PubMed

    Daniel, A Gerard; Farrell, Nicholas P

    2014-12-01

    The functional role assumed by zinc in proteins is closely tied to the variable dynamics around its coordination sphere arising by virtue of its flexibility in bonding. Modern experimental and computational methods allow the detection and study of previously unknown features of bonding between zinc and its ligands in protein environment. These discoveries are occurring just in time as novel biological functions of zinc, which involve rather unconventional coordination trends, are emerging. In this sense coordination sphere expansion of structural zinc sites, as observed in our previous experiments, is a novel phenomenon. Here we explore the electronic and structural requirements by simulating this phenomenon in structural zinc sites using DFT computations. For this purpose, we have chosen MPW1PW91 and a mixed basis set combination as the DFT method through benchmarking, because it accurately reproduces structural parameters of experimentally characterized zinc compounds. Using appropriate models, we show that the greater ionic character of zinc coordination would allow for coordination sphere expansion if the steric and electrostatic repulsions of the ligands are attenuated properly. Importantly, through the study of electronic and structural aspects of the models used, we arrive at a comprehensive bonding model, explaining the factors that influence coordination of zinc in proteins. The proposed model along with the existing knowledge would enhance our ability to predict zinc binding sites in proteins, which is today of growing importance given the predicted enormity of the zinc proteome.

  11. Orbital-like motion of hydride ligands around low-coordinate metal centers.

    PubMed

    Ortuño, Manuel A; Vidossich, Pietro; Conejero, Salvador; Lledós, Agustí

    2014-12-15

    Hydrogen atoms in the coordination sphere of a transition metal are highly mobile ligands. Here, a new type of dynamic process involving hydrides has been characterized by computational means. This dynamic event consists of an orbital-like motion of hydride ligands around low-coordinate metal centers containing N-heterocyclic carbenes. The hydride movement around the carbene-metal-carbene axis is the lowest energy mode connecting energy equivalent isomers. This understanding provides crucial information for the interpretation of NMR spectra.

  12. Single-Molecule Spin Switch Based on Voltage-Triggered Distortion of the Coordination Sphere.

    PubMed

    Harzmann, Gero D; Frisenda, Riccardo; van der Zant, Herre S J; Mayor, Marcel

    2015-11-01

    Here, we report on a new single-molecule-switching concept based on the coordination-sphere-dependent spin state of Fe(II) species. The perpendicular arrangement of two terpyridine (tpy) ligands within heteroleptic complexes is distorted by the applied electric field. Whereas one ligand fixes the complex in the junction, the second one exhibits an intrinsic dipole moment which senses the E field and causes the distortion of the Fe(II) coordination sphere triggering the alteration of its spin state. A series of complexes with different dipole moments have been synthesized and their transport features were investigated via mechanically controlled break-junctions. Statistical analyses support the hypothesized switching mechanism with increasing numbers of junctions displaying voltage-dependent bistabilities upon increasing the Fe(II) complexes' intrinsic dipole moments. A constant threshold value of the E field required for switching corroborates the mechanism. PMID:26426777

  13. Magnetic circular dichroism studies of the active site heme coordination sphere of exogenous ligand-free ferric cytochrome c peroxidase from yeast: effects of sample history and pH.

    PubMed

    Pond, A E; Sono, M; Elenkova, E A; McRee, D E; Goodin, D B; English, A M; Dawson, J H

    1999-09-30

    Electronic absorption and magnetic circular dichroism (MCD) spectroscopic data at 4 degrees C are reported for exogenous ligand-free ferric forms of cytochrome c peroxidase (CCP) in comparison with two other histidine-ligated heme proteins, horseradish peroxidase (HRP) and myoglobin (Mb). In particular, we have examined the ferric states of yeast wild-type CCP (YCCP), CCP (MKT) which is the form of the enzyme that is expressed in and purified from E. coli, and contains Met-Lys-Thr (MKT) at the N-terminus, CCP (MKT) in the presence of 60% glycerol, lyophilized YCCP, and alkaline CCP (MKT). The present study demonstrates that, while having similar electronic absorption spectra, the MCD spectra of ligand-free ferric YCCP and CCP (MKT) are somewhat varied from one another. Detailed spectral analyses reveal that the ferric form of YCCP, characterized by a long wavelength charge transfer (CT) band at 645 nm, exists in a predominantly penta-coordinate state with spectral features similar to those of native ferric HRP rather than ferric Mb (His/water hexa-coordinate). The electronic absorption spectrum of ferric CCP (MKT) is similar to those of the penta-coordinate states of ferric YCCP and ferric HRP including a CT band at 645 nm. However, its MCD spectrum shows a small trough at 583 nm that is absent in the analogous spectra of YCCP and HRP. Instead, this trough is similar to that seen for ferric myoglobin at about 585 nm, and is attributed (following spectral simulations) to a minor contribution (< or = 5%) in the spectrum of CCP (MKT) from a hexa-coordinate low-spin species in the form of a hydroxide-ligated heme. The MCD data indicate that the lyophilized sample of ferric YCCP (lambda CT = 637 nm) contains considerably increased amounts of hexa-coordinate low-spin species including both His/hydroxide and bis-His species. The crystal structure of a spectroscopically similar sample of CCP (MKT) (lambda CT = 637 nm) solved at 2.0 A resolution is consistent with His

  14. Pyridinediimine Iron Complexes with Pendant Redox-Inactive Metals Located in the Secondary Coordination Sphere.

    PubMed

    Delgado, Mayra; Ziegler, Joshua M; Seda, Takele; Zakharov, Lev N; Gilbertson, John D

    2016-01-19

    A series of pyridinediimine (PDI) iron complexes that contain a pendant 15-crown-5 located in the secondary coordination sphere were synthesized and characterized. The complex Fe((15c5)PDI)(CO)2 (2) was shown in both the solid state and solution to encapsulate redox-inactive metal ions. Modest shifts in the reduction potential of the metal-ligand scaffold were observed upon encapsulation of either Na(+) or Li(+).

  15. Nitrite reduction by a pyridinediimine complex with a proton-responsive secondary coordination sphere.

    PubMed

    Kwon, Yubin M; Delgado, Mayra; Zakharov, Lev N; Seda, Takele; Gilbertson, John D

    2016-09-21

    The proton-responsive pyridinediimine ligand, (DEA)PDI (where (DEA)PDI = [(2,6-(i)PrC6H3)(N[double bond, length as m-dash]CMe)(N(Et)2C2H4)(N[double bond, length as m-dash]CMe)C5H3N]) was utilized for the reduction of NO2(-) to NO. Nitrite reduction is facilitated by the protonated secondary coordination sphere coupled with the ligand-based redox-active sites of [Fe(H(DEA)PDI)(CO)2](+) and results in the formation of the {Fe(NO)2}(9) DNIC, [Fe((DEA)PDI)(NO)2](+).

  16. Tunable lanthanide-directed metallosupramolecular networks by exploiting coordinative flexibility through ligand stoichiometry.

    PubMed

    Lyu, Guoqing; Zhang, Qiushi; Urgel, José I; Kuang, Guowen; Auwärter, Willi; Ecija, David; Barth, Johannes V; Lin, Nian

    2016-01-28

    We report the self-assembly of multi-component lanthanide coordination metallosupramolecular structures on a Au(111) surface. Eu atoms coordinate with two heterotypic ligands of quarterphenyl-4,4''-dicarbonitrile and 4',4''''-(1,4-phenylene)bis(2,2':6',2''-terpyridine). For carbonitrile ligand : terpyridyl stoichiometric ratios of 0.7, Eu atoms are primarily ligated in a four-fold coordination scheme. By increasing the carbonitrile ligand to reach a stoichiometry of 1.8, Eu atoms are ligated now in a five-fold coordination sphere. Two types of coordination schemes result in structures exhibiting one-dimensional and two-dimensional morphologies, respectively. This study demonstrates that the flexible lanthanide coordination sphere facilitates the rational design of metallosupramolecular architectures.

  17. Nitrite reduction by a pyridinediimine complex with a proton-responsive secondary coordination sphere.

    PubMed

    Kwon, Yubin M; Delgado, Mayra; Zakharov, Lev N; Seda, Takele; Gilbertson, John D

    2016-09-21

    The proton-responsive pyridinediimine ligand, (DEA)PDI (where (DEA)PDI = [(2,6-(i)PrC6H3)(N[double bond, length as m-dash]CMe)(N(Et)2C2H4)(N[double bond, length as m-dash]CMe)C5H3N]) was utilized for the reduction of NO2(-) to NO. Nitrite reduction is facilitated by the protonated secondary coordination sphere coupled with the ligand-based redox-active sites of [Fe(H(DEA)PDI)(CO)2](+) and results in the formation of the {Fe(NO)2}(9) DNIC, [Fe((DEA)PDI)(NO)2](+). PMID:27539064

  18. The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain.

    PubMed

    D'Abrosca, Gianluca; Russo, Luigi; Palmieri, Maddalena; Baglivo, Ilaria; Netti, Fortuna; de Paola, Ivan; Zaccaro, Laura; Farina, Biancamaria; Iacovino, Rosa; Pedone, Paolo Vincenzo; Isernia, Carla; Fattorusso, Roberto; Malgieri, Gaetano

    2016-08-01

    The possibility of choices of protein ligands and coordination geometries leads to diverse Zn(II) binding sites in zinc-proteins, allowing a range of important biological roles. The prokaryotic Cys2His2 zinc finger domain (originally found in the Ros protein from Agrobacterium tumefaciens) tetrahedrally coordinates zinc through two cysteine and two histidine residues and it does not adopt a correct fold in the absence of the metal ion. Ros is the first structurally characterized member of a family of bacterial proteins that presents several amino acid changes in the positions occupied in Ros by the zinc coordinating residues. In particular, the second position is very often occupied by an aspartic acid although the coordination of structural zinc by an aspartate in eukaryotic zinc fingers is very unusual. Here, by appropriately mutating the protein Ros, we characterize the aspartate role within the coordination sphere of this family of proteins demonstrating how the presence of this residue only slightly perturbs the functional structure of the prokaryotic zinc finger domain while it greatly influences its thermodynamic properties. PMID:27238756

  19. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    PubMed

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late

  20. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    PubMed

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late

  1. Plutonium(IV) complexation by diglycolamide ligands--coordination chemistry insight into TODGA-based actinide separations.

    PubMed

    Reilly, Sean D; Gaunt, Andrew J; Scott, Brian L; Modolo, Giuseppe; Iqbal, Mudassir; Verboom, Willem; Sarsfield, Mark J

    2012-10-01

    Complexation of Pu(IV) with TMDGA, TEDGA, and TODGA diglycolamide ligands was followed by vis-NIR spectroscopy. A crystal structure determination reveals that TMDGA forms a 1 : 3 homoleptic Pu(IV) complex with the nitrate anions forced into the outer coordination sphere.

  2. Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere

    SciTech Connect

    Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.; O'Hagan, Molly J.; Ginovska-Pangovska, Bojana; Linehan, John C.; Shaw, Wendy J.

    2012-10-05

    The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introduce enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.

  3. Theoretical study of the Pb(II)-catechol system in dilute aqueous solution: Complex structure and metal coordination sphere determination

    NASA Astrophysics Data System (ADS)

    Lapouge, Christine; Cornard, Jean-Paul

    2010-04-01

    We investigated the unknown interaction of Pb(II) with catechol ligand in diluted aqueous solution by electronic spectroscopies combined with quantum chemical calculations. The aim of this work is the determination of the complete structure of the complex formed and particularly the metal coordination sphere. Three successive steps have been necessary to reach this goal: (i) the comparison of the experimental electronic absorption spectrum with theoretical spectra calculated from various hypothetical structures, (ii) complexation reaction pathways calculations in vacuum and with taking into account the solvent effects and finally (iii) the fluorescence emission wavelength calculations. All these investigations led to identify a monodentate complex with the monodeprotonated ligand, in which the Pb atom presents a coordination number of five. The formula of the complex is [Pb(Hcat)(HO)4]mono+.

  4. Second sphere control of spin state: Differential tuning of axial ligand bonds in ferric porphyrin complexes by hydrogen bonding.

    PubMed

    Mittra, Kaustuv; Sengupta, Kushal; Singha, Asmita; Bandyopadhyay, Sabyasachi; Chatterjee, Sudipta; Rana, Atanu; Samanta, Subhra; Dey, Abhishek

    2016-02-01

    An iron porphyrin with a pre-organized hydrogen bonding (H-Bonding) distal architecture is utilized to avoid the inherent loss of entropy associated with H-Bonding from solvent (water) and mimic the behavior of metallo-enzyme active sites attributed to H-Bonding interactions of active site with the 2nd sphere residues. Resonance Raman (rR) data on these iron porphyrin complexes indicate that H-Bonding to an axial ligand like hydroxide can result in both stronger or weaker Fe(III)-OH bond relative to iron porphyrin complexes. The 6-coordinate (6C) complexes bearing water derived axial ligands, trans to imidazole or thiolate axial ligand with H-Bonding stabilize a low spin (LS) ground state (GS) when a complex without H-Bonding stabilizes a high spin (HS) ground state. DFT calculations reproduce the trend in the experimental data and provide a mechanism of how H-Bonding can indeed lead to stronger metal ligand bonds when the axial ligand donates an H-Bond and lead to weaker metal ligand bonds when the axial ligand accepts an H-Bond. The experimental and computational results explain how a weak Fe(III)-OH bond (due to H-Bonding) can lead to the stabilization of low spin ground state in synthetic mimics and in enzymes containing iron porphyrin active sites. H-Bonding to a water ligand bound to a reduced ferrous active site can only strengthen the Fe(II)-OH2 bond and thus exclusion of water and hydrophilic residues from distal sites of O2 binding/activating heme proteins is necessary to avoid inhibition of O2 binding by water. These results help demonstrate the predominant role played by H-Bonding and subtle changes in its orientation in determining the geometric and electronic structure of iron porphyrin based active sites in nature.

  5. Modifications of laccase activities of copper efflux oxidase, CueO by synergistic mutations in the first and second coordination spheres of the type I copper center.

    PubMed

    Kataoka, Kunishige; Kogi, Hiroki; Tsujimura, Seiya; Sakurai, Takeshi

    2013-02-15

    The redox potential of type I copper in the Escherichia coli multicopper oxidase CueO was shifted in the positive or negative direction as a result of the single, double, and triple mutations in the first and second coordination spheres: the formation of the NH···S(-)(Cys500 ligand) hydrogen bond, the breakdown of the NH(His443 ligand)···O(-)(Asp439) hydrogen bond, and the substitution of the Met510 ligand for the non-coordinating Leu or coordinating Gln. Laccase activities of CueO were maximally enhanced 140-fold by virtue of the synergistic effect of mild mutations at and at around the ligand groups to type I copper.

  6. Versatile coordination chemistry of a bis(methyliminophosphoranyl)pyridine ligand on copper centres.

    PubMed

    Cheisson, Thibault; Auffrant, Audrey

    2014-09-21

    The coordination of a bis(methyliminophosphoranyl)pyridine ligand (L) to copper centres was studied. The use of copper(I) bromide precursors gave access to [LCuBr] (2) in which only one iminophosphorane arm is coordinated to the metal, as observed by X-ray crystallography and MAS (31)P NMR. Its fluxional behaviour in solution was demonstrated by VT-(31)P NMR, and investigated by DFT calculations. On the other hand, coordination of L to [Cu(CH3CN)4]PF6 gave a dimer [L2Cu2](PF6)2 (3) in which the two copper centres do not have the same coordination sphere as shown by X-ray crystallography. Addition of a strong ligand such as PEt3 allows the preparation of a cationic monomeric copper complex (4) in which L has a behaviour similar to that observed for 2. Synthesis of copper(II) complexes was also achieved by chemical oxidation of 2, which shows an irreversible oxidation at -0.36 vs. Fc(+)/Fc, or directly via the coordination of L to CuBr2. In [LCuBr2] (5), L adopts a pincer coordination. Finally, the catalytic behaviour of copper(I) complexes 2 and 3 was investigated in cyclopropanation reactions and [3 + 2] cycloadditions. PMID:25076168

  7. Reactivity pathways for nitric oxide and nitrosonium with iron complexes in biologically relevant sulfur coordination spheres.

    PubMed

    Harrop, Todd C; Song, Datong; Lippard, Stephen J

    2007-11-01

    The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in the formation of dinitrosyl iron complexes (DNICs) coordinated by cysteine residues from the peptide backbone or with low molecular weight sulfur-containing molecules like glutathione. Such DNICs are among the modes available in biology to store, transport, and deliver NO to its relevant targets. In order to elucidate the fundamental chemistry underlying the formation of DNICs and to characterize possible intermediates in the process, we have investigated the interaction of NO (g) and NO(+) with iron-sulfur complexes having the formula [Fe(SR)(4)](2-), where R=(t)Bu, Ph, or benzyl, chosen to mimic sulfur-rich iron sites in biology. The reaction of NO (g) with [Fe(S(t)Bu)(4)](2-) or [Fe(SBz)(4)](2-) cleanly affords the mononitrosyl complexes (MNICs), [Fe(S(t)Bu)(3)(NO)](-) (1) and [Fe(SBz)(3)(NO)](-) (3), respectively, by ligand displacement. Mononitrosyl species of this kind were previously unknown. These complexes further react with NO (g) to generate the corresponding DNICs, [Fe(SPh)(2)(NO)(2)](-) (4) and [Fe(SBz)(2)(NO)(2)](-) (5), with concomitant reductive elimination of the coordinated thiolate donors. Reaction of [Fe(SR)(4)](2-) complexes with NO(+) proceeds by a different pathway to yield the corresponding dinitrosyl S-bridged Roussin red ester complexes, [Fe(2)(mu-S(t)Bu)(2)(NO)(4)] (2), [Fe(2)(mu-SPh)(2)(NO)(4)] (7) and [Fe(2)(mu-SBz)(2)(NO)(4)] (8). The NO/NO(+) reactivity of an Fe(II) complex with a mixed nitrogen/sulfur coordination sphere was also investigated. The DNIC and red ester species, [Fe(S-o-NH(2)C(6)H(4))(2)(NO)(2)](-) (6) and [Fe(2)(mu-S-o-NH(2)C(6)H(4))(2)(NO)(4)] (9), were generated. The structures of 8 and 9 were verified by X-ray crystallography. The MNIC complex 1 can efficiently deliver NO to iron-porphyrin complexes like [Fe(TPP)Cl], a reaction that is aided by light. Removal of the coordinated NO ligand of 1 by photolysis and addition of elemental

  8. Europium (III) coordination complex with a novel phosphonated ligand

    NASA Astrophysics Data System (ADS)

    Villemin, E.; Elias, B.; Marchand-Brynaert, J.

    2013-02-01

    An original Eu(III) complex with a phosphonated half-cage ligand (CCNPh) was synthesized and characterized. Coordination between Eu(III) and the selected ligand was investigated by FT-IR, 1H, 13C and 31P NMR spectroscopies. The stoichiometry of the Eu(III) complex in acetonitrile was determined by titrations using 1H, 31P NMR and photoluminescence. The 1M:2L stoichiometry, i.e. two CCNPh ligands for one Eu(III), has been measured. In contrast, the 1M:3L stoichiometry occurred in the solid state, from the elemental analysis. This particular behavior may be explained by the addition of a third CCNPh ligand to Eu(III) metallic core during the treatment and evaporation process for the obtention of the solid sample. An antenna effect has been observed consisting in the energy transfer from N-Ph (λexc = 276 nm) to Eu(III) (λem = 618 nm).

  9. Cation-Dependent Gold Recovery with α-Cyclodextrin Facilitated by Second-Sphere Coordination.

    PubMed

    Liu, Zhichang; Samanta, Avik; Lei, Juying; Sun, Junling; Wang, Yuping; Stoddart, J Fraser

    2016-09-14

    Herein, we report an alkali metal cation-dependent approach to gold recovery, facilitated by second-sphere coordination with eco-friendly α-cyclodextrin (α-CD). Upon mixing eight salts composed of Na(+), K(+), Rb(+), or Cs(+) cations and [AuX4](-) (X = Cl/Br) anions with α-, β-, or γ-CD in water, co-precipitates form selectively from the three (out of 24) aqueous solutions containing α-CD with KAuBr4, RbAuBr4, and CsAuBr4, from which the combination of α-CD and KAuBr4 affords the highest yield. Single-crystal X-ray analyses reveal that in 20 of the 24 adducts CD and [AuX4](-) anions form 2:1 sandwich-type second-sphere adducts driven partially by [C-H···X-Au] interactions between [AuX4](-) anions and the primary faces of two neighboring CDs. In the adduct formed between α-CD and KAuBr4, a [K(OH2)6](+) cation is encapsulated inside the cavity between the secondary faces of two α-CDs, leading to highly efficient precipitation owing to the formation of a cation/anion alternating ion wire residing inside a continuous α-CD nanotube. By contrast, in the other 19 adducts, the cations are coordinated by OH groups and glucopyranosyl ring O atoms in CDs. The strong coordination of Rb(+) and Cs(+) cations by these ligands, in conjunction with the stereoelectronically favorable binding of [AuBr4](-) anions with two α-CDs, facilitates the co-precipitation of the two adducts formed between α-CD with RbAuBr4 and CsAuBr4. In order to develop an efficient process for green gold recovery, the co-precipitation yield of α-CD and KAuBr4 has been optimized regarding both the temperature and the molar ratio of α-CD to KAuBr4. PMID:27518451

  10. Integrated calibration sphere and calibration step fixture for improved coordinate measurement machine calibration

    DOEpatents

    Clifford, Harry J.

    2011-03-22

    A method and apparatus for mounting a calibration sphere to a calibration fixture for Coordinate Measurement Machine (CMM) calibration and qualification is described, decreasing the time required for such qualification, thus allowing the CMM to be used more productively. A number of embodiments are disclosed that allow for new and retrofit manufacture to perform as integrated calibration sphere and calibration fixture devices. This invention renders unnecessary the removal of a calibration sphere prior to CMM measurement of calibration features on calibration fixtures, thereby greatly reducing the time spent qualifying a CMM.

  11. Coordination chemistry of N-heterocyclic nitrenium-based ligands.

    PubMed

    Tulchinsky, Yuri; Kozuch, Sebastian; Saha, Prasenjit; Mauda, Assaf; Nisnevich, Gennady; Botoshansky, Mark; Shimon, Linda J W; Gandelman, Mark

    2015-05-01

    Comprehensive studies on the coordination properties of tridentate nitrenium-based ligands are presented. N-heterocyclic nitrenium ions demonstrate general and versatile binding abilities to various transition metals, as exemplified by the synthesis and characterization of Rh(I) , Rh(III) , Mo(0) , Ru(0) , Ru(II) , Pd(II) , Pt(II) , Pt(IV) , and Ag(I) complexes based on these unusual ligands. Formation of nitrenium-metal bonds is unambiguously confirmed both in solution by selective (15) N-labeling experiments and in the solid state by X-ray crystallography. The generality of N-heterocyclic nitrenium as a ligand is also validated by a systematic DFT study of its affinity towards all second-row transition and post-transition metals (Y-Cd) in terms of the corresponding bond-dissociation energies.

  12. Influence of inner-sphere processes on the paramagnetic shifts in the {sup 1}H NMR spectra of some mixed-ligand complexes of rare-earth elements

    SciTech Connect

    Khachatryan, A.S.; Vashchuk, A.V.; Panyushkin, V.T.

    1995-12-20

    Concentration dependences of the observed chemical shifts in the NMR spectra of 1:1:1 and 1:2:1 mixed-ligand complexes of rare-earth elements with acetylacetone and acrylic, methacrylic, maleic, and fumaric acids were analyzed. The complexes undergo inner-sphere structural transformations involving different modes of coordination of the unsaturated acid, which is capable of coordination to the central ion through both the carboxylic group and {pi} electrons of the double bond. The possibility of determining equilibrium constants and limiting chemical shifts of the isomeric forms of the complexes was demonstrated. 9 refs., 4 figs.

  13. Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.

    PubMed

    Chaplin, Amanda K; Wilson, Michael T; Hough, Michael A; Svistunenko, Dimitri A; Hemsworth, Glyn R; Walton, Paul H; Vijgenboom, Erik; Worrall, Jonathan A R

    2016-06-10

    Copper-dependent lytic polysaccharide monooxygenases (LPMOs) are enzymes that oxidatively deconstruct polysaccharides. The active site copper in LPMOs is coordinated by a histidine-brace. This utilizes the amino group and side chain of the N-terminal His residue with the side chain of a second His residue to create a T-shaped arrangement of nitrogen ligands. We report a structural, kinetic, and thermodynamic appraisal of copper binding to the histidine-brace in an auxiliary activity family 10 (AA10) LPMO from Streptomyces lividans (SliLPMO10E). Unexpectedly, we discovered the existence of two apo-SliLPMO10E species in solution that can each bind copper at a single site with distinct kinetic and thermodynamic (exothermic and endothermic) properties. The experimental EPR spectrum of copper-bound SliLPMO10E requires the simulation of two different line shapes, implying two different copper-bound species, indicative of three and two nitrogen ligands coordinating the copper. Amino group coordination was probed through the creation of an N-terminal extension variant (SliLPMO10E-Ext). The kinetics and thermodynamics of copper binding to SliLPMO10E-Ext are in accord with copper binding to one of the apo-forms in the wild-type protein, suggesting that amino group coordination is absent in the two-nitrogen coordinate form of SliLPMO10E. Copper binding to SliLPMO10B was also investigated, and again it revealed the presence of two apo-forms with kinetics and stoichiometry of copper binding identical to that of SliLPMO10E. Our findings highlight that heterogeneity exists in the active site copper coordination sphere of LPMOs that may have implications for the mechanism of loading copper in the cell. PMID:27129229

  14. Controlling the redox properties of a pyrroloquinolinequinone (PQQ) derivative in a ruthenium(II) coordination sphere.

    PubMed

    Mitome, Hiroumi; Ishizuka, Tomoya; Shiota, Yoshihito; Yoshizawa, Kazunari; Kojima, Takahiko

    2015-02-21

    Ruthenium(ii) complexes of PQQTME, a trimethyl ester derivative of redox-active PQQ (pyrroloquinolinequinone), were prepared using a tridentate ligand, 2,2':6',2''-terpyridine (terpy) as an auxiliary ligand. The characterization of the complexes was performed by spectroscopic methods, X-ray crystallography, and electrochemical measurements. In one complex, the pyridine site of PQQTME binds to the [Ru(II)(terpy)] unit as a tridentate ligand, and a silver(i) ion is coordinated by the quinone moiety in a bidentate fashion. In contrast, another complex includes the [Ru(II)(terpy)] unit at the bidentate quinone moiety of the PQQTME ligand. The difference in the coordination modes of the complexes exhibits a characteristic difference in the stability of metal coordination and also in the reversibility of the reduction processes of the PQQTME ligand. It should be noted that an additional metal-ion-binding to the PQQTME ligand largely raises the 1e(-)-reduction potential of the ligand. In addition, we succeeded in the characterization of the 1e(-)-reduced species of the complexes, where the unpaired electron was delocalized in the π-conjugated system of the PQQTME˙(-) ligand, using UV-Vis absorption and ESR spectroscopies.

  15. The quantization of the radii of coordination spheres cubic crystals and cluster systems

    NASA Astrophysics Data System (ADS)

    Melnikov, G.; Emelyanov, S.; Ignatenko, N.; Ignatenko, G.

    2016-02-01

    The article deals with the creation of an algorithm for calculating the radii of coordination spheres and coordination numbers cubic crystal structure and cluster systems in liquids. Solution has important theoretical value since it allows us to calculate the amount of coordination in the interparticle interaction potentials, to predict the processes of growth of the crystal structures and processes of self-organization of particles in the cluster system. One option accounting geometrical and quantum factors is the use of the Fibonacci series to construct a consistent number of focal areas for cubic crystals and cluster formation in the liquid.

  16. How wet should be the reaction coordinate for ligand unbinding?

    NASA Astrophysics Data System (ADS)

    Tiwary, Pratyush; Berne, B. J.

    2016-08-01

    We use a recently proposed method called Spectral Gap Optimization of Order Parameters (SGOOP) [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)], to determine an optimal 1-dimensional reaction coordinate (RC) for the unbinding of a bucky-ball from a pocket in explicit water. This RC is estimated as a linear combination of the multiple available order parameters that collectively can be used to distinguish the various stable states relevant for unbinding. We pay special attention to determining and quantifying the degree to which water molecules should be included in the RC. Using SGOOP with under-sampled biased simulations, we predict that water plays a distinct role in the reaction coordinate for unbinding in the case when the ligand is sterically constrained to move along an axis of symmetry. This prediction is validated through extensive calculations of the unbinding times through metadynamics and by comparison through detailed balance with unbiased molecular dynamics estimate of the binding time. However when the steric constraint is removed, we find that the role of water in the reaction coordinate diminishes. Here instead SGOOP identifies a good one-dimensional RC involving various motional degrees of freedom.

  17. Second sphere coordination of hybrid metal-organic materials: solid state reactivity.

    PubMed

    Guo, Fang; Martí-Rujas, Javier

    2016-09-21

    When compared to other hybrid metal organic materials such as metal-organic frameworks, hydrogen bonded materials self-assembled by metals and organic molecules using second sphere interactions have been poorly investigated. Consequently, their solid-sate properties are also scarce. In this perspective, earlier research mainly on host-guest chemistry and its evolution towards more extended structures by applying crystal engineering principles using second sphere coordination is described. Crystal-to-crystal guest exchange reactions, permanently porous hybrid metal organic materials, mechanochemical reactivity, thermally induced phase transformations as well as some examples of functional technological applications using second sphere adducts such as gas adsorption, separation and non-linear optical phenomena are also reported. Although some tutorial reviews on second sphere adducts have been conducted mainly in the solution state focusing on metal based anion receptors, to the best of our knowledge, an overview on relevant works that focus on the solid-state properties has not been carried out. The aim of this article is to highlight from some of the early fundamental work to the latest reports on hybrid metal-organic materials self-assembled via second sphere interactions with a focus on solid-state chemistry.

  18. 2-Acylpyrroles as mono-anionic O,N-chelating ligands in silicon coordination chemistry.

    PubMed

    Kämpfe, Alexander; Brendler, Erica; Kroke, Edwin; Wagler, Jörg

    2014-07-21

    Kryptopyrrole (2,4-dimethyl-3-ethylpyrrole) was acylated with, for example, benzoyl chloride to afford 2-benzoyl-3,5-dimethyl-4-ethylpyrrole (L(1)H). With SiCl4 this ligand reacts under liberation of HCl and formation of the complex L(1)2SiCl2. In related reactions with HSiCl3 or H2SiCl2, the same chlorosilicon complex is formed under liberation of HCl and H2 or liberation of H2, respectively. The chlorine atoms of L(1)2SiCl2 can be replaced by fluoride and triflate using ZnF2 and Me3Si-OTf, respectively. The use of a supporting base (triethylamine) is required for the complexation of phenyltrichlorosilane and diphenyldichlorosilane. The complexes L(1)2SiCl2, L(1)2SiF2, L(1)2Si(OTf)2, L(1)2SiPhCl, and L(1)2SiPh2 exhibit various configurations of the octahedral silicon coordination spheres (i.e. cis or trans configuration of the monodentate substituents, different orientations of the bidentate chelating ligands relative to each other). Furthermore, cationic silicon complexes L(1)3Si(+) and L(1) SiPh(+) were synthesized by chloride abstraction with GaCl3. In contrast, reaction of L(1)2SiCl2 with a third equivalent of L(1)H in the presence of excess triethylamine produced a charge-neutral hexacoordinate Si complex with a new tetradentate chelating ligand which formed by Si-templated C-C coupling of two ligands L(1).

  19. Hydrogen Peroxide Coordination to Cobalt(II) Facilitated by Second-Sphere Hydrogen Bonding.

    PubMed

    Wallen, Christian M; Palatinus, Lukáš; Bacsa, John; Scarborough, Christopher C

    2016-09-19

    M(H2 O2 ) adducts have been postulated as intermediates in biological and industrial processes; however, only one observable M(H2 O2 ) adduct has been reported, where M is redox-inactive zinc. Herein, direct solution-phase detection of an M(H2 O2 ) adduct with a redox-active metal, cobalt(II), is described. This Co(II) (H2 O2 ) compound is made observable by incorporating second-sphere hydrogen-bonding interactions between bound H2 O2 and the supporting ligand, a trianionic trisulfonamido ligand. Thermodynamics of H2 O2 binding and decay kinetics of the Co(II) (H2 O2 ) species are described, as well as the reaction of this Co(II) (H2 O2 ) species with Group 2 cations. PMID:27560462

  20. Monomer, dimer or cyclic helicate? Coordination diversity with hard-soft P,N-donor ligands.

    PubMed

    Constable, Edwin C; Hostettler, Nik; Housecroft, Catherine E; Murray, Niamh S; Schönle, Jonas; Soydaner, Umut; Walliser, Roché M; Zampese, Jennifer A

    2013-04-14

    We report the synthesis of copper(I) complexes of three ligands which contain a potential P,N,N,P-metal binding site. Elemental analysis confirms that the bulk products possess a composition of [CuL][PF6] where L = 1, 2 or 3. Electrospray mass spectrometry (ESI MS) provides evidence for speciation in MeCN or MeOH solutions and the formation of both [CuL]+ and [Cu2L2]2+; addition of NaCl to the ESI MS samples aids the observation of dinuclear species as [Cu2L2Cl]+ ions. NMR spectroscopic data for a CD3CN solution of [Cu(1)][PF6] were consistent with a mononuclear species, but more complex multinuclear spectra were observed for the same compound dissolved in CD2Cl2. In the solid state, dimeric species dominate. Crystals grown from CH2Cl2 solutions of [Cu(1)][PF6] are found to be [Cu2(1)2][PF6]2·6CH2Cl2; each Cu+ ion in the centrosymmetric cation is bound in an N,O,P,P-coordination sphere, the N-donor originating from the pyridine ring. In [Cu2(3)2][PF6]2, each bridging ligand in the centrosymmetric [Cu2(3)2]2+ ion acts as a P,N-chelate to each Cu+ ion. Competing with this dimeric assembly is that of a circular helicate in which each ligand 3 bridges adjacent pairs of copper(I) ions in a chiral, hexameric complex; both the Δ,Δ,Δ,Δ,Δ,Δ- and Λ,Λ,Λ,Λ,Λ,Λ-enantiomers are present in the crystal lattice; in [Cu6(3)6]6+, each ligand coordinates as a bis(P,N-chelate). The solution absorption spectra of [Cu(1)][PF6], [Cu(2)][PF6] and [Cu(3)][PF6] are dominated by ligand-based transitions and none of the copper(I) complexes exhibits emissive behaviour in solution.

  1. Synthesis and transition metal coordination chemistry of a novel hexadentate bispidine ligand.

    PubMed

    Comba, Peter; Rudolf, Henning; Wadepohl, Hubert

    2015-02-14

    Reported is the new bispidine-derived hexadentate ligand (L = 3-(2-methylpyridyl)-7-(bis-2-methylpyridyl)-3,7-diazabicyclo[3.3.1]nonane) with two tertiary amine and four pyridine donor groups. This ligand can form heterodinuclear and mononuclear complexes and, in the mononuclear compounds discussed here, the ligand may coordinate as a pentadentate ligand, with one of the bispyridinemethane-based pyridine groups un- or semi-coordinated, or as a hexadentate ligand, leading to a pentagonal pyramidal coordination geometry or, with an additional monodentate ligand, to a heptacoordinate pentagonal bipyramidal structure. The solution and solid state data presented here indicate that, with the relatively small Cu(II) and high-spin Fe(II) ions the fourth pyridine group is only semi-coordinated for steric reasons and, with the larger high-spin Mn(II) ion genuine heptacoordination is observed but with a relatively large distortion in the pentagonal equatorial plane.

  2. Examination of the coordination sphere of Al(III) in trifluoromethyl-heteroarylalkenolato complex ions by gas-phase IRMPD spectroscopy and computational modelling.

    PubMed

    Brückmann, Lisa; Tyrra, Wieland; Mathur, Sanjay; Berden, Giel; Oomens, Jos; Meijer, Anthony J H M; Schäfer, Mathias

    2012-06-01

    A series of aluminium complex ions with trifluoromethyl-heteroarylalkenolato (TMHA) ligands are studied by gas-phase infrared multiphoton-dissociation (IRMPD) spectroscopy and computational modelling. The selected series of aluminium TMHA complex ions are promising species for the initial study of intrinsic binding characteristics of Al(III) cations in the gas phase as corresponding molecular ions. They are readily available for examination by (+) and (-) electrospray ionization mass spectrometry (ESI-MS) by spraying of [Al(3+)⋅(L(-))(3)] solutions. The complex ions under investigation contain trivalent Al(3+) cations with two chelating anionic enolate ligands, [Al(3+)⋅(L(-))(2)](+), providing insights in the nature of the heteroatom-Al bonds. Additionally, the structure of a deprotonated benzimidazole ligand, L(-,) and an anionic complex ion of Al(III) with two doubly deprotonated benzimidazole ligands, [Al(3+)⋅(L(2-))(2)](-), are examined by (-)ESI-IRMPD spectroscopy. Experimental and computational results are highly consistent and allow a reliable identification of the ion structures. In all complex ions examined the planar TMHA ligands are oriented perpendicular to each other around the metal ion, leading to a tetrahedral coordination sphere in which aluminium interacts with the enolate oxygen and heteroaryl nitrogen atoms available in each of the bidentate ligands. PMID:22442004

  3. Examination of the coordination sphere of Al(III) in trifluoromethyl-heteroarylalkenolato complex ions by gas-phase IRMPD spectroscopy and computational modelling.

    PubMed

    Brückmann, Lisa; Tyrra, Wieland; Mathur, Sanjay; Berden, Giel; Oomens, Jos; Meijer, Anthony J H M; Schäfer, Mathias

    2012-06-01

    A series of aluminium complex ions with trifluoromethyl-heteroarylalkenolato (TMHA) ligands are studied by gas-phase infrared multiphoton-dissociation (IRMPD) spectroscopy and computational modelling. The selected series of aluminium TMHA complex ions are promising species for the initial study of intrinsic binding characteristics of Al(III) cations in the gas phase as corresponding molecular ions. They are readily available for examination by (+) and (-) electrospray ionization mass spectrometry (ESI-MS) by spraying of [Al(3+)⋅(L(-))(3)] solutions. The complex ions under investigation contain trivalent Al(3+) cations with two chelating anionic enolate ligands, [Al(3+)⋅(L(-))(2)](+), providing insights in the nature of the heteroatom-Al bonds. Additionally, the structure of a deprotonated benzimidazole ligand, L(-,) and an anionic complex ion of Al(III) with two doubly deprotonated benzimidazole ligands, [Al(3+)⋅(L(2-))(2)](-), are examined by (-)ESI-IRMPD spectroscopy. Experimental and computational results are highly consistent and allow a reliable identification of the ion structures. In all complex ions examined the planar TMHA ligands are oriented perpendicular to each other around the metal ion, leading to a tetrahedral coordination sphere in which aluminium interacts with the enolate oxygen and heteroaryl nitrogen atoms available in each of the bidentate ligands.

  4. Spin-labelled cyclometallated palladium complexes. EPR study of dynamic processes in coordination sphere

    NASA Astrophysics Data System (ADS)

    Kozhanov, K. A.; Bubnov, M. P.; Abakumov, G. A.; Cherkasov, V. K.

    2012-12-01

    New four-, five- and six-coordinated cyclometallated o-semiquinonato palladium complexes were obtained and characterized in solution by EPR. Interaction of square-planar azaphenyl palladium semiquinonate with mono and bidentate phosphane donors leads to formation of five- and six-coordinated adducts. Typical values of HFC constants on apical and basal phosphorouses are observed for such compounds. In one case the reversible addition of tri-phenyl-phosphane was observed. The coordination mode of pincer ligand (bi- or tridentate) in o-semiquinonato pincer complexes depends on the nature of linker between coordinating group and pincer aryl ring. In the case of sbnd CH2sbnd linker five coordinated complexes are formed. The "swing" and "fan" oscillations are observed for these compounds. Complexes with sbnd Osbnd linker are the first examples of compounds with bidentate bonded phosphorous-based pincer ligand. Most of complexes are unstable and decompose during some hours. Only the application of o-semiquinones as spin labels and using the EPR technique made possible to observe and interpret their structure.

  5. Oxorhenium(V) complexes with ketiminato ligands: coordination chemistry and epoxidation of cyclooctene.

    PubMed

    Schröckeneder, Albert; Traar, Pedro; Raber, Georg; Baumgartner, Judith; Belaj, Ferdinand; Mösch-Zanetti, Nadia C

    2009-12-21

    Rhenium(V) oxo complexes of the type [ReOX(L)(2)] (1-7; X = Cl, Br) containing beta-ketiminate ligands (L = CH(3)C(O)CH(2)C(NAr)CH(3): Ar = Ph (APOH), 2-MePh (MPOH), 2,6-Me(2)Ph (DPOH), 2,6-(i)Pr(2)Ph (DiPOH)) have been prepared by reaction of [ReOX(3)(OPPh(3))(SMe(2))] (X = Cl, Br) with the lithium salts of the corresponding ligands. All compounds have been spectroscopically characterized, showing [ReOX(DiPO)(2)] (X = Cl (1), Br (5)), [ReOX(DPO)(2)] (X = Cl (2), Br (6)), and [ReOX(APO)(2)] (X = Cl (4), Br (7)) to be isomerically pure, in contrast to complex [ReOCl(MPO)(2)] (3), which exhibits a mixture of isomers. Compounds 2, 3, 5, and 7 were crystallographically characterized, showing similar octahedral coordination spheres with trans O horizontal lineRe-O and cis O horizontal lineRe-Cl bonds. However, the coordination of the nitrogen atoms vs each other is found to be cis or trans. Compounds 2 and 5 showed a trans-N,N configuration, for compound 3 both isomers (trans-N,N 3 and cis-N,N 3) were structurally characterized, and 7 gave a cis-N,N configuration. Compounds 1-6 are catalyst precursors for the epoxidation of cis-cyclooctene with 3 equiv of tert-butyl hydroperoxide (TBHP). Yields of the formed epoxide were up to 55% with all precursors, except with 2 and 6, where only up to 13% of epoxide was obtained under analogous conditions.

  6. Four homochiral coordination polymers contain N-acetyl-L-tyrosine and different N-donor ligand: Influence of metal cations, ancillary ligands and coordination modes

    SciTech Connect

    Li, Meng-Li; Song, Hui-Hua

    2013-10-15

    Using the chiral ligand N-acetyl-L-tyrosine (Hacty) and maintaining identical reaction conditions, Zn(II), Co(II), and Cd(II) salts provided four novel homochiral coordination polymers ([Zn(acty)(bipy){sub 2}(H{sub 2}O){sub 2}]·NO{sub 3}·2H{sub 2}O){sub n}1, ([Co(acty)(bipy){sub 2}(H{sub 2}O){sub 2}]·NO{sub 3}·2H{sub 2}O){sub n}2, ([Cd(acty){sub 2}(bipy)H{sub 2}O]·H{sub 2}O){sub n}3, and ([Cd(acty)(bpe){sub 2}(Ac)]·6H{sub 2}O){sub n}4 (bipy=4,4′-bipyridine; bpe=1,2-di(4-pyridyl)ethane) in the presence of ancillary ligands. Compounds 1 and 2 are isostructural 1D chain structures. The neighboring chains are further linked into a 3D supramolecular structure via π⋯π stacking and hydrogen bond interactions. Compound 3 shows a 2D network and 4 generates 1D infinite chains along the c-axis. Compounds 3 and 4 are further connected into 3D supramolecular network by hydrogen bond interactions. More importantly, coordination in acyl oxygen atoms and ancillary ligands (bpe) as monodentate decorating ligands in 4 are rarely reported. Ancillary ligands and metal cations significantly influence the structure of the complexes. The photoluminescence properties of 1, 3, and 4 were studied at room temperature. Circular dichroism (CD) of the complexes have been investigated. - Graphical abstract: Four new homochiral coordination polymers were prepared and structurally characterized, which investigate the influence of the ancillary ligands and metal ions on the design and synthesis of coordination polymers. Display Omitted - Highlights: • It is rarely reported that the chiral coordination polymers prepared with N-acetyl-L-tyrosine ligands. • The alkalescent acetyl oxygen atom is difficult to participate in coordination but it is happened in the N-acetyl-L-tyrosine ligands. • The ancillary ligands (4,4′-bipy and bpe) are present in an unusual coordination modes, monodentate decorating ligands in 1, 2 and 4. • Structure comparative analyses results indicate that the

  7. Lanthanide structures, coordination, and extraction investigations of a 1,3-bis(diethyl amide)-substituted caliz[4]arene ligand

    SciTech Connect

    Beer, P.D.; Ogden, M.I.; Drew, M.G.B.

    1996-04-10

    The synthesis and structure determinations of lanthanum, samarium, ytterbium, and lutetium complexes of 5,11,17,23-tetra-tert-butyl-25,27-bis((diethylcarbamoyl)methoxy)-26,28-dihydroxycalix[4]arene (L) are described. The four structures display similar characteristics with the trivalent lanthanide cation being encapsulated in an eight-coordinate oxygen environment, consisting of six oxygens from the calixarene, a water molecule, and unidentate picrate for lanthanum [La(L-2H)(picrate)(H{sub 2}O)]; and bidentate chelating picrate for the other lanthanides [Ln(L-2H)(picrate)]Ln = Sm, Yb, Lu. Under optimised experimental conditions solvent extraction investigations showed the calix[4]arene ligand L exhibited generally very high percentage extractabilities of lanthanide cations into dichloromethane, presumably on account of the ligand`s unique lower rim oxygen containing coordination sphere and its lipophilic exterior.

  8. Enzyme Design From the Bottom Up: An Active Nickel Electrocatalyst with a Structured Peptide Outer Coordination Sphere

    SciTech Connect

    Reback, Matthew L.; Buchko, Garry W.; Kier, Brandon L.; Ginovska-Pangovska, Bojana; Xiong, Yijia; Lense, Sheri; Hou, Jianbo; Roberts, John A.; Sorensen, Christina M.; Raugei, Simone; Squier, Thomas C.; Shaw, Wendy J.

    2014-02-03

    Functional, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts via an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well characterized hydrogen production catalyst, Ni(PPh2NPh)2. The incorporated peptide maintains its B-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (~100,000 s-1) is fully retained. The combination of an active molecular catalyst with a structured peptide outer coordination sphere provides a scaffold that permits the incorporation of features of an enzyme-like outer-coordination sphere necessary to create molecular electrocatalysts with en-hanced functionality.

  9. A modular approach to neutral P,N-ligands: synthesis and coordination chemistry

    PubMed Central

    Blasius, Clemens K; Intorp, Sebastian N; Wadepohl, Hubert

    2016-01-01

    Summary We report the modular synthesis of three different types of neutral κ2-P,N-ligands comprising an imine and a phosphine binding site. These ligands were reacted with rhodium, iridium and palladium metal precursors and the structures of the resulting complexes were elucidated by means of X-ray crystallography. We observed that subtle changes of the ligand backbone have a significant influence on the binding geometry und coordination properties of these bidentate P,N-donors. PMID:27340475

  10. Drawing Mononuclear Octahedral Coordination Compounds Containing Tridentate Chelating Ligands

    ERIC Educational Resources Information Center

    Mohamadou, Aminou; Ple, Karen; Haudrechy, Arnaud

    2011-01-01

    Complexes with tridentate ligands of the type [M(A-B-C)2], where A [not equal to] B [not equal to] C and with an imposed bonding sequence A-B-C, require special attention to draw all possible stereoisomers. Depending on the nature of the central donor atom B of the tridentate ligand, an easy drawing method is presented that shows seven chiral…

  11. Reversible Single-Crystal to Single-Crystal Transformations of a Zn(II)-Salicyaldimine Coordination Polymer Accompanying Changes in Coordination Sphere and Network Dimensionality upon Dehydration and Rehydration.

    PubMed

    Wu, Jing-Yun; Chang, Ching-Yun; Tsai, Chi-Jou; Lee, Jey-Jau

    2015-11-16

    A fluorescent Zn(II)-salicyaldimine coordination polymer, [Zn(L(salpyca))(H2O)]n (1; H2L(salpyca) = 4-hydroxy-3-(((pyridin-2-yl)methylimino)methyl)benzoic acid), showing a one-dimensional (1D) zigzag chain structure has been hydro(solvo)thermally synthesized. Removal of coordination water molecules in 1 by thermal dehydration gives rise to the dehydration product [Zn(L(salpyca))]n (1'), which has a dizinc-based two-dimensional (2D) gridlike (4,4)-layer structure. X-ray powder diffraction (XRPD) patterns, thermogravimetric (TG) analyses, and infrared (IR) spectra all clearly indicate that the structure of 1 is quite flexible as a result of a reversible 1D-2D single-crystal to single-crystal (SCSC) transformation upon removal and rebinding of coordination water molecules, which accompanies changes in coordination sphere and network dimensionality. Additionally, Zn(II)-salicyaldimine polymers 1 and 1' exhibit different solid-state photoluminescences at 458 and 480 nm, respectively. This is reasonably attributed to the close-packing effect and/or the influences of the differences on the conformation and the coordination mode of the L(salpyca) ligand and the coordination geometry around the Zn(II) center.

  12. Unusual κ1 coordination of a β-diketiminate ligand in niobium complexes.

    PubMed

    Ziegler, Jessica A; Bergman, Robert G; Arnold, John

    2016-08-01

    Reaction of (BDI)Nb(N(t)Bu)Cl2py with NaCp results in the κ(1)-coordination of the BDI ligand in the complex (κ(1)-N,BDI)CpNb(N(t)Bu)Cl (2). Via chloride abstraction from 2, we develop synthetic routes to structurally analogous cationic and Nb(IV) pseudo-four coordinate complexes where the BDI ligand returns to the κ(2)-coordination mode. We compare these to our previously reported tetrahedral niobium bis(imido) complexes to investigate the effects of the Cp ligand on the properties of Nb-BDI-imido systems. Substitution of the chloride in 2 with a hydride also causes return to bidentate binding of the BDI ligand. The X-ray crystal structures of these complexes have been determined, and the structural parameters reflecting the consequences of the electronic differences are discussed. PMID:27461382

  13. Ferroelectric Coordination Polymers Self-Assembled from Mesogenic Zinc(II) Porphyrin and Dipolar Bridging Ligands.

    PubMed

    Hui, Joseph K-H; Kishida, Hiroyuki; Ishiba, Keita; Takemasu, Kenta; Morikawa, Masa-Aki; Kimizuka, Nobuo

    2016-09-26

    A new class of ferroelectric coordination-based polymers has been developed by the self-assembly of lipophilic zinc porphyrin (ZnP) and ditopic bridging ligands. The ligands contain dipolar benzothiadiazole or fluorobenzene units, which are axially coordinated to ZnP with the dipole moments oriented perpendicular to the coordination axes. The coordination-based polymers show ferroelectric characteristics in the liquid crystalline state, as revealed by distinctive hysteresis in the polarization-electric field (P-E) loops and inversion current peaks in current-voltage (I-V) loops. The observed ferroelectric properties are explainable by flip-flop rotation of the dipolar axle ligands induced by the applied electric field, as demonstrated by the positive-up-negative-down (PUND) measurements. The present system provides a new operating principle in supramolecular ferroelectrics.

  14. Ferroelectric Coordination Polymers Self-Assembled from Mesogenic Zinc(II) Porphyrin and Dipolar Bridging Ligands.

    PubMed

    Hui, Joseph K-H; Kishida, Hiroyuki; Ishiba, Keita; Takemasu, Kenta; Morikawa, Masa-Aki; Kimizuka, Nobuo

    2016-09-26

    A new class of ferroelectric coordination-based polymers has been developed by the self-assembly of lipophilic zinc porphyrin (ZnP) and ditopic bridging ligands. The ligands contain dipolar benzothiadiazole or fluorobenzene units, which are axially coordinated to ZnP with the dipole moments oriented perpendicular to the coordination axes. The coordination-based polymers show ferroelectric characteristics in the liquid crystalline state, as revealed by distinctive hysteresis in the polarization-electric field (P-E) loops and inversion current peaks in current-voltage (I-V) loops. The observed ferroelectric properties are explainable by flip-flop rotation of the dipolar axle ligands induced by the applied electric field, as demonstrated by the positive-up-negative-down (PUND) measurements. The present system provides a new operating principle in supramolecular ferroelectrics. PMID:27527513

  15. Supramolecular coordination and antimicrobial activities of constructed mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Abou-Dobara, M. I.; Seyam, H. A.

    2013-03-01

    A novel series of copper(II) and palladium(II) with 4-derivatives benzaldehyde pyrazolone (Ln) were synthesized. The mixed ligand complexes were prepared by using 1,10-phenanthroline (Phen) as second ligand. The structure of these complexes was identified and confirm by elemental analysis, molar conductivity, UV-Vis, IR and 1H NMR spectroscopy and magnetic moment measurements as well as thermal analysis. The ligand behaves as a neutral bidentate ligand through ON donor sites. ESR spectra show the simultaneous presence of a planar trans and a nearly planar cis isomers in the 1:2 ratio for all N,O complexes [Cu(Ln)2]Cl2ṡ2H2O. Schiff bases (Ln) were tested against bacterial species; namely two Gram positive bacteria (Staphylococcus aureus and Bacillus cereus) and two Gram negative bacteria (Escherichia coli and Klebsiella pneumoniae) and fungal species (Aspergillus niger, Fusarium oxysporium, Penicillium italicum and Alternaria alternata). The tested compounds have antibacterial activity against S. aureus, B. cereus and K. pneumoniae.

  16. Ligand Induced Spin Crossover in Penta-Coordinated Ferric Dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Ganguli, P.; Iyer, R. M.

    1981-09-01

    On addition of lewis bases to Fe(dtc)2X, ligand exchange takes place through a SN2 mechanism, with a parallel spin crossover in the ferric ion. The two species (S = 3/2 and S = 5/2) formed are in dynamic chemical equilibrium, and a slow decomposition is then initiated.

  17. Structural transitions in ion coordination driven by changes in competition for ligand binding

    PubMed Central

    Varma, Sameer; Rempe, Susan B.

    2009-01-01

    Transferring Na+ and K+ ions from their preferred coordination states in water to states having different coordination numbers incurs a free energy cost. In several examples in nature, however, these ions readily partition from aqueous-phase coordination states into spatial regions having much higher coordination numbers. Here we utilize statistical theory of solutions, quantum chemical simulations, classical mechanics simulations and structural informatics to understand this aspect of ion partitioning. Our studies lead to the identification of a specific role of the solvation environment in driving transitions in ion coordination structures. Although ion solvation in liquid media is an exergonic reaction overall, we find it is also associated with considerable free energy penalties for extracting ligands from their solvation environments to form coordinated ion complexes. Reducing these penalties increases the stabilities of higher-order coordinations and brings down the energetic cost to partition ions from water into over-coordinated binding sites in biomolecules. These penalties can be lowered via a reduction in direct favorable interactions of the coordinating ligands with all atoms other than the ions themselves. A significant reduction in these penalties can, in fact, also drive up ion coordination preferences. Similarly, an increase in these penalties can lower ion coordination preferences, akin to a Hofmeister effect. Since such structural transitions are effected by the properties of the solvation phase, we anticipate that they will also occur for other ions. The influence of other factors, including ligand density, ligand chemistry and temperature, on the stabilities of ion coordination structures are also explored. PMID:18954053

  18. Four homochiral coordination polymers contain N-acetyl-L-tyrosine and different N-donor ligand: Influence of metal cations, ancillary ligands and coordination modes

    NASA Astrophysics Data System (ADS)

    Li, Meng-Li; Song, Hui-Hua

    2013-10-01

    Using the chiral ligand N-acetyl-L-tyrosine (Hacty) and maintaining identical reaction conditions, Zn(II), Co(II), and Cd(II) salts provided four novel homochiral coordination polymers {[Zn(acty)(bipy)2(H2O)2]·NO3·2H2O}n1, {[Co(acty)(bipy)2(H2O)2]·NO3·2H2O}n2, {[Cd(acty)2(bipy)H2O]·H2O}n3, and {[Cd(acty)(bpe)2(Ac)]·6H2O}n4 (bipy=4,4‧-bipyridine; bpe=1,2-di(4-pyridyl)ethane) in the presence of ancillary ligands. Compounds 1 and 2 are isostructural 1D chain structures. The neighboring chains are further linked into a 3D supramolecular structure via π⋯π stacking and hydrogen bond interactions. Compound 3 shows a 2D network and 4 generates 1D infinite chains along the c-axis. Compounds 3 and 4 are further connected into 3D supramolecular network by hydrogen bond interactions. More importantly, coordination in acyl oxygen atoms and ancillary ligands (bpe) as monodentate decorating ligands in 4 are rarely reported. Ancillary ligands and metal cations significantly influence the structure of the complexes. The photoluminescence properties of 1, 3, and 4 were studied at room temperature. Circular dichroism (CD) of the complexes have been investigated.

  19. Kinetic Studies of the Coordination of Mono- and Ditopic Ligands with First Row Transition Metal Ions.

    PubMed

    Munzert, Stefanie Martina; Schwarz, Guntram; Kurth, Dirk G

    2016-03-01

    The reactions of the ditopic ligand 1,4-bis(2,2':6',2″-terpyridin-4'-yl)benzene (1) as well as the monotopic ligands 4'-phenyl-2,2':6',2″-terpyridine (2) and 2,2':6',2″-terpyridine (3) with Fe(2+), Co(2+), and Ni(2+) in solution are studied. While the reaction of 1 with Fe(2+), Co(2+), and Ni(2+) results in metallo-supramolecular coordination polyelectrolytes (MEPEs), ligands 2 and 3 give mononuclear complexes. All compounds are analyzed by UV/vis and fluorescence spectroscopy. Fluorescence spectroscopy indicates that protonation as well as coordination to Zn(2+) leads to an enhanced fluorescence of the terpyridine ligands. In contrast, Fe(2+), Co(2+), or Ni(2+) quench the fluorescence of the ligands. The kinetics of the reactions are studied by stopped-flow fluorescence spectroscopy. Analysis of the measured data is presented and the full kinetic rate laws for the coordination of the terpyridine ligands 1, 2, and 3 to Fe(2+), Co(2+), and Ni(2+) are presented. The coordination occurs within a few seconds, and the rate constant increases in the order Ni(2+) < Co(2+) < Fe(2+). With the rate constants at hand, the polymer growth of Ni-MEPE is computed.

  20. The quantum harmonic oscillator on the sphere and the hyperbolic plane: {kappa}-dependent formalism, polar coordinates, and hypergeometric functions

    SciTech Connect

    Carinena, Jose F.; Ranada, Manuel F.; Santander, Mariano

    2007-10-15

    A nonlinear model representing the quantum harmonic oscillator on the sphere and the hyperbolic plane is solved in polar coordinates (r,{phi}) by making use of a curvature-dependent formalism. The curvature {kappa} is considered as a parameter and then the radial Schroedinger equation becomes a {kappa}-dependent Gauss hypergeometric equation. The energy spectrum and the wave functions are exactly obtained in both the sphere S{sup 2} ({kappa}>0) and the hyperbolic plane H{sup 2} ({kappa}<0). A comparative study between the spherical and the hyperbolic quantum results is presented.

  1. Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin

    PubMed Central

    Liu, Zhichang; Frasconi, Marco; Lei, Juying; Brown, Zachary J.; Zhu, Zhixue; Cao, Dennis; Iehl, Julien; Liu, Guoliang; Fahrenbach, Albert C.; Botros, Youssry Y.; Farha, Omar K.; Hupp, Joseph T.; Mirkin, Chad A.; Fraser Stoddart, J.

    2013-01-01

    Gold recovery using environmentally benign chemistry is imperative from an environmental perspective. Here we report the spontaneous assembly of a one-dimensional supramolecular complex with an extended {[K(OH2)6][AuBr4](α-cyclodextrin)2}n chain superstructure formed during the rapid co-precipitation of α-cyclodextrin and KAuBr4 in water. This phase change is selective for this gold salt, even in the presence of other square-planar palladium and platinum complexes. From single-crystal X-ray analyses of six inclusion complexes between α-, β- and γ-cyclodextrins with KAuBr4 and KAuCl4, we hypothesize that a perfect match in molecular recognition between α-cyclodextrin and [AuBr4]− leads to a near-axial orientation of the ion with respect to the α-cyclodextrin channel, which facilitates a highly specific second-sphere coordination involving [AuBr4]− and [K(OH2)6]+ and drives the co-precipitation of the 1:2 adduct. This discovery heralds a green host–guest procedure for gold recovery from gold-bearing raw materials making use of α-cyclodextrin—an inexpensive and environmentally benign carbohydrate. PMID:23673640

  2. Coordination Chemistry of Europium(III) Ion Towards Acylpyrazolone Ligands.

    PubMed

    Atanassova, Maria; Kurteva, Vanya; Billard, Isabelle

    2015-01-01

    Two Eu(III) complexes were synthesized using 4-acylpyrazolone ligands: 3-methyl-4-(4-methylbenzoyl)-1-phenyl-pyrazol-5-one (HPMMBP) and 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one (HPPMBP). The composition of the obtained solid complexes was determined as Eu(PMMBP)3·C2H5OH and Eu(PPMBP)3·3H2O based on elemental analysis and was further studied by IR, NMR and TG-TSC data. The lanthanoid complexation in solid state and in solution during liquid-liquid extraction (molecular diluent and ionic liquid) is discussed.

  3. Secondary interactions or ligand scrambling? Subtle steric effects govern the iridium(I) coordination chemistry of phosphoramidite ligands.

    PubMed

    Osswald, Tina; Rüegger, Heinz; Mezzetti, Antonio

    2010-01-25

    The like and unlike isomers of phosphoramidite (P*) ligands are found to react differently with iridium(I), which is a key to explaining the apparently inconsistent results obtained by us and other research groups in a variety of catalytic reactions. Thus, the unlike diastereoisomer (aR,S,S)-[IrCl(cod)(1 a)] (2 a; cod=1,5-cyclooctadiene, 1 a=(aR,S,S)-(1,1'-binaphthalene)-2,2'-diyl bis(1-phenylethyl)phosphoramidite) forms, upon chloride abstraction, the monosubstituted complex (aR,S,S)-[Ir(cod)(1,2-eta-1 a,kappaP)](+) (3 a), which contains a chelating P* ligand that features an eta(2) interaction between a dangling phenyl group and iridium. Under analogous conditions, the like analogue (aR,R,R)-1 a' gives the disubstituted species (aR,R,R)-[Ir(cod)(1 a',kappaP)(2)](+) (4 a') with monodentate P* ligands. The structure of 3 a was assessed by a combination of X-ray and NMR spectroscopic studies, which indicate that it is the configuration of the binaphthol moiety (and not that of the dangling benzyl N groups) that determines the configuration of the complex. The effect of the relative configuration of the P* ligand on its iridium(I) coordination chemistry is discussed in the context of our preliminary catalytic results and of apparently random results obtained by other groups in the iridium(I)-catalyzed asymmetric allylic alkylation of allylic acetates and in rhodium(I)-catalyzed asymmetric cycloaddition reactions. Further studies with the unlike ligand (aS,R,R)-(1,1'-binaphthalene)-2,2'-diyl bis{[1-(1-naphthalene-1-yl)ethyl]phosphoramidite} (1 b) showed a yet different coordination mode, that is, the eta(4)-arene-metal interaction in (aS,R,R)-[Ir(cod)(1,2,3,4-eta-1 b,kappaP)](+) (3 b).

  4. Iron coordination chemistry with new ligands containing triazole and pyridine moieties. Comparison of the coordination ability of the N-donors.

    PubMed

    Ségaud, Nathalie; Rebilly, Jean-Noël; Sénéchal-David, Katell; Guillot, Régis; Billon, Laurianne; Baltaze, Jean-Pierre; Farjon, Jonathan; Reinaud, Olivia; Banse, Frédéric

    2013-01-18

    We report the synthesis, characterization, and solution chemistry of a series of new Fe(II) complexes based on the tetradentate ligand N-methyl-N,N'-bis(2-pyridyl-methyl)-1,2-diaminoethane or the pentadentate ones N,N',N'-tris(2-pyridyl-methyl)-1,2-diaminoethane and N,N',N'-tris(2-pyridyl-methyl)-1,3-diaminopropane, modified by propynyl or methoxyphenyltriazolyl groups on the amino functions. Six of these complexes are characterized by X-ray crystallography. In particular, two of them exhibit an hexadentate coordination environment around Fe(II) with two amino, three pyridyl, and one triazolyl groups. UV-visible and cyclic voltammetry experiments of acetonitrile solutions of the complexes allow to deduce accurately the structure of all Fe(II) species in equilibrium. The stability of the complexes could be ranked as follows: [L(5)Fe(II)-py](2+) > [L(5)Fe(II)-Cl](+) > [L(5)Fe(II)-triazolyl](2+) > [L(5)Fe(II)-(NCMe)](2+), where L(5) designates a pentadentate coordination sphere composed of the two amines of ethanediamine and three pyridines. For complexes based on propanediamine, the hierarchy determined is [L(5)Fe(II)-Cl](+) > [L(5)Fe(II)(OTf)](+) > [L(5)Fe(II)-(NCMe)](2+), and no ligand exchange could be evidenced for [L(5)Fe(II)-triazolyl](2+). Reactivity of the [L(5)Fe(II)-triazolyl](2+) complexes with hydrogen peroxide and PhIO is similar to the one of the parent complexes that lack this peculiar group, that is, generation of Fe(III)(OOH) and Fe(IV)(O), respectively. Accordingly, the ability of these complexes at catalyzing the oxidation of small organic molecules by these oxidants follows the tendencies of their previously reported counterparts. Noteworthy is the remarkable cyclooctene epoxidation activity by these complexes in the presence of PhIO.

  5. AsteriX: a Web server to automatically extract ligand coordinates from figures in PDF articles.

    PubMed

    Lounnas, V; Vriend, G

    2012-02-27

    Coordinates describing the chemical structures of small molecules that are potential ligands for pharmaceutical targets are used at many stages of the drug design process. The coordinates of the vast majority of ligands can be obtained from either publicly accessible or commercial databases. However, interesting ligands sometimes are only available from the scientific literature, in which case their coordinates need to be reconstructed manually--a process that consists of a series of time-consuming steps. We present a Web server that helps reconstruct the three-dimensional (3D) coordinates of ligands for which a two-dimensional (2D) picture is available in a PDF file. The software, called AsteriX, analyses every picture contained in the PDF file and attempts to determine automatically whether or not it contains ligands. Areas in pictures that may contain molecular structures are processed to extract connectivity and atom type information that allow coordinates to be subsequently reconstructed. The AsteriX Web server was tested on a series of articles containing a large diversity in graphical representations. In total, 88% of 3249 ligand structures present in the test set were identified as chemical diagrams. Of these, about half were interpreted correctly as 3D structures, and a further one-third required only minor manual corrections. It is principally impossible to always correctly reconstruct 3D coordinates from pictures because there are many different protocols for drawing a 2D image of a ligand, but more importantly a wide variety of semantic annotations are possible. The AsteriX Web server therefore includes facilities that allow the users to augment partial or partially correct 3D reconstructions. All 3D reconstructions are submitted, checked, and corrected by the users domain at the server and are freely available for everybody. The coordinates of the reconstructed ligands are made available in a series of formats commonly used in drug design research. The

  6. Pressure-driven orbital reorientations and coordination-sphere reconstructions in [CuF2(H2O)2(pyz)

    SciTech Connect

    Prescimone, A.; Morien, C.; Allan, D.; Schlueter, J.; Tozer, S.; Manson, J. L.; Parsons, S.; Brechin, E. K.; Hill, S.

    2012-07-23

    Successive reorientations of the Jahn-Teller axes associated with the Cu{sup II} ions accompany a series of pronounced structural transitions in the title compound, as is shown by X-ray crystallography and high-frequency EPR measurements. The second transition forces a dimerization involving two thirds of the Cu{sup II} sites due to ejection of one of the water molecules from the coordination sphere

  7. Optimizing conditions for utilization of an H2 oxidation catalyst with outer coordination sphere functionalities.

    PubMed

    Dutta, Arnab; Ginovska, Bojana; Raugei, Simone; Roberts, John A S; Shaw, Wendy J

    2016-06-14

    As a starting point for evaluating a broader range of conditions for H2 oxidation complexes, in this work we investigate an efficient and reversible Ni-based H2 oxidation and production complex with an arginine in the outer coordination sphere, [Ni(P(Cy)2N(Arginine)2)2](7+) (CyArg). We tested this complex under a wide range of pressures and temperatures, in two different solvents (methanol and water), to determine if simultaneous improvements in rate and overpotential could be achieved. We found that the optimal conditions combined both high temperature (72 °C) and pressure (100 atm H2) in acidic aqueous solution (pH = 1), resulting in the fastest H2 oxidation reported for any homogeneous electrocatalyst to date (TOF 1.1 × 10(6) s(-1)) operating at 240 mV overpotential. The activation free energy in water was determined to be 10 kcal mol(-1) at all pressures studied. Surprisingly, in methanol under the same temperature and pressure, CyArg had a TOF for H2 oxidation of only 280 s(-1) at an overpotential of 750 mV. Comparisons to the data in water, and to a control complex, [Ni(P(Cy)2N(Benzyl)2)2](2+) (CyBn; Bn = benzyl), suggest that this substantial difference is likely due to a change in rate limiting step from H2 addition to deprotonation. Importantly, the optimal conditions we identified for CyArg (elevated temperature and acidic aqueous solutions), are amenable to fuel cell technologies and provide an important advancement in implementing homogeneous synthetic catalysts for renewable energy. PMID:26905754

  8. Coordination Sphere Tuning of the Electron Transfer Dissociation Behavior of Cu(II)-Peptide Complexes

    PubMed Central

    Dong, Jia; Vachet, Richard W.

    2011-01-01

    In contrast to previous electron capture dissociation (ECD) studies, we find that electron transfer dissociation (ETD) of Cu(II)-peptide complexes can generate c- and z- type product ions when the peptide has a sufficient number of strongly coordinating residues. Double-resonance experiments, ion-molecule reactions, and collision-induced dissociation (CID) prove that the c and z product ions are formed via typical radical pathways without the associated reduction of Cu(II), despite the high second ionization energy of Cu. A positive correlation between the number of Cu(II) binding groups in the peptide sequence and the extent of c and z ion formation was also observed. This trend is rationalized by considering that the recombination energy of Cu(II) can be lowered by strong binding ligands to an extent that enables electron transfer to non-Cu sites (e.g. protonation sites) to compete with Cu(II) reduction, thereby generating c/z ions in a manner similar to that observed for protonated (i.e. non-metalated) peptides. PMID:22161629

  9. Coordination Sphere Tuning of the Electron Transfer Dissociation Behavior of Cu(II)-Peptide Complexes

    NASA Astrophysics Data System (ADS)

    Dong, Jia; Vachet, Richard W.

    2012-02-01

    In contrast to previous electron capture dissociation (ECD) studies, we find that electron transfer dissociation (ETD) of Cu(II)-peptide complexes can generate c- and z-type product ions when the peptide has a sufficient number of strongly coordinating residues. Double-resonance experiments, ion-molecule reactions, and collision-induced dissociation (CID) prove that the c and z product ions are formed via typical radical pathways without the associated reduction of Cu(II), despite the high second ionization energy of Cu. A positive correlation between the number of Cu(II) binding groups in the peptide sequence and the extent of c and z ion formation was also observed. This trend is rationalized by considering that the recombination energy of Cu(II) can be lowered by strong binding ligands to an extent that enables electron transfer to non-Cu sites (e.g., protonation sites) to compete with Cu(II) reduction, thereby generating c/z ions in a manner similar to that observed for protonated (i.e., nonmetalated) peptides.

  10. Synthesis and Base Hydrolysis of a Cobalt(III) Complex Coordinated by a Thioether Ligand

    ERIC Educational Resources Information Center

    Roecker, Lee

    2008-01-01

    A two-week laboratory experiment for students in advanced inorganic chemistry is described. Students prepare and characterize a cobalt(III) complex coordinated by a thioether ligand during the first week of the experiment and then study the kinetics of Co-S bond cleavage in basic solution during the second week. The synthetic portion of the…

  11. Versatile coordination behaviour of an asymmetric half-salen ligand bearing a dansyl fluorophore.

    PubMed

    Romero, María J; Pedrido, Rosa; González-Noya, Ana M; Maneiro, Marcelino; Fernández-García, M Isabel; Zaragoza, Guillermo; Bermejo, Manuel R

    2012-09-21

    The coordinative chemistry of the tridentate half-salen ligand 5-(dimethylamino)-N-(2-((2-hydroxybenzylidene)amino)phenyl)naphthalene-1-sulfonamide (H(2)L, 1) has been studied by means of an electrochemical method. All of the complexes have been characterised using analytical and spectroscopic techniques. Ligand 1 and two nickel (6 and 7), copper (9), zinc (12) and cadmium (14) metal complexes have been studied by crystallography. Complexes 6 and 7 are octahedral and tetrahedral nickel(II) complexes, respectively, and both contain an [L](2-) molecule that behaves in an [N(2)O] tridentate manner. Nickel(II) completes its coordination kernel with three water molecules in complex 6, whereas in complex 7 the nickel ion is further bound to a molecule of dansylamine arising from a hydrolysis process. The copper(II) complex 9 is a monomeric compound that contains a bideprotonated ligand thread and a dimethylsulfoxide molecule coordinated through the sulfur atom. The zinc complex 12 is an unusual pentanuclear cluster compound whose structure consists of four anionic ligand units and two hydroxo anions bound to five zinc(II) centres. The appearance of the hydroxo anions in this complex provides new evidence for water reduction electrochemically promoted by zinc metal under mild conditions. The cadmium complex 14 is a dimeric compound that comprises two molecules of the anionic ligand and two dimethylsulfoxide molecules. The great structural variety exhibited by all these complexes demonstrates that the introduction of asymmetry in a salen skeleton by incorporating a dansyl pendant increases the versatility of the resulting ligand on coordination. All complexes are luminescent in solution at room temperature in acetonitrile solutions.

  12. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    SciTech Connect

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n} (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.

  13. Bidentate coordinating behaviour of chalcone based ligands towards oxocations: VO(IV) and Mo(V)

    NASA Astrophysics Data System (ADS)

    Thaker, B. T.; Barvalia, R. S.

    2013-08-01

    We synthesized and studied the coordinating behaviour of chalcone based ligands derived from DHA and n-alkoxy benzaldehyde and their complexes of VO(IV) and MoO(V). The chalcone ligands are characterized by elemental analyses, UV-visible, IR, 1H NMR, and mass spectra. The resulting oxocation complexes are also characterized by elemental analyses, IR, 1H NMR, electronic, electron spin resonance spectra, magnetic susceptibility measurement and molar conductance studies. The IR and 1H NMR spectral data suggest that the chalcone ligands behave as a monobasic bidentate with O:O donor sequence towards metal ion. The molar conductivity data show them to be non-electrolytes. From the electronic, magnetic and ESR spectral data suggest that all the chalcone ligand complexes of VO(IV) and MoO(V) have distorted octahedral geometry.

  14. From Widely Accepted Concepts in Coordination Chemistry to Inverted Ligand Fields.

    PubMed

    Hoffmann, Roald; Alvarez, Santiago; Mealli, Carlo; Falceto, Andrés; Cahill, Thomas J; Zeng, Tao; Manca, Gabriele

    2016-07-27

    We begin with a brief historical review of the development of our understanding of the normal ordering of nd orbitals of a transition metal interacting with ligands, the most common cases being three below two in an octahedral environment, two below three in tetrahedral coordination, and four below one in a square-planar environment. From the molecular orbital construction of these ligand field splittings evolves a strategy for inverting the normal order: the obvious way to achieve this is to raise the ligand levels above the metal d's; that is, make the ligands better Lewis bases. However, things are not so simple, for such metal/ligand level placement may lead to redox processes. For 18-electron octahedral complexes one can create the inverted situation, but it manifests itself in the makeup of valence orbitals (are they mainly on metal or ligands?) rather than energy. One can also see the effect, in small ways, in tetrahedral Zn(II) complexes. We construct several examples of inverted ligand field systems with a hypothetical but not unrealistic AlCH3 ligand and sketch the consequences of inversion on reactivity. Special attention is paid to the square-planar case, exemplified by [Cu(CF3)4](-), in which Snyder had the foresight to see a case of an inverted field, with the empty valence orbital being primarily ligand centered, the dx2-y2 orbital heavily occupied, in what would normally be called a Cu(III) complex. For [Cu(CF3)4](-) we provide theoretical evidence from electron distributions, geometry of the ligands, thermochemistry of molecule formation, and the energetics of abstraction of a CF3 ligand by a base, all consistent with oxidation of the ligands in this molecule. In [Cu(CF3)4](-), and perhaps more complexes on the right side of the transition series than one has imagined, some ligands are σ-noninnocent. Exploration of inverted ligand fields helps us see the continuous, borderless transition from transition metal to main group bonding. We also give

  15. Synthesis, crystal structure and spectroscopic properties of a supramolecular zinc(II) complex with N2O2 coordination sphere.

    PubMed

    Dong, Wen-Kui; Zhang, Li-Sha; Sun, Yin-Xia; Zhao, Meng-Meng; Li, Gang; Dong, Xiu-Yan

    2014-01-01

    A new hexa-coordinated zinc(II) complex, namely [ZnL(H2O)2]n, with N2O2 coordination sphere (H2L=4,4'-dibromo-6,6'-dichloro-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol) has been synthesized and structurally characterized by elemental analyses, IR, UV-vis spectra and TG-DTA analyses, etc. Crystallographic data are monoclinic, space group P2(1)/c, a=24.634(2)Å, b=10.144(1)Å, c=7.9351(6)Å, β=91.371(2)°, V=1982.4(3)Å(3), Dc=2.099 g/cm(3), Z=4. The zinc(II) complex exhibits a slightly distorted octahedral geometry with halogen-substituted Salen-type bisoxime forming the basal N2O2 coordination sphere and two oxygen atoms from two coordinated water molecules in the axial position. The hydrogen-bonding and π-π stacking interactions have stabilized the zinc(II) complex molecules to form a self-assembling infinite dual metal-water chain-like structure with the nearest Zn⋯Zn distance of 4.954(4)Å.

  16. A Tetrapositive Metal Ion in the Gas Phase: Thorium(IV) Coordinated by Neutral Tridentate Ligands

    SciTech Connect

    Gong, Yu; Hu, Han-Shi; Tian, Guoxin; Rao, Linfeng; Li, Jun; Gibson, John K.

    2013-07-01

    ESI of 1:1 mixtures of Th(ClO₄)₄ and ligand TMOGA in acetonitrile resulted in the observation of the TMOGA supported tetracation, Th(L)₃⁴⁺, in the gas phase. Three TMOGA ligands are necessary to stabilize the tetrapositive thorium ion; no Th(L)₂⁴⁺ or Th(L)₄⁴⁺ was observed. Theoretical calculations reveal that the Th(L)₃⁴⁺ complex possesses C₃ symmetry with the thorium center coordinated by nine oxygen atoms from three ligands, which forms a twisted TPP geometry. Actinide compounds with such a geometry feature a nine-coordinate chiral actinide center. The Th-L binding energy and bond orders of Th(L)n⁴⁺ decrease as the coordination number increases, consistent with the trend of concurrently increasing Th-O distances. The Th-O bonding is mainly electrostatic in nature, but the covalent interactions are not negligible. CID of the Th(L)₃⁴⁺ complex mainly resulted in charge reduction to form Th(L)₂(L-86)³⁺oss of neutral TMOGA was not observed. The protic ligand methanol stabilized only tri- and dications of ligated thorium. The intensity of the Th(L)₃⁴⁺ peak was reduced as the percentage of water increased in the Th(ClO₄)₄/TMOGA solution.

  17. Cytotoxicity of cyclometalated platinum complexes based on tridentate NCN and CNN-coordinating ligands: remarkable coordination dependence.

    PubMed

    Vezzu, Dileep A K; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan

    2014-05-01

    A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the N^C^N-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the C^N^N-coordinated platinum complex based on 6-phenyl-2,2'-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by N^C^N- and C^N^N-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the N^C^N-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed that the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis were studied by western blot analysis and the activation of PARP via caspase 7 was observed.

  18. Cytotoxicity of Cyclometalated Platinum Complexes Based on Tridentate NCN and CNN-coordinating ligands: Remarkable Coordination Dependence

    PubMed Central

    Vezzu, Dileep A. k.; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan

    2014-01-01

    A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the NʌCʌN-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the CʌNʌN-coordinated platinum complex based on 6-phenyl-2,2′-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by NʌCʌN- and CʌNʌN-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the NʌCʌN-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis was studied by western blot analysis and the activation of PARP via caspase 7 was observed. PMID:24531534

  19. The role of the second coordination sphere of [Ni(PCy2NBz2)2](BF4)2 in reversible carbon monoxide binding

    SciTech Connect

    Wilson, Aaron; Fraze, Kendra; Twamley, Brendan; Miller, Susie M.; DuBois, Daniel L.; Rakowski DuBois, Mary

    2008-01-23

    This paper reports our investigations on the reactivity of a series of [Ni(diphosphine)2]2+ derivatives, including [Ni(PCy2NBz2)2](BF4)2, 1, with an atmosphere of carbon monoxide at room temperature. Complex 1 showed a unique ability to form a CO adduct under these conditions, and further characterization of this product has been carried out. A systematic study of the factors that favor formation of the CO adduct suggest that two bases in the second coordination sphere interact with the coordinated CO ligand to provide a stabilizing influence, and the generality of such an effect in this system is discussed. The effect of carbon monoxide on the catalytic activity of 1 for hydrogen oxidation has also been studied. D. L. D. acknowledges the support of the Office of Basic Energy Sciences of the Department of Energy, by the Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  20. Inversion of axial coordination in myoglobin to create a "proximal" ligand binding pocket.

    PubMed

    Uno, Tadayuki; Sakamoto, Rikiharu; Tomisugi, Yoshikazu; Ishikawa, Yoshinobu; Wilkinson, Anthony J

    2003-09-01

    A ligand binding pocket has been created on the proximal side of the heme in porcine myoglobin by site-directed mutagenesis. Our starting point was the H64V/V68H double mutant which has been shown to have bis-histidine (His68 and His93) heme coordination [Dou, Y., Admiraal, S. J., Ikeda-Saito, M., Krzywda, S., Wilkinson, A. J., Li, T., Olson, J. S., Prince, R. C., Pickering, I. J., George, G. N. (1995) J. Biol. Chem. 270, 15993-16001]. The replacement of the proximal His93 ligand by noncoordinating Ala (H64V/V68H/H93A) or Gly (H64V/V68H/H93G) residues resulted unexpectedly in a six-coordinate low-spin species in both ferric and ferrous states. To test the hypothesis that the sixth coordinating ligand in the triple mutants was the imidazole of His97, this residue was mutated to Phe, in the quadruple mutants, H64V/V68H/H93A/H97F and H64V/V68H/H93G/H97F. The ferric quadruple mutants show a clear water/hydroxide alkaline transition and high cyanide and CO affinities, characteristics similar to those of wild-type myoglobin. The nu(Fe-CO) and nu(C-O) stretching frequencies in the ferrous-CO state of the quadruple mutants indicate that the "proximal" ligand binding heme pocket is less polar than the distal pocket in the wild-type protein. Thus, we conclude that the proximal heme pocket in the quadruple mutants has a similar affinity for exogenous ligands to the distal pocket of wild-type myoglobin but that the two pockets have different polarities. The quadruple mutants open up new approaches for developing heme chemistry on the myoglobin scaffold.

  1. The synthesis and characterization of new iron coordination complexes utilizing an asymmetric coordinating chelate ligand

    SciTech Connect

    Baldwin, D.; Watkins, B.E.; Satcher, J.H.

    1993-12-31

    The authors are investigating the structure/activity relationships of the bacterial enzyme, methane monooxygenase, which catalyzes the specific oxidation of methane to methanol. They then utilize this information to design and synthesize inorganic coordination complexes that mimic the function of the native enzyme but are more robust and have higher catalytic site density. They envision these catalysts to be useful in process catalytic reactors in the conversion of methane in natural gas to liquid methanol.

  2. Exploring control of cadmium halide coordination polymers via control of cadmium(II) coordination sites utilizing short multidentate ligands

    NASA Astrophysics Data System (ADS)

    Hines, C. Corey; Reichert, W. Matthew; Griffin, Scott T.; Bond, Andrew H.; Snowwhite, Paul E.; Rogers, Robin D.

    2006-08-01

    The goal of this project has been to determine the capability of a number of linear multidentate ligands to induce extended structures in cadmium halides. Metal salts of the form CdX 2 (X=Cl, Br, I), and for comparison Cd(NO 3) 2, were complexed with diethylene glycol (EO2), triethylene glycol monomethyl ether (EO3Me), triethylene glycol dimethyl ether (a glyme, EG3), diethylene triamine (EN2), and 1,3-propylenediamine (PN1). The crystal structures of 11 resulting complexes were structurally characterized including: [Cd(EO2) 3][Cd 2I 6], [Cd(EN2) 2]Cl 2·H 2O, [Cd(EN2) 2]Br 2, [Cd(EN2) 2][CdI 4], [CdCl 2(EO3Me)] 2, [CdBr 2(EO3Me)] 2, [Cd(NO 3) 2(EO3Me)], [(CdCl 2) 2(EG3)] n, [(CdBr 2) 2(EG3)] n, [CdI 2(EG3)], and [CdI 2(PN1)] n. While each structure is interesting in its own right, the continued observance of a wide variety of coordination modes for such similar ligands does little to help improve the predictability of simple Cd 2+ coordination compounds.

  3. Overcoming Statistical Complexity: Selective Coordination of Three Different Metal Ions to a Ligand with Three Different Coordination Sites.

    PubMed

    Akine, Shigehisa; Matsumoto, Takashi; Nabeshima, Tatsuya

    2016-01-18

    In general, it is difficult to selectively introduce different metal ions at specific positions of a cluster-like structure. This is mainly due to statistical problems as well as the reversibility of the formation of coordination bonds. To overcome this statistical problem, we used a carefully designed ligand, H6 L, which can accommodate three different kinds of metal ions in three types of coordination sites. The complex [LNiZn2La](3+), which contains three different metals, was quantitatively obtained by a stepwise procedure, but different products were obtained when the metal ions were added in a different order. However, equilibration studies indicated that this complex was almost solely formed among 54 (=3×3×3H2) possible products upon heating; the formation efficiency (ca. 100%) was significantly higher than the statistical probability (2.47%). Such carefully designed ligands should be useful for the synthesis multimetallic systems, which are of interest because of the interplay between the different metals.

  4. Light-driven coordination-induced spin-state switching: rational design of photodissociable ligands.

    PubMed

    Thies, Steffen; Sell, Hanno; Bornholdt, Claudia; Schütt, Christian; Köhler, Felix; Tuczek, Felix; Herges, Rainer

    2012-12-14

    The bistability of spin states (e.g., spin crossover) in bulk materials is well investigated and understood. We recently extended spin-state switching to isolated molecules at room temperature (light-driven coordination-induced spin-state switching, or LD-CISSS). Whereas bistability and hysteresis in conventional spin-crossover materials are caused by cooperative effects in the crystal lattice, spin switching in LD-CISSS is achieved by reversibly changing the coordination number of a metal complex by means of a photochromic ligand that binds in one configuration but dissociates in the other form. We present mathematical proof that the maximum efficiency in property switching by such a photodissociable ligand (PDL) is only dependent on the ratio of the association constants of both configurations. Rational design by using DFT calculations was applied to develop a photoswitchable ligand with a high switching efficiency. The starting point was a nickel-porphyrin as the transition-metal complex and 3-phenylazopyridine as the photodissociable ligand. Calculations and experiments were performed in two iterative steps to find a substitution pattern at the phenylazopyridine ligand that provided optimum performance. Following this strategy, we synthesized an improved photodissociable ligand that binds to the Ni-porphyrin with an association constant that is 5.36 times higher in its trans form than in the cis form. The switching efficiency between the diamagnetic and paramagnetic state is efficient as well (72% paramagnetic Ni-porphyrin after irradiation at 365 nm, 32% paramagnetic species after irradiation at 440 nm). Potential applications arise from the fact that the LD-CISSS approach for the first time allows reversible switching of the magnetic susceptibility of a homogeneous solution. Photoswitchable contrast agents for magnetic resonance imaging and light-controlled magnetic levitation are conceivable applications. PMID:23090862

  5. On the non-innocence of "Nacnacs": ligand-based reactivity in β-diketiminate supported coordination compounds.

    PubMed

    Camp, Clément; Arnold, John

    2016-10-01

    While β-diketiminate (BDI or 'nacnac') ligands have been widely adopted to stabilize a wide range of metal ions in multiple oxidation states and coordination numbers, in several occurrences these ligands do not behave as spectators and participate in reactivity. Besides unwanted decomposition processes, BDI redox non-innnocence and unusual metal-ligand cooperative activation of substrates yielding attractive reactivity have been reported. This feature article will provide a comprehensive analysis of the various transformations involving BDI ligand platforms in coordination compounds across the periodic table. PMID:27353604

  6. Beyond the Active Site: The Impact of the Outer Coordination Sphere on Electrocatalysts for Hydrogen Production and Oxidation

    SciTech Connect

    Ginovska-Pangovska, Bojana; Dutta, Arnab; Reback, Matthew L.; Linehan, John C.; Shaw, Wendy J.

    2014-08-19

    Hydrogenase enzymes provide inspiration for investigations of molecular catalysts utilizing structural and functional mimics of the active site. However, the resulting active site mimics cannot match the combination of high rates and low overpotentials of the enzyme, suggesting that the rest of the protein scaffold, i.e., the outer coordination sphere, is necessary for the efficiency of hydrogenase. Therefore, inclusion of outer coordination sphere elements onto molecular catalysts may enable us to achieve and ultimately surpass the overall enzymatic efficiency. In an effort to identify and include the missing enzymatic features, there has been recent effort to understand the effect of outer coordination sphere elements on molecular catalysts for hydrogen oxidation and production. Our focus has been to utilize amino acid or peptide based scaffolds on an active functional mimic for hydrogen oxidation and production, [Ni(PR2NR’2)2]2+. This bottom-up approach, i.e, building an outer coordination sphere around a functional molecular catalyst, has allowed us to evaluate individual contributions to catalysis, including enhancing proton movement, concentrating substrate and introducing structural features to control reactivity. Collectively, these studies have resulted in catalysts that can operate faster, can operate at lower overpotentials, have enhanced water solubility, and/or can provide more stability to oxygen or extreme conditions such as strongly acidic or basic conditions than their unmodified parent complexes. Common mechanisms have yet to be defined to predictably control these processes but our growing knowledge in this area is essential for the eventual mimicry of enzymes for developing efficient molecular catalysts for practical use. This account reviews previously published work supported by the US DOE Basic Energy Sciences (BES), Physical Bioscience program, the Office of Science Early Career Research Program through the USDOE, BES, the Center for

  7. Coordination polymers assembled from semirigid fluorene-based ligand: A couple of enantiomers

    NASA Astrophysics Data System (ADS)

    Li, Liang; Wang, Zihao; Chen, Qiang; Zhou, Xinhui; yang, Tao; Zhao, Qiang; Huang, Wei

    2015-11-01

    A couple of Mg(II)-based coordination polymer enantiomers [MgL(DMF)(H2O)3]n (R-MgL and S-MgL), and a Zn(II)-based coordination polymer [ZnL(DMF)]n (ZnL) have been synthesized by the solvothermal reactions between the achiral ligand 4,4‧-(9,9-dimethyl-9H-fluorene-2,7-diyl)dibenzoic acid (H2L) and the corresponding metal salts. The MgL was obtained as the racemic conglomerate from the one pot reaction. The single crystal X-ray structural analyses reveal that MgL crystallize in the chiral space group P21 and possesses the right- or left-handed homochiral 1D Mg-O-C helical chain. The ZnL crystallize in the non-centrosymmetrical space group Aba2 and possesses the 2D network comprised of 1D Zn-O-C meso-helical chains and ligands. The MgL and ZnL complexes exhibit strong coordination-perturbed ligand-centered blue emissions when excited at 320 nm. Their second-order nonlinear optical effects and thermal properties have also been studied.

  8. Uranium(VI) coordination polymers with pyromellitate ligand: Unique 1D channel structures and diverse fluorescence

    SciTech Connect

    Zhang, Yingjie; Bhadbhade, Mohan; Karatchevtseva, Inna; Price, Jason R.; Liu, Hao; Zhang, Zhaoming; Kong, Linggen; Čejka, Jiří; Lu, Kim; Lumpkin, Gregory R.

    2015-03-15

    Three new coordination polymers of uranium(VI) with pyromellitic acid (H{sub 4}btca) have been synthesized and structurally characterized. (ED)[(UO{sub 2})(btca)]·(DMSO)·3H{sub 2}O (1) (ED=ethylenediammonium; DMSO=dimethylsulfoxide) has a lamellar structure with intercalation of ED and DMSO. (NH{sub 4}){sub 2}[(UO{sub 2}){sub 6}O{sub 2}(OH){sub 6}(btca)]·~6H{sub 2}O (2) has a 3D framework built from 7-fold coordinated uranyl trinuclear units and btca ligands with 1D diamond-shaped channels (~8.5 Å×~8.6 Å). [(UO{sub 2}){sub 2}(H{sub 2}O)(btca)]·4H{sub 2}O (3) has a 3D network constructed by two types of 7-fold coordinated uranium polyhedron. The unique μ{sub 5}-coordination mode of btca in 3 enables the formation of 1D olive-shaped large channels (~4.5 Å×~19 Å). Vibrational modes, thermal stabilities and fluorescence properties have been investigated. - Graphical abstract: Table of content: three new uranium(VI) coordination polymers with pyromellitic acid (H{sub 4}btca) have been synthesized via room temperature and hydrothermal synthesis methods, and structurally characterized. Two to three dimensional (3D) frameworks are revealed. All 3D frameworks have unique 1D large channels. Their vibrational modes, thermal stabilities and photoluminescence properties have been investigated. - Highlights: • Three new coordination polymers of U(VI) with pyromellitic acid (H{sub 4}btca). • Structures from a 2D layer to 3D frameworks with unique 1D channels. • Unusual µ{sub 5}-(η{sub 1}:η{sub 2}:η{sub 1}:η{sub 2:}η{sub 1}) coordination mode of btca ligand. • Vibrational modes, thermal stabilities and luminescent properties reported.

  9. Phenylalanine--a biogenic ligand with flexible η6- and η6:κ1-coordination at ruthenium(II) centres.

    PubMed

    Reiner, Thomas; Jantke, Dominik; Miao, Xiao-He; Marziale, Alexander N; Kiefer, Florian J; Eppinger, Jörg

    2013-06-28

    The reaction of (S)-2,5-dihydrophenylalanine 1 with ruthenium(III) chloride yields the μ-chloro-bridged dimeric η(6)-phenylalanine ethyl ester complex 3, which can be converted into the monomeric analogue, η(6):κ(1)-phenylalanine ethyl ester complex 12, under basic conditions. Studies were carried out to determine the stability and reactivity of complexes bearing η(6)- and η(6):κ(1)-chelating phenylalanine ligands under various conditions. Reaction of 3 with ethylenediamine derivatives N-p-tosylethylenediamine or 1,4-di-N-p-tosylethylenediamine results in the formation of monomeric η(6):κ(1)-phenylalanine ethyl ester complexes 14 and 15, which could be saponified yielding complexes 16 and 17 without changing the inner coordination sphere of the metal centre. The structure of η(6):κ(1)-phenylalanine complex 17 and an N-κ(1)-phenylalanine complex 13 resulting from the reaction of 3 with an excess of pyridine were confirmed by X-ray crystallography.

  10. Hydrothermal reactions: From the synthesis of ligand to new lanthanide 3D-coordination polymers

    SciTech Connect

    Silva, Fausthon Fred da; Fernandes de Oliveira, Carlos Alberto; Lago Falcão, Eduardo Henrique; Gatto, Claudia Cristina; Bezerra da Costa, Nivan; Oliveira Freire, Ricardo; Chojnacki, Jarosław; Alves Júnior, Severino

    2013-11-15

    The organic ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) was synthesized under hydrothermal conditions starting from the iminodiacetic acid and catalyzed by oxalic acid. The X-ray powder diffraction data indicates that the compound crystallizes in the P2{sub 1}/c monoclinic system as reported in the literature. The ligand was also characterized by elemental analysis, magnetic nuclear resonance, infrared spectroscopy and thermogravimetric analysis. Two new coordination networks based on lanthanide ions were obtained with this ligand using hydrothermal reaction. In addition to single-crystal X-ray diffraction, the compounds were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and elemental analysis. Single-crystal XRD showed that the compounds are isostructural, crystallizing in P2{sub 1}/n monoclinic system with chemical formula [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+}(1) and Eu{sup 3+}(2)).The luminescence properties of both compounds were studied. In the compound (1), a broad emission band was observed at 479 nm, redshifted by 70 nm in comparison of the free ligand. In (2), the typical f–f transition was observed with a maximum peak at 618 nm, related with the red emission of the europium ions. Computational methods were performed to simulate the crystal structure of (2). The theoretical calculations of the intensity parameters are in good agreement with the experimental values. - Graphical abstract: Scheme of obtaining the ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) and two new isostructural 3D-coordination polymers [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+} and Eu{sup 3+}) by hydrothermal synthesis. Display Omitted - Highlights: • The ligand 2,5-piperazinedione-1,4-diacetic acid was synthetized using the hydrothermic method and characterized. • Two new 3D-coordination polymers with this ligand containing Gd{sup 3+} and Eu{sup 3+} ions

  11. Coordinated Hard Sphere Mixture (CHaSM): A fast approximate model for oxide and silicate melts at extreme conditions

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2015-12-01

    Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, <~30 GPa), yielding predictions rooted in statistical representations of melt structure

  12. Synthesis and coordination chemistry of two N2-donor chelating di(indazolyl)methane ligands: structural characterization and comparison of their metal chelation aptitudes.

    PubMed

    Pettinari, Claudio; Marinelli, Alessandro; Marchetti, Fabio; Ngoune, Jean; Galindo, Agustín; Álvarez, Eleuterio; Gómez, Margarita

    2010-11-15

    The N(2)-donor bidentate ligands di(1H-indazol-1-yl)methane (L(1)) and di(2H-indazol-2-yl)methane (L(2)) (L in general) have been synthesized, and their coordination behavior toward Zn(II), Cd(II), and Hg(II) salts has been studied. Reaction of L(1) and L(2) with ZnX(2) (X = Cl, Br, or I) yields [ZnX(2)L] species (1-6), that, in the solid state, show a tetrahedral structure with dihapto ligand coordination via the pyrazolyl arms. The reaction of L(1) and L(2) with Zn(NO(3))(2)·6H(2)O is strongly dependent on the reaction conditions and on the ligand employed. Reaction of L(1) with equimolar quantities of Zn(NO(3))(2)·6H(2)O yields the neutral six-coordinate species [Zn(NO(3))(2)(L(1))], 7. On the other hand the use of L(1) excess gives the 2:1 adduct [Zn(NO(3))(2)(L(1))(2)], 8 where both nitrates act as a unidentate coordinating ligand. Analogous stoichiometry is found in the compound obtained from the reaction of L(2) with Zn(NO(3))(2)·6H(2)O which gives the ionic [Zn(NO(3))(L(2))(2)](NO(3)), 10. Complete displacement of both nitrates from the zinc coordination sphere is observed when the reaction between L(1) excess and the zinc salt was carried out in hydrothermal conditions. The metal ion type is also determining structure and stoichiometry: the reaction of L(2) with CdCl(2) gave the 2:1 adduct [CdCl(2)(L(2))(2)] 11 where both chlorides complete the coordination sphere of the six-coordinate cadmium center; on the other hand from the reaction of L(1) with CdBr(2) the polynuclear [CdBr(2)(L(1))](n) 12 is obtained, the Br(-) anion acting as bridging ligands in a six-coordinate cadmium coordination environment. The reaction of L(1) and L(2) with HgX(2) (X = Cl, I, SCN) is also dependent on the reaction conditions and the nature of X, two different types of adducts being formed [HgX(L)] (14: L = L(1), 16, 17: L = L(1) or L(2), X = I, 19: L = L(2), X = SCN) and [HgX(L)(2)] (15: L = L(2), X = Cl, 18: L = L(1), X = SCN). The X-ray diffraction analyses of compounds 1

  13. Asymmetric catalysis mediated by the ligand sphere of octahedral chiral-at-metal complexes.

    PubMed

    Gong, Lei; Chen, Liang-An; Meggers, Eric

    2014-10-01

    Due to the relationship between structure and function in chemistry, access to novel chemical structures ultimately drives the discovery of novel chemical function. In this light, the formidable utility of the octahedral geometry of six-coordinate metal complexes is founded in its stereochemical complexity combined with the ability to access chemical space that might be unavailable for purely organic compounds. In this Minireview we wish to draw attention to inert octahedral chiral-at-metal complexes as an emerging class of metal-templated asymmetric "organocatalysts" which exploit the globular, rigid nature and stereochemical options of octahedral compounds and promise to provide new opportunities in the field of catalysis.

  14. The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin.

    PubMed

    Andruh, Marius

    2015-10-14

    Ortho-vanillin became very popular in coordination chemistry because of its Schiff bases, which generate a rich variety of complexes, ranging from oligonuclear species to coordination polymers. Some of these organic molecules are particularly useful in metallosupramolecular chemistry for assembling homo- and heterometallic helicates. The Schiff bases obtained using aminoalcohols open the door to the synthesis of homo- and heterometallic clusters with various nuclearities and surprising topologies of the metal centers. Several relevant structural types are reviewed. The heterobinuclear 3d-3d' and 3d-4f complexes are valuable building-blocks for the synthesis of heterotrimetallic systems. Beyond the richness of this chemistry, the complexes obtained from o-vanillin-based Schiff ligands show interesting properties: magnetism, luminescence, chirality, catalysis, cytotoxicity, and ferroelectricity. This paper reviews recent data that illustrate a very fertile and dynamic research field in coordination chemistry and materials science.

  15. Effect of Ligand Structural Isomerism in Formation of Calcium Coordination Networks

    SciTech Connect

    Plonka A. M.; Parise J.; Banerjee, D.

    2012-03-28

    Using different structural isomers (2,5-; 2,4-; 2;6-; 3,4-; 3,5-) of pyridinedicarboxylic acid, nine calcium-based coordination networks were synthesized under hydro-/solvothermal conditions and/or were produced via solvent recrystallization of previously synthesized compounds. The coordination networks reported were characterized using single crystal X-ray diffraction and thermal methods. They show diverse structural topologies, depending on the ligand geometry and coordinated solvent molecules, with inorganic connectivity motifs ranging from isolated octahedra to infinite chains, layer and a three-dimensional dense framework. The as-synthesized and desolvated networks further show structural transformation to hydrated phases through dissolution/reformation pathways. The process is likely driven by the high hydration energy of the calcium metal center.

  16. Enzyme design from the bottom up: an active nickel electrocatalyst with a structured peptide outer coordination sphere.

    PubMed

    Reback, Matthew L; Buchko, Garry W; Kier, Brandon L; Ginovska-Pangovska, Bojana; Xiong, Yijia; Lense, Sheri; Hou, Jianbo; Roberts, John A S; Sorensen, Christina M; Raugei, Simone; Squier, Thomas C; Shaw, Wendy J

    2014-02-01

    Catalytic, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts through an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well-characterized hydrogen production catalyst [Ni(P(Ph)2N(Ph))2](2+) (P(Ph)2N(Ph)=1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane). The incorporated peptide maintains its β-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (≈100,000 s(-1)) is enhanced compared to the parent complex ([Ni(P(Ph)2N(APPA))2](2+); ≈50,500 s(-1)). The combination of an active molecular catalyst with a structured peptide provides a scaffold that permits the incorporation of features of an enzyme-like outer-coordination sphere necessary to create molecular electrocatalysts with enhanced functionality.

  17. Synthesis and structure of six-coordinate iron borohydride complexes supported by PNP ligands.

    PubMed

    Koehne, Ingo; Schmeier, Timothy J; Bielinski, Elizabeth A; Pan, Cassie J; Lagaditis, Paraskevi O; Bernskoetter, Wesley H; Takase, Michael K; Würtele, Christian; Hazari, Nilay; Schneider, Sven

    2014-02-17

    The preparation of a number of iron complexes supported by ligands of the type HN{CH2CH2(PR2)}2 [R = isopropyl (((i)Pr)PNP) or cyclohexyl ((Cy)PNP)] is reported. This is the first time this important bifunctional ligand has been coordinated to iron. The iron(II) complexes (((i)Pr)PNP)FeCl2(CO) (1a) and ((Cy)PNP)FeCl2(CO) (1b) were synthesized through the reaction of the appropriate free ligand and FeCl2 in the presence of CO. The iron(0) complex (((i)Pr)PNP)Fe(CO)2 (2a) was prepared through the reaction of Fe(CO)5 with ((i)Pr)PNP, while irradiating with UV light. Compound 2a is unstable in CH2Cl2 and is oxidized to 1a via the intermediate iron(II) complex [(((i)Pr)PNP)FeCl(CO)2]Cl (3a). The reaction of 2a with HCl generated the related complex [(((i)Pr)PNP)FeH(CO)2]Cl (4a), while the neutral iron hydrides (((i)Pr)PNP)FeHCl(CO) (5a) and ((Cy)PNP)FeHCl(CO) (5b) were synthesized through the reaction of 1a or 1b with 1 equiv of (n)Bu4NBH4. The related reaction between 1a and excess NaBH4 generated the unusual η(1)-HBH3 complex (((i)Pr)PNP)FeH(η(1)-HBH3)(CO) (6a). This complex features a bifurcated intramolecular dihydrogen bond between two of the hydrogen atoms associated with the η(1)-HBH3 ligand and the N-H proton of the pincer ligand, as well as intermolecular dihydrogen bonding. The protonation of 6a with 2,6-lutidinium tetraphenylborate resulted in the formation of the dimeric complex [{(((i)Pr)PNP)FeH(CO)}2(μ2,η(1):η(1)-H2BH2)][BPh4] (7a), which features a rare example of a μ2,η(1):η(1)-H2BH2 ligand. Unlike all previous examples of complexes with a μ2,η(1):η(1)-H2BH2 ligand, there is no metal-metal bond and additional bridging ligand supporting the borohydride ligand in 7a; however, it is proposed that two dihydrogen-bonding interactions stabilize the complex. Complexes 1a, 2a, 3a, 4a, 5a, 6a, and 7a were characterized by X-ray crystallography.

  18. Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal-Ligand Coordination.

    PubMed

    Rao, Ying-Li; Chortos, Alex; Pfattner, Raphael; Lissel, Franziska; Chiu, Yu-Cheng; Feig, Vivian; Xu, Jie; Kurosawa, Tadanori; Gu, Xiaodan; Wang, Chao; He, Mingqian; Chung, Jong Won; Bao, Zhenan

    2016-05-11

    A self-healing dielectric elastomer is achieved by the incorporation of metal-ligand coordination as cross-linking sites in nonpolar polydimethylsiloxane (PDMS) polymers. The ligand is 2,2'-bipyridine-5,5'-dicarboxylic amide, while the metal salts investigated here are Fe(2+) and Zn(2+) with various counteranions. The kinetically labile coordination between Zn(2+) and bipyridine endows the polymer fast self-healing ability at ambient condition. When integrated into organic field-effect transistors (OFETs) as gate dielectrics, transistors with FeCl2 and ZnCl2 salts cross-linked PDMS exhibited increased dielectric constants compared to PDMS and demonstrated hysteresis-free transfer characteristics, owing to the low ion conductivity in PDMS and the strong columbic interaction between metal cations and the small Cl(-) anions which can prevent mobile anions drifting under gate bias. Fully stretchable transistors with FeCl2-PDMS dielectrics were fabricated and exhibited ideal transfer characteristics. The gate leakage current remained low even after 1000 cycles at 100% strain. The mechanical robustness and stable electrical performance proved its suitability for applications in stretchable electronics. On the other hand, transistors with gate dielectrics containing large-sized anions (BF4(-), ClO4(-), CF3SO3(-)) displayed prominent hysteresis due to mobile anions drifting under gate bias voltage. This work provides insights on future design of self-healing stretchable dielectric materials based on metal-ligand cross-linked polymers.

  19. Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal-Ligand Coordination.

    PubMed

    Rao, Ying-Li; Chortos, Alex; Pfattner, Raphael; Lissel, Franziska; Chiu, Yu-Cheng; Feig, Vivian; Xu, Jie; Kurosawa, Tadanori; Gu, Xiaodan; Wang, Chao; He, Mingqian; Chung, Jong Won; Bao, Zhenan

    2016-05-11

    A self-healing dielectric elastomer is achieved by the incorporation of metal-ligand coordination as cross-linking sites in nonpolar polydimethylsiloxane (PDMS) polymers. The ligand is 2,2'-bipyridine-5,5'-dicarboxylic amide, while the metal salts investigated here are Fe(2+) and Zn(2+) with various counteranions. The kinetically labile coordination between Zn(2+) and bipyridine endows the polymer fast self-healing ability at ambient condition. When integrated into organic field-effect transistors (OFETs) as gate dielectrics, transistors with FeCl2 and ZnCl2 salts cross-linked PDMS exhibited increased dielectric constants compared to PDMS and demonstrated hysteresis-free transfer characteristics, owing to the low ion conductivity in PDMS and the strong columbic interaction between metal cations and the small Cl(-) anions which can prevent mobile anions drifting under gate bias. Fully stretchable transistors with FeCl2-PDMS dielectrics were fabricated and exhibited ideal transfer characteristics. The gate leakage current remained low even after 1000 cycles at 100% strain. The mechanical robustness and stable electrical performance proved its suitability for applications in stretchable electronics. On the other hand, transistors with gate dielectrics containing large-sized anions (BF4(-), ClO4(-), CF3SO3(-)) displayed prominent hysteresis due to mobile anions drifting under gate bias voltage. This work provides insights on future design of self-healing stretchable dielectric materials based on metal-ligand cross-linked polymers. PMID:27099162

  20. Structural Diversity of Cadmium(II) Coordination Polymers Induced by Tuning the Coordination Sites of Isomeric Ligands.

    PubMed

    Liu, Bo; Zhou, Hui-Fang; Hou, Lei; Wang, Jian-Ping; Wang, Yao-Yu; Zhu, Zhonghua

    2016-09-01

    When the coordination sites of ligands were shifted, the solvothermal reactions of four positional isomeric asymmetrical pyridyldicarboxylatic acids with Cd(NO3)2 generated four new coordination polymers, [Cd(L1)(DMF)3]·DMF·H2O (1), [H2N(CH3)2]2[Cd(L2)2]·3DMF·H2O (2), [Cd(L3)(H2O)2] (3), and [Cd(L4)]·1.5DMF (4), where DMF = N,N-dimethylformamide, H2L1 = 2-(3'-carboxylphenyl)isonicotinic acid, H2L2 = 2-(4'-carboxylphenyl)isonicotinic acid, H2L3 = 5-(3'-carboxylphenyl)nicotic acid, and H2L4 = 2-(3'-pyridyl)terephthalic acid. 1 shows a rare 2D fabric structure. 2 discloses a grid-layer structure with heterochiral helical chains and in which three sets of layers stack in different directions, affording an unprecedented 2D + 2D + 2D → 3D polycatenating framework with 3D intersecting porous systems. 3 also displays a 2D layer possessing strong intralayer π···π interactions and interlayer hydrogen bonds. 4 contains a rare Cd2(COO)4 paddle-wheel unit and forms a 3D framework with 1D open channels. The carboxyl and pyridyl groups of the positional isomeric H2L1-H2L4 ligands show distinct bridging fashions, which leads to the production of versatile architectures of 1-4, and their effects on the crystal structures are discussed. 1-4 reveal solid-state photoluminescence stemming from intraligand charge transfer. 2 and 4 show high selectivity for CO2 over CH4 but with different CO2 adsorption enthalpies. Grand canonical Monte Carlo simulations identified the multiple adsorption sites in 2 for CO2. PMID:27513092

  1. 113Cd solid-state NMR for probing the coordination sphere in metal-organic frameworks.

    PubMed

    Kuttatheyil, Anusree Viswanath; Handke, Marcel; Bergmann, Jens; Lässig, Daniel; Lincke, Jörg; Haase, Jürgen; Bertmer, Marko; Krautscheid, Harald

    2015-01-12

    Spectroscopic techniques are a powerful tool for structure determination, especially if single-crystal material is unavailable. (113)Cd solid-state NMR is easy to measure and is a highly sensitive probe because the coordination number, the nature of coordinating groups, and the geometry around the metal ion is reflected by the isotropic chemical shift and the chemical-shift anisotropy. Here, a detailed investigation of a series of 27 cadmium coordination polymers by (113)Cd solid-state NMR is reported. The results obtained demonstrate that (113)Cd NMR is a very sensitive tool to characterize the cadmium environment, also in non-single-crystal materials. Furthermore, this method allows the observation of guest-induced phase transitions supporting understanding of the structural flexibility of coordination frameworks.

  2. The second-shell metal ligands of human arginase affect coordination of the nucleophile and substrate.

    PubMed

    Stone, Everett M; Chantranupong, Lynne; Georgiou, George

    2010-12-14

    The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution. PMID:21053939

  3. First-row transition metal complexes of ENENES ligands: the ability of the thioether donor to impact the coordination chemistry.

    PubMed

    Dub, Pavel A; Scott, Brian L; Gordon, John C

    2016-01-28

    The reactions of two variants of ENENES ligands, E(CH2)2NH(CH)2SR, where E = 4-morpholinyl, R = Ph (), Bn () with MCl2 (M = Mn, Fe, Co, Ni and Cu) in coordinating solvents (MeCN, EtOH) affords isolable complexes, whose magnetic susceptibility measurements suggest paramagnetism and a high-spin formulation. X-Ray diffraction studies of available crystals show that the ligand coordinates to the metal in either a bidentate κ(2)[N,N'] or tridentate κ(3)[N,N',S] fashion, depending on the nature of ligand and/or identity of the metal atom. In the case of a less basic SPh moiety, a bidentate coordination mode was identified for harder metals (Mn, Fe), whereas a tridentate coordination mode was identified in the case of a more basic SBn moiety with softer metals (Ni, Cu). In the intermediate case of Co, ligands and coordinate via κ(2)[N,N'] and κ(3)[N,N',S] coordination modes, which can be conveniently predicted by DFT calculations. For the softest metal (Cu), ligand coordinates in a κ(3)[N,N',S] fashion.

  4. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance

    SciTech Connect

    Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark H.; Xiao, Jie; Lu, Dongping; Wang, Chong M.; Zhang, Jiguang; Liu, Jun

    2013-11-04

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimized LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.

  5. Design and coordination behavior of the first selective recognition ligand of 147Pm(III).

    PubMed

    Liu, Weisheng; Li, Xiaofeng; Wen, Yonghong; Tan, Minyu

    2004-02-21

    A new amide tripodal ligand, 6-[2-(2-diethylamino-2-oxoethoxy)ethyl]-N,N,12-triethyl-11-oxo-3,9-dioxa-6,12-diazatetradecanamide (4) has been designed and synthesized for the recognition of rare earth ions. Three representative complexes of trivalent lighter (La), middle (Gd), and heavier (Er) rare earth ions with 4 were synthesized and characterized by X-ray crystallography. In the complex, the heptadentate forms a cup-like coordination cavity encapsulating the central ion. Different supramolecular complex dimers are constructed by pi-pi interaction and van der Waals forces in accordance with the lanthanide contraction. The differences of the cavity and dimer structures were investigated further by assessing the separation efficiency of in multitrace solvent extraction of rare earth ions from picrate acid solution and the ligand has the best separation factor for 147Pm(III).

  6. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance

    PubMed Central

    Shao, Yuyan; Liu, Tianbiao; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark; Xiao, Jie; Lv, Dongping; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun

    2013-01-01

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a study in understanding coordination chemistry of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new electrolyte is developed based on Mg(BH4)2, diglyme and LiBH4. The preliminary electrochemical test results show that the new electrolyte demonstrates a close to 100% coulombic efficiency, no dendrite formation, and stable cycling performance for Mg plating/stripping and Mg insertion/de-insertion in a model cathode material Mo6S8 Chevrel phase. PMID:24185310

  7. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance

    DOE PAGES

    Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark H.; Xiao, Jie; Lu, Dongping; Wang, Chong M.; Zhang, Jiguang; et al

    2013-11-04

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimized LiBH4 additive.more » The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.« less

  8. Homoleptic Transition Metal Complexes of the 7-Azaindolide Ligand Featuring κ1-N1 Coordination

    PubMed Central

    Fillman, Kathlyn L.; Arman, Hadi D.; Tonzetich, Zachary J.

    2015-01-01

    Homoleptic complexes of the anion of 7-azaindole (AzaIn) have been synthesized and characterized for a series of 3d transition metals. For Mn(II), Fe(II), and Co(II), complexes of formula Na2[M(AzaIn)4]·2L (L = THF, 2-MeTHF, toluene, or benzene) have been isolated by treatment of the corresponding metal chloride salts with 7-azaindole in the presence of sodium hexamethyldisilazide. The complexes adopt tetrahedral geometries with exclusive coordination to the transition metal ion through the pyrrolic N1 nitrogen atoms of the AzaIn ligands. Solid-state structures of the complexes demonstrate that the sodium cations remain tightly associated to the coordination entities through interaction with both the pyrrolic and pyridine nitrogen atoms of the azaindolide ligands. For Fe(II), replacement of the sodium cations by other alkali metal ions (Li or K) generates new complexes that demonstrate similar coordination geometries to the sodium salts. As a means of comparison, the Fe(II) complex of 4-azaindolide was also investigated. Na2[Fe(4-AzaIn)4]·2L adopts a similar solution structure to the 7-azaindolide complexes as judged by NMR spectroscopy and cyclic voltammetry. DFT calculations have been performed to investigate the bonding in the 7-azaindolide complexes. Results demonstrate that 7-azaindolide-κ1-N1 is a nearly pure sigma donor ligand that features a high degree of ionic character in its bonding to mid 3d transition metal ions. PMID:26378471

  9. Coordination chemistry and reactivity of zinc complexes supported by a phosphido pincer ligand.

    PubMed

    D'Auria, Ilaria; Lamberti, Marina; Mazzeo, Mina; Milione, Stefano; Roviello, Giuseppina; Pellecchia, Claudio

    2012-02-20

    The preparation and characterization of new Zn(II) complexes of the type [(PPP)ZnR] in which R = Et (1) or N(SiMe(3))(2) (2) and PPP is a tridentate monoanionic phosphido ligand (PPP-H = bis(2-diphenylphosphinophenyl)phosphine) are reported. Reaction of ZnEt(2) and Zn[N(SiMe(3))(2)](2) with one equivalent of proligand PPP-H produced the corresponding tetrahedral zinc ethyl (1) and zinc amido (2) complexes in high yield. Homoleptic (PPP)(2) Zn complex 3 was obtained by reaction of the precursors with two equivalents of the proligand. Structural characterization of 1-3 was achieved by multinuclear NMR spectroscopy ((1)H, (13)C, and (31)P) and X-ray crystallography (3). Variable-temperature (1)H and (31)P NMR studies highlighted marked flexibility of the phosphido pincer ligand in coordination at the metal center. A DFT calculation on the compounds provided theoretical support for this behavior. The activities of 1 and 2 toward the ring-opening polymerization of ε-caprolactone and of L- and rac-lactide were investigated, also in combination with an alcohol as external chain-transfer agent. Polyesters with controlled molecular parameters (M(n), end groups) and low polydispersities were obtained. A DFT study on ring-opening polymerization promoted by these complexes highlighted the importance of the coordinative flexibility of the ancillary ligand to promote monomer coordination at the reactive zinc center. Preliminary investigations showed the ability of these complexes to promote copolymerization of L-lactide and ε-caprolactone to achieve random copolymers whose microstructure reproduces the composition of the monomer feed.

  10. Spin Isomers and Ligand Isomerization in a Three-Coordinate Cobalt(I) Carbonyl Complex.

    PubMed

    Al-Afyouni, Malik H; Suturina, Elizaveta; Pathak, Shubhrodeep; Atanasov, Mihail; Bill, Eckhard; DeRosha, Daniel E; Brennessel, William W; Neese, Frank; Holland, Patrick L

    2015-08-26

    Hemilabile ligands, which have one donor that can reversibly bind to a metal, are widely used in transition-metal catalysts to create open coordination sites. This change in coordination at the metal can also cause spin-state changes. Here, we explore a cobalt(I) system that is poised on the brink of hemilability and of a spin-state change and can rapidly interconvert between different spin states with different structures ("spin isomers"). The new cobalt(I) monocarbonyl complex L(tBu)Co(CO) (2) is a singlet ((1)2) in the solid state, with an unprecedented diketiminate binding mode where one of the C═C double bonds of an aromatic ring completes a pseudo-square-planar coordination. Dissolving the compound gives a substantial population of the triplet ((3)2), which has exceptionally large uniaxial zero-field splitting due to strong spin-orbit coupling with a low-lying excited state. The interconversion of the two spin isomers is rapid, even at low temperature, and temperature-dependent NMR and electronic absorption spectroscopy studies show the energy differences quantitatively. Spectroscopically validated computations corroborate the presence of a low minimum-energy crossing point (MECP) between the two potential energy surfaces and elucidate the detailed pathway through which the β-diketiminate ligand "slips" between bidentate and arene-bound forms: rather than dissociation, the cobalt slides along the aromatic system in a pathway that balances strain energy and cobalt-ligand bonding. These results show that multiple spin states are easily accessible in this hemilabile system and map the thermodynamics and mechanism of the transition. PMID:26267848

  11. New Iridium Complex Coordinated with Tetrathiafulvalene Substituted Triazole-pyridine Ligand: Synthesis, Photophysical and Electrochemical Properties.

    PubMed

    Niu, Zhi-Gang; Xie, Hui; He, Li-Rong; Li, Kai-Xiu; Xia, Qing; Wu, Dong-Min; Li, Gao-Nan

    2016-01-01

    A new iridium(III) complex based on the triazole-pyridine ligand with tetrathiafulvalene unit, [Ir(ppy)2(L)]PF6 (1), has been synthesized and structurally characterized. The absorption spectra, luminescent spectra and electrochemical behaviors of L and 1 have been investigated. Complex 1 is found to be emissive at room temperature with maxima at 481 and 510 nm. The broad and structured emission bands are suggested a mixing of 3LC (3π-π*) and 3CT (3MLCT) excited states. The influence of iridium ion coordination on the redox properties of the TTF has also been investigated by cyclic voltammetry. PMID:27333555

  12. De novo design of peptide scaffolds as novel preorganized ligands for metal-ion coordination.

    PubMed

    Gamble, Aimee J; Peacock, Anna F A

    2014-01-01

    This chapter describes how de novo designed peptides can be used as novel preorganized ligands for metal ion coordination. The focus is on the design of peptides which are programmed to spontaneously self-assemble into α-helical coiled coils in aqueous solution, and how metal ion binding sites can be engineered onto and into these structures. In addition to describing the various design principles, some key examples are covered illustrating the success of this approach, including a more detailed example in the case study.

  13. A family of tri- and dimetallic pyridine dicarboxamide cryptates: unusual O,N,O-coordination and facile access to secondary coordination sphere hydrogen bonding interactions.

    PubMed

    Guillet, Gary L; Gordon, Jesse B; Di Francesco, Gianna N; Calkins, Matthew W; Čižmár, Erik; Abboud, Khalil A; Meisel, Mark W; García-Serres, Ricardo; Murray, Leslie J

    2015-03-16

    A series of tri- and dimetallic metal complexes of pyridine dicarboxamide cryptates are reported in which changes to the base and metal source result in diverse structure types. Addition of strong bases, such as KH or KN(SiMe3)2, followed by divalent metal halides allows direct access to trinuclear complexes in which each metal center is coordinated by a dianionic N,N,N-chelate of each arm. These complexes bind a guest K(+) cation within the central cavity in a trigonal planar coordination environment. Minor changes to the solvent and equivalents of base used in the syntheses of the triiron(II) and tricobalt(II) complexes affords two trinuclear clusters with atypical O,N,O-coordination by each pyridine dicarboxamide arm; the amide carbonyl O atoms are oriented toward the interior of the cavity to coordinate to each metal center. Finally, varying the base enables the selective synthesis of dinuclear nickel(II) and copper(II) complexes in which one pyridine dicarboxamide arm remains protonated. These amide protons are at one end of a hydrogen bonding network that extends throughout the internal cavity and terminates at a metal bound hydroxide, carbonate, or bicarbonate donor. In the dinickel complex, the bicarbonate cannot be liberated as CO2 either thermally or upon sparging with N2, which differs from previously reported monometallic complexes. The carbonate or bicarbonate ligands likely arise from sequestration of atmospheric CO2 based on the observed reaction of the di(hydroxonickel) analog. PMID:25710117

  14. Synthesis, spectroscopic studies, thermal analyses, biological activity of tridentate coordinated transition metal complexes of bi(pyridyl-2-ylmethyl)amine]ligand

    NASA Astrophysics Data System (ADS)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.

    2016-01-01

    A new tridentate acyclic pincer ligand, [bi(pyridin-2-methyl)amine] (bpma, HL), was synthesized and reacted to form complexes with copper(II), nickel(II), iron(II), cobalt(II) and zinc(II) ions. Both the ligand and its complexes were characterized using elemental analysis, molar conductance, infrared, 1H-NMR-spectroscopy, mass and thermal analyses. According to the spectroscopic data, all of the complexes share the same coordination environment around the metal atoms, consisting two nitrogen-pyridine entities, one nitrogen-methylamine entity, one/two water molecules and/or one/two chloride or bromide ions. Complexes also showed molar conductivity according to the presence of two halide anions outer the coordination sphere except Co(II) and Zn(II) complexes are non electrolytes. Analysis indicates that the metal ions have trigonal bipyramidal structure. Cu(II), Ni(II), Fe(II), Co(II), and Zn(II) metal complexes were screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus (G+) and Escherichia coli, and Pseudomonas aeruginosa (G-) bacteria. They showed remarkable antimicrobial activity.

  15. A bis(amido) ligand set that supports two-coordinate chromium in the +1, +2, and +3 oxidation states†

    PubMed Central

    Cai, Irene C.; Lipschutz, Michael I.

    2014-01-01

    The amido ligand –N(SiiPr3)DIPP (DIPP = 2,6-diisopropylphenyl) has been used to prepare two-coordinate complexes of CrI, CrII, and CrIII. The two-coordinate CrII complex has also been used to prepare a three-coordinate CrIII iodide complex, which can be used to access a stable CrIII methyl species. PMID:25222516

  16. A bis(amido) ligand set that supports two-coordinate chromium in the +1, +2, and +3 oxidation states.

    PubMed

    Cai, Irene C; Lipschutz, Michael I; Tilley, T Don

    2014-11-01

    The amido ligand -N(Si(i)Pr3)DIPP (DIPP = 2,6-diisopropylphenyl) has been used to prepare two-coordinate complexes of Cr(I), Cr(II), and Cr(III). The two-coordinate Cr(II) complex has also been used to prepare a three-coordinate Cr(III) iodide complex, which can be used to access a stable Cr(III) methyl species.

  17. Geometry of trigonal boron coordination sphere in boronic acids derivatives - a bond-valence vector model approach.

    PubMed

    Czerwińska, Karolina; Madura, Izabela D; Zachara, Janusz

    2016-04-01

    The systematic analysis of the geometry of three-coordinate boron in boronic acid derivatives with a common [CBO2] skeleton is presented. The study is based on the bond-valence vector (BVV) model [Zachara (2007). Inorg. Chem. 46, 9760-9767], a simple tool for the identification and quantitative estimation of both steric and electronic factors causing deformations of the coordination sphere. The empirical bond-valence (BV) parameters in the exponential equation [Brown & Altermatt (1985). Acta Cryst. B41, 244-247] rij and b, for B-O and B-C bonds were determined using data deposited in the Cambridge Structural Database. The values obtained amount to rBO = 1.364 Å, bBO = 0.37 Å, rBC = 1.569 Å, bBC = 0.28 Å, and they were further used in the calculation of BVV lengths. The values of the resultant BVV were less than 0.10 v.u. for 95% of the set comprising 897 [CBO2] fragments. Analysis of the distribution of BVV components allowed for the description of subtle in- and out-of plane deviations from the `ideal' (sp(2)) geometry of boron coordination sphere. The distortions specific for distinct groups of compounds such as boronic acids, cyclic and acyclic esters, benzoxaboroles and hemiesters were revealed. In cyclic esters the direction of strains was found to be controlled by the ring size effect. It was shown that the syn or anti location of substituents on O atoms is decisive for the deformations direction for both acids and acyclic esters. The greatest strains were observed in the case of benzoxaboroles which showed the highest deviation from the zero value of the resultant BVV. The out-of-plane distortions, described by the vz component of the resultant BVV, were ascertained to be useful in the identification of weak secondary interactions on the fourth coordination site of the boron centre. PMID:27048726

  18. Ammonia Binding in the Second Coordination Sphere of the Oxygen-Evolving Complex of Photosystem II.

    PubMed

    Vinyard, David J; Askerka, Mikhail; Debus, Richard J; Batista, Victor S; Brudvig, Gary W

    2016-08-01

    Ammonia binds to two sites in the oxygen-evolving complex (OEC) of Photosystem II (PSII). The first is as a terminal ligand to Mn in the S2 state, and the second is at a site outside the OEC that is competitive with chloride. Binding of ammonia in this latter secondary site results in the S2 state S = (5)/2 spin isomer being favored over the S = (1)/2 spin isomer. Using electron paramagnetic resonance spectroscopy, we find that ammonia binds to the secondary site in wild-type Synechocystis sp. PCC 6803 PSII, but not in D2-K317A mutated PSII that does not bind chloride. By combining these results with quantum mechanics/molecular mechanics calculations, we propose that ammonia binds in the secondary site in competition with D1-D61 as a hydrogen bond acceptor to the OEC terminal water ligand, W1. Implications for the mechanism of ammonia binding via its primary site directly to Mn4 in the OEC are discussed. PMID:27433995

  19. Structure, ligands and substrate coordination of the oxygen-evolving complex of photosystem II in the S2 state: a combined EPR and DFT study.

    PubMed

    Lohmiller, Thomas; Krewald, Vera; Navarro, Montserrat Pérez; Retegan, Marius; Rapatskiy, Leonid; Nowaczyk, Marc M; Boussac, Alain; Neese, Frank; Lubitz, Wolfgang; Pantazis, Dimitrios A; Cox, Nicholas

    2014-06-28

    The S2 state of the oxygen-evolving complex of photosystem II, which consists of a Mn4O5Ca cofactor, is EPR-active, typically displaying a multiline signal, which arises from a ground spin state of total spin ST = 1/2. The precise appearance of the signal varies amongst different photosynthetic species, preparation and solvent conditions/compositions. Over the past five years, using the model species Thermosynechococcus elongatus, we have examined modifications that induce changes in the multiline signal, i.e. Ca(2+)/Sr(2+)-substitution and the binding of ammonia, to ascertain how structural perturbations of the cluster are reflected in its magnetic/electronic properties. This refined analysis, which now includes high-field (W-band) data, demonstrates that the electronic structure of the S2 state is essentially invariant to these modifications. This assessment is based on spectroscopies that examine the metal centres themselves (EPR, (55)Mn-ENDOR) and their first coordination sphere ligands ((14)N/(15)N- and (17)O-ESEEM, -HYSCORE and -EDNMR). In addition, extended quantum mechanical models from broken-symmetry DFT now reproduce all EPR, (55)Mn and (14)N experimental magnetic observables, with the inclusion of second coordination sphere ligands being crucial for accurately describing the interaction of NH3 with the Mn tetramer. These results support a mechanism of multiline heterogeneity reported for species differences and the effect of methanol [Biochim. Biophys. Acta, Bioenerg., 2011, 1807, 829], involving small changes in the magnetic connectivity of the solvent accessible outer MnA4 to the cuboidal unit Mn3O3Ca, resulting in predictable changes of the measured effective (55)Mn hyperfine tensors. Sr(2+) and NH3 replacement both affect the observed (17)O-EDNMR signal envelope supporting the assignment of O5 as the exchangeable μ-oxo bridge and it acting as the first site of substrate inclusion.

  20. Porous coordination polymers with ubiquitous and biocompatible metals and a neutral bridging ligand

    PubMed Central

    Noro, Shin-ichiro; Mizutani, Junya; Hijikata, Yuh; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu; Sugimoto, Kunihisa; Inubushi, Yasutaka; Kubo, Kazuya; Nakamura, Takayoshi

    2015-01-01

    The design of inexpensive and less toxic porous coordination polymers (PCPs) that show selective adsorption or high adsorption capacity is a critical issue in research on applicable porous materials. Although use of Group II magnesium(II) and calcium(II) ions as building blocks could provide cheaper materials and lead to enhanced biocompatibility, examples of magnesium(II) and calcium(II) PCPs are extremely limited compared with commonly used transition metal ones, because neutral bridging ligands have not been available for magnesium(II) and calcium(II) ions. Here we report a rationally designed neutral and charge-polarized bridging ligand as a new partner for magnesium(II) and calcium(II) ions. The three-dimensional magnesium(II) and calcium(II) PCPs synthesized using such a neutral ligand are stable and show selective adsorption and separation of carbon dioxide over methane at ambient temperature. This synthetic approach allows the structural diversification of Group II magnesium(II) and calcium(II) PCPs. PMID:25592677

  1. X-ray Emission Spectroscopy to Study Ligand Valence Orbitals in Mn Coordination Complexes

    SciTech Connect

    Smolentsev, Grigory; Soldatov, Alexander V; Messinger, Johannes; Merz, Kathrin; Weyhermuller, Thomas; Bergmann, Uwe; Pushkar, Yulia; Yano, Junko; Yachandra, Vittal K.; Glatzel, Pieter

    2009-03-02

    We discuss a spectroscopic method to determine the character of chemical bonding and for the identification of metal ligands in coordination and bioinorganic chemistry. It is based on the analysis of satellite lines in X-ray emission spectra that arise from transitions between valence orbitals and the metal ion 1s level (valence-to-core XES). The spectra, in connection with calculations based on density functional theory (DFT), provide information that is complementary to other spectroscopic techniques, in particular X-ray absorption (XANES and EXAFS). The spectral shape is sensitive to protonation of ligands and allows ligands, which differ only slightly in atomic number (e.g., C, N, O...), to be distinguished. A theoretical discussion of the main spectral features is presented in terms of molecular orbitals for a series of Mn model systems: [Mn(H2O)6]2+, [Mn(H2O)5OH]+, [Mn(H2O)5NH2]+, and [Mn(H2O)5NH3]2+. An application of the method, with comparison between theory and experiment, is presented for the solvated Mn2+ ion in water and three Mn coordination complexes, namely [LMn(acac)N3]BPh4, [LMn(B2O3Ph2)(ClO4)], and [LMn(acac)N]BPh4, where L represents 1,4,7-trimethyl-1,4,7-triazacyclononane, acac stands for the 2,4-pentanedionate anion, and B2O3Ph2 represents the 1,3-diphenyl-1,3-dibora-2-oxapropane-1,3-diolato dianion.

  2. Five coordinate M(II)-diphenolate [M = Zn(II), Ni(II), and Cu(II)] Schiff base complexes exhibiting metal- and ligand-based redox chemistry.

    PubMed

    Franks, Mark; Gadzhieva, Anastasia; Ghandhi, Laura; Murrell, David; Blake, Alexander J; Davies, E Stephen; Lewis, William; Moro, Fabrizio; McMaster, Jonathan; Schröder, Martin

    2013-01-18

    Five-coordinate Zn(II), Ni(II), and Cu(II) complexes containing pentadentate N(3)O(2) Schiff base ligands [1A](2-) and [1B](2-) have been synthesized and characterized. X-ray crystallographic studies reveal five coordinate structures in which each metal ion is bound by two imine N-donors, two phenolate O-donors, and a single amine N-donor. Electron paramagnetic resonance (EPR) spectroscopic studies suggest that the N(3)O(2) coordination spheres of [Cu(1A)] and [Cu(1B)] are retained in CH(2)Cl(2) solution and solid-state superconducting quantum interference device (SQUID) magnetometric studies confirm that [Ni(1A)] and [Ni(1B)] adopt high spin (S = 1) configurations. Each complex exhibits two reversible oxidation processes between +0.05 and +0.64 V vs [Fc](+)/[Fc]. The products of one- and two-electron oxidations have been studied by UV/vis spectroelectrochemistry and by EPR spectroscopy which confirm that each oxidation process for the Zn(II) and Cu(II) complexes is ligand-based with sequential formation of mono- and bis-phenoxyl radical species. In contrast, the one-electron oxidation of the Ni(II) complexes generates Ni(III) products. This assignment is supported by spectroelectrochemical and EPR spectroscopic studies, density functional theory (DFT) calculations, and the single crystal X-ray structure of [Ni(1A)][BF(4)] which contains Ni in a five-coordinate distorted trigonal bipyramidal geometry.

  3. Utilization of mixed ligands to construct two new coordination polymers: Syntheses, structures and properties

    SciTech Connect

    Wang, Yansong; Zhou, Zhimin

    2015-08-15

    The use of triazine and aromatic carboxylic acid as mixed chelating ligands in preparing two coordination polymers is described. Two new transition-metal coordination polymers, namely, [Co{sub 2}(bpdc){sub 4}(phdat){sub 2}] (1) and [Zn(bpdc)]{sub n} (2) (H{sub 2}bpdc=2,4-biphenyldicarboxylic acid, phdat=2,4-diamine-6-phenyl-1,3,5-triazine), have been hydrothermally synthesized and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. Compound 1 is a 0D structure and extends to a 3D network by two different N–H···O and N–H···N hydrogen bonds. Compound 2 exhibits a 2D network with 4{sup 4}.6{sup 2} topological net, which contains two kinds of single helical chains. The interactions within each Co(II)–Co(II) pair of compound 1 are antiferromagnetic (g=2.19, J=−22 K, zj′=−0.00351 K). Furthermore, the photoluminescence property of 2 was also investigated in the solid state at room temperature. - Graphical abstract: Two polymeric metal compounds based on mixed-ligands were synthesized and characterized. The use of different metal ions results in distinct structures. The magnetic and fluorescent properties were also studied. - Highlights: • The first bpdc{sup 2−}/phdat-based 0D discrete coordination complex. • A new 2D architecture with two kinds of helical chains. • The structure-dependent magnetism and photoluminescence properties.

  4. One- and three-dimensional silver(I)-5-sulfosalicylate coordination polymers having ligand-supported and unsupported argentophilic interactions

    SciTech Connect

    Arıcı, Mürsel; Yeşilel, Okan Zafer; Yeşilöz, Yeşim; Şahin, Onur

    2014-12-15

    Four new coordination polymers, namely, (Hemim·[Ag(Hssa)(H{sub 2}O)]){sub n} (1), ([Ag(ina){sub 2} Ag(Hssa)]·CH{sub 3}OH·H{sub 2}O){sub n} (2), ([Ag{sub 2}(Hssa)(dmp){sub 1.5}]·2H{sub 2}O){sub n} (3) and [Ag{sub 2}(Hssa)(daoc)]{sub n} (4) (Hssa: 5-Sulfosalicylate, emim: 2-ethyl-4-methylimidazole, ina: isonicotinamide, dmp: 2,5-dimethylpyrazine and daoc: 1,8-diaminooctane) were synthesized and characterized by IR spectroscopy, elemental analysis, single crystal X-ray diffraction, powder X-ray diffraction (PXRD) and thermal analysis techniques. Complexes 1 and 2 are one-dimensional (1D) coordination polymers while complexes 3 and 4 are three-dimensional (3D) coordination polymers. Complex 3 consists of three dimensional (3D) 3,3,6-c net with 3,3,6T37 topology. Complex 4 exhibits a 2-fold interpenetrating 3D framework with tfc topology. Complexes 1–4 contain ligand-supported (1–3) and unsupported (4) argentophilic Ag⋯Ag interactions. Photoluminescence spectra of the complexes demonstrate that photoluminescent properties may be attributed to intraligand transition of coordinated Hssa ligand. - Graphical abstract: In this study, four new Ag(I)-coordination polymers with 5-sulfosalicylate and some N-donor ligands were synthesized and characterized. Complexes 1 and 2 are one-dimensional (1D) coordination polymers while complexes 3 and 4 are three-dimensional (3D) coordination polymers. Complex 3 consists of three dimensional (3D) 3,3,6-c net with 3,3,6T37 topology. Complex 4 exhibits a 2-fold interpenetrating 3D framework with tfc topology. The complexes 1–4 contain ligand-supported (1–3) and unsupported (4) argentophilic Ag⋯Ag interactions. Photoluminescence spectra of the complexes demonstrated that photoluminescent properties may be attributed to intraligand transition of coordinated Hssa ligand. - Highlights: • Four novel Ag(I)-coordination polymers with 5-sulfosalicylate and N-donor ligands. • Complexes 1–4 contain ligand-supported (1–3) and

  5. Coordination sphere of the third metal site is essential to the activity and metal selectivity of alkaline phosphatases.

    PubMed

    Koutsioulis, Dimitris; Lyskowski, Andrzej; Mäki, Seija; Guthrie, Ellen; Feller, Georges; Bouriotis, Vassilis; Heikinheimo, Pirkko

    2010-01-01

    Alkaline phosphatases (APs) are commercially applied enzymes that catalyze the hydrolysis of phosphate monoesters by a reaction involving three active site metal ions. We have previously identified H135 as the key residue for controlling activity of the psychrophilic TAB5 AP (TAP). In this article, we describe three X-ray crystallographic structures on TAP variants H135E and H135D in complex with a variety of metal ions. The structural analysis is supported by thermodynamic and kinetic data. The AP catalysis essentially requires octahedral coordination in the M3 site, but stability is adjusted with the conformational freedom of the metal ion. Comparison with the mesophilic Escherichia coli, AP shows differences in the charge transfer network in providing the chemically optimal metal combination for catalysis. Our results provide explanation why the TAB5 and E. coli APs respond in an opposite way to mutagenesis in their active sites. They provide a lesson on chemical fine tuning and the importance of the second coordination sphere in defining metal specificity in enzymes. Understanding the framework of AP catalysis is essential in the efforts to design even more powerful tools for modern biotechnology. PMID:19916164

  6. Soluble 1D coordination polymers based on dendron-functionalized bispyridine ligand for linking between immobilized molecules on substrates.

    PubMed

    Tokuhisa, Hideo; Kanesato, Masatoshi

    2005-10-11

    As a monomeric ligand for a soluble 1D coordination polymer, a benzyl-ether based dendrimer having a rigid 4,4'-bispyridine ligand at the focal point has been synthesized and the coordination chemistry with Pd(II) investigated by nuclear magnetic resonance, ultraviolet-visible and fluorescence spectroscopies, gel permeation chromatography measurement, and X-ray photoelectron spectroscopy. As a result, it was found that the synthesized dendrimer forms a stable, soluble Pd(II) coordination polymer with rough estimation of degree of polymerization of 10 in organic solvents. Furthermore, through the coordination polymer we attempted to link fourth-generation poly(amidoamine) dendrimers (PAMAM) individually immobilized on mica and confirmed the interconnection of the PAMAM through coordination polymers by atomic force microscopy.

  7. Dipyridylamide ligand dependent dimensionality in luminescent zinc 2,4-pyridinedicarboxylate coordination complexes

    NASA Astrophysics Data System (ADS)

    Wudkewych, Megan J.; LaDuca, Robert L.

    2016-09-01

    Zinc nitrate, 2,4-pyridinedicarboxylic acid (2,4-pdcH2), and a hydrogen-bonding capable dipyridylamide ligand were combined in aqueous solution and subjected to hydrothermal reaction conditions. Three new crystalline coordination complexes were generated; their dimensionality depends crucially on the dipyridylamide length and geometric disposition of the pyridyl nitrogen donors. The three new phases were structurally characterized via single-crystal X-ray diffraction. {[H23-pina][Zn(2,4-pdc)2(H2O)2]·H2O} (1, 3-pina = 3-pyridylisonicotinamide) is a salt with protonated dipyridylamide cations and coordination complex anions. {[Zn2(2,4-pdc)2(H2O)4(3-pna)]·3H2O}n (2, 3-pna = 3-pyridylnicotinamide) shows a system of two-fold interpenetrated ruffled (6,3) coordination polymer layers. {[Zn(2,4-pdc)(H2O)2(3-pmna)]n (3, 3-pmna = 3-pyridylmethylnicotinamide) manifests a simple 1D chain topology. Luminescence was observed for two of the zinc complexes; this behavior is attributed to π-π* or π-n molecular orbital transitions. Thermal decomposition properties of the new phases are also probed.

  8. Iron Complexes for the Electrocatalytic Oxidation of Hydrogen: Tuning Primary and Secondary Coordination Spheres

    SciTech Connect

    Darmon, Jonathan M.; Raugei, Simone; Liu, Tianbiao L.; Hulley, Elliott B.; Weiss, Charles J.; Bullock, R. Morris; Helm, Monte L.

    2014-04-04

    A series of iron hydride complexes featuring PRNR'PR (PRNR'PR = R2PCH2N(R')CH2PR2 where R = Ph, R' = Me; R = Et, R' = Ph, Bn, Me, tBu) and cyclopentadienyl (CpX = C5H4X where X = H, C5F4N) ligands has been synthesized, characterized by NMR spectroscopy, X-ray diffraction and cyclic voltammetry, and examined by quantum chemistry calculations. Each compound was tested for the electrocatalytic oxidation of H2 and the most active complex, (CpC5F4N)Fe(PEtNMePEt)(H), exhibited a turnover frequency of 8.6 s-1 at 1 atm of H2 with an overpotential of 0.41 V, as measured from the half peak potential of the catalytic wave. Control complexes that do not contain pendant amine groups were also prepared and characterized, but no catalysis was observed. This work demonstrates the importance of the pendant amine in facilitating heterolytic H2 cleavage and subsequent proton movement necessary for electrocatalytic H2 oxidation. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  9. Unexpected Trimerization of Pyrazine in the Coordination Sphere of Low-Valent Titanocene Fragments.

    PubMed

    Jung, Thomas; Beckhaus, Rüdiger; Klüner, Thorsten; Höfener, Sebastian; Klopper, Wim

    2009-08-11

    The titanium mediated trimerization of pyrazine leads to the formation of a tris-chelate complex employing a 4a,4b,8a,8b,12a,12b-hexahydrodiyprazino[2,3-f:2',3'-h]quinoxaline ligand (HATH6, 3). The driving force in the formation of the (Cp*2Ti)3(HATH6) complex 2 is attributed to the formation of six Ti-N bonds. We show that density functional theory (DFT) fails to predict quantitatively correct results. Therefore, post-Hartree-Fock methods, such as second-order Møller-Plesset perturbation theory (MP2), in combination with coupled-cluster (CC) methods must be used. Both MP2 and CCSD(T) levels of theory provide endothermic trimerization energies, showing that the plain pyrazine trimer is not stable with respect to decomposition into its monomers. Complete basis set (CBS) results for the MP2 level of theory were computed using explicitly correlated wave functions. With these, we estimate the CCSD(T) CBS limit of the hypothetical trimerization energy to be +0.78 eV. Thus, the trimerization is facilitated by the formation of six Ti-N bonds with a calculated formation energy of -1.32 eV per bond.

  10. Coordination polymers of Ag(I) based on iminocarbene ligands involving metal-carbon and metal-heteroatom interactions

    NASA Astrophysics Data System (ADS)

    Netalkar, Sandeep P.; Netalkar, Priya P.; Revankar, Vidyanand K.

    2016-03-01

    The reaction of Ag2O with three novel imino-NHC ligands derived from 2-chloroacetophenone with pendant N-donor functional group incorporated by reaction with methoxyamine and 1-methyl/ethyl/n-butyl-substituted imidazoles afforded one-dimensional coordination polymers with [(-NHCarbene)Ag(NHCarbene-)PF6]n formulation involving both carbon-metal and heteroatom-metal interactions, the carbon and heteroatom involved in coordination to silver being from different molecule of the ligand. The complexes as well as the ligands were characterized by spectroscopic methods as well as the solid state structures determined in case of 2a, 3a and complex 5. The iminocarbene ligands serve as non-chelating building block for supramolecular silver assemblies.

  11. Aspartate 46, a second sphere ligand to the catalytic zinc, is essential for activity of yeast alcohol dehydrogenase

    SciTech Connect

    Ganzhorn, A.J.; Plapp, B.V.

    1987-05-01

    The crystal structure of horse liver alcohol dehydrogenase (ADH) shows a hydrogen bond between the imidazole of His-67, a ligand to the active site zinc, and the carboxylate of Asp-49. Both residues are conserved in alcohol dehydrogenases. Directed mutagenesis was used to replace the homologous Asp-46 in ADH I from S. cerevisiae with asparagine. The substitution did not alter the overall structure of the enzyme, as judged by CD measurements, but the removal of a negative charge was evident in electrophoresis, and in the absorption and fluorescence spectra. The mutant and wild-type enzymes had similar zinc contents as determined by atomic absorption spectroscopy. Active site titration and steady state kinetics indicated that binding of coenzymes, substrates and substrate analogs is 4-24 fold weaker in the asparagine enzyme. The turnover numbers were reduced by a factor of 70 for ethanol oxidation and 30 for acetaldehyde reduction at pH 7.3, 30/sup 0/C. Dead end inhibition studies and the kinetic isotope effect showed that NAD and ethanol binding follow a rapid equilibrium random mechanism as opposed to the ordered mechanism found for ADH I. They conclude that the carboxyl group of Asp-46 is essential for the electrostatic environment near the active site zinc. Amidation may affect the geometry and/or coordination of the metal complex.

  12. Group 13 complexes of dipyridylmethane, a forgotten ligand in coordination chemistry.

    PubMed

    Vasko, Petra; Kinnunen, Virva; O Moilanen, Jani; Roemmele, Tracey L; Boeré, René T; Konu, Jari; Tuononen, Heikki M

    2015-11-01

    The reactions of dipyridylmethane (dpma) with group 13 trichlorides were investigated in 1 : 1 and 1 : 2 molar ratios using NMR spectroscopy and X-ray crystallography. With 1 : 1 stoichiometry and Et2O as solvent, reactions employing AlCl3 or GaCl3 gave mixtures of products with the salt [(dpma)2MCl2](+)[MCl4](-) (M = Al, Ga) as the main species. The corresponding reactions in 1 : 2 molar ratio gave similar mixtures but with [(dpma)MCl2](+)[MCl4](-) as the primary product. Pure salts [(dpma)AlCl2](+)[Cl](-) and [(dpma)AlCl2](+)[AlCl4](-) could be obtained by performing the reactions in CH3CN. In the case of InCl3, a neutral monoadduct (dpma)InCl3 formed regardless of the stoichiometry employed. A neutral adduct (dpma)(BCl3)2 was obtained from the reaction between dpma and BCl3 in Et2O using 1 : 2 stoichiometry. With 1 : 1 molar ratio of reagents, a mixture of products and deprotonation of the methylene bridge in [(dpma)BCl2](+) was observed. The experimental data showed that the structural flexibility of the dpma ligand results in more diverse coordination chemistry with group 13 elements than that observed for bipyridine (bpy), while computational investigations indicated that the investigated metal-ligand interactions are, to a first approximation, independent of the ligand type. Electrochemical and chemical attempts to reduce the cations [(dpma)MCl2](+) showed that, in stark contrast to the chemistry of the related [(bpy)BCl2](+) cation, the neutral radicals [(dpma)MCl2]˙ are extremely unstable. Differences in the redox behaviour of dpma and bpy could be rationalized with the electronic structure of the ligand and that of the methylene bridge in particular. As a whole, the facile reactivity of the methylene bridge in the dpma ligand renders it amenable to further reactivity and functionalization that is not possible in the case of bpy. PMID:26426745

  13. Second-sphere coordination in anion binding: Synthesis, characterization and X-ray structures of bis(diethylenetriamine)cobalt(III) complexes containing benzoates

    NASA Astrophysics Data System (ADS)

    Bala, Ritu; Kaur, Amrinder; Kashyap, Monika; Janzen, Daron E.

    2014-04-01

    New complexes of composition s-fac-[Co(dien)2]Cl2(Bz)·H2O (1), s-fac-[Co(dien)2]Cl(p-CBz)2·4.5H2O (2) and mer-[Co(dien)2](p-NBz)3·3H2O (3) were obtained by reacting aqueous solutions of bis(diethylenetriamine)cobalt(III) chloride and sodium salts of benzoates ((Bz = benzoate, CBz = p-chlorobenzoate, NBz = p-nitrobenzoate)) in 1:3 molar ratio. These complexes were characterized by TG analysis and spectroscopic studies (IR, NMR and UV-vis). IR and NMR studies were used for the isomeric identification of [Co(dien)2]3+ in new complexes. This cation, contains ligand diethylenetriamine (dien) bearing H-bond donors, capable of forming hydrogen bonds and its binding properties with benzoates have been studied using standard UV-vis spectroscopic titrations in aqueous medium (log k for Bz = 2.11, p-CBz = 3.64 and p-NBz = 3.66). Single crystal X-ray study of complex 2 and 3 reveals that both the structures are dominantly stabilized by second-sphere coordination through H-bonding interactions of type-NH (dien)⋯O (benzoates) and H (water)⋯O (benzoates) in addition to the electrostatic forces of attractions. Further, the NH (dien)⋯Cl- (counter ion) and NH (dien)⋯O (water) types of interactions are also playing a dominant role to stabilize the crystal lattice in complex 2 and 3 respectively.

  14. Three new Ag(I) coordination architectures based on mixed ligands: Syntheses, structures and photoluminescent properties

    SciTech Connect

    Li, Yamin; Xiao, Changyu; Li, Shu; Chen, Qi; Li, Beibei; Liao, Qian; Niu, Jingyang

    2013-04-15

    Three new silver (I) coordination complexes, [Ag{sub 2}(1,2-bdc)(phdat)]{sub n} (1), [Ag{sub 2}(NO{sub 2}-bdc)(phdat)]{sub n} (2), [Ag{sub 4}(nta){sub 3}(phdat)NO{sub 3}]{sub n} (3) (1,2-bdc=phthalic acid dianion, NO{sub 2}-bdc=5-nitro-1,3-benzenedicarboxylic acid dianion, nta=nicotinic acid anion, phdat=2,4-diamine-6-phenyl-1,3,5-triazine) have been hydrothermally synthesized by the reactions of silver nitrate and phdat with the homologous ligands 1,2-H{sub 2}bdc, NO{sub 2}-H{sub 2}bdc, and Hnta, respectively, and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses thermogravimetric analyses (TGA). The compound 1 exhibits a chiral 3D network with cbs/CrB self-dual topological net, which contains two kinds of single helical chains. For compound 2, the 3D network is comprised of two kinds of similar 2D sheets with the topological symbol of sql-type packed in AABBAA mode by Ag–N/O weakly contacts. And compound 3 has 2D double layer architecture, consisting of the 2D plane with hcb-type topological symbol connected by Ag–O weakly coordinations. The photoluminescent properties associated with the crystal structures of three compounds have also been measured. - Graphical abstract: Three new silver(I) coordination complexes 1–3 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses (TGA) and photoluminescent spectra. Highlights: ► The compound 1 exhibits a novel chiral 3D network with two kinds of single helical chains. ► 3D or 2D new Ag coordination complexes. ► The photoluminescent properties have been measured.

  15. The coordination chemistry of two symmetric fluorene-based organic ligands with cuprous chloride.

    PubMed

    Liu, Yan-Fei; Zhao, Chao-Wei; Ma, Jian-Ping; Liu, Qi-Kui; Dong, Yu-Bin

    2013-12-15

    Two novel symmetric fluorene-based ligands, namely, 2,7-bis(1H-imidazol-1-yl)-9,9-dimethyl-9H-fluorene [L1 or (I), C21H18N4] and 2,7-bis(1H-imidazol-1-yl)-9,9-dipropyl-9H-fluorene (L2), have been used to construct the coordination polymers catena-poly[[dichloridodicopper(I)(Cu-Cu)]-μ-2,7-bis(1H-imidazol-1-yl)-9,9-dimethyl-9H-fluorene], [Cu2Cl2(C21H18N4)]n, (II), and catena-poly[[tetra-μ2-chlorido-tetracopper(I)]-bis[μ-2,7-bis(1H-imidazol-1-yl)-9,9-dipropyl-9H-fluorene

  16. Converting between the oxides of nitrogen using metal-ligand coordination complexes.

    PubMed

    Timmons, Andrew J; Symes, Mark D

    2015-10-01

    The oxides of nitrogen (chiefly NO, NO3(-), NO2(-) and N2O) are key components of the natural nitrogen cycle and are intermediates in a range of processes of enormous biological, environmental and industrial importance. Nature has evolved numerous enzymes which handle the conversion of these oxides to/from other small nitrogen-containing species and there also exist a number of heterogeneous catalysts that can mediate similar reactions. In the chemical space between these two extremes exist metal-ligand coordination complexes that are easier to interrogate than heterogeneous systems and simpler in structure than enzymes. In this Tutorial Review, we will examine catalysts for the inter-conversions of the various nitrogen oxides that are based on such complexes, looking in particular at more recent examples that take inspiration from the natural systems.

  17. Solvothermal in situ metal/ligand reactions: a new bridge between coordination chemistry and organic synthetic chemistry.

    PubMed

    Chen, Xiao-Ming; Tong, Ming-Liang

    2007-02-01

    Several important solvothermal (including hydrothermal) in situ metal/ligand reactions and their mechanisms, including dehydrogenative carbon-carbon coupling, hydroxylation of aromatic rings, cycloaddition of organic nitriles with azide and ammonia, transformation of inorganic and organic sulfur, as well as the CuII to CuI reduction, are outlined in this Account. The current progress clearly demonstrates the important potential of such reactions in the crystal engineering of functional coordination compounds and one-pot synthesis of some unusual organic ligands that are inaccessible or not easily obtainable via conventional methods, thereby substantiating our expectation that a new bridge has been created between coordination chemistry and synthetic organic chemistry.

  18. Cobalt Complexes Containing Pendant Amines in the Second Coordination Sphere as Electrocatalysts for H2 Production

    SciTech Connect

    Fang, Ming; Wiedner, Eric S.; Dougherty, William G.; Kassel, W. S.; Liu, Tianbiao L.; DuBois, Daniel L.; Bullock, R. Morris

    2014-10-27

    A series of heteroleptic 17e- cobalt complexes, [CpCoII(PtBu2NPh2)](BF4), [CpC6F5CoII(PtBu2NPh2)](BF4), [CpC5F4NCoII(PtBu2NPh2)](BF4), [where P2tBuN2Ph = 1,5-diphenyl-3,7-di(tert-butyl)-1,5-diaza-3,7-diphosphacyclooctane, CpC6F5 = C5H4(C6F5), and CpC5F4N = C5H4(C5F4N)] were synthesized, and structures of all three were determined by X-ray crystallography. Electrochemical studies showed that the CoIII/II couple of [CpC5F4NCoII(PtBu2NPh2)]+ appears 250 mV positive of the CoIII/II couple of [CpCoII(PtBu2NPh2)] as a result of the strongly electron-withdrawing perfluorpyridyl substituent on the Cp ring. Reduction of these paramagnetic CoII complexes by KC8 led to the diamagnetic 18e- complexes CpICo(PtBu2NPh2), CpC6F5CoI(PtBu2NPh2), CpC5F4NCoI(PtBu2NPh2), which were also characterized by crystallography. Protonation of these neutral CoI complexes led to the cobalt hydrides [CpCoIII(PtBu2NPh2)H](BF4), [CpC6F5CoIII(PtBu2NPh2)H](BF4), and [CpC5F4NCoIII(PtBu2NPh2)H](BF4). The cobalt hydride with the most electron-withdrawing Cp ligand, [CpC5F4NCoIII(PtBu2NPh2)H]+ is an electrocatalyst for production of H2 using 4-MeOC6H4NH3BF4 (pKaMeCN = 11.86) with a turnover frequency of 350 s-1 and an overpotential of 0.75 V. Experimental measurement of thermochemical data provided further insights into the thermodynamics of H2 elimination. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  19. Antitumor properties of five-coordinate gold(III) complexes bearing substituted polypyridyl ligands.

    PubMed

    Sanghvi, Chinar D; Olsen, Pauline M; Elix, Catherine; Peng, Shifang Bruce; Wang, Dongsheng; Chen, Zhuo Georgia; Shin, Dong M; Hardcastle, Kenneth I; MacBeth, Cora E; Eichler, Jack F

    2013-11-01

    In an on-going effort to discover metallotherapeutic alternatives to the chemotherapy drug cisplatin, neutral distorted square pyramidal gold(III) coordination complexes possessing 2,9-disubstituted-1,10-phenanthroline ligands {[((R)phen)AuCl3]; R = n-butyl, sec-butyl} have been previously synthesized and characterized. A structurally analogous gold(III) complex bearing a 6,6'-di-methylbipyridine ligand ([((methyl)bipy)AuCl3]) has been synthesized and fully characterized to probe the effect of differing aromatic character of the ligand on solution stability and tumor cell cytotoxicity. The two compounds [((sec-butyl)phen)AuCl3] and [((methyl)bipy)AuCl3]) were subsequently assessed for their stability against the biological reductant glutathione, and it was found that the [((sec-butyl)phen)AuCl3] complex exhibits slightly enhanced stability compared to the [((methyl)bipy)AuCl3] complex and significantly higher stability than previously reported square planar gold(III) complex ions. Furthermore, these complexes were tested for cytotoxic effects against existing lung and head and neck cancer cell lines in vitro. The [((sec-butyl)phen)AuCl3] complex was found to be more cytotoxic than cisplatin against five different tumor cell lines, whereas [((methyl)bipy)AuCl3] had more limited in vitro antitumor activity. Given that [((sec-butyl)phen)AuCl3] had significantly higher antitumor activity, it was tested against an in vivo tumor model. It was found that this complex did not significantly reduce the growth of xenograft tumors in mice and initial model binding studies with bovine serum albumin indicate that interactions with serum albumin proteins may be the cause for the limited in vivo activity of this potential metallotherapeutic. PMID:23948576

  20. Antitumor properties of five-coordinate gold(III) complexes bearing substituted polypyridyl ligands.

    PubMed

    Sanghvi, Chinar D; Olsen, Pauline M; Elix, Catherine; Peng, Shifang Bruce; Wang, Dongsheng; Chen, Zhuo Georgia; Shin, Dong M; Hardcastle, Kenneth I; MacBeth, Cora E; Eichler, Jack F

    2013-11-01

    In an on-going effort to discover metallotherapeutic alternatives to the chemotherapy drug cisplatin, neutral distorted square pyramidal gold(III) coordination complexes possessing 2,9-disubstituted-1,10-phenanthroline ligands {[((R)phen)AuCl3]; R = n-butyl, sec-butyl} have been previously synthesized and characterized. A structurally analogous gold(III) complex bearing a 6,6'-di-methylbipyridine ligand ([((methyl)bipy)AuCl3]) has been synthesized and fully characterized to probe the effect of differing aromatic character of the ligand on solution stability and tumor cell cytotoxicity. The two compounds [((sec-butyl)phen)AuCl3] and [((methyl)bipy)AuCl3]) were subsequently assessed for their stability against the biological reductant glutathione, and it was found that the [((sec-butyl)phen)AuCl3] complex exhibits slightly enhanced stability compared to the [((methyl)bipy)AuCl3] complex and significantly higher stability than previously reported square planar gold(III) complex ions. Furthermore, these complexes were tested for cytotoxic effects against existing lung and head and neck cancer cell lines in vitro. The [((sec-butyl)phen)AuCl3] complex was found to be more cytotoxic than cisplatin against five different tumor cell lines, whereas [((methyl)bipy)AuCl3] had more limited in vitro antitumor activity. Given that [((sec-butyl)phen)AuCl3] had significantly higher antitumor activity, it was tested against an in vivo tumor model. It was found that this complex did not significantly reduce the growth of xenograft tumors in mice and initial model binding studies with bovine serum albumin indicate that interactions with serum albumin proteins may be the cause for the limited in vivo activity of this potential metallotherapeutic.

  1. A Selenium-Containing Diarylamido Pincer Ligand: Synthesis and Coordination Chemistry with Group 10 Metals.

    PubMed

    Charette, Bronte J; Ritch, Jamie S

    2016-06-20

    The synthesis of new bifunctional organoselenium diarylamine compounds RN(4-Me-2-SeMe-C6H3)2 (R = Me: 1; R = tert-butoxycarbonyl (Boc): 2; R = H: 3-H) via aryllithium chemistry is disclosed. Compound 1 serves as a Se,Se-bidentate neutral ligand toward Pd(II), forming the coordination complex {PdCl2[MeN(4-Me-2-SeMe-C6H3)2-κ(2)Se)]} (1-Pd) in reaction with [PdCl2(COD)] (COD = 1,5-cyclooctadiene), while the protio ligand 3-H forms tridentate pincer complexes [MCl(N(4-Me-2-SeMe-C6H3)2)] (M = Pd: 3-Pd; M = Pt: 3-Pt) with [MCl2(COD)] (M = Pd, Pt) in the presence of triethylamine. Complex 1-Pd does not undergo N-C cleavage at high temperature, unlike related alkylphosphine-bearing complexes. All compounds have been characterized by multinuclear ((1)H, (13)C, (77)Se) NMR spectroscopy, and crystal structures of 1, 1-Pd, 3-Pd, and 3-Pt are reported. Additionally, density functional theory calculations have been performed on the pincer complexes to contrast them with well-known analogues containing phosphine donor groups. PMID:27281450

  2. An elusive vinyl radical isolated as an appended unit in a five-coordinate Co(iii)-bis(iminobenzosemiquinone) complex formed via ligand-centered C-S bond cleavage.

    PubMed

    Sarkar, Prasenjit; Tiwari, Archana; Sarmah, Amrit; Bhandary, Subhrajyoti; Roy, Ram Kinkar; Mukherjee, Chandan

    2016-08-23

    Redox-active ligand H4Pra(edt(AP/AP)) experienced C-S bond cleavage during complexation reaction with Co(OAc)2·2H2O in the presence of Et3N in CH3OH in air. Thus, formed complex 1 was composed of two iminobenzosemiquinone radicals in its coordination sphere and an unprecedented stable tethered-vinyl radical. The complex has been characterized by mass, X-ray single crystal, X-band EPR, variable-temperature magnetic moment measurements and DFT based computational study.

  3. Utilization of mixed ligands to construct two new coordination polymers: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, Yansong; Zhou, Zhimin

    2015-08-01

    The use of triazine and aromatic carboxylic acid as mixed chelating ligands in preparing two coordination polymers is described. Two new transition-metal coordination polymers, namely, [Co2(bpdc)4(phdat)2] (1) and [Zn(bpdc)]n (2) (H2bpdc=2,4-biphenyldicarboxylic acid, phdat=2,4-diamine-6-phenyl-1,3,5-triazine), have been hydrothermally synthesized and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. Compound 1 is a 0D structure and extends to a 3D network by two different N-H···O and N-H···N hydrogen bonds. Compound 2 exhibits a 2D network with 44.62 topological net, which contains two kinds of single helical chains. The interactions within each Co(II)-Co(II) pair of compound 1 are antiferromagnetic (g=2.19, J=-22 K, zj‧=-0.00351 K). Furthermore, the photoluminescence property of 2 was also investigated in the solid state at room temperature.

  4. Structural diversity and magnetic properties of six metal-organic coordination polymers based on semi-rigid V-shape tetracarboxylic acid ligand

    NASA Astrophysics Data System (ADS)

    Yang, Shanshan; Bai, Yue-Ling; Xing, Feifei; Zhao, Yongmei; Li, Ming-Xing; Shao, Min; Zhu, Shourong

    2016-04-01

    Six Mn metal-organic frameworks have been synthesized under solvothermal conditions with V-shaped terphenyl tetracarboxylate ligands (H4ttac). Their structures were characterized by elemental analysis, infrared spectra, PXRD, thermogravimetric analysis, and single-crystal X-ray diffraction analysis. Crystal structures reveal that the coordination number of H4ttac ligand varies from 6 to 10, and each ligand links 4-8 Mn(II) ions. Coordination modes vary from η6μ4 to η10μ8. The existence of DMF solvent can increase coordination number of the ligand. The first coordination saturated phthalate is presented. The variable-temperature magnetic studies indicate that complexes exhibit dominant antiferromagnetic behaviors. Structural parameters and coordination modes were summarized. The porosity of these complexes is less than 15%, indicating that the V-shape ligand is not a good choice to construct porous coordination polymers.

  5. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    PubMed Central

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet–visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms. PMID:24070648

  6. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.

  7. Coordination chemistry of amine bis(phenolate) titanium complexes: tuning complex type and structure by ligand modification.

    PubMed

    Tshuva, E Y; Goldberg, I; Kol, M; Goldschmidt, Z

    2001-08-13

    The coordination chemistry of titanium(IV) complexes of amine bis(phenolate) ligands was investigated by synthesizing various types of complexes and analyzing them specroscopically and structurally. Steric effects of tridentate [ONO]- and tetradentate [ONNO]-type ligands were studied by reacting the ligand precursors with titanium tetra(isopropoxide). [ONNO]-type ligands featuring an amine donor located on a pendant arm led to octahedral bis(isopropoxide) complexes, regardless of the steric bulk around the metal. Several such complexes having varying steric crowding were thus synthesized. On the other hand, steric effects were found to play a major role in determining the complex constitution when [ONO]-type ligands, featuring no side donor, were involved. Relatively sterically undemanding ligands led to octahedral bis(homoleptic) complexes, whereas increased steric bulk resulted in the formation of pentacoordinate bis(isopropoxide) complexes. These pentacoordinate complexes readily lead to bis(heteroleptic) complexes by reaction with nonsterically demanding [ONO]- and [ONNO]-type ligand precursors. In the latter case the sidearm nitrogen remains uncoordinated to the metal. The bis(isopropoxide) complexes of the [ONNO]-type ligands may also lead to bis(heteroleptic) complexes, however, these reactions are much slower. PMID:11487331

  8. electronic Ligand Builder and Optimisation Workbench (eLBOW): A tool for ligand coordinate and restraint generation

    SciTech Connect

    Moriarty, Nigel; Grosse-Kunstleve, Ralf; Adams, Paul

    2009-07-01

    The electronic Ligand Builder and Optimisation Workbench (eLBOW) is a program module of the PHENIX suite of computational crystallographic software. It's designed to be a flexible procedure using simple and fast quantum chemical techniques to provide chemically accurate information for novel and known ligands alike. A variety of input formats and options allow for the attainment of a number of diverse goals including geometry optimisation and generation of restraints.

  9. Steric and Electronic Factors Associated with the Photoinduced Ligand Exchange of Bidentate Ligands Coordinated to Ru(II).

    PubMed

    Albani, Bryan A; Whittemore, Tyler; Durr, Christopher B; Turro, Claudia

    2015-01-01

    In an effort to create a molecule that can absorb low energy visible or near-infrared light for photochemotherapy (PCT), the new complexes [Ru(biq)2 (dpb)](PF6 )2 (1, biq = 2,2'-biquinoline, dpb = 2,3-bis(2-pyridyl)benzoquinoxaline) and [(biq)2 Ru(dpb)Re(CO)3 Cl](PF6 )2 (2) were synthesized and characterized. Complexes 1 and 2 were compared to [Ru(bpy)2 (dpb)](PF6 )2 (3, bpy = 2,2'-bipyridine) and [Ru(biq)2 (phen)](PF6 )2 (4, phen = 1,10-phenanthroline). Distortions around the metal and biq ligands were used to explain the exchange of one biq ligand in 4 upon irradiation. Complex 1, however, undergoes photoinduced dissociation of the dpb ligand rather than biq under analogous experimental conditions. Complex 3 is not photoactive, providing evidence that the biq ligands are crucial for ligand photodissociation in 1. The crystal structures of 1 and 4 are compared to explain the difference in photochemistry between the complexes. Complex 2 absorbs lower energy light than 1, but is photochemically inert although its crystal structure displays significant distortions. These results indicate that both the excited state electronic structure and steric bulk play key roles in bidentate photoinduced ligand dissociation. The present work also shows that it is possible to stabilize sterically hindered Ru(II) complexes by the addition of another metal, a property that may be useful for other applications. PMID:25403564

  10. Crystal structure of a mixed-ligand terbium(III) coordination polymer containing oxalate and formate ligands, having a three-dimensional fcu topology.

    PubMed

    Kittipong, Chainok; Khemthong, Phailyn; Kielar, Filip; Zhou, Yan

    2016-01-01

    The title compound, poly[(μ 3-formato)(μ 4-oxalato)terbium(III)], [Tb(CHO2)(C2O4)] n , is a three-dimensional coordination polymer, and is isotypic with the La(III), Ce(III) and Sm(III) analogues. The asymmetric unit contains one Tb(III) ion, one formate anion (CHO2 (-)) and half of an oxalate anion (C2O4 (2-)), the latter being completed by application of inversion symmetry. The Tb(III) ion is nine-coordinated in a distorted tricapped trigonal-prismatic manner by two chelating carboxyl-ate groups from two C2O4 (2-) ligands, two carboxyl-ate oxygen atoms from another two C2O4 (2-) ligands and three oxygen atoms from three CHO2 (-) ligands, with the Tb-O bond lengths and the O-Tb-O bond angles ranging from 2.4165 (19) to 2.478 (3) Å and 64.53 (6) to 144.49 (4)°, respectively. The CHO2 (-) and C2O4 (2-) anions adopt μ 3-bridging and μ 4-chelating-bridging coordination modes, respectively, linking adjacent Tb(III) ions into a three-dimensional 12-connected fcu topology with point symbol (3(24).4(36).5(6)). The title compound exhibits thermal stability up to 623 K, and also displays strong green photoluminescence in the solid state at room temperature.

  11. Phenylthiolate as a sigma- and pi- donor ligand: synthesis of a 3-D organometallic coordination polymer [K2Fe(SPh)4]n.

    PubMed

    Yu, Xiao-Yan; Jin, Guo-Xin; Weng, Lin-Hong

    2004-07-01

    The synthesis and crystal structure of the first mixed-metal organometallic polymer network containing phenylthiolato ligands, [K2Fe(SPh)4]n, are investigated. The simple phenylthiolate acts as a sigma- and pi-donor ligand to give a 3-D potassium iron coordination polymer with both metal-carbon and metal-sulfur coordination interactions.

  12. Synthesis and crystal structures of ethanol-coordinated molybdenum(VI) oxo complexes with tridentate hydrazone ligands.

    PubMed

    Qian, Shao-Song; Cheng, Xiao-Shan; You, Zhong-Lu; Zhu, Hai-Liang

    2013-01-01

    Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with two similar hydrazone ligands in ethanol yielded two ethanol-coordinated mononuclear molybdenum(VI) oxo complexes with general formula [MoO2L(EtOH)], where L = L1 = (N'-(3,5-dibromo-2-hydroxybenzylidene)-4-nitrobenzohydrazide (H2L1), and L = L2 = (N'-(3,5-dibromo-2-hydroxybenzylidene)-2-fluorobenzohydrazide (H2L2). Crystal and molecular structures of the complexes were determined by single crystal X-ray diffraction method. All of the investigated compounds were further characterized by elemental analysis and FT-IR spectra. Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to the MoO2 cores through enolate oxygen, phenolate oxygen and azomethine nitrogen. The Mo atoms in both complexes are in octahedral coordination. Thermal stability of the complexes has also been studied.

  13. Co-ordination behaviour of a novel tristhiourea tripodal ligand; structural variations in a series of transition metal complexes.

    PubMed

    Saad, Fawaz A; Knight, James C; Kariuki, Benson M; Amoroso, Angelo J

    2016-06-21

    The co-ordination chemistry of a tristhiourea tris(2-pyridylmethyl)amine ligand () with a series of transition metal ions has been investigated. Crystallographic data show that large metal ions, with no geometrical preferences, such as Mn(ii) and Cd(ii), will form seven co-ordinate monocapped octahedral complexes, while smaller metal ions such as Zn(ii) favour five co-ordinate trigonal bipyramidal structures. In a similar manner to the related bisthiourea complexes, the Ni(ii) complex shows a strong preference for octahedral geometries resulting in the ligand binding asymmetrically. Spectroscopic (IR and NMR), spectrometric (MS) as well as electrochemical data for these complexes are reported. PMID:27240882

  14. Different aliphatic dicarboxylates affected assemble of new coordination polymers constructed from flexible-rigid mixed ligands

    SciTech Connect

    Xu Xinxin; Ma Ying; Wang Enbo

    2007-11-15

    In this article, seven coordination polymers: [Cd(C{sub 5}H{sub 6}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})]{sub n} (1), [Zn(C{sub 5}H{sub 6}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})]{sub n} (2), [Cd(C{sub 6}H{sub 8}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})]{sub n} (3), {l_brace}[Mn(C{sub 10}H{sub 8}N{sub 2})(H{sub 2}O){sub 4}] (C{sub 4}H{sub 4}O{sub 4}).4H{sub 2}O{r_brace}{sub n} (4), [Mn{sub 5}(C{sub 4}H{sub 4}O{sub 4}){sub 4}(O)]{sub n} (5), [Cd(C{sub 4}H{sub 4}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})(H{sub 2}O)]{sub n} (6) and [Zn(C{sub 6}H{sub 6}O{sub 4})(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)]{sub n} (7) were synthesized and characterized by single-crystallographic X-ray diffraction. Compounds 1 and 2 are two-dimensional layers connected by glutarate anions and 4,4'-bpy. Unlike compounds 1 and 2, compound 3 is a two-fold interpenetration network. Compound 4 is a one-dimensional chain-like structure, which is further extended to two-dimensional supramolecular layer structure with hydrogen bond. During the synthesis of compound 4, to our surprise, we got compound 5; compound 5 is an interesting three-dimensional network composed of pentanuclear Mn(II) building units and succinate anions. Compound 6 is also a two-dimensional supramolecular layer structure composed of one-dimensional chain-like structure with hydrogen bonds and {pi}-{pi} interactions. Compound 7 is also a one-dimensional chain-like structure, which is further connected with the same kind of interaction to generate two-dimensional supramolecular layer structure. Furthermore, compounds 1 and 2 both exhibit fluorescent property at room temperature. - Graphical abstract: Seven complexes composed by 3D metal ions, aliphatic acid ligand and rigid bidentate nitrogen ligands: 4,4'-bpy, 2,2'-bpy and 1,10'-phen. With the change of the carbon number of the backbone of aliphatic dicarboxylate ligand, we can synthesize different complexes with various structures.

  15. Electrical conductivity and luminescence properties of two silver(I) coordination polymers with heterocyclic nitrogen ligands

    SciTech Connect

    Rana, Abhinandan; Kumar Jana, Swapan; Pal, Tanusri; Puschmann, Horst; Zangrando, Ennio; Dalai, Sudipta

    2014-08-15

    The synthesis and X-ray structural characterization of two novel silver(I) coordination polymers, [Ag(NO{sub 3})(quin)]{sub n} (1) and [Ag{sub 8}(HL){sub 2}(H{sub 2}O){sub 4}(mpyz)]·3H{sub 2}O (2) are reported, where quin=5,6,7,8-tetrahydroquinoxaline, H{sub 6}L=cyclohexane-1,2,3,4,5,6-hexacarboxylic acid and mpyz=2-methyl pyrazine. The single crystal diffraction analyses showed that complex 1 is a 2D layered structure, while 2 presents a 3D polymeric architecture. In complex 2 the network is stabilized by argentophilic interactions and hydrogen bonding. Electrical conductivity of order 3×10{sup −4} Scm{sup −1} (1) and 1.6×10{sup −4} Scm{sup −1} (2) is measured on thin film specimen at room temperature. The photoluminescence and thermal properties of the complexes have also been studied. - Graphical abstract: Two new 1D and 3D coordination polymers of Ag(I) have been synthesized and characterized by X-ray analysis. The electrical, luminescence and thermal properties have been studied. - Highlights: • 1 is 2D layered while 2 present a 3D polymeric architecture. • The network in 2 is stabilized by argentophilic interactions and hydrogen bonding. • Electrical conductivity measurement is quite interesting. • Argentophilic interaction and intra-ligand π{sup ⁎}–π CT explains emission behavior of 2.

  16. Solvent-induced synthesis of cobalt(II) coordination polymers based on a rigid ligand and flexible carboxylic acid ligands: syntheses, structures and magnetic properties.

    PubMed

    Wang, Ting; Zhang, Chuanlei; Ju, Zemin; Zheng, Hegen

    2015-04-21

    Five new cobalt(ii) coordination architectures, {[Co(L)2(H2O)2]·2H2O·2NO3}n (), {[Co(L)(ppda)]·2H2O}n (), {[Co2(L)(ppda)2]2·H2O}n (), {[Co(L)(nba)]·5H2O}n (), and {[Co(L)(oba)]2·3H2O}n (), have been constructed from the rigid ligand L [L = 2,8-di(1H-imidazol-1-yl)dibenzofuran] and different flexible carboxylic acid ligands [H2ppda = 4,4'-(perfluoropropane-2,2-diyl)dibenzoic acid, H2nba = 4,4'-azanediyldibenzoic acid, and H2oba = 4,4'-oxydibenzoic acid]. Depending on the nature of the solvent systems, these five different coordination polymers were synthesized and characterized by single-crystal X-ray diffraction, IR, PXRD and elemental analysis. Compounds , and were obtained by a one-pot method, and then we utilized the solvent-induced effect to obtain almost pure crystals of , respectively. Compound is an infinite 1D chain which is formed by L ligands and Co atoms. Compound contains a [Co2(CO2)4] secondary building unit (SBU), and can be topologically represented as a 6-connected 2-fold interpenetrating pcu net with the point symbol of {4(12)·6(3)}. Compound can be characterized as a 4-connected sql tetragonal planar network with the point symbol of {4(4)·6(2)}. In compounds and , there is a 1D chain which is formed by flexible carboxylic acid ligands and Co atoms; then the 1D chain is linked by L ligands in the tilting direction, leading to the formation of a 2D layer. Furthermore, UV-vis, TGA and magnetic properties have been investigated in detail. PMID:25778448

  17. The Influence of the Second and Outer Coordination Spheres on Rh(diphosphine)2 CO2 Hydrogenation Catalysts

    SciTech Connect

    Bays, J. Timothy; Priyadarshani, Nilusha; Jeletic, Matthew S.; Hulley, Elliott; Miller, Deanna L.; Linehan, John C.; Shaw, Wendy J.

    2014-10-03

    A series of [Rh(PCH2XRCH2P)2]+ complexes were prepared to investigate second and outer coordination sphere effects on CO2 hydrogenation catalysis, where X is CH2 (dppp) or X-R is N-CH3, N-CH2COOH (glycine), N-CH2COOCH3 (Gly-OMe) or N-CH2C(O)N-CH(CH3)COOCH3 (GlyAla-OMe). All of these modified complexes were active for CO2 reduction to formate, with the N-CH3 derivative offering an eight-fold enhancement over dppp, which is consistent with decreased electron density around the phosphorous (and corresponding increase in electron density around the metal) observed in the 31P NMR spectrum. Despite the increase in rate with the addition of the pendant nitrogen, the addition of electron withdrawing amino acids and dipeptides to the amine resulted in complexes with reductions in rate of one to two orders of magnitude, most consistent with a change in pKa of the pendant amine resulting in lower activity. Collectively, the data suggests multiple contributions of the pendant amine in this catalytic system. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the DOE by Battelle. A portion of this research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  18. Syntheses and structural characterization of mercury (II) coordination polymers with neutral bidentate flexible pyrazole-based ligands

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Salavati, Hossein; Asadi, Amin; Gajda, Roman; Woźniak, Krzysztof

    2016-03-01

    Mercury(II) coordination compounds [Hg(μ-bbd)(μ-SCN)4]n(1) and [Hg(bpp)(SCN)2] (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethypyrazol-1-yl)butane (bbd) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp), NCS- ligand and appropriate mercury(II) salts. Compound 1 forms a polymeric network with moieties which are connected by SCN groups and the mercury ions present as HgN3S2 trigonal bipyramides. The crystal structure of 2 is build of monomers and the mercury(II) ion adopts an HgN2S2 tetrahedral geometry. In the complex 1, each bbd acts as bridging ligand connecting Hg(μ-SCN)4 ions, while in the complex 2, the bpp ligand is coordinated to an mercury(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Moreover, in the tetrahedral structure of 2, the neutral molecules form a 1D chain structure through the C-H···N hydrogen bonds, whereas in 1 no hydrogen bonds are observed. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction.

  19. Structural diversity in mercury(II) coordination complexes with asymmetrical hydrazone-based ligands derived from pyridine

    NASA Astrophysics Data System (ADS)

    Masoumi, Asad; Servati Gargari, Masoumeh; Mahmoudi, Ghodrat; Miroslaw, Barbara; Therrien, Bruno; Abedi, Marjan; Hazendonk, Paul

    2015-05-01

    Three novel Hg(II) complexes 1-3 of asymmetrical hydrazone-pyridine based ligands, L1-L3, with distinct coordination structures have been prepared and characterized by a single crystal X-ray diffraction, elemental and thermal analysis, and IR spectroscopy. The complexes form either discrete units with one (1) or two (2) organic ligands, or one-dimensional polymers (3). Hence the ligands can be regarded as chelating (1), mono-dentate (2) or bridging (3) agents. The mercury center is essentially neutralized in each complex by two iodide anions. The coordination in complexes 2 and 3 adopts deformed tetrahedral shapes. In contrast the Hg(II) cation in complex 1 binds three coplanar ligating atoms (O,N,N) and, as with pincer ligands, its coordination polyhedron is supplemented with two I- anions in apical positions. The structural diversity in these complexes is strongly influenced by the position of N atom in pyridine derived moieties. The crystal structure is stabilized by N/O-H⋯N/O/I hydrogen bonds and π⋯π interactions.

  20. Investigating the effect of flexible ligands on the crystal engineering of the iron(II) coordination compounds

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Amiri Rudbari, Hadi

    2013-11-01

    Iron(II) coordination compounds [Fe(bib)2(NCS)2]n(1) and [Fe(bpp)(NCS)2] (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp), mono-anionic NCS- ligand and appropriate iron(II) salts. In the CdSO4 network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while, in the monomeric structure of 2, the iron(II) ion adopts an FeN4 tetrahedral geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to an iron(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied. An attempt to synthesize [Fe(bbd)(NCS)2] (3) (bbd = 1,4-bis(3,5-dimethylpyrazolyl)butane) with the reaction of bbd, Fe(NH4)2(SO4)2·6H2O and KNCS was failed.

  1. Investigating the Role of the Outer-Coordination Sphere in [Ni(PPh2NPh-R2)2]2+ Hydrogenase Mimics

    SciTech Connect

    Jain, Avijita; Reback, Matthew L.; Lindstrom, Mary L.; Thogerson, Colleen E.; Helm, Monte L.; Appel, Aaron M.; Shaw, Wendy J.

    2012-06-18

    A series of dipeptide nickel complexes with the general formula, [Ni(PPh2NNNA-amino acid/ester2)2](BF4)2, have been synthesized and characterized (P2N2= 1,5-diaza-3,7-diphosphacyclooctane, amino acid/esters = glutamic acid, alanine, lysine, and aspartic acid). Each of these complexes is an efficient electrocatalyst for H2 production. The contribution of the outer-coordination sphere, specifically the impact of sterics, the ability to protonate and the pKa of amino acid side chain on the hydrogen production activity of these complexes, was investigated. The rates of all of the catalysts ranged over an order of magnitude. The amino acid containing complexes display 2-3 times higher rates of hydrogen production than the corresponding ester complexes, suggesting the significance of protonated species (side chains/backbone of amino acids) in the outer-coordination sphere. The largest had the fastest rates suggesting that catalytic activity is not hindered by sterics. However, the shapes of catalytic waves are indicative of hindered electron transfer and may suggest a competing mechanism for catalysis than that observed for the unsubstituted parent complex. These studies demonstrate the significant contribution that the outer-coordination sphere can have in tuning the catalytic activity of small molecule hydrogenase mimics.

  2. Bismuth Coordination Chemistry with Allyl, Alkoxide, Aryloxide, and Tetraphenylborate Ligands and the {[2,6-(Me2NCH2)2C6H3]2Bi}+ Cation

    SciTech Connect

    Ian J. Casely; Joseph W. Ziller; Bruce J. Mincher; William J. Evans

    2011-02-01

    A series of bis(aryl) bismuth compounds containing (N,C,N)-pincer ligands, [2,6-(Me2NCH2)2C6H3]1- (Ar'), have been synthesized and structurally characterized to compare the coordination chemistry of Bi3+ with similarly-sized lanthanide ions, Ln3+. Treatment of Ar'2BiCl, 1, with ClMg(CH2CH=CH2) affords the allyl complex Ar'2Bi(?1-CH2CH=CH2), 2, in which only one carbon coordinates to bismuth. Complex 1 reacts with KOtBu and KOC6H3-2,6-Me2 to yield the alkoxide Ar'2Bi(OtBu), 3, and aryloxide Ar'2Bi(OC6H3-2,6-Me2), 4, respectively, but the analogous reaction with the sterically crowded KOC6H3-2,6-tBu2 forms [Ar'2Bi][OC6H3-2,6-tBu2], 6, in which the aryloxide ligand acts as an outer sphere anion. Chloride is removed from 1 by NaBPh4 to form [Ar'2Bi][BPh4], 5, which crystallizes from THF in an unsolvated form with tetraphenylborate as an outer sphere counteranion.

  3. One- and two-dimensional Cd(II) coordination polymers incorporating organophosphinate ligands.

    PubMed

    Rood, Jeffrey A; Boyer, Steven; Oliver, Allen G

    2014-11-01

    Reaction of cadmium nitrate with diphenylphosphinic acid in dimethylformamide solvent yielded the one-dimensional coordination polymer catena-poly[[bis(dimethylformamide-κO)cadmium(II)]-bis(μ-diphenylphosphinato-κ(2)O:O')], [Cd(C12H10O2P)2(C3H7NO)2]n, (I). Addition of 4,4'-bipyridine to the synthesis afforded a two-dimensional extended structure, poly[[(μ-4,4'-bipyridine-κ(2)N:N')bis(μ-diphenylphosphinato-κ(2)O:O')cadmium(II)] dimethylformamide monosolvate], {[Cd(C12H10O2P)2(C10H8N2)]·C3H7NO}n, (II). In (II), the 4,4'-bipyridine molecules link the Cd(II) centers in the crystallographic a direction, while the phosphinate ligands link the Cd(II) centers in the crystallographic b direction to complete a two-dimensional sheet structure. Consideration of additional π-π interactions of the phenyl rings in (II) produces a three-dimensional structure with channels that encapsulate dimethylformamide molecules as solvent of crystallization. Both compounds were characterized by single-crystal X-ray diffraction and FT-IR analysis.

  4. Three coordination polymers based on different carboxylates, metals and a tri(4-imidazolylphenyl)amine ligand

    NASA Astrophysics Data System (ADS)

    Wu, Hua; Shi, Chenjie; Zhao, Yanqing; Jiang, Yutong; Tao, Yuehong

    2015-04-01

    In this paper, three new coordination complexes based on a flexible tri(4-imidazolylphenyl)amine (Tipa) ligand, namely [Co(Tipa)(L1)2]·H2O (1), [Zn2(Tipa)(L1)4(H2O)]·2H2O (2) and [Mn(Tipa)(L2)]·2H2O (3), where HL1 = benzoic acid H2L2 = 5-OH-1,3-benzenedicarboxylic acid and Tipa = tri(4-imidazolylphenyl)amine, have been synthesized under the hydrothermal condition and characterized by single-crystal X-ray diffraction, elemental analysis and IR spectra. Compound 1 exhibits a 1D ladder chain with the benzoic anions hanging on the two sides of the chain. For compound 2, it shows a fascinating 1D zigzag chain. Compound 3 displays (3,5)-connected (42·6)(42·67·8) topology, where the identical 2D networks entangle in highly rare parallel fashions to give a fascinating 2D → 3D framework with polycatenation and polyrotaxane characters. Moreover, the photoluminescent properties for the compounds 2 and 3 were also investigated.

  5. Dual-Emission Luminescence of Magnesium Coordination Polymers Based on Mixed Organic Ligands.

    PubMed

    Wu, Zhao-Feng; Tan, Bin; Deng, Zhong-Hua; Xie, Zai-Lai; Fu, Jing-Jing; Shen, Nan-Nan; Huang, Xiao-Ying

    2016-01-22

    Presented herein are two luminescent magnesium coordination polymers (Mg-CPs), namely [Mg2 (H2O)2 (2-NDC)4 (1,10-phen)2] (1) and [Mg2 (H2O)(1,4-NDC)2 (1,10-phen)] (2), in which 2-NDCH=2-naphthalenecarboxylic acid, 1,4-NDCH2 =1,4-naphthalene dicarboxylic acid, and 1,10-phen=1,10-phenanthroline. Based on the mixed ligands, the title compounds exhibit linker-based photoluminescence (PL) properties thanks to the unique configuration of the Mg(2+) ions. The two compounds show interesting dual emission on excitation of the different luminophores of the mixed linkers. In particular, the emissions of compound 2 could be tuned from green to yellow simply by varying the excitation energies. Furthermore, 2 could be excited by using a commercial λ=450 nm blue LED chip to generate white-light emission, which allows the fabrication of a white-light-emitting diode (WLED) with 20 lm W(-1) luminous efficacy. This work may provide a new method for designing tunable PL CPs by using the low-cost and abundant magnesium ion. PMID:26661529

  6. Stabilization of coordinatively unsaturated Ir4 clusters with bulky ligands: a comparative study of chemical and mechanical effects.

    PubMed

    Okrut, Alexander; Gazit, Oz; de Silva, Namal; Nichiporuk, Rita; Solovyov, Andrew; Katz, Alexander

    2012-02-21

    The synthesis and characterization of new cluster compounds represented by the series Ir(4)(CO)(12-x)L(x) (L = tert-butyl-calix[4]-arene(OPr)(3)(OCH(2)PPh(2)); x = 2 and 3) is reported using ESI mass spectrometry, NMR spectroscopy, IR spectroscopy and single-crystal X-ray diffraction. Thermally driven decarbonylation of the cluster compound series represented by x = 1-3 according to the formula above is followed via FTIR and NMR spectroscopies, and dynamic light scattering in toluene solution. The propensity of these clusters to decarbonylate in solution is shown to be directly correlated with number density of adsorbed calixarene phosphine ligands and controlled via Pauli repulsion between metal d and CO 5σ orbitals. The tendency for cluster aggregation unintuitively follows a trend that is exactly opposite to the cluster's propensity to decarbonylate. No cluster aggregation is observed for clusters consisting of x = 3, even after extensive decarbonylation via loss of all bridging CO ligands and coordinative unsaturation. Some of the CO lost during thermal treatment via decarbonylation can be rebound to the coordinatively unsaturated cluster consisting of x = 3. In contrast, the clusters consisting of x = 1 and x = 2 both aggregate into large nanoparticles when treated under identical conditions. Clusters in which the calixarene phosphine ligand is replaced with a sterically less demanding PPh(2)Me ligand 6 lead to significantly less coordinative unsaturation upon thermal treatment. Altogether, these data support a mechanical model of accessibility in coordinatively unsaturated metal clusters in solution, which hinges on having at least three sterically bulky organic ligands per Ir(4) core.

  7. Crystal structure of a mixed-ligand terbium(III) coordination polymer containing oxalate and formate ligands, having a three-dimensional fcu topology

    PubMed Central

    Kittipong, Chainok; Khemthong, Phailyn; Kielar, Filip; Zhou, Yan

    2016-01-01

    The title compound, poly[(μ 3-formato)(μ 4-oxalato)terbium(III)], [Tb(CHO2)(C2O4)]n, is a three-dimensional coordination polymer, and is isotypic with the LaIII, CeIII and SmIII analogues. The asymmetric unit contains one TbIII ion, one formate anion (CHO2 −) and half of an oxalate anion (C2O4 2−), the latter being completed by application of inversion symmetry. The TbIII ion is nine-coordinated in a distorted tricapped trigonal–prismatic manner by two chelating carboxyl­ate groups from two C2O4 2− ligands, two carboxyl­ate oxygen atoms from another two C2O4 2− ligands and three oxygen atoms from three CHO2 − ligands, with the Tb—O bond lengths and the O—Tb—O bond angles ranging from 2.4165 (19) to 2.478 (3) Å and 64.53 (6) to 144.49 (4)°, respectively. The CHO2 − and C2O4 2− anions adopt μ 3-bridging and μ 4-chelating-bridging coordination modes, respectively, linking adjacent TbIII ions into a three-dimensional 12-connected fcu topology with point symbol (324.436.56). The title compound exhibits thermal stability up to 623 K, and also displays strong green photoluminescence in the solid state at room temperature. PMID:26870593

  8. One- and two-dimensional divalent copper coordination polymers based on kinked organodiimine and long flexible aliphatic dicarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Mallika Krishnan, Subhashree; Supkowski, Ronald M.; LaDuca, Robert L.

    2008-11-01

    Hydrothermal synthesis under acidic conditions has afforded a pair of divalent copper coordination polymers containing the kinked dipodal tethering organodiimine 4,4'-dipyridylamine (dpa) and flexible long-chain aliphatic dicarboxylate ligands. The new materials were characterized by single crystal X-ray structure determination, infrared spectroscopy, and thermogravimetric analysis. [CuCl(suberate) 0.5(dpa)] ( 1) manifests 1-D ladder-like motifs aggregated into 3-D through hydrogen bonding and copper-mediated supramolecular interactions. Extension of the aliphatic chain within the dicarboxylate ligand by one methylene unit resulted in {[Cu(azelate)(dpa)(H 2O)] · 3H 2O} ( 2), a (4,4) rhomboid grid 2-D coordination polymer encapsulating acyclic water molecule trimers.

  9. Distinction between coordination and phosphine ligand oxidation: interactions of di- and triphosphines with Pn(3+) (Pn = P, As, Sb, Bi).

    PubMed

    Chitnis, Saurabh S; Vos, Kevin A; Burford, Neil; McDonald, Robert; Ferguson, Michael J

    2016-01-14

    Reactions of polydentate phosphines with sources of Pn(3+) (Pn = P, As, Sb, Bi) yield complexes of Pn(1+) (Pn = P, As) or Pn(3+) (Pn = Sb, Bi) acceptors. The distinction between coordination of a phosphine center to Pn and oxidation of a phosphine ligand is dependent on Pn. The first structurally verified triphosphine complexes of Sb(III) and Bi(III) acceptors are reported.

  10. Restraining the motion of a ligand for modulating the structural phase transition in two isomorphic polar coordination polymers.

    PubMed

    Wang, Bao-Ying; Xu, Wei-Jian; Xue, Wei; Lin, Rui-Biao; Du, Zi-Yi; Zhou, Dong-Dong; Zhang, Wei-Xiong; Chen, Xiao-Ming

    2014-06-28

    A structural phase transition induced by ligand motion was found in a new polar coordination polymer: [Cu(NCS)2(4-APy)2]n (4-APy = 4-aminopyridine). Restraining such motion in an isomorphic compound [Cu(NCS)2(4-MeAPy)2]n (4-MeAPy = 4-methylaminopyridine) results in distinct phase transition behaviour. These findings provide a new clue for modulating phase transition behaviour in known materials.

  11. Access to novel fluorovinylidene ligands via exploitation of outer-sphere electrophilic fluorination: new insights into C-F bond formation and activation.

    PubMed

    Milner, Lucy M; Hall, Lewis M; Pridmore, Natalie E; Skeats, Matthew K; Whitwood, Adrian C; Lynam, Jason M; Slattery, John M

    2016-01-28

    Metal vinylidene complexes are widely encountered, or postulated, as intermediates in a range of important metal-mediated transformations of alkynes. However, fluorovinylidene complexes have rarely been described and their reactivity is largely unexplored. By making use of the novel outer-sphere electrophilic fluorination (OSEF) strategy we have developed a rapid, robust and convenient method for the preparation of fluorovinylidene and trifluoromethylvinylidene ruthenium complexes from non-fluorinated alkynes. Spectroscopic investigations (NMR and UV/Vis), coupled with TD-DFT studies, show that fluorine incorporation results in significant changes to the electronic structure of the vinylidene ligand. The reactivity of fluorovinylidene complexes shows many similarities to non-fluorinated analogues, but also some interesting differences, including a propensity to undergo unexpected C-F bond cleavage reactions. Heating fluorovinylidene complex [Ru(η(5)-C5H5)(PPh3)2(C[double bond, length as m-dash]C{F}R)][BF4] led to C-H activation of a PPh3 ligand to form an orthometallated fluorovinylphosphonium ligand. Reaction with pyridine led to nucleophilic attack at the metal-bound carbon atom of the vinylidene to form a vinyl pyridinium species, which undergoes both C-H and C-F activation to give a novel pyridylidene complex. Addition of water, in the presence of chloride, leads to anti-Markovnikov hydration of a fluorovinylidene complex to form an α-fluoroaldehyde, which slowly rearranges to its acyl fluoride isomer. Therefore, fluorovinylidenes ligands may be viewed as synthetic equivalents of 1-fluoroalkynes providing access to reactivity not possible by other routes. PMID:26701305

  12. Access to novel fluorovinylidene ligands via exploitation of outer-sphere electrophilic fluorination: new insights into C-F bond formation and activation.

    PubMed

    Milner, Lucy M; Hall, Lewis M; Pridmore, Natalie E; Skeats, Matthew K; Whitwood, Adrian C; Lynam, Jason M; Slattery, John M

    2016-01-28

    Metal vinylidene complexes are widely encountered, or postulated, as intermediates in a range of important metal-mediated transformations of alkynes. However, fluorovinylidene complexes have rarely been described and their reactivity is largely unexplored. By making use of the novel outer-sphere electrophilic fluorination (OSEF) strategy we have developed a rapid, robust and convenient method for the preparation of fluorovinylidene and trifluoromethylvinylidene ruthenium complexes from non-fluorinated alkynes. Spectroscopic investigations (NMR and UV/Vis), coupled with TD-DFT studies, show that fluorine incorporation results in significant changes to the electronic structure of the vinylidene ligand. The reactivity of fluorovinylidene complexes shows many similarities to non-fluorinated analogues, but also some interesting differences, including a propensity to undergo unexpected C-F bond cleavage reactions. Heating fluorovinylidene complex [Ru(η(5)-C5H5)(PPh3)2(C[double bond, length as m-dash]C{F}R)][BF4] led to C-H activation of a PPh3 ligand to form an orthometallated fluorovinylphosphonium ligand. Reaction with pyridine led to nucleophilic attack at the metal-bound carbon atom of the vinylidene to form a vinyl pyridinium species, which undergoes both C-H and C-F activation to give a novel pyridylidene complex. Addition of water, in the presence of chloride, leads to anti-Markovnikov hydration of a fluorovinylidene complex to form an α-fluoroaldehyde, which slowly rearranges to its acyl fluoride isomer. Therefore, fluorovinylidenes ligands may be viewed as synthetic equivalents of 1-fluoroalkynes providing access to reactivity not possible by other routes.

  13. Holodirected coordination sphere around lead(II) in three-dimensional polymeric structure; New precursor for preparation of lead oxide sulfate nano-structures

    NASA Astrophysics Data System (ADS)

    Akhbari, Kamran; Beheshti, Saeideh; Morsali, Ali; Yilmaz, Veysel T.; Büyükgüngör, Orhan

    2014-09-01

    A new lead(II) three-dimensional coordination polymer, [Pb2(μ3-ANS)2(μ2-Cl)2(H2O)2]n (1) [ANS- = 4-amino-1-naphthalenesulfonate], has been synthesized and characterized. The single-crystal X-ray data of compound 1 shows only one type of PbII ion with coordination number of six, the lead atom has distorted octahedral coordination sphere containing stereo-chemically inactive electron lone pair. The thermal stability of 1 was studied by TG-DTA (Thermo gravimetric and differential thermal analyses). Regular morphology of Pb2(SO4)O nano-particle was prepared from fine powders of compound 1 by calcination process at 700 °C. This nano-structure was characterized by XRD (X-ray powder diffraction) and SEM (Scanning electron microscopy).

  14. Two Zn(II) coordination complexes assembled by trithiocyanuric acid and two different N-donor auxiliary ligands.

    PubMed

    He, Xiao Xiao; Guo, Ya Mei

    2014-08-01

    The dipyridyl-type building blocks 4-amino-3,5-bis(pyridin-3-yl)-1,2,4-triazole (3-bpt) and 4,4'-bipyridine (bpy) have been used to assemble with Zn(II) in the presence of trithiocyanuric acid (ttcH3) to afford two coordination compounds, namely bis[4-amino-3,5-bis(pyridin-3-yl)-1,2,4-triazole-κN(3)]bis(trithiocyanurato-κ(2)N,S)zinc(II), [Zn(C3H2N3S3)2(C12H10N6)2]·2H2O, (1), and catena-poly[[[bis(trithiocyanurato-κ(2)N,S)zinc(II)]-μ-4,4'-bipyridine-κ(2)N:N'] 4,4'-bipyridine monosolvate], {[Zn2(C3H2N3S3)4(C10H8N2)3]·C10H8N2}n, (2). Single-crystal X-ray analysis indicates that complex (1) is a mononuclear structure, while complex (2) presents a one-dimensional chain coordination motif. In both complexes, the central Zn(II) cation adopts an octahedral geometry, coordinated by four N- and two S-donor atoms. Notably, trithiocyanurate (ttcH2(-)) adopts the same bidentate chelating coordination mode in each complex and exists in the thione tautomeric form. The 3-bpt co-ligand in (1) adopts a monodentate coordination mode and serves as a terminal pendant ligand, whereas the 4,4'-bipyridine (bpy) ligand in (2) adopts a bidentate-bridging coordination mode. The different coordination characters of the different N-donor auxiliary ligands lead to structural diversity for complexes (1) and (2). Further analysis indicates that the resultant three-dimensional supramolecular networks for (1) and (2) arise through intermolecular N-H...S and N-H...N hydrogen bonds. Both complexes have been further characterized by FT-IR spectroscopy and elemental analyses.

  15. Synthesis and Reactivity of Low-Coordinate Titanium Synthons Supported by a Reduced Redox-Active Ligand.

    PubMed

    Clark, Kensha Marie

    2016-07-01

    To further explore the reactivity and redox capability of the bis-arylimino acenaphthylene ligand (BIAN) in early transition metal complexes, the coordinatively unsaturated titanium synthons, [(dpp-BAAN)Ti(R)2] ([dpp-BAAN](2-) = N,N'-bis(2,6-diisopropylphenylamido)acenaphthylene and R = O(t)Bu (2) or CH2C(CH3)3 (3)), in which the BAAN ligand is reduced by two electrons, were isolated in good yields via sterically induced radical elimination reactions. Addition of p-tolyl azide to complex 3 initiated reductive elimination of the neopentyl ligands to generate a putative imido species. The imido species was trapped by a second oxidative addition of chloride ligands to yield the titanium imido complex, [(dpp-BIAN)Ti[═N(4-C6H4Me)]Cl2 (4). These reactions demonstrate that the BAAN ligand can provide redox equivalents for enhanced reactivity that includes oxidative addition and reductive elimination at d(0) metal centers. PMID:27304996

  16. Synthesis and Reactivity of Low-Coordinate Titanium Synthons Supported by a Reduced Redox-Active Ligand.

    PubMed

    Clark, Kensha Marie

    2016-07-01

    To further explore the reactivity and redox capability of the bis-arylimino acenaphthylene ligand (BIAN) in early transition metal complexes, the coordinatively unsaturated titanium synthons, [(dpp-BAAN)Ti(R)2] ([dpp-BAAN](2-) = N,N'-bis(2,6-diisopropylphenylamido)acenaphthylene and R = O(t)Bu (2) or CH2C(CH3)3 (3)), in which the BAAN ligand is reduced by two electrons, were isolated in good yields via sterically induced radical elimination reactions. Addition of p-tolyl azide to complex 3 initiated reductive elimination of the neopentyl ligands to generate a putative imido species. The imido species was trapped by a second oxidative addition of chloride ligands to yield the titanium imido complex, [(dpp-BIAN)Ti[═N(4-C6H4Me)]Cl2 (4). These reactions demonstrate that the BAAN ligand can provide redox equivalents for enhanced reactivity that includes oxidative addition and reductive elimination at d(0) metal centers.

  17. Spectroscopic techniques and cyclic voltammetry with synthesis: Manganese(II) coordination stability and its ligand field parameters effect on macrocyclic ligands

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chandra, Sulekh

    2007-05-01

    Manganese(II) macrocyclic complexes are prepared with different macrocyclic ligands, containing cyclic skeleton bearing organic components which have different chromospheres like N, O and S donor atoms and stereochemistry. Thus, six macrocyclic ligands, were prepared and their capacity to retain the manganese(II) ion in solid as well as in aqueous solution was determined and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic spectral and cyclic voltammetric studies. The electronic spectrum of this system showed a dependence that may be consistent with the formation of stable complexes and coordination behaviour of the ions. ESR spectra of all the complexes are recorded in solid as well as solution, which show the oxidation state of the manganese(II). Spin Hamiltonian manganese(II), which can be defined as the magnetic field vector (ℋ): ℋ=gβHS+DSz2-{35}/{12}+E[Sz2-Sy2]+ASI+ 1/6 a Sx4+Sy4+Sz4-{707}/{16}+ 1/180 F{35Sz2-475}/{2Sz2+3255/10} Significant distortion of the manganese(II) ion in observed geometry is evident from the angle subtended by the different membered chelate rings and the angles spanned by trans donor atoms octahedral geometry. Cyclic voltammetric studies indicate that complexes with all ligands undergoes one electron oxidation from manganese(II) to manganese(III) followed by a further oxidation to manganese(IV) at a significantly more positive potential.

  18. Catalytic dioxygen activation by Co(II) complexes employing a coordinatively versatile ligand scaffold.

    PubMed

    Sharma, Savita K; May, Philip S; Jones, Matthew B; Lense, Sheri; Hardcastle, Kenneth I; MacBeth, Cora E

    2011-02-14

    The ligand bis(2-isobutyrylamidophenyl)amine has been prepared and used to stabilize both mononuclear and dinuclear cobalt(II) complexes. The nuclearity of the cobalt product is regulated by the deprotonation state of the ligand. Both complexes catalytically oxidize triphenylphosphine to triphenylphosphine oxide in the presence of O(2).

  19. Driving Oxygen Coordinated Ligand Exchange at Nanocrystal Surfaces using Trialkylsilylated Chalcogenides

    SciTech Connect

    Caldwell, Marissa A.; Albers, Aaron E.; Levy, Seth C.; Pick, Teresa E.; Cohen, Bruce E.; Helms, Brett A.; Milliron, Delia J.

    2010-11-11

    A general, efficient method is demonstrated for exchanging native oxyanionic ligands on inorganic nanocrystals with functional trimethylsilylated (TMS) chalcogenido ligands. In addition, newly synthesized TMS mixed chalcogenides leverage preferential reactivity of TMS-S bonds over TMS-O bonds, enabling efficient transfer of luminescent nanocrystals into aqueous media with retention of their optical properties.

  20. Synthesis, molecular and crystal structure of bis(triethanolamine)manganese(II) saccharinate: a seven-coordinate manganese complex with tri- and tetradentate triethanolamine ligands

    NASA Astrophysics Data System (ADS)

    Topcu, Yildiray; Andac, Omer; Yilmaz, Veysel T.; Harrison, William T. A.

    2002-06-01

    The synthesis, molecular and crystal structure of bis(triethanolamine)Mn(II) saccharinate, [Mn(tea) 2](sac) 2 are reported. The configuration of the tea ligands results in an unusual example of coordination number seven for the Mn(II) ion. The two triethanolamine (tea) ligands coordinate to the Mn(II) ion forming a monocapped trigonal prism geometry, in which one of the tea ligands behaves as a tridentate ligand, while the other one acts as a tetradentate donor. The free and coordinated hydroxyl hydrogens of the tea ligands are involved in hydrogen bonding with the amine nitrogen, carbonyl and sulfonyl oxygens of the neighbouring sac ions to form a three-dimensional infinite network. A weak π-π interaction between the phenyl rings of the sac ions also occurs.

  1. Rare configuration of tautomeric benzimidazolecarboxylate ligands in cadmium(II) and copper(II) coordination polymers

    SciTech Connect

    Wu, Jing-Yun; Yang, Ciao-Wei; Chen, Hui-Fang; Jao, Yu-Chen; Huang, Sheng-Ming; Tsai, Chiitang; Tseng, Tien-Wen; Lee, Gene-Hsiang; Peng, Shie-Ming; Lu, Kuang-Lieh

    2011-07-15

    Two Cd(HBimc)-based isomers, [Cd(HBimc{sup N})(HBimc{sup T})(H{sub 2}O)].3.5H{sub 2}O.EtOH (1a.3.5H{sub 2}O.EtOH, H{sub 2}Bimc=1H-benzimidazole-5-carboxylic acid) and [Cd(HBimc{sup N})(HBimc{sup T})(H{sub 2}O)] (1b), and two Cu(HMBimc)-based coordination polymers, [Cu(HMBimc{sup N}){sub 2}(H{sub 2}O)].1/2H{sub 2}O (2.1/2H{sub 2}O, H{sub 2}MBimc=2-methyl-1H-benzimidazole-5-carboxylic acid) and [Cu(HMBimc{sup T}){sub 2}].2THF.H{sub 2}O (3.2THF.H{sub 2}O), were self-assembled from Cd(ClO{sub 4}){sub 2}.6H{sub 2}O/H{sub 2}Bimc and Cu(ClO{sub 4}){sub 2}.6H{sub 2}O/H{sub 2}MBimc systems, respectively. Compound 1a adopts a ladder-like chain structure, comprised of a hydrogen-bond-stabilized Cd{sub 2}(HBimc{sup N}){sub 2}-metallocyclic stair and a 1D straight -(Cd-HBimc{sup T}){sub n}- edge, whereas compound 1b exhibits a 2D (4,4)-rhombus layered structure, intercrossed by 1D -(Cd-HBimc{sup N}){sub n}- chains and -(Cd-HBimc{sup T}){sub n}- chains. Compound 2 shows a 1D double-stranded wave-like chain from two single-stranded wave-like -(Cu-HMBimc{sup N}){sub n}- chains and compound 3 adopts a 2D (4,4)-topological layer structure, intercrossed by subunits of 1D -(Cu-HMBimc{sup T}){sub n}- chains. Interestingly, a pair of tautomeric HBimc building blocks-normal (N or HBimc{sup N}) and tautomer (T or HBimc{sup T})-is simultaneously included in the structures of 1a and 1b, whilst the N- and T-configured HMBimc building blocks are present as separate entities in Cu species, 2 and 3, respectively. The existence of only a tautomer (T) mode of the benzimidazolecarboxylate-based ligand in a Cu(II) network is observed for the first time. - Graphical abstract: A pair of tautomeric HBimc building blocks (normal (N) and tautomer (T)) is found simultaneously in two Cd(II) networks, whereas, the normal and tautomer modes of HMBimc are present as separate entities in two Cu(II) frameworks. The isolation of a Cu(II) network with only a tautomer (T) mode of the benzimidazolecarboxylate

  2. Five- to Six-Coordination in (Nitrosyl)iron(II) Porphyrinates: Effects of Binding the Sixth Ligand.

    PubMed Central

    Wyllie, Graeme R. A.; Schulz, Charles E.; Scheidt, W. Robert

    2007-01-01

    We report structural and spectroscopic data for a series of six-coordinate (nitrosyl)iron(II) porphyrinates. The structures of three tetraphenylporphyrin complexes [Fe(TPP)-(NO)(L)], where L = 4-dimethylaminopyridine, 1-methylimidazole and 4-methylpiperidine, are reported here to a high degree of precision and allow observation of several previously unobserved structural features. The tight range of bonding parameters for the {FeNO} moiety for these three complexes suggests a canonical representation for six-coordinate systems (Fe–Np = 2.007 Å, Fe–N(NO) = 1.753 Å, ∠FeNO = 138.5°). Comparison of this data with that obtained previously for five-coordinate systems allows the precise determination of the structural effects of binding a sixth ligand. These include lengthening of the Fe–N(NO) bond and a decrease in the Fe–N–O angle. Several other aspects of the geometry of these systems are also discussed including the first examples of off-axis tilting of a nitrosyl ligand in a six-coordinate {FeNO}7 heme system. We also report the first examples of Mössbauer studies for these complexes. Measurements have been made in several applied magnetic fields as well as in zero field. The spectra differ from their five-coordinate analogues. In order to obtain reasonable fits to applied magnetic field data, rotation of the electrical field gradient is required, consistent with differing g-tensor orientations in the five- vs. six-coordinate species. PMID:12950223

  3. The Role of a Dipeptide Outer-Coordination Sphere on H2 -Production Catalysts: Influence on Catalytic Rates and Electron Transfer

    SciTech Connect

    Reback, Matthew L.; Ginovska-Pangovska, Bojana; Ho, Ming-Hsun; Jain, Avijita; Squier, Thomas C.; Raugei, Simone; Roberts, John A.; Shaw, Wendy J.

    2013-02-04

    The outer-coordination sphere of enzymes acts to fine-tune the active site reactivity and control catalytic rates, suggesting that incorporation of analogous structural elements into molecular catalysts may be necessary to achieve rates comparable to those observed in enzyme systems at low overpotentials. In this work, we evaluate the effect of an amino acid and dipeptide outer-coordination sphere on [Ni(PPh2NPh-R2)2]2+ hydrogen production catalysts. A series of 12 new complexes containing non-natural amino acids or dipeptides were prepared to test the effects of positioning, size, polarity and aromaticity on catalytic activity. The non-natural amino acid was either 3-(meta- or para-aminophenyl)propionic acid terminated as an acid, an ester or an amide. Dipeptides consisted of one of the non-natural amino acids coupled to one of four amino acid esters: alanine, serine, phenylalanine or tyrosine. All of the catalysts are active for hydrogen production, with rates averaging ~1000 s-1, 40% faster than the unmodified catalyst. Structure and polarity of the aliphatic or aromatic side chains of the C-terminal peptide do not strongly influence rates. However, the presence of an amide bond increases rates, suggesting a role for the amide in assisting catalysis. Overpotentials were lower with substituents at the N-phenyl meta position. This is consistent with slower electron transfer in the less compact, para-substituted complexes, as shown in digital simulations of catalyst cyclic voltammograms and computational modeling of the complexes. Combining the current results with insights from previous results, we propose a mechanism for the role of the amino acid and dipeptide based outer-coordination sphere in molecular hydrogen production catalysts.

  4. Photo- and thermochromic and adsorption properties of porous coordination polymers based on bipyridinium carboxylate ligands.

    PubMed

    Toma, Oksana; Mercier, Nicolas; Allain, Magali; Kassiba, Abdel Adi; Bellat, Jean-Pierre; Weber, Guy; Bezverkhyy, Igor

    2015-09-21

    The zwitterionic bipyridinium carboxylate ligand 1-(4-carboxyphenyl)-4,4'-bipyridinium (hpc1) in the presence of 1,4-benzenedicarboxylate anions (BDC(2-)) and Zn(2+) ions affords three porous coordination polymers (PCPs): [Zn5(hpc1)2(BDC)4(HCO2)2]·2DMF·EtOH·H2O (1), [Zn3(hpc1)(BDC)2(HCO2)(OH)(H2O)]·DMF·EtOH·H2O (2), and [Zn10(hpc1)4(BDC)7(HCO2)2(OH)4(EtOH)2]·3DMF·3H2O (3), with the formate anions resulting from the in situ decomposition of dimethylformamide (DMF) solvent molecules. 1 and 3 are photo- and thermochromic, turning dark green as a result of the formation of bipyridinium radicals, as shown by electron paramagnetic resonance measurements. Particularly, crystals of 3 are very photosensitive, giving an eye-detectable color change upon exposure to the light of the microscope in air within 1-2 min. A very nice and interesting feature is the regular discoloration of crystals from the "edge" to the "core" upon exposition to O2 (reoxidation of organic radicals) due to the diffusion of O2 inside the pores, with this discoloration being slower in an oxygen-poor atmosphere. The formation of organic radicals is explained by an electron transfer from the oxygen atoms of the carboxylate groups to pyridinium cycles. In the structure of 3', [Zn10(hpc1)4(BDC)7(OH)6(H2O)2], resulting from the heating of sample 3 (desolvation and loss of CO molecules due to the decomposition of formate anions), no suitable donor-acceptor interaction is present, and as a consequence, this compound does not exhibit any chromic properties. The presence of permanent porosity in desolvated 1, 2, and 3' is confirmed by methanol adsorption at 25 °C with the adsorbed amount reaching 5 wt % for 1, 10 wt % for 3', and 13 wt % for 2. The incomplete desorption of methanol at 25 °C under vacuum points to strong host-guest interactions. PMID:26370743

  5. Cu{sup II} coordination polymers based on 5-methoxyisophthalate and flexible N-donor ligands: Structures and magnetic properties

    SciTech Connect

    Chang, Xin-Hong; Qin, Jian-Hua; Ma, Lu-Fang; Wang, Li-Ya

    2014-04-01

    Three Cu{sup II} coordination polymers, ([Cu{sub 2}(CH{sub 3}O-ip){sub 2}(bmib)]){sub n} (1), ([Cu{sub 2}(CH{sub 3}O-ip){sub 2}(bmib){sub 2}]){sub n} (2) and ([Cu(CH{sub 3}O-ip)(bbip)]∙2H{sub 2}O){sub n} (3) (CH{sub 3}O-H{sub 2}ip is 5-methoxyisophthalic acid, bmib is 1,4-bis(2-methylimidazol-1-yl)butane and bbip is 1,3-bis(1H-benzimidazolyl)propane), have been synthesized by hydrothermal methods. Complexes 1–3 were structurally characterized by elemental analysis, infrared (IR) spectra and X-ray single-crystal diffraction. Complex 1 shows a 3D six-connected self-penetrating network based on paddlewheel secondary building units. Complex 2 has a 3-fold interpenetrating 3D diamond framework. Complex 3 possesses a 1D tube-like chain. Thermo-gravimetric and magnetic properties of 1–3 were also investigated. - Graphical abstract: Structures and magnetic properties of copper(II) coordination polymers constructed from 5-methoxyisophthalate linker and two flexible N-donor ancillary ligands. Three copper(II) coordination polymers with 5-methoxyisophthalate and two related flexible N-donor ancillary ligands have been synthesized and structurally characterized. Moreover, thermal behaviors and magnetic properties of these complexes have also been investigated. - Highlights: • Three Cu(II) coordination polymers were synthesized. • The conformations of N-donor ligands and pH value have an effect on the final structures. • The magnetic properties of 1–3 have been investigated.

  6. Structural diversification and photocatalytic properties of three Cd(II) coordination polymers decorated with different auxiliary ligands

    NASA Astrophysics Data System (ADS)

    Yin, Wen-Yu; Zhuang, Guo-Yong; Huang, Zuo-Long; Cheng, Hong-Jian; Zhou, Li; Ma, Man-Hong; Wang, Hao; Tang, Xiao-Yan; Ma, Yun-Sheng; Yuan, Rong-Xin

    2016-03-01

    Three cadmium coordination polymers, [Cd(bismip)]n (1), {[Cd(bismip)(phen)]·H2O}n (2) and {[Cd2(bismip)2(4,4‧-bipy)]·2H2O}n (3) (H2bismip=5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid, phen=1,10-phenanthroline, 4,4‧-bipy=4,4‧-bipyridine) have been prepared under solvothermal conditions. In 1, the [Cd4(bismip)3] units are jointed by bismip ligands to afford a three-dimensional (3D) architecture. Complex 2 exhibits a 3D supramolecular framework based on the interconnection of 1D chains through hydrogen bonding interactions and π-π packing interactions. 3 is a two-fold interpenetrating 3D architecture with a (4·82)(42·84) Schläfli symbol in which 2D layers are interlinked by 4,4‧-bipy ligands. The diverse structures of compounds 1-3 indicate that the auxiliary ligands have significant effects on the final structures. The photoluminescent properties and photocatalytic properties of these coordination polymers in the solid state were also investigated. Remarkably, 3 shows the wide gap semiconductor nature and exhibit excellent photocatalytic performance.

  7. Synthesis and structures of ligand-dominated one-dimensional silver(I)-bis(pyridylmethyl)amine coordination chains

    NASA Astrophysics Data System (ADS)

    Lin, Hung-Jui; Liu, Yu-Chiao; Tseng, Yu-Jui; Wu, Jing-Yun

    2016-10-01

    Reactants slow diffusion of Ag(I) salts with 3,4‧-bis(pyridylmethyl)amine (3,4‧-bpma), an unsymmetric bis-pyridyl ligand equipped with a non-innocent amine backbone, afforded polymeric coordination adducts 1-5 having a general formula {[Ag(3,4‧-bpma)(solv)]X}n (solv = H2O, CH3OH, and none; X= CF3CO2-, BF4-, ClO4-, CF3SO3-, and SbF6-). Single-crystal X-ray diffraction (SCXRD) analyses reveal that colorless crystals of Ag(I) coordination polymers (CPs) 1-5 have very similar one-dimensional (1D) non-flat chain structures, which are preferentially depicted as a "zipper-like" rather than a ladder-like or a double-stranded chain topologies. The 3,4‧-bpma ligand in these Ag(I) CPs displays a μ3-bridging mode with a gauche-trans (1,4, and 5) and a trans-trans (2 and 3) conformations. Noteworthy, anions do not show strong influence on structural modulation of Ag(I) CPs in the solid state, but really affect CP conformations and packing fashions, indicative of a ligand-dominated assembly process for such a Ag(I)-3,4‧-bpma system. Thermal stabilities and solid-state photoluminescence properties of crystalline materials 1-5 were investigated.

  8. Modulating structural dimensionality of cadmium(II) coordination polymers by means of pyrazole, tetrazole and pyrimidine derivative ligands

    NASA Astrophysics Data System (ADS)

    Seco, Jose Manuel; Calahorro, Antonio; Cepeda, Javier; Rodríguez-Diéguez, Antonio

    2015-06-01

    Six new compounds with functionalized pyrazole, tetrazole, and pyrimidine ligands, namely [Cd(μ-4-Hampz)(μ-Cl)2]n(1), [Cd(μ3-pzdc)(μ-H2O)(H2O)]n(2), [Cd(μ-5-amtz)2(eda)]n(3), {[Cd9(μ4-5-amtz)8(μ-Cl)10(H2O)2]ṡxH2O}n(4), {[Cd2(μ-dm2-pmc)2Cl2(H2O)2]ṡH2O}n(5), and [Cd2(μ-Br2-pmc)(μ-Cl)3(H2O)2]n(6) (where 4-Hampz = 4-aminopyrazole, pzdc = 3,5-pyrazoledicarboxylate, 5-amtz = 5-aminotetrazolate, eda = ethylenediamine, dm2-pmc = 4,6-dimethoxy-2-pyrimidinecarboxylate, Br2-pmc = 5-bromopyrimidine-2-carboxylate) have been synthesized under hydrothermal conditions and structurally characterized by single crystal X-ray diffraction. Compounds 1 and 2 share the structural feature of being constructed from dinuclear building units that are further connected through the pyrazole based ligands, rendering a compact and a potentially open 3D frameworks, respectively. On the other hand, 5-amtz ligand exhibits two different coordination modes in compounds 3 and 4 as a result of the presence or absence of an additional blocking ligand. In this way, the μ-κ4N,N‧,N″,N‴ mode in 4 affords robust clusters that are joined in a topologically novel 3D open architecture containing two types of channels, whereas a simple bidentate bridging mode is limited for 5-amtz in 3 due to the presence of the chelating eda ligand. 1D and 3D structures are obtained with pyrimidine ligands in compounds 5 and 6 according to the steric hindrance of the substituents.

  9. Composition change of uranium perchlorates with organic ligands upon mechanochemical activation of exchange processes

    NASA Astrophysics Data System (ADS)

    Zazhogin, A. P.; Zazhogin, A. A.; Komyak, A. I.; Umreiko, D. S.

    2008-03-01

    Results of studies on the effect of mechanochemical activation of ligand exchange processes in uranyl perchlorate-dimethylsulfoxide are presented. Spectroscopic data show that mechanical activation of the exchange process in this system results in the replacement of H2O in the first coordination sphere of uranyl UO{2/2+} by DMSO to form nanocrystals with a defined ligand sphere. Possible factors governing the noted features are considered.

  10. Two 2D silver(I) coordination polymers derived from mixed ligands: Syntheses, structures, photoluminescent and thermal properties

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Jing; Sun, Di; Li, Yun-Hua; Hao, Hong-Jun; Huang, Rong-Bin; Zheng, Lan-Sun

    2011-07-01

    Two isomers of the aminobenzonitrile were reacted with Ag 2O and phthalic acid under ultrasonic condition, yielding two coordination polymers (CPs) of the formula [Ag 2( o-abn)(pa)] n ( 1) and [Ag 4( m-abn)(pa) 2] n ( 2). They have been characterized by elemental analysis, IR spectrum and single crystal X-ray diffraction. Both complexes 1 and 2 are 2D sheet structures which contain two different Ag(I) aggregates, 1D silver helical chain and 2D silver sheet for 1 and 2, respectively. The o-abn in 1 adopts a rare tridentate μ 3- N, N' N' mode to bridge the neighboring 1D silver chains to form a 2D coordination network, while the m-abn ligand just acts as a monodentate N-donor in 2 and does not contribute to the extension of the 2D silver sheet to the higher dimensionality. As the change of the relative position of amino and cyano groups of the aminobenzonitrile ligand, the dimensionality of the Ag(I) aggregates in 1 and 2 increases from 1D to 2D, which indicates that the relative positions of amino and cyano groups of aminobenzonitrile play an important role in the formation of the diverse Ag(I) aggregates, as a consequence, different 2D coordination networks are produced. Additionally, results about emissive behaviors and thermal stabilities of them are discussed.

  11. Coordination induced fluorescence enhancement and construction of a Zn3 constellation through hydrolysis of ligand imine arms.

    PubMed

    Sarkar, Avijit; Ghosh, Aloke Kumar; Bertolasi, Valerio; Ray, Debashis

    2012-02-14

    The phenoxido and alkoxido bridged neutral Zn(3) complex [Zn(3)(μ-H(2)bemp)(2)(μ(3)-emp)(2)] (1), with an angular Zn(3)(μ-OPh)(2)(μ-OEt)(2) core and capping nitrogen donors, was synthesized via simultaneous chelation-cum-bridging of the parent and hydrolysed ligands. Zinc(II) coordination triggered the solution phase imine (C=N) bond hydrolysis of H(3)bemp (2,6-bis-[(2-hydroxyethylimino)methyl]-4-methylphenol) and yielded the unexpected angular trinuclear Zn(II) complex 1, having structural similarity with the Zn(3) active site of P1 nuclease. H(3)bemp also displays a zinc(II) selective chelation-enhanced fluorescence response from strong metal ion coordination. Complexation of zinc(II) with H(3)bpmp (2,6-bis-[(3-hydroxypropylimino)methyl]-4-methylphenol), a close analogue of H(3)bemp, instead provides only mononuclear [Zn(H(2)bpmpH(N))(2)](ClO(4))(2)·2H(2)O (2·2H(2)O) (H(N) is the proton attached to an imine nitrogen atom) of two zwitterionic ligands, generated through a kind of coordination driven acid-base reaction, without showing any aggregation reaction. As the sole metal-organic precursor, both the complexes under pyrolytic conditions give ZnO nano structures of two morphologies.

  12. Structural modulation of Co(II) coordination polymers with flexible bis(benzimidazole) and different dicarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Qin, Li; Wang, Li-na; Ma, Pei-juan; Cui, Guang-hua

    2014-02-01

    Two complexes [Co2(L)2(npht)2·H2O]n (1) and [Co(L)(mip)·0.5H2O]n (2) (H2npht = 3-nitrophthalic acid, L = 1,3-bis(5,6-dimethylbenzimidazol)propane, H2mip = 5-methylisophthalic acid) were obtained under hydrothermal conditions. In compound 1, two npht2- ligands connect two crystallographically independent Co atoms to form a binuclear [Co2(npht)]2 subunit, further linked by L ligands to generate a 1D ladder-like chain, which is arranged into a 2D supramolecular layer through face-to-face π-π stacking interactions. Compound 2 exhibits a 2D 4-connected coordination network. The fluorescence properties of 1 and 2 have been investigated in the solid-state. Both complexes show higher catalytic behaviors for degradation of methyl orange dye.

  13. Adjustable coordination of a hybrid phosphine-phosphine oxide ligand in luminescent Cu, Ag and Au complexes.

    PubMed

    Dau, Thuy Minh; Asamoah, Benjamin Darko; Belyaev, Andrey; Chakkaradhari, Gomathy; Hirva, Pipsa; Jänis, Janne; Grachova, Elena V; Tunik, Sergey P; Koshevoy, Igor O

    2016-09-28

    A potentially tridentate hemilabile ligand, PPh2-C6H4-PPh(O)-C6H4-PPh2 (P(3)O), has been used for the construction of a family of bimetallic complexes [MM'(P(3)O)2](2+) (M = M' = Cu (1), Ag (2), Au (3); M = Au, M' = Cu (4)) and their mononuclear halide congeners M(P(3)O)Hal (M = Cu (5-7), Ag (8-10)). Compounds 1-10 have been characterized in the solid state by single-crystal X-ray diffraction analysis to reveal a variable coordination mode of the phosphine-oxide group of the P(3)O ligand depending on the preferable number of coordination vacancies on the metal center. According to the theoretical studies, the interaction of the hard donor P[double bond, length as m-dash]O moiety with d(10) ions becomes less effective in the order Cu > Ag > Au. 1-10 exhibit room temperature luminescence in the solid state, and the intensity and energy of emission are mostly determined by the nature of metal atoms. The photophysical characteristics of the monometallic species were compared with those of the related compounds M(P(3))Hal (11-16) with the non-oxidized ligand P(3). It was found that in the case of the copper complexes 5-7 the P(3)O hybrid ligand introduces effective non-radiative pathways of the excited state relaxation leading to poor emission, while for the silver luminophores the P[double bond, length as m-dash]O group leads mainly to the modulation of luminescence wavelength. PMID:27530362

  14. Assembly multi-dimensional CdII coordination architectures based on flexible bis(benzimidazole) ligands: Diversity of their coordination geometries and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Jiao, Cui-huan; Geng, Jian-chen; He, Cui-hong; Cui, Guang-hua

    2012-08-01

    Based on three structurally related flexible bis(5,6-dimethylbenzimidazole) ligand, five novel metal-organic CdII coordination architectures: from 0D to 3D structures CdII complexes have been hydrothermally synthesized and structurally characterized, namely, Cd2I4(L1)2 (1), [CdCl2(L1)]n (2), [CdCl2(L2)]n (3), {[Cd(chdc)(L2)0.5]·H2O}n (4), {[Cd(pydca)(L3)0.5(H2O)2]·H2O}n (5) (where L1 = 1,2-bis(5,6-dimethylbenzimidazole)ethane, L2 = 1,3-bis(5,6-dimethylbenzimidazole)propane, L3 = 1,4-bis(5,6-dimethylbenzimidazole)butane, H2chdc = 1,4-cyclohexanedicarboxylic acid, H2pydca = pyridine-2,6-dicarboxylic acid). A discrete binuclear [2 + 2] metallomacrocycles cadmium(II) complex of 1 is 0D, 3 and 5 exhibit one-dimensional helical and zigzag chain structures, respectively. 4 Forms a 2D layer with sql net topology bridged by carboxylate anion and L2, while 2 is an overall 3D array with the diamond topology (dia). In these complexes, the influences of anions coordination on the framework formation were observed and discussed. These results indicate the spacer length of the ligands and anions play important roles in controlling the diversity structural topologies of such metal-organic coordination architectures. The thermogravimetric analyses, X-ray powder diffraction and solid-state luminescent properties of the complexes have also been investigated.

  15. Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water

    PubMed Central

    Wen, Min; Li, Xu-Bing; Jian, Jing-Xin; Wang, Xu-Zhe; Wu, Hao-Lin; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-01-01

    Achieving highly efficient hydrogen (H2) evolution via artificial photosynthesis is a great ambition pursued by scientists in recent decades because H2 has high specific enthalpy of combustion and benign combustion product. [FeFe]-Hydrogenase ([FeFe]-H2ase) mimics have been demonstrated to be promising catalysts for H2 photoproduction. However, the efficient photocatalytic H2 generation system, consisting of PAA-g-Fe2S2, CdSe QDs and H2A, suffered from low stability, probably due to the hole accumulation induced photooxidation of CdSe QDs and the subsequent crash of [FeFe]-H2ase mimics. In this work, we take advantage of supramolecular interaction for the first time to construct the secondary coordination sphere of electron donors (HA−) to CdSe QDs. The generated secondary coordination sphere helps realize much faster hole removal with a ~30-fold increase, thus leading to higher stability and activity for H2 evolution. The unique photocatalytic H2 evolution system features a great increase of turnover number to 83600, which is the highest one obtained so far for photocatalytic H2 production by using [FeFe]-H2ase mimics as catalysts. PMID:27417065

  16. Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water

    NASA Astrophysics Data System (ADS)

    Wen, Min; Li, Xu-Bing; Jian, Jing-Xin; Wang, Xu-Zhe; Wu, Hao-Lin; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-07-01

    Achieving highly efficient hydrogen (H2) evolution via artificial photosynthesis is a great ambition pursued by scientists in recent decades because H2 has high specific enthalpy of combustion and benign combustion product. [FeFe]-Hydrogenase ([FeFe]-H2ase) mimics have been demonstrated to be promising catalysts for H2 photoproduction. However, the efficient photocatalytic H2 generation system, consisting of PAA-g-Fe2S2, CdSe QDs and H2A, suffered from low stability, probably due to the hole accumulation induced photooxidation of CdSe QDs and the subsequent crash of [FeFe]-H2ase mimics. In this work, we take advantage of supramolecular interaction for the first time to construct the secondary coordination sphere of electron donors (HA‑) to CdSe QDs. The generated secondary coordination sphere helps realize much faster hole removal with a ~30-fold increase, thus leading to higher stability and activity for H2 evolution. The unique photocatalytic H2 evolution system features a great increase of turnover number to 83600, which is the highest one obtained so far for photocatalytic H2 production by using [FeFe]-H2ase mimics as catalysts.

  17. Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water.

    PubMed

    Wen, Min; Li, Xu-Bing; Jian, Jing-Xin; Wang, Xu-Zhe; Wu, Hao-Lin; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-01-01

    Achieving highly efficient hydrogen (H2) evolution via artificial photosynthesis is a great ambition pursued by scientists in recent decades because H2 has high specific enthalpy of combustion and benign combustion product. [FeFe]-Hydrogenase ([FeFe]-H2ase) mimics have been demonstrated to be promising catalysts for H2 photoproduction. However, the efficient photocatalytic H2 generation system, consisting of PAA-g-Fe2S2, CdSe QDs and H2A, suffered from low stability, probably due to the hole accumulation induced photooxidation of CdSe QDs and the subsequent crash of [FeFe]-H2ase mimics. In this work, we take advantage of supramolecular interaction for the first time to construct the secondary coordination sphere of electron donors (HA(-)) to CdSe QDs. The generated secondary coordination sphere helps realize much faster hole removal with a ~30-fold increase, thus leading to higher stability and activity for H2 evolution. The unique photocatalytic H2 evolution system features a great increase of turnover number to 83600, which is the highest one obtained so far for photocatalytic H2 production by using [FeFe]-H2ase mimics as catalysts. PMID:27417065

  18. Control of water molecule aggregations in copper 1,4-cyclohexanedicarboxylate coordination polymers containing pyridyl-piperazine type ligands

    NASA Astrophysics Data System (ADS)

    Qiblawi, Sultan H.; LaDuca, Robert L.

    2014-01-01

    A series of layered divalent copper coordination polymers containing 1,4-cyclohexanedicarboxylate and long-spanning pyridyl-piperazine type ligands exhibits greatly different co-crystallized water molecule aggregations depending on the specific ligands used. Both [Cu(t-14cdc)(4-bpmp)]n (1, t-14cdc = trans-1,4-cyclohexanedicarboxylate, 4-bpmp = bis(4-pyridylmethyl)piperazine) and {[Cu(t-14cdc)(4-bpfp)(H2O)2]·6H2O}n (2, 4-bpfp = bis(4-pyridylformyl)piperazine) possess 2D (4,4) coordination polymer grids. However 1 lacks any co-crystallized water and has pinched grid apertures, while 2 manifests infinite water tapes with T6(2)4(2) classification and rectangular grid apertures. {[Cu2(c-14cdc)2(4-bpmp)]·2H2O}n (3, c-14cdc = cis-1,4-cyclohexanedicarboxylate) has [Cu2(c-14cdc)]2 ribbons with paddlewheel dimeric units linked into 2D slabs by 4-bpmp tethers, along with isolated water molecule pairs. In contrast, {[Cu2(c-14cdc)2(4-bpfp)]·10H2O}n (4) shows a very similar underlying coordination polymer topology but entrains unique decameric water molecule clusters. The minor product {[Cu2(c-14cdcH)2(t-1,4-cdc)(4-bpfp)2(H2O)2]·2H2O}n (5) was isolated along with 4; this compound underwent some in situ cis to trans cyclohexane-dicarboxylate ligand isomerization and exhibits a ladder polymer motif.

  19. Tetrathiafulvalene-based azine ligands for anion and metal cation coordination

    PubMed Central

    Ayadi, Awatef; El Alamy, Aziz; Alévêque, Olivier; Allain, Magali; Zouari, Nabil; Bouachrine, Mohammed

    2015-01-01

    Summary The synthesis and full characterization of two tetrathiafulvalene-appended azine ligands, namely 2-([2,2’-bi(1,3-dithiolylidene)]-4-yl)-6-((2,4-dinitrophenyl)hydrazono)methyl)pyridine (L1) and 5-([2,2’-bi(1,3-dithiolylidene)]-4-yl)-2-((2,4-dinitrophenyl)hydrazono)methyl)pyridine (L2) are described. The crystal structure of ligand L1 indicates that the ligand is completely planar with the presence of a strong intramolecular N3–H3···O1 hydrogen bonding. Titration experiments with inorganic anions showed that both ligands are suitable candidates for the sensing of fluoride anions. Ligand L2 was reacted with a Re(I) cation to yield the corresponding rhenium tricarbonyl complex 3. In the crystal structure of the newly prepared electroactive rhenium complex the TTF is neutral and the rhenium cation is hexacoordinated. The electrochemical behavior of the three compounds indicates that they are promising for the construction of crystalline radical cation salts. PMID:26425193

  20. Tetrathiafulvalene-based azine ligands for anion and metal cation coordination.

    PubMed

    Ayadi, Awatef; El Alamy, Aziz; Alévêque, Olivier; Allain, Magali; Zouari, Nabil; Bouachrine, Mohammed; El-Ghayoury, Abdelkrim

    2015-01-01

    The synthesis and full characterization of two tetrathiafulvalene-appended azine ligands, namely 2-([2,2'-bi(1,3-dithiolylidene)]-4-yl)-6-((2,4-dinitrophenyl)hydrazono)methyl)pyridine (L1) and 5-([2,2'-bi(1,3-dithiolylidene)]-4-yl)-2-((2,4-dinitrophenyl)hydrazono)methyl)pyridine (L2) are described. The crystal structure of ligand L1 indicates that the ligand is completely planar with the presence of a strong intramolecular N3-H3···O1 hydrogen bonding. Titration experiments with inorganic anions showed that both ligands are suitable candidates for the sensing of fluoride anions. Ligand L2 was reacted with a Re(I) cation to yield the corresponding rhenium tricarbonyl complex 3. In the crystal structure of the newly prepared electroactive rhenium complex the TTF is neutral and the rhenium cation is hexacoordinated. The electrochemical behavior of the three compounds indicates that they are promising for the construction of crystalline radical cation salts. PMID:26425193

  1. Metal-organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    NASA Astrophysics Data System (ADS)

    Hu, Bo-Wen; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-01

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L)2]n (1) and [Co3(L)4(N3)2·2MeOH]n (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (42.6)2(44.62.88.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co3] units. And the magnetic properties of 1 and 2 have been studied.

  2. Coordination polymers with the chiral ligand N-p-tolylsulfonyl-L-glutamic acid: Influence of metal ions and different bipyridine ligands on structural chirality

    SciTech Connect

    He Rong; Song Huihua; Wei Zhen; Zhang Jianjun; Gao Yuanzhe

    2010-09-15

    Four new polymers, namely [Ni(-tsgluO)(2,4'-bipy){sub 2}(H{sub 2}O){sub 2}]{sub n}.5nH{sub 2}O (1), [Co(-tsgluO)(2,4'-bipy){sub 2}(H{sub 2}O){sub 2}]{sub n}.5nH{sub 2}O (2), [Ni(-tsgluO)(4,4'-bipy)]{sub n}.0.5nH{sub 2}O (3), and [Co(-tsgluO)(4,4'-bipy)]{sub n}.0.5nH{sub 2}O (4), where tsgluO{sup 2-}=(+)-N-p-tolylsulfonyl-L-glutamate dianion, 2,4'-bipy=2,4'-bipyridine, and 4,4'-bipy=4,4'-bipyridine, have been prepared and structurally characterized. Compounds 1 and 2 are isostructural and mononuclear, and crystallize in the acentric monoclinic space group Cc, forming 1D chain structures. Compound 3 is also mononuclear, but crystallizes in the chiral space group P2{sub 1}, forming a homochiral 2D architecture. In contrast to the other complexes, compound 4 crystallizes in the space group P-1 and is composed of binuclear [Co{sub 2}O{sub 6}N{sub 2}]{sub n}{sup 4-} units, which give rise to a 2D bilayer framework. Moreover, compounds 1, 2, and 4 self-assemble to form 3D supramolecular structures through {pi}-{pi} stacking and hydrogen-bonding interactions, while compound 3 is further hydrogen-bonded to form 3D frameworks. We have demonstrated the influence of the central metal and bipyridine ligands on the framework chirality of the coordination complexes. - Graphical abstract: Four novel polymers based on a chiral ligand were prepared and structurally characterized; it represents the first series of investigations about the effect of central metals and bipyridine ligands on framework chirality.

  3. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    ERIC Educational Resources Information Center

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  4. Amide bond cleavage initiated by coordination with transition metal ions and tuned by an auxiliary ligand.

    PubMed

    Yang, Yongpo; Lu, Chunxin; Wang, Hailong; Liu, Xiaoming

    2016-06-21

    The reaction of ligand , N,N-bis(pyridin-2-ylmethyl)acetamide, with five transition metal salts, FeCl3·6H2O, CuCl2·2H2O, Cu(ClO4)2·6H2O, ZnCl2 and K2PtCl4/KI, produced five metal complexes, [(μ-O)(FeClL')(FeCl3)] (), [CuLCl2] (), [CuBPA(ClO4)(CHCN)] ClO4 (), [ZnLCl2] () and [PtLI2] (), where = 1-(2,4,5-tri(pyridin-2-yl)-3-(pyridin-2-ylmethyl)imidazolidin-1-yl)ethanone which formed in situ, and BPA = bis(pyridin-2-ylmethyl)amine. The ligand and complexes were characterized by a variety of spectroscopic techniques including X-ray single crystal diffraction where applicable. Depending on the metal ion and auxiliary ligand of the complex, the acetyl group of the ligand could be either intact or cleaved. When ferric chloride hexahydrate was used, the deacetylation proceeded even further and a novel heterocyclic compound () was formed in situ. A possible mechanism was proposed for the formation of the heterocyclic compound found in complex . Our results indicate that to cleave effectively an amide bond, it is essential for a metal centre to bind to the amide bond and the metal centre is of sufficient Lewis acidity.

  5. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands.

    PubMed

    Barry, Dawn E; Caffrey, David F; Gunnlaugsson, Thorfinnur

    2016-06-01

    Herein some examples of the use of lanthanide ions (f-metal ions) to direct the synthesis of luminescent self-assembly systems (architectures) will be discussed. This area of lanthanide supramolecular chemistry is fast growing, thanks to the unique physical (magnetic and luminescent) and coordination properties of the lanthanides, which are often transferred to the resulting supermolecule. The emphasis herein will be on systems that are luminescent, and hence, generated by using either visibly emitting ions (such as Eu(III), Tb(III) and Sm(III)) or near infrared emitting ions (like Nd(III), Yb(III) and Er(III)), formed through the use of templating chemistry, by employing structurally simple ligands, possessing oxygen and nitrogen coordinating moieties. As the lanthanides have high coordination requirements, their use often allows for the formation of coordination compounds and supramolecular systems such as bundles, grids, helicates and interlocked molecules that are not synthetically accessible through the use of other commonly used templating ions such as transition metal ions. Hence, the use of the rare-earth metal ions can lead to the formation of unique and stable species in both solution and in the solid state, as well as functional and responsive structures.

  6. Metal-organic coordination architectures of azole heterocycle ligands bearing acetic acid groups: Synthesis, structure and magnetic properties

    SciTech Connect

    Hu Bowen; Zhao Jiongpeng; Yang Qian; Hu Tongliang; Du Wenping; Bu Xianhe

    2009-10-15

    Four new coordination complexes with azole heterocycle ligands bearing acetic acid groups, [Co(L{sup 1}){sub 2}]{sub n} (1), [CuL{sup 1}N{sub 3}]{sub n} (2), [Cu(L{sup 2}){sub 2}.0.5C{sub 2}H{sub 5}OH.H{sub 2}O]{sub n} (3) and [Co(L{sup 2}){sub 2}]{sub n} (4) (here, HL{sup 1}=1H-imidazole-1-yl-acetic acid, HL{sup 2}=1H-benzimidazole-1-yl-acetic acid) have been synthesized and structurally characterized. Single-crystal structure analysis shows that 3 and 4 are 2D complexes with 4{sup 4}-sql topologies, while another 2D complex 1 has a (4{sup 3}){sub 2}(4{sup 6})-kgd topology. And 2 is a 3D complex composed dinuclear mu{sub 1,1}-bridging azido Cu{sup II} entities with distorted rutile topology. The magnetic properties of 1 and 2 have been studied. - Graphical Abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with azole heterocycle ligands bearing acetic acid groups are reported.

  7. Methylene bridge regulated geometrical preferences of ligands in cobalt(III) coordination chemistry and phenoxazinone synthase mimicking activity.

    PubMed

    Panja, Anangamohan; Shyamal, Milan; Saha, Amrita; Mandal, Tarun Kanti

    2014-04-14

    Two new azide bound cobalt(III) complexes, [Co(L(1))(N3)3] (fac-1) and [Co(L(2))(N3)3] (mer-2), where L(1) is bis(2-pyridylmethyl)amine and L(2) is (2-pyridylmethyl)(2-pyridylethyl)amine, derived from tridentate reduced Schiff-base ligands have been reported. Interestingly, a methylene bridge regulated preferential coordination mode of ligands is noticed in their crystal structures: it is found in a facial arrangement in fac-1 and has a meridional disposition in mer-2. Both complexes show phenoxazinone synthase-like activity and the role of the structural factor on the catalytic activity is also explored. Moreover, the easily reducible cobalt(III) center in mer-2 favors the oxidation of o-aminophenol. The ESI-MS positive spectra together with UV-vis spectroscopy clearly suggest the formation of a catalyst-substrate adduct by substitution of the coordinated azide ions in the catalytic cycle.

  8. Mechanistic studies of Hoveyda-Grubbs metathesis catalysts bearing S-, Br-, I-, and N-coordinating naphthalene ligands.

    PubMed

    Grudzień, Krzysztof; Żukowska, Karolina; Malińska, Maura; Woźniak, Krzysztof; Barbasiewicz, Michał

    2014-03-01

    Derivatives of the Hoveyda-Grubbs complex bearing S-, Br-, I-, and N-coordinating naphthalene ligands were synthesized and characterized with NMR and X-ray studies. Depending on the arrangement of the coordinating sites on the naphthalene core, the isomeric catalysts differ in activity in model metathesis reactions. In particular, complexes with the RuCH bond adjacent to the second aromatic ring of the ligand suffer from difficulties experienced on their preparation and initiation. The behavior most probably derives from steric hindrance around the double bond and repulsive intraligand interactions, which result in abnormal chemical shifts of benzylidene protons observed with (1) H NMR. Furthermore EXSY studies revealed that the halogen-chelated ruthenium complexes display an equilibrium, in which major cis-Cl2 structures are accompanied with small amounts of isomeric forms. In general, contents of the minor forms, measured at 80 °C, correlate with the observed activity trends of the catalysts, although some exceptions complicate the mechanistic picture. We assume that for the family of halogen-chelated metathesis catalysts the initiation mechanism starts with the cis-Cl2 ⇌trans-Cl2 isomerization, although further steps may become rate-limiting for selected systems.

  9. In situ ligand generation for novel Mn(II) and Ni(II) coordination polymers with disulfide ligand: Solvothermal syntheses, structures and magnetic properties

    SciTech Connect

    Han, Yinfeng Wang, Chang'an; Zheng, Zebao; Sun, Jiafeng; Nie, Kun; Zuo, Jian; Zhang, Jianping

    2015-07-15

    Two coordination polymers, ([Mn{sub 2}(L1){sub 2}(μ{sub 2}-H{sub 2}O)(H{sub 2}O){sub 4}]·5H{sub 2}O){sub n}1 and ([Ni(L1)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n}2 (H{sub 2}L1=2,2′-dithiobisnicotinic acid), were prepared by the solvothermal reactions of the Mn(II) or Ni(II) ions with 2-mercaptonanicotinic acid. In 1, the [Mn{sub 2}(COO){sub 4}] units are connected by the 2,2′-dithiobisnicotinic dianion to form a two-dimensional (4,4)-connected network. In 2, the adjacent Ni(II) ions are connected by the carboxyl groups of the 2,2′-dithiobisnicotinic dianion to form an one-dimensional inorganic rod-shaped chain [Ni(COO){sub 2}]{sub n}, which are further interconnected by the 2,2′-dithiobisnicotinic ligand, giving rise to a two-dimensional framework. Variable-temperature magnetic susceptibilities of 1 and 2 exhibit overall weak antiferromagnetic coupling between the adjacent metal ions. - Graphical abstract: Two 2D coordination polymers were synthesized by transition-metal/in-situ oxidation of 2-mercaptonicotinic acid. The compounds pack into 2D frameworks by the carboxyl groups of 2,2′-dithiobisnicotinic dianion and exhibit overall weak antiferromagnetic coupling. - Highlights: • Two 2D coordination polymers containing 2,2′-dithiobisnicotinic dianion. • In situ oxidation and dehydro coupling reaction of 2-mercaptonbenzoic acid. • Two compounds display weak antiferromagnetic exchanges.

  10. Behavior of the potential antitumor V(IV)O complexes formed by flavonoid ligands. 1. Coordination modes and geometry in solution and at the physiological pH.

    PubMed

    Sanna, Daniele; Ugone, Valeria; Lubinu, Giuseppe; Micera, Giovanni; Garribba, Eugenio

    2014-11-01

    The coordination modes and geometry assumed in solution by the potent antitumor oxidovanadium(IV) complexes formed by different flavonoids were studied by spectroscopic (Electron Paramagnetic Resonance, EPR) and computational (Density Functional Theory, DFT) methods. A series of bidentate flavonoid ligands (L) with increasing structural complexity was examined, which can involve (CO, O(-)) donors and formation of five- and six-membered chelate rings, or (O(-), O(-)) donors and five-membered chelate rings. The geometry corresponding to these coordination modes can be penta-coordinated, [VOL2], or cis-octahedral, cis-[VOL2(H2O)]. The results show that, at physiological pH, ligands provided with (CO, O(-)) donor set yield cis-octahedral species with "maltol-like" coordination when five-membered chelate rings are formed (as with 3-hydroxyflavone), while penta-coordinated structures with "acetylacetone-like" coordination are preferred when the chelate rings are six-membered (as with chrysin). When both the binding modes are possible, as with morin, the "acetylacetone-like" coordination is observed. For the ligands containing a catecholic donor set, such as 7,8-dihydroxyflavone, baicalein, fisetin, quercetin and rutin, the formation of square pyramidal complexes with (O(-), O(-)) "catechol-like" coordination and five-membered chelate rings is preferred at physiological pH. The determination of the different coordination modes and geometry is important to define the biotransformation in the blood and the interaction of these complexes with the biological membranes.

  11. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    SciTech Connect

    Feng, Xun; Liu, Lang; Wang, Li-Ya; Song, Hong-Liang; Qiang Shi, Zhi; Wu, Xu-Hong; Ng, Seik-Weng

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this case results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.

  12. Contributions of inner and outer coordination sphere bonding in determining the strength of substituted phenolic pyrazoles as copper extractants.

    PubMed

    Healy, Mary R; Roebuck, James W; Doidge, Euan D; Emeleus, Lucy C; Bailey, Philip J; Campbell, John; Fischmann, Adam J; Love, Jason B; Morrison, Carole A; Sassi, Thomas; White, David J; Tasker, Peter A

    2016-02-21

    Alkyl-substituted phenolic pyrazoles such as 4-methyl-2-[5-(n-octyl)-1H-pyrazol-3-yl]phenol (L2H) are shown to function as Cu-extractants, having similar strength and selectivity over Fe(iii) to 5-nonylsalicylaldoxime which is a component of the commercially used ACORGA® solvent extraction reagents. Substitution in the phenol ring of the new extractants has a major effect on their strength, e.g. 2-nitro-4-methyl-6-[5-(2,4,4-trimethylpentyl)-1H-pyrazol-3-yl]phenol (L4H) which has a nitro group ortho to the phenolic hydroxyl group unit and has an extraction distribution coefficient for Cu nearly three orders of magnitude higher than its unsubstituted analogue 4-methyl-6-[5-(2,4,4-trimethylpentyl)-1H-pyrazol-3-yl]phenol (L8H). X-ray structure determinations and density functional theory (DFT) calculations confirm that inter-ligand hydrogen bonding between the pyrazole NH group and the phenolate oxygen atom stabilise the Cu-complexes, giving pseudomacrocyclic structures. Electron-accepting groups ortho to the phenol oxygen atoms buttress the inter-ligand H-bonding, enhancing extractant strength but the effectiveness of this is very dependent on steric factors. The correlation between the calculated energies of formation of copper complexes in the gas phase and the observed strength of comparably substituted reagents in solvent extraction experiments is remarkable. Analysis of the energies of formation suggests that big differences in strength of extractants arise principally from a combination of the effects of the substituents on the ease of deprotonation of the proligands and, for the ortho-substituted ligands, their propensity to buttress inter-ligand hydrogen bonding. PMID:26763168

  13. Tuning the Reactivity of Chromium(III)-Superoxo Species by Coordinating Axial Ligands.

    PubMed

    Goo, Yi Re; Maity, Annada C; Cho, Kyung-Bin; Lee, Yong-Min; Seo, Mi Sook; Park, Young Jun; Cho, Jaeheung; Nam, Wonwoo

    2015-11-01

    Metal-superoxo species have attracted much attention recently as key intermediates in enzymatic and biomimetic oxidation reactions. The effect(s) of axial ligands on the chemical properties of metal-superoxo complexes has never been explored previously. In this study, we synthesized and characterized chromium(III)-superoxo complexes bearing TMC derivatives with pendant pyridine and imidazole donors, such as [Cr(III)(O2)(TMC-Py)](2+) (1, TMC-Py = 4,8,11-trimethyl-1-(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane) and [Cr(III)(O2)(TMC-Im)](2+) (2, TMC-Im = 4,8,11-trimethyl-1-(2-methylimidazolmethyl)-1,4,8,11-tetraazacyclotetradecane). The reactivity of chromium(III)-superoxo complexes binding different axial ligands, such as 1, 2, and [Cr(III)(O2)(TMC)(Cl)](+) (3, TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was then investigated in C-H bond activation and oxygen atom transfer reactions. Kinetic studies revealed that the reactivity of the Cr(III)-superoxo complexes depends on the axial ligands, showing the reactivity order of 1 > 2 > 3 in those electrophilic oxidation reactions. It was also shown that there is a good correlation between the reactivity of the chromium(III)-superoxo complexes and their redox potentials, in which the redox potentials of the chromium(III)-superoxo complexes are in the order 1 > 2 > 3. DFT calculations reproduced the reactivity order between 1 and 3 in both C-H bond activation and oxygen atom transfer reactions, and the latter reaction is described using orbital interactions. The calculations are also in agreement with the experimentally obtained redox potentials. The present results provide the first example showing that the reactivity of metal-superoxo species can be tuned by the electron-donating ability of axial ligands bound trans to the metal-superoxo moiety.

  14. Synthesis and characterization of nitrogen-rich macrocyclic ligands and an investigation of their coordination chemistry with lanthanum(III).

    PubMed

    Wilson, Justin J; Birnbaum, Eva R; Batista, Enrique R; Martin, Richard L; John, Kevin D

    2015-01-01

    Derivatives of the ligand 1,4,7,10-tetraazacyclododecane (cyclen) containing pendant N-heterocyclic donors were prepared. The heterocycles pyridine, pyridazine, pyrimidine, and pyrazine were conjugated to cyclen to give 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (L(py)), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (L(pyd)), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (L(pyr)), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (L(pz)), respectively. The coordination chemistry of these ligands was explored using the La(3+) ion. Accordingly, complexes of the general formula [La(L)(OTf)](OTf)2, where OTf = trifluoromethanesulfonate and L = L(py) (1), L(pyd) (2), L(pyr) (3), and L(pz) (4), were synthesized and characterized by NMR spectroscopy. Crystal structures of 1 and 2 were also determined by X-ray diffraction studies, which revealed 9-coordinate capped, twisted square-antiprismatic coordination geometries for the central La(3+) ion. The conformational dynamics of 1-4 in solution were investigated by variable-temperature NMR spectroscopy. Dynamic line-shape and Eyring analyses enabled the determination of the activation parameters for the interconversion of enantiomeric forms of the complexes. Unexpectedly, the different pendant N-heterocycles of 1-4 give rise to varying values for the enthalpies and entropies of activation for this process. Density functional theory calculations were carried out to investigate the mechanism of this enantiomeric interconversion. Computed activation parameters were consistent with those experimentally determined for 1 but differed somewhat from those of 2-4.

  15. Highly dynamic coordination behavior of Pn ligand complexes towards "naked" Cu(+) cations.

    PubMed

    Fleischmann, Martin; Welsch, Stefan; Peresypkina, Eugenia V; Virovets, Alexander V; Scheer, Manfred

    2015-10-01

    Reactions of Cu(+) containing the weakly coordinating anion [Al{OC(CF3 )3 }4 ](-) with the polyphosphorus complexes [{CpMo(CO)2 }2 (μ,η(2) :η(2) -P2 )] (A), [CpM(CO)2 (η(3) -P3 )] (M=Cr(B1), Mo (B2)), and [Cp*Fe(η(5) -P5 )] (C) are presented. The X-ray structures of the products revealed mononuclear (4) and dinuclear (1, 2, 3) Cu(I) complexes, as well as the one-dimensional coordination polymer (5 a) containing an unprecedented [Cu2 (C)3 ](2+) paddle-wheel building block. All products are readily soluble in CH2 Cl2 and exhibit fast dynamic coordination behavior in solution indicated by variable temperature (31) P{(1) H} NMR spectroscopy.

  16. Temperature-controlled metal/ligand stoichiometric ratio in Ag-TCNE coordination networks

    SciTech Connect

    Rodríguez-Fernández, Jonathan; Lauwaet, Koen; Herranz, Maria Ángeles; Miranda, Rodolfo; Otero, Roberto

    2015-03-14

    The deposition of tetracyanoethylene (TCNE) on Ag(111), both at Room Temperature (RT, 300 K) and low temperatures (150 K), leads to the formation of coordination networks involving silver adatoms, as revealed by Variable-Temperature Scanning Tunneling Microscopy. Our results indicate that TCNE molecules etch away material from the step edges and possibly also from the terraces, which facilitates the formation of the observed coordination networks. Moreover, such process is temperature dependent, which allows for different stoichiometric ratios between Ag and TCNE just by adjusting the deposition temperature. X-ray Photoelectron Spectroscopy and Density Functional Theory calculations reveal that charge-transfer from the surface to the molecule and the concomitant geometrical distortions at both sides of the organic/inorganic interface might facilitate the extraction of silver atoms from the step-edges and, thus, its incorporation into the observed TCNE coordination networks.

  17. Self-assembly of iron coordination polymer of bowl-shaped N-ligand and dodecamolybdosilicate anion

    NASA Astrophysics Data System (ADS)

    Tang, Qun; Chen, Ya-Guang

    2014-06-01

    [FeII2(ttmb)2(H2O)6][SiMo12O40]·4H2O (1) (ttmb = 1,3,5-tris(triazol-1-ylmethyl) benzene) was synthesized under hydrothermal conditions and characterized by IR spectroscopy, TG analysis and X-ray diffraction method. In 1 the bowl-like tridentate ligand, ttmb, bridges Fe2+ ions forming a coordination polymeric layer, [FeII2(ttmb)2(H2O)6]n4n+, with a large dimensional grid of 7.00 × 7.11 Å, in the presence of Keggin-type polyoxoanion as a template. The coordination polymeric layers and the polyoxoanions are fused into an inorganic-organic hybrid by hydrogen bonds. The photoluminescent spectrum of 1 in solid state at room temperature shows that the coordination of ttmb to Fe2+ ion results in a quench of the ttmb intramolecular fluorescence and a weak O-Mo LMCT fluorescent emission was observed at 520 nm.

  18. Controlling proton movement: electrocatalytic oxidation of hydrogen by a nickel( ii ) complex containing proton relays in the second and outer coordination spheres

    SciTech Connect

    Das, Parthapratim; Ho, Ming-Hsun; O'Hagan, Molly; Shaw, Wendy J.; Morris Bullock, R.; Raugei, Simone; Helm, Monte L.

    2014-01-01

    A nickel bis(diphosphine) complex containing proton relays in the second and outer coordination spheres, Ni(PCy2N(CH2)2OMe)2, (PCy2N(CH2)2OMe = 1,5-di(methoxyethyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. The addition of hydrogen to the Ni(II) complex results in rapid formation of three isomers of the doubly protonated Ni(0) complex, [Ni(PCy2N(CH2)2OMe2H)2]2+. The three isomers show fast intramolecular interconversion at 40 °C, unique to this complex in this class of catalysts. Under conditions of 1.0 atm H2 using H2O as a base, catalytic oxidation proceeds at a turnover frequency of 5 s-1 and an overpotential of 720 mV, as determined from the potential at half of the catalytic current. Compared to the previously reported Ni(PCy2NBn)2 complex, the new complex operates at a faster rate and at a lower overpotential. The results of this study indicate that the presence of the pendant methoxy group in the outer coordination sphere of the catalyst plays a key role, facilitating intramolecular proton movement prior to intermolecular proton removal required to complete the catalytic cycle. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  19. Modification of σ-Donor Properties of Terminal Carbide Ligands Investigated Through Carbide-Iodine Adduct Formation.

    PubMed

    Reinholdt, Anders; Vosch, Tom; Bendix, Jesper

    2016-09-26

    The terminal carbide ligands in [(Cy3 P)2 X2 Ru≡C] complexes (X=halide or pseudohalide) coordinate molecular iodine, affording charge-transfer complexes rather than oxidation products. Crystallographic and vibrational spectroscopic data show the perturbations of iodine to vary with the auxiliary ligand sphere on ruthenium, demonstrating the σ-donor properties of carbide complexes to be tunable.

  20. The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry.

    PubMed

    Byrne, Joseph P; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2014-08-01

    Ligands containing the btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] motif have appeared with increasing regularity over the last decade. This class of ligands, formed in a one pot ‘click’ reaction, has been studied for various purposes, such as for generating d and f metal coordination complexes and supramolecular self-assemblies, and in the formation of dendritic and polymeric networks, etc. This review article introduces btp as a novel and highly versatile terdentate building block with huge potential in inorganic supramolecular chemistry. We will focus on the coordination chemistry of btp ligands with a wide range of metals, and how it compares with other classical pyridyl and polypyridyl based ligands, and then present a selection of applications including use in catalysis, enzyme inhibition, photochemistry, molecular logic and materials, e.g. polymers, dendrimers and gels. The photovoltaic potential of triazolium derivatives of btp and its interactions with anions will also be discussed.

  1. Synthesis, structures, luminescent and magnetic properties of four coordination polymers with the flexible 1,3-phenylenediacetate ligands

    SciTech Connect

    Gu, Jin-Zhong; Lv, Dong-Yu; Gao, Zhu-Qing; Liu, Jian-Zhao; Dou, Wei; Tang, Yu

    2011-03-15

    Four coordination polymers, [Zn(pda)(bpy)(H{sub 2}O)]{sub n}.nH{sub 2}O (1), [Cd(pda)(prz)(H{sub 2}O)]{sub n} (2), [Co{sub 3}({mu}{sub 3}-OH){sub 2}(pda){sub 2}(pyz)]{sub n}.2nH{sub 2}O (3) and [Pr{sub 2}(pda){sub 3}(H{sub 2}O){sub 2}]{sub n} (4) (H{sub 2}pda=1,3-phenylendiacetic acid, bpy=4,4'-bipyridine, prz=piperazine and pyz=pyrazine) have been hydrothermally synthesized and characterized. Complex 1 is a 1D wheel-like chain structure, which is further extended into a 3D metal-organic supramolecular framework by H-bonds and {pi}-{pi} stacking interactions. Complex 2 is a 1D ladder-like chain structure, which is also further extended into a 3D metal-organic supramolecular framework by H-bonds. Complex 3 possess a 2D sheet structure with infrequent two pairs of double-helix chains. Complex 4 features a 3D structure. Both 1 and 2 display strong blue fluorescent emission at room temperature. Magnetic susceptibility measurements of complexes 3 and 4 exhibit antiferromagnetic interactions between the nearest metal ions, with C=9.99 and 3.43 cm{sup 3} mol{sup -1} K, and {theta}=-23.9 and -46.3 K, respectively. -- Graphical abstract: Four new coordination polymers with 1,3-phenylenediacetate ligands have been hydrothermally synthesized and characterized. Complexes 1 and 2 display strong blue fluorescent emission at room temperature. Magnetic susceptibility measurements of 3 and 4 exhibit antiferromagnetic interactions between the nearest metal centers. Display Omitted Research highlights: > Coordinative property of H{sub 2}pda ligand was shown when bonded by different block metals. > Careful selection of co-ligand and metals resulted in dramatic framework evolution. > (c) The compounds constructed with Zn{sup 2+} and Cd{sup 2+} exhibit strong blue fluorescent emission. > The magneto-structural correlation of the complexes constructed with Co{sup 2+} and Pr{sup 3+} was elucidated.

  2. Two lanthanum(III) complexes containing η2-pyrazolate and η2-1,2,4-triazolate ligands: intramolecular C-H...N/O interactions and coordination geometries.

    PubMed

    Wang, Yu-Long; Feng, Meng; Tao, Xian; Tang, Qing-Yun; Shen, Ying-Zhong

    2013-01-01

    The lanthanum(III) complexes tris(3,5-diphenylpyrazolato-κ(2)N,N')tris(tetrahydrofuran-κO)lanthanum(III) tetrahydrofuran monosolvate, [La(C(15)H(11)N(2))(3)(C(4)H(8)O)(3)]·C(4)H(8)O, (I), and tris(3,5-diphenyl-1,2,4-triazolato-κ(2)N(1),N(2))tris(tetrahydrofuran-κO)lanthanum(III), [La(C(14)H(10)N(3))(3)(C(4)H(8)O)(3)], (II), both contain La(III) atoms coordinated by three heterocyclic ligands and three tetrahydrofuran ligands, but their coordination geometries differ. Complex (I) has a mer-distorted octahedral geometry, while complex (II) has a fac-distorted configuration. The difference in the coordination geometries and the existence of asymmetric La-N bonding in the two complexes is associated with intramolecular C-H...N/O interactions between the ligands.

  3. Coordination complexes of niobium and tantalum pentahalides with a bulky NHC ligand.

    PubMed

    Bortoluzzi, Marco; Ferretti, Eleonora; Marchetti, Fabio; Pampaloni, Guido; Zacchini, Stefano

    2016-04-28

    The 1 : 1 molar reactions of niobium and tantalum pentahalides with the monodentate NHC ligand 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (Ipr), in toluene (or benzene) at ca. 80 °C, afforded the complexes NbX5(Ipr) (X = F, ; Br, ) and TaX5(Ipr) (X = F, ; Cl, ; Br, ), in generally good yields. Complexes represent uncommon cases of stable NHC adducts of metal halides with the metal in an oxidation state higher than +4, and also rare examples of Nb-NHC and Ta-NHC bonding systems. In particular, the X-ray molecular structure determined for provides the unprecedented crystallographic characterization of a tantalum compound with a monodentate NHC ligand. DFT results indicate that the metal-carbon bond in is a purely σ one. According to NMR studies ((1)H, (13)C, (93)Nb), the formation of , , , as well as the previously communicated NbCl5(Ipr), , proceeded with the intermediacy of [MX6](-) salts, presumably due to steric reasons. On the other hand, the intermediate formation of MF6(-) in the pathways to and was not observed, according to (19)F (and (93)Nb in the case of ) NMR. DFT calculations were carried out in order to shed light on structural and mechanistic aspects, and allowed to trace possible reaction routes. PMID:26982241

  4. Two-dimensional Zn(II) and one-dimensional Co(II) coordination polymers based on benzene-1,4-dicarboxylate and pyridine ligands.

    PubMed

    Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling

    2016-02-01

    Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture. PMID:26846498

  5. Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2‧,4,4‧-tetracarboxylic acid and varied N-donor co-ligands

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhao, Jun; Xia, Liang; Wu, Xue-Qian; Wang, Jian-Fang; Dong, Wen-Wen; Wu, Ya-Pan

    2016-06-01

    Three new coordination polymers, namely, {[Ni(H2L)(bix)(H2O)2]·2h2O}n (1), {[Ni(HL)(Hdpa)(H2O)2]·H2O}n (2), {[Ni(L)0.5(bpp)(H2O)]·H2O}n (3) (H4L=terphenyl-2,2‧,4,4‧-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4‧-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H4L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 66-dia-type framework with H4L ligand adopts a μ2-bridging mode with two symmetry-related carboxylate groups in μ1-η1:η0 monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]n ribbon chains motif, in which the H4L ligand adopts a μ2-bridging mode with two carboxylate groups in μ1-η1:η1 and μ1-η1:η0 monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H4L ligand displays a μ4-bridging coordination mode. The H4L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1-3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented.

  6. A two-dimensional layered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating mixed multidentate N- and O-donor ligands.

    PubMed

    Huang, Qiu-Ying; Su, Ming-Yang; Meng, Xiang-Ru

    2015-06-01

    The combination of N-heterocyclic and multicarboxylate ligands is a good choice for the construction of metal-organic frameworks. In the title coordination polymer, poly[bis{μ2-1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κ(2)N(3):N(4)}(μ4-butanedioato-κ(4)O(1):O(1'):O(4):O(4'))(μ2-butanedioato-κ(2)O(1):O(4))dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) ligands. Cd(II) ions are connected by two kinds of crystallographically independent succinate ligands to generate a two-dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three-dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.

  7. Coordination of 1,4-Diazabutadiene Ligands to Decamethylytterbocene: Additional Examples of Spin Coupling in Ytterbocene Complexes

    SciTech Connect

    Andersen, Richard; Walter, Marc D.; Berg, David J.; Andersen, Richard A.

    2006-11-04

    The paramagnetic 1:1 coordination complexes of (C5Me5)2Yb with a series of diazabutadiene ligands, RN=C(R')C(R')=NR, where R= CMe3, CHMe2, adamantyl, p-tolyl, p-anisyl, and mesityl when R'=H, and R= p-anisyl when R'= Me, have been prepared. The complexes are paramagnetic, but their magnetic moments are less than expected for the two uncoupled spin carriers, (C5Me5)2Yb(III, 4f13) and the diazabutadiene radical anions (S=1/2), which implies exchange coupling between the spins. The variable temperature 1H NMR spectra show that rotation about the R-N bond is hindered and these barriers are estimated. The barriers are largely determined by steric effects but electronic effects are not unimportant.

  8. Versatile coordination of a reactive P,N-ligand toward boron, aluminum and gallium and interconversion reactivity.

    PubMed

    Devillard, M; Alvarez Lamsfus, C; Vreeken, V; Maron, L; van der Vlugt, J I

    2016-07-01

    The synthesis and reactivity of the first Group 13 complexes bearing a dearomatized phosphino-amido ligand are reported, i.e. alane AlEt2(L) , gallane GaCl2(L) and borane B(Cl)(Ph)(L) . The three complexes react very differently with Group 13 trihalogenides, providing access to zwitterionic anti-·GaCl3 and the unique bis(metalloid) ·BCl2, with the boron center part of a highly unusual anionic four-membered ring (charge on C) and Ga bound to P. The coordination chemistry and the various transformations are supported by DFT calculations, X-ray crystallography and multinuclear NMR spectroscopic data. PMID:27306040

  9. Chelate-Thiolate-Coordinate Ligands Modulating the Configuration and Electrochemical Property of Dinitrosyliron Complexes (DNICs).

    PubMed

    Yeh, Shih-Wey; Lin, Chih-Wei; Liu, Bai-Heng; Tsou, Chih-Chin; Tsai, Ming-Li; Liaw, Wen-Feng

    2015-11-01

    As opposed to the reversible redox reaction ({Fe(NO)2 }(10) reduced-form DNIC [(NO)2 Fe(S(CH2 )3 S)](2-) (1)⇌{Fe(NO)2 }(9) oxidized-form [(NO)2 Fe(S(CH2 )3 S)](-) ), the chemical oxidation of the {Fe(NO)2 }(10) DNIC [(NO)2 Fe(S(CH2 )2 S)](2-) (2) generates the dinuclear {Fe(NO)2 }(9) -{Fe(NO)2 }(9) complex [(NO)2 Fe(μ-SC2 H4 S)2 Fe(NO)2 ](2-) (3) bridged by two terminal [SC2 H4 S](2-) ligands. On the basis of the Fe K-edge pre-edge energy and S K-edge XAS, the oxidation of complex 1 yielding [(NO)2 Fe(S(CH2 )3 S)](-) is predominantly a metal-based oxidation. The smaller S1-Fe1-S2 bond angle of 94.1(1)° observed in complex 1 (S1-Fe1-S2 88.6(1)° in complex 2), compared to the bigger bond angle of 100.9(1)° in the {Fe(NO)2 }(9) DNIC [(NO)2 Fe(S(CH2 )3 S)](-) , may be ascribed to the electron-rich {Fe(NO)2 }(10) DNIC preferring a restricted bite angle to alleviate the electronic donation of the chelating thiolate to the electron-rich {Fe(NO)2 }(10) core. The extended transition state and natural orbitals for chemical valence (ETS-NOCV) analysis on the edt-/pdt-chelated {Fe(NO)2 }(9) and {Fe(NO)2 }(10) DNICs demonstrates how two key bonding interactions, that is, a FeS covalent σ bond and thiolate to the Fe d z 2 charge donation, between the chelating thiolate ligand and the {Fe(NO)2 }(9/10) core could be modulated by the backbone lengths of the chelating thiolate ligands to tune the electrochemical redox potential (E1/2 =-1.64 V for complex 1 and E1/2 =-1.33 V for complex 2) and to dictate structural rearrangement/chemical transformations (S-Fe-S bite angle and monomeric vs. dimeric DNICs).

  10. Extending framework based on the linear coordination polymers: Alternative chains containing lanthanum ion and acrylic acid ligand

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guo, Ming; Tian, Hong; He, Fei-Yue; Lee, Gene-Hsiang; Peng, Shie-Ming

    2006-11-01

    One-dimensional alternative chains of two lanthanum complexes: [La( L1) 3(CH 3OH)(H 2O) 2]·5H 2O ( L1=anion of α-cyano-4-hydroxycinnamic acid ) 1 and [La( L2) 3(H 2O) 2]·3H 2O ( L2=anion of trans-3-(4-methyl-benzoyl)-acrylic acid) 2 were synthesized and structurally characterized by single-crystal X-ray diffraction, element analysis, IR and thermogravimetric analysis. The crystal structure data are as follows for 1: C 31H 36LaN 3O 17, triclinic, P-1, a=9.8279(4) Å, b=11.8278(5) Å, c=17.8730(7) Å, α=72.7960(10)°, β=83.3820(10)°, γ=67.1650(10)º, Z=2, R1=0.0377, wR2=0.0746; for 2: C 33H 37LaO 14, triclinic, P-1, a=8.7174(5) Å, b=9.9377(5) Å, c=21.153(2) Å, α=81.145(2)°, β=87.591(2)°, γ=67.345(5)°, Z=2, R1=0.0869, wR2=0.220. 1 is a rare example of the alternative chain constructed by syn-syn and anti-syn coordination mode of carboxylato ligand arranged along the chain alternatively. La(III) ions in 2 are linked by two η3-O bridges and four bridges (two η2-O and two η3-O) alternatively. Both of the linear coordination polymers grow into two- and three-dimensional networks by packing through extending hydrogen-bond network directed by ligands.

  11. Influence of ionic liquids on the syntheses and structures of Mn(II) coordination polymers based on multidentate N-heterocyclic aromatic ligands and bridging carboxylate ligands.

    PubMed

    Qin, Jian-Hua; Wang, Hua-Rui; Pan, Qi; Zang, Shuang-Quan; Hou, Hongwei; Fan, Yaoting

    2015-10-28

    Seven Mn(ii) coordination polymers, namely {[Mn2(ptptp)Cl2(H2O)3]·H2O}n (1), {[Mn(μ-ptptp)3]2[Mn3(μ3-Cl)]2}·2Cl·16H2O (2), {[Mn2(ptptp)(ip)2(H2O)3]·H2O}n (3), {[Mn2(ptptp)(5-CH3-ip)2(H2O)3]·H2O}n (4), {[Mn4(ptptp)(5-Br-ip)3(H2O)3]·4H2O}n (5), {[Mn2(ptptp)(Hbtc)(H2O)2]·2H2O}n (6) and {[Mn2(ptptp)(tdc)(H2O)2]·1.5H2O}n (7), have been prepared based on multidentate N-heterocyclic aromatic ligands and bridging carboxylate ligands (H2ptptp = 2-(5-{6-[5-(pyrazin-2-yl)-1H-1,2,4-triazol-3-yl]pyridin-2-yl}-1H-1,2,4-triazol-3-yl)pyrazine; R-isophthalic acids, H2ip-R: R = -H (3), -CH3 (4), -Br (5); H3btc = trimesic acid (6); H2tdc = thiophene-2,5-dicarboxylic acid (7)), in order to further probe the multiple roles of [RMI]Br ionic liquids in the hydro/solvothermal synthesis (RMI = 1-alkyl-3-methylimidazolium, R = ethyl, or propyl, or butyl). The successful syntheses of complexes 2-6 suggest that in hydro/solvothermal synthesis the addition of a small amount of [RMI]Br plays a crucial role. Complex 1 exhibits single right-handed helices constructed by ptptp ligands and Mn(ii) ions. Complex 2 possesses octanuclear helicate structures in which two propeller-shaped [Mn(μ-ptptp)3](4-) units embrace two [Mn3(μ3-Cl)](5+) cluster cores inside. Complexes 3 and 4 are isostructural and display a 1D double chain formed by two kinds of pseudo meso-helices: (Mn-ptptp)n and (Mn-5-R-ip)n. Complex 5 has a 2D structure containing 1D Mn(ii) ion chains formed through carboxylates and [ptptp](2-)-N,N bridges. Complex 6 shows a 2D structure formed by a meso-helix (Mn-ptptp)n and the partly deprotonated Hbtc ligands. Complex 7 features a heterochiral [2 + 2] coaxially nested double-helical column formed by using the outer double-helices (Mn-ptptp)n as a template to encapsulate the inner double-helices (Mn-tdc)n with opposite orientation. All complexes were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single-crystal X-ray crystallography and powder X

  12. Anion Receptor Design: Exploiting Outer-Sphere Coordination Chemistry To Obtain High Selectivity for Chloridometalates over Chloride.

    PubMed

    Carson, Innis; MacRuary, Kirstian J; Doidge, Euan D; Ellis, Ross J; Grant, Richard A; Gordon, Ross J; Love, Jason B; Morrison, Carole A; Nichol, Gary S; Tasker, Peter A; Wilson, A Matthew

    2015-09-01

    High anion selectivity for PtCl6(2-) over Cl(-) is shown by a series of amidoamines, R(1)R(2)NCOCH2CH2NR(3)R(4) (L1 with R(1) = R(4) = benzyl and R(2) = R(3) = phenyl and L3 with R(1) = H, R(2) = 2-ethylhexyl, R(3) = phenyl and R(4) = methyl), and amidoethers, R(1)R(2)NCOCH2CH2OR(3) (L5 with R(1) = H, R(2) = 2-ethylhexyl and R(3) = phenyl), which provide receptor sites which extract PtCl6(2-) preferentially over Cl(-) in extractions from 6 M HCl solutions. The amidoether receptor L5 was found to be a much weaker extractant for PtCl6(2-) than its amidoamine analogues. Density functional theory calculations indicate that this is due to the difficulty in protonating the amidoether to generate a cationic receptor, LH(+), rather than the latter showing weaker binding to PtCl6(2-). The most stable forms of the receptors, LH(+), contain a tautomer in which the added proton forms an intramolecular hydrogen bond to the amide oxygen atom to give a six-membered proton chelate. Dispersion-corrected DFT calculations appear to suggest a switch in ligand conformation for the amidoamine ligands to an open tautomer state in the complex, such that the cationic N-H or O-H groups are also readily available to form hydrogen bonds to the PtCl6(2-) ion, in addition to the array of polarized C-H bonds. The predicted difference in energies between the proton chelate and nonchelated tautomer states for L1 is small, however, and the former is found in the X-ray crystal structure of the assembly [(L1H)2PtCl6]. The DFT calculations and the X-ray structure indicate that all LH(+) receptors present an array of polarized C-H groups to the large, charge diffuse PtCl6(2-) anion resulting in high selectivity of extraction of PtCl6(2-) over the large excess of chloride.

  13. Synthesis, Structure and Spectroscopy Study of a 1D Copper Coordination Polymer Based on a Carboxybenzyl Viologen Ligand and SCN-Anion.

    PubMed

    Qiu, Li-xia; Wan, Fang; Zhu, Bin-bin; Sun, Yan-qiong; You, Yi; Chen, Yi-ping

    2015-05-01

    A zwitterionic viologen derivative ligand, 1,1'-bis(4-carboxybenzyl)-4 4'-bipyridinium dichloride (H2BpybcCl2) as a multifunctional ligand, has been synthesized incorporating a 4,4'-bipyridine core with two carboxylate groups as a. building block, specifically designed for the rational construction of metal-organic frameworks. H2BpybcCl2 ligand is a multifunctional ligand that contains viologen's specific functions and carboxylate coordination groups. The coordination polymers of viologen carboxylate with copper thiocyanate are not reported to date. A novel copper coordination polymer, [Cu(SCN)2 (Bpybc)] (I) was by solution diffusion method and characterized by single-crystal X-ray diffraction, XRD, elemental analyses, IR spectroscopy, UV-Vis DRS, TG analysis and liquid-state luminescent properties. Compound I crystallized in the monoclinic system with C2/c space group. Crystal data for complex I is as follow: a=19. 508(4) A, b=9. 474(2) Å, c =16. 963(3) Å, α=90°, β=124. 92(3)°, γ=90°. Two SCN-anions were coordinated to the Cu2+ cation forming a [Cu(SCN)2] unit. Complex I was built up by [Cu(SCN)2] units bridged sequentially by ladder-shaped Bpybc ligands to form one-dimensional zigzag chains running along the [203] direction. The chains were held together by π-π interaction between the pyridine rings and phenyl rings, thus yielding a 3-D extended supramolecular network. The UV-Visible absorption spectra show the absorption bands of π-π* transitions of Bpybc ligands and d-->d transition of Cu2+. The liquid-state luminescent property of compound I was investigated at room temperature. Attractively, the complex exhibits strong blue emission peak at 533 nm (λEx=360 nn) that can be assigned to intraligand transition of Bpybc ligand when it was excited at 360 nm. PMID:26415457

  14. A series of Zn-4f heterometallic coordination polymers and a zinc complex containing a flexible mixed donor dicarboxylate ligand.

    PubMed

    Feng, Xun; Feng, Yu-Quan; Liu, Lang; Wang, Li-Ya; Song, Hong-Liang; Ng, Seik-Weng

    2013-06-01

    A new zinc compound, together with a corresponding series of Zn-4f heterometallic coordination polymers, namely, [Zn(H2PBDA)(PBDA)]n (1), {[Ln2(PBDA)2·2H2O] [Zn2(PBDA)2Cl2]}n [H2PBDA = 3-(pyridin-3-yl-oxy) benzene-1,2-dicarboxylic acid, and Ln = Pr(2), Nd(3), Eu(4), Gd(5), Dy(6), Ho(7), Er(8)] have been hydrothermally synthesized and characterized systematically. Polymers 2-8 feature two-dimensional (2D) 4,4 networks, containing the original 1D heterometallic double stranded chains composed of [Ln2Zn2(PBDA)2] entities. The extensive hydrogen bonding and π-π stacking interactions were observed to stabilize the extended architectures. The luminescence emission spectra of the polymers vary depending on the lanthanide(III) ion present. Informative magnetic susceptibility measurements show that the same carboxylate bridging fashion of the PBDA ligand results in the different magnetic properties occurring within the heterometallic coordination polymers. In addition, polymer 6 exhibits an interesting slow magnetic relaxation behavior at lower temperatures.

  15. Luminescent zinc terephthalate coordination polymers with pyridylnicotinamide ligands: Effect of added base and nitrogen donor disposition on topology

    NASA Astrophysics Data System (ADS)

    Goldsworthy, Jessica S.; Staples, Richard J.; LaDuca, Robert L.

    2014-03-01

    Hydrothermal reaction of zinc nitrate, potassium terephthalate (K2tere), and 3-pyridylnicotinamide (3-pna) or 4-pyridylnicotinamide (4-pna) afforded coordination polymers with different dimensionality depending on nitrogen donor disposition and the initial pH of the reaction mixture. {[Zn(tere)(3-pna)2(H2O)2]ṡ2H2O}n (1) was prepared in the presence of aqueous NaOH, and manifests 1-D coordination polymer chains with monodentate 3-pna ligands. A mixture of {[Zn(tere)(3-pna)]ṡ3H2O}n (2) and {[Zn4(tere)3(OH)2(3-pna)2]ṡ2H2O}n (3) was prepared by performing a similar reaction in the absence of extra base. Compound 2 shows a 2-D (6,3) hexagonal grid topology with very tight interdigitation, while 3 has a 2-fold interpenetrated 3-D pcu network built from {Zn4(OCO)2(OH)2} centrosymmetric tetrameric nodes. {[Zn(tere)(4-pna)]ṡH2O}n (4) has parallel 2-fold interpenetrated sawtooth layer motifs. Luminescent and thermal decomposition properties are also discussed.

  16. Two-Coordinate Magnesium(I) Dimers Stabilized by Super Bulky Amido Ligands.

    PubMed

    Boutland, Aaron J; Dange, Deepak; Stasch, Andreas; Maron, Laurent; Jones, Cameron

    2016-08-01

    A variety of very bulky amido magnesium iodide complexes, LMgI(solvent)0/1 and [LMg(μ-I)(solvent)0/1 ]2 (L=-N(Ar)(SiR3 ); Ar=C6 H2 {C(H)Ph2 }2 R'-2,6,4; R=Me, Pr(i) , Ph, or OBu(t) ; R'=Pr(i) or Me) have been prepared by three synthetic routes. Structurally characterized examples of these materials include the first unsolvated amido magnesium halide complexes, such as [LMg(μ-I)]2 (R=Me, R'=Pr(i) ). Reductions of several such complexes with KC8 in the absence of coordinating solvents have afforded the first two-coordinate magnesium(I) dimers, LMg-MgL (R=Me, Pr(i) or Ph; R'=Pr(i) , or Me), in low to good yields. Reductions of two of the precursor complexes in the presence of THF have given the related THF adduct complexes, L(THF)Mg-Mg(THF)L (R=Me; R'=Pr(i) ) and LMg-Mg(THF)L (R=Pr(i) ; R'=Me) in trace yields. The X-ray crystal structures of all magnesium(I) complexes were obtained. DFT calculations on the unsolvated examples reveal their Mg-Mg bonds to be covalent and of high s-character, while Ph⋅⋅⋅Mg bonding interactions in the compounds were found to be weak at best. PMID:27303934

  17. Structural Investigations of Silica Polyamine Composites: Surface Coverage, Metal Ion Coordination, and Ligand Modification

    SciTech Connect

    Hughes, Mark; Nielsen, Daniel; Rosenberg, Edward; Gobetto, Roberto; Viale, Alessandra; Burton, Sarah D.; Ferel, Joseph

    2006-09-13

    Silanization of the silica gel surface in the synthesis of silica gel polyamine composites uses (chloropropyl)-trichlorosilane (CPTCS). It is possible to substitute a molar fraction of reagent CPTCS with methyltrichlorosilane (MTCS), creating a mixed silane surface layer. Two types of silica gels were modified with a series of MTCS:CPTCS molar ratios. Solid-state CP/MAS 29Si and 13C NMR spectroscopies were used to evaluate the surface silane composition. Surface silane coverage was markedly improved for the resulting gels. When polyamines were grafted to the resultant MTCS:CPTCS silane layers, it was shown that the decrease in the number of propyl attachments to the polyamine resulted in increased quantities of ''free amines''. Optimum MTCS:CPTCS ratios were determined for three polyamines grafted onto one silica gel. A substantial free amine increase was observed for poly(allylamine) (PAA). Metal uptake studies show increases in Cu(II) capacity and/or an improvement in Cu(II) mass-transfer kinetics. The effect of polymer molecular weight upon Cu(II) capacity was investigated for each polyamine. Substantial differences in Cu(II) capacity between 50,000 MW poly(vinylamine) (PVA) and >1000 MW PVA were evident. Similar differences between 25,000 MW poly(ethyleneimine) (PEI) and 1200 MW PEI were found. The mass-transfer kinetics was shown to be improved for composites prepared using a large fraction of MTCS in the reagent silane mixture. This resulted in substantial improvements in the 10% breakthrough Cu(II) capacity for PVA (50 000 MW). PEI composites were further modified to form an amino-acetate ligand. The impact of the MTCS:CPTCS silane ratio on the acetate ligand loading and ultimately on the Cu(II) capacity at pH 2 was investigated. A ratio of 12.5:1 was shown to result in an acetate modified PEI composite with a Cu(II) capacity 140% of the Cu(II) capacity of the same composite prepared with ''CPTCS only''.

  18. Silver(I) coordination polymers assembled from flexible cyclotriphosphazene ligand: structures, topologies and investigation of the counteranion effects.

    PubMed

    Davarcı, Derya; Gür, Rüştü; Beşli, Serap; Şenkuytu, Elif; Zorlu, Yunus

    2016-06-01

    The reactions of a flexible ligand hexakis(3-pyridyloxy)cyclotriphosphazene (HPCP) with a variety of silver(I) salts (AgX; X = NO3(-), PF6(-), ClO4(-), CH3PhSO3(-), BF4(-) and CF3SO3(-)) afforded six silver(I) coordination polymers, namely {[Ag2(HPCP)]·(NO3)2·H2O}n (1), {[Ag2(HPCP)(CH3CN)]·(PF6)2}n (2), {[Ag2(HPCP)(CH3CN)]·(ClO4)2}n (3), [Ag3(HPCP)(CH3PhSO3)3]n (4), [Ag2(HPCP)(CH3CN)(BF4)2]n (5) and {[Ag(HPCP)]·(CF3SO3)}n (6). All of the isolated crystalline compounds were structurally determined by X-ray crystallography. Changing the counteranions in the reactions, which were conducted under similar conditions of M/L ratio (1:1), temperature and solvent, resulted in structures with different types of topologies. In complexes (1)-(6), the ligand HPCP shows different coordination modes with Ag(I) ions giving two-dimensional layered structures and three-dimensional frameworks with different topologies. Complex (1) displays a new three-dimensional framework adopting a (3,3,6)-connected 3-nodal net with point symbol {4.6(2)}2{4(2).6(10).8(3)}. Complexes (2) and (3) are isomorphous and have a two-dimensional layered structure showing the same 3,6L60 topology with point symbol {4.2(6)}2{4(8).6(6).8}. Complex (4) is a two-dimensional structure incorporating short Ag...Ag argentophilic interactions and has a uninodal 4-connected sql/Shubnikov tetragonal plane net with {4(4).6(2)} topology. Complex (5) exhibits a novel three-dimensional framework and more suprisingly contains twofold interpenetrated honeycomb-like networks, in which the single net has a trinodal (2,3,5)-connected 3-nodal net with point symbol {6(3).8(6).12}{6(3)}{8}. Complex (6) crystallizes in a trigonal crystal system with the space group R\\bar 3 and possesses a three-dimensional polymeric structure showing a binodal (4,6)-connected fsh net with the point symbol (4(3).6(3))2.(4(6).6(6).8(3)). The effect of the counteranions on the formation of coordination polymers is discussed in this study. PMID

  19. Five new Mn(II)/Co(II) coordination polymers constructed from flexible multicarboxylate ligands with varying magnetic properties

    SciTech Connect

    Liu, Sui-Jun; Zeng, Yong-Fei; Hu, Xin; Xue, Li; Han, Song-De; Jia, Ji-Min; Hu, Tong-Liang

    2013-08-15

    Five new Mn(II)/Co(II) coordination polymers [Mn{sub 2}(Adi){sub 2}(DMA)]{sub n} (1), [Mn{sub 2}(Adi){sub 2}(DMF)]{sub n} (2), [Mn{sub 4}(Adi){sub 4}(DMF){sub 2}]{sub n} (3), [Co{sub 4}(Adi){sub 4}(DMF){sub 2}]{sub n} (4) and ([Co{sub 3}(Cit){sub 2}(H{sub 2}O){sub 3}]·(H{sub 2}O)){sub n} (5) [Adi=adipate anion, Cit=citrate anion, DMA=N,N′-dimethylacetamide and DMF=N,N′-dimethylformamide] have been successfully constructed from two flexible multicarboxylate ligands under solvothermal conditions. Complexes 1 and 2 exhibit 2-D network featured 1-D Mn{sup II} chain, 3 and 4 are 3-D frameworks containing different 1-D carboxylate–metal chain, while 5 shows a 3-D structure based on Co{sub 6} wheel clusters. Magnetic investigations indicate antiferromagnetic behaviors for 1–4 and weak ferromagnetic behavior for 5 because of distinct linkage modes of metal ions. - Graphical abstract: Five new Mn(II)/Co(II) coordination polymers display 2-D/3-D structures containing 1-D carboxylate–metal chains or wheel clusters. Magnetic analyses reveal that they show antiferromagnetic, canted antiferromagnetic and weak ferromagnetic behaviors, respectively. Highlights: ●Five new Mn(II)/Co(II) coordination polymers have been synthesized. ●A complex-based Co{sub 6} wheel cluster was obtained. ●The different magnetic properties of the complexes are discussed.

  20. Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere

    PubMed Central

    Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P

    2015-01-01

    Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782

  1. Synthesis and structural evaluation of five coordination complexes of benzenepentacarboxylic acid with aza-donor ligands

    NASA Astrophysics Data System (ADS)

    Shimpi, Manishkumar R.; Biswas, Sharmita Nandy; Sarkar, Sohini; Pedireddi, V. R.

    2016-06-01

    Synthesis and structural features of five new coordination assemblies, [Co(bpyH)(H2O)5](BPCH)·(bpyH2)0.5·(H2O) (1a), [{Cu(H2O)3}·{Cu0.5(bpy)0.5(H2O)0.5}2(μ-BPCH)] (1b), [{Cd0.5(BPCH)}2·{Cd0.5(bpy)(H2O)2}2]·6(H2O) (1c), [Cu(BPCH2)(bpyeaH)]·2(H2O) (1d) and [Cd2 (bpyea)0.5(oxalate)0.5(μ-BPC) (H2O)]·(bpyeaH2)·2(H2O) (1e), have been reported. All the assemblies were prepared by co-crystallization of benzenepentacarboxylic acid (BPCH5) either with 4,4‧-bipyridine (bpy) or 1,2-bis(4-pyridyl)ethane (bpyea) in the presence of a transition metal ion (either Co(II), Cu(II) or Cd(II)) as the case may be. All the five compounds were synthesized by hydrothermal method and structures were determined by single crystal X-ray diffraction. All the obtained compounds, 1a-1e, exhibit distinct 3-D polymeric architectures either in the form of stacked layers or host-guest networks in which water molecules play a pivotal role providing additional stabilization by coordinate bonds as well as hydrogen bonds. Other non-covalent interactions such as C-H … π and π … π stacking also participate in the formation of exotic 3-D structures of these complexes.

  2. Two new copper(II) complexes with the shortest (N N) diazine based rigid ligand: Example of unusual tridentate coordination mode

    NASA Astrophysics Data System (ADS)

    Karmakar, Ruma; Choudhury, Chirantan Roy; Batten, Stuart R.; Mitra, Samiran

    2007-01-01

    Two new five coordinated Cu(II) complexes, Cu(L)Cl 2,CH 3OH ( 1) and Cu(L)Br 2 ( 2) derived from the flexidentate ligand (L), 2-pyridinealdazine, have been synthesised and characterised by spectroscopic and electrochemical studies. Single crystal structures of the complexes were determined. Crystal structures of both the complexes contain monomeric entities of five coordinated copper(II) ions where the Schiff base ligand, 2-pyridinealdazine, acts in a tridentate fashion. The central part of the ligand in complex 2 is disordered over two positions: N8 sbnd N9 make up the major position and N8A sbnd N9A make up the minor position.

  3. The investigation of the solvent effect on coordination of nicotinato ligand with cobalt(II) complex containing tris(2-benzimidazolylmethyl)amine: A computational study

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Karakaş, Duran

    2014-11-01

    The electronic structure of [Co(ntb)(nic)]+ complex ion are optimized by using density functional theory (DFT) method with mix basis set. Where (ntb) represents tris(2-benzimidazolylmethyl)amine ligand and (nic) is the anion of nicotinic acids. Six different fields, vacuum, chloroform, butanonitrile, methanol, water and formamide solvents are used in these calculations. The calculated structural parameters indicate that (nic) ligand coordinates to cobalt(II) containing (ntb) ligand with one oxygen atom in butanonitrile, methanol, water and formamide solvents but coordinates with two oxygen atoms in vacuum. These results are supported with IR, UV and 1H NMR spectra. According to the calculated results, the geometry of [Co(ntb)(nic)]+ complex ion is distorted octahedral in vacuum while the geometry is distorted square pyramidal in the all other solvents. Distorted octahedral [Co(ntb)(nic)]+ complex ion have not been synthesized as experimentally and it is predicted with computational chemistry methods.

  4. Cycloheptatrienyl zirconium sandwich complexes with lewis basic phospholyl ligands (phosphatrozircenes): synthesis, structure, bonding and coordination chemistry.

    PubMed

    Glöckner, Andreas; Bannenberg, Thomas; Büschel, Susanne; Daniliuc, Constantin G; Jones, Peter G; Tamm, Matthias

    2011-05-23

    The transmetalation reaction between [(η(7) -C(7) H(7) )ZrCl(tmeda)] (1; tmeda=N,N,N',N'-tetramethylethylenediamine) and various phospholide anions leads to a new class of mixed sandwich complexes: [(η(7)-C(7)H(7))Zr(η(5)-C(4)PMe(4))] (2), [(η(7)-C(7)H(7))Zr(η(5)-C(4)PH(2)Me(2))] (3) and [(η(7)-C(7)H(7))Zr(η(5)-C(4)PPhHMe(2))] (4). The presence of Lewis basic phosphorus atoms and Lewis acidic zirconium atoms allows ambiphilic behaviour to be observed, and X-ray diffraction analysis reveals dimeric arrangements for 2 and 3 with long intermolecular Zr-P bonds, whereas 4 remains monomeric in the solid state. DFT calculations indicate that the metal-phosphorus interaction is weak, and accordingly, complexes 2-4 act as monodentate ligands upon reaction with [W(CO)(5)(thf)]. The resulting complexes [W(CO)(5)(L)] 5-7 (L=2-4) were studied by IR spectroscopy and compared with the [W(CO)(5) ] complex 9, containing the phosphane-functionalised trozircene [(η(7)-C(7)H(7))Zr(η(5)-C(5)H(4)PPh(2))] (8). They all show a close resemblance to simple phosphanes, such as PMe(3) , although molecular orbital analysis of 2 reveals that the free electron pair in the phosphatrozircenes is not the HOMO. Four equivalents of 2 can replace 1,4-cyclooctadiene (COD) in [Ni(cod)(2)] to form the homoleptic, distorted tetrahedral complex [Ni{2}(4)] (10).

  5. Synthesis and characterization of the mixed ligand coordination polymer CPO-5

    NASA Astrophysics Data System (ADS)

    Kongshaug, Kjell Ove; Fjellvåg, Helmer

    2003-11-01

    The synthesis and crystal structures of a novel coordination polymer and its high-temperature variant are described. The as-synthesized material (CPO-5-as), of composition Zn(4,4'-bipyridine)(4,4'-biphenyldicarboxylate)·3H 2O, crystallizes in the triclinic space group P-1 (No. 2) with a=11.0197(2), b=14.2975(3), c=7.6586(1) Å, α=95.9760(9)°, β=108.026(1)°, γ=91.373(1)° and V=1139.16(4) Å 3. CPO-5-as is composed of tetrahedral zinc centers that are connected by the organic linkers to give five independent, interpenetrating diamond networks. In the structure, there is additional space for channels that are filled with three water molecules. These water molecules can be removed, leading to an anhydrous variant at 130 oC. CPO-5-130, of composition Zn(4,4'-bipyridine)(4,4'-biphenyldicarboxylate), crystallizes in the triclinic space group P-1 (No. 2) with a=11.1844(6), b=14.0497(7), c=7.7198(3) Å, α=96.917(2)°, β=109.527(2)°, γ=89.115(3)° and V=1134.6(1) Å 3. The structure of the five interpenetrating networks is virtually unchanged after the dehydration resulting in CPO-5-130 being a porous structure with an estimated free volume of 19.8%.

  6. Synthesis and crystal structures of two nickel coordination polymers generated from asymmetric malate ligand

    SciTech Connect

    Guo Yaqin; Xiao Dongrong; Wang Enbo . E-mail: wangenbo@public.cc.jl.cn; Lu Ying; Lue Jian; Xu Xinxin; Xu Lin

    2005-03-15

    Two nickel coordination polymers [Ni(H{sub 2}O)(C{sub 4}H{sub 4}O{sub 5})].H{sub 2}O 1 and [Ni(H{sub 2}O)(mal)(phen)] 2, have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Crystal data for 1: C{sub 4}H{sub 8}O{sub 7}Ni, monoclinic Cc, a=13.156(3)A, b=7.5436(15)A, c=9.6982(19)A, {beta}=130.96(3){sup o}, Z=4. Crystal data for 2: C{sub 16}H{sub 14}N{sub 2}O{sub 6}Ni, orthorhombic Pna2{sub 1}, a=9.6113(19)A, b=19.691(4)A, c=8.0944(16)A, Z=4. Compound 1 is constructed from [Ni(H{sub 2}O)(C{sub 4}H{sub 4}O{sub 5})] sheets pillared through {beta}-carboxylate groups into a 3D framework, which exhibits a diamond-like network. Compound 2 exhibits a 3D supramolecular network. To our knowledge, compound 1 represents the first diamond-like topology in the system of metal-malate. Other characterizations by elemental analysis, IR and TG are also described. The magnetic behavior of compound 1 has been studied.

  7. A two-dimensional zinc(II) coordination polymer based on mixed dimethyl succinate and bipyridine ligands: synthesis, structure, thermostability and luminescence properties.

    PubMed

    Liu, Yang; Feng, Yong Lan; Fu, Wei Wei

    2016-04-01

    From the viewpoint of crystal engineering, the construction of crystalline polymeric materials requires a rational choice of organic bridging ligands for the self-assembly process. Multicarboxylate ligands are of particular interest due to their strong coordination activity towards metal ions, as well as their various coordination modes and versatile conformations. The structural chemistry of dicarboxylate-based coordination polymers of transition metals has been developed through the grafting of N-containing organic linkers into carboxylate-bridged transition metal networks. A new luminescent two-dimensional zinc(II) coordination polymer containing bridging 2,2-dimethylsuccinate and 4,4'-bipyridine ligands, namely poly[[aqua(μ2-4,4'-bipyridine-κ(2)N:N')bis(μ3-2,2-dimethylbutanedioato)-κ(4)O(1),O(1'):O(4):O(4');κ(5)O(1):O(1),O(4):O(4),O(4')-dizinc(II)] dihydrate], {[Zn2(C6H8O4)2(C10H8N2)(H2O)]·2H2O}n, has been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction and elemental, IR and thermogravimetric analyses. In the structure, the 2,2-dimethylsuccinate ligands link linear tetranuclear Zn(II) subunits into one-dimensional chains along the c axis. 4,4'-Bipyridine acts as a tethering ligand expanding these one-dimensional chains into a two-dimensional layered structure. Hydrogen-bonding interactions between the water molecules (both coordinated and free) and carboxylate O atoms strengthen the packing of the layers. Furthermore, the luminescence properties of the complex were investigated. The compound exhibits a blue photoluminescence in the solid state at room temperature and may be a good candidate for potential hybrid inorganic-organic photoactive materials.

  8. Syntheses, structures, and photoluminescence of d 10 coordination architectures: From 1D to 3D complexes based on mixed ligands

    NASA Astrophysics Data System (ADS)

    Yuan, Gang; Shao, Kui-Zhan; Du, Dong-Ying; Wang, Xin-Long; Su, Zhong-Min

    2011-05-01

    Six new compounds, namely, {[Cd 3(Himpy) 3(tda) 2]·3H 2O} n ( 1), {[Zn 3(bipy) 2(tda) 2(H 2O) 2]·4H 2O} n ( 2), {[Cd 3(bipy) 3(tda) 2]·4H 2O} n ( 3), {[Cd 3(tda) 2(H 2O) 3Cl]·H 2O} n ( 4), {[Zn 2(tz)(tda)(H 2O) 2]·H 2O} n ( 5) and {[Cd 7(pz)(tda) 4(OAc)(H 2O) 7]·3H 2O} n ( 6) [H 3tda = 1H-1,2,3-triazole-4,5-dicarboxylic acid, Himpy = 2-(1H-imidazol-2-yl)pyridine, bipy = 2,2'-bipyridine, Htz = 1H-1,2,4-triazole, H 2pz = piperazine] have been prepared under hydrothermal condition and characterized by elemental analyses, infrared spectroscopy, powder X-ray diffraction and single-crystal X-ray diffraction analyses. Compound 1 is a 1D column-like structure and displays a 3D supramolecular network via the π···π stacking interaction. The compounds 2 and 3 exhibit similar 2D layer-like structure, which further extend to 3D supermolecular structure by the π···π stacking interaction. All of compounds 4- 6 display 3D framework with diverse topology constructed from the tda 3- ligands in different coordination modes and secondary ligands (or bridging atom) connecting metal ions. Furthermore, the thermal stabilities and photoluminescent properties of compounds 1- 6 were studied.

  9. It's all about Me: methyl-induced control of coordination stereochemistry by a flexible tridentate N,C,N' ligand.

    PubMed

    Kariuki, Benson M; Platts, James A; Newman, Paul D

    2014-02-21

    A chiral, tridentate, pyridyl-functionalised NHC pro-ligand, S-L(Me)-H[PF₆], has been prepared diastereoselectively via a five step synthesis starting from 1R,3S-diamino-1,2,2-trimethylcyclopentane. The S prefix refers to the stereochemistry of a methyl substituted stereogenic carbon in one of the pyridyl arms which is generated by a stereoselective BH4(-) reduction of an imine precursor. The ligand has been coordinated to Rh(I) and Ir(I) to give trigonal bipyramidal complexes of the type [M(κ(3)-N,C,N'-S-L(Me))(1,5-COD)]PF6 (M = Rh, Ir) as single diastereomers. A combination of spectroscopic and X-ray techniques confirm the stereoselective formation of the thermodynamically preferred endo,endo isomer. Similar reactions with R,S-L(Me)-H[PF₆] gave a mixture of endo,endo-[M(κ(3)-N,C,N'-S-L(Me))(1,5-COD)](+) and exo,exo-[M(κ(3)-N,C,N'-R-L(Me))(1,5-COD)](+). The absolute configuration at the metal is, therefore, solely dictated by the stereochemistry of the single methylpyridyl carbon. The observation of stereoselection extends to the square planar Ni(II) complex [Ni(δ-κ(3)-N,C,N'-S-L(Me))Cl](+) which is isolated as one (δ) of the two possible conformational isomers. DFT studies have been employed to explain the observed stereoselectivity with the configurations observed in the solid state being confirmed as those of lowest energy. PMID:24346145

  10. Heme-copper-dioxygen complexes: toward understanding ligand-environmental effects on the coordination geometry, electronic structure, and reactivity.

    PubMed

    Halime, Zakaria; Kieber-Emmons, Matthew T; Qayyum, Munzarin F; Mondal, Biplab; Gandhi, Thirumanavelan; Puiu, Simona C; Chufán, Eduardo E; Sarjeant, Amy A N; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I; Karlin, Kenneth D

    2010-04-19

    The nature of the ligand is an important aspect of controlling the structure and reactivity in coordination chemistry. In connection with our study of heme-copper-oxygen reactivity relevant to cytochrome c oxidase dioxygen-reduction chemistry, we compare the molecular and electronic structures of two high-spin heme-peroxo-copper [Fe(III)O(2)(2-)Cu(II)](+) complexes containing N(4) tetradentate (1) or N(3) tridentate (2) copper ligands. Combining previously reported and new resonance Raman and EXAFS data coupled to density functional theory calculations, we report a geometric structure and more complete electronic description of the high-spin heme-peroxo-copper complexes 1 and 2, which establish mu-(O(2)(2-)) side-on to the Fe(III) and end-on to Cu(II) (mu-eta(2):eta(1)) binding for the complex 1 but side-on/side-on (mu-eta(2):eta(2)) mu-peroxo coordination for the complex 2. We also compare and summarize the differences and similarities of these two complexes in their reactivity toward CO, PPh(3), acid, and phenols. The comparison of a new X-ray structure of mu-oxo complex 2a with the previously reported 1a X-ray structure, two thermal decomposition products respectively of 2 and 1, reveals a considerable difference in the Fe-O-Cu angle between the two mu-oxo complexes ( angleFe-O-Cu = 178.2 degrees in 1a and angleFe-O-Cu = 149.5 degrees in 2a). The reaction of 2 with 1 equiv of an exogenous nitrogen-donor axial base leads to the formation of a distinctive low-temperature-stable, low-spin heme-dioxygen-copper complex (2b), but under the same conditions, the addition of an axial base to 1 leads to the dissociation of the heme-peroxo-copper assembly and the release of O(2). 2b reacts with phenols performing H-atom (e(-) + H(+)) abstraction resulting in O-O bond cleavage and the formation of high-valent ferryl [Fe(IV)=O] complex (2c). The nature of 2c was confirmed by a comparison of its spectroscopic features and reactivity with those of an independently prepared

  11. Is macrocycle a synonym for kinetic inertness in Gd(III) complexes? Effect of coordinating and non-coordinating substituents on inertness and relaxivity of Gd(III) chelates with DO3A-like ligands

    PubMed Central

    Polasek, Miloslav; Caravan, Peter

    2013-01-01

    Gadolinium chelates with octadentate ligands are widely used as contrast agents for magnetic resonance imaging (MRI), with macrocyclic ligands based on DO3A being preferred for the high kinetic inertness of their Gd chelates. A major challenge in the design of new bifunctional MRI probes is the need to control the rotational motion of the chelate, which greatly affects its relaxivity. In this work we explored facile alkylation of a secondary amine in macrocyclic DO3A-like ligands to create a short, achiral linkage to limit the undesired internal motion of chelates within larger molecular constructs. The acetate moiety on the trans nitrogen was also replaced with either a bidentate (ethoxyacetate, L1 or methyl picolinate, L2) or bulky monodentate (methyl phosphonate, L3) donor arm to give octa- or heptadentate ligands, respectively. The resultant Gd(III) complexes were all monohydrated (q = 1) and exhibited water residency times that spanned 2 orders of magnitude (τM = 2190 ± 170, 3500 ± 90 and 12.7 ± 3.8 ns at 37 °C for GdL1, GdL2 and GdL3 respectively). Alkylation of the secondary amine with a non-coordinating biphenyl moiety resulted in coordinatively saturated q = 0 complexes of octadentate ligands L1 and L2. Relaxivities were limited by slow water exchange and/or lack of water co-ligand. All complexes showed decreased inertness compared to [Gd(DO3A)] despite higher ligand denticity, and inertness was further decreased upon N-alkylation. These results demonstrate that high kinetic inertness and in vivo safety of Gd chelates with macrocyclic ligands should not be generalized. PMID:23517079

  12. Versatile Coordination Mode of a New Pyridine-Based Ditopic Ligand with Transition Metals: From Regular Pyridine to Alkyne and Alkenyl Bindings and Indolizinium Formation.

    PubMed

    Kumar, Sushil; Mandon, Dominique

    2015-08-01

    The new BPMPB ligand, namely, bis[1-bis(2-pyridylmethyl),1 (pyridyl)]butyne, can be very easily obtained as a side product in the known reaction of picolyl chloride and sodium acetylide (which major product is the known terminal alkyne-substituted tripod). This symmetrical ligand contains two identical coordination sites with two methylenepyridines and one pyridyl group on each side, linked by an alkyne function providing a semirigid segment. Together with the molecular structure of the ligand which is reported, we describe the preparation of complexes with Fe(II)Cl2, Co(II)Cl2, Ni(II)Cl2, Cu(I)Cl, and Zn(II)Cl2 salts. All complexes have been characterized by X-ray diffraction studies as well as by standard spectroscopic techniques. The striking point in this work is the diversity of the structures that are obtained. Co(II) and Zn(II) provide isostructural dinuclear complexes in which both coordination sites are occupied within a tetrahedral symmetry. The Cu(I) complex is also a dinuclear compound, but in that case, the copper atom is coordinated to the alkyne moiety, two pyridines, and a bridging chloride. The (13)C NMR spectrum of the copper complex confirms that the metal center is coordinated to the alkyne in solution. The coordination of Ni(II) results in the formation of a mononuclear complex in which a pyridine has fused with the alkyne moiety to generate an indolizinium group; the structure of the corresponding alkenyl complex is reported. Finally, the addition of FeCl2 to the ligand results in the formation of a mononuclear complex with a free, noncoordinated indolizinium. The sequence developed in the present work illustrates the possibility for the metal centers to adopt various coordination modes which may be relevant to the conversion of an alkyne and a pyridyl unit into indolizinium. PMID:26200923

  13. Synthesis, structure, and photoluminescence of ZnII and CdII coordination complexes constructed by structurally related 5,6-substituted pyrazine-2,3-dicarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Li, Yun-Wu; Tao, Ying; Hu, Tong-Liang

    2012-08-01

    Aiming at exploring the effect of substituting groups of three structurally related ligands, 5,6-diethyl-pyrazine-2,3-dicarboxylic acid (H2L1), 5,6-diphenyl-pyrazine-2,3-dicarboxylic acid (H2L2), and dibenzo[f,h]quinoxaline-2,3-dicarboxylic acid (H2L3), seven new coordination polymers constructed from these three substituted dicarboxylate ligands, {[Zn(L1)(H2O)3]·2H2O}∞ (1), {[Cd2(L2ʹ)4(H2O)]·3H2O}∞ (2), [Zn(L2)(CH3OH)]∞ (3), {[Zn(L2)(H2O)2]·H2O}∞ (4), {[Zn(L2ʹ)]·H2O}∞ (5), [Zn2(L3)(DMF)4]∞(6), [Zn(L3)(2,2ʹ-bipy)(H2O)]∞(7), have been prepared and structurally characterized. 1 is a 1D chain structure in which ZnII ion is six-coordinated with octahedron geometry. 2 is also a 1D chain structure in which there are two crystallographically independent CdII ions in the asymmetric unit and exist transformative L2ʹ ligands in the resulting complex. 3 and 4 both possess 2D layer network with the same (4, 82) topology, while the two complexes take different coordination modes during the forming of the compounds. 5 has a 1D chain structure based on the transformative L2ʹ ligand in which ZnII ion is five-coordinated with bipyramidal geometry. 6 and 7 both have 1D chain structure constructed from L3 ligand. Thereinto, ZnII ion in 6 is five-coordinated by three oxygen atoms from two individual L3 ligands and two oxygen atoms from two DMF molecules. While in 7 there are also five coordination sites occupied by two carboxylate oxygen atoms from two L3 ligands. In addition, the compounds are characterized by elemental analysis, IR spectra. The luminescent properties of the compounds are also discussed and exhibit strong fluorescent emissions in the solid state.

  14. Increasing the rate of hydrogen oxidation without increasing the overpotential: A bio-inspired iron molecular electrocatalyst with an outer coordination sphere proton relay

    SciTech Connect

    Darmon, Jonathan M.; Kumar, Neeraj; Hulley, Elliott B.; Weiss, Charles J.; Raugei, Simone; Bullock, R. Morris; Helm, Monte L.

    2015-03-05

    Oxidation of hydrogen (H₂) to protons and electrons for energy production in fuel cells is catalyzed by platinum, but its low abundance and high cost present drawbacks to widespread adoption. Precisely controlled proton delivery and removal is critical in hydrogenase enzymes in nature that catalyze H₂ oxidation using earth-abundant metals (iron and nickel). Here we report a synthetic iron complex, (CpC5F4N)Fe(PEtN(CH2)3NMe2PEt)(Cl), that serves as a precatalyst for the oxidation of H₂, with turnover frequencies of 290 s⁻¹ in fluorobenzene, under 1 atm of H₂ using 1,4-diazabicyclo[2.2.2]octane (DABCO) as the exogenous base. The cooperative effect of the primary, secondary and outer coordination spheres for moving protons in this remarkably fast catalyst emphasizes the key role of pendant amines in mimicking the functionality of the proton pathway in the hydrogenase enzymes.

  15. Increasing the rate of hydrogen oxidation without increasing the overpotential: A bio-inspired iron molecular electrocatalyst with an outer coordination sphere proton relay

    DOE PAGES

    Darmon, Jonathan M.; Kumar, Neeraj; Hulley, Elliott B.; Weiss, Charles J.; Raugei, Simone; Bullock, R. Morris; Helm, Monte L.

    2015-03-05

    Oxidation of hydrogen (H₂) to protons and electrons for energy production in fuel cells is catalyzed by platinum, but its low abundance and high cost present drawbacks to widespread adoption. Precisely controlled proton delivery and removal is critical in hydrogenase enzymes in nature that catalyze H₂ oxidation using earth-abundant metals (iron and nickel). Here we report a synthetic iron complex, (CpC5F4N)Fe(PEtN(CH2)3NMe2PEt)(Cl), that serves as a precatalyst for the oxidation of H₂, with turnover frequencies of 290 s⁻¹ in fluorobenzene, under 1 atm of H₂ using 1,4-diazabicyclo[2.2.2]octane (DABCO) as the exogenous base. The cooperative effect of the primary, secondary and outermore » coordination spheres for moving protons in this remarkably fast catalyst emphasizes the key role of pendant amines in mimicking the functionality of the proton pathway in the hydrogenase enzymes.« less

  16. Controlling proton movement: electrocatalytic oxidation of hydrogen by a nickel(II) complex containing proton relays in the second and outer coordination spheres.

    PubMed

    Das, Parthapratim; Ho, Ming-Hsun; O'Hagan, Molly; Shaw, Wendy J; Bullock, R Morris; Raugei, Simone; Helm, Monte L

    2014-02-21

    A nickel bis(diphosphine) complex containing proton relays in the second and outer coordination spheres, Ni(P(Cy)2N((CH2)2OMe))2, (P(Cy)2N((CH2)2OMe) = 1,5-di(methoxyethyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. The addition of hydrogen to the Ni(II) complex results in rapid formation of three isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)2N((CH2)2OMe)2H)2](2+). The three isomers show fast interconversion at 40 °C, unique to this complex in this class of catalysts. Under conditions of 1.0 atm H2 using H2O as a base, catalytic oxidation proceeds at a turnover frequency of 5 s(-1) and an overpotential of 720 mV, as determined from the potential at half of the catalytic current. Compared to the previously reported Ni(P(Cy)2N(Bn))2 complex, the new complex operates at a faster rate and at a lower overpotential.

  17. Second sphere coordination in oxoanion binding: Synthesis, spectroscopic characterisation and crystal structures of trans-[bis(ethylenediamine)dinitrocobalt(III)] diclofenac and chlorate

    NASA Astrophysics Data System (ADS)

    Sharma, Rajni; Sharma, Raj Pal; Bala, Ritu; Kariuki, B. M.

    2007-01-01

    In the exploration of cationic cobaltammine [ trans-Co(en) 2(NO 2) 2] + as an anion receptor, binding with oxoanions diclofenac and chlorate ions has been investigated. Yellow crystals of [ trans-Co(en) 2(NO 2) 2]C 14H 10Cl 2NO 2. 2H 2O I, and [ trans-Co(en) 2(NO 2) 2]ClO 3II, have been obtained from a mixture of trans-[bis(ethylenediamine)dinitrocobalt(III)] nitrate solution with sodium diclofenac and sodium chlorate, respectively, in aqueous medium. The products were characterised by elemental analyses, IR, UV/vis, 1H and 13C NMR spectroscopy. Single crystal X-ray structure determinations revealed that electrostatic forces of attraction besides second sphere hydrogen bonding interactions stabilize the crystal lattice. Oxygen atoms of the halate and carboxylate group in diclofenac ions act as hydrogen bond acceptors thereby forming N sbnd H en⋯O bonds. The results show that [ trans-Co(en) 2(NO 2) 2] + is a promising anion receptor for the weakly coordinating halate and diclofenac ions in aqueous medium. Solubility measurements indicate that the affinity of cationic cobaltammine [ trans-Co(en) 2(NO 2) 2] + is greater for diclofenac than for the chlorate ion.

  18. Reductive activation in periplasmic nitrate reductase involves chemical modifications of the Mo-cofactor beyond the first coordination sphere of the metal ion.

    PubMed

    Jacques, Julien G J; Fourmond, Vincent; Arnoux, Pascal; Sabaty, Monique; Etienne, Emilien; Grosse, Sandrine; Biaso, Frédéric; Bertrand, Patrick; Pignol, David; Léger, Christophe; Guigliarelli, Bruno; Burlat, Bénédicte

    2014-02-01

    In Rhodobacter sphaeroides periplasmic nitrate reductase NapAB, the major Mo(V) form (the "high g" species) in air-purified samples is inactive and requires reduction to irreversibly convert into a catalytically competent form (Fourmond et al., J. Phys. Chem., 2008). In the present work, we study the kinetics of the activation process by combining EPR spectroscopy and direct electrochemistry. Upon reduction, the Mo (V) "high g" resting EPR signal slowly decays while the other redox centers of the protein are rapidly reduced, which we interpret as a slow and gated (or coupled) intramolecular electron transfer between the [4Fe-4S] center and the Mo cofactor in the inactive enzyme. Besides, we detect spin-spin interactions between the Mo(V) ion and the [4Fe-4S](1+) cluster which are modified upon activation of the enzyme, while the EPR signatures associated to the Mo cofactor remain almost unchanged. This shows that the activation process, which modifies the exchange coupling pathway between the Mo and the [4Fe-4S](1+) centers, occurs further away than in the first coordination sphere of the Mo ion. Relying on structural data and studies on Mo-pyranopterin and models, we propose a molecular mechanism of activation which involves the pyranopterin moiety of the molybdenum cofactor that is proximal to the [4Fe-4S] cluster. The mechanism implies both the cyclization of the pyran ring and the reduction of the oxidized pterin to give the competent tricyclic tetrahydropyranopterin form.

  19. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters

    NASA Astrophysics Data System (ADS)

    De La Cruz, Carlos; Sheppard, Norman

    2011-01-01

    The vibrational spectra of nitrogen monoxide or nitric oxide (NO) bonded to one or to several transition-metal (M) atom(s) in coordination and cluster compounds are analyzed in relation to the various types of such structures identified by diffraction methods. These structures are classified in: (a) terminal (linear and bent) nitrosyls, [M(σ-NO)] or [M(NO)]; (b) twofold nitrosyl bridges, [M 2(μ 2-NO)]; (c) threefold nitrosyl bridges, [M 3(μ 3-NO)]; (d) σ/π-dihaptonitrosyls or " side-on" nitrosyls; and (e) isonitrosyls (oxygen-bonded nitrosyls). Typical ranges for the values of internuclear N-O and M-N bond-distances and M-N-O bond-angles for linear nitrosyls are: 1.14-1.20 Å/1.60-1.90 Å/180-160° and for bent nitrosyls are 1.16-1.22 Å/1.80-2.00 Å/140-110°. The [M 2(μ 2-NO)] bridges have been divided into those that contain one or several metal-metal bonds and those without a formal metal/metal bond (M⋯M). Typical ranges for the M-M, N-O, M-N bond distances and M-N-M bond angles for the normal twofold NO bridges are: 2.30-3.00 Å/1.18-1.22 Å/1.80-2.00 Å/90-70°, whereas for the analogous ranges of the long twofold NO bridges these are 3.10-3.40 Å/1.20-1.24 Å/1.90-2.10 Å/130-110°. In both situations the N-O vector is approximately at right angle to the M-M (or M⋯M) vector within the experimental error; i.e. the NO group is symmetrical bonded to the two metal atoms. In contrast the threefold NO bridges can be symmetrically or unsymmetrically bonded to an M 3-plane of a cluster compound. Characteristic values for the N-O and M-N bond-distances of these NO bridges are: 1.24-1.28 Å/1.80-1.90 Å, respectively. As few dihaptonitrosyl and isonitrosyl complexes are known, the structural features of these are discussed on an individual basis. The very extensive vibrational spectroscopy literature considered gives emphasis to the data from linearly bonded NO ligands in stable closed-shell metal complexes; i.e. those which are consistent with the

  20. Quantum Effects in Cation Interactions with First and Second Coordination Shell Ligands in Metalloproteins

    PubMed Central

    2015-01-01

    electrostatic properties of the protein sites and the importance of specific ion-protein interactions. One of the most interesting findings is that secondary coordination shells of proteins are noticeably perturbed in a cation-dependent manner, showing significant delocalization and long-range effects of charge transfer and polarization upon binding Ca2+. PMID:26574284

  1. Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins.

    PubMed

    Ngo, Van; da Silva, Mauricio C; Kubillus, Maximilian; Li, Hui; Roux, Benoît; Elstner, Marcus; Cui, Qiang; Salahub, Dennis R; Noskov, Sergei Yu

    2015-10-13

    electrostatic properties of the protein sites and the importance of specific ion-protein interactions. One of the most interesting findings is that secondary coordination shells of proteins are noticeably perturbed in a cation-dependent manner, showing significant delocalization and long-range effects of charge transfer and polarization upon binding Ca(2+).

  2. Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins.

    PubMed

    Ngo, Van; da Silva, Mauricio C; Kubillus, Maximilian; Li, Hui; Roux, Benoît; Elstner, Marcus; Cui, Qiang; Salahub, Dennis R; Noskov, Sergei Yu

    2015-10-13

    electrostatic properties of the protein sites and the importance of specific ion-protein interactions. One of the most interesting findings is that secondary coordination shells of proteins are noticeably perturbed in a cation-dependent manner, showing significant delocalization and long-range effects of charge transfer and polarization upon binding Ca(2+). PMID:26574284

  3. One-dimensional coordination polymers generated from a new triazole bridging ligand and HgX2 (X = Cl, Br and I): characterization and luminescent properties.

    PubMed

    Qin, Na; Zhao, Chao-Wei; Ma, Jian-Ping; Liu, Qi-Kui; Dong, Yu-Bin

    2012-06-01

    The new 4-amino-1,2,4-triazole asymmetric bridging ligand 4-amino-5-(pyridin-3-yl)-3-[4-(pyridin-4-yl)phenyl]-4H-1,2,4-triazole (L) has been used to generate three novel isomorphic one-dimensional coordination polymers, viz. catena-poly[[tris[dichloridomercury(II)]-bis{μ(3)-4-amino-5-(pyridin-3-yl)-3-[4-(pyridin-4-yl)phenyl]-4H-1,2,4-triazole}] acetonitrile monosolvate], {[Hg(3)Cl(6)(C(18)H(14)N(6))(2)]·CH(3)CN}(n), (I), and the bromido, {[Hg(3)Br(6)(C(18)H(14)N(6))(2)]·CH(3)CN}(n), (II), and iodido, {[Hg(3)I(6)(C(18)H(14)N(6))(2)]·CH(3)CN}(n), (III), analogs. The asymmetric ligand acts as a tridentate ligand to coordinate the three different Hg(II) centers (two of which are symmetry-related). Two ligands and two symmetry-related Hg(II) centers form centrosymmetric rectangular units which are linked into one-dimensional chains via the other unique Hg atoms, which sit on mirror planes. The chains are elaborated into a three-dimensional structure via interchain hydrogen bonds. The acetonitrile solvent molecules are located in ellipsoidal cavities. The luminescent character of these three coordination complexes was investigated in the solid state.

  4. Synthesis and Coordination Properties of Trifluoromethyl Decorated Derivatives of 2,6-Bis[(diphenylphosphinoyl)methyl]pyridine N-Oxide Ligands with Lanthanide Ions

    SciTech Connect

    Pailloux, Sylvie; Shirima, Cornel Edicome; Ray, Alicia D.; Duesler, Eileen N.; Paine, Robert T.; Klaehn, John D.; McIlwain, Michael E; Hay, Benjamin

    2009-01-01

    Phosphinoyl Grignard-based substitutions on 2,6-bis(chloromethyl)pyridine followed by N-oxidation of the intermediate 2,6-bis(phosphinoyl)methyl pyridine compounds with mCPBA give the target trifunctional ligands 2,6-bis[bis-(2-trifluoromethyl-phenyl)-phosphinoylmethyl]-pyridine 1-oxide (2a) and 2,6-bis[bis-(3,5-bis-trifluoromethyl-phenyl)-phosphinoylmethyl]-pyridine 1-oxide (2b) in high yields. The ligands have been spectroscopically characterized, the molecular structures confirmed by single crystal X-ray diffraction methods and the coordination chemistry surveyed with lanthanide nitrates. Single crystal X-ray diffraction analyses are described for the coordination complexes Nd(2a)(NO3)3, Nd(2a)(NO3)3 (CH3CN)0.5, Eu(2a)(NO3)3 and Nd(2b)(NO3)3 (H2O)1.25; in each case the ligand binds in a tridentate mode to the Ln(III) cation. These structures are compared with the structures found for lanthanide coordination complexes of the parent NOPOPO ligand, [Ph2P(O)CH2]2C5H3NO.

  5. Aminobenzonitrile isomers-mediated self-assembly of mixed-ligand silver(I) coordination architectures: Synthesis, structural characterization and properties

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Jing; Sun, Di; Li, Yun-Hua; Hao, Hong-Jun; Luo, Geng-Geng; Huang, Rong-Bin; Zheng, Lan-Sun

    2011-03-01

    Three mixed-ligand coordination compounds (CCs) of the formula {[Ag( p-abn)(dnca)]·H 2O} n ( 1), {[Ag( o-abn)(dnca)]·H 2O} n ( 2), and {[Ag( m-abn) 4)]·(dnca)·H 2O} ( 3) (where p-abn = 4-aminobenzonitrile, o-abn = 2-aminobenzonitrile, m-abn = 3-aminobenzonitrile, Hdnca = 3,5-dinitrobenzoic acid) were synthesized by reactions of Ag 2O and aminobenzonitrile ligands with Hdnca under the ammoniacal condition. All CCs have been structurally characterized by element analysis, IR and X-ray single-crystal diffraction. The aminobenzonitrile acts as bidentate μ2- N,N' ligand in both 1 and 2, and as monodentate ligand in 3. As the change of the relative position of amino and cyano groups of aminobenzonitrile ligands, the dimensionality of 1-3 decreases from 2D to 0D mainly due to the steric effect of the substituted groups, which indicates that aminobenzonitrile isomers play important roles in the formation of the diverse coordination architectures. The three CCs exhibit photoluminescent emissions in the solid state at room temperature.

  6. Functional Short-Bite Ligands: Synthesis, Coordination Chemistry, and Applications of N-Functionalized Bis(diaryl/dialkylphosphino)amine-type Ligands.

    PubMed

    Fliedel, Christophe; Ghisolfi, Alessio; Braunstein, Pierre

    2016-08-24

    The aim of this review is to highlight how the diversity generated by N-substitution in the well-known short-bite ligand bis(diphenylphosphino)amine (DPPA) allows a fine-tuning of the ligand properties and offers a considerable scope for tailoring the properties and applications of their corresponding metal complexes. The various N-substituents include nitrogen-, oxygen-, phosphorus-, sulfur-, halogen-, and silicon-based functionalities and directly N-bound metals. Multiple DPPA-type ligands linked through an organic spacer and N-functionalized DRPA-type ligands, in which the PPh2 substituents are replaced by PR2 (R = alkyl, benzyl) groups, are also discussed. Owing to the considerable diversity of N-functionalized DPPA-type ligands available, the applications of their mono- and polynuclear metal complexes are very diverse and range from homogeneous catalysis with well-defined or in situ generated (pre)catalysts to heterogeneous catalysis and materials science. In particular, sustained interest for DPPA-type ligands has been motivated, at least in part, by their ability to promote selective ethylene tri- or tetramerization in combination with chromium. Ligands and metal complexes where the N-substituent is a pure hydrocarbon group (as opposed to N-functionalization) are outside the scope of this review. However, when possible, a comparison between the catalytic performances of N-functionalized systems with those of their N-substituted analogs will be provided. PMID:27456550

  7. Controllable assemblies of Cd(II) supramolecular coordination complexes based on a versatile tripyridyltriazole ligand and halide/pseduohalide anions

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Guo, Wei; Guo, Ya-Mei

    2015-09-01

    Three Cd(II) complexes [Cd(L)(H2O)Cl2]n (1), [Cd(L)(H2O)Br2]n (2), and [Cd(L)I2]2 (3) have been assembled from CdX2 (1, X = Cl; 2, X = Br; 3, X = I) and a tripyridyltriazole ligand 3-(2-pyridyl)-4-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazole (L). Complexes 1 and 2 are isostructural and exhibit 1-D loop-like chain, while complex 3 has a distinct dimeric macrocyclic motif. Interestingly, another 1-D chain [Cd(L)I(SCN)]n (4) can be achieved when NH4SCN is introduced into the assembled system of 3. Structural analysis of 1-4 illustrates that the halide and thiocyanate anions in these coordination complexes behave as not only the counteranions, but also the structure directing agents. The fluorescent and thermal properties of 1-4 have also been investigated.

  8. Synthesis, crystal structures, luminescence and catalytic properties of two d10 metal coordination polymers constructed from mixed ligands

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-xiao; Zhang, Ming-xi; Yu, Baoyi; Van Hecke, Kristof; Cui, Guang-hua

    2015-03-01

    Two new coordination polymers [Cd(bmb)(hmph)]n (1), {[Ag(bmb)]·H2btc}n (2) (bmb = 1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2hmph = homophthalic acid, H3btc = 1,3,5-benzenetetracarboxylic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction methods, IR spectroscopy, TGA, XRPD and elemental analysis. Complex 1 features a 3D threefold interpenetrating dia array with a 4-connected 66 topology. Complex 2 shows a 1D helix chain structure connected by L1 ligands, which is finally extended into a rarely 2D 4L2 supramolecular network via C-H⋯O hydrogen bond interactions. In addition, the luminescence and catalytic properties of the two complexes for the degradation of the methyl orange azo dye in a Fenton-like process were presented. The degradation efficiency of the methyl orange azo dye for 1 and 2 are 56% and 96%, respectively.

  9. A spectroscopic study on the coordination and solution structures of the interaction systems between biperoxidovanadate complexes and the pyrazolylpyridine-like ligands.

    PubMed

    Yu, Xian-Yong; Deng, Lin; Zheng, Baishu; Zeng, Bi-Rong; Yi, Pinggui; Xu, Xin

    2014-01-28

    In order to understand the substitution effects of pyrazolylpyridine (pzpy) on the coordination reaction equilibria, the interactions between a series of pzpy-like ligands and biperoxidovanadate ([OV(O2)2(D2O)](-)/[OV(O2)2(HOD)](-), abbrv. bpV) have been explored using a combination of multinuclear ((1)H, (13)C, and (51)V) magnetic resonance, heteronuclear single quantum coherence (HSQC), and variable temperature NMR in a 0.15 mol L(-1) NaCl D2O solution that mimics the physiological conditions. Both the direct NMR data and the equilibrium constants are reported for the first time. A series of new hepta-coordinated peroxidovanadate species [OV(O2)2L](-) (L = pzpy-like chelating ligands) are formed due to several competitive coordination interactions. According to the equilibrium constants for products between bpV and the pzpy-like ligands, the relative affinity of the ligands is found to be pzpy > 2-Ester-pzpy ≈ 2-Me-pzpy ≈ 2-Amide-pzpy > 2-Et-pzpy. In the interaction system between bpV and pzpy, a pair of isomers (Isomers A and B) are observed in aqueous solution, which are attributed to different types of coordination modes between the metal center and the ligands, while the crystal structure of NH4[OV(O2)2(pzpy)]·6H2O (CCDC 898554) has the same coordination structure as Isomer A (the main product for pzpy). For the N-substituted ligands, however, Isomer A or B type complexes can also be observed in solution but the molar ratios of the isomer are reversed (i.e., Isomer B type is the main product). These results demonstrate that when the N atom in the pyrazole ring has a substitution group, hydrogen bonding (from the H atom in the pyrazole ring), the steric effect (from alkyl) and the solvation effect (from the ester or amide group) can jointly affect the coordination reaction equilibrium.

  10. A spectroscopic study on the coordination and solution structures of the interaction systems between biperoxidovanadate complexes and the pyrazolylpyridine-like ligands.

    PubMed

    Yu, Xian-Yong; Deng, Lin; Zheng, Baishu; Zeng, Bi-Rong; Yi, Pinggui; Xu, Xin

    2014-01-28

    In order to understand the substitution effects of pyrazolylpyridine (pzpy) on the coordination reaction equilibria, the interactions between a series of pzpy-like ligands and biperoxidovanadate ([OV(O2)2(D2O)](-)/[OV(O2)2(HOD)](-), abbrv. bpV) have been explored using a combination of multinuclear ((1)H, (13)C, and (51)V) magnetic resonance, heteronuclear single quantum coherence (HSQC), and variable temperature NMR in a 0.15 mol L(-1) NaCl D2O solution that mimics the physiological conditions. Both the direct NMR data and the equilibrium constants are reported for the first time. A series of new hepta-coordinated peroxidovanadate species [OV(O2)2L](-) (L = pzpy-like chelating ligands) are formed due to several competitive coordination interactions. According to the equilibrium constants for products between bpV and the pzpy-like ligands, the relative affinity of the ligands is found to be pzpy > 2-Ester-pzpy ≈ 2-Me-pzpy ≈ 2-Amide-pzpy > 2-Et-pzpy. In the interaction system between bpV and pzpy, a pair of isomers (Isomers A and B) are observed in aqueous solution, which are attributed to different types of coordination modes between the metal center and the ligands, while the crystal structure of NH4[OV(O2)2(pzpy)]·6H2O (CCDC 898554) has the same coordination structure as Isomer A (the main product for pzpy). For the N-substituted ligands, however, Isomer A or B type complexes can also be observed in solution but the molar ratios of the isomer are reversed (i.e., Isomer B type is the main product). These results demonstrate that when the N atom in the pyrazole ring has a substitution group, hydrogen bonding (from the H atom in the pyrazole ring), the steric effect (from alkyl) and the solvation effect (from the ester or amide group) can jointly affect the coordination reaction equilibrium. PMID:24213652

  11. Benzannulated tris(2-mercapto-1-imidazolyl)hydroborato ligands: tetradentate κ4-S3H binding and access to monomeric monovalent thallium in an [S3] coordination environment.

    PubMed

    Rong, Yi; Palmer, Joshua H; Parkin, Gerard

    2014-01-21

    The benzannulated tris(mercaptoimidazolyl)borohydride sodium complex, [Tm(Bu(t)Benz)]Na, has been synthesized via the reaction of NaBH4 with 1-tert-butyl-1,3-dihydro-2H-benzimidazole-2-thione, while [Tm(MeBenz)]K has been synthesized via the reaction of KBH4 with 1-methyl-1,3-dihydro-2H-benzimidazole-2-thione. The molecular structures of the solvated adducts, {[Tm(Bu(t)Benz)]Na(THF)}2(μ-THF)2 and [Tm(MeBenz)]K(OCMe2)3, have been determined by X-ray diffraction, which demonstrates that the [Tm(R)] ligands in these complexes adopt different coordination modes to that in {[Tm(MeBenz)]Na}2(μ-THF)3. Specifically, while the [Tm(MeBenz)] ligand of the sodium complex {[Tm(MeBenz)]Na}2(μ-THF)3 adopts a κ(3)-S3 coordination mode, the potassium complex [Tm(MeBenz)]K(OCMe2)3 adopts a most uncommon inverted κ(4)-S3H coordination mode in which the potassium binds to all three sulfur donors and the hydrogen of the B-H group in a linear KH-B manner. Furthermore, the [Tm(Bu(t)Benz)] ligand of {[Tm(Bu(t)Benz)]Na(THF)}2(μ-THF)2 adopts a κ(3)-S2H coordination mode, thereby demonstrating the flexibility of this ligand system. The monovalent thallium compounds, [Tm(MeBenz)]Tl and [Tm(Bu(t)Benz)]Tl, have been obtained via the corresponding reactions of [Tm(MeBenz)]Na and [Tm(Bu(t)Benz)]Na with TlOAc. X-ray diffraction demonstrates that the three sulfur donors of the [Tm(RBenz)] ligands of both [Tm(MeBenz)]Tl and [Tm(Bu(t)Benz)]Tl chelate to thallium. This coordination mode is in marked contrast to that in other [Tm(R)]Tl compounds, which exist as dinuclear molecules wherein two of the sulfur donors coordinate to different thallium centers. As such, this observation provides further evidence that benzannulation promotes κ(3)-S3 coordination in this system.

  12. Transition metal coordination polymers based on tetrabromoterephthalic and bis(imidazole) ligands: Syntheses, structures, topological analysis and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Xing, Peiqi; Geng, Xiujuan; Sun, Daofeng; Xiao, Zhenyu; Wang, Lei

    2015-09-01

    Eight new coordination polymers (CPs), namely, [Zn(1,2-mbix)(tbtpa)]n (1), [Co(1,2-mbix)(tbtpa)]n (2), [CdCl(1,2-mbix)(tbtpa)0.5]n (3), {[Cd(1,2-bix)(tbtpa)]·H2O}n (4), {[Cd0.5(1,2-bix)(tbtpa)0.5]·H2O}n (5), {[Co0.5(1,2-bix)(tbtpa)0.5]·2H2O}n (6), {[Co(1,2-bix)(tbtpa)]·H2O}n (7) and {[Co(1,2-bix)(tbtpa)]·Diox·2H2O}n (8), were synthesized under solvothermal conditions based on mix-ligand strategy (H2tbtpa=tetrabromoterephthalic acid and 1,2-mbix=1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,2-bix=1,2-bis(imidazol-1-ylmethyl)benzene). All of the CPs have been structurally characterized by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectroscopy, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). X-ray diffraction analyses show that 1 and 2 are isotypics which have 2D highly undulated networks with (4,4)-sql topology with the existence of C-H ⋯Br interactions; for 3, it has a 2D planar network with (4,4)-sql topology with the occurrence of C-H ⋯Cl interactions other than C-H ⋯Br interactions; 4 shows a 3D 2-fold interpenetrated nets with rare 65·8-mok topology which has a self-catention property. As the same case as 1 and 2, 5 and 6 are also isostructural with planar layers with 44-sql topology which further assembled into 3D supramolecular structure through the interdigitated stacking fashion and the C-Br ⋯Cph interactions. As for 7, it has a 2D slightly undulated networks with (4,4)-sql topology which has one dimension channel. While 8 has a 2-fold interpenetrated networks with (3,4)-connect jeb topology with point symbol {63}{65·8}. And their structures can be tuned by conformations of bis(imidazol) ligands and solvent mixture. Besides, the TGA properties for all compounds and the luminescent properties for 1, 3, 4, 5 are discussed in detail.

  13. Chinese Armillary Spheres

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.

  14. Two Pathways for Electrocatalytic Oxidation of Hydrogen by a Nickel Bis(diphosphine) Complex with Pendant Amines in the Second Coordination Sphere

    SciTech Connect

    Yang, Jenny Y.; Smith, Stuart E.; Liu, Tianbiao L.; Dougherty, William G.; Hoffert, Wesley A.; Kassel, W. S.; Rakowski DuBois, Mary; DuBois, Daniel L.; Bullock, R. Morris

    2013-07-03

    A nickel bis(diphosphine) complex containing pendant amines in the second coordination sphere, [Ni(PCy2Nt-Bu2)2](BF4)2 (PCy2Nt-Bu2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. Under 1.0 atm H2 using NEt3 as a base and with added water, a turnover frequency of 45 s-1 is observed at 23 °C; this is the fastest observed for a molecular catalyst. The addition of hydrogen to the NiII complex gives thee isomers of the doubly protonated Ni0 complex [Ni(PCy2HNt-Bu2)2](BF4)2; these complexes have been studied by 1H and 31P NMR spectroscopy, and for one isomer, an X-ray diffraction study. Using the pKa values and NiII/I and NiI/0 redox potentials in a thermochemical cycle, the free energy of hydrogen addition to [Ni(PCy2Nt-Bu2)2]2+ was determined to be -7.9 kcal mol-1. The catalytic rate observed in dry acetonitrile for the oxidation of H2 at the NiII/I couple depends on base size, with larger bases (NEt3, tert-BuNH2) resulting in slower catalysis than n-BuNH2. Addition of water accelerates the rate of catalysis, especially for the larger bases. The results of these studies provide important insights into the design of catalysts for hydrogen oxidation that facilitate proton movement and operate at moderate potentials. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  15. A Comparison of the Selectivity of Extraction of [PtCl6](2-) by Mono-, Bi-, and Tripodal Receptors That Address Its Outer Coordination Sphere.

    PubMed

    Warr, Rebecca J; Bell, Katherine J; Gadzhieva, Anastasia; Cabot, Rafel; Ellis, Ross J; Chartres, Jy; Henderson, David K; Lykourina, Eleni; Wilson, A Matthew; Love, Jason B; Tasker, Peter A; Schröder, Martin

    2016-06-20

    Extraction and binding studies of [PtCl6](2-) are reported for 24 mono-, bi-, and tripodal extractants containing tris(2-aminoethyl)amine (TREN) or tris(3-aminopropyl)amine (TRPN) scaffolds. These reagents are designed to recognize the outer coordination sphere of [PtCl6](2-) and to show selectivity over chloride anion under acidic conditions. Extraction from 0.6 M HCl involves protonation of the N-center in tertiary amines containing one, two, or three urea, amide, or sulfonamide hydrogen-bond donors to set up the following equilibrium: 2L(org) + 2H(+) + [PtCl6](2-) ⇌ [(LH)2PtCl6](org). All reagents show higher Pt loading than trioctylamine, which was used as a positive control to represent commercial trialkylamine reagents. The loading of [PtCl6](2-) depends on the number of pendant amides in the extractant and follows the order tripodal > bipodal > monopodal, with urea-containing extractants outperforming amide and sulfonamide analogues. A different series of reagents in which one, two, or three of the alkyl groups in tris-2-ethylhexylamine are replaced by 3-N'-hexylpropanamide groups all show a comparably high affinity for [PtCl6](2-) and high selectivity over chloride anion in extractions from aqueous acidic solutions. (1)H NMR titration of three extractants [LH·Cl] with [(Oct4N)2PtCl6] in CDCl3 provides evidence for high selectivity for [PtCl6](2-) over chloride for tri- and bipodal extractants, which show higher binding constants than a monopodal analogue. PMID:27256829

  16. Two pathways for electrocatalytic oxidation of hydrogen by a nickel bis(diphosphine) complex with pendant amines in the second coordination sphere.

    PubMed

    Yang, Jenny Y; Smith, Stuart E; Liu, Tianbiao; Dougherty, William G; Hoffert, Wesley A; Kassel, W Scott; Rakowski DuBois, M; DuBois, Daniel L; Bullock, R Morris

    2013-07-01

    A nickel bis(diphosphine) complex containing pendant amines in the second coordination sphere, [Ni(P(Cy)2N(t-Bu)2)2](BF4)2 (P(Cy)2N(t-Bu)2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. The addition of hydrogen to the Ni(II) complex gives three isomers of the doubly protonated Ni(0) complex [Ni(P(Cy)2N(t-Bu)2H)2](BF4)2. Using the pKa values and Ni(II/I) and Ni(I/0) redox potentials in a thermochemical cycle, the free energy of hydrogen addition to [Ni(P(Cy)2N(t-Bu)2)2](2+) was determined to be -7.9 kcal mol(-1). The catalytic rate observed in dry acetonitrile for the oxidation of H2 depends on base size, with larger bases (NEt3, t-BuNH2) resulting in much slower catalysis than n-BuNH2. The addition of water accelerates the rate of catalysis by facilitating deprotonation of the hydrogen addition product before oxidation, especially for the larger bases NEt3 and t-BuNH2. This catalytic pathway, where deprotonation occurs prior to oxidation, leads to an overpotential that is 0.38 V lower compared to the pathway where oxidation precedes proton movement. Under the optimal conditions of 1.0 atm H2 using n-BuNH2 as a base and with added water, a turnover frequency of 58 s(-1) is observed at 23 °C.

  17. Synthesis and crystal structures of two coordination polymers and a binuclear cadmium(II) complex containing 3- and 4-aminobenzoate ligands.

    PubMed

    Zhou, Dong-Mei; Zhao, Xiao-Lan; Liu, Feng-Yi; Kou, Jun-Feng

    2015-08-01

    Due to their wide range of coordination modes and versatile conformations when binding to metal atoms, multicarboxylate ligands are of interest in the design of metal-organic frameworks (MOFs). Three Cd(II) complexes, namely catena-poly[diammonium [[chloridocadmium(II)]-di-μ-chlorido-[chloridocadmium(II)]-bis(μ-3-aminobenzoato)-κ(3)N:O,O';κ(3)O,O':N

  18. Zn(II) coordination polymers with flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    NASA Astrophysics Data System (ADS)

    Li, Lin; Liu, Chong-Bo; Yang, Gao-Shan; Xiong, Zhi-Qiang; Liu, Hong; Wen, Hui-Liang

    2015-11-01

    Hydrothermal reactions of 2,2‧-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H2L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn2(μ2-OH)(μ4-O)0.5(L)]·0.5H2O (1), [Zn(L)(2,2‧-bipy)(H2O)] (2), [Zn3(L)3(phen)2]·H2O (3) and [Zn2(L)2(4,4‧-bipy)] (4) (2,2‧-bipy=2,2‧-bipyridine; 4,4‧-bipy=4,4‧-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn4(μ4-O)(μ2-OH)2]4+ clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}2{34·44·52·66·710·82}, and contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {44·62} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {44·62} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1-4 have been investigated.

  19. Coordination behavior of new bis Schiff base ligand derived from 2-furan carboxaldehyde and propane-1,3-diamine. Spectroscopic, thermal, anticancer and antibacterial activity studies.

    PubMed

    Mohamed, Gehad G; Zayed, Ehab M; Hindy, Ahmed M M

    2015-06-15

    Novel bis Schiff base ligand, [N1,N3-bis(furan-2-ylmethylene)propane-1,3-diamine], was prepared by the condensation of furan-2-carboxaldehyde with propane-1,3-diamine. Its conformational changes on complexation with transition metal ions [Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II) and Fe(III)] have been studied on the basis of elemental analysis, conductivity measurements, spectral (infrared, (1)H NMR, electronic), magnetic and thermogravimetric studies. The conductance data of the complexes revealed their electrolytic nature suggesting them as 1:2 (for bivalent metal ions) and 1:3 (for Fe(III) ion) electrolytes. The complexes were found to have octahedral geometry based on magnetic moment and solid reflectance measurements. Thermal analysis data revealed the decomposition of the complexes in successive steps with the removal of anions, coordinated water and bis Schiff base ligand. The thermodynamic parameters were calculated using Coats-Redfern equation. The Anticancer screening studies were performed on human colorectal cancer (HCT), hepatic cancer (HepG2) and breast cancer (MCF-7) cell lines. The antimicrobial activity of all the compounds was studied against Gram negative (Escherichia coli and Proteus vulgaris) and Gram positive (Bacillus vulgaris and Staphylococcus pyogones) bacteria. It was observed that the coordination of metal ion has a pronounced effect on the microbial activities of the bis Schiff base ligand. All the metal complexes have shown higher antimicrobial effect than the free bis Schiff base ligand.

  20. Coordination behavior of new bis Schiff base ligand derived from 2-furan carboxaldehyde and propane-1,3-diamine. Spectroscopic, thermal, anticancer and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Zayed, Ehab M.; Hindy, Ahmed M. M.

    2015-06-01

    Novel bis Schiff base ligand, [N1,N3-bis(furan-2-ylmethylene)propane-1,3-diamine], was prepared by the condensation of furan-2-carboxaldehyde with propane-1,3-diamine. Its conformational changes on complexation with transition metal ions [Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II) and Fe(III)] have been studied on the basis of elemental analysis, conductivity measurements, spectral (infrared, 1H NMR, electronic), magnetic and thermogravimetric studies. The conductance data of the complexes revealed their electrolytic nature suggesting them as 1:2 (for bivalent metal ions) and 1:3 (for Fe(III) ion) electrolytes. The complexes were found to have octahedral geometry based on magnetic moment and solid reflectance measurements. Thermal analysis data revealed the decomposition of the complexes in successive steps with the removal of anions, coordinated water and bis Schiff base ligand. The thermodynamic parameters were calculated using Coats-Redfern equation. The Anticancer screening studies were performed on human colorectal cancer (HCT), hepatic cancer (HepG2) and breast cancer (MCF-7) cell lines. The antimicrobial activity of all the compounds was studied against Gram negative (Escherichia coli and Proteus vulgaris) and Gram positive (Bacillus vulgaris and Staphylococcus pyogones) bacteria. It was observed that the coordination of metal ion has a pronounced effect on the microbial activities of the bis Schiff base ligand. All the metal complexes have shown higher antimicrobial effect than the free bis Schiff base ligand.

  1. SPHERES National Lab Facility

    NASA Technical Reports Server (NTRS)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  2. Preparation of Core-Shell Coordination Molecular Assemblies via the Enrichment of Structure-Directing "Codes" of Bridging Ligands and Metathesis of Metal Units

    SciTech Connect

    Park, J; Chen, YP; Perry, Z; Li, JR; Zhou, HC

    2014-12-03

    A series of molybdenum- and copper-based MOPs were synthesized through coordination-driven process of a bridging ligand (3,3'-PDBAD, L-1) and dimetal paddlewheel clusters. Three conformers of the ligand exist with an ideal bridging angle between the two carboxylate groups of 0 degrees (H-2 zeta-L(1)), 120 degrees (H-2 beta-L-1), and of 90 degrees (H-2 beta-L-1), respectively. At ambient or lower temperature, (HL1)-L-2 and Mo-2(OAc)(4) or Cu-2(OAc)(4) were crystallized into a molecular square with ?-L-1 and Mo-2/Cu-2 units. With proper temperature elevation, not only the molecular square with ?-L-1 but also a lantern-shaped cage with a-L-1 formed simultaneously. Similar to how Watson-Crick pairs stabilize the helical structure of duplex DNA, the core-shell molecular assembly possesses favorable H-bonding interaction sites. This is dictated by the ligand conformation in the shell, coding for the formation and providing stabilization of the central lantern shaped core, which was not observed without this complementary interaction. On the basis of the crystallographic implications, a heterobimetallic cage was obtained through a postsynthetic metal ion metathesis, showing different reactivity of coordination bonds in the core and shell. As an innovative synthetic strategy, the site-selective metathesis broadens the structural diversity and properties of coordination assemblies.

  3. Light-induced copper(II) coordination by a bicyclic tetraaza chelator through a ligand-to-metal charge-transfer reaction.

    PubMed

    Holm-Jørgensen, Jacob R; Jensen, Mikael; Bjerrum, Morten J

    2011-12-19

    To enable utilization of the broad potential of copper isotopes in nuclear medicine, rapid and robust chelation of the copper is required. Bowl adamanzanes (bicyclic tetraaza ligands) can form kinetically stable copper complexes, but they are usually formed at low rates unless high pH values and high temperatures are applied. We have investigated the effects of the variation in the pH, different anions, and UV irradiation on the chelation rate. UV spectra of mixtures of Cu(2+) and [2(4).3(1)]adz in water show the existence of a long-lived two-coordinated copper(II) intermediate (only counting coordinated amine groups) at pH above 6. These findings are supported by pH titrations of mixtures of Cu(2+) and [2(4).3(1)]adz in water. Irradiation of this complex in the ligand-to-metal charge-transfer (LMCT) band by a diode-array spectrophotometer leads to photodeprotonation and subsequently to formation of the four-coordinated copper(II) complex at a rate up to 7800-fold higher at 25 °C than in the dark. Anions in the solution were found to have three major effects: competitive inhibition due to Cu(II) binding anions, inhibition of the photoinduced transchelation from UV-absorbing anions, and photoredox inhibition from acido ligands capable of acting as electron donors in LMCT reactions. Dissolved O(2) was also found to result in photoredox inhibition.

  4. Synthesis, characterization, and in vitro evaluation of new coordination complexes of platinum(II) and rhenium(I) with a ligand targeting the translocator protein (TSPO).

    PubMed

    Margiotta, Nicola; Denora, Nunzio; Piccinonna, Sara; Laquintana, Valentino; Lasorsa, Francesco Massimo; Franco, Massimo; Natile, Giovanni

    2014-11-21

    The 18 kDa translocator protein (TSPO) is overexpressed in many types of cancers and is also abundant in activated microglial cells occurring in inflammatory neurodegenerative diseases. The TSPO-selective ligand 2-(8-(2-(bis-(pyridin-2-yl-methyl)amino)acetamido)-2-(4-chlorophenyl)H-imidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide (CB256), which fulfills the requirements of a bifunctional chelate approach, has been used to synthesize coordination complexes containing either Pt (1) or Re (3), or both metal ions (2). The new metal complexes showed a cellular uptake markedly greater than that of the precursor metallic compounds and were also able to induce apoptosis in C6 glioma cells. The good cytotoxicity of the free ligand CB256 towards C6, A2780, and A2780cisR tumor cell lines was attenuated after coordination of the dipicolylamine moiety to Pt while coordination of the imidazopyridine residue to Re reduces the affinity towards TSPO. The results of the present investigation are essential for the design of new imidazopyridine bifunctional chelate ligands targeted to TSPO.

  5. Extraction and coordination studies of a carbonyl-phosphine oxide scorpionate ligand with uranyl and lanthanide(III) nitrates: structural, spectroscopic and DFT characterization of the complexes.

    PubMed

    Matveeva, Anna G; Vologzhanina, Anna V; Goryunov, Evgenii I; Aysin, Rinat R; Pasechnik, Margarita P; Matveev, Sergey V; Godovikov, Ivan A; Safiulina, Alfiya M; Brel, Valery K

    2016-03-28

    Hybrid scorpionate ligand (OPPh2)2CHCH2C(O)Me (L) was synthesized and characterized by spectroscopic methods and X-ray diffraction. The selected coordination chemistry of L with UO2(NO3)2 and Ln(NO3)3 (Ln = La, Nd, Lu) has been evaluated. The isolated mono- and binuclear complexes, namely, [UO2(NO3)2L] (1), [{UO2(NO3)L}2(μ2-O2)]·EtOH (2), [La(NO3)3L2]·2.33MeCN (3), [Nd(NO3)3L2]·3MeCN (4), [Nd(NO3)2L2]+·(NO3)−·EtOH (5) and [Lu(NO3)3L2] (6) have been characterized by IR spectroscopy and elemental analysis. Single-crystal X-ray structures have been determined for complexes 1-5. Intramolecular intraligand π-stacking interactions between two phenyl fragments of the coordinated ligand(s) were observed in all complexes 1-5. The π-stacking interaction energy was estimated from Bader's AIM theory calculations performed at the DFT level. Solution properties have been examined using IR and multinuclear ((1)H, (13)C, and (31)P) NMR spectroscopy in CD3CN and CDCl3. Coordination modes of L vary with the coordination polyhedron of the metal and solvent nature showing many coordination modes: P(O),P(O), P(O),P(O),C(O), P(O),C(O), and P(O). Preliminary extraction studies of U(VI) and Ln(III) (Ln = La, Nd, Ho, Yb) from 3.75 M HNO3 into CHCl3 show that scorpionate L extracts f-block elements (especially uranium) better than its unmodified prototype (OPPh2)2CH2.

  6. A novel three-dimensional AgI coordination polymer based on mixed naphthalene-1,5-disulfonate and aminoacetate ligands.

    PubMed

    Wu, Hua; Lü, Xiao-Li; Lü, Bo; Dong, Chang-Xun; Wu, Mei-Sheng

    2013-08-01

    The three-dimensional coordination polymer poly[[bis(μ₃-2-aminoacetato)di-μ-aqua-μ₃-(naphthalene-1,5-disulfonato)-hexasilver(I)] dihydrate], {[Ag₆(C₁₀H₆O₆S₂)(C₂H₄NO₂)₄(H₂O)₂]·2H₂O}n, based on mixed naphthalene-1,5-disulfonate (L1) and 2-aminoacetate (L2) ligands, contains two Ag(I) centres (Ag1 and Ag4) in general positions, and another two (Ag2 and Ag3) on inversion centres. Ag1 is five-coordinated by three O atoms from one L1 anion, one L2 anion and one water molecule, one N atom from one L2 anion and one AgI cation in a distorted trigonal-bipyramidal coordination geometry. Ag2 is surrounded by four O atoms from two L2 anions and two water molecules, and two AgI cations in a slightly octahedral coordination geometry. Ag3 is four-coordinated by two O atoms from two L2 anions and two AgI cations in a slightly distorted square geometry, while Ag4 is also four-coordinated by two O atoms from one L1 and one L2 ligand, one N atom from another L2 anion, and one AgI cation, exhibiting a distorted tetrahedral coordination geometry. In the crystal structure, there are two one-dimensional chains nearly perpendicular to one another (interchain angle = 87.0°). The chains are connected by water molecules to give a two-dimensional layer, and the layers are further bridged by L1 anions to generate a novel three-dimensional framework. Moreover, hydrogen-bonding interactions consolidate the network.

  7. Chemical proteomic tool for ligand mapping of CYP antitargets: an NMR-compatible 3D QSAR descriptor in the Heme-Based Coordinate System.

    PubMed

    Yao, Huili; Costache, Aurora D; Sem, Daniel S

    2004-01-01

    Chemical proteomic strategies strive to probe and understand protein-ligand interactions across gene families. One gene family of particular interest in drug and xenobiotic metabolism are the cytochromes P450 (CYPs), the topic of this article. Although numerous tools exist to probe affinity of CYP-ligand interactions, fewer exist for the rapid experimental characterization of the structural nature of these interactions. As a complement to recent advances in X-ray crystallography, NMR methods are being developed that allow for fairly high throughput characterization of protein-ligand interactions. One especially promising NMR approach involves the use of paramagnetic induced relaxation effects to measure distances of ligand atoms from the heme iron in CYP enzymes. Distances obtained from these T(1) relaxation measurements can be used as a direct source of 1-dimensional structural information or to restrain a ligand docking to generate a 3-dimensional data set. To facilitate such studies, we introduce the concept of the Heme-Based Coordinate System and present how it can be used in combination with NMR T(1) relaxation data to derive 3D QSAR descriptors directly or in combination with in silico docking. These descriptors should have application in defining the binding preferences of CYP binding sites using 3D QSAR models. They are especially well-suited for the biasing of fragment assembly and combinatorial chemistry drug design strategies, to avoid fragment or reagent combinations with enhanced affinity for CYP antitargets.

  8. Synthesis and characterisation of new ditetrazole-ligands as more rigid building blocks of envisaged iron(II) spin-crossover coordination polymers

    NASA Astrophysics Data System (ADS)

    Muttenthaler, Markus; Bartel, Matthias; Weinberger, Peter; Hilscher, Gerfried; Linert, Wolfgang

    2005-05-01

    As the ligand system plays the most important role in the behaviour of the spin-transition of iron(II) spin-crossover compounds a series of eight new mainly bridging di-tetrazole ligands were synthesised and produced new insights into spacer modifications as well as geometric prerequisites of the ligand and their impact on spin-crossover behaviour. The focus laid on aryl-spaced tetrazole ligands, which were interesting analogues to the well-known alkyl-di-tetrazoles due to expected enhanced interaction within the molecular structure through π-π-stacking. The results of this fundamental study yielded further guidelines to optimize and fine-tune the ligand design, which are envisaged to be used for spin-crossover iron(II) coordination polymers of high T½-values with abrupt spin transition behaviour. Additionally, one new SCO compound [μ-Tris(1-[1,1-dimethyl-2-(1 H-tetrazol-1-yl)ethyl]-1 H-tetrazole- N4, N4')iron(II)] bis(tetrafluoroborate)—[Fe( dtmp) 3](BF 4) 2—is presented. The compound features a spin transition around 160 K with a small thermal hysteresis of 5 K.

  9. Variations of structures and solid-state conductivity of isomeric silver(I) coordination polymers having linear and V-shaped thiophene-centered ditriazole ligands

    SciTech Connect

    Hu, Bin; Geng, Jiao; Zhang, Lie; Huang, Wei

    2014-07-01

    A pair of new linear and V-shaped acceptor–donor–acceptor (A−D−A) thiophene-centered ditriazole structural isomers, i.e., 2,5-di(1H-1,2,4-triazol-1-yl)thiophene (L{sup 1}) and 3,4-di(1H-1,2,4-triazol-1-yl)thiophene (L{sup 2}), has been synthesized and characterized. They are used as μ{sub 2}-bridging ligands to prepare a pair of silver(I) coordination polymers formulated as [Ag(L{sup 1})(NO{sub 3})]{sub n} (1) and [Ag(L{sup 2})(NO{sub 3})]{sub n} (2), which are also structural isomers at the supramolecular level. X-ray single-crystal diffraction analyses for 1 and 2 reveal that they exhibit the same one-dimensional (1D) coordination polymers but different structural architectures because of the distinguishable shape and configuration of isomeric ligands (L{sup 1} and L{sup 2}) and the alterations of the coordination numbers. More interestingly, compared with the free ligands, 1D silver(I) polymeric isomers 1 and 2 show significant enhancement of solid-state conductivity to different extents (1.42×10{sup 4} and 2.17×10{sup 3} times), where 6.96 times' enhancement of solid-state conductivity from 1 to 2 has been observed. The formation of Ag–N coordinative bonds and the configurational discrepancy of L{sup 1} and L{sup 2} are believed to play important roles in facilitating the electron transport between molecules, which can also be supported by Density Function Theory calculations of their band gaps. - Graphical abstract: A pair of linear and V-shaped isomeric thiophene-centered ditriazole ligands (L{sup 1}) and L{sup 2} are used to prepare a pair of silver(I) polymeric isomers (1 and 2), where significant enhancement of solid-state conductivity to different extents are observed originating from the distinguishable shape and configuration of isomeric ligands. - Highlights: • A pair of linear and V-shaped thiophene-centered ditriazole structural isomers is prepared. • They are used as µ{sub 2}-bridging ligands to prepare a pair of silver

  10. Some metal complexes of three new potentially heptadentate (N4O3) tripodal Schiff base ligands; synthesis, characterizatin and X-ray crystal structure of a novel eight coordinate Gd(III) complex

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Moradi, Somaeyh; Salehzadeh, Sadegh; Blackman, Allan G.

    2016-03-01

    The symmetrical and asymmetrical potentially heptadentate (N4O3) tripodal Schiff base ligands (H3L1-H3L3) were synthesized from the condensation reaction of three tripodal tetraamine ligands tpt (trpn), tris (3-aminopropyl) amine; ppe (abap), (2-aminoethyl)bis(3-aminopropyl)amine, and tren, tris(2-aminoethyl)amine, with 5-methoxysalicylaldehyde. Then, the reaction of Ln(III) (Ln = Gd, La and Sm), Al(III), and Fe(III) metal ions with the above ligands was investigated. The resulting compounds were characterized by IR, mass spectrometry and elemental analysis in all cases and NMR spectroscopy in the case of the Schiff base ligands. The X-ray crystal structure of the Gd complex of H3L3 ligand showed that in addition to all donor atoms of the ligand one molecule of H2O is also coordinated to the metal ion and a neutral eight-coordinate complex is formed.

  11. A family of four-coordinate iron(II) complexes bearing the sterically hindered tris(pyrazolyl)borato ligand Tp(tBu,Me).

    PubMed

    Jové, Fernando A; Pariya, Chandi; Scoblete, Michael; Yap, Glenn P A; Theopold, Klaus H

    2011-01-24

    A new family of 14-electron, four-coordinate iron(II) complexes of the general formula [Tp(tBu,Me)FeX] (Tp(tBu,Me) is the sterically hindered hydrotris(3-tert-butyl-5-methyl-pyrazolyl) borate ligand and X=Cl (1), Br, I) were synthesized by salt metathesis of FeX(2) with Tp(tBu,Me)K. The related fluoride complex was prepared by reaction of 1 with AgBF(4). Chloride 1 proved to be a good precursor for ligand substitution reactions, generating a series of four-coordinate iron(II) complexes with carbon, oxygen, and sulphur ligands. All of these complexes were fully characterized by conventional spectroscopic methods and most were characterized by single-crystal X-ray crystallographic analysis. Magnetic measurements for all complexes agreed with a high-spin (d(6), S=2) electronic configuration. The halide series enabled the estimation of the covalent radius of iron in these complexes as 1.24 Å.

  12. Coordination chemistry of a calix[4]arene-based NHC ligand: dinuclear complexes and comparison to I(i)Pr2Me2.

    PubMed

    Patchett, Ruth; Chaplin, Adrian B

    2016-06-01

    The preparation and coordination chemistry of 5,17-bis(3-methyl-1-imidazol-2-ylidene)-25,26,27,28-tetrapropoxycalix[4]arene (1) is described. Starting from the bis(imidazolium) pro-ligand 1·2HI, the free carbene 1 was readily generated in solution through deprotonation using K[O(t)Bu] and its reactivity with rhodium(i) dimers [Rh(COD)Cl]2 (COD = 1,5-cyclooctadiene) and [Rh(CO)2Cl]2 investigated. Dinuclear complexes were isolated in both cases, where the calix[4]arene-based NHC ligand adopts a bridging μ(2)-coordination mode, and in one case characterised in the solid-state by X-ray diffraction. Using instead an isolated and well-defined (mononuclear) silver transfer agent, generated by reaction of 1·2HI with Ag2O in the presence of a halide extractor, reactions with [Rh(COD)Cl]2 and [Rh(CO)2Cl]2 produced cationic dinuclear complexes bearing μ(2)-1 and μ(2)-Cl bridging ligands. The structural formulation of the novel dinuclear adducts of 1 was aided through spectroscopic congruence with model complexes, containing monodentate 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (I(i)Pr2Me2).

  13. Self-assembly of 2D-->2D interpenetrating coordination polymers showing polyrotaxane- and polycatenane-like motifs: influence of various ligands on topological structural diversity.

    PubMed

    Lan, Ya-Qian; Li, Shun-Li; Qin, Jun-Sheng; Du, Dong-Ying; Wang, Xin-Long; Su, Zhong-Min; Fu, Qiang

    2008-11-17

    A series of mixed-ligand coordination complexes, namely, [Cd 2(bimb) 2(L (1)) 2] ( 1), [Cd(bpimb) 0.5(L (2))(H 2O)] ( 2), [Zn 5(bpib) 2(L (3)) 4(OH) 2(H 2O) 2] ( 3), [Zn(bpib) 0.5(L (4))] ( 4), and [Cd(bib)(L (4))] ( 5), where bimb = 1,4-bis((1 H-imidazol-1-yl)methyl)benzene, bpimb = 1,4-bis((2-(pyridin-2-yl)-1 H-imidazol-1-yl)methyl)benzene, bpib = 1,4-bis(2-(pyridin-2-yl)-1 H-imidazol-1-yl)butane, bib = 1,4-bis(1 H-imidazol-1-yl)butane, H 2L (1) = 4-((4-(dihydroxymethyl)phenoxy)methyl)benzoic acid, H 2L (2) = 4,4'-methylenebis(oxy)dibenzoic acid, H 2L (3) = 3,3'-methylenebis(oxy)dibenzoic acid, and H 2L (4) = 4,4'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))dibenzoic acid, have been synthesized under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, and thermogravimetric (TG) analyses. In 1, (L (1)) (2-) anions link the metal-neutral ligand subunits to generate a 2-fold parallel interpenetrating net with the 6 (3) topology. In 2- 4, neutral ligands connect the various metal-carboxylic ligand subunits to give a 2-fold parallel interpenetrating net with (4,4) topology in 2, a 2-fold parallel interpenetrating net with (3,6)-connected topology in 3, and a 3-fold parallel interpenetrating net with (4,4) topology in 4. Compounds 1- 4 display both polyrotaxane and polycatenane characters. Compound 5 is a 5-fold parallel interpenetrating net with (4,4) topology. By careful inspection of these structures, we find that different topological structures showing both polyrotaxane and polycatenane characters have been achieved with increase of the carboxylic ligand length. It is believed that various carboxylic ligands and N-donor ligands with different coordination modes and conformations are important for the formation of the different structures. In addition, the luminescent properties of these compounds are discussed.

  14. Effect of three bis-pyridyl-bis-amide ligands with various spacers on the structural diversity of new multifunctional cobalt(II) coordination polymers

    SciTech Connect

    Lin, Hong-Yan; Lu, Huizhe; Le, Mao; Luan, Jian; Wang, Xiu-Li; Liu, Guocheng; Zhang, Juwen

    2015-03-15

    Three new cobalt(II) coordination polymers [Co{sub 2}(1,4-NDC){sub 2}(3-bpye)(H{sub 2}O)] (1), [Co(1,4-NDC)(3-bpfp)(H{sub 2}O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N′-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N′-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H{sub 2}NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1–3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology constructed from 3D [Co{sub 2}(1,4-NDC){sub 2}(H{sub 2}O)]{sub n} framework and bidentate 3-bpye ligands. Complex 2 shows 1D “cage+cage”-like chain formed by 1D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} ribbon chains and [Co{sub 2}(3-bpfp){sub 2}] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology based on 2D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1–3 have been investigated. - Graphical abstract: Three multifunctional cobalt(II) complexes constructed from three bis-pyridyl-bis-amide and 1,4-naphthalenedicarboxylic acid have been hydrothermally synthesized and characterized. The fluorescent, electrochemical and magnetic properties of 1–3 have been investigated. - Highlights: • Three multifunctional cobalt(II) complexes based on various bis-pyridyl-bis-amide ligands. • Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8

  15. Stabilizing coordinated radicals via metal-ligand covalency: a structural, spectroscopic, and theoretical investigation of group 9 tris(dithiolene) complexes.

    PubMed

    Morsing, Thorbjørn J; MacMillan, Samantha N; Uebler, Jacob W H; Brock-Nannestad, Theis; Bendix, Jesper; Lancaster, Kyle M

    2015-04-01

    Proper assignment of redox loci in coordination complexes with redox-active ligands to either the metal or the ligand is essential for rationalization of their chemical reactivity. However, the high covalency endemic to complexes of late, third-row transition metals complicates such assignments. Herein, we systematically explore the redox behavior of a series of group 9 tris(dithiolene) complexes, [M(mnt)3]3– (M = Ir, Rh, Co; mnt = maleonitriledithiolate). The Ir species described comprise the first examples of homoleptic Ir dithiolene complexes. The enhanced metal–ligand covalency of the Ir–S interaction leads to remarkable reactivity of [Ir(mnt)3]3– and stabilization of mononuclear [Ir(mnt)3]2– complex ions as well as dimerized versions featuring weak, covalent, intermolecular S–S bonds. The dianionic Rh and Co analogues are, in contrast, highly unstable, resulting in the rapid formation of [Rh2(mnt)5]4– and [Co(mnt)2]22–, respectively. The synthesized complexes were studied by single-crystal X-ray diffraction, X-ray absorption spectroscopy, optical spectroscopy, magnetometry, density functional theory, and spectroscopy-oriented configuration interaction calculations. Spectroscopic and theoretical analyses suggest that the stability of [Ir(mnt)3]2– may be attributed to dilution of ligand radical character by a high degree of Ir 5d character in the singly occupied molecular orbital.

  16. Using low-frequency IR spectra for the unambiguous identification of metal ion-ligand coordination sites in purpose-built complexes.

    PubMed

    Varga, Gábor; Csendes, Zita; Peintler, Gábor; Berkesi, Ottó; Sipos, Pál; Pálinkó, István

    2014-03-25

    One of the aims of our long-term research is the identification of metal ion-ligand coordination sites in bioinspired metal ion-C- or N-protected amino acid (histidine, tyrosine, cysteine or cystine) complexes immobilised on the surface of chloropropylated silica gel or Merrifield resin. In an attempt to reach this goal, structurally related, but much simpler complexes have been prepared and their metal ion-ligand vibrations were determined from their low-frequency IR spectra. The central ions were Mn(II), Co(II), Ni(II) or Cu(II) and the ligands (imidazole, isopropylamine, monosodium malonate) were chosen to possess only one-type of potential donor group. The low-frequency IR spectra were taken of the complexes for each ion-ligand combination and the typical metal ion-functional group vibration bands were selected and identified. The usefulness of the obtained assignments is demonstrated on exemplary immobilised metal ion-protected amino acid complexes.

  17. Analysis of the Role of Peripheral Ligands Coordinated to Zn(II) in Enhancing the Energy Barrier in Luminescent Linear Trinuclear Zn-Dy-Zn Single-Molecule Magnets.

    PubMed

    Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique

    2015-10-26

    Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L(2-) is the di-deprotonated form of the N2 O2 compartmental N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2 O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2 O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff ) for the reversal of the magnetization of 96.9(6) K with τ0 =2.4×10(-7)  s, 146.8(5) K with τ0 =9.2×10(-8)  s, and 146.1(10) K with τ0 =9.9×10(-8)  s for compounds with ZnOH2 , ZnBr, and ZnCl motifs, respectively. The Cole-Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff =128.6(5) K and τ0 =1.8×10(-8)  s for 1, Ueff =214.7 K and τ0 =9.8×10(-9)  s for 2, and Ueff =202.4 K and τ0 =1.5×10(-8)  s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy(3+) ion, which thus creates a strong crystal field that stabilizes the axial MJ =±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination

  18. Analysis of the Role of Peripheral Ligands Coordinated to Zn(II) in Enhancing the Energy Barrier in Luminescent Linear Trinuclear Zn-Dy-Zn Single-Molecule Magnets.

    PubMed

    Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique

    2015-10-26

    Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L(2-) is the di-deprotonated form of the N2 O2 compartmental N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2 O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2 O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff ) for the reversal of the magnetization of 96.9(6) K with τ0 =2.4×10(-7)  s, 146.8(5) K with τ0 =9.2×10(-8)  s, and 146.1(10) K with τ0 =9.9×10(-8)  s for compounds with ZnOH2 , ZnBr, and ZnCl motifs, respectively. The Cole-Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff =128.6(5) K and τ0 =1.8×10(-8)  s for 1, Ueff =214.7 K and τ0 =9.8×10(-9)  s for 2, and Ueff =202.4 K and τ0 =1.5×10(-8)  s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy(3+) ion, which thus creates a strong crystal field that stabilizes the axial MJ =±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination

  19. o-, m-, and p-Pyridyl isomer effects on construction of 1D loop-and-chains: Silver(I) coordination polymers with Y-type tridentate ligands

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Gyun; Cho, Yoonjung; Lee, Haeri; Lee, Young-A.; Jung, Ok-Sang

    2016-10-01

    Self-assembly of silver(I) hexafluorophosphate with unique Y-type tridentate ligands (2,6-bis[(2-picolinoyloxy-5-methylphenyl)methyl]-p-tolylpicolinate (o-L), 2-nicotinoyloxy- (m-L), and 2-isonicotinoyloxy- (p-L)) produces single crystals consisting of 1D loop-and-chain coordination polymers of [Ag(o-L)](PF6)·Me2CO·CHCl3, [Ag(m-L)](PF6)·Me2CO, and [Ag3(p-L)2](PF6)3·2H2O·2C2H5OH·4CH2Cl2 with quite different trigonal prismatic, trigonal, and linear silver(I) coordination geometry, respectively. Coordinating ability of the three ligands for AgPF6 is in the order of p-L > o-L > m-L. The solvate molecules of [Ag(o-L)](PF6)·Me2CO·CHCl3 can be removed, and be replaced reversibly in the order of acetone ≫ chloroform ≈ dichloromethane ≫ benzene, without destruction of its skeleton.

  20. Synthesis, selected coordination chemistry and extraction behavior of a (phosphinoylmethyl)pyridyl N-oxide-functionalized ligand based upon a 1,4-diazepane platform

    SciTech Connect

    Ouizem, Sabrina; Rosario Amorin, Daniel; Dickie, Diane A.; Cramer, Roger E.; Campana, Charles F.; Hay, Benjamin P.; Podair, Julien; Delmau, Laetitia H.; Paine, Robert T.

    2015-05-09

    For syntheses of new multidentate chelating ligands ((6,6'4(1,4-diazepane-1,4-diyl)bis(methylene))bis(pyridine-6,2-diyl))bis(methylene))bis(diphenylphosphine oxide) (2) and 6,6'-((1,4-diazepane1,4-diyl)bis(methylene))bis(2-((diphenylphosphoryl)methyl)pyridine 1-oxide) (3), based upon a 1,4-diazepane platform functionalized with 2-(diphenylphosphinoylmethyl)pyridine P-oxide and 2-(diphenylphosphinoylmethyl)pyridine NP-dioxide fragments, respectively, the results are reported. Our results from studies of the coordination chemistry of the ligands with selected lanthanide nitrates and Cu(BF4)(2) are outlined, and crystal structures for two complexes, [Cu(2)](BF4)2 and [Cu(3)](BF4)2, are described along with survey Eu(III) and Am(III) solvent extraction analysis, for 3.

  1. Synthesis, selected coordination chemistry and extraction behavior of a (phosphinoylmethyl)pyridyl N-oxide-functionalized ligand based upon a 1,4-diazepane platform

    DOE PAGES

    Ouizem, Sabrina; Rosario Amorin, Daniel; Dickie, Diane A.; Cramer, Roger E.; Campana, Charles F.; Hay, Benjamin P.; Podair, Julien; Delmau, Laetitia H.; Paine, Robert T.

    2015-05-09

    For syntheses of new multidentate chelating ligands ((6,6'4(1,4-diazepane-1,4-diyl)bis(methylene))bis(pyridine-6,2-diyl))bis(methylene))bis(diphenylphosphine oxide) (2) and 6,6'-((1,4-diazepane1,4-diyl)bis(methylene))bis(2-((diphenylphosphoryl)methyl)pyridine 1-oxide) (3), based upon a 1,4-diazepane platform functionalized with 2-(diphenylphosphinoylmethyl)pyridine P-oxide and 2-(diphenylphosphinoylmethyl)pyridine NP-dioxide fragments, respectively, the results are reported. Our results from studies of the coordination chemistry of the ligands with selected lanthanide nitrates and Cu(BF4)(2) are outlined, and crystal structures for two complexes, [Cu(2)](BF4)2 and [Cu(3)](BF4)2, are described along with survey Eu(III) and Am(III) solvent extraction analysis, for 3.

  2. Effect of three bis-pyridyl-bis-amide ligands with various spacers on the structural diversity of new multifunctional cobalt(II) coordination polymers

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Yan; Lu, Huizhe; Le, Mao; Luan, Jian; Wang, Xiu-Li; Liu, Guocheng; Zhang, Juwen

    2015-03-01

    Three new cobalt(II) coordination polymers [Co2(1,4-NDC)2(3-bpye)(H2O)] (1), [Co(1,4-NDC)(3-bpfp)(H2O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N‧-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N‧-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H2NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1-3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected {420.68} topology constructed from 3D [Co2(1,4-NDC)2(H2O)]n framework and bidentate 3-bpye ligands. Complex 2 shows 1D "cage+cage"-like chain formed by 1D [Co2(1,4-NDC)2]n ribbon chains and [Co2(3-bpfp)2] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected {412.63} topology based on 2D [Co2(1,4-NDC)2]n layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1-3 have been investigated.

  3. Synthesis and explosive properties of copper(II) chlorate(VII) coordination polymer with 4-amino-1,2,4-triazole bridging ligand.

    PubMed

    Cudziło, Stanisław; Nita, Marcin

    2010-05-15

    Copper(II) chlorate(VII) coordination polymer with 4-amino-1,2,4-triazole as bridging ligand was prepared and characterized by elemental analysis, IR spectra and TG/DTA analyses. Sensitivity and detonator tests were also preformed. The compound has a 1D chain structure in which Cu(II) ions are linked by triple triazole N1,N2 bridges. It is a detonat with performance close to that of lead azide, but at the same time it shows moderate sensitivity to thermal (explosively decomposes above 250 degrees C) and mechanical stimuli (sensitivity to friction 10N).

  4. Bulky N-Phosphino-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Ruthenium Coordination Chemistry, and Ruthenium Alkylidene Complexes for Olefin Metathesis.

    PubMed

    Brown, Christopher C; Rominger, Frank; Limbach, Michael; Hofmann, Peter

    2015-11-01

    Ruthenium chemistry and applications in catalytic olefin metathesis based on N-phosphino-functionalized N-heterocyclic carbene ligands (NHCPs) are presented. Alkyl NHCP Ru coordination chemistry is described, and access to several potential synthetic precursors for ruthenium alkylidene complexes is outlined, incorporating both trimethylsilyl and phenyl alkylidenes. The Ru alkylidene complexes are evaluated as potential olefin metathesis catalysts and were shown to behave in a latent fashion. They displayed catalytic activity at elevated temperatures for both ring closing metathesis and ring opening metathesis polymerization.

  5. Formation of Foam-like Microstructural Carbon Material by Carbonization of Porous Coordination Polymers through a Ligand-Assisted Foaming Process.

    PubMed

    Kongpatpanich, Kanokwan; Horike, Satoshi; Fujiwara, Yu-Ichi; Ogiwara, Naoki; Nishihara, Hirotomo; Kitagawa, Susumu

    2015-09-14

    Porous carbon material with a foam-like microstructure has been synthesized by direct carbonization of porous coordination polymer (PCP). In situ generation of foaming agents by chemical reactions of ligands in PCP during carbonization provides a simple way to create lightweight carbon material with a foam-like microstructure. Among several substituents investigated, the nitro group has been shown to be the key to obtain the unique foam-like microstructure, which is due to the fast kinetics of gas evolution during carbonization. Foam-like microstructural carbon materials showed higher pore volume and specific capacitance compared to a microporous carbon.

  6. Bulky N-Phosphino-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Ruthenium Coordination Chemistry, and Ruthenium Alkylidene Complexes for Olefin Metathesis.

    PubMed

    Brown, Christopher C; Rominger, Frank; Limbach, Michael; Hofmann, Peter

    2015-11-01

    Ruthenium chemistry and applications in catalytic olefin metathesis based on N-phosphino-functionalized N-heterocyclic carbene ligands (NHCPs) are presented. Alkyl NHCP Ru coordination chemistry is described, and access to several potential synthetic precursors for ruthenium alkylidene complexes is outlined, incorporating both trimethylsilyl and phenyl alkylidenes. The Ru alkylidene complexes are evaluated as potential olefin metathesis catalysts and were shown to behave in a latent fashion. They displayed catalytic activity at elevated temperatures for both ring closing metathesis and ring opening metathesis polymerization. PMID:26479425

  7. Effect of axial ligand, spin state, and hydrogen bonding on the inner-sphere reorganization energies of functional models of cytochrome P450.

    PubMed

    Bandyopadhyay, Sabyasachi; Rana, Atanu; Mittra, Kaustuv; Samanta, Subhra; Sengupta, Kushal; Dey, Abhishek

    2014-10-01

    Using a combination of self-assembly and synthesis, bioinspired electrodes having dilute iron porphyrin active sites bound to axial thiolate and imidazole axial ligands are created atop self-assembled monolayers (SAMs). Resonance Raman data indicate that a picket fence architecture results in a high-spin (HS) ground state (GS) in these complexes and a hydrogen-bonding triazole architecture results in a low-spin (LS) ground state. The reorganization energies (λ) of these thiolate- and imidazole-bound iron porphyrin sites for both HS and LS states are experimentally determined. The λ of 5C HS imidazole and thiolate-bound iron porphyrin active sites are 10-16 kJ/mol, which are lower than their 6C LS counterparts. Density functional theory (DFT) calculations reproduce these data and indicate that the presence of significant electronic relaxation from the ligand system lowers the geometric relaxation and results in very low λ in these 5C HS active sites. These calculations indicate that loss of one-half a π bond during redox in a LS thiolate bound active site is responsible for its higher λ relative to a σ-donor ligand-like imidazole. Hydrogen bonding to the axial ligand leads to a significant increase in λ irrespective of the spin state of the iron center. The results suggest that while the hydrogen bonding to the thiolate in the 5C HS thiolate bound active site of cytochrome P450 (cyp450) shifts the potential up, resulting in a negative ΔG, it also increases λ resulting in an overall low barrier for the electron transfer process.

  8. A novel one-dimensional manganese(II) coordination polymer containing both dicyanamide and pyrazinamide ligands: Synthesis, spectroscopic investigations, X-ray studies and evaluation of biological activities

    NASA Astrophysics Data System (ADS)

    Tabrizi, Leila; Chiniforoshan, Hossein; McArdle, Patrick

    2015-03-01

    A novel 1D coordination polymer {[Mn(μ1,5-dca)2(PZA)2](PZA)2}n, 1, has been synthesized and characterized by single crystal X-ray crystallography. The coordination mode of dicyanamide (dca) and pyrazinamide (PZA) ligands was inferred by IR spectroscopy. The compound 1 was evaluated for in vitro antimycobacterial and antitumor activities. It demonstrated better in vitro activity against Mycobacterium tuberculosis than pyrazinamide and its MIC value was determined. Complex 1 was also screened for its in vitro antitumor activity towards LM3 and LP07 murine cancer cell lines. In addition, the antibacterial activity of complex 1 has been tested against Gram(+) and Gram(-) bacteria and it has shown promising broad range anti-bacterial activity.

  9. A two-dimensional cadmium(II) coordination polymer based on 1-cyanomethyl-4-aza-1-azoniabicyclo[2.2.2]octane and thiocyanate ligands.

    PubMed

    Wang, Hui-Ting; Li, Qiang; Zhou, Lin

    2015-09-01

    A cadmium-thiocyanate complex, poly[(1-cyanomethyl-4-aza-1-azoniabicyclo[2.2.2]octane-κ(4)N)octakis-μ2-thiocyanato-κ(8)N:S;κ(8)S:N-tricadmium(II)], [Cd3(C8H14N3)2(NCS)8]n, was synthesized by the reaction of 1-cyanomethyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride, cadmium nitrate tetrahydrate and potassium thiocyanide in aqueous solution. In the crystal structure, there are two independent types of Cd(II) cation (one on a centre of inversion and one in a general position) and both are in distorted octahedral coordination environments, coordinated by N and S atoms from different ligands. Neighbouring Cd(II) cations are linked together by thiocyanate bridges to form a two-dimensional network. Hydrogen-bonding interactions are involved in the formation of a three-dimensional supramolecular network.

  10. Zn(II)-coordination modulated ligand photophysical processes – the development of fluorescent indicators for imaging biological Zn(II) ions

    PubMed Central

    Yuan, Zhao; Simmons, J. Tyler; Sreenath, Kesavapillai

    2014-01-01

    Molecular photophysics and metal coordination chemistry are the two fundamental pillars that support the development of fluorescent cation indicators. In this article, we describe how Zn(II)-coordination alters various ligand-centered photophysical processes that are pertinent to developing Zn(II) indicators. The main aim is to show how small organic Zn(II) indicators work under the constraints of specific requirements, including Zn(II) detection range, photophysical requirements such as excitation energy and emission color, temporal and spatial resolutions in a heterogeneous intracellular environment, and fluorescence response selectivity between similar cations such as Zn(II) and Cd(II). In the last section, the biological questions that fluorescent Zn(II) indicators help to answer are described, which have been motivating and challenging this field of research. PMID:25071933

  11. Modification of σ-Donor Properties of Terminal Carbide Ligands Investigated Through Carbide-Iodine Adduct Formation.

    PubMed

    Reinholdt, Anders; Vosch, Tom; Bendix, Jesper

    2016-09-26

    The terminal carbide ligands in [(Cy3 P)2 X2 Ru≡C] complexes (X=halide or pseudohalide) coordinate molecular iodine, affording charge-transfer complexes rather than oxidation products. Crystallographic and vibrational spectroscopic data show the perturbations of iodine to vary with the auxiliary ligand sphere on ruthenium, demonstrating the σ-donor properties of carbide complexes to be tunable. PMID:27612099

  12. Combined computational design of a zinc binding site and a protein-protein interaction: one open zinc coordination sphere was not a robust hotspot for de novo ubiquitin binding

    PubMed Central

    Der, Bryan S.; Jha, Ramesh K.; Lewis, Steven M.; Thompson, Peter M.; Guntas, Gurkan; Kuhlman, Brian

    2014-01-01

    We computationally designed a de novo protein-protein interaction between wild-type ubiquitin and a redesigned scaffold. Our strategy was to incorporate zinc at the designed interface to promote affinity and orientation specificity. A large set of monomeric scaffold surfaces were computationally engineered with three-residue zinc coordination sites, and the ubiquitin residue H68 was docked to the open coordination sphere to complete a tetrahedral zinc site. This single coordination bond was intended as a hotspot and polar interaction for ubiquitin binding, and surrounding residues on the scaffold were optimized primarily as hydrophobic residues using a rotamer-based sequence design protocol in Rosetta. From thousands of independent design simulations, four sequences were selected for experimental characterization. The best performing design, called Spelter, binds tightly to zinc (Kd < 10 nM) and binds ubiquitin with a Kd of 20 µM in the presence of zinc and 68 µM in the absence of zinc. Mutagenesis and NMR chemical shift perturbation experiments indicate that Spelter interacts with H68 and the target surface on ubiquitin, however, H68 does not form a hotspot as intended. Mutation of H68 to alanine tightens (five-fold) instead of weakens binding. While a 3/1 zinc coordination arrangement at an interface cannot be ruled out as a means to improve affinity, our study led us to conclude that 2/2 coordination arrangements or multiple-zinc designs are more likely to promote high-affinity protein interactions. PMID:23504819

  13. Coordination ligand exchange of a xanthene probe-Ce(III) complex for selective fluorescence sensing of inorganic pyrophosphate.

    PubMed

    Kittiloespaisan, Ekkachai; Takashima, Ippei; Kiatpathomchai, Wansika; Wongkongkatep, Jirarut; Ojida, Akio

    2014-02-28

    A fluorescence sensing system for inorganic pyrophosphate based on ligand exchange of the Ce(III) complex of a xanthene-type probe is developed. This sensing system is successfully applied to the fluorescence detection of polymerase-catalyzed DNA amplification using loop-mediated isothermal amplification.

  14. Two 2D Cd(II) coordination polymers based on asymmetrical Schiff-base ligand: Synthesis, crystal structures and luminescent properties

    NASA Astrophysics Data System (ADS)

    Dang, Dong-Bin; Li, Meng-Meng; Bai, Yan; Zhou, Rui-Min

    2013-02-01

    Two new two-dimensional coordination polymers [Cd3L2(SCN)6]n (1) and [CdLI2]n (2) have been synthesized and characterized by IR spectroscopy, elemental analysis, TG technique, XRPD and complete single crystal structure analysis, where L is 4-(pyridine-2-yl)methyleneamino-1,2,4-trizaole. Asymmetrical Schiff-base ligand L with five- and six-membered N-containing heterocyclic rings acts as a tridentate bridging ligand to bind two Cd(II) centers through one terminal Ntriazolyl and one pyridylimine chelate unit in 1 and 2. For polymer 1, tridentate bridging ligands link Cd-(1,3-μ-SCN-) 1D inorganic chains to form a 2D layer network. The existence of Csbnd H⋯π and πsbnd π stacking interactions between 2D hybrid layers further gives rise to a 3D supramolecular network. In comparison with 1, polymer 2 shows a 2D layer network containing hexanuclear macrometallacyclic units. The 2D layers are staggered together through the combination of Csbnd H⋯π and πsbnd π stacking interactions and forming a 3D supramolecular structure. The luminescent properties of the polymers 1 and 2 were investigated in the solid state at room temperature.

  15. Rational assembly of Pb(II)/Cd(II)/Mn(II) coordination polymers based on flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    SciTech Connect

    Yang, Gao-Shan; Liu, Chong-Bo; Liu, Hong; Robbins, Julianne; Zhang, Z. John; Yin, Hong-Shan; Wen, Hui-Liang; Wang, Yu-Hua

    2015-05-15

    Six new coordination polymers, namely, [Pb(L)(H{sub 2}O)] (1), [Pb(L)(phen)] (2), [Pb{sub 2}(L){sub 2}(4,4′-bipy){sub 0.5}] (3), [Cd(L)(phen)] (4), [Cd(L)(4,4′-bipy)]·H{sub 2}O (5) and [Mn(L)(4,4′-bipy)]·H{sub 2}O (6) have been synthesized by the hydrothermal reaction of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) with Pb(II)/Cd(II)/Mn(II) in the presence of ancillary ligands 4,4′-bipyridine (4,4′-bipy) or 1,10-phenanthroline (phen). Complexes 1 and 4–6 exhibit 2-D structures, and complexes 2–3 display 3-D frameworks, of which L{sup 2−} ligands join metal ions to single-stranded helical chains of 1, 3–6 and double-stranded helical chains of 2. Complexes 2 and 3 also contain double-stranded Metal–O helices. Topology analysis reveals that complexes 1 and 4 both represent 4-connected sql net, 2 represents 6-connected pcu net, 3 exhibits a novel (3,12)-connected net, while 5 and 6 display (3,5)-connected gek1 net. The six complexes exhibit two kinds of inorganic–organic connectivities: I{sup 0}O{sup 2} for 1, 4–6, and I{sup 1}O{sup 2} for 2–3. The photoluminescent properties of 4–5 and the magnetic properties of 6 have been investigated. - Graphical abstract: Six new Pb(II)/Cd(II)/Mn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent and magnetic properties have been investigated. - Highlights: • Six novel M(II) coordination polymers with 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid and N-donor ligands. • Complexes 1–6 show diverse intriguing helical characters. • The luminescent properties of complexes 1–5 were investigated. • Complex 6 shows antiferromagnetic coupling.

  16. Controlling the self-assembly of homochiral coordination architectures of Cu(II) by substitution in amino acid based ligands: synthesis, crystal structures and physicochemical properties.

    PubMed

    Kumar, Navnita; Khullar, Sadhika; Mandal, Sanjay K

    2015-03-28

    Through the strategic design of ligands based on amino acids, structural diversity in chiral coordination architectures of CuII is demonstrated with six new examples: {[Cu(L-HTyrbenz)2]·CH3OH·H2O}n (1), {[Cu(L-HSerbenz)2]·3H2O}n (2), {[Cu(L-HTyrthio)2]·H2O}n (3), [Cu(L-HTyr4-pyr)2(H2O)]·2H2O (4), [Cu(L-HSerthio)2(H2O)] (5), and [Cu(L-Phethio)2(H2O)]·3H2O (6) [where L-H2Tyrbenz = L-N-(benzyl)-tyrosine, L-H2Serbenz = L-N-(benzyl)-serine, L-H2Tyrthio = L-N-(methyl-2-thiophenyl)-tyrosine, L-H2Tyr4-pyr = L-N-(methyl-4-pyridyl)-tyrosine, L-H2Serthio = L-N-(methyl-2-thiophenyl)-serine and L-HPhethio = L-N-(methyl-2-thiophenyl)-phenylalanine]. For these 1:2 metal–ligand complexes, the availability of a donor atom (either from the phenolic OH group or the carboxylate group of one of the ligands) for bridging between the CuII centers results in the formation of coordination polymers (1–3), while no such availability allows a water molecule to occupy the fifth site around the CuII center to generate hydrogen bonded supramolecular assemblies (4–6). In 1, a coordination polymer is formed via a syn–anti bridging carboxylate, and the phenolic group has no role in its formation. To further emphasize this point, L-tyrosine in 1 is replaced with L-serine to form 2, in which an anti–anti bridging by the carboxylate group is observed. On the other hand, the formation of {[Cu(L-HTyrthio)2]·H2O}n (3) results from the growth of a spiral polymer via the unique phenolic bridging with a distance of 10.806(9) Å between two CuII centers. On changing from the L-H2Tyrbenz ligand to the L-H2Tyr4-pyr ligand (1vs.4), the strong hydrogen bonding of the pyridyl nitrogen with the phenolic group does not allow the latter to bind to CuII. Similarly, on changing from L-H2Tyrthio to L-H2Serthio (3vs.5), the length of the –CH2OH group in the latter is much less than the distance between the two CuII centers, therefore this group cannot occupy the fifth site and thus a water molecule is

  17. Copper and cobalt coordination polymers based on isophthalate as bridging ligands and imidazole as capping ligands: Syntheses, crystal structures, spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Song, Jiang-Feng; Chen, Yan; Li, Zhi-Gang; Zhou, Rui-Sha; Xu, Xiao-Yu; Xu, Ji-Qing

    2007-10-01

    Two novel coordination polymers, {[Cu(ip)(Him) 2(DMF)]·H 2O} ( 1) and Co(ip)(Him) 2 ( 2), (ip = isophthalate, Him = imidazole) were prepared under hydrothermal conditions and their structures were determined by single-crystal X-ray diffraction. X-ray structural analysis reveals that 1-D zigzag metal-organic chains are connected to form a 3-D supramolecular framework in compounds 1 and 2 by hydrogen-bonding and π-π interaction or other intermolecular contacts. Infrared, UV-vis, and elemental analysis were performed to characterize the two compounds. The result of magnetic determination for compound 2 shows there exist antiferromagnetic interaction between magnetic centers.

  18. Sticky surface: sphere-sphere adhesion dynamics

    PubMed Central

    Sircar, Sarthok; Younger, John G.; Bortz, David M.

    2014-01-01

    We present a multi-scale model to study the attachment of spherical particles with a rigid core, coated with binding ligands and suspended in the surrounding, quiescent fluid medium. This class of fluid-immersed adhesion is widespread in many natural and engineering settings, particularly in microbial surface adhesion. Our theory highlights how the micro-scale binding kinetics of these ligands, as well as the attractive / repulsive surface potential in an ionic medium affects the eventual macro-scale size distribution of the particle aggregates (flocs). The bridge between the micro-macro model is made via an aggregation kernel. Results suggest that the presence of elastic ligands on the particle surface lead to the formation of larger floc aggregates via efficient inter-floc collisions (i.e., non-zero sticking probability, g). Strong electrolytic composition of the surrounding fluid favors large floc formation as well. The kernel for the Brownian diffusion for hard spheres is recovered in the limit of perfect binding effectiveness (g → 1) and in a neutral solution with no dissolved salts. PMID:25159830

  19. Tris(carbene)borate ligands featuring imidazole-2-ylidene, benzimidazol-2-ylidene and 1,3,4-triazol-2-ylidene donors. Evaluation of donor properties in four-coordinate {NiNO}10 complexes

    PubMed Central

    Muñoz, Salvador B.; Foster, Wallace K.; Lin, Hsiu-Jung; Margarit, Charles G.; Dickie, Diane A.

    2012-01-01

    The synthesis and characterization of new tris(carbene)borate ligand precursors containing substituted benzimidazol-2-ylidene and 1,3,4-triazol-2-ylidene donor groups, as well as a new tris(imidazol-2-ylidene)borate ligand precursor are reported. The relative donor strength of the tris(carbene)borate ligands have been evaluated by the position of ν(NO) in four-coordinate {NiNO}10 complexes, and follows the order: imidazol-2-ylidene > benzimidazol-2-ylidene > 1,3,4-triazol-2-ylidene. There is a large variation in ν(NO), suggesting these ligands to have a wide range of donor strengths while maintaining a consistent ligand topology. All ligands are stronger donors than Tp* and Cp*. PMID:23140462

  20. Tyrosine-Coordinated P-Cluster in G. diazotrophicus Nitrogenase: Evidence for the Importance of O-Based Ligands in Conformationally Gated Electron Transfer.

    PubMed

    Owens, Cedric P; Katz, Faith E H; Carter, Cole H; Oswald, Victoria F; Tezcan, F Akif

    2016-08-17

    The P-cluster is a unique iron-sulfur center that likely functions as a dynamic electron (e(-)) relay site between the Fe-protein and the catalytic FeMo-cofactor in nitrogenase. The P-cluster has been shown to undergo large conformational changes upon 2-e(-) oxidation which entail the coordination of two of the Fe centers to a Ser side chain and a backbone amide N, respectively. Yet, how and if this 2-e(-) oxidized state (P(OX)) is involved in catalysis by nitrogenase is not well established. Here, we present the crystal structures of reduced and oxidized MoFe-protein (MoFeP) from Gluconacetobacter diazotrophicus (Gd), which natively possesses an Ala residue in the position of the Ser ligand to the P-cluster. While reduced Gd-MoFeP is structurally identical to previously characterized counterparts around the FeMo-cofactor, oxidized Gd-MoFeP features an unusual Tyr coordination to its P-cluster along with ligation by a backbone amide nitrogen. EPR analysis of the oxidized Gd-MoFeP P-cluster confirmed that it is a 2-e(-) oxidized, integer-spin species. Importantly, we have found that the sequence positions corresponding to the Ser and Tyr ligands are almost completely covariant among Group I nitrogenases. These findings strongly support the possibility that the P(OX) state is functionally relevant in nitrogenase catalysis and that a hard, O-based anionic ligand serves to stabilize this state in a switchable fashion. PMID:27487256

  1. Syntheses, structures and luminescent properties of zinc(II) and cadmium(II) coordination complexes based on new bis(imidazolyl)ether and different carboxylate ligands.

    PubMed

    Wei, Guo-Hua; Yang, Jin; Ma, Jian-Fang; Liu, Ying-Ying; Li, Shun-Li; Zhang, Lai-Ping

    2008-06-21

    A series of mixed-ligand coordination complexes, namely [Zn(CA)(2)(BIE)] (1), [Zn(OX)(BIE)].H(2)O (2), [Zn(2)(m-BDC)(2)(BIE)(2)] (3), [Cd(m-BDC)(BIE)] (4), [Cd(5-OH-m-BDC)(BIE)] (5), [Zn(5-OH-m-BDC)(BIE)] (6), [Zn(2)(p-BDC)(2)(BIE)(2)].2.5H(2)O (7), [Cd(3)(p-BDC)(3)(BIE)] (8), [Cd(3)(BTC)(2)(BIE)(2)].0.5H(2)O (9) and [Zn(BTCA)(0.5)(BIE)] (10), where CA = cinnamate anion, OX = oxalate anion, m-BDC = 1,3-benzenedicarboxylate anion, 5-OH-m-BDC = 5-OH-1,3-benzenedicarboxylate anion, p-BDC = 1,4-benzenedicarboxylate anion, BTC = 1,3,5-benzenetricarboxylate anion, BTCA = 1,2,3,4-butanetetracarboxylate anion, and BIE = 2,2'-bis(1H-imidazolyl)ether, were synthesized under hydrothermal conditions. In 1, a pair of BIE ligands bridge adjacent Zn(II) atoms to give a centrosymmetric dimer. In 2 and 3, BIE ligands connect Zn(II)-carboxylate chains to form hexagonal honeycomb 6(3)-hcb and square 4(4)-sql layers, respectively. In 4 and 5, m-BDC and 5-OH-m-BDC bridge Cd(II) atoms to give dimeric units, respectively, which are further linked by BIE ligands to form sql nets. In 6, the BIE ligands extend the Zn(II)-carboxylate chains into 2D sinusoidal-like sql nets. The undulated sql nets polycatenate each other in the parallel manner with DOC (degree of catenation) = 2, yielding a rare 2D --> 3D parallel polycatenation net. In 7, the BIE and p-BDC ligands link the Zn(ii) atoms to give a rare 3-fold interpenetrated 3-connected 10(3)-ths net. 8 contains unusual edge-sharing polyhedral rods formed by [Cd(3)(CO(2))(6)] clusters. Each rod is connected by the benzene rings of p-BDC in four directions into a simple alpha-Po topology. In 9, two kinds of different 2D Cd-BTC layers are alternately linked to each other by sharing Cd(ii) centers to form a 3D framework, which is further linked by two kinds of BIE ligand to produce a complicated 3D polymeric structure. 10 possesses a unique (3,4)-connected 3D framework with (8(3))(2)(8(5).10) topology. The structural differences described

  2. Tuning the electronic coupling in Mo2-Mo2 systems by variation of the coordinating atoms of the bridging ligands.

    PubMed

    Shu, Yao; Lei, Hao; Tan, Ying Ning; Meng, Miao; Zhang, Xiao Chun; Liu, Chun Y

    2014-10-21

    Three novel [Mo2]-bridge-[Mo2] complexes were synthesized by a convergent assembling reaction of the dimetal precursor Mo2(DAniF)3(O2CCH3) (DAniF = N,N'-di(p-anisyl)formamidinate) with the bridging ligands terephthalamidine, terephthalamide and dithioterephthalamide. The structures of these compounds, [Mo2(DAniF)3]2[μ-1,4-{C(E)NH}2-C6H4] (E = NH (), O () or S ()), were determined, either by X-ray crystallography or (1)H NMR spectroscopy, to be the analogues of the terephthalate bridged dimolybdenum dimer. These compounds are structurally and electronically closely related by having the same structural skeleton and similar bonding parameters, which allowed us to analyze the differences between N, O and S atoms on the bridging ligand in promoting electronic interaction between the two [Mo2] units. In the electronic spectra, the metal to ligand charge transfer absorption bands, attributed to the HOMO (dδ) → LUMO (pπ*) transition, was red shifted as the variable atoms change from N to O to S. The mixed-valence species (+), (+) and (+), generated by one-electron oxidation of the neutral precursors and measured in situ, exhibited characteristic intervalence absorption bands, for which the energy and half-height bandwidth decreased from (+) to (+). Therefore, in comparison to O atoms, S atoms are capable of enhancing the electronic coupling between the two [Mo2] units, and the incorporation of N atoms to the bridging ligands slightly diminished the metal-metal interaction. The molecular structures and spectroscopic properties of these compounds were simulated by theoretical calculations at DFT level on the simplified models, which gave results consistent with the experimental observations.

  3. Characterization and catechole oxidase activity of a family of copper complexes coordinated by tripodal pyrazole-based ligands.

    PubMed

    Marion, R; Zaarour, M; Qachachi, N A; Saleh, N M; Justaud, F; Floner, D; Lavastre, O; Geneste, F

    2011-11-01

    A family of tripodal pyrazole-based ligands has been synthesized by a condensation reaction between 1-hydroxypyrazoles and aminoalcohols. The diversity was introduced both on the substituents of the pyrazole ring and on the side chain. The corresponding copper(II) complexes have been prepared by reaction with CuCl(2) in tetrahydrofuran. They have been characterized by EPR, UV spectroscopy and cyclic voltammetry. The absence of the half-field splitting signals in EPR suggests that the complex exists in solution as mononuclear species. The influence of substituents and side chain of the tripodal ligand on the catecholase activity of the complexes was studied. The reaction rate depends on two factors. First, the presence of an oxygen atom in the third position of the side chain should be avoided to keep the effectiveness of the reaction. Second, the electronic and steric effects of substituents on the pyrazole ring strongly affect the catalytic activity of the complex. Thus, best results were obtained with complexes containing unsubstituted pyrazole based-ligands. Kinetic investigations with the best catalyst based on the Michaelis-Menten model show that the catalytic activity of the mononuclear complex is close to that of some dicopper complexes described in literature. PMID:21946439

  4. Probing Ternary Complex Equilibria of Crown Ether Ligands by Time-Resolved Fluorescence Spectroscopy

    PubMed Central

    2015-01-01

    Ternary complex formation with solvent molecules and other adventitious ligands may compromise the performance of metal-ion-selective fluorescent probes. As Ca(II) can accommodate more than 6 donors in the first coordination sphere, commonly used crown ether ligands are prone to ternary complex formation with this cation. The steric strain imposed by auxiliary ligands, however, may result in an ensemble of rapidly equilibrating coordination species with varying degrees of interaction between the cation and the specific donor atoms mediating the fluorescence response, thus diminishing the change in fluorescence properties upon Ca(II) binding. To explore the influence of ligand architecture on these equilibria, we tethered two structurally distinct aza-15-crown-5 ligands to pyrazoline fluorophores as reporters. Due to ultrafast photoinduced electron-transfer (PET) quenching of the fluorophore by the ligand moiety, the fluorescence decay profile directly reflects the species composition in the ground state. By adjusting the PET driving force through electronic tuning of the pyrazoline fluorophores, we were able to differentiate between species with only subtle variations in PET donor abilities. Concluding from a global analysis of the corresponding fluorescence decay profiles, the coordination species composition was indeed strongly dependent on the ligand architecture. Altogether, the combination of time-resolved fluorescence spectroscopy with selective tuning of the PET driving force represents an effective analytical tool to study dynamic coordination equilibria and thus to optimize ligand architectures for the design of high-contrast cation-responsive fluorescence switches. PMID:25313708

  5. On the search for NNO-donor enantiopure scorpionate ligands and their coordination to group 4 metals.

    PubMed

    Otero, Antonio; Fernández-Baeza, Juan; Tejeda, Juan; Lara-Sánchez, Agustín; Sánchez-Molina, Margarita; Franco, Sonia; López-Solera, Isabel; Rodríguez, Ana M; Sánchez-Barba, Luis F; Morante-Zarcero, Sonia; Garcés, Andrés

    2009-06-15

    The preparation of new chiral bis(pyrazol-1-yl)methane-based NNO-donor scorpionate ligands in the form of the lithium derivatives [Li(bpzb)(THF)] [1; bpzb = 1,1-bis(3,5-dimethylpyrazol-1-yl)-3,3-dimethyl-2-butoxide] and [Li(bpzte)(THF)] [2; bpzte = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-p-tolylethoxide] or the alcohol ligands (bpzbH) (3) and (bpzteH) (4) has been carried out by 1,2-addition reactions with trimethylacetaldehyde or p-tolualdehyde. The separation of a racemic mixture of the alcohol ligand 3 has been achieved and gave an enantiopure NNO alcohol-scorpionate ligand in three synthetic steps: (i) 1,2-addition of the appropriate lithium derivative to trimethylacetaldehyde, (ii) esterification and separation of diastereoisomers 5, (iii) saponification. Subsequently, the enantiopure scorpionate ligand (R,R)-bpzmmH {6; R,R-bpzmmH = (1R)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethanol} was obtained with an excellent diastereomeric excess (>99% de) in a one-pot process utilizing the aldehyde (1R)-(-)-myrtenal as a chiral substrate to control the stereochemistry of the newly created asymmetric center. These new chiral heteroscorpionate ligands reacted with [MX(4)] (M = Ti, Zr; X = NMe(2), O(i)Pr, OEt, O(t)Bu) in a 1:1 molar ratio in toluene to give, after the appropriate workup, the complexes [MX(3)(kappa(3)-NNO)] (7-18). The reaction of Me(3)SiCl with [Ti(NMe(2))(3)(bpzb)] (7) or [Ti(NMe(2))(3)(R,R-bpzmm)] (11) in different molar ratios gave the halide-amide-containing complexes [TiCl(NMe(2))(2)(kappa(3)-NNO)] (19 and 20) and [TiCl(2)(NMe(2))(kappa(3)-NNO)] (21 and 22) and the halide complex [TiCl(3)(kappa(3)-NNO)] (23 and 24). The latter complexes can also be obtained by reaction of the lithium compound 1 with TiCl(4)(THF)(2) and deprotonation of the alcohol group of 6 with NaH, followed by reaction with TiCl(4)(THF)(2) in a 1:1 molar ratio, respectively. Isolation of only one of the three possible diastereoisomers of the

  6. Picosecond binding of the His ligand to four-coordinate heme in cytochrome c': a one-way gate for releasing proximal NO.

    PubMed

    Yoo, Byung-Kuk; Lamarre, Isabelle; Martin, Jean-Louis; Andrew, Colin R; Negrerie, Michel

    2013-02-27

    We provide a direct demonstration of a "kinetic trap" mechanism in the proximal 5-coordinate heme-nitrosyl complex (5c-NO) of cytochrome c' from Alcaligenes xylosoxidans (AXCP) in which picosecond rebinding of the endogenous His ligand following heme-NO dissociation acts as a one-way gate for the release of proximal NO into solution. This demonstration is based upon picosecond transient absorption changes following NO photodissociation of the proximal 5c-NO AXCP complex. We have determined the absolute transient absorption spectrum of 4-coordinate ferrous heme to which NO rebinds with a time constant τ(NO) = 7 ps (k(NO) = 1.4 × 10(11) s(-1)) and shown that rebinding of the proximal histidine to the 4-coordinate heme takes place with a time constant τ(His) = 100 ± 10 ps (k(His) = 10(10) s(-1)) after the release of NO from the proximal heme pocket. This rapid His reattachment acts as a one-way gate for releasing proximal NO by precluding direct proximal NO rebinding once it has left the proximal heme pocket and requiring NO rebinding from solution to proceed via the distal heme face.

  7. Metallogels derived from silver coordination polymers of C3-symmetric tris(pyridylamide) tripodal ligands: synthesis of Ag nanoparticles and catalysis.

    PubMed

    Paul, Mithun; Sarkar, Koushik; Dastidar, Parthasarathi

    2015-01-01

    By applying a recently developed crystal engineering rationale, four C3 symmetric tris(pyridylamide) ligands namely 1,3,5-tris(nicotinamidomethyl)-2,4,6-triethylbenzene, 1,3,5-tris(isonicotinamidomethyl)-2,4,6-triethylbenzene, 1,3,5-tris(nicotinamidomethyl)-2,4,6-trimethylbenzene, and 1,3,5-tris(isonicotinamidomethyl)-2,4,6-trimethylbenzene, which contain potential hydrogen-bonding sites, were designed and synthesized for generating Ag(I) coordination polymers and coordination-polymer-based gels. The coordination polymers thus obtained were characterized by single-crystal X-ray diffraction. The silver metallogels were characterized by transmission electron microscopy (TEM) and dynamic rheology. Upon exposure to visible light, these silver metallogels produced silver nanoparticles (AgNPs), which were characterized by TEM, powder X-ray diffraction, energy dispersive X-ray and X-ray photoelectron spectroscopy. These NPs were found to be effectively catalyzed the reduction of 4-nitrophenolate to 4-aminophenolate without the use of any exogenous reducing agent.

  8. Six-coordinate high-spin iron(ii) complexes with bidentate PN ligands based on 2-aminopyridine - new Fe(ii) spin crossover systems.

    PubMed

    Holzhacker, Christian; Calhorda, Maria José; Gil, Adrià; Carvalho, Maria Deus; Ferreira, Liliana P; Stöger, Berthold; Mereiter, Kurt; Weil, Matthias; Müller, Danny; Weinberger, Peter; Pittenauer, Ernst; Allmaier, Günter; Kirchner, Karl

    2014-08-01

    Several new octahedral iron(ii) complexes of the type [Fe(PN(R)-Ph)2X2] (X = Cl, Br; R = H, Me) containing bidentate PN(R)-Ph (R = H, Me) (1a,b) ligands based on 2-aminopyridine were prepared. (57)Fe Mössbauer spectroscopy and magnetization studies confirmed in all cases their high spin nature at room temperature with magnetic moments very close to 4.9μB reflecting the expected four unpaired d-electrons in all these compounds. While in the case of the PN(H)-Ph ligand an S = 2 to S = 0 spin crossover was observed at low temperatures, complexes with the N-methylated analog PN(Me)-Ph retain an S = 2 spin state also at low temperatures. Thus, [Fe(PN(H)-Ph)2X2] (2a,3a) and [Fe(PN(Me)-Ph)2X2] (2b,3b) adopt different geometries. In the first case a cis-Cl,P,N-arrangement seems to be most likely, as supported by various experimental data derived from (57)Fe Mössbauer spectroscopy, SQUID magnetometry, UV/Vis, Raman, and ESI-MS as well as DFT and TDDFT calculations, while in the case of the PN(Me)-Ph ligand a trans-Cl,P,N-configuration is adopted. The latter is also confirmed by X-ray crystallography. In contrast to [Fe(PN(Me)-Ph)2X2] (2b,3b), [Fe(PN(H)-Ph)2X2] (2a,3a) is labile and undergoes rearrangement reactions. In CH3OH, the diamagnetic dicationic complex [Fe(PN(H)-Ph)3](2+) (5) is formed via the intermediacy of cis-P,N-[Fe(κ(2)-P,N-PN(H)-Ph)2(κ(1)-P-PN(H)-Ph)(X)](+) (4a,b) where one PN ligand is coordinated in a κ(1)-P-fashion. In CH3CN the diamagnetic dicationic complex cis-N,P,N-[Fe(PN(H)-Ph)2(CH3CN)2](2+) (6) is formed as a major isomer where the two halide ligands are replaced by CH3CN.

  9. Honeycomb-shaped coordination polymers based on the self-assembly of long flexible ligands and alkaline-earth ions

    NASA Astrophysics Data System (ADS)

    Lian, Chen; Liu, Liu; Guo, Xu; Long, Yinshuang; Jia, Shanshan; Li, Huanhuan; Yang, Lirong

    2016-01-01

    Two novel coordination polymers, namely, [Ca(NCP)2]∞ (I) and [Sr(NCP)2]∞ (II) were synthesized under hydrothermal conditions based on 2-(4-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (HNCP) and characterized by elemental analysis, infrared spectrometry, X-ray powder diffraction and single crystal X-ray diffraction. Findings indicate that I and II are isomorphous and isostructural, containing the unit of M(NCP-)4 (M=Ca(II) and Sr(II)), based on which to assemble into three-dimensional (3D) porous 4-fold interpenetration honeycomb-shaped neutral coordination polymers (CPs). Between the adjacent lamellar structures in I and II, there exist π-π interactions between the pyridine rings belonging to phenanthroline of NCP- which stabilize the frameworks. Both I and II display stronger fluorescence emissions as well as high thermal stability.

  10. Designing Tunable White-Light Emission from an Aurophilic Cu(I) /Au(I) Coordination Polymer with Thioether Ligands.

    PubMed

    Ovens, Jeffrey S; Christensen, Peter R; Leznoff, Daniel B

    2016-06-01

    White-light emitters have attracted considerable attention due to their importance in current and future technologies. By incorporating molecular fragments that independently emit in the blue, green/yellow, and red visible regions, specifically Cu-NC, Au⋅⋅⋅Au interactions, and Cu-SR2 , respectively, into a single material, new white-light-emitting systems have been targeted. With this goal, three new Cu(I) /thioether-based coordination polymers containing bridging [Au(CN)2 ](-) units have been synthesized and structurally characterized, and their photoluminescence properties (at room and low temperatures) have been delineated. Using this approach, white-light emission (tunable from slightly yellow to slightly blue, depending on λex ) is generated from Cu(Me2 S)[Au(CN)2 ], a feature uncommon in such simple coordination compounds. PMID:27138305

  11. Late First-Row Transition-Metal Complexes Containing a 2-Pyridylmethyl Pendant-Armed 15-Membered Macrocyclic Ligand. Field-Induced Slow Magnetic Relaxation in a Seven-Coordinate Cobalt(II) Compound.

    PubMed

    Antal, Peter; Drahoš, Bohuslav; Herchel, Radovan; Trávníček, Zdeněk

    2016-06-20

    The 2-pyridylmethyl N-pendant-armed heptadentate macrocyclic ligand {3,12-bis(2-methylpyridine)-3,12,18-triaza-6,9-dioxabicyclo[12.3.1]octadeca-1,14,16-triene = L} and [M(L)](ClO4)2 complexes, where M = Mn(II) (1), Fe(II) (2), Co(II) (3), Ni(II) (4), and Cu(II) (5), were prepared and thoroughly characterized, including elucidation of X-ray structures of all the compounds studied. The complexes 1-5 crystallize in non-centrosymmetric Sohncke space groups as racemic compounds. The coordination numbers of 7, 6 + 1, and 5 were found in complexes 1-3, 4, and 5, respectively, with a distorted pentagonal bipyramidal (1-4) or square pyramidal (5) geometry. On the basis of the magnetic susceptibility experiments, a large axial zero-field splitting (ZFS) was found for 2, 3, and 4 (D(Fe) = -7.4(2) cm(-1), D(Co) = 34(1) cm(-1), and D(Ni) = -12.8(1) cm(-1), respectively) together with a rhombic ZFS (E/D = 0.136(3)) for 4. Despite the easy plane anisotropy (D > 0, E/D = 0) in 3, the slow relaxation of the magnetization below 8 K was observed and analyzed either with Orbach relaxation mechanism (the relaxation time τ0 = 9.90 × 10(-10) s and spin reversal barrier Ueff = 24.3 K (16.9 cm(-1))) or with Raman relaxation mechanism (C = 2.12 × 10(-5) and n = 2.84). Therefore, compound 3 enlarges the small family of field-induced single-molecule magnets with pentagonal-bipyramidal chromophore. The cyclic voltammetry in acetonitrile revealed reversible redox processes in 1-3 and 5, except for the Ni(II) complex 4, where a quasi-reversible process was dominantly observed. Presence of the two 2-pyridylmethyl pendant arms in L with a stronger σ-donor/π-acceptor ability had a great impact on the properties of all the complexes (1-5), concretely: (i) strong pyridine-metal bonds provided slight axial compression of the coordination sphere, (ii) substantial changes in magnetic anisotropy, and (iii) stabilization of lower oxidation states. PMID:27245288

  12. Characterization of Water Coordination to Ferrous Nitrosyl Complexes with fac-N2O, cis-N2O2, and N2O3 Donor Ligands.

    PubMed

    McCracken, John; Cappillino, Patrick J; McNally, Joshua S; Krzyaniak, Matthew D; Howart, Michael; Tarves, Paul C; Caradonna, John P

    2015-07-01

    Electron paramagnetic resonance (EPR) experiments were done on a series of S = (3)/2 ferrous nitrosyl model complexes prepared with chelating ligands that mimic the 2-His-1-carboxylate facial triad iron binding motif of the mononuclear nonheme iron oxidases. These complexes formed a comparative family, {FeNO}(7)(N2Ox)(H2O)3-x with x = 1-3, where the labile coordination sites for the binding of NO and solvent water were fac for x = 1 and cis for x = 2. The continuous-wave EPR spectra of these three complexes were typical of high-spin S = (3)/2 transition-metal ions with resonances near g = 4 and 2. Orientation-selective hyperfine sublevel correlation (HYSCORE) spectra revealed cross peaks arising from the protons of coordinated water in a clean spectral window from g = 3.0 to 2.3. These cross peaks were absent for the {FeNO}(7)(N2O3) complex. HYSCORE spectra were analyzed using a straightforward model for defining the spin Hamiltonian parameters of bound water and showed that, for the {FeNO}(7)(N2O2)(H2O) complex, a single water conformer with an isotropic hyperfine coupling, Aiso = 0.0 ± 0.3 MHz, and a dipolar coupling of T = 4.8 ± 0.2 MHz could account for the data. For the {FeNO}(7)(N2O)(H2O)2 complex, the HYSCORE cross peaks assigned to coordinated water showed more frequency dispersion and were analyzed with discrete orientations and hyperfine couplings for the two water molecules that accounted for the observed orientation-selective contour shapes. The use of three-pulse electron spin echo envelope modulation (ESEEM) data to quantify the number of water ligands coordinated to the {FeNO}(7) centers was explored. For this aspect of the study, HYSCORE spectra were important for defining a spectral window where empirical integration of ESEEM spectra would be the most accurate.

  13. Characterization of Water Coordination to Ferrous Nitrosyl Complexes with fac-N2O, cis-N2O2, and N2O3 Donor Ligands.

    PubMed

    McCracken, John; Cappillino, Patrick J; McNally, Joshua S; Krzyaniak, Matthew D; Howart, Michael; Tarves, Paul C; Caradonna, John P

    2015-07-01

    Electron paramagnetic resonance (EPR) experiments were done on a series of S = (3)/2 ferrous nitrosyl model complexes prepared with chelating ligands that mimic the 2-His-1-carboxylate facial triad iron binding motif of the mononuclear nonheme iron oxidases. These complexes formed a comparative family, {FeNO}(7)(N2Ox)(H2O)3-x with x = 1-3, where the labile coordination sites for the binding of NO and solvent water were fac for x = 1 and cis for x = 2. The continuous-wave EPR spectra of these three complexes were typical of high-spin S = (3)/2 transition-metal ions with resonances near g = 4 and 2. Orientation-selective hyperfine sublevel correlation (HYSCORE) spectra revealed cross peaks arising from the protons of coordinated water in a clean spectral window from g = 3.0 to 2.3. These cross peaks were absent for the {FeNO}(7)(N2O3) complex. HYSCORE spectra were analyzed using a straightforward model for defining the spin Hamiltonian parameters of bound water and showed that, for the {FeNO}(7)(N2O2)(H2O) complex, a single water conformer with an isotropic hyperfine coupling, Aiso = 0.0 ± 0.3 MHz, and a dipolar coupling of T = 4.8 ± 0.2 MHz could account for the data. For the {FeNO}(7)(N2O)(H2O)2 complex, the HYSCORE cross peaks assigned to coordinated water showed more frequency dispersion and were analyzed with discrete orientations and hyperfine couplings for the two water molecules that accounted for the observed orientation-selective contour shapes. The use of three-pulse electron spin echo envelope modulation (ESEEM) data to quantify the number of water ligands coordinated to the {FeNO}(7) centers was explored. For this aspect of the study, HYSCORE spectra were important for defining a spectral window where empirical integration of ESEEM spectra would be the most accurate. PMID:26090963

  14. Hydrothermal Crystallization of Uranyl Coordination Polymers Involving an Imidazolium Dicarboxylate Ligand: Effect of pH on the Nuclearity of Uranyl-Centered Subunits.

    PubMed

    Martin, Nicolas P; Falaise, Clément; Volkringer, Christophe; Henry, Natacha; Farger, Pierre; Falk, Camille; Delahaye, Emilie; Rabu, Pierre; Loiseau, Thierry

    2016-09-01

    Four uranyl-bearing coordination polymers (1-4) have been hydrothermally synthesized in the presence of the zwitterionic 1,3-bis(carboxymethyl)imidazolium (= imdc) anion as organic linkers after reaction at 150 °C. At low pH (0.8-3.1), the form 1 ((UO2)2(imdc)2(ox)·3H2O; ox stands for oxalate group) has been identified. Its crystal structure (XRD analysis) consists of the 8-fold-coordinated uranyl centers linked to each other through the imdc ligand together with oxalate species coming from the partial decomposition of the imdc molecule. The resulting structure is based on one-dimensional infinite ribbons intercalated by free water molecules. By adding NaOH solution, a second form 2 is observed for pH 1.9-3.9 but in a mixture with phase 1. The pure phase of 2 is obtained after a hydrothermal treatment at 120 °C. It corresponds to a double-layered network (UO2(imdc)2) composed of 7-fold-coordinated uranyl cations linked via the imdc ligands. In the same pH range, a third phase ((UO2)3O2(H2O)(imdc)·H2O, 3) is formed: it is composed of hexanuclear units of 7-fold- and 8-fold-coordinated uranyl cations, connected via the imdc molecules in a layered assembly. At higher pH, the chain-like solid (UO2)3O(OH)3(imdc)·2H2O (4) is observed and composed of the infinite edge-sharing uranyl-centered pentagonal bipyramidal polyhedra. As a function of pH, uranyl nuclearity increases from discrete 8- or 7-fold uranyl centers (1, 2) to hexanuclear bricks (3) and then infinite chains in 4 (built up from the hexameric fragments found in 3). This observation emphasized the influence of the hydrolysis reaction occurring between uranyl centers. The compounds have been further characterized by thermogravimetric analysis, infrared, and luminescence spectroscopy. PMID:27509393

  15. A new nano-scale manganese (II) coordination polymer constructed from semicarbazone Schiff base and dicyanamide ligands: Synthesis, crystal structure and DFT calculations

    NASA Astrophysics Data System (ADS)

    Farhadi, Saeed; Mahmoudi, Farzaneh; Simpson, Jim

    2016-03-01

    A new nano-structured Mn(II) coordination polymer [Mn(HL)(dca)(Cl)]n(1), [HL= Pyridine-2-carbaldehyde semicarbazone, dca= dicyanamide] has been synthesized by a sonochemical method and has been characterized by scanning electron microscopy, X-ray powder diffraction elemental analysis and IR spectroscopy. Single crystals of compound 1 was synthesized by slow evaporation method and was structurally characterised by single crystal X-ray diffraction. The single crystal structure shows one dimensional zig-zag chains with end-to-end dicyanamide-bridged ligand. A distorted octahedral geometry around the Mn2+centers was achieved by NNO atoms from HL, two nitrogen atoms of dicyanamide and one chlorine atom. Also for more details, the structure of 1, has been optimized by density functional theory (DFT calculations).

  16. High resolution scanning tunneling microscopy of a 1D coordination polymer with imidazole-based N,N,O ligands on HOPG.

    PubMed

    Fischer, Nina V; Mitra, Utpal; Warnick, Karl-Georg; Dremov, Viacheslav; Stocker, Michael; Wölfle, Thorsten; Hieringer, Wolfgang; Heinemann, Frank W; Burzlaff, Nicolai; Görling, Andreas; Müller, Paul

    2014-09-01

    Novel κ(3) -N,N,O ligands tend to form 1D coordination polymer strands. Deposition of 1D structures on highly oriented pyrolytic graphite (HOPG) was achieved from diluted solutions and polymer strands have been studied on HOPG by AFM/STM. Single strands were mapped by STM and their electronic properties were subsequently characterized by current imaging tunneling spectroscopy (CITS). Periodic density functional calculations simulating a polymer strand deposited on a HOPG surface are in agreement with the zig-zag structure indicated by experimental findings. Both the observed periodicity and the Zn-Zn distances can be reproduced in the simulations. Van der Waals interactions were found to play a major role for the geometry of the isolated polymer strand, for the adsorption geometry on HOPG, as well as for the adsorption energy.

  17. Coordination behavior of ligand based on NNS and NNO donors with ruthenium(III) complexes and their catalytic and DNA interaction studies

    NASA Astrophysics Data System (ADS)

    Manikandan, R.; Viswnathamurthi, P.

    2012-11-01

    Reactions of 2-acetylpyridine-thiosemicarbazone HL1, 2-acetylpyridine-4-methyl-thiosemicarbazone HL2, 2-acetylpyridine-4-phenyl-thiosemicarbazone HL3 and 2-acetylpyridine-semicarbazone HL4 with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested.

  18. Electronic influence of β-diketonato-type ligands on the coordination of 1,5-cyclooctadiene to palladium(II) as defined by 'Venus fly trap' geometric parameters.

    PubMed

    Hill, Tania N; Roodt, Andreas; Steyl, Gideon

    2013-02-01

    A range of single-crystal structures of the type [Pd(cod)(LL'-Bid)]A, where LL'-Bid = acetylacetonato (acac), thenoyltrifluoroactetonato (thtfac) and hexafluoroacetylacetonato (hfacac), and A = tetrafluoroborate (BF(4)(-)) and hexafluorophosphate (PF(6)(-)), are reported. The complexes [Pd(cod)(acac)]PF(6) (I), [Pd(cod)(thtfac)]PF(6) (III), [Pd(cod)(thtfac)]BF(4) (IV) and [Pd(cod)(hfacac)]PF(6) (V) are isostructural in the monoclinic space group P2(1)/c. The influence of the variation of the β-diketonato-type ligands on the coordination geometry of cis,cis-1,5-cycloocta-1,5-diene (cod) was investigated and found that no significant changes to the Pd-C and C=C bond distances were observed. The `Venus fly trap' parameters vary by 7.8° for the 'jaw' angle (ψ), while the `bite' angle (χ) remains virtually constant.

  19. Complexation and coordination selectivities of the tetradentate ligand 7-[(2-hydroxy-5-sulfophenyl) azo]-8-hydroxyquinoline-5-sulfonic acid with Fe(II), Ni(II), Zn(II), Cd(II) and VO(IV)

    SciTech Connect

    Huang, Hu; Kai, Fumiaki; Hirohata, Masaaki; Nakamura, Masaaki; Matsuzaki, Susumu; Komori, Kenji; Tsunematsu, Yuriko

    1993-12-31

    The new title tetradentate ligand (SPAHQS), containing both phenylazo and 8-quinolinol fragments, was prepared. Proton-dissociation processes of the ligand and complexing equilibria with Fe(II), Ni(II), Zn(II), Cd(II), and VO(IV) were analyzed spectrophotometrically. Coordination modes of SPAHQS with these metal ions have been investigated by means of polarography and Raman spectroscopy in aqueous solution. It was established that the coordination selectivity of SPAHQS for such metal ions is mainly dependent on steric factors in the chelate ring formed, not on HSAB properties. 18 refs., 6 figs., 2 tabs.

  20. Binuclear complexes of technetium. Evidence for bis(terdentate)bidentate coordination by the bridging ligand 2,3,5,6-tetrakis(2-pyridyl)pyrazine to technetium(V)

    SciTech Connect

    Du Preez, J.G.H.; Gerber, T.I.A.; Gibson, M.L.; Geyser, R. )

    1990-01-01

    The authors have used the potentially bis(terdentate) nitrogen aromatic heterocyclic ligand 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz) to prepare mono- and bimetallic technetium(V) complexes bound to tppz. The stimulus for the development of the coordination chemistry of the man-made element technetium is provided by the use of complexes of this element as anatomical imaging agents in nuclear medicine. Although the chemistry of technetium(V) with nitrogen donor ligands is well understood, no complexes have been prepared using potentially terdentate neutral nitrogen donor ligands of this metal in the +5 oxidation state.

  1. Synthesis and crystal structure of a novel Mn(II) coordination polymer with 3-(4-(1 H-benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one ligands

    NASA Astrophysics Data System (ADS)

    Wang, G.-F.; Zhang, X.; Sun, S.-W.; Han, Q.-P.; Yang, X.; Li, H.; Ma, H.-X.; Yao, C.-Z.; Sun, H.; Dong, H.-B.

    2015-12-01

    3-(4-(1 H-Benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one ( L 1 , 1) and its Mn(II) complex, [Mn( L 1 )2(SCN)2]∞ ( 2), were synthesized and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction. The Mn(II) ion in 2 is six-coordinated to four nitrogen atoms of two L 1 ligands, two SCN-ligands, and two oxygen atoms of other two L 1 ligands to form a distorted octahedral geometry. Therefore, each L 1 links Mn ions through the O and N atoms to generate 2D sheet structure.

  2. CORM-EDE1: A Highly Water-Soluble and Nontoxic Manganese-Based photoCORM with a Biogenic Ligand Sphere.

    PubMed

    Mede, Ralf; Klein, Moritz; Claus, Ralf A; Krieck, Sven; Quickert, Stefanie; Görls, Helmar; Neugebauer, Ute; Schmitt, Michael; Gessner, Guido; Heinemann, Stefan H; Popp, Jürgen; Bauer, Michael; Westerhausen, Matthias

    2016-01-01

    [Mn(CO)5Br] reacts with cysteamine and 4-amino-thiophenyl with a ratio of 2:3 in refluxing tetrahydrofuran to the complexes of the type [{(OC)3Mn}2(μ-SCH2CH2NH3)3]Br2 (1, CORM-EDE1) and [{(OC)3Mn}2(μ-SC6H4-4-NH3)3]Br2 (2, CORM-EDE2). Compound 2 precipitates during refluxing of the tetrahydrofuran solution as a yellow solid whereas 1 forms a red oil that slowly solidifies. Recrystallization of 2 from water yields the HBr-free complex [{(OC)3Mn}2(μ-S-C6H4-4-NH2)2(μ-SC6H4-4-NH3)] (3). The n-propylthiolate ligand (which is isoelectronic to the bridging thiolate of 1) leads to the formation of the di- and tetranuclear complexes [(OC)4Mn(μ-S-nPr)2]2 and [(OC)3Mn(μ-S-nPr)]4. CORM-EDE1 possesses ideal properties to administer carbon monoxide to biological and medicinal tissues upon irradiation (photoCORM). Isolated crystalline CORM-EDE1 can be handled at ambient and aerobic conditions. This complex is nontoxic, highly soluble in water, and indefinitely stable therein in the absence of air and phosphate buffer. CORM-EDE1 is stable as frozen stock in aqueous solution without any limitations, and these stock solutions maintain their CO release properties. The reducing dithionite does not interact with CORM-EDE1, and therefore, the myoglobin assay represents a valuable tool to study the release kinetics of this photoCORM. After CO liberation, the formation of MnHPO4 in aqueous buffer solution can be verified.

  3. CORM-EDE1: A Highly Water-Soluble and Nontoxic Manganese-Based photoCORM with a Biogenic Ligand Sphere.

    PubMed

    Mede, Ralf; Klein, Moritz; Claus, Ralf A; Krieck, Sven; Quickert, Stefanie; Görls, Helmar; Neugebauer, Ute; Schmitt, Michael; Gessner, Guido; Heinemann, Stefan H; Popp, Jürgen; Bauer, Michael; Westerhausen, Matthias

    2016-01-01

    [Mn(CO)5Br] reacts with cysteamine and 4-amino-thiophenyl with a ratio of 2:3 in refluxing tetrahydrofuran to the complexes of the type [{(OC)3Mn}2(μ-SCH2CH2NH3)3]Br2 (1, CORM-EDE1) and [{(OC)3Mn}2(μ-SC6H4-4-NH3)3]Br2 (2, CORM-EDE2). Compound 2 precipitates during refluxing of the tetrahydrofuran solution as a yellow solid whereas 1 forms a red oil that slowly solidifies. Recrystallization of 2 from water yields the HBr-free complex [{(OC)3Mn}2(μ-S-C6H4-4-NH2)2(μ-SC6H4-4-NH3)] (3). The n-propylthiolate ligand (which is isoelectronic to the bridging thiolate of 1) leads to the formation of the di- and tetranuclear complexes [(OC)4Mn(μ-S-nPr)2]2 and [(OC)3Mn(μ-S-nPr)]4. CORM-EDE1 possesses ideal properties to administer carbon monoxide to biological and medicinal tissues upon irradiation (photoCORM). Isolated crystalline CORM-EDE1 can be handled at ambient and aerobic conditions. This complex is nontoxic, highly soluble in water, and indefinitely stable therein in the absence of air and phosphate buffer. CORM-EDE1 is stable as frozen stock in aqueous solution without any limitations, and these stock solutions maintain their CO release properties. The reducing dithionite does not interact with CORM-EDE1, and therefore, the myoglobin assay represents a valuable tool to study the release kinetics of this photoCORM. After CO liberation, the formation of MnHPO4 in aqueous buffer solution can be verified. PMID:26672620

  4. A coordinatively flexible hexadentate ligand gives structurally isomeric complexes M2(L)X3 (M = Cu, Zn; X = Br, Cl).

    PubMed

    Wegeberg, Christina; McKee, Vickie; McKenzie, Christine J

    2016-01-01

    Polypyridyl multidentate ligands based on ethylenediamine backbones are important metal-binding agents with applications in biomimetics and homogeneous catalysis. The seemingly hexadentate tpena ligand [systematic name: N,N,N'-tris(pyridin-2-ylmethyl)ethylenediamine-N'-acetate] reacts with zinc chloride and zinc bromide to form trichlorido[μ-N,N,N'-tris(pyridin-2-ylmethyl)ethylenediamine-N'-acetato]dizinc(II), [Zn2(C22H24N5O2)Cl3], and tribromido[μ-N,N,N'-tris(pyridin-2-ylmethyl)ethylenediamine-N'-acetato]dizinc(II), [Zn2Br3(C22H24N5O2)]. One Zn(II) ion shows the anticipated N5O coordination in an irregular six-coordinate site and is linked by an anti carboxylate bridge to a tetrahedral ZnX3 (X = Cl or Br) unit. In contrast, the Cu(II) ions in aquatribromido[μ-N,N,N'-tris(pyridin-2-ylmethyl)ethylenediamine-N'-acetato]dicopper(II)-tribromido[μ-N,N,N'-tris(pyridin-2-ylmethyl)ethylenediamine-N'-acetato]dicopper(II)-water (1/1/6.5) [Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2O, occupy two tpena-chelated sites, one a trigonal bipyramidal N3Cl2 site and the other a square-planar N2OCl site. In all three cases, electrospray ionization mass spectra were dominated by a misleading ion assignable to [M(tpena)](+) (M = Zn(2+) and Cu(2+)). PMID:26742830

  5. Assemblies of a new flexible multicarboxylate ligand and d10 metal centers toward the construction of homochiral helical coordination polymers: structures, luminescence, and NLO-active properties.

    PubMed

    Zang, Shuangquan; Su, Yang; Li, Yizhi; Ni, Zhaoping; Meng, Qingjin

    2006-01-01

    Hydro(solvo)thermal reactions between a new flexible multicarboxylate ligand of 2,2',3,3'-oxydiphthalic acid (2,2',3,3'-H(4)ODPA) and M(NO(3))(2).xH(2)O (M = Zn, x = 6; M = Cd, x = 4) in the presence of 4,4'-bipyridine (bpy) afford two novel homochiral helical coordination polymers [[Zn(2)(2,2',3,3'-ODPA)(bpy)(H(2)O)(3)].(H(2)O)(2) for 1 and [Cd(2)(2,2',3,3'-ODPA)(bpy)(H(2)O)(3)].(H(2)O)(2) for 2]. Though having almost the same chemical formula, they have different space groups (P2(1)2(1)2(1) for 1 and P2(1) for 2) and different bridging modes of the 2,2',3,3'-ODPA ligand. Two kinds of homochiral helices (right-handed) are found in both 1 and 2, each of which discriminates only one kind of crystallographical nonequivalent metal atom. 1 has a 2D metal-organic framework and can be seen as the unity of two parallel homochiral Zn1 and Zn2 helices, in which the nodes are etheric oxygen atoms. In contrast, 2 has a 3D metal-organic framework and consists of two partially overlapped homochiral Cd1 and Cd2 helices in the two dimensions. Moreover, metal-ODPA helices give a 2D chiral herringbone structural motif in both 1 and 2 in the two dimensions, which are further strengthened by the second ligand of bpy. Bulk materials for 1 and 2 all have good second-harmonic generation activity, approximately 1 and 0.8 times that of urea.

  6. Construction of five Zn(ii)/Cd(ii) coordination polymers derived from a new linear carboxylate/pyridyl ligand: design, synthesis, and photocatalytic properties.

    PubMed

    Liu, Lei-Lei; Yu, Cai-Xia; Du, Ji-Min; Liu, Shi-Min; Cao, Jing-Shuai; Ma, Lu-Fang

    2016-08-01

    Solvothermal reactions of Cd(OAc)2/Zn(OAc)2 with a new ligand, (pyridin-3-yl)methyl 4-(2-(4-((pyridin-3-yl)methoxy)phenyl)diazenyl)benzoate (L1), under different templates via an in situ ligand transformation reaction produced five coordination polymers, [CdL2(H2O)]n (1), [Cd1.5L3]n (2), [Cd2L4]n (3), [(ZnL2)·H2O]n (4) and {[Zn(1,3-BDC)(L1)]·MeCN·0.5H2O}n (5), where HL = 4-(2-(4-((pyridin-3-yl)methoxy)phenyl)diazenyl)benzoic acid, 1,3-H2BDC = 1,3-benzenedicarboxylic acid. Compound 1 is a three-dimensional (3D) wave-like structure constructed from 4-connected Cd(ii) nodes and L(-) linkers. Compounds 2 and 3 bear similar 2D networks built from metallocyclic [Cd4L4] units. Compound 4 features a wrinkled 2D layer based on metallocyclic [Zn4L4] units. Compound 5 has a novel 1D single-wall metal-organic nanotube (SWMONT) in which the 1,3-BDC ligands act as linkers to connect the [Zn2(L1)2] rings. The results reveal that the different templates have a significant effect on the final structures. Compounds 1-5 exhibited relatively high photocatalytic activity towards the degradation of methylene blue (MB) in aqueous solution under UV-Vis irradiation. The kinetics of the catalytic photodegradation reactions and the stabilities of photocatalysts were also investigated. PMID:27418243

  7. Fluorescent sensing and electrocatalytic properties of three Zn(II)/Co(II) coordination complexes containing two different dicarboxylates and two various bis(pyridyl)-bis(amide) ligands

    NASA Astrophysics Data System (ADS)

    Lin, Hongyan; Rong, Xing; Liu, Guocheng; Wang, Xiang; Wang, Xiuli; Duan, Surui

    2016-09-01

    Three new transition metal(II) coordination complexes constructed from two different dicarboxylates (1,3-H2BDC = 1,3-benzenedicarboxylic acid, 1,4-H2NDC = 1,4-naphthalenedicarboxylic acid) and two bis(pyridyl)-bis(amide) ligands (3-bpcd = N,N‧-bis(3-pyridyl)cyclohexane-1,4-dicarboxamide, 3-bpod = N,N‧-bis(3-pyridyl)octandiamide), [Zn(1,3-BDC)(3-bpcd)0.5(H2O)]·H2O (1), [Zn(1,3-BDC)(3-bpod)0.5(H2O)] (2) and [Co(1,4-NDC)(3-bpod)1.5(H2O)] (3) have been synthesized in the hydrothermal environments and structurally characterized by IR, TG and single crystal X-ray diffraction. Complexes 1 and 2 possess the similar 1D ladder-like chain based on [Zn(1,3-BDC)]n zigzag chain and the bidentate ligands 3-bpcd/or 3-bpod. Complex 3 shows a 2D layered structure with a 5-connected {410} topology, which consists of 1D linear [Co(1,4-NDC)]n chain and [Co(3-bpod)1.5]n chain with alternating arrangement of 3-bpod ligands and Co2(3-bpod)2 dinuclear loops. The adjacent 1D chains for 1-2 or the 2D layers for 3 are further extended into 2D or 3D supramolecular frameworks through the hydrogen bonding interactions. Additionally, the solid state fluorescent properties for the title complexes 1-3, the fluorescent sensing behaviors of complexes 1-2 and the electrochemical behaviour of complex 3 have been investigated.

  8. Fluorescent Cross-Linked Supramolecular Polymer Constructed by Orthogonal Self-Assembly of Metal-Ligand Coordination and Host-Guest Interaction.

    PubMed

    Qian, Xiaomin; Gong, Weitao; Li, Xiaopeng; Fang, Le; Kuang, Xiaojun; Ning, Guiling

    2016-05-10

    A new host molecule consists of four terpyridine groups as the binding sites with zinc(II) ion and a copillar[5]arene incorporated in the center as a spacer to interact with guest molecule was designed and synthesized. Due to the 120 ° angle of the rigid aromatic segment, a cross-linked dimeric hexagonal supramolecular polymer was therefore generated as the result of the orthogonal self-assembly of metal-ligand coordination and host-guest interaction. UV/Vis spectroscopy, (1) H NMR spectroscopy, viscosity and dynamic light-scattering techniques were employed to characterize and understand the cross-linking process with the introduction of zinc(II) ion and guest molecule. More importantly, well-defined morphology of the self-assembled supramolecular structure can be tuned by altering the adding sequence of the two components, that is, the zinc(II) ion and the guest molecule. In addition, introduction of a competitive ligand suggested the dynamic nature of the supramolecular structure. PMID:27062539

  9. Reactions of vinyl amido ligands in Tp`(CO){sub 2}W[N(R`)CH=CHR] complexes prepared from addition of primary amines to coordinated alkynes

    SciTech Connect

    Feng, S.G.; White, P.S.; Templeton, J.L.

    1995-11-01

    Reaction of the ytterbium-benzophenone dianion complex (1), which was formed by reaction of Yb metal with benzophenone in THF/HMPA, with 2,6-di-tert-butyl-4-methylphenol, yielded the ytterbium(II) aryloxide complex Yb(OAr){sub 2}(HMPA){sub 2} (2, Ar= C{sub 6}H{sub 2} -{sup t}Bu{sub 2}-2,6-Me-4) as a major product (80%) and the ytterbium(III) enolate complex (3) as a minor one (ca. 5% yield). The mechanisms of these reactions are discussed. X-ray crystallographic studies reveal that 3, 4a, and 7b are isostructural, and so are 5a and 6. The central metal ions in these complexes are all five-coordinated in a trigonal bipyramid form (highly distorted in the case of 5a and 6) with two HMPA ligands at the apical and three anionic oxygen ligands at the equatorial positions. 20 refs., 2 figs., 7 tabs.

  10. A PCP Pincer Ligand for Coordination Polymers with Versatile Chemical Reactivity: Selective Activation of CO2 Gas over CO Gas in the Solid State.

    PubMed

    He, Junpeng; Waggoner, Nolan W; Dunning, Samuel G; Steiner, Alexander; Lynch, Vincent M; Humphrey, Simon M

    2016-09-26

    A tetra(carboxylated) PCP pincer ligand has been synthesized as a building block for porous coordination polymers (PCPs). The air- and moisture-stable PCP metalloligands are rigid tetratopic linkers that are geometrically akin to ligands used in the synthesis of robust metal-organic frameworks (MOFs). Here, the design principle is demonstrated by cyclometalation with Pd(II) Cl and subsequent use of the metalloligand to prepare a crystalline 3D MOF by direct reaction with Co(II) ions and structural resolution by single crystal X-ray diffraction. The Pd-Cl groups inside the pores are accessible to post-synthetic modifications that facilitate chemical reactions previously unobserved in MOFs: a Pd-CH3 activated material undergoes rapid insertion of CO2 gas to give Pd-OC(O)CH3 at 1 atm and 298 K. However, since the material is highly selective for the adsorption of CO2 over CO, a Pd-N3 modified version resists CO insertion under the same conditions. PMID:27532740

  11. A PCP Pincer Ligand for Coordination Polymers with Versatile Chemical Reactivity: Selective Activation of CO2 Gas over CO Gas in the Solid State.

    PubMed

    He, Junpeng; Waggoner, Nolan W; Dunning, Samuel G; Steiner, Alexander; Lynch, Vincent M; Humphrey, Simon M

    2016-09-26

    A tetra(carboxylated) PCP pincer ligand has been synthesized as a building block for porous coordination polymers (PCPs). The air- and moisture-stable PCP metalloligands are rigid tetratopic linkers that are geometrically akin to ligands used in the synthesis of robust metal-organic frameworks (MOFs). Here, the design principle is demonstrated by cyclometalation with Pd(II) Cl and subsequent use of the metalloligand to prepare a crystalline 3D MOF by direct reaction with Co(II) ions and structural resolution by single crystal X-ray diffraction. The Pd-Cl groups inside the pores are accessible to post-synthetic modifications that facilitate chemical reactions previously unobserved in MOFs: a Pd-CH3 activated material undergoes rapid insertion of CO2 gas to give Pd-OC(O)CH3 at 1 atm and 298 K. However, since the material is highly selective for the adsorption of CO2 over CO, a Pd-N3 modified version resists CO insertion under the same conditions.

  12. Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases.

    PubMed

    Boles, Michael A; Talapin, Dmitri V

    2015-04-01

    This work analyzes the role of hydrocarbon ligands in the self-assembly of nanocrystal (NC) superlattices. Typical NCs, composed of an inorganic core of radius R and a layer of capping ligands with length L, can be described as soft spheres with softness parameter L/R. Using particle tracking measurements of transmission electron microscopy images, we find that close-packed NCs, like their hard-sphere counterparts, fill space at approximately 74% density independent of softness. We uncover deformability of the ligand capping layer that leads to variable effective NC size in response to the coordination environment. This effect plays an important role in the packing of particles in binary nanocrystal superlattices (BNSLs). Measurements on BNSLs composed of NCs of varying softness in several coordination geometries indicate that NCs deform to produce dense BNSLs that would otherwise be low-density arrangements if the particles remained spherical. Consequently, rationalizing the mixing of two NC species during BNSL self-assembly need not employ complex energetic interactions. We summarize our analysis in a set of packing rules. These findings contribute to a general understanding of entropic effects during crystallization of deformable objects (e.g., nanoparticles, micelles, globular proteins) that can adapt their shape to the local coordination environment.

  13. Mixed ligand coordination polymers with flexible bis-imidazole linker and angular sulfonyldibenzoate: Crystal structure, photoluminescence and photocatalytic activity

    SciTech Connect

    Bisht, Kamal Kumar; Rachuri, Yadagiri; Parmar, Bhavesh; Suresh, Eringathodi

    2014-05-01

    Four ternary coordination polymers (CPs) namely, ([Ni(SDB)(BITMB)(H{sub 2}O)]·H{sub 2}O){sub n} (CP1), ([Cd(SDB)(BITMB) (H{sub 2}O)]·(THF)(H{sub 2}O)){sub n} (CP2), ([Zn{sub 2}(SDB){sub 2}(BITMB)]·(THF){sub 2}){sub n} (CP3) and ([Co{sub 2}(SDB){sub 2}(BITMB)]·(Dioxane){sub 3}){sub n} (CP4) composed of angular dicarboxylate SDB (4,4'-sulfonyldibenzoate) and N-donor BITMB (1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethyl benzene) have been synthesized by solvothermal reactions and characterized by single crystal X-ray diffraction and other physico-chemical techniques. CP1 possesses one-dimensional ribbon type metal–organic motifs glued together by H-bonds and π⋯π interactions, whereas CP2–CP4, exhibit non-interpenetrated sql networks supported by weak supramolecular interactions. Structural diversity of these CPs can be attributed to the coordination geometry adopted by the metal nodes, versatile coordination modes of SDB and conformational flexibility of BITMB. Solid state luminescence properties of CP1–CP4 were explored. Photocatalytic performance of all CPs for the decomposition of metanil yellow by dilute hydrogen peroxide in the presence of visible light was also investigated. 25–83% dye removal from aqueous solutions in the presence of CP1–CP4 was observed. - Graphical abstract: Four new ternary transition metal CPs have been hydrothermally prepared and their structural aspects as well as photocatalytic activity for decolourization of metanil yellow (MY) dye have been investigated. - Highlights: • Four ternary coordination polymers containing Ni, Cd, Zn and Co center are prepared. • Crystal structure and thermal stability of all four CPs has been described. • PL and diffuse reflectance spectra of synthesized CPs have also been examined. • Band gap values suggest semiconducting behavior of prepared CPs. • Photocatalytic activity of CPs for oxidative degradation of metanil yellow is studied.

  14. Coordination polymers of Fe(iii) and Al(iii) ions with TCA ligand: distinctive fluorescence, CO2 uptake, redox-activity and oxygen evolution reaction.

    PubMed

    Dhara, Barun; Sappati, Subrahmanyam; Singh, Santosh K; Kurungot, Sreekumar; Ghosh, Prasenjit; Ballav, Nirmalya

    2016-04-28

    Fe and Al belong to different groups in the periodic table, one from the p-block and the other from the d-block. In spite of their different groups, they have the similarity of exhibiting a stable 3+ oxidation state. Here we have prepared Fe(iii) and Al(iii) based coordination polymers in the form of metal-organic gels with the 4,4',4''-tricarboxyltriphenylamine (TCA) ligand, namely Fe-TCA and Al-TCA, and evaluated some important physicochemical properties. Specifically, the electrical conductivity, redox-activity, porosity, and electrocatalytic activity (oxygen evolution reaction) of the Fe-TCA system were noted to be remarkably higher than those of the Al-TCA system. As for the photophysical properties, almost complete quenching of the fluorescence originating from TCA was observed in case of the Fe-TCA system, whereas for the Al-TCA system a significant retention of fluorescence with red-shifted emission was observed. Quantum mechanical calculations based on density functional theory (DFT) were performed to unravel the origin of such discriminative behaviour of these coordination polymer systems. PMID:26961352

  15. Dicynamide bridged two new zig-zag 1-D Zn(II) coordination polymers of pyrimidine derived Schiff base ligands: Synthesis, crystal structures and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Konar, Saugata

    2015-07-01

    Two new zigzag 1-D polymeric Zn(II) coordination polymers {[Zn(L1)(μ1,5-dca)](H2O)}n (1), {[Zn(L2)(μ1,5-dca)](ClO4)}n (2) of two potentially tridentate NNO-, NNN-, donor Schiff base ligands [2-(2-(4,6-dimethylpyrimidin-2-yl)hydrazono)methyl)phenol] (L1), [1-(4,6-dimethylpyrimidin-2-yl)-2-(dipyridin-2ylmethylene)hydrazine] (L2) have been synthesized and characterized by elemental analyses, IR and 1H NMR, fluorescence spectroscopy and single crystal X-ray crystallography. The dicyanamide ions act as linkers (μ1,5 mode) in the formation of these coordination polymers. Both the complexes 1 and 2 have same distorted square pyramidal geometry around the Zn(II) centres. The weak forces like π⋯π, Csbnd H⋯π, anion⋯π interactions lead to various supramolecular architectures. Complex 1 shows high chelation enhanced fluorescence compared to that of 2. The fluorescence spectral changes observed high selectivity towards Zn(II) over other metal ions such as Mn(II), Co(II), Ni(II), Cu(II).

  16. Assembly, structures and properties of four Cu(II) coordination polymers based on a semi-rigid bis-pyridyl-bis-amide ligand and different polycarboxylates

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Li; Luan, Jian; Lin, Hong-Yan; Lu, Qi-Lin; Le, Mao; Liu, Guo-Cheng

    2014-09-01

    Four new Cu(II) coordination polymers, namely, [Cu(3-bpah)(1,4-NDC)(H2O)]·3H2O (1), [Cu2(3-bpah)(1,4-NDC)2]·(1,4-H2NDC)·3H2O (2), [Cu(3-bpah)(3-NIP)] (3), [Cu(3-bpah)(1,3,5-HBTC)]·2H2O (4), where 3-bpah = N,N‧-bis(3-pyridinecarboxamide)-1,2-cyclohexane, 1,4-H2NDC = 1,4-naphthalenedicarboxylic acid, 3-H2NIP = 3-nitrophthalic acid, 1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid, have been synthesized under hydrothermal conditions. The structures of 1-4 have been determined by single crystal X-ray diffraction and were further characterized by infrared spectroscopy (IR) and thermogravimetric analyses (TGA). Complex 1 displays a 1D double strand. Complex 2 shows a 3D α-Po framework with 1,4-H2NDC guest molecules inside the cages. Complex 3 reveals a 2D wave-like network. Complex 4 exhibits a 2D sql topology. The structural discrepancies of complexes 1-4 imply that the O-donor ancillary ligands play an important role in the formation of the resultant structures of the title coordination polymers. The fluorescent, electrochemical and photocatalytic properties of complexes 1-4 have been studied.

  17. Synthesis, crystal structure and photoelectric property of two new coordination polymers constructed by longer-spanning suberic acid and 4,4'-bipyridine ligands.

    PubMed

    Xie, Yan; Bai, Feng Ying; Li, Jing; Xing, Yong Heng; Wang, Zhuo; Zhao, Hai Yan; Pu, Zhi Feng; Ge, Mao Fa; Shi, Zhan

    2010-11-01

    Two-dimensional coordination polymers, [M(C₈H₁₂O₄)(C₁₀H₈N₂)]·H₂O [M=Co (1), Cd (2); C₁₀H₈N₂ = 4,4-bipyridine, C₈H₁₄O₄=subaric acid] were obtained from the reaction of the metal salts, bipy and subaric acid at 180°C and characterized by elemental analysis, infrared spectrum, and single-crystal X-ray diffraction and surface photovoltage spectrum (SPS). The single-crystal X-ray diffraction showed that the subaric ligand in the two complexes exhibits two types of modes coordinating to transition metal ions, resulting in the formation of a 1D infinite chain along the c-axis. In addition, the results of SPS for complexes 1 and 2 indicate that these two complexes exhibit positive surface photovoltage responses in the range of 300-800 nm, which can be assigned to LMCT and MLCT, respectively. And the SPS of complex 1 also can be assigned to the d→d* electronic transition. The SPS spectra of the two complexes are consistent with their UV-vis spectra.

  18. Coordination polymers of Fe(iii) and Al(iii) ions with TCA ligand: distinctive fluorescence, CO2 uptake, redox-activity and oxygen evolution reaction.

    PubMed

    Dhara, Barun; Sappati, Subrahmanyam; Singh, Santosh K; Kurungot, Sreekumar; Ghosh, Prasenjit; Ballav, Nirmalya

    2016-04-28

    Fe and Al belong to different groups in the periodic table, one from the p-block and the other from the d-block. In spite of their different groups, they have the similarity of exhibiting a stable 3+ oxidation state. Here we have prepared Fe(iii) and Al(iii) based coordination polymers in the form of metal-organic gels with the 4,4',4''-tricarboxyltriphenylamine (TCA) ligand, namely Fe-TCA and Al-TCA, and evaluated some important physicochemical properties. Specifically, the electrical conductivity, redox-activity, porosity, and electrocatalytic activity (oxygen evolution reaction) of the Fe-TCA system were noted to be remarkably higher than those of the Al-TCA system. As for the photophysical properties, almost complete quenching of the fluorescence originating from TCA was observed in case of the Fe-TCA system, whereas for the Al-TCA system a significant retention of fluorescence with red-shifted emission was observed. Quantum mechanical calculations based on density functional theory (DFT) were performed to unravel the origin of such discriminative behaviour of these coordination polymer systems.

  19. Chemical bonding analysis and properties of La{sub 7}Os{sub 4}C{sub 9}-A new structure type containing C- and C{sub 2}-units as Os-coordinating ligands

    SciTech Connect

    Dashjav, Enkhtsetseg; Prots, Yurii; Kreiner, Guido; Schnelle, Walter; Wagner, Frank R. Kniep, Ruediger

    2008-11-15

    The new ternary carbide La{sub 7}Os{sub 4}C{sub 9} was prepared by argon arc-melting of the elements followed by subsequent heat treatment at 900 deg. C for 250 h. The compound crystallizes monoclinic, in the space group C2/m (a=1198.5(2) pm, b=542.0(1) pm, c=1196.2(2) pm, {beta}=111.04(1){sup o}, V=725.2(2)x10{sup 6} pm{sup 3}, Z=2). The structure was determined from single crystal X-ray diffraction data and refined to a residual of R{sub 1}=0.02 (wR{sub 2}=0.03) for 4812 unique reflections and 64 variable parameters. Electrical resistivity and magnetic susceptibility measurements characterize the compound as a Pauli-paramagnetic metal. The crystal structure contains bridging C- and terminal C{sub 2}-units as Os-coordinating ligands, thereby forming polyanions {sub {infinity}}{sup 1}[Os{sub 4}(C{sub 2}){sub 2}C{sub 5}] running along the [101] direction. The polyanions are composed of alternating Os(C{sub 2})C{sub 2} and OsC{sub 3} units with the transition metal in distorted trigonal planar coordination. Charge compensation is ensured by La cations which are situated in-between the polyanions. The carbon-carbon bond (131 pm) within the C{sub 2} pairs is slightly shorter than the value of a common C-C double bond, and is discussed on the basis of COHP curves on the one side, and with ELI-D and electron density distributions on the other side. The method of partial ELI-D decomposition is shown to be well suited for the characterization of separated DOS structures in terms of chemical bonding signatures provided by ELI-D. The Os-La interactions are shown to be of a polar multicenter-bonding type with Os playing the role of the electron donor. Compared to an acetylide the C{sub 2} species were found to possess a significantly reduced bond order and an enhanced number of electrons in lone pair type spatial regions. This type of species cannot be simply classified in terms of model pictures such as C{sub 2}{sup 2-} and C{sub 2}{sup 4-}, respectively. - Graphical

  20. Two new one-dimensional luminescent silver(I) and lead(II) coordination polymers containing the flexible ligand 2-(1 H-imidazole-1-yl)acetic acid

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Tao; Qin, Ting-Xiao; Zhao, Chao; Tang, Gui-Mei; Li, Tian-Duo; Cui, Yue-Zhi; Li, Jun-Ying

    2009-12-01

    The free ligand, 2-(1 H-imidazole-1-yl)acetate (Hima, 1), was crystallized from the mixture solution of 1. Two new coordination polymers, [Ag(Hima)(NO 3)] ( 2) and {[Pb(Hima) 2(NO 3)](NO 3)} n ( 3), are achieved by reaction of a flexible Hima, AgNO 3 and Pb(NO 3), respectively. In 2, the silver(I) atom is coordinated by four oxygen atoms from three carboxylate groups and one nitrate ion in a distorted tetrahedral environment. The free ligand Hima acts as the tridentate coordination mode, which bridges the silver atoms into a zigzag chain featuring a rare [Ag 2(carboxylato-O,O')(carboxylato- μ1,1-O)] six-membered ring. The intra-dimer Ag···Ag distance is 2.966(l) Å. In 3, Pb(II) atom exhibits an eight-coordinated dodecahedral coordination geometry, in which a unique 1-D chain structure with dicubane-like can be observed. In two polymers, the ligand Hima exhibits new and unique coordination modes. Solid-state fluorescence spectra reveal that the emission bands of complex 2 center at 462 and 510 nm ( λex = 280 nm). In 3, the emission peaks locate at 465 and 547 nm upon excitation at 280 nm. In addition, they have been characterized by IR spectra and TG analysis.

  1. Zirconium and hafnium complexes containing N-alkyl substituted amine biphenolate ligands: coordination chemistry and living ring-opening polymerization catalysis.

    PubMed

    Liang, Lan-Chang; Lin, Sheng-Ta; Chien, Chia-Cheng; Chen, Ming-Tsz

    2013-07-01

    The coordination chemistry of zirconium and hafnium complexes containing the tridentate amine biphenolate ligands [RN(CH2-2-O-3,5-C6H2(tBu)2)2](2-) ([R-ONO](2-); R = tBu (1a), iPr (1b), nPr (1c)) featuring distinct N-alkyl substituents is described. Alcoholysis of Zr(OiPr)4(HOiPr) or Hf(OiPr)4(HOiPr) with H2[1a] in diethyl ether solutions at -35 °C generates the corresponding five-coordinate [1a]M(OiPr)2 (M = Zr (2a), Hf (3a)) in high isolated yield. Similar reactions employing H2[1b] produce six-coordinate [1b]M(OiPr)2(HOiPr) (M = Zr (2b·HOiPr), Hf (3b·HOiPr)) as an isopropanol adduct. Repetitive trituration of 2b·HOiPr and 3b·HOiPr with diethyl ether gives five-coordinate 2b and 3b, respectively. Treatment of M(OiPr)4(HOiPr) with H2[1c] under similar conditions affords six-coordinate [1c]M(OiPr)2(HOiPr) (M = Zr (2c·HOiPr), Hf (3c·HOiPr)), subsequent recrystallization of which from acetonitrile-diethyl ether solutions leads to acetonitrile adducts 2c·MeCN and 3c·MeCN. Reactivity studies of these zirconium and hafnium complexes revealed that they are all active catalysts for ring-opening polymerization of ε-caprolactone. Among them, the N-isopropyl derived complexes are most reactive. Polymerizations catalyzed by 2b, 3b and 3c·MeCN were proved to be living. The X-ray structures of 2a·HOiPr, 2a·MeCN, 2c·HOiPr, 2c·MeCN, and 3c·MeCN are presented.

  2. Cobalt oxide 2D nano-assemblies from infinite coordination polymer precursors mediated by a multidentate pyridyl ligand.

    PubMed

    Li, Guo-Rong; Xie, Chen-Chao; Shen, Zhu-Rui; Chang, Ze; Bu, Xian-He

    2016-05-01

    In this work, the construction of Co3O4 two dimensional (2D) nano-assemblies utilizing infinite coordination polymers (ICPs) as precursors was investigated, aiming at the morphology targeted fabrication and utilization of 2D materials. Based on the successful modulation of morphology, a rose-like Co based ICP precursor was obtained, which was further transformed into porous Co3O4 nanoflake assemblies with a well-preserved 2D morphology and a large surface area. The mechanism of the morphology modulation was illustrated by systematic investigation, which demonstrated the crucial role of a modulating agent in the formation of 2D nano-assemblies. In addition, the cobalt oxide 2D nano-assemblies are fabricated into a lithium anode combined with graphene, and the remarkable capacity and stability (900 mA h g(-1) after 50 cycles) of the resulting Co3O4/G nanocomposite indicates its potential in lithium battery applications. PMID:27064264

  3. Surface Ligand Effects on Metal-Affinity Coordination to Quantum Dots: Implications for Nanoprobe Self-Assembly

    PubMed Central

    Dennis, Allison M.; Sotto, David C.; Mei, Bing C.; Medintz, Igor L.; Mattoussi, Hedi; Bao, Gang

    2010-01-01

    The conjugation of biomolecules such as proteins and peptides to semiconductor quantum dots (QD) is a critical step in the development of QD-based imaging probes and nanocarriers. Such protein-QD assemblies can have a wide range of biological applications including in vitro protein assays and live-cell fluorescence imaging. One conjugation scheme that has a number of advantages is the self-assembly of biomolecules on a QD surface via polyhistidine coordination. This approach has been demonstrated using QDs that have different coating types, resulting in different interactions between the biomolecule and QD surface. Here we report the use of a fluorescence resonance energy transfer (FRET) assay to evaluate the self-assembly of fluorescent proteins on the surface of QDs with eight distinct coatings, including two used in commercial preparations. The results of this systematic comparison can provide a basis for rational design of self-assembled biomolecule-QD complexes for biomedical applications. PMID:20568725

  4. Turn-on phosphorescence by metal coordination to a multivalent terpyridine ligand: a new paradigm for luminescent sensors.

    PubMed

    Fermi, Andrea; Bergamini, Giacomo; Roy, Myriam; Gingras, Marc; Ceroni, Paola

    2014-04-30

    A hexathiobenzene molecule carrying six terpyridine (tpy) units at the periphery has been designed to couple the aggregation induced phosphorescence, displayed by the core in the solid state, to the metal binding properties of the tpy units. Upon Mg(2+) complexation in THF solution, phosphorescence of the hexathiobenzene core is turned on. Metal ion coordination yields the formation of a supramolecular polymer which hinders intramolecular rotations and motions of the core chromophore, thus favoring radiative deactivation of the luminescent excited state. Upon excitation of the [Mg(tpy)2](2+) units of the polymeric structure, sensitization of the core phosphorescence takes place with >90% efficiency. The light-harvesting polymeric antenna can be disassembled upon fluoride ion addition, thereby switching off luminescence and offering a new tool for fluoride ion sensing. This unique system can, thus, serve as cation or anion sensor. PMID:24725096

  5. Surface ligand effects on metal-affinity coordination to quantum dots: implications for nanoprobe self-assembly.

    PubMed

    Dennis, Allison M; Sotto, David C; Mei, Bing C; Medintz, Igor L; Mattoussi, Hedi; Bao, Gang

    2010-07-21

    The conjugation of biomolecules such as proteins and peptides to semiconductor quantum dots (QD) is a critical step in the development of QD-based imaging probes and nanocarriers. Such protein-QD assemblies can have a wide range of biological applications including in vitro protein assays and live-cell fluorescence imaging. One conjugation scheme that has a number of advantages is the self-assembly of biomolecules on a QD surface via polyhistidine coordination. This approach has been demonstrated using QDs that have different coating types, resulting in different interactions between the biomolecule and QD surface. Here, we report the use of a fluorescence resonance energy transfer (FRET) assay to evaluate the self-assembly of fluorescent proteins on the surface of QDs with eight distinct coatings, including several used in commercial preparations. The results of this systematic comparison can provide a basis for rational design of self-assembled biomolecule-QD complexes for biomedical applications.

  6. Cobalt oxide 2D nano-assemblies from infinite coordination polymer precursors mediated by a multidentate pyridyl ligand.

    PubMed

    Li, Guo-Rong; Xie, Chen-Chao; Shen, Zhu-Rui; Chang, Ze; Bu, Xian-He

    2016-05-01

    In this work, the construction of Co3O4 two dimensional (2D) nano-assemblies utilizing infinite coordination polymers (ICPs) as precursors was investigated, aiming at the morphology targeted fabrication and utilization of 2D materials. Based on the successful modulation of morphology, a rose-like Co based ICP precursor was obtained, which was further transformed into porous Co3O4 nanoflake assemblies with a well-preserved 2D morphology and a large surface area. The mechanism of the morphology modulation was illustrated by systematic investigation, which demonstrated the crucial role of a modulating agent in the formation of 2D nano-assemblies. In addition, the cobalt oxide 2D nano-assemblies are fabricated into a lithium anode combined with graphene, and the remarkable capacity and stability (900 mA h g(-1) after 50 cycles) of the resulting Co3O4/G nanocomposite indicates its potential in lithium battery applications.

  7. I. the Synthesis and Coordination Chemistry of Novel 6Pi-Electron Ligands. II. Improvement of Student Writing Skills in General Chemistry Lab Reports through the Use of Calibrated Peer Review

    ERIC Educational Resources Information Center

    William, Wilson Ngambeki

    2011-01-01

    Abstract I. The goal of this study was to synthesize and characterize a set of coordination complexes containing 6pi-cationic ligands. These compounds could be extremely useful as catalysts for the polymerization of olefins that are widely used in the synthetic polymer industry. The original strategy was to synthesize the 6pi-cationic ligands…

  8. Structural and Magnetic Properties of Copper(II) Coordination Polymers Containing Fluoride-Based Anions and Ancillary Organic Ligands

    NASA Astrophysics Data System (ADS)

    Conner, M.; McConnell, A.; Schlueter, J.; Manson, J.

    2006-02-01

    The fluoride (F-) and bifluoride (HF 2 - ) anions have been little used in the self-assembly of molecular and polymeric magnets. We have recently synthesized several new compounds, namely CuF2(3-OHpy)4 (OHpy = hydroxypyridine) (1), Cu(SiF6)(2,6-me2pyz)4 (me2pyz = dimethylpyrazine) (2), CuF2(H2O)2(pyz) (pyz = pyrazine) (3) and [Cu(HF2)(pyz)2]BF4 (4). Compound 1 contains coordinate covalent and hydrogen bonding interactions that link the Cu(II) ions into 3D networks while 2 features square-pyramidal Cu(II) ions that are weakly bridged by SiF 6 2- anions into 1D chains. Preliminary structural data indicate that compound 3 contains 1D Cu-pyz-Cu chains while 4 contains two dimensional [Cu(pyz)2]2+ layers, which held together via HF 2 - anions so as to form an unprecedented 3D network. The magnetic properties of each are briefly described herein.

  9. Synthesis, structures, luminescent and magnetic properties of four coordination polymers with the flexible 1,3-phenylenediacetate ligands

    NASA Astrophysics Data System (ADS)

    Gu, Jin-Zhong; Lv, Dong-Yu; Gao, Zhu-Qing; Liu, Jian-Zhao; Dou, Wei; Tang, Yu

    2011-03-01

    Four coordination polymers, [Zn(pda)(bpy)(H 2O)] n· nH 2O ( 1), [Cd(pda)(prz)(H 2O)] n ( 2), [Co 3( μ3-OH) 2(pda) 2(pyz)] n·2 nH 2O ( 3) and [Pr 2(pda) 3(H 2O) 2] n ( 4) (H 2pda=1,3-phenylendiacetic acid, bpy=4,4'-bipyridine, prz=piperazine and pyz=pyrazine) have been hydrothermally synthesized and characterized. Complex 1 is a 1D wheel-like chain structure, which is further extended into a 3D metal-organic supramolecular framework by H-bonds and π- π stacking interactions. Complex 2 is a 1D ladder-like chain structure, which is also further extended into a 3D metal-organic supramolecular framework by H-bonds. Complex 3 possess a 2D sheet structure with infrequent two pairs of double-helix chains. Complex 4 features a 3D structure. Both 1 and 2 display strong blue fluorescent emission at room temperature. Magnetic susceptibility measurements of complexes 3 and 4 exhibit antiferromagnetic interactions between the nearest metal ions, with C=9.99 and 3.43 cm 3 mol -1 K, and θ=-23.9 and -46.3 K, respectively.

  10. New ruthenium(II) coordination compounds possessing bidentate aminomethylphosphane ligands: synthesis, characterization and preliminary biological study in vitro.

    PubMed

    Płotek, Michał; Starosta, Radosław; Komarnicka, Urszula K; Skórska-Stania, Agnieszka; Jeżowska-Bojczuk, Małgorzata; Stochel, Grażyna; Kyzioł, Agnieszka

    2015-08-21

    Addition of aminomethylphosphane P{CH2N(CH2CH2)2O}3 (), PPh2{CH2N(CH2CH2)2O} () or PPh2{CH2N(CH2CH2)2NCH2CH3} () to a methanolic solution of RuCl3 results in reduction of ruthenium(iii) ions giving finally ttt-[RuCl2()2] (), ttt-[RuCl2()2] () and ttt-[RuCl2()2] (). The synthesized complexes are the first examples of ruthenium(ii) coordination compounds possessing aminomethylphosphanes chelating via phosphorus and nitrogen atoms. They were fully characterized (NMR, ESI-MS, IR, elemental analysis, X-ray crystallography). Preliminary studies of the in vitro cytotoxicity on the A549 cell line (human lung adenocarcinoma) and interactions with human serum proteins (albumin and apotransferrin) showed moderate activity of the complexes. Interestingly, the P,N-chelation leads to formation of strained 4-membered Ru-P-C-N-Ru rings, which in the case of and undergo opening in the presence of CH3CN, which results in rearrangement to ctc-[RuCl2()2(CH3CN)2] () and ctc-[RuCl2()2(CH3CN)2] ().

  11. Solvent-regulated assemblies of four Zn(II) coordination polymers constructed by flexible tetracarboxylates and pyridyl ligands

    NASA Astrophysics Data System (ADS)

    Fang, Kang; He, Xiang; Shao, Min; Li, Ming-Xing

    2016-08-01

    Four unique complexes with diverse coordination architectures were synthesized upon complexation of 5,5-(1,4-phenylenebis (methylene))bis (oxy)- diisophthalic acid (H4L) with zinc ions by using different solvent. namely, {[Zn(H2L) (bpp)]·DEF}n (1), {[Zn2(L) (bpp)2]·4H2O}n (2), {[Zn2(L) (pdp)2]·3H2O·DEF}n (3), {[Zn2(L) (pdp)2].4H2O}n (4). Complexes 1,2 and 3,4 are obtained by varying solvents to control their structures. The size of solvent molecular plays an important role to control different structure of these compounds. Compound 1 is 2D waved framework with (4, 4) grid layer as sql topology. Compound 3 displays a (4,6)-connected 2-nodal net with a fsc topology. Compounds 2 and 4 are all three-dimensional network simplified as (4,4)-connected 2-nodal net with a bbf topology. The photochemical properties of compounds 1-4 were tested in the solid state at room temperature, owing to their strong luminescent emissions, complexes 1-4 are good candidates for photoactive materials.

  12. Panoramic stereo sphere vision

    NASA Astrophysics Data System (ADS)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  13. Rational assembly of Pb(II)/Cd(II)/Mn(II) coordination polymers based on flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    NASA Astrophysics Data System (ADS)

    Yang, Gao-Shan; Liu, Chong-Bo; Liu, Hong; Robbins, Julianne; Zhang, Z. John; Yin, Hong-Shan; Wen, Hui-Liang; Wang, Yu-Hua

    2015-05-01

    Six new coordination polymers, namely, [Pb(L)(H2O)] (1), [Pb(L)(phen)] (2), [Pb2(L)2(4,4‧-bipy)0.5] (3), [Cd(L)(phen)] (4), [Cd(L)(4,4‧-bipy)]·H2O (5) and [Mn(L)(4,4‧-bipy)]·H2O (6) have been synthesized by the hydrothermal reaction of 2,2‧-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H2L) with Pb(II)/Cd(II)/Mn(II) in the presence of ancillary ligands 4,4‧-bipyridine (4,4‧-bipy) or 1,10-phenanthroline (phen). Complexes 1 and 4-6 exhibit 2-D structures, and complexes 2-3 display 3-D frameworks, of which L2- ligands join metal ions to single-stranded helical chains of 1, 3-6 and double-stranded helical chains of 2. Complexes 2 and 3 also contain double-stranded Metal-O helices. Topology analysis reveals that complexes 1 and 4 both represent 4-connected sql net, 2 represents 6-connected pcu net, 3 exhibits a novel (3,12)-connected net, while 5 and 6 display (3,5)-connected gek1 net. The six complexes exhibit two kinds of inorganic-organic connectivities: I0O2 for 1, 4-6, and I1O2 for 2-3. The photoluminescent properties of 4-5 and the magnetic properties of 6 have been investigated.

  14. Systematic evaluation of textural properties, activation temperature and gas uptake of Cu2(pzdc)2L [L = dipyridyl-based ligands] porous coordination pillared-layer networks.

    PubMed

    García-Ricard, Omar J; Silva-Martínez, Juan C; Hernández-Maldonado, Arturo J

    2012-08-01

    In situ high temperature X-ray diffraction, nitrogen porosimetry and gas adsorption at room temperature were used to elucidate the effect of the degassing or activation temperature on the long-range and micropore textural properties of a series of coordination polymers with pillared-layer structures. Ramp-and-soak thermal gravimetric analysis performed at selected activation temperatures were used to verify the thermal stability of a CPL-n series [Cu(2)(pzdc)(2)L; pzdc = pyrazine-2,3-dicarboxylate; L = 4,4-azopyridine (apy) for CPL-4, 1,2-di-(4-pyridil)-ethylene (bpe) for CPL-5, N-(4-pyridyl)-isonicotinamide (pia) for CPL-6, and 1,2-di-(4-pyridyl)-glycol (dpyg) for CPL-7]. Although the activation temperatures were far below the decomposition point of the complexes, these resulted in significant and unique changes in micropore surface area and volume, even for CPL-4, -5 and -6, which contained pillar ligands with similar dimensions and similar structural long-range order. For the case of CPL-7, however, the framework appeared to be non-porous at any given activation temperature. Pure component equilibrium adsorption data gathered for CO(2), CH(4), and N(2) were used to elucidate the CPL-n materials potential for storage and separations at room temperature. All of the materials exhibited considerable selectivity toward CO(2), particularly at moderate pressures. Meanwhile, CO(2) isosteric heats of adsorption indicated that the pore functionalities arising from the pillar ligands provided similar interactions with the adsorbate in the cases of CPL-4 and -5. For CPL-6, the presence of the carbonyl (C[double bond, length as m-dash]O) group appeared to enhance interactions with CO(2) at low loadings. PMID:22714718

  15. Exploring the effect of chain length of bridging ligands in cobalt(II) coordination polymers based on flexible bis(5,6-dimethylbenzimidazole) ligands: Synthesis, crystal structures, fluorescence and catalytic properties

    NASA Astrophysics Data System (ADS)

    Qin, Li; Li, Yue-Hua; Ma, Pei-Juan; Cui, Guang-Hua

    2013-11-01

    Two Co(II) coordination polymers derived from a dicarboxylate and two flexible bis(5,6-dimethylbenzimidazole) ligands with varying chain lengths equipped, namely [Co(bdmbmm)(nip)]n (1) and [Co2(bdmbmb)2(nip)2ṡH2O]n (2) (bdmbmm = 1,1'-bis(5,6-dimethylbenzimidazole)methane, H2nip = 5-nitroisophthalic acid, bdmbmb = 1,4-bis(5,6-dimethylbenzimidazole)butane), have been synthesized by hydrothermal methods and characterized by elemental analyses, IR spectra, thermogravimetric analysis (TGA), X-ray powder diffraction (XRPD) and single-crystal X-ray diffraction. Complex 1 forms a 1D looped-like chain consisting of two kinds of macrocycles, which is further arranged into a 2D supramolecular layer through face-to-face π-π stacking interactions; whereas complex 2 exhibits a 3D framework with a twofold interpenetrating diamondoid topology. The fluorescence and catalytic properties of the complexes for the degradation of methyl orange by sodium persulfate have been investigated.

  16. Controllable assembly of metal-directed coordination polymers under diverse conditions: a case study of the M(II)-H3tma/Bpt mixed-ligand system.

    PubMed

    Du, Miao; Jiang, Xiu-Juan; Zhao, Xiao-Jun

    2006-05-15

    A series of new metal-organic polymeric complexes, [[Co(bpt)(Htma)(H2O)3].2.25H2O]n (1), [Co(bpt)(Htma)(H2O)]n (2), [Ni(bpt)(Htma)(H2O)]n (3), [Zn(bpt)2(H2tma)2].6H2O (4), [[Cd(bpt)(Htma)(H2O)].(C2H5OH)(H2O)1.5]n (5), and [[Cd(bpt)(Htma)(H2O)2].5.5H2O]n (6), was prepared from solution reactions of 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole (bpt) and trimesic acid (H3tma) with different metal salts under diverse conditions. All these compounds were structurally determined by X-ray single-crystal diffraction, and the bulk new materials were further identified by X-ray powder diffraction. Complexes 1 and 6 show 1-D zigzag or linear Htma-bridged polymeric chains, with the terminal bpt ligands as pendants, which are extended to 2-D hydrogen-bonded arrays with 4.8(2) or (6,3) network topology. Coordination polymers 2 and 3, in which the 2-D corrugated metal-organic frameworks make the interdigitated 3-D packing, are isostructural. Complex 4 has a mononuclear structure, and its subunits are hydrogen-bonded to each other to give a 2-D grid-like net. For complex 5, the Cd(II) centers are linked by bpt/Htma ligands to form a 2-D (4,4) coordination layer, and these layers are interdigitated in pairs. Notably, secondary noncovalent forces, such as hydrogen bonds, play an important role in extending and stabilizing these structural topologies. Interestingly, distinct products are obtained for Co(II) (1 and 2) and Cd(II) (5 and 6) under ambient or hydrothermal conditions; however, for Ni(II) and Zn(II), single products, 3 and 4, are generated. The thermal stabilities of 1-6 were studied by thermogravimetric analysis of mass loss. The desorption/adsorption properties of the porous material 5 are also discussed. Solid-state luminescent spectra of the Zn(II) and Cd(II) complexes, 4-6, indicate intense fluorescent emissions at ca. 380 nm.

  17. Coordination mode of pentadentate ligand derivative of 5-amino-1,3,4-thiadiazole-2-thiol with nickel(II) and copper(II) metal ions: Synthesis, spectroscopic characterization, molecular modeling and fungicidal study

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gautam, Seema; Kumar, Amit; Madan, Molly

    2015-02-01

    Complexes of nickel(II), and copper(II) were synthesized with pantadentate ligand i.e. 3,3‧-thiodipropionicacid-bis(5-amino-1,3,4-thiadiazole-2-thiol) (L). The ligand was synthesized by the condensation of thiodipropionic acid and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio, respectively. Synthesized ligand was characterized by elemental analysis, mass, 1H NMR, IR, and molecular modeling. All the complexes were characterized by elemental analysis, molar conductance, magnetic moment, IR, electronic spectra, ESR, and molecular modeling. The newly synthesized complexes possessed general composition [M(L)X2] where M = Ni(II), Cu(II), L = pantadentate ligand and X = Cl-, CH3COO-. The IR spectral data indicated that the ligand behaved as a pantadentate ligand and coordinated to the metal ion through N2S3 donor atoms. The molar conductance value of Ni(II), and Cu(II) complexes in DMSO corresponded to their electrolytic behavior. On the basis of spectral study, octahedral and tetragonal geometry was assigned for Ni(II) and Cu(II) complexes, respectively. In vitro fungicidal study of ligand and its complexes was investigated against fungi Candida albicans, Candida parapsilosis, Candidia krusei, and Candida tropicalis by means of well diffusion method.

  18. Coordination mode of pentadentate ligand derivative of 5-amino-1,3,4-thiadiazole-2-thiol with nickel(II) and copper(II) metal ions: synthesis, spectroscopic characterization, molecular modeling and fungicidal study.

    PubMed

    Chandra, Sulekh; Gautam, Seema; Kumar, Amit; Madan, Molly

    2015-02-01

    Complexes of nickel(II), and copper(II) were synthesized with pantadentate ligand i.e. 3,3'-thiodipropionicacid-bis(5-amino-1,3,4-thiadiazole-2-thiol) (L). The ligand was synthesized by the condensation of thiodipropionic acid and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio, respectively. Synthesized ligand was characterized by elemental analysis, mass, (1)H NMR, IR, and molecular modeling. All the complexes were characterized by elemental analysis, molar conductance, magnetic moment, IR, electronic spectra, ESR, and molecular modeling. The newly synthesized complexes possessed general composition [M(L)X2] where M = Ni(II), Cu(II), L = pantadentate ligand and X = Cl(-), CH3COO(-). The IR spectral data indicated that the ligand behaved as a pantadentate ligand and coordinated to the metal ion through N2S3 donor atoms. The molar conductance value of Ni(II), and Cu(II) complexes in DMSO corresponded to their electrolytic behavior. On the basis of spectral study, octahedral and tetragonal geometry was assigned for Ni(II) and Cu(II) complexes, respectively. In vitro fungicidal study of ligand and its complexes was investigated against fungi Candida albicans, Candida parapsilosis, Candidia krusei, and Candida tropicalis by means of well diffusion method.

  19. A three-dimensional mixed-valence Cu(II)/Cu(I) coordination polymer constructed from biphenyl-3,4',5-tricarboxylate and 1,4-bis(1H-imidazol-1-yl)benzene ligands.

    PubMed

    Liu, Ya Hui; Lu, Li Ping; Zhu, Miao Li; Su, Feng

    2016-04-01

    Coordination polymers (CPs) built by coordination bonds between metal ions/clusters and multidentate organic ligands exhibit fascinating structural topologies and potential applications as functional solid materials. The title coordination polymer, poly[diaquabis(μ4-biphenyl-3,4',5-tricarboxylato-κ(4)O(3):O(3'):O(4'):O(5))tris[μ2-1,4-bis(1H-imidazol-1-yl)benzene-κ(2)N(3):N(3')]dicopper(II)dicopper(I)], [Cu(II)2Cu(I)2(C15H7O6)2(C12H10N4)3(H2O)2]n, was crystallized from a mixture of biphenyl-3,4',5-tricarboxylic acid (H3bpt), 1,4-bis(1H-imidazol-1-yl)benzene (1,4-bib) and copper(II) chloride in a water-CH3CN mixture under solvothermal reaction conditions. The asymmetric unit consists of two crystallographically independent Cu atoms, one of which is Cu(II), while the other has been reduced to the Cu(I) ion. The Cu(II) centre is pentacoordinated by three O atoms from three bpt(3-) ligands, one N atom from a 1,4-bib ligand and one O atom from a coordinated water molecule, and the coordination geometry can be described as distorted trigonal bipyramidal. The Cu(I) atom exhibits a T-shaped geometry (CuN2O) coordinated by one O atom from a bpt(3-) ligand and two N atoms from two 1,4-bib ligands. The Cu(II) atoms are extended by bpt(3-) and 1,4-bib linkers to generate a two-dimensional network, while the Cu(I) atoms are linked by 1,4-bib ligands, forming one-dimensional chains along the [20-1] direction. In addition, the completely deprotonated μ4-η(1):η(1):η(1):η(1) bpt(3-) ligands bridge one Cu(I) and three Cu(II) cations along the a (or [100]) direction to form a three-dimensional framework with a (10(3))2(10)2(4(2).6.10(2).12)2(4(2).6.8(2).10)2(8) topology via a 2,2,3,4,4-connected net. An investigation of the magnetic properties indicated a very weak ferromagnetic behaviour. PMID:27045187

  20. SPHERES Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Andres; Benavides, Jose Victor; Ormsby, Steve L.; GuarnerosLuna, Ali

    2014-01-01

    Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized satellites that provide a test bed for development and research into multi-body formation flying, multi-spacecraft control algorithms, and free-flying physical and material science investigations. Up to three self-contained free-flying satellites can fly within the cabin of the International Space Station (ISS), performing flight formations, testing of control algorithms or as a platform for investigations requiring this unique free-flying test environment. Each satellite is a self-contained unit with power, propulsion, computers, navigation equipment, and provides physical and electrical connections (via standardized expansion ports) for Principal Investigator (PI) provided hardware and sensors.

  1. Synthesis, structure and characterization of two copper(II) supramolecular coordination polymers based on a multifunctional ligand 2-amino-4-sulfobenzoic acid.

    PubMed

    Wei, Yan; Zhang, Lei; Wang, Meng-Jie; Chen, Si-Chun; Wang, Zi-Hao; Zhang, Kou-Lin

    2015-07-01

    Copper(II) coordination polymers have attracted considerable interest due to their catalytic, adsorption, luminescence and magnetic properties. The reactions of copper(II) with 2-amino-4-sulfobenzoic acid (H(2)asba) in the presence/absence of the auxiliary chelating ligand 1,10-phenanthroline (phen) under ambient conditions yielded two supramolecular coordination polymers, namely (3-amino-4-carboxybenzene-1-sulfonato-κO(1))bis(1,10-phenanthroline-κ(2)N,N')copper(II) 3-amino-4-carboxybenzene-1-sulfonate monohydrate, [Cu(C7H6N2O5S)(C12H8N2)2](C7H6N2O5S)·H2O, (1), and catena-poly[[diaquacopper(II)]-μ-3-amino-4-carboxylatobenzene-1-sulfonato-κ(2)O(4):O(4')], [Cu(C7H6N2O5S)(H2O)2]n, (2). The products were characterized by FT-IR spectroscopy, thermogravimetric analysis (TGA), solid-state UV-Vis spectroscopy and single-crystal X-ray diffraction analysis, as well as by variable-temperature powder X-ray diffraction analysis (VT-PXRD). Intermolecular π-π stacking interactions in (1) link the mononuclear copper(II) cation units into a supramolecular polymeric chain, which is further extended into a supramolecular double chain through interchain hydrogen bonds. Supramolecular double chains are then extended into a two-dimensional supramolecular double layer through hydrogen bonds between the lattice Hasba(-) anions, H2O molecules and double chains. Left- and right-handed 21 helices formed by the Hasba(-) anions are arranged alternately within the two-dimensional supramolecular double layers. Complex (2) exhibits a polymeric chain which is further extended into a three-dimensional supramolecular network through interchain hydrogen bonds. Complex (1) shows a reversible dehydration-rehydration behaviour, while complex (2) shows an irreversible dehydration-rehydration behaviour.

  2. 1D coordination polymers formed by tetranuclear lead(II) building blocks with carboxylate ligands: In situ isomerization of itaconic acid

    SciTech Connect

    Rana, Abhinandan; Jana, Swapan Kumar; Datta, Sayanti; Butcher, Raymond J.; Zangrando, Ennio; Dalai, Sudipta

    2013-11-15

    The synthesis of two new lead(II) coordination polymers, [Pb{sub 2}(mpic){sub 4}(H{sub 2}O)]·0.5H{sub 2}O (1) and [Pb{sub 2}(phen){sub 2}(cit)(mes)]·2H{sub 2}O (2) has been reported, where mpic=3-methyl picolinate, phen=o-phenanthroline, H{sub 2}cit=citraconic acid, H{sub 2}mes mesaconic acid. X-ray single crystal diffraction analyses showed that the complexes comprise topologically different 1D polymeric chains stabilized by weak interactions and both containing tetranuclear Pb{sub 4} units connected by carboxylate groups. In compound 1 3-methylpicolinic acid is formed in situ from 3-methyl piconitrile, and mesaconate and citraconate anions were surprisingly formed from itaconic acid during the synthesis of 2. The photoluminescence and thermal properties of the complexes have been studied. - Graphical abstract: Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by X-ray analysis. The luminescence and thermal properties have been studied. Display Omitted - Highlights: • Both the complexes, made up of different ligands, forms topologycally different 1D polymeric chains containing Pb{sub 4} clusters. • The final structures are stabilized by weak interactions (H-bond, π∙∙∙π stacking). • In complex 1, the 3-methylpicolinic acid is generated in situ from 3-methyl piconitrile. • Mesaconate and citraconate anions are surprisingly formed in situ from itaconic acid during the synthesis of complex 2, indicating an exceptional transformation.

  3. A comparative study of actinide complexation in three ligand systems with increasing complexity

    NASA Astrophysics Data System (ADS)

    Jeanson, A.; Dahou, S.; Guillaumont, D.; Moisy, P.; Den Auwer, C.; Scheinost, A.; Hennig, C.; Vidaud, C.; Subra, G.; Solari, P. L.

    2009-11-01

    The complexation of thorium, neptunium and plutonium at oxidation state +IV with three ligands of increasing complexity has been investigated. These ligands are relevant for bio inorganic systems. The first ligand is the small nitrilotriacetic acid that often play the role of protecting ligands against hydrolysis. EXAFS results for the Th to Pu series have been correlated to quantum chemical calculations and show an homogeneous behavior of the actinide at oxidation state +IV. For larger ligands, steric effects may become significant and one can ask how the ligand may accommodate the large actinide cation coordination sphere. Model pentapeptides have been synthesized and tested as complexing agents. Comparison with NTA shows that the molecular arrangements are radically different. The third ligand system is transferrin, a diferric metalloptrotein that is well known to coordinate a large variety of cations from transition metals of f-elements. Metalloproteins bear primary, secondary and tertiary structures that all play a crucial role in bonding. At a given oxidation state (+IV), but for various atomic numbers (Th, Np, Pu) EXAFS data at the cation LIII edge exhibit significant coordination discrepancies that are related to a changes in protein geometry. In that sense, the metalloprotein may be viewed as a complex system.

  4. Coordination polymers and metal-organic frameworks derived from 4,4'-dicarboxy-2,2'-bipyridine and 4,4',6,6'-tetracarboxy-2,2'-bipyridine ligands: a personal perspective.

    PubMed

    Kruger, Paul E

    2013-01-01

    Presented herein is a personal overview of some of the contributions we have made over recent years to coordination polymer chemistry employing 2,2'-bipyridine-polycarboxylic acid ligands in conjunction with first row transition, main group or lanthanide metal ions. Primarily the discussion is centred upon the two ligands with which we have enjoyed the most success: 4,4'-dicarboxy-2,2'-bipyridine (4,4'-H2dcbp) and 4,4',6,6'-tetracarboxy-2,2'-bipyridine (4,4',6,6'-H4tcbp). Initial discussion is focused upon the synthetic aspects of ligand formation and their structural characterisation and then moves on to the synthesis of metal complexes incorporating these ligands and the coordination polymers they form. Where possible the discussion is presented from a synthetic and structural perspective with highlight given to the pertinent properties of the coordination polymers formed e.g. thermal behaviour, magnetic, luminescent or small molecule sorption properties. We end the review with some conclusions and highlight some current work with a view to future research.

  5. Two new Zn(II) coordination polymers based on mixed pipemidic acid and flexible aromatic dicarboxylic acid ligands: Syntheses, crystal structures and luminescent properties

    NASA Astrophysics Data System (ADS)

    Jia, Yanxia; Zhou, Pingping

    2016-09-01

    Two new Zn(II) coordination polymers, namely [Zn(4,4‧-sdb) (HPPA)]n (1) and [Zn(2,2‧-bpdc)0.5(PPA)]n (2) (4,4‧-H2sdb = 4,4‧-sulfonyldibenzoate, 2,2‧-H2bpdc = 2,2‧-biphenyldicarboxylic acid, HPPA = pipemidic acid) were successfully obtained under hydrothermal conditions. These two compounds were further characterized by single-crystal X-ray diffraction analyses, elemental analyses, powder X-ray diffraction (PXRD) analyses and IR spectra. Compound 1 features a 1D chain structure, which further extended into a 3D supramolecular framework via intermolecular hydrogen bonds and weak van der Waals interactions, and compound 2 features a 3D framework with 6-connected α-Po-type topology. The structural regulation for these two compounds was successfully achieved by changing the flexible aromatic dicarboxylic acid ligand. Moreover, the thermal stabilities and luminescent properties for these two compounds were also investigated.

  6. Photocurrent-generating properties of bulk and few-layered Cd(ii) coordination polymers based on a rigid dicarboxylate ligand.

    PubMed

    Jiang, Peng Gang; Zhang, Pan; Gong, Yun; Lin, Jian Hua

    2016-03-21

    Based on a rigid ligand, 2,5-bis[3'-carboxyl-phenyl] pyridine (H2L), two coordination polymers (CPs) formulated as Cd3L3(DMF)4 (1) and CdL(DMF)·DMF (2) were solvothermally synthesized and characterized by single-crystal X-ray diffraction. CP 1 is a uninodal 6-connected 3D network with a {4(4)·6(10)·8}-mab topology, in which the Cd3 unit with a CdCd separation of 3.61 Å is observed. CP 2 exhibits a uninodal 2D layer with a 4(4)-sql topology, in which Cd(ii) ions are linked into a Cd-O-Cd chain with a CdCd separation of 3.91 Å. DFT calculations indicate that CP 1 possesses a more narrow band gap than CP 2, and CP 1 yields higher photocurrent density upon visible light illumination than CP 2. In the present work, the few-layered CP 2 has been in situ synthesized, and it shows enhanced photocurrent density with respect to the bulk CP, which is probably associated with the large fraction of uncoordinated surface atoms and dangling bonds in the nanosheet of CP 2. PMID:26846935

  7. Two isostructural cobalt(II) coordination polymers with both polyrotaxane and polycatenane features assembled with a V-shaped rigid ligand

    NASA Astrophysics Data System (ADS)

    Li, Yue; Yao, Xiao-Qiang; Xiao, Guo-Bin; Ma, Heng-Chang; Yang, Yun-Xia; Liu, Jia-Cheng

    2015-06-01

    Two novel cobalt(II) coordination polymers (CPs), [Co(BPFP)2(sca)]n (1), [Co(BPFP)2(sda)]n (2), [BPFP = 2,8-di(pyridin-4-yl)dibenzo[b,d]furan, H2sca = succinic acid, H2sda = thiophene-2,5-dicarboxylic acid], have been synthesized hydrothermally based on a V-shaped rigid ligand BPFP. Their structures were fully characterized by elemental analysis, FT-IR spectroscopy and X-ray single-crystal diffraction methods. Compound 1 is a 2-fold parallel interpenetrating network consist of two identical sets of 2D layer motifs and shows both polyrotaxane and polycatenane characters. Compound 2 has the same structural feature as compound 1, except that the sca2- anions are replaced by the sda2- anions. The Powder X-ray diffraction (PXRD) analyses and thermogravimetric analyses were carried out to confirm the phase purity and the thermal stabilities of the compounds 1 and 2. In addition, the solid-state UV-vis absorption spectra were also investigated.

  8. Ligand-dependent de-repression via EcR/USP acts as a gate to coordinate the differentiation of sensory neurons in the Drosophila wing.

    PubMed

    Schubiger, Margrit; Carré, Clément; Antoniewski, Christophe; Truman, James W

    2005-12-01

    Loss of function of either the ecdysone receptor (EcR) or Ultraspiracle (USP), the two components of the ecdysone receptor, causes precocious differentiation of the sensory neurons on the wing of Drosophila. We propose that the unliganded receptor complex is repressive and that this repression is relieved as the hormone titers increase at the onset of metamorphosis. The point in development where the receptor complex exerts this repression varies for different groups of sensilla. For the chemosensory organ precursors along the wing margin, the block is at the level of senseless expression and is indirect, via the repressive control of broad expression. Misexpressing broad or senseless can circumvent the repression by the unliganded receptor and leads to precocious differentiation of the sensory neurons. This precocious differentiation results in the misguidance of their axons. The sensory precursors of some of the campaniform sensilla on the third longitudinal vein are born prior to the rise in ecdysone. Their differentiation is also repressed by the unliganded EcR/USP complex but the block occurs after senseless expression but before the precursors undertake their first division. We suggest that in imaginal discs the unliganded EcR/USP complex acts as a ligand-sensitive ;gate' that can be imposed at various points in a developmental pathway, depending on the nature of the cells involved. In this way, the ecdysone signal can function as a developmental timer coordinating development within the imaginal disc.

  9. A Coordination Chemistry Approach for Lithium-Ion Batteries: The Coexistence of Metal and Ligand Redox Activities in a One-Dimensional Metal-Organic Material.

    PubMed

    Li, Gaihua; Yang, Hao; Li, Fengcai; Cheng, Fangyi; Shi, Wei; Chen, Jun; Cheng, Peng

    2016-05-16

    We demonstrate herein the use of a one-dimensional metal-organic material as a new type of electrode material for lithium-ion batteries (LIBs) in place of the classic porous three-dimensional materials, which are subject to the size of the channel for lithium-ion diffusion and blocking of the windows of the framework by organic solvents during the charging and discharging processes. Introducing a one-dimensional coordination compound can keep organic active substances insoluble in the electrolyte during the charging and discharging processes, providing a facile and general new system for further studies. The results show that both the aromatic ligand and the metal center can participate in lithium storage simultaneously, illustrating a new energy storage mechanism that has been well-characterized by X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and cyclic voltammetry. In addition, the fact that the one-dimensional chains are linked by weak hydrogen bonds rather than strong π-π stacking interactions or covalent bonds is beneficial for the release of capacity entirely without the negative effect of burying the active sites.

  10. A new one-dimensional Cd(II) coordination polymer with a two-dimensional layered structure incorporating 2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole and benzene-1,2-dicarboxylate ligands.

    PubMed

    Huang, Qiu Ying; Lin, Xiao Yi; Meng, Xiang Ru

    2016-06-01

    The N-heterocyclic ligand 2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole (imb) has a rich variety of coordination modes and can lead to polymers with intriguing structures and interesting properties. In the coordination polymer catena-poly[[cadmium(II)-bis[μ-benzene-1,2-dicarboxylato-κ(4)O(1),O(1'):O(2),O(2')]-cadmium(II)-bis{μ-2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole}-κ(2)N(2):N(3);κ(2)N(3):N(2)] dimethylformamide disolvate], {[Cd(C8H4O4)(C11H10N4)]·C3H7NO}n, (I), each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from two symmetry-related benzene-1,2-dicarboxylate (1,2-bdic(2-)) ligands and two N atoms from two symmetry-related imb ligands. Two Cd(II) ions are connected by two benzene-1,2-dicarboxylate ligands to generate a binuclear [Cd2(1,2-bdic)2] unit. The binuclear units are further connected into a one-dimensional chain by pairs of bridging imb ligands. These one-dimensional chains are further connected through N-H...O hydrogen bonds and π-π interactions, leading to a two-dimensional layered structure. The dimethylformamide solvent molecules are organized in dimeric pairs via weak interactions. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature. PMID:27256695

  11. A new one-dimensional Cd(II) coordination polymer with a two-dimensional layered structure incorporating 2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole and benzene-1,2-dicarboxylate ligands.

    PubMed

    Huang, Qiu Ying; Lin, Xiao Yi; Meng, Xiang Ru

    2016-06-01

    The N-heterocyclic ligand 2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole (imb) has a rich variety of coordination modes and can lead to polymers with intriguing structures and interesting properties. In the coordination polymer catena-poly[[cadmium(II)-bis[μ-benzene-1,2-dicarboxylato-κ(4)O(1),O(1'):O(2),O(2')]-cadmium(II)-bis{μ-2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole}-κ(2)N(2):N(3);κ(2)N(3):N(2)] dimethylformamide disolvate], {[Cd(C8H4O4)(C11H10N4)]·C3H7NO}n, (I), each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from two symmetry-related benzene-1,2-dicarboxylate (1,2-bdic(2-)) ligands and two N atoms from two symmetry-related imb ligands. Two Cd(II) ions are connected by two benzene-1,2-dicarboxylate ligands to generate a binuclear [Cd2(1,2-bdic)2] unit. The binuclear units are further connected into a one-dimensional chain by pairs of bridging imb ligands. These one-dimensional chains are further connected through N-H...O hydrogen bonds and π-π interactions, leading to a two-dimensional layered structure. The dimethylformamide solvent molecules are organized in dimeric pairs via weak interactions. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature.

  12. Zinc Coordination Geometry and Ligand Binding Affinity: The Structural and Kinetic Analysis of the Second-Shell Serine 228 Residue and the Methionine 180 Residue of the Aminopeptidase from Vibrio proteolyticus

    SciTech Connect

    Ataie, Niloufar J.; Hoang, Quyen Q.; Zahniser, Megan P.D.; Tu, Yupeng; Milne, Amy; Petsko, Gregory A.; Ringe, Dagmar

    2008-07-28

    The chemical properties of zinc make it an ideal metal to study the role of coordination strain in enzymatic rate enhancement. The zinc ion and the protein residues that are bound directly to the zinc ion represent a functional charge/dipole complex, and polarization of this complex, which translates to coordination distortion, may tune electrophilicity, and hence, reactivity. Conserved protein residues outside of the charge/dipole complex, such as second-shell residues, may play a role in supporting the electronic strain produced as a consequence of functional polarization. To test the correlation between charge/dipole polarity and ligand binding affinity, structure?function studies were carried out on the dizinc aminopeptidase from Vibrio proteolyticus. Alanine substitutions of S228 and M180 resulted in catalytically diminished enzymes whose crystal structures show very little change in the positions of the metal ions and the protein residues. However, more detailed inspections of the crystal structures show small positional changes that account for differences in the zinc ion coordination geometry. Measurements of the binding affinity of leucine phosphonic acid, a transition state analogue, and leucine, a product, show a correlation between coordination geometry and ligand binding affinity. These results suggest that the coordination number and polarity may tune the electrophilicity of zinc. This may have provided the evolving enzyme with the ability to discriminate between reaction coordinate species.

  13. A novel second-order non-linear optical coordination polymer with three-fold interpenetrated CdSO{sub 4}-type network constructed by carboxylate–sulfonate ligands and strontium ions

    SciTech Connect

    Guan, Lei; Wang, Ying

    2015-10-15

    A novel strontium carboxylate–sulfonate coordination polymer, [Sr(HSIP)(H{sub 2}O){sub 3}]{sub n·}nH{sub 2}O (1) (NaH{sub 2}SIP=5-sulfoisophthalic monosodium salt) has been synthesized by hydrothermal reaction. It was characterized by X-ray single crystal diffraction, infrared spectroscopy, elemental and thermogravimetric analysis. Each strontium atom is eight-coordinate with a distorted bicapped trigonal prismatic arrangement. The whole HSIP{sup 2−} ligand acts as a η{sup 5}μ{sup 4} bridge to generate three-fold interpenetrated CdSO{sub 4}-type network structure, which is constructed from the left- and right-handed helixes paralleled to each other bridged by the HSIP{sup 2−} ligands. The luminescence spectrum indicates an emission maximum at 459 nm. Compound 1 shows a second harmonic generation (SHG) response that is 4 times that of KH{sub 2}PO{sub 4}. - Graphical abstract: The whole HSIP{sup 2−} ligands act as η{sup 5}μ{sup 4} bridges with strontium ions, and the strontium ion is eight-coordinated, showing a distorted bicapped trigonal prism geometry. - Highlights: • A novel coordination polymer with a CdSO{sub 4}-type network structure was synthesized. • It shows a second harmonic generation response that is 4 times that of KH{sub 2}PO{sub 4}. • It is constructed from the helixes paralleled to each other.

  14. Synthesis, structure, spectra and reactivity of iron(III) complexes of facially coordinating and sterically hindering 3N ligands as models for catechol dioxygenases.

    PubMed

    Sundaravel, Karuppasamy; Dhanalakshmi, Thirumanasekaran; Suresh, Eringathodi; Palaniandavar, Mallayan

    2008-12-28

    A series of 1 : 1 iron(III) complexes of sterically hindered and systematically modified tridentate 3N donor ligands have been isolated and studied as functional models for extradiol-cleaving catechol dioxygenases. All of them are of the type [Fe(L)Cl(3)], where L is N-methyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L1), N-ethyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L2), N-benzyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L3), N,N-dimethyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L4), N'-methyl-N'-(pyrid-2-ylmethyl)-N,N-dimethylethylenediamine (L5), N'-ethyl-N'-(pyrid-2-ylmethyl)-N,N-dimethylethylenediamine (L6) and N'-benzyl-N'-(pyrid-2-ylmethyl)-N,N-dimethylethylenediamine (L7). They have been characterized by elemental analysis and spectral and electrochemical methods. The X-ray crystal structures of the complexes [Fe(L2)Cl(3)] 2, [Fe(L3)Cl(3)] 3 and [Fe(L7)Cl(3)] 7 have been successfully determined. All the three complexes possess a distorted octahedral coordination geometry in which the ligand is facially coordinated to iron(III) and the chloride ions occupy the remaining coordination sites. Upon replacing the N-ethyl group on the terminal nitrogen donor in 2 by the bulky N-benzyl group as in 3, the terminal Fe-N bond distance increases slightly from 2.229(5) A to 2.244(5) A. Upon incorporating the sterically demanding N-benzyl group on the central nitrogen donor in 4 to obtain 7, the central Fe-N(amine) bond distance increases from 2.181(5) A to 2.299(2) A. The catecholate adducts [Fe(L)(DBC)(Cl)] and [Fe(L)(DBC)(Sol)](+), where H(2)DBC is 3,5-di-tert-butylcatechol and Sol = solvent (H(2)O/DMF), have been generated in situ and their spectral and redox properties and dioxygenase activities have been studied in N,N-dimethylformamide and dichloromethane solutions. The adducts [Fe(L)(DBC)(Sol)](+) undergo cleavage of DBC(2-) in the presence of molecular oxygen to afford both intra- and extradiol cleavage products. The extradiol products are higher in dichloromethane than in

  15. Configuration Control in the Synthesis of Homo- and Heteroleptic Bis(oxazolinylphenolato/thiazolinylphenolato) Chelate Ligand Complexes of Oxorhenium(V): Isomer Effect on Ancillary Ligand Exchange Dynamics and Implications for Perchlorate Reduction Catalysis.

    PubMed

    Liu, Jinyong; Wu, Dimao; Su, Xiaoge; Han, Mengwei; Kimura, Susana Y; Gray, Danielle L; Shapley, John R; Abu-Omar, Mahdi M; Werth, Charles J; Strathmann, Timothy J

    2016-03-01

    This study develops synthetic strategies for N,N-trans and N,N-cis Re(O)(LO-N)2Cl complexes and investigates the effects of the coordination spheres and ligand structures on ancillary ligand exchange dynamics and catalytic perchlorate reduction activities of the corresponding [Re(O)(LO-N)2](+) cations. The 2-(2'-hydroxyphenyl)-2-oxazoline (Hhoz) and 2-(2'-hydroxyphenyl)-2-thiazoline (Hhtz) ligands are used to prepare homoleptic N,N-trans and N,N-cis isomers of both Re(O)(hoz)2Cl and Re(O)(htz)2Cl and one heteroleptic N,N-trans Re(O)(hoz)(htz)Cl. Selection of hoz/htz ligands determines the preferred isomeric coordination sphere, and the use of substituted pyridine bases with varying degrees of steric hindrance during complex synthesis controls the rate of isomer interconversion. The five corresponding [Re(O)(LO-N)2](+) cations exhibit a wide range of solvent exchange rates (1.4 to 24,000 s(-1) at 25 °C) and different LO-N movement patterns, as influenced by the coordination sphere of Re (trans/cis), the noncoordinating heteroatom on LO-N ligands (O/S), and the combination of the two LO-N ligands (homoleptic/heteroleptic). Ligand exchange dynamics also correlate with the activity of catalytic reduction of aqueous ClO4(-) by H2 when the Re(O)(LO-N)2Cl complexes are immobilized onto Pd/C. Findings from this study provide novel synthetic strategies and mechanistic insights for innovations in catalytic, environmental, and biomedical research.

  16. A new three-dimensional zinc(II) coordination polymer involving 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-benzimidazole and benzene-1,4-dicarboxylate ligands.

    PubMed

    Jian, Shou Jun; Han, Qian Qian; Yang, Huai Xia; Meng, Xiang Ru

    2016-07-01

    Metal-organic frameworks (MOFs) based on multidentate N-heterocyclic ligands involving imidazole, triazole, tetrazole, benzimidazole, benzotriazole or pyridine present intriguing molecular topologies and have potential applications in ion exchange, magnetism, gas sorption and storage, catalysis, optics and biomedicine. The 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-benzimidazole (tmb) ligand has four potential N-atom donors and can act in monodentate, chelating, bridging and tridentate coordination modes in the construction of complexes, and can also act as both a hydrogen-bond donor and acceptor. In addition, the tmb ligand can adopt different coordination conformations, resulting in complexes with helical structures due to the presence of the flexible methylene spacer. A new three-dimensional coordination polymer, poly[[bis(μ2-benzene-1,4-dicarboxylato)-κ(4)O(1),O(1'):O(4),O(4');κ(2)O(1):O(4)-bis{μ2-2-[(1H-1,2,4-triazol-1-yl)methyl-κN(4)]-1H-benzimidazole-κN(3)}dizinc(II)] trihydrate], {[Zn(C8H4O4)(C10H9N5)]·1.5H2O}n, has been synthesized by the reaction of ZnCl2 with tmb and benzene-1,4-dicarboxylic acid (H2bdic) under solvothermal conditions. There are two crystallographically distinct bdic(2-) ligands [bdic(2-)(A) and bdic(2-)(B)] in the structure which adopt different coordination modes. The Zn(II) ions are bridged by tmb ligands, leading to one-dimensional helical chains with different handedness, and adjacent helices are linked by bdic(2-)(A) ligands, forming a two-dimensional network structure. The two-dimensional layers are further connected by bdic(2-)(B) ligands, resulting in a three-dimensional framework with the topological notation 6(6). The IR spectra and thermogravimetric curves are consistent with the results of the X-ray crystal structure analysis and the title polymer exhibits good fluorescence in the solid state at room temperature. PMID:27377273

  17. Complexations of Ln(III) with SnS{sub 4}H and Sn{sub 2}S{sub 6}: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands

    SciTech Connect

    Tang, Chunying; Lu, Jialin; Han, Jingyu; Liu, Yun; Shen, Yali; Jia, Dingxian

    2015-10-15

    Polymeric lanthanide complexes with thiostannate and polyamine mixed ligands, [Ln(peha)(μ–SnS{sub 4}H)]{sub n} [Ln=La (1a), Nd (1b)] and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}nH{sub 2}O [Ln=Nd (2a), Sm (2b), Gd (2c), Dy (2d)] (peha=pentaethylenehexamine, tepa=tetraethylenepentamine) were respectively prepared in peha and tepa coordinative solvents by the solvothermal methods. In 1a and 1b, the Ln{sup 3+} ions are coordinated by a hexadentate peha ligand forming [Ln(peha)]{sup 3+} units. The [SnS{sub 4}H]{sup 3−} anion chelates a [Ln(peha)]{sup 3+} unit via two S atoms and coordinates to another [Ln(peha)]{sup 3+} unit via the third S atom. As a result, the [Ln(peha)]{sup 3+} units are connected into coordination polymers [Ln(peha)(μ–SnS{sub 4}H)]{sub n} by an unprecedented tridentate μ–η{sup 1},η{sup 2}–SnS{sub 4}H bridging ligands. In 2a–2d, the Ln{sup 3+} ions are coordinated by a pentadentate tepa ligand, and two [Ln(tepa)]{sup 3+} units are joined by two μ–OH bridges to form a binuclear [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} unit. Behaving as a bidentate μ–η{sup 1}, η{sup 1}–Sn{sub 2}S{sub 6} bridging ligand, the Sn{sub 2}S{sub 6} unit connects [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} units into a neutral coordination polymer [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n} via the trans S atoms. The Ln{sup 3+} ions are in distorted monocapped square antiprismatic and bicapped trigonal prismatic environments in [(Ln(peha)(μ–SnS{sub 4}H)]{sub n} and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}, respectively. The denticities of ethylene polyamine play an important role on the formation and complexation of the thiostannate in the presence of lanthanide ions. Compounds 1a–2d show well-defined absorption edges with band gaps between 2.81 and 3.15 eV. - Graphical abstract: Lanthanide coordination polymers concerning thiostannate ligands were prepared by the solvothermal methods, and μ{sub 3}

  18. Synthesis and crystal structure of a novel Mn(II) coordination polymer with 3-(4-(1H-benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one ligands

    SciTech Connect

    Wang, G.-F.; Zhang, X.; Sun, S.-W. Han, Q.-P.; Yang, X.; Li, H.; Ma, H.-X.; Yao, C.-Z.; Sun, H.; Dong, H.-B.

    2015-12-15

    3-(4-(1H-Benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one (L{sup 1}, 1) and its Mn(II) complex, [Mn(L{sup 1}){sub 2}(SCN){sub 2}]{sub ∞} (2), were synthesized and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction. The Mn(II) ion in 2 is six-coordinated to four nitrogen atoms of two L{sup 1} ligands, two SCN-ligands, and two oxygen atoms of other two L{sup 1} ligands to form a distorted octahedral geometry. Therefore, each L{sup 1} links Mn ions through the O and N atoms to generate 2D sheet structure.

  19. Two-step adsorption on jungle-gym-type porous coordination polymers: dependence on hydrogen-bonding capability of adsorbates, ligand-substituent effect, and temperature.

    PubMed

    Uemura, Kazuhiro; Yamasaki, Yukari; Onishi, Fumiaki; Kita, Hidetoshi; Ebihara, Masahiro

    2010-11-01

    A preliminary study of isopropanol (IPA) adsorption/desorption isotherms on a jungle-gym-type porous coordination polymer, [Zn(2)(bdc)(2)(dabco)](n) (1, H(2)bdc = 1,4-benzenedicarboxylic acid, dabco =1,4-diazabicyclo[2.2.2]octane), showed unambiguous two-step profiles via a highly shrunk intermediate framework. The results of adsorption measurements on 1, using probing gas molecules of alcohol (MeOH and EtOH) for the size effect and Me(2)CO for the influence of hydrogen bonding, show that alcohol adsorption isotherms are gradual two-step profiles, whereas the Me(2)CO isotherm is a typical type-I isotherm, indicating that a two-step adsorption/desorption is involved with hydrogen bonds. To further clarify these characteristic adsorption/desorption behaviors, selecting nitroterephthalate (bdc-NO(2)), bromoterephthalate (bdc-Br), and 2,5-dichloroterephthalate (bdc-Cl(2)) as substituted dicarboxylate ligands, isomorphous jungle-gym-type porous coordination polymers, {[Zn(2)(bdc-NO(2))(2)(dabco)]·solvents}(n) (2 ⊃ solvents), {[Zn(2)(bdc-Br)(2)(dabco)]·solvents}(n) (3 ⊃ solvents), and {[Zn(2)(bdc-Cl(2))(2)(dabco)]·solvents}(n) (4 ⊃ solvents), were synthesized and characterized by single-crystal X-ray analyses. Thermal gravimetry, X-ray powder diffraction, and N(2) adsorption at 77 K measurements reveal that [Zn(2)(bdc-NO(2))(2)(dabco)](n) (2), [Zn(2)(bdc-Br)(2)(dabco)](n) (3), and [Zn(2)(bdc-Cl(2))(2)(dabco)](n) (4) maintain their frameworks without guest molecules with Brunauer-Emmett-Teller (BET) surface areas of 1568 (2), 1292 (3), and 1216 (4) m(2) g(-1). As found in results of MeOH, EtOH, IPA, and Me(2)CO adsorption/desorption on 2-4, only MeOH adsorption on 2 shows an obvious two-step profile. Considering the substituent effects and adsorbate sizes, the hydrogen bonds, which are triggers for two-step adsorption, are formed between adsorbates and carboxylate groups at the corners in the pores, inducing wide pores to become narrow pores. Interestingly, such

  20. New N^C^N-coordinated Pd(ii) and Pt(ii) complexes of a tridentate N-heterocyclic carbene ligand featuring a 6-membered central ring: synthesis, structures and luminescence.

    PubMed

    Moussa, Jamal; Haddouche, Kamel; Chamoreau, Lise-Marie; Amouri, Hani; Gareth Williams, J A

    2016-08-01

    We describe Pd(ii) and Pt(ii) complexes of an N^C^N-coordinating pincer-like ligand featuring two lateral pyridine rings and a 6-membered carbene core. Their crystal structures display 1-dimensional chains with short π-π and M(ii)M(ii) interactions. Such interactions also impact on the photophysical properties, with the Pt(ii) complex being luminescent in the solid state at room temperature. PMID:27465432

  1. Experimental and density functional theoretical investigations of linkage isomerism in six-coordinate FeNO(6) iron porphyrins with axial nitrosyl and nitro ligands.

    PubMed

    Novozhilova, Irina V; Coppens, Philip; Lee, Jonghyuk; Richter-Addo, George B; Bagley, Kimberly A

    2006-02-15

    A critical component of the biological activity of NO and nitrite involves their coordination to the iron center in heme proteins. Irradiation (330 < lambda < 500 nm) of the nitrosyl-nitro compound (TPP)Fe(NO)(NO(2)) (TPP = tetraphenylporphyrinato dianion) at 11 K results in changes in the IR spectrum associated with both nitro-to-nitrito and nitrosyl-to-isonitrosyl linkage isomerism. Only the nitro-to-nitrito linkage isomer is obtained at 200 K, indicating that the isonitrosyl linkage isomer is less stable than the nitrito linkage isomer. DFT calculations reveal two ground-state conformations of (porphine)Fe(NO)(NO(2)) that differ in the relative axial ligand orientations (i.e., GS parallel and GS perpendicular). In both conformations, the FeNO group is bent (156.4 degrees for GS parallel, 159.8 degrees for GS perpendicular) for this formally {FeNO}(6) compound. Three conformations of the nitrosyl-nitrito isomer (porphine)Fe(NO)(ONO) (MSa parallel, MSa perpendicular, and MSa(L)) and two conformations of the isonitrosyl-nitro isomer (porphine)Fe(ON)(NO(2)) (MSb parallel and MSb perpendicular) are identified, as are three conformations of the double-linkage isomer (porphine)Fe(ON)(ONO) (MSc parallel, MSc perpendicular, MSc(L)). Only 2 of the 10 optimized geometries contain near-linear FeNO (MSa(L)) and FeON (MSc(L)) bonds. The energies of the ground-state and isomeric structures increase in the order GS < MSa < MSb < MSc. Vibrational frequencies for all of the linkage isomers have been calculated, and the theoretical gas-phase absorption spectrum of (porphine)Fe(NO)(NO(2)) has been analyzed to obtain information on the electronic transitions responsible for the linkage isomerization. Comparison of the experimental and theoretical IR spectra does not provide evidence for the existence of a double linkage isomer of (TPP)Fe(NO)(NO(2)).

  2. Theoretical and experimental studies of Cu(II) and Zn(II) coordination compounds with N,O donor bidentate Schiff base ligand containing amino phenol moiety

    NASA Astrophysics Data System (ADS)

    Kusmariya, Brajendra S.; Tiwari, Anjali; Mishra, A. P.; Naikoo, Gowhar Ahmad

    2016-09-01

    We report here two mononuclear Cu(II) and Zn(II) coordination compounds of general formula [CuII(L)2].2H2O (1) and [ZnII(L)2].3H2O (2) derived from bidentate 2-chloro-6-{[(4-hydroxy-3-methoxyphenyl)methylidene]amino}-4 nitrophenol ligand (HL). These compounds were synthesized and characterized by elemental analysis, FT-IR, uv-vis, 1H NMR, molar conductance, thermal, PXRD, SEM-EDX and electrochemical studies. The PXRD and SEM analysis shows the amorphous/nanocrystalline nature of 1 and crystalline nature of 2. The diffraction peak broadening was explained in terms of domain size and the crystallite lattice strain. Thermogravimetric analysis in the range of 300-1172 K has been performed to determine the thermal stability of synthesized compounds. The non-isothermal kinetic parameters of degradation process were calculated using Coats-Redfern (C-R), Piloyan-Novikova (P-N) and Horowitz-Metzger (H-M) methods assuming first order degradation and proposed a random nucleation mechanism of thermal decomposition for both compounds. The cyclic voltammetric studies reveal the irreversibility of the oxidation/reduction process of synthesized compounds. To support the experimental findings theoretical calculations by means of DFT and TD-DFT at B3LYP level were incorporated. In addition; frequency calculations, HOMO-LUMO, energy gap (ΔE), molecular electrostatic potential (MEP), spin density and crystal packing were also computed at the same level of theory.

  3. Application of three-coordinate copper(I) complexes with halide ligands in organic light-emitting diodes that exhibit delayed fluorescence.

    PubMed

    Osawa, Masahisa; Hoshino, Mikio; Hashimoto, Masashi; Kawata, Isao; Igawa, Satoshi; Yashima, Masataka

    2015-05-14

    A series of three-coordinate copper(I) complexes (L(Me))CuX [X = Cl (1), Br (2), I (3)], (L(Et))CuBr (4), and (L(iPr))CuBr (5) [L(Me) = 1,2-bis[bis(2-methylphenyl)phosphino]benzene, L(Et) = 1,2-bis[bis(2-ethylphenyl)phosphino]benzene, and L(iPr) = 1,2-bis[bis(2-isopropylphenyl)phosphino]benzene] exhibit efficient blue-green emission in the solid state at ambient temperature with peak wavelengths between 473 and 517 nm. The emission quantum yields were 0.38-0.95. The emission lifetimes were measured in the temperature range of 77-295 K using a nanosecond laser technique. The temperature dependence of the emission lifetimes was explained using a model with two excited states: a singlet and a triplet state. The small energy gaps (<830 cm(-1)) between the two states suggest that efficient emission from 1-5 was thermally activated delayed fluorescence (TADF). Alkyl substituents at ortho positions of peripheral phenyl groups were found to have little effect on the electronic excited states. Because the origin of the emission of complexes 2, 4, and 5 was thought to be a (σ + Br)→π* transition, photoluminescence characteristics of these complexes were dominated by the diphosphine ligands. Complexes 2, 4, and 5 had similar emission properties. Complexes 1-5 had efficient green TADF in amorphous films at 293 K with maximum emission wavelengths of 508-520 nm and quantum yields of 0.61-0.71. Organic light-emitting devices that contained complexes 1-5 and exhibited TADF exhibit bright green luminescence with current efficiencies of 55.6-69.4 cd A(-1) and maximum external quantum efficiencies of 18.6-22.5%.

  4. Syntheses, structures, and properties of transition metal coordination polymers based on a long semirigid tetracarboxylic acid and multidentate N-donor ligands

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Bai, Hui; Bing, Ying-Ying; Hu, Ming

    2016-02-01

    Six transition metal coordination polymers based on a semirigid tetracarboxylic acid and the multidentate N-donor ligands have been synthesized by the hydrothermal method, namely, {[Co(H2obda) (μ2-H2O) (H2O)2]·2H2O}n (1), {[Co(obda)0.5(bpe) (H2O)2]·3H2O}n (2), {[Zn(H2obda) (H2O)4]·H4obda·6H2O}n (3), {[Zn(bpy) (H2O)4]·H2obda}n (4), {[Ni(bpy) (H2O)4]·H2obda}n (5) and {[Cu(H2obda) (bpy)2]}n (6) (H4obda = 1,4-bis(4-oxy-1,2-benzene dicarboxylic acid)benzene, bpe = 1,2-Bis(4-pyridyl)ethylene), bpy = 4,4‧-bipyridine). Compounds 1-6 were structurally characterized by the elemental analyses, infrared spectra, and single crystal X-ray diffractions. Compounds 1-2 exhibit the 2D quadrilateral and polygonal layered grid structures, respectively; a 3D supramolecular structure of 2 has been build via π···π and hydrogen bonds interactions. Compounds 3-6 reveal the 1D zigzag and linear chains structures, respectively; furthermore, 3-5 display the diverse 3D supramolecular structures via hydrogen bonds, respectively. The 1-D infinite water chain in 3 has been found between the lattice water molecules. In addition, the thermogravimetric analyses of 1-6, magnetic property of 1, and photoluminescence of 3-4 have been investigated, respectively.

  5. Complexations of Ln(III) with SnS4H and Sn2S6: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands

    NASA Astrophysics Data System (ADS)

    Tang, Chunying; Lu, Jialin; Han, Jingyu; Liu, Yun; Shen, Yali; Jia, Dingxian

    2015-10-01

    Polymeric lanthanide complexes with thiostannate and polyamine mixed ligands, [Ln(peha)(μ-SnS4H)]n [Ln=La (1a), Nd (1b)] and [{Ln(tepa)(μ-OH)}2(μ-Sn2S6)]nnH2O [Ln=Nd (2a), Sm (2b), Gd (2c), Dy (2d)] (peha=pentaethylenehexamine, tepa=tetraethylenepentamine) were respectively prepared in peha and tepa coordinative solvents by the solvothermal methods. In 1a and 1b, the Ln3+ ions are coordinated by a hexadentate peha ligand forming [Ln(peha)]3+ units. The [SnS4H]3- anion chelates a [Ln(peha)]3+ unit via two S atoms and coordinates to another [Ln(peha)]3+ unit via the third S atom. As a result, the [Ln(peha)]3+ units are connected into coordination polymers [Ln(peha)(μ-SnS4H)]n by an unprecedented tridentate μ-η1,η2-SnS4H bridging ligands. In 2a-2d, the Ln3+ ions are coordinated by a pentadentate tepa ligand, and two [Ln(tepa)]3+ units are joined by two μ-OH bridges to form a binuclear [{Ln(tepa)(μ-OH)}2]4+ unit. Behaving as a bidentate μ-η1, η1-Sn2S6 bridging ligand, the Sn2S6 unit connects [{Ln(tepa)(μ-OH)}2]4+ units into a neutral coordination polymer [{Ln(tepa)(μ-OH)}2(μ-Sn2S6)]n via the trans S atoms. The Ln3+ ions are in distorted monocapped square antiprismatic and bicapped trigonal prismatic environments in [{Ln(peha)(μ-SnS4H)]n and [{Ln(tepa)(μ-OH)}2(μ-Sn2S6)]n, respectively. The denticities of ethylene polyamine play an important role on the formation and complexation of the thiostannate in the presence of lanthanide ions. Compounds 1a-2d show well-defined absorption edges with band gaps between 2.81 and 3.15 eV.

  6. Coordination behavior and bio-potent aspects of Ni(II) with 2-aminobenzamide and some amino acid mixed ligands--Part II: Synthesis, spectral, morphological, pharmacological and DNA interaction studies.

    PubMed

    Dharmaraja, Jeyaprakash; Subbaraj, Paramasivam; Esakkidurai, Thirugnanasamy; Shobana, Sutha

    2014-11-11

    A series of novel bioactive mixed ligand Ni(II) complexes (1a-1d) have been synthesised by using 2-aminobenzamide (2AB) and some bio-relevant amino acid ligands. The synthesised Ni(II) complexes were structurally characterized by various physico-chemical and spectral studies. Elemental analysis and molar conductance values suggest that 1:1:1 stoichiometry with non-electrolytic nature. Based on the spectral studies, both the ligands act as bidentate and they chelate with Ni(II) ion via amino-NH2 and amido-O and deprotonated carboxylato-O and amino-NH2 atoms respectively to form a stable six, five membered chelate rings with mononuclear octahedral geometry. Thermal studies show the presence of coordinated water and acetate molecules in the coordination. The powder X-ray diffractogram and SEM pictograph imply that all the complexes have fine crystalline peaks with homogeneous surface morphology. In vitro antimicrobial and antioxidant studies indicate the complexes are more active than free 2-aminobenzamide ligand. The Ni(II)-2AB-gly/phe complexes (1a and 1d) show significant oxidative cleavage and DNA binding activities. Moreover, the 3D molecular modeling, analysis of the complexes has also been studied.

  7. Spectral studies with coordination behaviour of (NO 3) and (NCS) anions and EPR parameters of chromium(III) complexes which have different chromospheres macrocyclic ligands: Synthesis and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Rajiv

    2007-01-01

    New macrocyclic ligands were prepared and chromium(III) stability in the marcrocyclic cavities are reported. Two of them have four-coordinate [N 2O 2]:[N 4], third one has five-coordinate [N 2O 2S] and the last one has six-coordinate [N 4O 2] donor macrocyclic cavities. These macrocyclic ligands have been synthesized with their chromium(III) complexes which have mononuclear nature and their structural features have been discussed on the basis of: elemental analysis, magnetic moment, electronic, IR, 1H NMR, and EPR spectral studies. All the chromium(III) complexes show magnetic moments in the range of 3.74-3.80 B.M. corresponding to high-spin configuration. However, the interaction of oxygen to the chromium ion in complexes is much weaker than that of other donor atoms. The spin-orbit coupling parameter, z, gives no significance because the splitting of doublet transition lines are too large to be explained by spin-orbit coupling. The β values (0.75-0.79) indicate the covalent character, which is due to the presence of σ bond between the metal/ligand. λ values indicate that the complexes under study have substantial covalent character and their g-values have also been calculated by using spin-orbital coupling constant ( λ).

  8. Synthesis, structure, thermostability and luminescence properties of Zn(II) and Cd(II) coordination polymers based on dimethysuccinate and flexible 1,4-bis(imidazol-1-ylmethyl)benzene ligands.

    PubMed

    Liu, Yang; Feng, Yong Lan; Fu, Wei Wei

    2016-09-01

    The design and synthesis of functional coordination polymers is motivated not only by their structural beauty but also by their potential applications. Zn(II) and Cd(II) coordination polymers are promising candidates for producing photoactive materials because these d(10) metal ions not only possess a variety of coordination numbers and geometries, but also exhibit luminescence properties when bound to functional ligands. It is difficult to predict the final structure of such polymers because the assembly process is influenced by many subtle factors. Bis(imidazol-1-yl)-substituted alkane/benzene molecules are good bridging ligands because their flexibility allows them to bend and rotate when they coordinate to metal centres. Two new Zn(II) and Cd(II) coordination polymers based on mixed ligands, namely, poly[[μ2-1,4-bis(imidazol-1-ylmethyl)benzene-κ(2)N(3):N(3')]bis(μ3-2,2-dimethylbutanoato-κ(3)O(1):O(4):O(4'))dizinc(II)], [Zn2(C6H8O4)2(C14H14N4)]n, and poly[[μ2-1,4-bis(imidazol-1-ylmethyl)benzene-κ(2)N(3):N(3')]bis(μ3-2,2-dimethylbutanoato-κ(5)O(1),O(1'):O(4),O(4'):O(4))dicadmium(II)], [Cd2(C6H8O4)2(C14H14N4)]n, have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy and thermogravimetric analysis. Both complexes crystallize in the monoclinic space group C2/c with similar unit-cell parameters and feature two-dimensional structures formed by the interconnection of S-shaped Zn(Cd)-2,2-dimethylsuccinate chains with 1,4-bis(imidazol-1-ylmethyl)benzene bridges. However, the Cd(II) and Zn(II) centres have different coordination numbers and the 2,2-dimethylsuccinate ligands display different coordination modes. Both complexes exhibit a blue photoluminescence in the solid state at room temperature.

  9. Synthesis, structure, thermostability and luminescence properties of Zn(II) and Cd(II) coordination polymers based on dimethysuccinate and flexible 1,4-bis(imidazol-1-ylmethyl)benzene ligands.

    PubMed

    Liu, Yang; Feng, Yong Lan; Fu, Wei Wei

    2016-09-01

    The design and synthesis of functional coordination polymers is motivated not only by their structural beauty but also by their potential applications. Zn(II) and Cd(II) coordination polymers are promising candidates for producing photoactive materials because these d(10) metal ions not only possess a variety of coordination numbers and geometries, but also exhibit luminescence properties when bound to functional ligands. It is difficult to predict the final structure of such polymers because the assembly process is influenced by many subtle factors. Bis(imidazol-1-yl)-substituted alkane/benzene molecules are good bridging ligands because their flexibility allows them to bend and rotate when they coordinate to metal centres. Two new Zn(II) and Cd(II) coordination polymers based on mixed ligands, namely, poly[[μ2-1,4-bis(imidazol-1-ylmethyl)benzene-κ(2)N(3):N(3')]bis(μ3-2,2-dimethylbutanoato-κ(3)O(1):O(4):O(4'))dizinc(II)], [Zn2(C6H8O4)2(C14H14N4)]n, and poly[[μ2-1,4-bis(imidazol-1-ylmethyl)benzene-κ(2)N(3):N(3')]bis(μ3-2,2-dimethylbutanoato-κ(5)O(1),O(1'):O(4),O(4'):O(4))dicadmium(II)], [Cd2(C6H8O4)2(C14H14N4)]n, have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy and thermogravimetric analysis. Both complexes crystallize in the monoclinic space group C2/c with similar unit-cell parameters and feature two-dimensional structures formed by the interconnection of S-shaped Zn(Cd)-2,2-dimethylsuccinate chains with 1,4-bis(imidazol-1-ylmethyl)benzene bridges. However, the Cd(II) and Zn(II) centres have different coordination numbers and the 2,2-dimethylsuccinate ligands display different coordination modes. Both complexes exhibit a blue photoluminescence in the solid state at room temperature. PMID:27585928

  10. An europium(III) diglycolamide complex: insights into the coordination chemistry of lanthanides in solvent extraction.

    PubMed

    Antonio, Mark R; McAlister, Daniel R; Horwitz, E Philip

    2015-01-14

    The synthesis, stoichiometry, and structural characterization of a homoleptic, cationic europium(III) complex with three neutral tetraalkyldiglycolamide ligands are reported. The tri(bismuth tetrachloride)tris(N,N,N',N'-tetra-n-octyldiglycolamide)Eu salt, [Eu(TODGA)3][(BiCl4)3] obtained from methanol was examined by Eu L3-edge X-ray absorption spectroscopy (XAS) to reveal an inner-sphere coordination of Eu(3+) that arises from 9 O atoms and two next-nearest coordination spheres that arise from 6 carbon atoms each. A structural model is proposed in which each TODGA ligand with its O=Ca-Cb-O-Cb-Ca=O backbone acts as a tridentate O donor, where the two carbonyl O atoms and the one ether O atom bond to Eu(3+). Given the structural rigidity of the tridentate coordination motif in [Eu(TODGA)3](3+) with six 5-membered chelate rings, the six Eu-Ca and six Eu-Cb interactions are readily resolved in the EXAFS (extended X-ray absorption fine structure) spectrum. The three charge balancing [BiCl4](-) anions are beyond the cationic [Eu(TODGA)3](3+) cluster in an outer sphere environment that is too distant to be detected by XAS. Despite their sizeable length and propensity for entanglement, the four n-octyl groups of each TODGA (for a total of twelve) do not perturb the Eu(3+) coordination environment over that seen from previously reported single-crystal structures of tripositive lanthanide (Ln(3+)) complexes with tetraalkyldiglycolamide ligands (of the same 1:3 metal-to-ligand ratio stoichiometry) but having shorter i-propyl and i-butyl groups. The present results set the foundation for understanding advanced solvent extraction processes for the separation of the minor, tripositive actinides (Am, Cm) from the Ln(3+) ions in terms of the local structure of Eu(3+) in a solid state coordination complex with TODGA.

  11. Synthesis of Imine-Naphthol Tripodal Ligand and Study of Its Coordination Behaviour towards Fe(III), Al(III), and Cr(III) Metal Ions

    PubMed Central

    Kaur, Kirandeep

    2014-01-01

    A hexadentate Schiff base tripodal ligand is synthesized by the condensation of tris (2-aminoethyl) amine with 2-hydroxy-1-naphthaldehyde and characterized by various spectroscopic techniques like UV-VIS, IR, NMR, MASS, and elemental analysis. The solution studies by potentiometric and spectrophotometric methods are done at 25 ± 1°C, µ = 0.1 M KCl, to calculate the protonation constants of the ligand and formation constants of metal complexes formed by the ligand with Fe(III), Al(III), and Cr(III) metal ions. The affinity of the ligand towards Fe(III) is compared with deferiprone (a drug applied for iron intoxication) and transferrin (the main Fe(III) binding protein in plasma). Structural analysis of the ligand and the metal complexes was done using semiempirical PM6 method. Electronic and IR spectra are calculated by semiempirical methods and compared with experimental one. PMID:25294978

  12. Synthesis of Imine-Naphthol Tripodal Ligand and Study of Its Coordination Behaviour towards Fe(III), Al(III), and Cr(III) Metal Ions.

    PubMed

    Kaur, Kirandeep; Baral, Minati

    2014-01-01

    A hexadentate Schiff base tripodal ligand is synthesized by the condensation of tris (2-aminoethyl) amine with 2-hydroxy-1-naphthaldehyde and characterized by various spectroscopic techniques like UV-VIS, IR, NMR, MASS, and elemental analysis. The solution studies by potentiometric and spectrophotometric methods are done at 25 ± 1°C, µ = 0.1 M KCl, to calculate the protonation constants of the ligand and formation constants of metal complexes formed by the ligand with Fe(III), Al(III), and Cr(III) metal ions. The affinity of the ligand towards Fe(III) is compared with deferiprone (a drug applied for iron intoxication) and transferrin (the main Fe(III) binding protein in plasma). Structural analysis of the ligand and the metal complexes was done using semiempirical PM6 method. Electronic and IR spectra are calculated by semiempirical methods and compared with experimental one. PMID:25294978

  13. Synthesis of Imine-Naphthol Tripodal Ligand and Study of Its Coordination Behaviour towards Fe(III), Al(III), and Cr(III) Metal Ions.

    PubMed

    Kaur, Kirandeep; Baral, Minati

    2014-01-01

    A hexadentate Schiff base tripodal ligand is synthesized by the condensation of tris (2-aminoethyl) amine with 2-hydroxy-1-naphthaldehyde and characterized by various spectroscopic techniques like UV-VIS, IR, NMR, MASS, and elemental analysis. The solution studies by potentiometric and spectrophotometric methods are done at 25 ± 1°C, µ = 0.1 M KCl, to calculate the protonation constants of the ligand and formation constants of metal complexes formed by the ligand with Fe(III), Al(III), and Cr(III) metal ions. The affinity of the ligand towards Fe(III) is compared with deferiprone (a drug applied for iron intoxication) and transferrin (the main Fe(III) binding protein in plasma). Structural analysis of the ligand and the metal complexes was done using semiempirical PM6 method. Electronic and IR spectra are calculated by semiempirical methods and compared with experimental one.

  14. 2-(Methylamido)pyridine-Borane: A Tripod κ(3)-N,H,H Ligand in Trigonal Bipyramidal Rhodium(I) and Iridium(I) Complexes with an Asymmetric Coordination of Its BH3 Group.

    PubMed

    Brugos, Javier; Cabeza, Javier A; García-Álvarez, Pablo; Kennedy, Alan R; Pérez-Carreño, Enrique; Van der Maelen, Juan F

    2016-09-01

    The complexes [M(κ(3)-N,H,H-mapyBH3)(cod)] (M = Rh, Ir; HmapyBH3 = 2-(methylamino)pyridine-borane; cod = 1,5-cyclooctadiene), which contain a novel anionic tripod ligand coordinated to the metal atom through the amido N atom and through two H atoms of the BH3 group, were prepared by treating the corresponding [M2(μ-Cl)2(cod)2] (M = Rh, Ir) precursor with K[mapyBH3]. X-ray diffraction studies and a theoretical Quantum Theory of Atoms in Molecules analysis of their electron density confirmed that the metal atoms of both complexes are in a very distorted trigonal bipyramidal coordination environment, in which two equatorial sites are asymmetrically spanned by the H-B-H fragment. While both 3c-2e BH-M interactions are more κ(1)-H (terminal σ coordination of the B-H bond) than κ(2)-H,B (agostic-type coordination of the B-H bond), one BH-M interaction is more agostic than the other, and this difference is more marked in the iridium complex than in the rhodium one. This asymmetry is not evident in solution, where the cod ligand and the BH3 group of these molecules participate in two concurrent dynamic processes of low activation energies (variable-temperature NMR and density functional theory studies), namely, a rotation of the cod ligand that interchanges its two alkene fragments (through a square pyramidal transition state) and a rotation of the BH3 group about the B-N bond that equilibrates the three B-H bonds (through a square planar transition state). While the cod rotation has similar activation energy in 2 and 3, the barrier to the BH3 group rotation is higher in the iridium complex than in the rhodium one. PMID:27518763

  15. 2-(Methylamido)pyridine-Borane: A Tripod κ(3)-N,H,H Ligand in Trigonal Bipyramidal Rhodium(I) and Iridium(I) Complexes with an Asymmetric Coordination of Its BH3 Group.

    PubMed

    Brugos, Javier; Cabeza, Javier A; García-Álvarez, Pablo; Kennedy, Alan R; Pérez-Carreño, Enrique; Van der Maelen, Juan F

    2016-09-01

    The complexes [M(κ(3)-N,H,H-mapyBH3)(cod)] (M = Rh, Ir; HmapyBH3 = 2-(methylamino)pyridine-borane; cod = 1,5-cyclooctadiene), which contain a novel anionic tripod ligand coordinated to the metal atom through the amido N atom and through two H atoms of the BH3 group, were prepared by treating the corresponding [M2(μ-Cl)2(cod)2] (M = Rh, Ir) precursor with K[mapyBH3]. X-ray diffraction studies and a theoretical Quantum Theory of Atoms in Molecules analysis of their electron density confirmed that the metal atoms of both complexes are in a very distorted trigonal bipyramidal coordination environment, in which two equatorial sites are asymmetrically spanned by the H-B-H fragment. While both 3c-2e BH-M interactions are more κ(1)-H (terminal σ coordination of the B-H bond) than κ(2)-H,B (agostic-type coordination of the B-H bond), one BH-M interaction is more agostic than the other, and this difference is more marked in the iridium complex than in the rhodium one. This asymmetry is not evident in solution, where the cod ligand and the BH3 group of these molecules participate in two concurrent dynamic processes of low activation energies (variable-temperature NMR and density functional theory studies), namely, a rotation of the cod ligand that interchanges its two alkene fragments (through a square pyramidal transition state) and a rotation of the BH3 group about the B-N bond that equilibrates the three B-H bonds (through a square planar transition state). While the cod rotation has similar activation energy in 2 and 3, the barrier to the BH3 group rotation is higher in the iridium complex than in the rhodium one.

  16. Theoretical and experimental studies on three new coordination complexes of Co(II), Ni(II), and Cu(II) with 2,4-dichloro-6-{(E)-[(5-chloro-2 sulfanylphenyl)imino]methyl}phenol Schiff base ligand.

    PubMed

    Kusmariya, Brajendra S; Mishra, A P

    2015-11-01

    Three mononuclear coordination complexes of Co(II), Ni(II), and Cu(II) have been synthesized from 2,4-dichloro-6-{(E)-[(5-chloro-2-sulfanylphenyl)imino]methyl}phenol ligand (H 2 L) obtained by simple condensation reaction of 3,5-dichloro-2-hydroxybenzaldehyde and 2-amino-4-chlorobenzenethiol and characterized by elemental analysis, spectral (FT-IR, electronic, and (1)H-NMR), molar conductance, thermal, SEM, PXRD, and fluorescence studies. The PXRD analysis and SEM-EDX micrographs show the crystalline nature of complexes. The domain size and the lattice strain of synthesized compounds have been determined according to Williamson-Hall plot. TG of the synthesized complexes illustrates the general decomposition pattern of the complexes. The ligand exhibits an interesting fluorescence property which is suppressed after complex formation. The Co(II) complex adopted a distorted octahedral configuration while Ni(II) and Cu(II) complexes showed square planar geometry around metal center. The geometry optimization, HOMO-LUMO, molecular electrostatic potential map (MEP), and spin density of synthesized compounds have been performed by density functional theory (DFT) method using B3LYP/6-31G and B3LYP/LANL2DZ as basis set. Graphical abstract Three new coordination complexes of Co(II), Ni(II) and Cu(II) with 2,4-dichloro-6-{(E)-[(5-chloro-2 sulfanylphenyl)imino]methyl}phenol Schiff base ligand. PMID:26438445

  17. Dicarboxylate-controlled three Zn(II) coordination polymers incorporating flexible 1,2-bis(imidazol-1‧-yl)ethane ligand: Syntheses, structures, thermal stabilities and photoluminescent properties

    NASA Astrophysics Data System (ADS)

    Hao, Hong-Jun; Sun, Di; Liu, Fu-Jing; Huang, Rong-Bin; Zheng, Lan-Sun

    2012-03-01

    Three mixed-ligand Zn(II) coordination polymers (CPs) of the formula {[Zn2(bime)2(adip)2]ṡ(H2O)5}n (1), {[Zn(bime)(ipa)]ṡ(H2O)3}n (2), {[Zn(bime)(tpa)]ṡ(H2O)ṡ(CH3OH)}n (3) (bime = 1,2-bis(imidazol-1'-yl)ethane, H2adip = adipic acid, H2ipa = isophthalic acid and H2tpa = terephthalic acid) were synthesized. All CPs have been characterized by element analysis, powder X-ray diffraction (PXRD), IR and X-ray single-crystal diffraction. Complexes 1 and 2 exhibit similar wavy two-dimensional (2D) sheets with 44-sql topology. Compared to 1, complex 2 contains a larger window owing to the different conformation of bime ligand. In both 1 and 2, we observed 1D water chain filling in the 44-sql net. In 3, the bime acts as a bidentate ligand and the tpa adopts a μ2-η1,η1 coordinated mode which links the Zn(II) ions to form a 2D 63-hcb net. The results suggest that the dicarboxylates play crucial roles in the formation of the different structures. In addition, the thermal stabilities and the photoluminescence properties of them were also investigated.

  18. Color tunable and near white-light emission of two solvent-induced 2D lead(II) coordination networks based on a rigid ligand 1-tetrazole-4-imidazole-benzene.

    PubMed

    Chen, Jun; Zhang, Qing; Liu, Zhi-Fa; Wang, Shuai-Hua; Xiao, Yu; Li, Rong; Xu, Jian-Gang; Zhao, Ya-Ping; Zheng, Fa-Kun; Guo, Guo-Cong

    2015-06-01

    Two new lead(II) coordination polymers, [Pb(NO3)(tzib)]n (1) and [Pb(tzib)2]n (2), were successfully synthesized from the reaction of a rigid ligand 1-tetrazole-4-imidazole-benzene (Htzib) and lead(II) nitrate in different solvents. The obtained polymers have been characterized by single-crystal X-ray diffraction analyses, which show that both polymers feature 2D layer structures. The inorganic anion nitrate in 1 shows a μ2-κO3:κO3 bridging mode to connect adjacent lead ions into a zigzag chain, and then the organic ligands tzib(-) join the neighboring chains into a 2D layer by a μ3-κN1:κN2:κN6 connection mode. In 2, there are two different bridging modes of the tzib(-) ligand: μ3-κN1:κN2:κN6 and μ3-κN1:κN6 to coordinate the lead ions into a 2D layer structure. Interestingly, both polymers displayed broadband emissions covering the entire visible spectra, which could be tunable to near white-light emission by varying excitation wavelengths. PMID:25952460

  19. Studies of the structural and magnetic properties of an unsymmetrical ligand 1,2,4-benzenetricarboxylic acid based chiral 3-D trinickel coordination polymer as an alkali base-influenced hydrothermal reaction product

    SciTech Connect

    Peng, Yi-Ru; Chien, Po-Hsiu; Chung, Huey-Ting; Pan, Pei-Yun; Liu, Yen-Hsiang Yang, En-Che

    2014-04-01

    The reaction of 1,2,4-benzenetricarboxylic acid (H{sub 3}btc), as a ligand, under pH-controlled hydrothermal conditions with nickel salts leads to the formation of a coordination polymer of (CsNi{sub 3}(OH)(H{sub 2}O){sub 3}[C{sub 6}H{sub 3}(CO{sub 2}){sub 3}]{sub 2}·3H{sub 2}O){sub n} (1). The subunit of compound 1 contains a hydroxide- and carboxylate-bridged trinickel clusters that are linked by an unsymmetrical organic carboxylate spacer to form a chiral three-dimensional anionic framework, in which cesium cations and guest water molecules are located in one-dimensional channels. The presence of a hydroxide ion serves both as a deprotonation agent and a cation source during the hydrothermal reaction, thus permitting the extent of deprotonation of the unsymmetrical ligand H{sub 3}btc to be controlled, which is essential for the successful formation of compound 1. The magnetic properties of compound 1 were analyzed. Both dc and ac magnetic susceptibility as well as reduced magnetization measurements confirmed the spin-frustration nature of 1. - Graphical abstract: A chiral three-dimension MOF compound and its magnetic properties are described. - Highlights: • A new chiral three-dimension coordination polymer were made. • An un-symmetric bridging ligand was used. • Alkali metal ion Cs{sup +} was incorporated in the structure. • Magnetic properties were studied.

  20. Tuning the structures of three coordination polymers incorporating ZnII and 2,2‧-dichloro-4,4‧-azodibenzoic acid via selective auxiliary ligands

    NASA Astrophysics Data System (ADS)

    Zeng, Xiao-Ping; Ming, Mei

    2015-11-01

    By tuning the auxiliary ligands in the assembling reaction, three ZnII coordination polymers of [Zn(Cl-adc) (phen) (H2O)](DMF) (1), [Zn(Cl-adc) (DMA)](DMA) (2), and [Zn(Cl-adc) (dip)](DMF)0.5 (3) (Cl-H2adc = 2,2‧-dichloro-4,4‧-azodibenzoic acid, phen = 1,10-phenanthroline, dip = 1,3-di(imidazole)propane) have been successfully synthesized and characterized by single-crystal X-ray diffraction study, elemental analysis, IR spectra, TGA analyses, solid-state fluorescent property, and powder X-ray diffraction (PXRD). Single crystal X-ray diffraction reveals that 1 and 2 displays a 1D polymeric chain and 2D sql layered net with the presence of chelated phen and terminal DMA ligands, respectively. By incorporating dip linker, 3 exhibits a 2D + 2D → 3D entangled network, with each 2D net portraying wavelike sql layered structure. Their structural divergences should be properly attributed to fact that, the structural topologies can be well regulated by using three auxiliary ligands incorparating different coordination function.

  1. Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand and its lanthanide complexes.

    PubMed

    Taha, Ziyad A; Ajlouni, Abdulaziz M; Al-Hassan, Khader A; Hijazi, Ahmed K; Faiq, Ari B

    2011-10-15

    Eight new lanthanide metal complexes [LnL(NO(3))(2)]NO(3) {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, L = bis-(salicyladehyde)-1,3-propylenediimine Schiff base ligand} were prepared. These complexes were characterized by elemental analysis, thermogravimetric analysis (TGA), molar conductivity measurements and spectral studies ((1)H NMR, FT-IR, UV-vis, and luminescence). The Schiff base ligand coordinates to Ln(III) ion in a tetra-dentate manner through the phenolic oxygen and azomethine nitrogen atoms. The coordination number of eight is achieved by involving two bi-dentate nitrate groups in the coordination sphere. Sm, Tb and Dy complexes exhibit the characteristic luminescence emissions of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of the complexes exhibit antibacterial activity against a number of pathogenic bacteria.

  2. Metal based synthetic routes to heavy alkaline earth aryloxo complexes involving ligands of moderate steric bulk.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Guino-o, Marites; Ruhlandt-Senge, Karin

    2009-07-01

    Treatment of an alkaline earth metal (Ca, Sr, Ba) with 2,4,6-trimethylphenol (HOmes) at elevated temperatures in the presence of mercury under solvent-free conditions, followed by extraction of the reaction mixture with 1,2-dimethoxyethane (dme), afforded dinuclear alkaline earth aryloxo complexes [Ae2(Omes)4(dme)4] (Ae = Ca 1, Sr 3, Ba 6). Extraction of the Ca metal and HOmes reaction mixture with thf afforded [Ca3(Omes)6(thf)] 2. In contrast, redox transmetallation ligand exchange reactions between an alkaline earth metal, diphenylmercury and HOmes in dme yielded solely 1 for Ca metal, a mixture of 3 and the methoxide bridged cage [Sr5(Omes)5(OMe)5(dme)4] x 2dme 4 for Sr metal, and solely [Ba5(Omes)5(OMe)5(dme)4] x dme 7 for Ba metal. The methoxide ligands originate from the C-O activation of the dme solvent. Treatment of liquid ammonia activated Sr or Ba metal with HOmes in thf afforded the linear species [Ae3(Omes)6(thf)6] (Ae = Sr 5, Ba 8), and 8 was also obtained from barium metal and HOmes in refluxing thf. The structures of 1 and 3, determined by X-ray crystallography, consist of two six coordinate Ae metal atoms, to each of which is bound a terminal aryloxide ligand, two bridging aryloxide ligands, and chelating and unidentate dme ligands. The structures of 4 and 7 contain five Ae metal atoms arranged on the vertices of a distorted square based pyramid. The Ae atoms are linked by four mu3-OMe ligands and a mu4-OMe ligand. Four bridging aryloxide ligands and four chelating dme ligands complete the coordination spheres of the four seven coordinate Ae atoms at the base of the pyramid, and a terminal aryloxide ligand is bound to the five coordinate apical Ae atom. The structures of 5 and 8 consist of a trinuclear linear array of Ae metal atoms, and contain solely bridging aryloxide ligands. Three thf ligands are bound to each terminal Ae atom, giving all Ae atoms a coordination number of six. PMID:19662279

  3. Coordination chemistry and solution structure of Fe(II)-peplomycin. Two possible coordination geometries.

    PubMed

    Li, Yang; Lehmann, Teresa

    2012-06-01

    The solution structure of Fe(II)-peplomycin was determined from NMR data collected for this molecule. As found previously for Fe(II)- and Co(II)-bound bleomycin; the coordination sphere of the metal is composed of the primary and secondary amines in β-aminoalanine, the pyrimidine and imidazole rings in the pyrimidinylpropionamide, and β-hydroxyhistidine moieties, respectively, the amine nitrogen in β-hydroxyhistidine, and either the carbamoyl group in mannose or a solvent molecule. The two most discussed coordination geometries for the aforementioned ligands in metallo-bleomycins have been tested against the NMR data generated for Fe(II)-peplomycin. The interpretation of the experimental evidence obtained through molecular dynamics indicates that both geometries are equally likely in solution for this compound in the absence of DNA, but arguments are offered to explain why one of these geometries is preferred in the presence of DNA.

  4. New coordination polymers from 1D chain, 2D layer to 3D framework constructed from 1,2-phenylenediacetic acid and 1,3-bis(4-pyridyl)propane flexible ligands

    SciTech Connect

    Xin Lingyun; Liu Guangzhen; Wang Liya

    2011-06-15

    The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H{sub 2}PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H{sub 2}O)]{sub n}(1), [Zn(PHDA)(BPP)]{sub n}(2), and [Cu{sub 2}(PHDA){sub 2}(BPP)]{sub n}(3) (H{sub 2}PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D{yields}2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4{sup 8}6{sup 6}8 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state. - Graphical Abstract: We show diverse supramolecular frameworks based on the same ligands (PHDA and BPP) and different metal acetate salts including 1D double-stranded chain, 2D {yields} 2D twofold interpenetrated layer, and 3D self-penetration networks. Highlights: > Three metal(II = 2 /* ROMAN ) coordination polymers were synthesized using H{sub 2}PHDA and BPP. > The diversity of structures show a remarked sensitivity to metal(II) center. > Complexes show the enhancement of fluorescence compared to that of free ligand.

  5. Tautomerization of 2-nitroso-N-arylanilines by coordination as N,N'-chelate ligands to rhenium(I) complexes and the anticancer activity of newly synthesized oximine rhenium(I) complexes against human melanoma and leukemia cells in vitro.

    PubMed

    Wirth, Stefan; Wallek, Andreas U; Zernickel, Anna; Feil, Florian; Sztiller-Sikorska, M; Lesiak-Mieczkowska, K; Bräuchle, Christoph; Lorenz, Ingo-Peter; Czyz, M

    2010-07-01

    The synthesis, structural characterization and biological activity of eight ortho-quinone(N-aryl)-oximine rhenium(I) complexes are described. The reaction of the halogenido complexes (CO)(5)ReX (X = Cl (4), Br (5)) with 2-nitroso-N-arylanilines {(C(6)H(3)ClNO)NH(C(6)H(4)R)} (R = p-Cl, p-Me, o-Cl, H) (3a-d) in tetrahydrofurane (THF) yields the complexes fac-(CO)(3)XRe{(C(6)H(3)ClNO)NH(C(6)H(4)R)} (6a-d, 7a-d) with the tautomerized ligand acting as a N,N'-chelate. The substitution of two carbonyl ligands leads to the formation of a nearly planar 5-membered metallacycle. During coordination the amino-proton is shifted to the oxygen of the nitroso group which can be observed in solution for 6 and 7 by (1)H NMR spectroscopy and in solid state by crystal structure analysis. After purification, all compounds have been fully characterized by their (1)H and (13)C NMR, IR, UV/visible (UV/Vis) and mass spectra. The X-ray structure analyses revealed a distorted octahedral coordination of the CO, X and N,N'-chelating ligands for all Re(I) complexes. Biological activity of four oximine rhenium(I) complexes was assessed in vitro in two highly aggressive cancer cell lines: human metastatic melanoma A375 and human chronic myelogenous leukemia K562. Chlorido complexes (6a and 6c) were more efficient than bromido compounds (7d and 7b) in inducing apoptotic cell death of both types of cancer cells. Melanoma cells were more susceptible to tested rhenium(I) complexes than leukemia cells. None of the ligands (3a-d) showed any significant anticancer activity.

  6. Complexation equilibria and coordination aspects of Zn(II) complexes contain 2-aminobenzamide and some bioactive amino acid mixed ligands: pH-metric, spectroscopic and thermodynamic studies.

    PubMed

    Dharmaraja, Jeyaprakash; Subbaraj, Paramasivam; Esakkidurai, Thirugnanasamy; Shobana, Sutha; Raji, Saravanan

    2014-01-01

    Mixed ligand complexation of 2-aminobenzamide (2AB) as ligand [L] with Zn(II) in the presence of some bio-relevant amino acid constituents like glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) as ligand [B] have been investigated using pH-metric measurements with a combined pH electrode at different temperatures (300, 310, 320 and 330 ± 0.1 K) in 50% (v/v) ethanol-water mixture containing I = 0.15 M NaClO(4) as supporting electrolyte. Computer assisted analysis of the experimental titration data showed the presence of ZnLB and ZnLB2 species as mixed ligand complexes in addition to various binary species. In ZnLB/ZnLB(2) species, both primary and secondary ligands act as bidentate to form a stable six, five membered chelate ring. The calculated stabilization parameter Deltalog K, log X, log X' and % R.S. values clearly show the mixed ligand complexes have higher stabilities than their binary. Thermodynamic parameters DeltaG, DeltaH and DeltaS have been derived from the temperature dependence of the stability constants. The complexation behavior of ZnLB species has been studied by means of electronic spectra. The percentage distribution of various binary and mixed ligand species of each type of the complexes in solution depending on pH and the ratio of Zn(II) to 2-aminobenzamide/amino acid of the systems.

  7. Complexation equilibria and coordination aspects of Zn(II) complexes contain 2-aminobenzamide and some bioactive amino acid mixed ligands: pH-metric, spectroscopic and thermodynamic studies.

    PubMed

    Dharmaraja, Jeyaprakash; Subbaraj, Paramasivam; Esakkidurai, Thirugnanasamy; Shobana, Sutha; Raji, Saravanan

    2014-01-01

    Mixed ligand complexation of 2-aminobenzamide (2AB) as ligand [L] with Zn(II) in the presence of some bio-relevant amino acid constituents like glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) as ligand [B] have been investigated using pH-metric measurements with a combined pH electrode at different temperatures (300, 310, 320 and 330 ± 0.1 K) in 50% (v/v) ethanol-water mixture containing I = 0.15 M NaClO(4) as supporting electrolyte. Computer assisted analysis of the experimental titration data showed the presence of ZnLB and ZnLB2 species as mixed ligand complexes in addition to various binary species. In ZnLB/ZnLB(2) species, both primary and secondary ligands act as bidentate to form a stable six, five membered chelate ring. The calculated stabilization parameter Deltalog K, log X, log X' and % R.S. values clearly show the mixed ligand complexes have higher stabilities than their binary. Thermodynamic parameters DeltaG, DeltaH and DeltaS have been derived from the temperature dependence of the stability constants. The complexation behavior of ZnLB species has been studied by means of electronic spectra. The percentage distribution of various binary and mixed ligand species of each type of the complexes in solution depending on pH and the ratio of Zn(II) to 2-aminobenzamide/amino acid of the systems. PMID:25551720

  8. Chemodynamics of aquatic metal complexes: from small ligands to colloids.

    PubMed

    Van Leeuwen, Herman P; Buffle, Jacques

    2009-10-01

    Recent progress in understanding the formation/dissociation kinetics of aquatic metal complexes with complexants in different size ranges is evaluated and put in perspective, with suggestions for further studies. The elementary steps in the Eigen mechanism, i.e., diffusion and dehydration of the metal ion, are reviewed and further developed. The (de)protonation of both the ligand and the coordinating metal ion is reconsidered in terms of the consequences for dehydration rates and stabilities of the various outer-sphere complexes. In the nanoparticulate size range, special attention is given to the case of fulvic ligands, for which the impact of electrostatic interactions is especially large. In complexation with colloidal ligands (hard, soft, and combination thereof) the diffusive transport of metal ions is generally a slower step than in the case of complexation with small ligands in a homogeneous solution. The ensuing consequences for the chemodynamics of colloidal complexes are discussed in detail and placed in a generic framework, encompassing the complete range of ligand sizes.

  9. Iron(III) complexes of N2O and N3O donor ligands as functional models for catechol dioxygenase enzymes: ether oxygen coordination tunes the regioselectivity and reactivity.

    PubMed

    Sundaravel, Karuppasamy; Suresh, Eringathodi; Saminathan, Kolandaivel; Palaniandavar, Mallayan

    2011-08-28

    A series of mononuclear iron(III) complexes of the type [Fe(L)Cl(3)], where L is a systematically modified N(2)O or N(3)O ligand with a methoxyethyl/tetrahydrofuryl ether oxygen donor atom, have been isolated and studied as models for catechol dioxygenases. The X-ray crystal structures of [Fe(L2)Cl(3)] 2, [Fe(L6)Cl(3)] 6, [Fe(L5)(TCC)Cl] 5a, where H(2)TCC = tetrachlorocatechol, [Fe(L6)(TCC)Br] 6a, and the μ-oxo dimer [{Fe(L6)Cl}(2)O](ClO(4))(2) 6b have been successfully determined. In [Fe(L2)Cl(3)] 2 the N(2)O ligand is facially coordinated to iron(III) through the pyridine and secondary amine nitrogen atoms and the tetrahydrofuryl oxygen atom. In [Fe(L6)Cl(3)] 6, [Fe(L5)(TCC)Cl] 5a and [Fe(L6)(TCC)Br] 6a the N(3)O donor ligands L5 and L6 act as a tridentate N3 donor ligand coordinated through two pyridine and one secondary amine nitrogen atoms, whereas the ether oxygen is not coordinated. The spectral and electrochemical properties of the adducts [Fe(L)(DBC)Cl] of 1-8, where H(2)DBC = 3,5-di-tert-butylcatechol, in DMF and their solvated adduct species [Fe(L)(DBC)(Sol)](+), where Sol = DMF/H(2)O, generated in situ in dichloromethane, respectively, have been investigated. The product analysis demonstrates that the adducts [Fe(L)(DBC)Cl] effect cleavage of catechol in the presence of O(2) in DMF to give mainly the intradiol (I) product with a small amount of the extradiol (E) product (E/I, 0.2:1-0.7:1). Interestingly, the solvated species [Fe(L)(DBC)(Sol)](+) derived from 1-4 cleave H(2)DBC to provide mainly the extradiol cleavage products with lower amounts of intradiol products (E/I, 2.3:1-4.3:1) in dichloromethane. In contrast, the solvated species [Fe(L)(DBC)(Sol)](+) derived from 5-8 cleave H(2)DBC to provide both extradiol and intradiol products (E/I, 0.6:1-2.3:1) due to the involvement of the ether oxygen donor of the methoxyethyl/tetrahydrofuryl arm in the coordination to iron(III) upon removal of a chloride ion. PMID:21766098

  10. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand

    NASA Astrophysics Data System (ADS)

    Yuan, Gang; Shao, Kui-Zhan; Chen, Lei; Liu, Xin-Xin; Su, Zhong-Min; Ma, Jian-Fang

    2012-12-01

    Three new polymers, [Cd(L)2(H2O)2]n (1), [Cd3(L)2(μ3-OH)2(μ2-Cl)2(H2O)2]n (2), {[Cd2(L)2(nic)2(H2O)2]·H2O}n (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L- ligands connecting chain-like [Cd(μ3-OH)(μ2-Cl)]n secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4·82)(4·82·103) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated.

  11. Cadmium(II) and Copper(II) coordination polymers based on 5-(Pyrazinyl) tetrazolate ligand: Structure, photoluminescence, theoretical calculations and magnetism

    SciTech Connect

    Chen, Hui-Fen; Yang, Wen-Bin; Lin, Lang; Guo, Xiang-Guang; Dui, Xue-jing; Wu, Xiao-Yuan; Lu, Can-Zhong; Zhang, Cui-Juan

    2013-05-01

    Two μ₂-tetrazolyl bridged metal complexes, ([CdI(PTZ)(H₂O)]·H₂O)ₙ1 and ([Cu(PTZ)₂]·H₂O)ₙ2 (HPTZ=5-(pyrazinyl) tetrazolate), were hydrothermally synthesized and fully characterized by X-ray crystallography, elemental analyses and spectrum techniques. In 1, cadmium ions are bridged by tridentate μ₂-κ²N2,N5:κ¹N1 chelating PTZ⁻ ligand and halide linkers into an infinite 1D chain, while in 2 copper ions are connected by tridentate μ₂-κ²N7,N12:κ¹N8 and bidentate μ₂-κ¹N1:κ¹N2 chelating-bridging PTZ⁻ ligands to form a 1D castellated chain structure. Compound 1 displays phosphorescence with a lifetime of ~7.74 ms in the visible region, and the origin of the luminescent emission is primary assigned to the combination of ligand-centered emission, metal-to-ligand charge transfer and ligand-to-ligand charge transfer, which has been probed by the density of states (DOS) calculations. Magnetic measurement reveals that compound 2 displays an anti-ferromagnetic ordering. - Graphical abstract: Two new complexes based on 5-(pyrazinyl) tertrazolate, namely ([CdI(PTZ)(H2O)]·H2O)n and ([Cu(PTZ)2]·H2O)n have been synthesized and characterized. Compound 1 exhibits interesting green luminescence. Compound 2 displays an anti-ferromagnetic ordering. Highlights: • We report two novel 1D μ₂-tetrazolyl bridged Cd(II) and Cu(II) compounds. • The cadmium(II) compound exhibits a green luminescence. • Theoretical calculations were conducted to elucidate the green luminescence. • The Cu(II) compound exhibits an anti-ferromagnetic ordering.

  12. Bending nanofibers into nanospirals: coordination chemistry as a tool for shaping hydrophobic assemblies.

    PubMed

    Kossoy, Elizaveta; Weissman, Haim; Rybtchinski, Boris

    2015-01-01

    In the current work, we demonstrate how coordination chemistry can be employed to direct self-assembly based on strong hydrophobic interactions. To investigate the influence of coordination sphere geometry on aqueous self-assembly, we synthesized complexes of the amphiphilic perylene diimide terpyridine ligand with the first-row transition-metal centers (zinc, cobalt, and nickel). In aqueous medium, aggregation of these complexes is induced by hydrophobic interactions between the ligands. However, the final shapes of the resulting assemblies depend on the preferred geometry of the coordination spheres typical for the particular metal center. The self-assembly process was characterized by UV/Vis spectroscopy, zeta potential measurements, and cryogenic transmission electron microscopy (cryo-TEM). Coordination of zinc(II) and cobalt(II) leads to the formation of unique nanospiral assemblies, whereas complexation of nickel(II) leads to the formation of straight nanofibers. Notably, coordination bonds are utilized not as connectors between elementary building blocks, but as directing interactions, enabling control over supramolecular geometry.

  13. Synthesis, electrochemistry, and spectroscopic properties of six-coordinate monooxomolybdenum(VI) complexes containing tridentate Schiff base and bidentate catecholate ligands. Crystal and molecular structure of (N-salicylidene-2-aminophenolato)(naphthalene-2,3-diolato)oxomolybdenum(VI)

    SciTech Connect

    Mondal, J.U.; Schultz, F.A.; Brennan, T.D.; Scheidt, W.R.

    1988-11-02

    Six-coordinate monooxomolybdenum(VI) complexes, MoO(cat)(Sap), where Sap/sup 2 -/ = the Schiff base dianion N-salicylidene-2-aminophenolate and cat/sup 2 -/ = catecholate Cat/sup 2 -/, naphthalene-2,3-diolate (Naphcat/sup 2 -/), or 3,5-di-tert-butylcatecholate (DTBcat/sup 2 -/), are prepared by reacting the Mo(VI) dimer. (MoO/sub 2/(Sap))/sub 2/, with the appropriate catechol. The products are characterized by cyclic voltammetry, mass spectrometry, and uv/vis, ir, and /sup 95/Mo NMR spectroscopy. The MoO(cat)(Sap) complexes represent the first examples of a mononuclear MoO/sup 4 +/ center with a coordination number of six. The crystal structure of the MoO-(Naphcat)(Sap) derivative is reported, confirming the six-coordinate, distorted octahedrla environment about Mo(VI). Bond angles in the coordination group deviate from the ideal value of 90/degrees/ as a consequence of the ligand bite constraints and because all four O-Mo-O angles involving the terminal oxo ligand are larger than the ideal 90/degrees/ value. MoO(cat)(Sap) complexes undergo reversible one-electronic reduction at -0.5 to -0.7 V versus Fc /sup +/0/ followed by irreversible one-electron reduction at -1.6 to -1.9 V. Reversible MoO/sup 4 +//MoO/sup 3 +/ electrochemistry is attributed to the fact that the Mo d/sub xy/orbital of MoO(cat)(Sap) can be singly occupied upon reduction to Mo(V) without unfavorable interaction with the four bonds in its equatorial plane. This contrasts with the irreversible electrochemical behavior of seven-coordinate MoO/sup 4 +/ complexes, which contain five such bonds. The /sup 95/Mo NMR chemical shift of MoO(Naphcat)(Sap) is +385 ppM versus external molybdate; this value is highly deshielded with respect to seven-coordinate MoO/sup 4 +/ and six-coordinate MoO/sub 2//sup 2 +/ complexes with O and N donors. 35 references, 4 figures, 5 tables.

  14. The dynamic sphere test problem

    SciTech Connect

    Chabaud, Brandon M.; Brock, Jerry S.; Smith, Brandon M.

    2012-05-16

    In this manuscript we define the dynamic sphere problem as a spherical shell composed of a homogeneous, linearly elastic material. The material exhibits either isotropic or transverse isotropic symmetry. When the problem is formulated in material coordinates, the balance of mass equation is satisfied automatically. Also, the material is assumed to be kept at constant temperature, so the only relevant equation is the equation of motion. The shell has inner radius r{sub i} and outer radius r{sub o}. Initially, the shell is at rest. We assume that the interior of the shell is a void and we apply a time-varying radial stress on the outer surface.

  15. Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: Synthesis, structural elucidation and DNA binding properties of metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Mahalakshmi, Rajkumar; Mitu, Liviu

    2014-10-01

    Present work reports the DNA binding and cleavage characteristics of a series of mixed-ligand complexes having the composition [M(L)(phen)2]Cl2 (where M = Cu(II), Ni(II), Co(II) and Zn(II) and phen as co-ligand) in detail. Their structural features and other properties have been deduced from their elemental analyses, magnetic susceptibility and molar conductivity as well as from IR, UV-Vis, 1H NMR and EPR spectral studies. The UV-Vis, magnetic susceptibility and EPR spectral data of metal complexes suggest an octahedral geometry. The binding properties of these complexes with calf thymus DNA (CT-DNA) have been explored using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and differential pulse voltammetry. The DNA-binding constants for Cu(II), Ni(II), Co(II), and Zn(II) complexes are 6.14 × 105 M-1, 1.8 × 105 M-1, 6.7 × 104 M-1 and 2.5 × 104 M-1 respectively. Detailed analysis reveals that these complexes interact with DNA through intercalation binding. Nuclease activity has also been investigated by gel electrophoresis. Moreover, the synthesized Schiff base and its mixed-ligand complexes have been screened for antibacterial and antifungal activities. The data reveal that the complexes exhibit higher activity than the parent ligand.

  16. Rhenium tetrazolato complexes coordinated to thioalkyl-functionalised phenanthroline ligands: synthesis, photophysical characterisation, and incubation in live HeLa cells.

    PubMed

    Werrett, Melissa V; Wright, Phillip J; Simpson, Peter V; Raiteri, Paolo; Skelton, Brian W; Stagni, Stefano; Buckley, Alysia G; Rigby, Paul J; Massi, Massimiliano

    2015-12-21

    Three new complexes of formulation fac-[Re(CO)3(diim)L], where diim is either 1,10-phenanthroline or 1,10-phenanthroline functionalised at position 5 by a thioalkyl chain, and L is either a chloro or aryltetrazolato ancillary ligand, were synthesised and photophysically characterised. The complexes exhibit phosphorescent emission with maxima around 600 nm, originating from triplet metal-to-ligand charge transfer states with partially mixed ligand-to-ligand charge transfer character. The emission is relatively long-lived, within the 200-400 ns range, and with quantum yields of 2-4%. The complexes were trialed as cellular markers in live HeLa cells, along with two previously reported rhenium tetrazolato complexes bound to unsubstituted 1,10-phenanthroline. All five complexes exhibit good cellular uptake and non-specific perinuclear localisation. Upon excitation at 405 nm, the emission from the rhenium complexes could be clearly distinguished from autofluorescence, as demonstrated by spectral detection within the live cells. Four of the complexes did not appear to be toxic, however prolonged excitation could result in membrane blebbing. No major sign of photobleaching was detected upon multiple imaging on the same cell sample.

  17. Controlled syntheses, structures and photoluminescence of two europium coordination polymers based on 2,4-dcp (2,4-dichlorophenoxyacetate) and 4,4'-bpy (4,4'-bipyridine) ligands

    NASA Astrophysics Data System (ADS)

    Ma, Deyun; Lu, Kuan; Guo, Haifu; Pan, Yong; Liu, Jianqiang

    2012-08-01

    Two new one-dimensional europium coordination polymers, namely {[Eu(2,4-dcp)3(H2O)2]·(4,4'-bpy)(H2O)}n (1) and {[Eu(2,4-dcp)3(H2O)2]·(4,4'-bpy)1.5(H2O)2}n (2) were hydrothermally synthesized by controlling the pH of the reaction solution, and were characterized by elemental analysis, IR, TGA, powder X-ray diffraction and single crystal X-ray diffraction. Single-crystal X-ray diffraction studies indicate that the two europium coordination polymers adopt analogous linear chain structures with a {Eu2(2,4-dcp)5(H2O)4}, and a {Eu2(2,4-dcp)6(H2O)4} dimeric repeat units for 1 and 2, respectively. The europium centers of 1 and 2 are also bound to two water molecules resulting in nine-coordinate, distorted tricapped trigonal-prism and monocapped square antiprism geometries, respectively. The pyridine nitrogen atoms of the 4,4'-bpy ligands do not coordinate to the metal centers in complexes 1-2; instead, they direct the formation of 2D sheet networks via hydrogen bonding interactions. Both 1 and 2 emit the intense red characteristic luminescence of Eu3+ ion at room temperature, with long lifetimes of up to 0.8879 and 0.7571 ms, respectively.

  18. Syntheses, structures and photoluminescent properties of Zn(Ⅱ)/Co(Ⅱ) coordination polymers based on flexible tetracarboxylate ligand of 5,5‧-(butane-1,4-diyl)-bis(oxy)-di isophthalic acid

    NASA Astrophysics Data System (ADS)

    Gao, Yan-Peng; Guo, Le; Dong, Wei; Jia, Min; Zhang, Jing-Xue; Sun, Zhong; Chang, Fei

    2016-08-01

    Three new mixed-ligand metal-organic frameworks based on 5,5‧-(butane-1,4- diyl)-bis(oxy)-diisophthalic acid and transitional metal cations with the help of two ancillary bridging N-donor pyridyl and imidazole linkers, [Zn(L)0.5(4,4‧-bpy)]·2(H2O) (1), [M(L)0.5(bib)]·4(H2O) (M = Zn (2), Co (3)), (4,4‧-bpy=4,4‧-bipyridine, bib=1,4-bis (1H-imidazol-1-yl)-butane), have been synthesized under solvothermal conditions. Their structures and properties were determined by single-crystal and powder X-ray diffraction analyses, IR spectra, elemental analyses and thermogravimetric analyses (TGA). Compounds 1-3 display a 3D 3-fold interpenetrated frameworks linked by the L4- ligands, ancillary N-donor linkers and the free water molecules in the crystal lattice. Topological analysis reveals that 1-3 are a (4,4)-connected bbf topology net with the (64·82)(66) topology. The effects of the L4- anions, the N-donor ligands, and the metal ions on the structures of the coordination polymers have been discussed. Furthermore, luminescence properties and thermogravimetric properties of these compounds were investigated.

  19. Four M(II)-coordination polymers (M = Zn(II) and Cd(II)) based on a flexible 1,2-bis(pyridin-3-yloxy)ethane ligand: Syntheses, structures and photoluminescent properties

    NASA Astrophysics Data System (ADS)

    Ge, Jing-Yuan; Cheng, Jun-Yan; Wang, Peng; Liu, Qi-Kui; Dong, Yu-Bin

    2014-01-01

    Four coordination polymers, namely {[Zn(L)2](ClO4)2}n (1), [Zn(L)(ipa)]n (2), [Cd(L)(chdc)ṡ2H2O]n (3) and [Cd(L)0.5(pydc)ṡ0.5H2O]n (4) (H2ipa = isophthalic acid, H2chdc = cyclohexane-1,4-dicarboxylic acid, H2pydc = pyridine-2,6-dicarboxylic acid), have been synthesized based on a flexible ligand 1,2-bis(pyridin-3-yloxy)ethane (L) under hydrothermal conditions. Their structures are determined by X-ray single-crystal analyses, IR spectra and X-ray powder diffractions (XRPD). In 1, the infinite 2D square sheets arrange regularly to form 1D channels containing ClO4- anions. 2 exhibits wave-like network, which is further extended into a 3D framework via interlayer C-H⋯X (X = π, O) interactions. With different co-ligands, 3 shows a 2D structure, while 4 exhibits a intriguing 3D supramolecular framework. In 1-4, L adopts different conformations in the solid state. The various conformations of L, with the different co-ligands, play an important role in structural diversity. The thermogravimetric analyses and photoluminescent properties of them were also investigated.

  20. Arginine of retinoic acid receptor beta which coordinates with the carboxyl group of retinoic acid functions independent of the amino acid residues responsible for retinoic acid receptor subtype ligand specificity.

    PubMed

    Zhang, Zeng Ping; Hutcheson, Juliet M; Poynton, Helen C; Gabriel, Jerome L; Soprano, Kenneth J; Soprano, Dianne Robert

    2003-01-15

    The biological actions of retinoic acid (RA) are mediated by retinoic acid receptors (RARalpha, RARbeta, and RARgamma) and retinoid X receptors (RXRalpha, RXRbeta, and RXRgamma). Consistent with the X-ray crystal structures of RARalpha and RARgamma, site-directed mutagenesis studies have demonstrated the importance of a conserved Arg residue (alphaArg(276), betaArg(269), and gammaArg(278)) for coordination with the carboxyl group of RA. However, mutation of Arg(269) to Ala in RARbeta causes only a 3- to 6-fold increase in the K(d) for RA and EC(50) in RA-dependent transcriptional transactivation assays while the homologous mutation in either RARalpha or RARgamma causes a 110-fold and a 45-fold increase in EC(50) value, respectively. To further investigate the nature of this difference, we prepared mutant RARs to determine the effect of conversion of betaR269A to a mutant which mimics either RARalpha ligand selectivity (betaA225S/R269A) or RARgamma ligand selectivity (betaI263M/R269A/V338A). Our results demonstrate that in RARbeta mutants that acquire either RARalpha or RARgamma ligand specificity the Arg(269) position responsible for coordination with the carboxyl group of retinoids continued to function like that of RARbeta. Furthermore, three mutant receptors (betaA225S/R269A, betaA225S/F279, and alphaF286A) were found to have a greater than wild-type affinity for the RARalpha-selective ligand Am580. Finally, a homology-based computer model of the ligand binding domain (LBD) of RARbeta and the X-ray crystal structures of the LBD of both RARalpha and RARgamma are used to describe potential mechanisms responsible for the increased affinity of some mutants for Am580 and for the difference in the effect of mutation of Arg(269) in RARbeta compared to its homologous Arg in RARalpha and RARgamma.

  1. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2',3'-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    SciTech Connect

    Liu Guocheng; Chen Yongqiang; Wang Xiuli Chen Baokuan; Lin Hongyan

    2009-03-15

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H{sub 2}O){sub 2}][Cd(Dpq)(1,8-NDC)].2H{sub 2}O (1), [Cd(Dpq)(1,4-NDC)(H{sub 2}O)] (2), and [Cd(Dpq)(2,6-NDC)] (3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H{sub 2}NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H{sub 2}NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H{sub 2}NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and {pi}-{pi} stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer {pi}-{pi} stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature. - Graphical abstract: Three novel Cd(II) compounds have been synthesized under hydrothermal conditions exhibiting a systematic variation of architecture by the employment of three structurally related naphthalene-dicarboxylate ligands.

  2. Coordination chemistry of two heavy metals: I, Ligand preferences in lead(II) complexation, toward the development of therapeutic agents for lead poisoning: II, Plutonium solubility and speciation relevant to the environment

    SciTech Connect

    Neu, M.P.

    1993-11-01

    The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pK{sub a}s and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determined. Solution thermodynamic results indicate that thiohydroxamic acids are more acidic and slightly better lead chelators than hydroxamates, e.g., N-methylthioaceto-hydroxamic acid, pK{sub a} = 5.94, log{beta}{sub 120} = 10.92; acetohydroxamic acid, pK{sub a} = 9.34, log{beta}{sub l20} = 9.52. The syntheses of lead complexes of two bulky hydroxamate ligands are presented. The X-ray crystal structures show the lead hydroxamates are di-bridged dimers with irregular five-coordinate geometry about the metal atom and a stereochemically active lone pair of electrons. Molecular orbital calculations of a lead hydroxamate and a highly symmetric pseudo octahedral lead complex were performed. The thermodynamic stability of plutonium(IV) complexes of the siderophore, desferrioxamine B (DFO), and two octadentate derivatives of DFO were investigated using competition spectrophotometric titrations. The stability constant measured for the plutonium(IV) complex of DFO-methylterephthalamide is log{beta}{sub 110} = 41.7. The solubility limited speciation of {sup 242}Pu as a function of time in near neutral carbonate solution was measured. Individual solutions of plutonium in a single oxidation state were added to individual solutions at pH = 6.0, T = 30.0, 1.93 mM dissolved carbonate, and sampled over intervals up to 150 days. Plutonium solubility was measured, and speciation was investigated using laser photoacoustic spectroscopy and chemical methods.

  3. I. The synthesis and coordination chemistry of novel 6pi-electron ligands. II. Improvement of student writing skills in general chemistry lab reports through the use of Calibrated Peer Review

    NASA Astrophysics Data System (ADS)

    William, Wilson Ngambeki

    Abstract I. The goal of this study was to synthesize and characterize a set of coordination complexes containing 6pi-cationic ligands. These compounds could be extremely useful as catalysts for the polymerization of olefins that are widely used in the synthetic polymer industry. The original strategy was to synthesize the 6pi-cationic ligands using (Ph2P) 3CH (1) and (Me2P)3CH (10) as precursors; however, both precursors 1 and 10 were found to be highly reactive leading to the fragmentation products (Ph 2P)2CH2 and (Me2P)2CH 2 respectively. In trying to control the reactivity, precursor 1 was coordinated to the group 6B metal carbonyl in two modes, Mo(CO)3(C 2H5CN)(Ph2P)2CHPPh2 and W(CO) 3(C2H5CN)(Ph2P)2CHPPh 2. In these novel compounds, two of the three phosphorus atoms are chelated to the metal. These complexes were isolated and characterized by X-ray analysis, elemental analysis, NMR and infrared spectroscopy. When these metal complexes were reacted with B(C6F5)3, the complexes were stabilized, and no molecular fragmentation was observed. Instead, a second mode of coordination was observed by 31P{1H} NMR spectroscopy, where all three phosphorus atoms are bonded to the metal in a tridentate fashion, yielding the novel product EtCNB(C6F 5)3, which was characterized by X-ray analysis. However, because there was no hydride abstraction from the tertiary carbon in either compound, further studies will be required to develop a strategy for hydride abstraction to produce a cationic ligand. Another strategy for the synthesis of 6pi-cationic ligands was to directly synthesize the halogenated version of the tertiary carbon atom of compound 10. Fractional recrystallization of the crude product yielded two compounds of 2,4,6-trimethypyridinium bromide and (PMe2)3CBr. (PMe2)3CBr was determined to be pure as revealed by 31P{1H} NMR. It is expected that oxidation of the bromide should yield the 6pi-cationic ligand. In the next strategy, density function theory calculations (DFT

  4. I. The synthesis and coordination chemistry of novel 6pi-electron ligands. II. Improvement of student writing skills in general chemistry lab reports through the use of Calibrated Peer Review

    NASA Astrophysics Data System (ADS)

    William, Wilson Ngambeki

    Abstract I. The goal of this study was to synthesize and characterize a set of coordination complexes containing 6pi-cationic ligands. These compounds could be extremely useful as catalysts for the polymerization of olefins that are widely used in the synthetic polymer industry. The original strategy was to synthesize the 6pi-cationic ligands using (Ph2P) 3CH (1) and (Me2P)3CH (10) as precursors; however, both precursors 1 and 10 were found to be highly reactive leading to the fragmentation products (Ph 2P)2CH2 and (Me2P)2CH 2 respectively. In trying to control the reactivity, precursor 1 was coordinated to the group 6B metal carbonyl in two modes, Mo(CO)3(C 2H5CN)(Ph2P)2CHPPh2 and W(CO) 3(C2H5CN)(Ph2P)2CHPPh 2. In these novel compounds, two of the three phosphorus atoms are chelated to the metal. These complexes were isolated and characterized by X-ray analysis, elemental analysis, NMR and infrared spectroscopy. When these metal complexes were reacted with B(C6F5)3, the complexes were stabilized, and no molecular fragmentation was observed. Instead, a second mode of coordination was observed by 31P{1H} NMR spectroscopy, where all three phosphorus atoms are bonded to the metal in a tridentate fashion, yielding the novel product EtCNB(C6F 5)3, which was characterized by X-ray analysis. However, because there was no hydride abstraction from the tertiary carbon in either compound, further studies will be required to develop a strategy for hydride abstraction to produce a cationic ligand. Another strategy for the synthesis of 6pi-cationic ligands was to directly synthesize the halogenated version of the tertiary carbon atom of compound 10. Fractional recrystallization of the crude product yielded two compounds of 2,4,6-trimethypyridinium bromide and (PMe2)3CBr. (PMe2)3CBr was determined to be pure as revealed by 31P{1H} NMR. It is expected that oxidation of the bromide should yield the 6pi-cationic ligand. In the next strategy, density function theory calculations (DFT

  5. SPHERES Smartphone Workbench

    NASA Video Gallery

    The Smart SPHERES space robot (Synchronized Position Hold, Engage, Reorient, Experimental Satellites) equipped with an Android smartphone performs a video survey inside of the International Space S...

  6. Sphere based fluid systems

    NASA Technical Reports Server (NTRS)

    Elleman, Daniel D. (Inventor); Wang, Taylor G. (Inventor)

    1989-01-01

    Systems are described for using multiple closely-packed spheres. In one system for passing fluid, a multiplicity of spheres lie within a container, with all of the spheres having the same outside diameter and with the spheres being closely nested in one another to create multiple interstitial passages of a known size and configuration and smooth walls. The container has an inlet and outlet for passing fluid through the interstitial passages formed between the nested spheres. The small interstitial passages can be used to filter out material, especially biological material such as cells in a fluid, where the cells can be easily destroyed if passed across sharp edges. The outer surface of the spheres can contain a material that absorbs a constitutent in the flowing fluid, such as a particular contamination gas, or can contain a catalyst to chemically react the fluid passing therethrough, the use of multiple small spheres assuring a large area of contact of these surfaces of the spheres with the fluid. In a system for storing and releasing a fluid such as hydrogen as a fuel, the spheres can include a hollow shell containing the fluid to be stored, and located within a compressable container that can be compressed to break the shells and release the stored fluid.

  7. Unexpected metal ion-assisted transformations leading to unexplored bridging ligands in Ni(II) coordination chemistry: the case of PO3F(2-) group.

    PubMed

    Dermitzaki, Despina; Raptopoulou, Catherine P; Psycharis, Vassilis; Escuer, Albert; Perlepes, Spyros P; Stamatatos, Theocharis C

    2014-10-21

    The initial 'accidental', metal ion-assisted hydrolysis of PF6(-) to PO3F(2-) has been evolved in a systematic investigation of the bridging affinity of the latter group in Ni(II)/oximate chemistry; mono-, di- and trinuclear complexes have been prepared and confirmed both the rich reactivity of PO3F(2-) and its potential for further use as bridging ligand in high-nuclearity 3d-metal cluster chemistry.

  8. In Situ Spectroelectrochemical Investigations of the Redox-Active Tris[4-(pyridin-4-yl)phenyl]amine Ligand and a Zn(2+) Coordination Framework.

    PubMed

    Hua, Carol; Baldansuren, Amgalanbaatar; Tuna, Floriana; Collison, David; D'Alessandro, Deanna M

    2016-08-01

    An investigation of the redox-active tris[4-(pyridin-4-yl)phenyl]amine (NPy3) ligand in the solution state and upon its incorporation into the solid-state metal-organic framework (MOF) [Zn(NPy3)(NO2)2·xMeOH·xDMF]n (MeOH = methanol and DMF = N,N-dimethylformamide) was conducted using in situ UV/vis/near-IR, electron paramagentic resonance (EPR), and fluorescence spectroelectrochemical experiments. Through this multifaceted approach, the properties of the ligand and framework were elucidated and quantified as a function of the redox state of the triarylamine core, which can undergo a one-electron oxidation to its radical cation. The use of pulsed EPR experiments revealed that the radical generated was highly delocalized throughout the entire ligand backbone. This combination of techniques provides comprehensive insight into electronic delocalization in a framework system and demonstrates the utility of in situ spectroelectrochemical methods in assessing electroactive MOFs. PMID:27419690

  9. Coordination study of chitosan and Fe 3+

    NASA Astrophysics Data System (ADS)

    Hernández, Raúl B.; Franco, Ana Paula; Yola, Oscar R.; López-Delgado, Aurora; Felcman, Judith; Recio, María Angeles L.; Mercê, Ana Lucia Ramalho

    2008-04-01

    The coordination of Fe 3+ with chitosan was studied, considering the type of acid for dissolving the ligand, the pH for the medium, and the metal-biopolymer ratio. Potentiometric and ultraviolet-visible titrations, infrared spectroscopy, thermal analysis and X-ray diffraction were employed. The polymer coordinates with the metal cation through the amino and hydroxyl groups in the entire pH range studied, with pH values around 3-6 being the most important region. The logarithms of the overall binding constants for the equilibria were: A: Chit-Fe, β A 16.06 ± 0.07; B: Chit 2-FeH, β B 32.64 ± 0.07; C: Chit 3-Fe, β C 35.6 ± 0.1; D: Chit 3-FeH, β D 49.0 ± 0.2, respectively. The coordination is made either by the amino or/and the hydroxyl groups with water molecules or/and chloride ions completing the coordination sphere for the metal giving rise to among other possible, di- to hexacoordinated complexed species [FeNO 2Cl 3], [FeN 2O 2Cl 2], [FeN 3O 3] and [FeN 2O 4].

  10. Coordination Chemistry of Homoleptic Actinide(IV)-Thiocyanate Complexes.

    PubMed

    Carter, Tyler J; Wilson, Richard E

    2015-10-26

    The synthesis, X-ray crystal structure, vibrational and optical spectroscopy for the eight-coordinate thiocyanate compounds, [Et4 N]4 [Pu(IV) (NCS)8 ], [Et4 N]4 [Th(IV) (NCS)8 ], and [Et4 N]4 [Ce(III) (NCS)7 (H2 O)] are reported. Thiocyanate was found to rapidly reduce plutonium to Pu(III) in acidic solutions (pH<1) in the presence of NCS(-) . The optical spectrum of [Et4 N][SCN] containing Pu(III) solution was indistinguishable from that of aquated Pu(III) suggesting that inner-sphere complexation with [Et4 N][SCN] does not occur in water. However, upon concentration, the homoleptic thiocyanate complex [Et4 N]4 [Pu(IV) (NCS)8 ] was crystallized when a large excess of [Et4 N][NCS] was present. This compound, along with its U(IV) analogue, maintains inner-sphere thiocyanate coordination in acetonitrile based on the observation of intense ligand-to-metal charge-transfer bands. Spectroscopic and crystallographic data do not support the interaction of the metal orbitals with the ligand π system, but support an enhanced An(IV) -NCS interaction, as the Lewis acidity of the metal ion increases from Th to Pu.

  11. New insight of coordination and extraction of uranium(VI) with N-donating ligands in room temperature ionic liquids: N,N'-diethyl-N,N'-ditolyldipicolinamide as a case study.

    PubMed

    Yuan, Li-Yong; Sun, Man; Mei, Lei; Wang, Lin; Zheng, Li-Rong; Gao, Zeng-Qiang; Zhang, Jing; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun

    2015-02-16

    Room temperature ionic liquids (RTILs) represent a recent new class of solvents applied in liquid/liquid extraction based nuclear fuel reprocessing, whereas the related coordination chemistry and detailed extraction processes are still not well understood and remain of deep fundamental interest. The work herein provides a new insight of coordination and extraction of uranium(VI) with N-donating ligands, e.g., N,N'-diethyl-N,N'-ditolyldipicolinamide (EtpTDPA), in commonly used RTILs. Exploration of the extraction mechanism, speciation analyses of the extracted U(VI), and crystallographic studies of the interactions of EtpTDPA with U(VI) were performed, including the first structurally characterized UO2(EtpTDPA)2(NTf2) and UO2(EtpTDPA)2(PF6)2 compounds and a first case of crystallographic differentiation between the extracted U(VI) complexes in RTILs and in molecular solvents. It was found that in RTILs two EtpTDPA molecules coordinate with one U(VI) ion through the carbonyl and pyridine nitrogen moieties, while NTf2(-) and PF6(-) act as counterions. The absence of NO3(-) in the complexes is coincident with a cation-exchange extraction. In contrast, both the extracted species and extraction mechanisms are greatly different in dichloromethane, in which UO2(2+) coordinates in a neutral complex form with one EtpTDPA molecule and two NO3(-) cations. In addition, the complex formation in RTILs is independent of the cation exchange since incorporating UO2(NO3)2, EtpTDPA, and LiNTf2 or KPF6 in a solution also produces the same complex as that in RTILs, revealing the important roles of weakly coordinating anions on the coordination chemistry between U(VI) and EtpTDPA. These findings suggest that cation-exchange extraction mode for ILs-based extraction system probably originates from the supply of weakly coordinating anions from RTILs. Thus the coordination of uranium(VI) with extractants as well as the cation-exchange extraction mode may be potentially changed by varying the

  12. New insight of coordination and extraction of uranium(VI) with N-donating ligands in room temperature ionic liquids: N,N'-diethyl-N,N'-ditolyldipicolinamide as a case study.

    PubMed

    Yuan, Li-Yong; Sun, Man; Mei, Lei; Wang, Lin; Zheng, Li-Rong; Gao, Zeng-Qiang; Zhang, Jing; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun

    2015-02-16

    Room temperature ionic liquids (RTILs) represent a recent new class of solvents applied in liquid/liquid extraction based nuclear fuel reprocessing, whereas the related coordination chemistry and detailed extraction processes are still not well understood and remain of deep fundamental interest. The work herein provides a new insight of coordination and extraction of uranium(VI) with N-donating ligands, e.g., N,N'-diethyl-N,N'-ditolyldipicolinamide (EtpTDPA), in commonly used RTILs. Exploration of the extraction mechanism, speciation analyses of the extracted U(VI), and crystallographic studies of the interactions of EtpTDPA with U(VI) were performed, including the first structurally characterized UO2(EtpTDPA)2(NTf2) and UO2(EtpTDPA)2(PF6)2 compounds and a first case of crystallographic differentiation between the extracted U(VI) complexes in RTILs and in molecular solvents. It was found that in RTILs two EtpTDPA molecules coordinate with one U(VI) ion through the carbonyl and pyridine nitrogen moieties, while NTf2(-) and PF6(-) act as counterions. The absence of NO3(-) in the complexes is coincident with a cation-exchange extraction. In contrast, both the extracted species and extraction mechanisms are greatly different in dichloromethane, in which UO2(2+) coordinates in a neutral complex form with one EtpTDPA molecule and two NO3(-) cations. In addition, the complex formation in RTILs is independent of the cation exchange since incorporating UO2(NO3)2, EtpTDPA, and LiNTf2 or KPF6 in a solution also produces the same complex as that in RTILs, revealing the important roles of weakly coordinating anions on the coordination chemistry between U(VI) and EtpTDPA. These findings suggest that cation-exchange extraction mode for ILs-based extraction system probably originates from the supply of weakly coordinating anions from RTILs. Thus the coordination of uranium(VI) with extractants as well as the cation-exchange extraction mode may be potentially changed by varying the

  13. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    SciTech Connect

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming; Wu, Qing-Ran; Xie, Juan; Dong, Fa-Xin; Yang, Meng-Lin; Xue, Gang-Lin

    2014-04-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln{sub 2}(Hpdc){sub 2}(C{sub 2}O{sub 4})(H{sub 2}O){sub 4}]{sub n}·2nH{sub 2}O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H{sub 3}pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H{sub 3}pdc was decomposed into (ox){sup 2−} with Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P2{sub 1}/c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groups to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1–4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities. - Graphical abstract: Four 3D microporous lanthanide coordination polymers with reversible structural interconversion have been synthesized. They exhibit characteristic emission bands of the lanthanide ions and possess great thermal stability. - Highlights: • Four lanthanide coordination polymers have been hydrothermal synthesized. • There is an in situ reaction in 1 in which H{sub 3}pdc was decomposed into (ox){sup 2−} with the Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. • TGA and XRD studies reveal that upon hydration–dehydration, compounds 1–4 undergo a reversible structural interconversion process through a cooling-heating cycle. • Compounds 1–4 exhibit characteristic lanthanide-centered luminescence.

  14. The structures and luminescence properties of lanthanide (Ln = Sm, Eu and Tb) metal-organic coordination polymers based on 5-(2-hydroxyethoxy)isophthalate ligand

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Yu-Jie; Qin, Jie; Chen, Yong; Zhao, Ying

    2015-03-01

    Three unreported isomorphous Ln-containing metal-organic coordination polymeric complexes {LnL(HL)ṡ(H2O)2}n (Ln = Sm (1), Eu (2) and Tb (3), CCDC 971815-971817) were synthesized based on 5-(2-hydroxyethoxy) isophthalic acid (H2L) under hydrothermal conditions. The obtained coordination polymers were characterized by IR, elemental analysis, thermal analysis and X-ray diffraction In solid state, these polymers featured 3-D supramolecular structures constructed by 2-D sheets through H-bonds. Investigation of photoluminescence properties of H2L and 1-3 showed all of them exhibited intense fluorescent emissions in the solid state at room temperature.

  15. Weighted Circle Actions on the Heegaard Quantum Sphere

    NASA Astrophysics Data System (ADS)

    Brzeziński, Tomasz; Fairfax, Simon A.

    2013-11-01

    Weighted circle actions on the quantum Heeqaard 3-sphere are considered. The fixed point algebras, termed quantum weighted Heegaard spheres, and their representations are classified and described on algebraic and topological levels. On the algebraic side, coordinate algebras of quantum weighted Heegaard spheres are interpreted as generalised Weyl algebras, quantum principal circle bundles and Fredholm modules over them are constructed, and the associated line bundles are shown to be non-trivial by an explicit calculation of their Chern numbers. On the topological side, the C*-algebras of continuous functions on quantum weighted Heegaard spheres are described and their K-groups are calculated.

  16. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    SciTech Connect

    Wang, Jin-Hua; Tang, Gui-Mei; Qin, Ting-Xiao; Yan, Shi-Chen; Wang, Yong-Tao; Cui, Yue-Zhi; Weng Ng, Seik

    2014-11-15

    Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one

  17. Influence of terminal acryloyl arms on the coordination chemistry of a ditopic pyrimidine-hydrazone ligand: comparison of Pb(II), Zn(II), Cu(II), and Ag(I) complexes.

    PubMed

    Hutchinson, Daniel J; Hanton, Lyall R; Moratti, Stephen C

    2013-03-01

    A new ditopic pyrimidine-hydrazone ligand, 6-hydroxymethylacryloyl-2-pyridinecarboxaldehyde, 2,2'-[2,2'-(2-methyl-4,6-pyrimidinediyl)bis(1-methylhydrazone)] (L2), was synthesized with terminal acryloyl functional groups to allow incorporation into copolymer gel actuators. NMR spectroscopy was used to show that L2 adopted a horseshoe shape with transoid-transoid pym-hyz-py linkages. Metal complexation studies were performed with L2 and salts of Pb(II), Zn(II), Cu(II), and Ag(I) ions in CH3CN in a variety of metal to ligand ratios. Reacting L2 with an excess amount of any of the metal ions resulted in linear complexes where the pym-hyz-py linkages were rotated to a cisoid-cisoid conformation. NMR spectroscopy showed that the acryloyl arms of L2 did not interact with the bound metal ions in solution. Seven of the linear complexes (1-7) were crystallized and analyzed by X-ray diffraction. Most of these complexes (4-7) also showed no coordination between the acryloyl arms and the metal ions; however, complexes 1-3 showed some interactions. Both of the acryloyl arms were coordinated to Pb(II) ions in [Pb2L2(SO3CF3)4] (1), one through the carbonyl oxygen donor and the other through the alkoxy oxygen donor. One of the acryloyl arms of [Cu2L2(CH3CN)3](SO3CF3)4 (2) was coordinated to one of the Cu(II) ions through the carbonyl oxygen donor. There appeared to be a weak association between the alkoxy donors of the acryloyl arms and the Pb(II) ions of [Pb2L2(ClO4)4]·CH3CN (3). Reaction of excess AgSO3CF3 with L2 was repeated in CD3NO2, resulting in crystals of {[Ag7(L2)2(SO3CF3)6(H2O)2] SO3CF3}∞ (8), the polymeric structure of which resulted from coordination between the carbonyl donors of the acryloyl arms and the Ag(I) ions. In all cases the coordination and steric effects of the acryloyl arms did not inhibit isomerization of the pym-hyz bonds of L2 or the core shape of the linear complexes.

  18. Syntheses, structures and luminescence of three copper(I) cyanide coordination polymers based on trigonal 1,3,5-tris(1H-imidazol-1-yl)benzene ligand

    NASA Astrophysics Data System (ADS)

    Shao, Min; Li, Ming-Xing; Lu, Li-Ruo; Zhang, Heng-Hua

    2016-09-01

    Three Cu(I)-cyanide coordination polymers based on trigonal 1,3,5-tris(1H-imidazol-1-yl)benzene (tib) ligand, namely [Cu3(CN)3(tib)]n (1), [Cu4(CN)4(tib)]n (2), and [Cu2(CN)2(tib)]n (3), have been prepared and characterized by elemental analysis, IR, PXRD, thermogravimetry and single-crystal X-ray diffraction analysis. Complex 1 displays a 3D metal-organic framework with nanosized pores. Complex 2 is a 3D coordination polymer assembled by three μ2-cyanides and a μ3-cyanide with a very short Cu(I)···Cu(I) metal bond(2.5206 Å). Complex 3 is a 2D coordination polymer constructing from 1D Cu(I)-cyanide zigzag chain and bidentate tib spacer. Three Cu(I) complexes are thermally stable up to 250-350 °C. Complexes 1-3 show similar orange emission band at 602 nm originating from LMCT mechanism.

  19. Synthesis and structural characterization of silver(I), copper(I) coordination polymers and a helicate palladium(II) complex of dipyrrolylmethane-based dipyrazole ligands: the effect of meso substituents on structural formation.

    PubMed

    Guchhait, Tapas; Barua, Bhagyasree; Biswas, Aritra; Basak, Biswanath; Mani, Ganesan

    2015-05-21

    A new class of multidentate dipyrrolylmethane based ditopic tecton, 1,9-bis(3,5-dimethylpyrazolylmethyl)dipyrrolylmethane, containing diethyl (L1) or cyclohexylidene (L2) substituents at the meso carbon atom were readily synthesized in 28-45% yields in two different ways starting from dipyrrolylmethanes. A one dimensional coordination polymer structure ([(L2)Ag][BF4])n was obtained when L2 was treated with AgBF4, whereas the analogous reaction between L1 and AgBF4 afforded the dicationic binuclear metallacycle complex [(L1)2Ag2][BF4]2. In addition, yet another coordination polymeric structure [(L1)CuI]n was obtained from the reaction between L1 and CuI. The analogous reaction of L1 with [Pd(PhCN)2Cl2] afforded the binuclear palladium complex [(L1)2Pd2Cl4] having a double-stranded helicate structure. The observed structural differences are attributed to the effects of the substituents present at the meso carbon atom of the ligand, in addition to the nature of the metal centre, coordination number and the preferred geometry.

  20. Surveying sterically demanding N-heterocyclic carbene ligands with restricted flexibility for palladium-catalyzed cross-coupling reactions.

    PubMed

    Würtz, Sebastian; Glorius, Frank

    2008-11-18

    Heterocyclic carbenes (NHCs), especially monodentate ones, have become the ligand of choice for many transition-metal-catalyzed transformations. They generally form highly stable complexes, have strong sigma-donor character, and have a unique shape that can be used to generate sterically demanding ligands.In this Account, we survey recent developments in the design and synthesis of some sterically demanding NHCs with a particularly strong influence on the metal's coordination sphere. We show the successful and insightful application of these ligands in transition-metal catalysis. First, we discuss methods for determining and classifying the electronic and steric properties of NHCs. In addition, we present data on the most important NHC ligands.The selective variation of either electronic or steric parameters of NHCs, and therefore of the catalyst, allows for the optimization of the reaction. Thus, we prepared several series of differentially substituted NHC derivatives. However, because the substituents varied were not directly connected to the carbene carbon, it was difficult to induce a large electronic variation. In contrast, an independent variation of the ligands' steric properties was more straightforward. We highlight three different classes of very sterically demanding NHCs that allow this kind of a steric variation: imidazo[1,5-a]pyridine-3-ylidenes, bioxazoline-derived carbenes (IBiox), and cyclic (alkyl)(amino)carbenes (CAAC).These latter NHC ligands can facilitate a number of challenging cross-coupling reactions. Successful transformations often require a monoligated palladium complex as the catalytically active species, and the sterically demanding NHC ligand favors this monoligated complex. In addition, the electron-rich NHC facilitates difficult oxidative addition steps. Moreover, the conformational flexibility of the ligands can facilitate the formation of catalytically active species and hemilabile interactions, such as agostic or anagostic bonds

  1. Balls and Spheres

    ERIC Educational Resources Information Center

    Szekely, George

    2011-01-01

    This article describes an art lesson that allows students to set up and collect sphere canvases. Spheres move art away from a rectangular canvas into a dimension that requires new planning and painting. From balls to many other spherical canvases that bounce, roll, float and fly, art experiences are envisioned by students. Even if adults recognize…

  2. Reactivity of phosphonodithioato-dppt Ni(II) mixed ligand complexes with halogens: first example of a metal-coordinating tribromide anion.

    PubMed

    Aragoni, M Carla; Arca, Massimiliano; Coles, Susanne L; Devillanova, Francesco A; Hursthouse, Michael B; Isaia, Francesco; Lippolis, Vito

    2012-06-14

    The first example of a metal complex containing a tribromide anion is presented and characterised by X-ray diffraction. Hybrid DFT calculations were used to investigate the nature of the bond in coordinating trihalides and the differences with the corresponding mono-halide complexes.

  3. Syntheses, structure and properties of three-dimensional pillared-layer Ag(I)-Ln(III) heterometallic coordination polymers based on mixed isonicotinate and hemimellitate ligands

    SciTech Connect

    Li, Xinfa; Cao, Rong

    2012-12-15

    Three pillared-layer 4d-4f Ag(I)-Ln(III) heterometallic coordination polymers (HCPs), formulated as [Ln{sub 2}Ag(hma){sub 2}(ina)(H{sub 2}O){sub 2}]{sub n} nH{sub 2}O [Ln=La(1), Pr(2), Nd(3); Hina=isonicotinic acid, H{sub 3}hma=hemimellitic acid], have been synthesized under hydrothermal conditions. Single-crystal and powder X-ray diffractions confirm that they are isostructural, which features a three-dimensional (3D) pillared-layer heterometallic structure built upon the strictly alternate arrangement of lanthanide-organic layers and [Ag(ina)] pillars. The layers and pillars are connected to each other by Ln-O and Ag-O coordination bonds. The photoluminescent property of the Nd derivative (3) has also been investigated. - Graphical abstract: Three pillared-layer 4d-4f Ag(I)-Ln(III) heterometallic coordination polymers have been synthesized and structurally characterized. Highlights: Black-Right-Pointing-Pointer Three 3D pillared-layer 4d-4f HCPs were synthesized by hydrothermal reactions. Black-Right-Pointing-Pointer The synergistic coordination strategy was employed. Black-Right-Pointing-Pointer It opens new perspective for the construction of structurally diversified 4d-4f HCPs.

  4. Lorentzian fuzzy spheres

    NASA Astrophysics Data System (ADS)

    Chaney, A.; Lu, Lei; Stern, A.

    2015-09-01

    We show that fuzzy spheres are solutions of Lorentzian Ishibashi-Kawai-Kitazawa-Tsuchiya-type matrix models. The solutions serve as toy models of closed noncommutative cosmologies where big bang/crunch singularities appear only after taking the commutative limit. The commutative limit of these solutions corresponds to a sphere embedded in Minkowski space. This "sphere" has several novel features. The induced metric does not agree with the standard metric on the sphere, and, moreover, it does not have a fixed signature. The curvature computed from the induced metric is not constant, has singularities at fixed latitudes (not corresponding to the poles) and is negative. Perturbations are made about the solutions, and are shown to yield a scalar field theory on the sphere in the commutative limit. The scalar field can become tachyonic for a range of the parameters of the theory.

  5. Synthesis, spectroscopic characterization and X-ray structures of five-coordinate diorganotin(IV) complexes containing 5-hydroxypyrazoline derivatives as ligands

    NASA Astrophysics Data System (ADS)

    Sousa, Gerimário F. de; Garcia, Edgardo; Gatto, Claudia C.; Resck, Inês S.; Deflon, Victor M.; Ardisson, José D.

    2010-09-01

    Four new diorganotin(IV) complexes have been prepared from R 2SnCl 2 (R = Me, Ph) with the ligands 5-hydroxy-3-metyl-5-phenyl-1-( S-benzildithiocarbazate)-pyrazoline (H 2L 1) and 5-hydroxy-3-methyl-5-phenyl-1-(2-thiophenecarboxylic)-pyrazoline (H 2L 2). The complexes were characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR and Mössbauer spectroscopies. The complexes [Me 2SnL 1], [Ph 2SnL 1] and [Me 2SnL 2] were also studied by single crystal X-ray diffraction and the results showed that the Sn(IV) central atom of the complexes adopts a distorted trigonal bipyramidal (TBP) geometry with the N atom of the ONX-tridentate (X = O and S) ligand and two organic groups occupying equatorial sites. The C-Sn-C angles for [Me 2Sn(L 1)] and [Ph 2Sn(L 1)] were calculated using a correlation between 119Sn Mössbauer and X-ray crystallographic data based on the point-charge model. Theoretical calculations were performed with the B3LYP density functional employing 3-21G(*) and DZVP all electron basis sets showing good agreement with experimental findings. General and Sn(IV) specific IR harmonic frequency scale factors for both basis sets were obtained from comparison with selected experimental frequencies.

  6. Coordination chemistry of Co complexes containing tridentate SNS ligands and their application as catalysts for the oxidation of n-octane.

    PubMed

    Soobramoney, Lynette; Bala, Muhammad D; Friedrich, Holger B

    2014-11-14

    The selective oxidation of saturated hydrocarbons to terminal oxygenates under mild catalytic conditions has remained a centuries long challenge in chemical catalysis. In an attempt to address this challenge, two series of tridentate donor ligands {2,6-bis(RSCH2)pyridine and bis(RSCH2CH2)amine [R = alkyl, aryl]} and their respective cobalt complexes {Co[2,6-bis(RSCH2)pyridine]Cl2 and Co[bis(RSCH2CH2)amine]Cl2} were synthesized and characterized. Crystal structures of Co[2,6-bis(RSCH2)pyridine]Cl2 [R = -CH3 (), -CH2CH3 (), -CH2CH2CH2CH3 () and -C6H5 ()] are reported in which crystallized as a homo-bimetallic dimer that incorporated two bridging chloride atoms in an octahedral geometry around each cobalt center, while , and crystallized as mono-metallic species characterized by trigonal bipyramidal arrangement of ligands around each cobalt center. As catalysts for the homogeneous selective oxidation of n-octane, the catalysts yielded ketones as the dominant products with a selectivity of ca. 90% for the most active catalyst Co[bis(CH2CH2SCH2CH2)amine]Cl2 () at a total n-octane conversion of 23%. Using tert-butyl hydroperoxide (TBHP) as an oxidant, optimization of reaction conditions is also reported.

  7. Reactions with a Metalloid Tin Cluster {Sn10[Si(SiMe3)3]4}(2-): Ligand Elimination versus Coordination Chemistry.

    PubMed

    Schrenk, Claudio; Gerke, Birgit; Pöttgen, Rainer; Clayborne, Andre; Schnepf, Andreas

    2015-05-26

    Chemistry that uses metalloid tin clusters as a starting material is of fundamental interest towards understanding the reactivity of such compounds. Since we identified {Sn10[Si(SiMe3)3]4}(2-) 7 as an ideal candidate for such reactions, we present a further step in the understanding of metalloid tin cluster chemistry. In contrast to germanium chemistry, ligand elimination seems to be a major reaction channel, which leads to the more open metalloid cluster {Sn10[Si(SiMe3)3]3}(-) 9, in which the Sn core is only shielded by three Si(SiMe3)3 ligands. Compound 9 is obtained through different routes and is crystallised together with two different countercations. Besides the structural characterisation of this novel metalloid tin cluster, the electronic structure is analysed by (119)Sn Mössbauer spectroscopy. Additionally, possible reaction pathways are discussed. The presented first step into the chemistry of metalloid tin clusters thus indicates that, with respect to metalloid germanium clusters, more reaction channels are accessible, thereby leading to a more complex reaction system.

  8. Coordination of bis­(pyrazol-1-yl)amine to palladium(II): influence of the co-ligands and counter-ions on the mol­ecular and crystal structures1

    PubMed Central

    Mendoza, María de los Angeles; Bernès, Sylvain; Mendoza-Díaz, Guillermo

    2015-01-01

    The structures of a series of complexes with general formula n[Pd(pza)X]Y·mH2O (n = 1, 2; X = Cl, Br, I, N3, NCS; Y = NO3, I, N3, [Pd(SCN)4]; m = 0, 0.5, 1) have been determined, where pza is the tridentate ligand bis­[2-(3,5-di­methyl­pyrazol-1-yl)eth­yl]amine, C14H23N5. In all complexes, {bis­[2-(3,5-di­methyl­pyrazol-1-yl-κN 2)eth­yl]amine-κN}chlorido­palladium nitrate, [Pd(pza)Cl]NO3, (1), {bis­[2-(3,5-di­methyl­pyrazol-1-yl-κN 2)eth­yl]amine-κN}bromido­palladium nitrate, [Pd(pza)Br]NO3, (2), {bis­[2-(3,5-di­methyl­pyrazol-1-yl-κN 2)eth­yl]amine-κN}iodido­palladium iodide hemihydrate, [Pd(pza)I]I·0.5H2O, (3), azido{bis­[2-(3,5-di­methyl­pyrazol-1-yl-κN 2)eth­yl]amine-κN}palladium azide monohydrate, [Pd(pza)N3]N3·H2O, (4), and bis­[{bis­[2-(3,5-di­methyl­pyrazol-1-yl-κN 2)eth­yl]amine-κN}(thio­cyanato-κN)palladium] tetra­kis­(thio­cyanato-κS)palladate, [Pd(pza)NCS]2[Pd(SCN)4], (5), the [Pd(pza)X]+ complex cation displays a square-planar coordination geometry, and the pza ligand is twisted, approximating twofold rotation symmetry. Although the pza ligand is found with the same conformation along the series, the dihedral angle between pyrazole rings depends on the co-ligand X. This angle span the range 79.0 (3)–88.6 (1)° for the studied complexes. In (3), two complex cations, two I− anions and one water mol­ecule of crystallization are present in the asymmetric unit. In (5), the central amine group of pza is disordered over two positions [occupancy ratio 0.770 (18):0.230 (18)]. The complex [Pd(SCN)4]2− anion of this compound exhibits inversion symmetry and shows the Pd2+ transition metal cation likewise in a square-planar coordination environment. Compound (5) is also a rare occurrence of a non-polymeric compound in which the pseudohalide ligand NCS− behaves both as thio­cyanate and iso­thio­cyanate, i.e. is coordinating either through the N atom (in the cation) or the S atom (in the anion). PMID

  9. Multi-component coordination-driven self-assembly: construction of alkyl-based structures and molecular modelling.

    PubMed

    Pollock, J Bryant; Cook, Timothy R; Schneider, Gregory L; Stang, Peter J

    2013-10-01

    The design of supramolecular coordination complexes (SCCs) is typically predicated on the use of rigid molecular building blocks through which the structural outcome is determined based on the number and orientation of labile coordination sites on metal acceptors, and the angularity of the ligand donors that are to bridge these nodes. Three-component systems extend the complexity of self-assembly by utilizing two different Lewis base donors in concert with a metal that favors a heteroligated coordination environment. The thermodynamic preference for heteroligation provides a new design principle to the formation of SCCs, wherein multicomponent architectures need not employ only rigid donors. Herein, we exploit the self-selection processes of bis(phosphine) Pt(II) metal centers which favor mixed Pt(pyridyl)(carboxylate) coordination spheres over their homoligated counterparts, specifically using alkyl-based dicarboxylate ligands instead of traditionally rigid phenyl, alkenyl, or ethynyl variants. Using this mode of assembly, flexible-based 2D and 3D SCCs containing long alkyl chains were synthesized and characterized. Density functional theory (DFT) and natural population analysis (NPA) calculations were performed on model systems to probe the thermodynamic preference for heteroligated coordination spheres in the experimental systems.

  10. Synthesis, vibrational spectroscopy and crystal structure of zinc and sodium tricarboxylate coordination polymers with the flexible ligand tricarballylate anion (TCA 3-)

    NASA Astrophysics Data System (ADS)

    Williams, Patricia A. M.; Naso, Luciana G.; Echeverría, Gustavo A.; Ferrer, Evelina G.

    2010-08-01

    A new 3D coordination polymer of general formula [NaZn(C 6H 5O 6)(H 2O) 3] n has been hydrothermally synthesized and characterized by vibrational spectroscopy (Raman and Infrared), X-ray diffraction and thermal analysis. The compound crystallizes in the centrosymmetric monoclinic group C2/ c with a = 10.885(2), b = 13.219(3), c = 15.299(5) Å, β = 102.23(2)°, V = 2151(1) (Å 3), Z = 8. The crystal structure consists in an open framework where the arrangement of tetrahedral zinc and octahedral sodium cations, coordinated by water and carboxylate oxygens atoms, are linked by tricarballylate anions developing channels parallel to the [0 1-1] crystallographic direction. Thermogravimetric analysis indicates that the complex is thermally stable up to 200 °C.

  11. Synthesis, structure, and luminescence property of a series of Ag-Ln coordination polymers with the N-heterocyclic carboxylato ligand

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Chen, Chong; Gao, Yan; Zhao, Ran; Wang, Xiuyan; Lü, Chunxin; Chi, Yuxian; Niu, Shuyun

    2016-03-01

    Six Ln-Ag coordination polymers {[LnAg2(IN)4(H2O)5]·NO3·2H2O}n (Ln=Ho (1) and Tb (2), HIN=isonicotinic acid), {[PrAg2(IN)4(H2O)2]·NO3·H2O}n (3), [LnAg(pdc)2]n (Ln=Eu(4) and Pr (5), H2pdc=3,4-pyridine-dicarboxylic acid) and [NdAg(bidc)2(H2O)4]n (6) (H2bidc=benzimidazole-5,6-dicarboxylic acid) have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, elemental analysis, IR, UV-vis-NIR absorption spectra, fluorescence spectra and thermogravimetric analysis. Structural analyses reveal that the six polymers exhibit 0D (polymer (1)), 1D (polymer (2)), 2D (polymers (3) and (5)) and 3D (polymers (4) and (6)) infinite structures, respectively. Polymers (1)-(6) exhibit the Ln(III) characteristic emission in the near-infrared (NIR) region or in the visible region. Especially, the NIR emission bands of polymers 1, 5 and 6 evidently present shift or splitting due to formation of the Ln-Ag coordination polymers. This can be attributed to the tune of inner levels in Ln-Ag system caused by the interact and influence between the 4d orbital of the Ag(I) ion and the 4f orbital of the Ln(III) ion, which can be confirmed by the UV-vis-NIR absorption spectra of the polymers. In addition, the distortion of coordination geometry as well as difference of the coordination number around the Ag(I) ion affect the structure framework.

  12. Toward models for the full oxygen-evolving complex of photosystem II by ligand coordination to lower the symmetry of the Mn3CaO4 cubane: demonstration that electronic effects facilitate binding of a fifth metal.

    PubMed

    Kanady, Jacob S; Lin, Po-Heng; Carsch, Kurtis M; Nielsen, Robert J; Takase, Michael K; Goddard, William A; Agapie, Theodor

    2014-10-15

    Synthetic model compounds have been targeted to benchmark and better understand the electronic structure, geometry, spectroscopy, and reactivity of the oxygen-evolving complex (OEC) of photosystem II, a low-symmetry Mn4CaOn cluster. Herein, low-symmetry Mn(IV)3GdO4 and Mn(IV)3CaO4 cubanes are synthesized in a rational, stepwise fashion through desymmetrization by ligand substitution, causing significant cubane distortions. As a result of increased electron richness and desymmetrization, a specific μ3-oxo moiety of the Mn3CaO4 unit becomes more basic allowing for selective protonation. Coordination of a fifth metal ion, Ag(+), to the same site gives a Mn3CaAgO4 cluster that models the topology of the OEC by displaying both a cubane motif and a "dangler" transition metal. The present synthetic strategy provides a rational roadmap for accessing more accurate models of the biological catalyst.

  13. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2‧,3‧-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    NASA Astrophysics Data System (ADS)

    Liu, Guocheng; Chen, Yongqiang; Wang, Xiuli; Chen, Baokuan; Lin, Hongyan

    2009-03-01

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H 2O) 2][Cd(Dpq)(1,8-NDC)]·2H 2O ( 1), [Cd(Dpq)(1,4-NDC)(H 2O)] ( 2), and [Cd(Dpq)(2,6-NDC)] ( 3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H 2NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H 2NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H 2NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and π- π stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer π- π stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature.

  14. The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival: a reductase-based peptide counters β-adrenergic receptor ligand-mediated cardiac dysfunction

    PubMed Central

    Ding, Bo; Gibbs, Peter E. M.; Brookes, Paul S.; Maines, Mahin D.

    2011-01-01

    HO-2 oxidizes heme to CO and biliverdin; the latter is reduced to bilirubin by biliverdin reductase (BVR). In addition, HO-2 is a redox-sensitive K/Ca2-associated protein, and BVR is an S/T/Y kinase. The two enzymes are components of cellular defense mechanisms. This is the first reporting of regulation of HO-2 by BVR and that their coordinated increase in isolated myocytes and intact heart protects against cardiotoxicity of β-adrenergic receptor activation by isoproterenol (ISO). The induction of BVR mRNA, protein, and activity and HO-2 protein was maintained for ≥96 h; increase in HO-1 was modest and transient. In isolated cardiomyocytes, experiments with cycloheximide, proteasome inhibitor MG-132, and siBVR suggested BVR-mediated stabilization of HO-2. In both models, activation of BVR offered protection against the ligand's stimulation of apoptosis. Two human BVR-based peptides known to inhibit and activate the reductase, KKRILHC281 and KYCCSRK296, respectively, were tested in the intact heart. Perfusion of the heart with the inhibitory peptide blocked ISO-mediated BVR activation and augmented apoptosis; conversely, perfusion with the activating peptide inhibited apoptosis. At the functional level, peptide-mediated inhibition of BVR was accompanied by dysfunction of the left ventricle and decrease in HO-2 protein levels. Perfusion of the organ with the activating peptide preserved the left ventricular contractile function and was accompanied by increased levels of HO-2 protein. Finding that BVR and HO-2 levels, myocyte apoptosis, and contractile function of the heart can be modulated by small human BVR-based peptides offers a promising therapeutic approach for treatment of cardiac dysfunctions.—Ding, B., Gibbs, P. E. M., Brookes, P. S., Maines, M. D. The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival; a reductase-based peptide counters β-adrenergic receptor ligand-mediated cardiac dysfunction

  15. Synthesis and Lanthanide Coordination Properties of New 2,6-Bis(N-tert-butylacetamide)pyridine and 2,6-Bis(N-tert-butylacetamide)pyridine-N-oxide Ligands

    SciTech Connect

    Binyamin, Iris; Pailloux, Sylvie; Duesler, Eileen N.; Rapko, Brian M.; Paine, Robert T.

    2006-07-24

    One method of treatment under consideration for processing of high-level radioactive fuel materials involves nuclear incineration. The success of the approach, in part, depends on the separation of minor actinides Am and Cm from the dominant actinides U and Pu prior to incineration. Therefore, there is fundamental interest, as well as practical demands, for the development of new selective coordination and separations chemistry for these species in aqueous solutions. Several families of ligands such as carbamoylmethylphophonates (CMP), (RO)2P(O)CH2C(O)NR2, carbamoylmethylphophine oxides (CMPO), R2P(O)CH2C(O)NR2, and alkyl malonamides, [RR'NC(O)2''H], have attracted the greatest attention as selective actinide ion chelators due in part to their stability toward strong radiation fields, as well as their ability to function in contact with the acidic aqueous solutions typically used to handle the actinide ions. In our group, we have been developing another family of ligands that offer promising performance in actinide separations: phosphinomethylpyridine-N-oxides, NOPO and NOPOPO.

  16. Experiment SPHERE status 2008

    NASA Astrophysics Data System (ADS)

    Shaulov, S. B.; Besshapov, S. P.; Kabanova, N. V.; Sysoeva, T. I.; Antonov, R. A.; Anyuhina, A. M.; Bronvech, E. A.; Chernov, D. V.; Galkin, V. I.; Tkaczyk, W.; Finger, M.; Sonsky, M.

    2009-12-01

    The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10-10 eV.

  17. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    NASA Astrophysics Data System (ADS)

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-01

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O2 bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H2O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date.

  18. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    DOE PAGES

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH boundmore » structures have the highest calculated activity to date.« less

  19. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    SciTech Connect

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date.

  20. A new PC(sp(3))P ligand and its coordination chemistry with low-valent iron, cobalt and nickel complexes.

    PubMed

    Zhu, Gengyu; Li, Xiaoyan; Xu, Guoqiang; Wang, Lin; Sun, Hongjian

    2014-06-21

    A new PC(sp(3))P ligand N,N'-bis(diphenylphosphino)dipyrromethane [PCH2P] (1) was prepared and its iron, cobalt and nickel chemistry was explored. Two pincer-type complexes [PCHP]Fe(H)(PMe3)2 (2) and [PCHP]Co(PMe3)2 (4) were synthesized in the reaction of with Fe(PMe3)4 and Co(Me)(PMe3)4. 1 reacted with Co(PMe3)4 and Ni(PMe3)4 to afford Co(0) and Ni(0) complexes [PCH2P]Co(PMe3)2 (3) and [PCH2P]Ni(PMe3)2 (5). The structures of complexes 2-5 were determined by X-ray diffraction.

  1. New manganese(II) and nickel(II) coordination compounds with N,O-polydentate ligands obtained from pyridoxal and tripodal units

    NASA Astrophysics Data System (ADS)

    Ebani, Patrícia Regina; Fontana, Liniquer Andre; Campos, Patrick Teixeira; Rosso, Eduardo F.; Piquini, Paulo C.; Iglesias, Bernardo Almeida; Back, Davi Fernando

    2016-09-01

    We have reported the synthesis involving the condensation of pyridoxal with tris(2-aminoethyl)amine obtained a tripodal ligand, as well as its subsequent complexation with the manganese(II) and nickel(II) ions. The structural analysis revealed, in the case of complex 1, the formation of a monomeric complex with Mn(II) species. In the complex 2, with Ni(II) metal ion, we describe the probable mechanism for the formation of hemiacetal in these complexes. Only the complex 1 catalyze the dismutation of superoxide efficiently with IC50 equal to 3.38 μM, evaluated through the nitro blue tetrazolium photoreduction inhibition superoxide dismutase assay, in aqueous solution of pH 7.8. Density functional theory calculations are done to characterize and compare the molecular frontier orbitals of the Mn(II) and Ni(II) complexes.

  2. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    PubMed Central

    Holby, Edward F.; Taylor, Christopher D.

    2015-01-01

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O2 bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H2O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date. PMID:25788358

  3. Synthesis, structure and electrochemistry behavior of a cobalt(III) compound with azide and methyl 2-pyridyl ketone semicarbazone ligands

    NASA Astrophysics Data System (ADS)

    Shaabani, Behrouz; Khandar, Ali Akbar; Mahmoudi, Farzaneh; Balula, Salete S.; Cunha-Silva, Luís

    2013-08-01

    An unprecedented cobalt(III) compound with methyl 2-pyridyl ketone semicarbazone (HL) and the auxiliary azide ligand, [Co(L)2] [Co(L)(N3)3] (1) was synthesized and further characterized crystallographically and spectroscopically. Compound 1 crystallizes in the triclinic system and space group of P-1 and its structure consists of two mononuclear crystallographic units with metal chromophore comprising two cobalt(III) centers revealing distorted octahedral geometries and formed by distinct ligands in the inner coordination spheres. Interestingly, compound 1 represents the first complex formed by two distinct mononuclear units involving this ligand. As consequence of various donor and acceptor groups in both crystallographic units, there are several strong Nsbnd H⋯N and Nsbnd H⋯O hydrogen bonding interactions interconnecting adjacent moieties, ultimately leading to a three-dimensional supramolecular network. Furthermore, the electrochemical behavior of the HL and compound 1 were investigated.

  4. ISS Update: Smart SPHERES

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries conducts a phone interview with Mark Micire, SPHERES Engineering Manager at Ames Research Center. Questions? Ask us on Twitter @NASA_Johnson and include ...

  5. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  6. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  7. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    NASA Astrophysics Data System (ADS)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-11-01

    Three new coordination polymers [Mn(hip)(phen) (H2O)]n (1), [Co(hip)(phen) (H2O)]n (2), and [Cd(hip) (phen) (H2O)]n (3) (H2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π-π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π-π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift.

  8. Influence of the reaction temperature and ph on the coordination modes of the 1,4-benzenedicarboxylate (BDC) ligand: a case study of the Ni(II)(BDC)/2,2'-bipyridine system.

    PubMed

    Go, Yong Bok; Wang, Xiqu; Anokhina, Ekaterina V; Jacobson, Allan J

    2005-11-14

    Three new Ni(BDC)/2,2'-bipy compounds, Ni2(BDC)(HBDC)2(2,2'-bipy)2 (2), Ni3(BDC)3(2,2'-bipy)2 (3), and Ni(BDC)(2,2-bipy)2.2H2O (5), in addition to the previously reported Ni(BDC)(2,2'-bipy).0.75H2BDC (1) and Ni(BDC)(2,2'-bipy)(H2O) (4) [BDC = 1,4-benzenedicarboxylate; 2,2'-bipy = 2,2'-bipyridine], have been synthesized by hydrothermal reactions. A systematic investigation of the effect of the reaction temperature and pH resulted in a series of compounds with different compositions and dimensionality. The diverse product slate illustrates the marked sensitivity of the structural chemistry of polycarboxylate aromatic ligands to synthesis conditions. Compound 1, which has a channel structure containing guest H2BDC molecules, is formed at the lowest pH. The guest H2BDC molecules are connected by hydrogen bonds and form extended chains. At a slightly higher pH, a dimeric molecular compound 2 is formed with a lower number of protonated carboxylate groups per nickel atom and per BDC ligand. Reactions at higher temperature and the same pH lead to the transformation of 1 and 2 into the two-dimensional, layered trinuclear compound 3. As the pH is increased, a one-dimensional polymer 4 is formed with a water molecule coordinated to Ni2+. Bis-monodentate and bischelating BDC ligands alternate along the chain to give a crankshaft rather than a regular zigzag arrangement. A further increase of the pH leads to the one-dimensional chain compound 5, which has two chelating 2,2'-bipy ligands. Crystal data: 2, triclinic, space group P, a = 7.4896(9) angstroms, b = 9.912(1) angstroms, c = 13.508(2) angstroms, alpha = 86.390(2) degrees , beta = 75.825(2) degrees, gamma = 79.612(2) degrees, Z = 2; 3, orthorhombic, space group Pbca, a = 9.626(2) angstroms, b = 17.980(3) angstroms, c = 25.131(5) angstroms, Z = 4; 5, orthorhombic, space group Pbcn, a = 14.266(2) angstroms, b = 10.692(2) angstroms, c = 17.171(2) angstroms, Z = 8. PMID:16270964

  9. Outer-sphere contributions to the electronic structure of type zero copper proteins.

    PubMed

    Lancaster, Kyle M; Zaballa, María-Eugenia; Sproules, Stephen; Sundararajan, Mahesh; DeBeer, Serena; Richards, John H; Vila, Alejandro J; Neese, Frank; Gray, Harry B

    2012-05-16

    Bioinorganic canon states that active-site thiolate coordination promotes rapid electron transfer (ET) to and from type 1 copper proteins. In recent work, we have found that copper ET sites in proteins also can be constructed without thiolate ligation (called "type zero" sites). Here we report multifrequency electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopic data together with density functional theory (DFT) and spectroscopy-oriented configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1 centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding.

  10. Isolable gold(I) complexes having one low-coordinating ligand as catalysts for the selective hydration of substituted alkynes at room temperature without acidic promoters.

    PubMed

    Leyva, Antonio; Corma, Avelino

    2009-03-01

    Hydration of a wide range of alkynes to the corresponding ketones has been afforded in high yields at room temperature by using gold(I)-phosphine complexes as catalyst, with no acidic cocatalysts required. Suitable substrates covering alkyl and aryl terminal alkynes, enynes, internal alkynes, and propargylic alcohols, including enantiopure forms, are cleanly transformed to the corresponding ketones in nearly quantitative yields. Acid-labile groups present in the substrates are preserved. The catalytic activity strongly depends on both the nature of the phosphine coordinated to the gold (I) center and the softness of the counteranion, the complex AuSPhosNTf(2) showing the better activity. A plausible mechanism for the hydration of alkynes through ketal intermediates is proposed on the basis of kinetic studies. The described catalytic system should provide an efficient alternative to mercury-based methodologies and be useful in synthetic programs.

  11. Size- and morphology-controllable synthesis of MIL-96 (Al) by hydrolysis and coordination modulation of dual aluminium source and ligand systems.

    PubMed

    Liu, Dandan; Liu, Yunqi; Dai, Fangna; Zhao, Jinchong; Yang, Kang; Liu, Chenguang

    2015-10-01

    In this paper, an efficient method to fabricate Al-based metal organic framework (Al-MOF) MIL-96 crystals with controllable size and morphology, by mixing other forms of reactants to replace the coordination modulators or capping agents, is presented. The size and morphology of the MIL-96 crystals can be selectively varied by simply altering the ratio of dual reactants via their hydrolysis reaction. All the samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) and nitrogen sorption. Then based on the BFDH theory, a mechanism for the impact of hydrolysis of reactants on the crystal size and morphology is presented and discussed. We also evaluated the performance of these MOFs as sorbents for capturing CO2, and they all show enhanced adsorption properties compared with the bulk material, displaying high adsorption capacities on CO2 at atmospheric pressure and ambient temperature. PMID:26309045

  12. Design and synthesis of 60° dendritic donor ligands and their coordination-driven self-assembly into supramolecular rhomboidal metallodendrimers.

    PubMed

    Han, Qing; Li, Quan-Jie; He, Jiuming; Hu, Bingjie; Tan, Hongwei; Abliz, Zeper; Wang, Cui-Hong; Yu, Yihua; Yang, Hai-Bo

    2011-12-01

    The design and self-assembly of novel rhomboidal metallodendrimers via coordination-driven self-assembly is described. By employing newly designed 60° ditopic donor linkers substituted with Fréchet-type dendrons and appropriate 120° rigid di-Pt(II) acceptor subunits, a variety of [G-1]-[G-3] rhomboidal metallodendrimers with well-defined shape and size were prepared under mild conditions in high yields. The supramolecular metallodendrimers were characterized with multinuclear NMR ((1)H and (31)P), mass spectrometry (CSI-TOF-MS), and elemental analysis. Isotopically resolved mass spectrometry data support the existence of the metallodendrimers with rhomboidal cavities, and NMR data were consistent with the formation of all ensembles. The shape and size of all rhomboidal metallodendrimers were investigated with the PM6 semiempirical molecular orbital method.

  13. Two novel coordination polymers constructed by the same mixed ligands of 1,3-bip and H2bpdc: Syntheses, structures and catalytic properties

    NASA Astrophysics Data System (ADS)

    Lu, Jiu-Fu; Wang, Min-Zhen; Liu, Zhi-Hong

    2015-10-01

    Two novel coordination polymers, namely [Co(1,3-bip)(bpdc)·0.5H2bpdc]n (1), [Cu(1,3-bip)(bpdc)·3H2O]n (2), where 1,3-bip = 1,3-bis(imidazol-1-yl)propane, H2bpdc = biphenyl-4,4‧-dicarboxylic acid, were synthesized under solvothermal conditions and characterized by single crystal X-ray diffraction, powder XRD, FT-IR, TGA and elemental analysis techniques. Single crystal X-ray analysis revealed that complex 1 features a 3D → 3D fivefold interpenetrating framework. The structure of complex 2 displays a (4,4) grid layer which is further reinforced through strong H-bonding with lattice solvent molecules to form a 3D supramolecular framework. Furthermore, the complexes 1 and 2 exhibit catalytic properties on degradation of methyl orange in Fenton-like process.

  14. Monodentate coordination of N-[di(phenyl/ethyl)carbamothioyl]benzamide ligands: synthesis, crystal structure and catalytic oxidation property of Cu(I) complexes.

    PubMed

    Gunasekaran, Nanjappan; Ramesh, Pandian; Ponnuswamy, Mondikalipudur Nanjappa Gounder; Karvembu, Ramasamy

    2011-12-14

    New four-coordinated tetrahedral copper(I) complexes have been synthesized from the reactions between [CuCl(2)(PPh(3))(2)] and N-(diphenylcarbamothioyl)benzamide (HL1) or N-(diethylcarbamothioyl)benzamide (HL2) in benzene. These complexes have been characterized by elemental analyses, IR, UV/Vis, (1)H, (13)C and (31)P NMR spectroscopy. The molecular structure of both the complexes, [CuCl(HL1)(2)(PPh(3))] (1) and [CuCl(HL2)(PPh(3))(2)] (2) were determined by single-crystal X-ray diffraction, which reveals distorted tetrahedral geometry around each Cu(I) ion. The combination of 2 (0.005 mmol) with hydrogen peroxide (2.5 mmol) in acetonitrile is found to be an active catalyst for the oxidation of primary and secondary alcohols (0.5 mmol) to their corresponding acids and ketones, respectively, at room temperature. PMID:21984488

  15. Nd(III) and Dy(III) coordination compounds based on 1H-tetrazolate-5-acetic acid ligands: Synthesis, crystal structures and catalytic properties

    SciTech Connect

    Li Qiaoyun; Chen Dianyu; He Minghua; Yang Gaowen; Shen Lei; Zhai Chun; Shen Wei; Gu Kun; Zhao Jingjing

    2012-06-15

    Reactions of 1H-tetrazolate-5-acetic acid(H{sub 2}tza) with Nd(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O or Dy(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O with the presence of KOH under solvothermal conditions, produced two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)]. Both compounds were structurally characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Compounds 1 and 2 reveal 1D structures via bridging tza as linker. Furthermore, the compounds 1 and 2 showed a specific and good catalytic behavior for the polymerization of styrene, and the polymerization showed controlled characteristics. - Graphical Abstract: Two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)] have been synthesis. 1 and 2 reveal 1D structures via bridging tza as linker, and showed a specific and good catalytic behavior for the polymerization of styrene. Highlights: Black-Right-Pointing-Pointer we have reported two novel compounds formed by H{sub 2}tza and Nd(III) or Dy(III). Black-Right-Pointing-Pointer Compounds 1 and 2 were found to have catalysis property for the photo-polymerization of styrene. Black-Right-Pointing-Pointer The high molecular weight polymers with narrow molecular weight distributions were obtained.

  16. Synthesis and Characterization of bis[(2-ethyl-5-methyl-imidazo-4-yl)methyl]Sulfide and Its Coordination Behavior toward Cu(II) as a Possible Approach of a Copper Site Type I

    PubMed Central

    Barrón-Garcés, Juan D.; Mendoza-Díaz, Guillermo; Vilchez-Aguado, Florina; Bernès, Sylvain

    2009-01-01

    The synthesis and characterization of a novel ligand, bis[(2-ethyl-5-methyl-imidazo-4-yl)methyl]sulfide (bemims), as well as a bemims-containing copper(II) coordination complex are described. In this complex, [Cu(bemims)X2] with X = NO3−, bemims acts as a tridentate ligand and two monodentate nitrate ions complete the coordination sphere. Both imidazole N atoms and the thioether S atom of bemims participate in coordination. The Cu(II) ion is five-coordinated with a slightly distorted square-pyramidal geometry (τ = .09). Electrochemical studies and spectroscopic data for this complex are compared with some blue copper proteins in order to assess its ability to mimic the copper center of type I copper proteins. PMID:19587830

  17. Chelating tris(amidate) ligands: versatile scaffolds for nickel(II).

    PubMed

    Jones, Matthew B; Newell, Brian S; Hoffert, Wesley A; Hardcastle, Kenneth I; Shores, Matthew P; MacBeth, Cora E

    2010-01-14

    The synthesis and characterization of nickel complexes supported by a family of open-chain, tetradentate, tris(amidate) ligands, [N(o-PhNC(O)R)(3)](3-) ([L(R)](3-) where R = (i)Pr, (t)Bu, and Ph) is described. The complexes [Ni(L(iPr))](-), [Ni(L(tBu))](-), and [Ni(L(Ph))(CH(3)CN)](-) have been characterized by solution-state spectroscopic methods and single crystal X-ray diffraction. Each ligand gives rise to a different primary coordination sphere about the nickel centre. These studies indicate that the ligands' acyl substituents can be used to regulate the coordination mode of the amidate donors to nickel and the coordination number of the nickel centres. In addition, the ability of these complexes to bind cyanide has been explored. These experiments demonstrate that only one of these complexes, [Ni(L(iPr))](-), is able to irreversibly bind cyanide and can be used to assemble [Et(4)N](3)[Ni(L(iPr))(mu(2)-CN)Co(L(iPr))], a cyanide bridged, heterobimetallic complex. The synthesis and characterization of the cyanide containing complexes, including magnetic susceptibility studies, are described.

  18. Ternary complexes of copper(II) and cobalt(II) involving nitrite/pyrazole and tetradentate N4-coordinate ligand: Synthesis, characterization, structures and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Solanki, Ankita; Sadhu, Mehul H.; Kumar, Sujit Baran

    2015-12-01

    Five new mononuclear mixed ligand complexes of the type [Cu(NCCH3)(dbdmp)](ClO4)2, [M(ONO)(dbdmp)]ClO4, [M(pz) (dbdmp)](ClO4)2 where M = Cu(II) and Co(II), pz = 3,5-dimethylpyrazole and dbdmp = N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine have been synthesized and characterized by physico-chemical and spectroscopy studies. The crystal structures of three copper(II) complexes [Cu(NCCH3)(dbdmp)](ClO4)2, [Cu(ONO)(dbdmp)]ClO4 and [Cu(pz)(dbdmp)](ClO4)2 have been determined by single crystal X-ray diffraction studies. Structural analyses reveal the geometry of [Cu(pz)(dbdmp)](ClO4)2 is distorted square pyramidal and other two copper(II) complexes have distorted trigonal bipyramidal geometry. Molecular composition of cobalt(II) complexes have been determined by mass spectral data. The EPR spectra of copper(II) complexes in frozen acetonitrile solution exhibit axial spectra, characteristic of dx2-y2 ground state. Electrochemical studies of copper(II) complexes using glassy carbon as working electrode in acetonitrile solution show Cu(II)/Cu(I) couple with quasi reversible electron transfer versus Ag/Ag+ reference electrode. Antimicrobial activity of all the synthesized complexes were investigated against two Gram positive and two Gram negative bacterial strains.

  19. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    SciTech Connect

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at th